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SHUNSUKE USUKI

ABSTRACT. For integers a and b > 2, let T, and T}, be multiplication by a and bon T = R/Z.
The action on T by T, and T} is called Xxa, xb action and it is known that, if a and b
are multiplicatively independent, then the only xa, xb invariant and ergodic measure with
positive entropy of T, or T, is the Lebesgue measure. However, whether there exists a
nontrivial xa, xb invariant and ergodic measure is not known. In this paper, we study the
empirical measures of x € T with respect to the xa, xb action and show that the set of x such
that the empirical measures of x do not converge to any measure has Hausdorff dimension 1
and the set of x such that the empirical measures can approach a nontrivial xa, xb invariant
measure has Hausdorff dimension zero. Furthermore, we obtain some equidistribution result
about the xa, xb orbit of z in the complement of a set of Hausdorff dimension zero.

1. INTRODUCTION AND MAIN THEOREMS

In this paper, we write Zx( for the set of integers equal to or larger than 0 and N for the
set of positive integers. Let T = R/Z and, for a € Z with a > 2, define T, : T — T by

To(x) =azx, xeT.

We take a,b € 7Z such that a,b > 2. Since T, and T}, are commutative, they define the
Z2 -action on T and we call it the Xa, Xb action. Here we notice that, if loga/logh € Q,
then a = c* and b = ¢ for some ¢ > 2,k,l € N, and the xa, xb action derives from the
xc action by the single map 7T,.. Therefore we are interested in the case that a and b are
multiplicatively independent, that is, loga/logb ¢ Q.

There is the distinction between the xa action by the single map 7, and the xa, xb action
about the closed invariant subsets. It is well-known that the xa action has many invariant
closed subset of T. However, H. Furstenberg showed that xa, xb invariant, that is, invariant
under T, and Ty, closed subsets are very restricted.

Proposition 1.1 ([6, Theorem IV.1}). Suppose a and b are multiplicatively independent, that
is, loga/logb ¢ Q. Let X C T be a nonempty, closed and xa, xb invariant subset. Then
X =T or X is a finite set in Q/Z.

He also conjectured the measure-theoretic version of Proposition 1.1. We write M (T) for
the set of Borel probability measures on T and My, «,(T) for the set of xa, xb invariant Borel
probability measures on T, that is, the set of u € M(T) such that p is invariant under 7, and

Tp. Furthermore, we write Ey, «5(T) for the set of xa, xb invariant and ergodic probability
1
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measures on T, that is, the set of u € My, «»(T) such that p is ergodic with respect to the
Zéo—action by T, and T,. The Lebesgue measure on T is denoted by mry. We notice that
mr € Exa,xb(T>-

Conjecture 1.2. Suppose a and b are multiplicatively independent. Let i € Eyq «p(T). Then
= mr or u is an atomic measure equidistributed on a xa, xb periodic orbit on Q/Z.

This problem is open for a long time. However, the following theorem was shown by D.
J. Rudolph in [11] when a and b are relatively prime and by A. S. A. Johnson in [9] when a
and b are multiplicatively independent. For a T-invariant probability measure pu (7' = T, or
T;), we write h,(T) for the measure-theoretic entropy of 7" with respect to p.

Theorem 1.3 (The Rudolph-Johnson Theorem). Suppose a and b are multiplicatively inde-
pendent. Let p € Eyq xp(T) such that h,(T,) > 0 or h,(1;) > 0. Then p = mr.

By Theorem 1.3, if there exists some nontrivial xa, xb invariant and ergodic probability
measure /i, then h,(T,) = h,(T,) = 0. There are distinct proofs of Theorem 1.3 and stronger
results in [4], [8] and [7], though the positive entropy assumption is crucial in all of them.

For z € T, let 0, be the probability measure supported on the one point set {z}. For each
N € N, we write 6%, ,, € M(T) for the N-empirical measure of = (with respect to

the Xxa, Xb action), that is,

1 N-1
oy = — 1)
Xa,xbx — N2 Ty

m,n=0

If we give M(T) the weak* topology, then M(T) is a compact and metrizable space. It is
easily seen that any accumulation point in M(T) of &% (N € N), that is, p € M(T)

Xa,xb,x
such that (552,“@ — pin M(T) as k — oo for some divergent subsequence { Ny}, in N, is

xa, xb invariant. If p € Ey, «(T), then, by Birkhoft’s ergodic theorem,

5y o for p-almost every x.
—00

Xa,xb,x

We refer [10] for Birkhoff’s ergodic theorem for Z2,-actions. In this paper we study two

types of subsets of T about the behavior of §% as N — oo: the set of x such that

Xa,xb,x
00 xpa does not converge to any invariant measure, which is called the irregular set for
the empirical measure, and the set of = such that 0%, ., , accumulates to some invariant
probability measure which has the given upper bound of entropy. Our main results give
estimate of Hausdorff dimension of these sets.

We give the first main result in this paper about the irregular set. We write J for the
irregular set. We notice that, by Birkhoft’s ergodic theorem, p(J) = 0 for any p € My, «(T).
However, in general, the irregular set can be either small or large. For example, it is clear
that, if an action on a compact metric space is uniquely ergodic, then its irregular set is
empty. On the other hand, the following fact holds for the xa action by the single map T,.
For a Holder continuous function ¢ : T — R, we write J, for the irregular set for ¢, that

is, the set of # € T such that the Birkhoff average N~* SN "' o(T7z) (N e N) does not

n=0
converge as N — oo. If ¢ is not cohomologous to a constant, then dimy J, = 1 and hence
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the irregular set for the empirical measure has Hausdorff dimension 1. We remark that this
fact holds under more general situations (see [1]). Under these situations, there exist many
distinct invariant and ergodic measures which have sufficiently large dimension, and hence
many subsets with large Hausdorff dimension on which the Birkhoff average converges to
distinct values. Since Xa, xb invariant and ergodic measures on T are restricted by Theorem
1.3, the situation of the xa, xb action is different from that we mentioned above. However,
it is shown that the irregular set is a subset of T with large Hausdorff dimension. In [3], it
is shown that the set of x € T such that the x2, x3 empirical measures by another way of
taking averages do not converge to mr has positive Hausdorff dimension. Our theorem below
is a stronger result.

Theorem 1.4. Let J be the set of x € T such that 6% (N € N) does not converge to

Xa,xb,x
any Xa, Xb invariant probability measure as N — oco. Then

We notice that Theorem 1.4 is shown without the hypothesis that a and b are multi-
plicatively independent. It is remarkable that Theorem 1.4 immediately leads the following
stronger result than itself, which is about the irregular sets for Fourier basis functions. For
k € Z, we write ex(z) = €™ (1 € T) and, as above, J,, for the irregular set for ey, that is,
the set of # € T such that the Birkhoff average N2 "N o\ (T Tyx) (N € N) does not
converge as N — o0. ’

Corollary 1.5. For k € Z\ {0}, we have
dlmH Jek = 1.

We prove Theorem 1.4 and Corollary 1.5 in Section 2.

Next we give the second main result. As we said above, if a and b are multiplicatively
independent, it is conjectured that there exist no nontrivial xa, xb invariant and ergodic
measures (Conjecture 1.2). This problem seems to be very difficult, however, by Theorem
1.3, those nontrivial invariant measures have entropy zero. We expect that the set of x € T
such that 07, ., . approaches a nontrivial measure as N — oo is a small subset of T. The
following theorem and corollary answer this expectation.

Theorem 1.6. Let 0 < t < min{logb, (loga)?/logb} and K; be the set of x € T such that
oN (N € N) accumulates to some p € My x(T) such that h,(T,) <t. Then

Xa,Xb,x
2¢/log b\/t
dlmH Kt S 08 \/_ .
log a + /Iog bv/t
We notice that Theorem 1.6 is shown without the hypothesis that a and b are multiplica-

tively independent. By taking (,., K; and applying Theorem 1.3, we obtain the following
corollary.

Corollary 1.7. Suppose a and b are multiplicatively independent. Let K be the set of x € T
such that &Y (N € N) accumulates to some p € Eyq «p(T) such that g # my. Then

Xa,xb,x
dimyg K = 0.
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If a and b are multiplicatively independent, Theorem 1.6 and Theorem 1.3 lead the result
about the distributions of the xa, xb orbits. For 0 < ¢t < 1 and x € T, we say that the
xa, xb orbit {a™b" 7}, nez., of ¥ is t-semiequidistributed if

N-1
s 1 min
lﬂlgfm g_of(a b x) Zt/Tf dme

for any f € C(T) such that f > 0 on T and

hminf%’{(m,n) €eZ’|0<mn<N,a™'zeU}|>t-mp(U)

N—oo
for any open subset U C T. It is easy to see that the latter statement follows from the former.
This property says that the orbit {amb"x}mmezzo includes an equidistributed portion of the
ratio at least t. Then we have the following.

Theorem 1.8. Suppose a and b are multiplicatively independent. Let 0 <t <
min{logb, (loga)?/logb} and K; C T be as above. Then, for each x € T \ K;, the orbit
{a™b" 2 }mnens, 18 t/ log a-semiequidistributed.

If t > 0 is small, by Theorem 1.6, we have that dimy K, < O(v/t) and Theorem 1.8
implies that, for € T, the orbit {a™b"x}mnez., 18 t/log a-semiequidistributed if x is in
the complement of the set of small Hausdorff dimension about v/¢. In particular, by taking
X = Jp=o(T\ K), we have the following corollary.

Corollary 1.9. Suppose a and b are multiplicatively independent. Then there exists X C T
such that dimy (T \ X) = 0 and, for any x € X, the xa, xb orbit {a™V"T}mnez., of  is
s-semiequidistributed for some s = s(x) > 0.

We notice that the xa action on T by the single T, does not exhibit this property, since
there exists a xa invariant Cantor set C' C T such that 0 < dimyg C < 1. We will prove
Theorem 1.6 and 1.8 in Section 3.

2. PROOF OF THEOREM 1.4 AND COROLLARY 1.5

In this section, we prove Theorem 1.4 and Corollary 1.5. First, we see that Theorem 1.4
leads immediately Corollary 1.5.

Proof of Corollary 1.5. We assume that Theorem 1.4 holds. Since the linear space spanned
by {ex}rez over C is dense in the Banach space of C-valued continuous functions on T with
the supremum norm and J,, = (), it can be seen that J = kez\ {0} Jex- Hence, using Theorem
1.4, we have
(1) 1 =dimy J = sup dimgJ,

keZ\{0}
For k € Z\ {0}, Tx : T > x — kx € T is commutative with T, and T, and e, = e; o Ty.
Therefore we have J,, = T}~ 1Jel. Moreover, it can be seen that dimg 7 1Jel = dimgy J,,.
From these and the equation (1), it follows that

1= dlmH Jel == dlmH Jek



Xa and xb empirical measures, the irregular set and entropy 5

and we complete the proof. O

Next, we prove Theorem 1.4. We develop the method in [3] and construct subsets of J
which have Hausdorff dimension arbitrarily near 1. We need the notion of homogeneous
Moran sets. We refer [5] for the definition and the results about homogeneous Moran sets.
We remark that we change the definition a little from [5] for our use. It can be seen that the
same results hold.

Let {ny}2,; be a sequence of positive integers and {c;}32; be a sequence of positive
numbers satisfying that ngep, < 1 (B = 1,2,---) and ¢, < ¢ (kK = 1,2,---) for some
0 <c<1 Let Dy={0}, Dy ={(ir, - ,ix)|1 <i;<n;,j=1,...,k} foreach k =1,2,---
and D = UsoDk. f 0 = (01,...,06) € Dy and 7 = (71,...,7m) € Dy, we write
o*xT=(01,...,00 T, Tm) € Diym.

Definition 2.1. A collection F = {J,}sep of closed intervals of T has homogeneous
Moran structure about {ny}32, and {cx}32, if it satisfies the following:

) Jy=T,

(<11§ for each k = 0,1,--+ and 0 € Dy, Joui (i = 1,...,np41) are subintervals of J, and
Josi (i = 1,... ngp1) are pairwise disjoint (where A denotes the interior of A with
respect to the usual topology of T),

(iii) for each k =1,2,---, 0 € D1 and 1 < i < ng, we have

cp = ‘Ja*i’
|Jo ]

(where |A| denotes the length of a interval A of T).

We illustrate homogeneous Moran structure in Figure 1. If F is a collection of closed inter-
vals having homogeneous Moran structure, we write

EF) = U 7
k>0 0€Dy,
and call E(.#) the homogeneous Moran set determined by % .
We write 4 ({ny},{cr}) for the set of homogeneous Moran sets determined by some
collection .Z of closed intervals having homogeneous Moran structure about {n;}y, and

{ck}32,. Then we have the following estimate of Hausdorff dimension of homogeneous Moran
sets.

-
A

J(U*2)*1 J(J*Z)*Q J(G*Q)*nk+2

F1GURE 1. Homogeneous Moran structure
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Theorem 2.1 ([5, Theorem 2.1]). Let

.. logmy -y -
s1 = liminf ———— s = liminf .
k—oo —logcy -y k—oo —logcy -+ CrCra1Niit

logny - -ny

Then, for any E € A4 ({n},{ck}), we have
S9 < dlmHE § S1.

We begin the proof of Theorem 1.4. We take arbitrary 0 < r < 1 near 1. It is sufficient to
construct a subset E of J with Hausdorfl dimension > r.

We first construct divergent subsequences { Ny }7°, and {L;}7°, in N we need by induction.
We take a countable subset {¢;}3°;, € C(T) so that 0 < ¢ < 1 on T for each i and,
for a sequence {u,}5>, < M(T) and p € M(T), pp, — p as n — oo is equivalent to
Jp ¥i dpn — [ptb; dpas n— oo for any 4. For each d € N, we write I,; = [j/d, (j + 1)/d]
mod Z for j =0,...,d—1and I, ={I4;|j =0,...,d —1}. We remark that I,, is a common
Markov partition of T with respect to T,,T, and T,,. We put Ny = Lo = 0. Let £ > 0 and
suppose that N;, L; are determined for ¢ = 0,--- &k — 1 so that L,_y < N; < |rL;| < L; for
1 <i<k. For N € N, we define

N-1
1
-— "Lpz TC:nTn.QZ —/’Lpz dm
N2 Z ( b ) T T

m,n=0

(2) Xk,N = {x < T

1
— 1< < .
<3k,1_z_k}

Then, by Birkhoff’s ergodic theorem for my € Ey, «(T), we have
mT(X,ﬁN) >r

for sufficiently large N € N. We take [, € N so that

3) u(z) — i) < =, i=1,...k

3k
for any x,y € T such that |z — y| < (ab)™*. We take Nj € N such that Ny > Ly_1 + Iy,
m']r(Xk’Nk) >,

N2— (Ny—Lp1—1)? 1

4 _
(4) N2 <6k

and

Z?:_ol(Ni + L;)
Ny,

<1
=

Let z € X, ,. For y € T, suppose that TaLb""lx and TaLb’“‘ly are contained in the same element
of I w1y Then, for any Ly < m,n < Np — I, T3"Ti'x and 17T’y are contained in
the same element of /(... From the definition of Xj, n, (2) and the inequalities (3) and (4),
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we have, for 1 <i <k,

Nip—1
Z (T Ty — / W; dmy
m,n=0
Ni—1 Ni—1 Ni—1
stmwm WXMWW 4WZMWW - [ b dmn
m,n=0 m,n=0 m,n=0
Nip—lj—1 Nip—lp—1 9
1 mm 1 mmn Nk_(Nk_Lk—l_lk) 1
< F’? Z @Di(TaTby)_F]g Z Ui(T Ty'x) | + 2 - N2 +3_k
m,n:Lk_l m,n:Lk_l
< 1
-
We take Ly € N so that [rL;| > Ny and
Yo (Ni + Li) + Ny -
L, k

As a result, we obtain divergent subsequences { Ny }22; and {L;}?°, in N such that
(i)
Lk—1<Nk<LTLkJ<Lka k:1,2,"',
where we write Ly = 0,
(ii) for k =1,2,---, mp(Xgn,) > 1,
(iii) for k =1,2,---,ifx € Xy n, and y € T satisfies that TaLb’“‘lx and T(fb‘“‘ly are contained
in the same element of ]( by Nk—Li—1, We have

Nj—1

7 2 W) — [ v dms

mnO

<1
k

for 1 <i <k,
(iv)

SN+ L) SVHNG + L) + N,

li = li = 0.
ALTTON 0. L !
Next, we construct a subset E mentioned above. We write = {0,1,...,ab — 1}2>0 and

7 : {1 — T for the coding map about the Markov partition I,, with respect to Ty, that is,
for w = (wp,wi,...) € Q, = m(w) € T is the element such that {z} = (N7 T Lapw:- For
k=1,2,..., we define

{wEQ‘ w; = w;, L1 <1 < Ny for some w' € 7~ Xka}
For L < N € Zzo; we call a subset C' C Q a cylinder set on [L,N] if C = Cpn(W) =
{weQw;=w,, L <i< N} for some w' € Q. Then Ag can be written as the finite and
disjoint union of cylinder sets on [Lg_1, N — 1]:

:|_|C,

Cebx
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where €. = {CkahNk_l(w’) |w’ € 7T_1Xk,Nk}‘ We have W(Ak) = UCE%’k W(O) D) Xk,NM
mr(m(C)) = (ab)¥—1~Nv for each C' € %, and 7(C) and 7(C") intersect only on Q/Z C T if
C,C" € 6, and C # C'. Hence, by the property (ii) of {Ny}32,, we have

r < mp(Xiw,) < mr(r(Ag)) = Z mr (7(C)) = |6/ (ab)tr—2—Nk

cct,
and
(5) 3| > r(ab)Ne— L1,
We define
A={weQlweAandw;, =0, |rLy| <i< Ly forany k=1,2,...}
and

E =mx(A).
We show that this F is a subset of J such that dimg £ > 7.

Proposition 2.2. We have

EcCJ
Proof. Let x € E and take w € A such that x = m(w). For each k > 1, since w € Ay, we
can take w’ € Q such that 2’ = 7(w') € Xy n, and w; = w} for Ly1 < i < Ng. Then it
follows that Tafjf’lx’ and Tcﬁf’lx are contained in the same element of I (ab) e~ LE1 and, from
the property (iii) of { Ny}, we have

Nj—1

Z (T T ) /T Wy dme

mnO

<1
k

for 1 <1¢ < k. Hence we have

Ny—

1 m n

for any 4. This fact implies that
(6) 0%

Xa,Xb,x

— mr.

k—o0

Next, we show that 5£Z «bo does not converge to mr as k — co. We take [ € N such that

(ab)™' <271 (1 —7r)? and ¢ € C(T) such that 0 < p < 1on T, ¢ = 1 on [0, (ab)~"!] mod Z
and (ab)_l < Jp dmyp < 2711 —r)? For sufficiently large k, we have

21— )Ly —12 1

~(1—7)2

LTLkJ <rl, < Li—I, Li < 5
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Furthermore, since w € A, it follows that T%z € [0, (ab)™!] mod Z for any |rL;| <i < Ly
and, hence T Tz € [0, (ab) 1 mod Z for any |rLj] < m,n < Ly —I. Then we have

= =
7] P17 T'e) 2 7 (13" Ty x)
kE mn=0 k mn=|rLy|
_ (Lk -1 — LTLkJ)z
L
(1 —=7r)Lg — l)2
2(1 - T)lLk — l2
2
=(1-r)-— 7
1
> 5(1 — 7“)2
Hence we have
1= 1
hlgr_l)gfL—% Zogp(T Ty x) > 2(1—r)
> / @ me.
T
This implies that (5xa «b. does not converge to mr as k — oco. This and (6) imply that z € J
and we complete the proof. O

Proposition 2.3. We have
dimg E > r.

Proof. We show that E is a homogeneous Moran set and use Theorem 2.1. Let k =1,2,---
First, we notice that, for w € A, w € C for some C' € %}: the subfamily of cylinder sets on
[Ly_1, Ny — 1]. We define

nk,1 = ’Cgk| > Ck71 = (ab)_(N’“_kal).

Second, we notice that, for w € A, w; is arbitrary for Ny < i < [rLg]. For each N, < i <
|rLy |, we define

Ngoi=ab, cra;= (ab)™

And finally, we notice that, for w € A, w; = 0 for [rLy| < i < Li. We define
ngs =1, ¢z = (ab)” (Li=LrLx]),
We write

oo
{nz}l:1 = {nl,h sy ME—1.3, T 1, M2 Ny s+ + -5 T 2, |7 Ly | =15 TVE,35 TVR4-1,15 - - - }7

o
{Cl}lzl = {01,1, <oy Ck—13,Ck15,Ck 2Ny - -+ 5 Ck2,| 7Ly |—15 Ck,35 CR41,15 - - - }
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Then, by the definition of E, it is seen that E € .# ({m},{¢}). Hence, by Theorem 2.1, we
have

logng---ny

(7) dimyg E > s9 = lim inf )
l—o0 — 10g C1: - CCi41M 41

We estimate the right-hand side of (7).
Suppose n; = ng1 and ¢ = ¢,1. Then njy1 = ngan, = ab and 41 = cron, = (ab)™l.
From the inequality (5), it follows that

k—1

ny---ng = H(nj,lnj,Z,Nj S, ey —11.3) * Tk
Jj=1
k-1

=TT (1%;l(ab) 51~ - |5

Jj=1

k-1
> [ (r(ab) il =iy e (ab) e,
j=1

and
k-1
cLe--q = H(Cj,1cj,2,Nj C 2L |-168) G
=1
1
=TT ()~ 5752 - ()=t
j=1
= (ab)ka.

Hence we have

log g Ny - 10g {H;C;ll (r(ab) LrLijLj,l) . T(ab)Nkak,l}

—logey - e — —log {(ab)=Nx}
25;11 {logr + (|rL;] — Lj_1)log(ab)} +logr + (Ny — Li_1) log(ab)
Ny log(ab)
® _ klogr N Z?;(LTLJ‘J —Lj1) . Ny — Lk—l'
Ny log(ab) Ny, Ny

From the property (iv) of { N}, and {Lj}72,, the right-hand side converges to 1 as k — oo.
Suppose n; = ng2; and ¢ = ¢ o, for some N < i < [rLg]. Then

S Ng,2i4+1 = ab, 1 # LTLkJ —1 iy — Ck2i+1 = (ab)_la i # U”LkJ —1
T Y s = 1, i=rLe) =1 T Yesp = (ab)"Eemlr D) G = |pL, ) — 1
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From the inequality (5), it follows that
k—1

ny-ong = [(njangan, - narn, -1m58) - Meank2N, - M
P

k—1
> H(r(ab) LTLjJ_Ljfl) ) r(ab)Nk_Lk—l ) (ab)i_Nk"rl
j=1

k—1
=TT () ity pay =ttt
j=1

and
k—1
Cl-C = (Cj,lch,Nj ce Cj,z,LrLjJACj,?)) *Ck1Ck2, Ny, * " Ck,2i
j=1
— (ab)*Nk ) (ab>*(i*Nk+1)
= (ab)~ (),

Hence we have
logny---ny
—logey -+ - cepani
tog { T3 (r(a) "1 55-2) - r(ab) ~1s-r+ |
- “log {(ab) T - ey}
© _ Zf;ll {logr + (|rL;j] — Lj_1)log(ab)} +logr + (i — Ly_1 + 1) log(ab)'
(¢ + 1) log(ab) — log(ci1mu11)

If i < |[rLg] — 1, then ¢; 41141 = 1 and the right-hand side of (9) is

Zj;l {logr + (|rL;] — L;j—1)log(ab)} +logr + (i — Ly—1 + 1) log(ab)

(1 + 1) log(ab)

a0) > Flosr Sl = Lis) L
— Ny log(ab) |7 L] Ny,

From the property (iv) of { Ny }72, and {L;}72, the right-hand side converges to 1 as k — oo.
If i = |rLy| — 1, then ¢c;y1ny41 = (ab)~F+~lEe)) and the right-hand side of (9) is

Zf;ll {logr + (|rL;] — Lj—1)log(ab)} 4+ logr + (|rLy| — Ly—1) log(ab)
Ly log(ab)
k-1

Ll — L. _
(11) > klogr n 2371<L i j-1) 4 |7 Ly kal_
Ly log(ab) Ly Ly,

From the property (iv) of { Ny }72, and {Ly}72 ,, the right-hand side converges to r as k — oo.

+ 1.
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Suppose n; = ng 3 and ¢; = 3. Thenngyy = ngy11 = |Coyil, a1 = cryr1 = (ab)™Mer—Le)
and, from the inequality (5),

Cl41Mi41 > T
From (5) again, it follows that

k

Ny M = H(nj,an?ij ce nj,Q,Lrijflnjﬁ)
j=1

k
> [ [(r(ab)rtsl =),
j=1

and
cra =) | (CGaciang o alrr,)-1653)
7j=1

= (ab)~t*.

k

Hence we have
logny---ny
—logey - cepping
tog { [T} (r(ab) 2)-L1)}
>
—log {(ab)~** - crramyia}
>y {logr + ([rL;] — L;1)log(ab)}
Ly log(ab) — logr
klogr S H(IrLy) — Li—1)log(ab)  (|rLy) — Ly_y) log(ab)
Ly log(ab) — logr Ly log(ab) — logr Ly log(ab) — log r

12) =

From the property (iv) of { Ny }72; and {L;}32 ,, the right-hand side converges to r as k — oo.
From the inequalities (8), (9), (10), (11) and (12), we have

1 .
s9 = liminf 8T T >
w0 — log C1 - CCr1M+1
and, from the inequality (7), we complete the proof. O

By Proposition 2.2 and 2.3, we have 1 > dimy J > dimyg E > r and 0 < r < 1 is arbitrary.
Hence we have dimy J = 1 and complete the proof of Theorem 1.4.

3. PROOF OF THEOREM 1.6 AND 1.8

In this section, we prove Theorem 1.6 and 1.8. First, we prove Theorem 1.8 as the proof
is more elementary than that of Theorem 1.6.
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Proof of Theorem 1.8. Suppose a and b are multiplicatively independent. Let 0 < ¢t <
min{logb, (loga)?/logb} and x € T \ K;. Assume there exists f € C(T) such that f > 0 on
T and

N—oo

hmlnf— Z f(a™b"x) <—/fdm1r

m,n=0
We can take 0 < ¢ < 1 and some divergent subsequence { Ny }72, in N such that

Nj,—1

(13) N2 Z f(a™b"x) loga/f dmp — €.

mnO

for each k. Furthermore, since M (T) is compact with respect to the weak* topology, we can
take { N}, so that 5xa b converges to some p € M(T) as k — oo. Then p € My, xp(T)

and £ is an accumulation point of 6%, ., . (N € N). Since z € T \ K;, we have h,(T,) > t.
Here we decompose p into xa, xb ergodlc components. There exists a Borel probability
measure 7 on the compact and metrizable space My, «(T) such that 7(Ey, «5(T)) = 1 and

/go du:/ /gp dvdr(v)
T Exa,xb(T) T

for any ¢ € C(T). By the upper semicontinuity of h,(7,), it can be seen that

hu(Ta) = /E - hl/(Ta)dT(V)

and, by Theorem 1.3, h,(T},) = 0 for any v € Ey, «»(T) \ {mr}. Hence we have
(14) t < h,(T,) = T({mr})hpm,(T,) = T({mr}) log a.
Letting k — oo in the inequality (13), it follows from (14) that

loga/fquy—5>/fdu
_/E /fdz/dT V)

> +(ma)) [ ¢ ams

> ! /fme
loga Jy

and this is a contradiction. Hence we have

I f— (a™b") d
im inf — Z £ Oga/f mer

m,n=0

for any f € C(T) such that f > 0on T.
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Let U C T be an open subset. For any 0 < ¢ < 1, there exists f € C(T) such that
0<f<1lonT,f=0o0nT\U and fT f dmy > mp(U) — e. Then, by the statement above,
it follows that

N-1
hzlvgloréfm‘{(m’n) €eZ’|0<mn<N,a"V'zecU}|> hj{fglolgfm g_of(a b'xr)
t
> o [ 1 e
loga Jy
t
> —€).
_loga(mT(U) £)
By letting ¢ — 0, we have
. . ]- min
hNHl}o%fﬁ [{(m,n) € Z*| 0 <m,n < N,a™'z €U }| > g -mp(U)
and complete the proof. 0

Next, we prove Theorem 1.6. The following argument can be thought as an extension
of that in [2] to the Z2,-action by T, and T. Let k € N. p = (p1,...,px) € RF is a k-
distribution if Zlepi =1 and p; > 0. For such a p, we write H(p) = — Zlepi log p; for
the entropy of p. If N € N and ¢ = (cy,...,cn) € {1,...,k}V, we define the k-distribution
dist(c) = (p1,...,pr), where p; = N"'[{n € {1,...,N}| ¢, = i }|.

Lemma 3.1. For k,N € N andt > 0, let
R(k,N,t) = {ce{1,....k}" |H(dist(c)) <t} .
Then, fixing k and t,
lim sup % log |R(k, N,t)| <t.

N—o0

Proof. See [2, Lemma 4]. O

Suppose 5 = {f1,..., 0k} is a finite cover of T. For x € T and N € N, we say that
(Bigs - - Bin_,) € BY is an N-choice for = with respect to T, and 3 if Tz € 3;, for
0<n < N. Then (B, ..,Biy_,) gives a k-distribution q(5;,, . .., Biy_,) = dist(ig,...,in_1).
We write Distg(x, V) for the set of such k-distributions obtained for all N-choices for .

Suppose B = {B;} is a finite cover of T. For £ C T, we write F < B if £ C B; for some
B; € B and, for a family of subsets £ = {E;}, E < B if E; < B for any E; € E. For a map
T:T—T,!eNand a family of subsets E = {E;}, we define T7'E = {T~'E,}.

Lemma 3.2. Let B = {B;} be a finite open cover of T such that every B; € B is an open
interval on T such that |B;| < 1/(14a) and, for each M € N, By be a finite cover of T such
that By < T 'B for 0 <1 < M. For 0 <t < loga, we define Q (t, {BM}MEN) as the set of
x € T satisfying the following: for any 0 < e < 1 and My € N, there exists M > My such
that,

1
for infinitely many N € N, MH(q) <t+e for some q € U Distg,, (T;'x, N).
0<n<tN/logb
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Then we have

. 2t
dimp Q (t, {8} aren) < loga+t

Proof. For each M € N, let B3y = {Bunr1,-- - Butkens |5 ke = |Bar]. We take 0 < e < 37 (log a—
t). By Lemma 3.1, there exists N. s € N such that
(15) |R(knr, N, M(t +¢))| < NMU+2)

for any N > N, . We take M, € N such that My > t~'logb. Since H(p) is uniformly
continuous in a kj/-distribution p, we can see that, for any z € Q (t, {,BM}MGN), there exists
M > M, such that,

1
for infinitely many N € N, MH(q) <t+ ¢ for some q € U Distg,, (T;'xz, M N).
0<n<tMN/logb

Indeed, we obtain this by adding some 0 < [ < M to N in the definition of @ (t, {BM}MGN)
for £/2. For each M € N, we take N/, € N such that

e 1
(16) Ny = News, MP(ky)™ Y- Ne VN < o
N2N{
For each M, N € N and = € T, we take an M N-choice (Barrig(x)s - - - » BMingn 1 (2)) fOr  with
respect to T, and ), such that

(17) H(q(ﬁMﬂo(l‘)v s 7BM,iMN_1(l‘))) = min H(q)

q€Distg, , (z,MN)
For 0 <1 < M, we define a kj;-distribution
qu(SC N) = diSt(il( ) iM+l(x), Ce ;iM(N—1)+l>~

Then q(Basio(z)s - - -+ BMingn 1(z)) = M7 Zz "quu(z, N). Hence, by the concavity of H(p)
in a kjs-distribution p, we have H(qMJ( N)) < H(q(Brmio(a)s - - - » BMyingw 1 (2))) for some
0 <[ < M, depending on M, N and =.
For M > M,, N > N;M and n € Z with 0 <n <tMN/logb and 0 <[ < M, we define
S(M,N,n,l) ={z € T|H(qu;(1L;z,N)) < M(t+¢)}.

Then we have

Q (t, {Br}yen) C U S(M,N,n,1).

M>Mo,N>N!

0<n<tMN/logb,0<l<M
Let M > My, N > N.;,0 <n <tMN/logh,0 <1 < M and xz € S(M,N,n,l). For the
M N-choice (BM,Z-O(T;Q;), s By (TP y) for T7'x with respect to T, and By as (17), we have

((Ty' ) iv(Tyx), .-y (Ty'x)) € Rk, N, M(t +¢)).
We define
Ay (I, N) = {y € ’JI" Ty € Buti;(rpay for 0 < j <,
TaM’“Hy € BMZMTH () for 0 <r < N}
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Then, by the assumption of B and By, An(Tfx, N) < T, 7B for 0 < j < MN. Hence, by
the assumption that |B;| < 1/(a+1) for each B; € B, we have diamA;;(T7'z, N) < a=MN+1
where diamA denotes the diameter sup, 4]z — y| of A C T with respect to the stan-
dard metric of T. We divide Ay (T x, N) into Ap(T'z, N) = |_|I;;é Asp (T, N), where
A?VH(Tglx, N) = Ay (Tyx, N) N ([s/b, (s +1)/b) mod Z), then x € T, " Ay (T)x, N) =
|_|g;(1) T, " A (T, N). Foreach s = 0,...,b—1, we get the b" components of T, " A3, ,(Tj'z, N),

which we write Eyy;(z, N,n),u=1,...,b", satisfying
(18) diam By (z, Nyn) < b~ a MNHL
We define

E(Mo) ={Ey(x,N,n)| M > My, N > N/ ,;,0 <n <tMN/logh,0 <1< M,
xeS(M,N,n,l),sz(),...,b—1,u:1,...,b"},

then E(Moy) is a cover of Q (¢, {u} yrey) such that diamE (M) < a0+ Fix M > My, N >
N!0 <n <tMN/logband 0 <1< M. The number of Ay (Tj'x, N) (v € S(M, N,n,1))
is bounded by |Bas|' |[R(kar, N, M (t +€))| = (kar)' |R(kar, N, M(t +€))|. Hence the num-
ber of Eyri(z,N,n) (x € S(M,N,n,l),s = 0,....,b—Lu = 1,...,b") is bounded by
b (k) [R(kpr, N, M(t+€))|. We put A = (loga —t —3¢)/(loga+t). Since loga —t > 3¢,
we have A > 0. We also have 1 — X = ((1 + A\)t + 3¢)/loga > 0. Using the inequalities (15)
and (18), we have

Z (diamE)'

EcE(My)

S D VTR [RCkar N M (e €))] (b7 M)

M2M07N2Né M>

0<n<tM N/ logb,0<I<M

<b Z M(k’M)M Z b)\n |R(]€M,N,M(t+€))| CL(*MNJrI)((1+A)t+35)/loga

M=Mo N>N! o,

0<n<tMN/logb

<b 3 Mk)Y Y PN MV ()

M=>Mo N>N! ..,
0<n<tMN/logb

_ 6(1+>\)t+3eb Z M(k‘M)M Z b)\ne—MN()\t+6)

M= Mo N>N! o,

0<n<tMN/logb

6(1+)\)t+3eb Z M(k'M>M Z <tMN +1) thN)\/logbefMN()\tJrE)

log b
M>Mo N>N!

Z M2(kM)M Z NefMNe

M>Mp N>N!

IA

ote(1+N)t+3ep,

log b
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2t€(1+)\)t+36b 1

oM *
log b =T 2

The last inequality is due to (16). When My — oo, the right-hand side converges to 0. This
implies that dimy Q (¢, {8} yen) <1 — A= (2t + 3¢)/(loga +t). By e — 0, we obtain the
lemma. [

Before starting a proof of Theorem 1.6, we prepare a notion. Suppose 8 = {31, ..., B} is
a finite cover of T. For x € T and N € N, we say that (53;,,, Jo<mn<n € SLmMI0Smn<N} jg ap
N-choice for x with respect to T,,, T, and 3 if T;"T'z € 3;,,,, for 0 <m,n < N. Then
(BimnJo<mm<n gives a k-distribution ¢((5i,,.,)o<mn<n) = dist((imn)o<mm<n). We notice
that, if 8 = (Bi,..,.)o<mmn<n is an N-choice for x with respect to 7,,T; and j, then, for
0<n<N, ﬁn = (ﬁio}", . ,6,;1\,7177) is an N-choice for Ty'z with respect to 5 and 7, and

q(8) = N1 355 a(B,):
Proof of Theorem 1.6. Let B be a finite open cover of T as in Lemma 3.2 and « be a fi-
nite Borel partition of T such that @; < B for each a; € «a. For each M € N, we
write ay = V' Tola = {aaa, - Qarky by ke = |aag| and take a finite open cover
Bar = {Bums- -+ Barky, b of T such that apr; C Bary and Bary < T,'B (0 < 1 < M) for each
i=1,...,ky. Let 0 <t < min{loga,logb}. If we show Ky2/1555 C Q (t, {BM}MGN), then, by
Lemma 3.2, we have dimy K2 /10ep < dimpy Q (t, {ﬁM}MeN) < 2t/(loga + t) and, by putting
t' = t*/logb, obtain the theorem. We will show K2 /0q, C @ (t, {BM}MEN)'

Let © € Ky2)105p and take p € My, «p(T) such that h,(T,) < ¢*/logb and 6%, (N eN)

Xa,xb,x
accumulates to p. We take a divergent subsequence {Nj};; in N such that 61\[2,>< pa 7 MBS
j — 0o. We take 0 < ¢ < 1. Since h,(T,,a) = limy 0o M H, (apr) < hy(T,) < ¢/ logh,

we have ) )
t te
—H < — -
M ulan) log b * log b
for sufficiently large M € N. We fix such an M.
We write q(p, anr) = (p(oar) s - po(Qark,,)): a ky-distribution and notice that
H (q(p,an)) = Hy (ap) < M(t?/logb + te/logb). We take a sufficiently small > 0 so

that, for a kj/-distribution ¢,

t? te
19 — < impli H(qg) <M —
(19 o= atman <u it () <M (15 + 1),

where | - | denotes the Euclidean norm on R*. For each i = 1,..., ky;, we take a compact
subset C; such that C; C apr; and p (s \ Ci) < n/2vkpka. Then we take an open subset
Vi such that C; C V; C Sy, and V; (i = 1,...,ky) are pairwise disjoint. Since 6527%@ — U
as j — oo with respect to the weak™ topology, we have

N Vi) > (C) — ——— =1,k
><a,><b,x( ) :u( ) 2\/@]@\4 ¢ M

hence N .
Osaxbe (Vi) > plan) — arkor 1=1,...,ky
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for sufficiently large j.

For j as above, we take an Nj-choice By = (5im,n)0§m,n<Nj for x with respect to T,, T, and
B such that 4,,,, = i whenever T)"T*x € V;. Then, when we write ¢(Ba) = (q1,- -+, @y )
we have o

>0V (V) > D=1,k
4 = xa,xb,z( ) N(O‘M,) \/@kM t M

Since q(Ba) and q(u, anr) = (e (anry) s - - -, p(Qarry, ) are ky-distributions, this implies that
n

i=1,... k.

@i — plan)| < ——,
Vi
Hence, by (19), we have

t? te
(20) H(q(Bu)) < M (logb + logb) _
Now, since 0 < t < logb,
p N
1(Bu) = 57 2 4(Bu,)
N; & n
[tN;/logb] +1 1 >
i ¢(Pu,,)
N; [tN;/logh] +1 =,
N; — [tN;/logb] — 1 1
' N Nj — [tN;/logb] —1 > alBu)

th/ log b§n<Nj

Hence, by the concavity of H(p) in a kj-distribution p and (20), we have

t 1
log bH Lth/ log bJ +1 Z q<ﬂ_Mn)

0<n<tN,/logh
[tN;/logb| + 1 1
Nj LtNJ/ log bJ + 1 0§n<tZNj/ logb —
N; — [tN;/logb] —1 1
H

tN;/log b<n<Nj;

and

t2 te
M <logb " @)
! S 4w | < M@E+e).

[¢N;/logb] +1 0<n<tN;/logh
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Using the concavity of H(p) again, we have

H(q(Pum,,)) < M(t+e¢)

for some 0 < n < ¢N;/logb. Since ¢(Bu ) € Distg,, (1;'x, N;), this shows that x satisfies the
condition in Lemma 3.2 for NV; and M. Since this is satisfied for infinitely many N; (j e N)
and sufficiently large M € N and for arbitrary 0 < € < 1, we have x € () (t, {ﬁM}MeN). Then
we have K2 /105, C Q (t, {BM}MGN) and complete the proof. O
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