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1 Introduction

Roughly speaking, point processes are stochastic processes related to the distributions of
random points in space. To make this idea more precise, we will rely on two different
approaches for their study throughout this thesis. One of such approaches is to define
point processes as random elements on a space of counting measures. This definition
allows us to understand the counting properties of the process: the distribution of the
number of points that fall in a given set. Meanwhile, another method that introduces a
notion of temporal evolution and provides a more dynamic study by incorporating all the
information collected up to a specific time is the martingale theory.

Firstly, following [19], we have established a construction of the renewal Hawkes process
as an independent cluster process and computed its probability generating functional.
Secondly, following [17], we have found convergence rate results for the Key Renewal
Theorem for spread out distributions, and for the compensator and recurrence times of a
renewal process. Finally, following [18], we have made use of the previous two results and
of martingale theory to find a law of large numbers and a central limit theorem for the
RHP.

1.1 Background: Classical Hawkes processes

Alan Hawkes [15] introduced classical Hawkes processes in 1971 as point processes with
a self-exciting nature, in the sense that previous events facilitate the occurrence of future
events. Later, in 1974, Hawkes–Oakes [16] showed that the classical Hawkes process could
be understood as an independent cluster process in which the center process is given by
a homogeneous Poisson process of immigrants and the satellite processes are given by
branching processes formed by the offspring of those immigrants. For this, they rely on
results established by Westcott [39], Kendall [22] and Lewis [25].

Classical Hawkes processes have been extensively used to model real-life phenomena
that exhibit self-excitation. To cite some examples, Ogata [31] proposed a statistical model
for aftershocks produced after a big earthquake, more recently Kim–Paini–Jurdak [23]
proposed a model for transmission of a contagious disease within a population, and Bessy-
Roland–Boumezoued–Hillairet [6] used the Hawkes process as a model for the prediction
of cyberattacks.

Estimation for classical Hawkes processes has also been treated. Ogata studied the
asymptotic properties of the maximum likelihood estimator for a wide variety of point
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processes including the classical Hawkes process [30]. Bacry–Dayri–Muzy [4] proposed
a non parametric estimator for the classical multivariate Hawkes process using Fourier
transform techniques. In addition, Bacry–Delattre–Hoffmann–Muzy [5] established limit
theorems for the classical multivariate Hawkes process and this work is part of the inspi-
ration for my research.

1.2 Background: Renewal processes and renewal Hawkes processes

As a generalization to the classical case, Wheatley–Filimonov–Sornette [40] introduced the
Renewal Hawkes process (abbreviated as RHP) in which immigration is given by a renewal
process. This generalization allows for more flexibility when fitting Hawkes processes to
data sets as Stindl–Chen [34] did for modeling financial returns using Hawkes processes
where the renewals were Weibull distributed. Chen–Stindl [8] studied the evaluation of
the likelihood for the RHP and explained the challenges of computing the likelihood with
respect to the natural filtration, and Chen–Stindl [9] refined the method of evaluation to
improve the speed of the calculation.

Since renewal Hawkes processes are closely related to renewal processes, the study of
the former will require the frequent use of renewal theory. Most of the necessary results
are of rates of convergence of the key renewal theorem and convergence in distribution of
processes obtained from a renewal process. The key renewal theorem states the limiting
behavior of the solution to a renewal equation. Lindvall [26] found some of the first
results on the rate of convergence between two differently delayed renewal measures with
the aid of coupling techniques introduced by Athreya–Ney [3]. More recently, Willmot–
Cai–Lin [41] have found certain sharp estimates for the asymptotics of such solutions
under a variety of reliability-type assumptions for the inter-arrival distribution of the
renewal process. Asmussen–Foss–Korshunov [2] considered this problem in the case of
subexponential distributions. Yin–Zhao [42] studied non-exponential asymptotics in the
case of defective distributions. Sgibnev [33] treated some cases where the solution to the
renewal equation diverges to infinity.

A different approach to the study of asymptotic properties in renewal theory concerns
the limiting behavior of processes constructed from a renewal process. Gakis–Sivazlian
[12] obtained the limit distributions for the forward and backward recurrence times of a
renewal process. Meanwhile, Godrèche–Luck [13] found results for occupation times of a
renewal process using Laplace transform methods.

1.3 Structure of this thesis

The structure of this thesis is the following: Section 2 contains all the necessary ideas
for the proof of our results, in particular Section 2.1 presents point processes as random
counting measures, while Section 2.2 introduces them through martingale theory. Sections
2.3 and 2.4 treat renewal theory and regenerative processes respectively. Section 3 states
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the set of assumptions we made. Our results on the representation of the RHP as a
cluster process are presented in Section 4. Section 5 contains our convergence rate results
for renewal processes and Section 6 establishes our limit theorems for renewal Hawkes
processes.

2 General theory of point processes

We present an overview of the random measure and martingale theories for point pro-
cesses. Additionally, we include general theory for renewal and regenerative processes
which are necessary for the proof of our main results. Whenever the proof of some result
has been written in more detail than in the corresponding reference, it will be indicated.

2.1 Point processes as random counting measures

Some classical references for the study of point processes as part of the theory of random
measures are Harris [14] and Moyal [28]. A more recent textbook on the subject is [21].

We define point processes in a general setting. Let X be a complete separable metric
space (abbreviated as c.s.m.s.) and let B(X ) denote its Borel σ-field. We denote by N ♯

X
the space of counting measures ν on X that are locally finite, i.e.,

ν : B(X ) ∋ B 7→ ν(B) ∈ Z+ ={0, 1, 2, . . .} , (2.1)

ν(B) <∞, for all bounded B ∈ B(X ). (2.2)

The space N ♯
X can be equipped with the topology of weak ♯ convergence (denoted by w♯)

defined as follows.

Definition 2.1 ([11, Section A2.6]). Let{νn}n∈N and ν be measures in N ♯
X . We say that

νn converges to ν in the w♯-topology if∫
X

f(s)νn(dx) −→
n→∞

∫
X

f(x)ν(dx), (2.3)

for all bounded continuous functions f on X that vanish outside a bounded set.

We note that this is equivalent to vague convergence if X is locally compact. With the
w♯ topology, the space N ♯

X is a c.s.m.s. (c.f. [11, Proposition 9.1.IV]) and we can think of
its Borel σ-field, which we denote by B(N ♯

X ). Moreover, B(N ♯
X ) coincides with the σ-field

generated by the maps

N ♯
X ∋ ν 7→ ν(B), for B ∈ B(X ). (2.4)

With these elements, we introduce the notion of a point process :

Definition 2.2. A point process N on X is a random element N(ω, ·) of (N ♯
X ,B(N

♯
X ))

defined on a probability space (Ω,F ,P).
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A consequence of Definition 2.2 is that, for fixed ω ∈ Ω, the set function N(ω, ·) is a
counting measure on X and that, for fixed B ∈ B(X ), N(B) = N(·, B) is an integer-valued
random variable (the dependence on ω will sometimes be dropped from the notation and
will just be implied).

Since N is a random element, we can speak of its distribution, defined as below.

Definition 2.3. The distribution of a point process N is the probability measure it
induces on (N ♯

X ,B(N
♯
X )), i.e.

B(N ♯
X ) ∋ B 7→ P(N ∈ B). (2.5)

From the previous discussion, we can see that in order to specify a point process
it is enough to give a probability measure on (N ♯

X ,B(N
♯
X )). It is often the case that

(N ♯
X ,B(N

♯
X ),Π) is taken as the canonical probability space, where Π is a probability

measure on (N ♯
X ,B(N

♯
X )). Let us denote by P(N ♯

X ) the space of all probability measures on
N ♯

X . One characteristic of the measures in P(N ♯
X ) is that they are completely determined

by their finite dimensional (or fidi) distributions.

Definition 2.4. The finite dimensional distributions of a point process N are the joint
distributions, for all finite families of bounded Borel sets B1, . . . , Bk ∈ B(X ) of the random
variables N(B1), . . . , N(Bk), i.e.

Pk(B1, . . . , Bk;n1, . . . nk) = P(N(B1) = n1, . . . , N(Bk) = nk), n1, . . . nk ∈ Z+. (2.6)

We have the following characterization result (see for example [11, Proposition 9.2.III]).

Proposition 2.5. The distribution of a point process is completely determined by its fidi
distributions (2.6) for all finite families (A1, . . . , Ak) of disjoint sets from a semiring A
of bounded sets generating B(X ).

Because of Proposition 2.5, a convenient tool for the characterization of the law of a
point process is the probability generating functional (abbreviated p.g.fl.), which is defined
on the class Ξ of measurable functions z : X → [0, 1] such that 1 − z vanishes outside
some bounded set.

Definition 2.6. Let N be a point process on X . The probability generating functional G
of the point process N is given as,

G[z] = E
[
exp

(∫
X
log z(t)N(dt)

)]
= E

 ∏
t∈N(·)

z(t)

 , for z ∈ Ξ. (2.7)

Remark. Notice that for positive constants λ1, . . . , λk, and disjoint bounded Borel
sets B1, . . . , Bk, by taking

z(·) = exp

(
−

k∑
i=1

λi1Bi
(·)

)
, (2.8)
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we obtain

G[z] = E

[
exp

(
−

k∑
i=1

λiN(Bi)

)]
, (2.9)

which corresponds to the Laplace transform of (N(B1), . . . , N(Bk)).

Finally, we have a result for the convergence in distribution of point processes that
involves the p.g.fl. Let Ξc denote the set of functions z ∈ Ξ such that z is continuous.
Recall that for every Π ∈ P(N ♯

X ) we have an associated point process with distribution

Π and p.g.fl. G. Let
w−→ denote the weak convergence of measures, then we have the

following fact (see for example [11, Proposition 11.1.VIII]).

Proposition 2.7. Let Π,Π1,Π2, . . . be in P(N ♯
X ) and let G,G1, G2, . . . denote the p.g.fl.

for their associated point processes. Then

Πn
w−→

n→∞
Π (2.10)

is equivalent to

Gn[z] −→
n→∞

G[z], for all z ∈ Ξc. (2.11)

While the study of point processes as random counting measures is very wide, the
elements presented in this section are sufficient for proving the corresponding results in
this thesis, especially the ones in Section 4.

2.2 Martingale approach to point processes

In this section we introduce the basic notions of the martingale theory of point processes.
This is especially important because the Hawkes processes which are the object of this
thesis are defined in terms of their intensity. We will restrict ourselves to the case of
simple point processes on R+ = [0,∞). In other words X = R+ and P(N({x}) =
0 or 1 for all x ∈ R+) = 1.

We then introduce our framework. Let {Tn}n≥0 be a sequence of random variables on
[0,∞) defined on a common probability space (Ω,F ,P) and such that T0 = 0 and, for all
i ≥ 0, we have Ti < Ti+1 on the event{Ti <∞}, and Ti+1 = ∞ on{Ti = ∞}. Notice that
the random counting measure N given by

N(B) =
∑
i

1{Ti∈B}, B ∈ B(R+), (2.12)

is a point process as of Definition 2.2 and also it is simple. We then identify the sequence
{Tn}n≥0 with the associated counting process:

N(t) =
∑
i

1{Ti≤t}, t ≥ 0. (2.13)
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Let (Ft)t≥0 be a filtration to which N is adapted. It was first pointed out by Watanabe
[38] that when N is a Poisson process with characteristic intensity λp(t) that is locally
integrable and deterministic, the compensated process

N(t)−
∫ t

0

λp(s)ds, t ≥ 0, (2.14)

is an (Ft)-martingale. The martingale approach to point processes uses a generalization
of this notion for the study of the evolution of N . To understand this, it is necessary to
introduce first the notion of predictability.

Definition 2.8. We say that X = (Xt)t≥0 is (Ft)-predictable if it is measurable with
respect to the σ-field

P(F·) = σ((s, t]× A; 0 ≤ s ≤ t <∞, A ∈ Fs) . (2.15)

We now introduce the following Definition.

Definition 2.9. Let N be a point process and (Ft)t≥0 a filtration to which N is adapted.
Let λ be a nonnegative, a.s. locally integrable process that is (Ft)-progressive. We say
that N admits the (Ft)-intensity λ if the process given as

M(t) = N(t)−
∫ t

0

λ(s)ds, t ≥ 0,

is an (Ft)-martingale, in which case M is called the characteristic martingale of N and
the process

Λ(t) =

∫ t

0

λ(s)ds, t ≥ 0, (2.16)

is called the compensator of N .

Remark. As a consequence of Definition 2.9, for any nonnegative process C(t) that is
predictable, it holds that

E
[∫ ∞

0

C(s)N(ds)

]
= E

[∫ ∞

0

C(s)λ(s)ds

]
. (2.17)

One of the neat properties of the intensity of a point process is that one can always find
a version that is predictable, in which case, it is essentially unique [7]. We present the
proofs below.

Theorem 2.10 ([7, Section II, Theorem T13]). Let N be a point process adapted to

(Ft)t≥0 that admits the (Ft)-intensity λ. Then one can find an (Ft)-intensity λ̃ that is
(Ft)-predictable.
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Proof. Denote by λ̃(ω, t) the Radon–Nikodym derivative of the restriction of P (dω)λ(ω, t)dt
to P(F·) with respect to the restriction of P (dω)dt to P(F·). Let (C(t))t≥0 be a nonneg-
ative (Ft)-predictable process. Then, we have

E
[∫ ∞

0

C(s)N(ds)

]
= E

[∫ t

0

C(s)λ(s)ds

]
= E

[∫ t

0

C(s)λ̃(s)ds

]
, (2.18)

and therefore λ̃ is (Ft)-predictable.

Theorem 2.11 ([7, Section II, Theorem T12]). Let N be a point process adapted to the

filtration (Ft), and λ, λ̃ two (Ft)-intensities of N which are (Ft)-predictable. Then

λ(ω, t) = λ̃(ω, t) P (dω)N(ω, dt)-a.e. (2.19)

In particular

λ(Tn) = λ̃(Tn) a.s. on {Tn <∞} , n ≥ 1, (2.20)

λ(ω, t) = λ̃(ω, t) λ(ω, t)dt-a.e. and λ̃(ω, t)dt-a.e., (2.21)

λ(Tn) > 0 a.s. on {Tn <∞} , n ≥ 1, (2.22)

Proof. Let a ≥ 0 and take C(s) = 1(λ(s)>λ̃(s))1(s≤a). It holds that C(s) is (Ft)-predictable

and that λ(s) and λ̃(s) are predictable as well. Then

E
[∫ a

0

1(λ(s)>λ̃(s))λ̃(s)ds

]
= E

[∫ a

0

1(λ(s)>λ̃(s))N(ds)

]
= E

[∫ a

0

1(λ(s)>λ̃(s))λ(s)ds

]
, (2.23)

E
[∫ a

0

1(λ(s)>λ̃(s))

(
λ(s)− λ̃(s)

)
ds

]
= 0 for arbitrary a ≥ 0, (2.24)

so 1(λ(s)>λ̃(s)) = 0 P (dω)λ(t)dt-a.e. or P (dω)λ̃(t)dt-a.e. Similarly, we have 1(λ(s)<λ̃(s)) = 0

P (dω)λ(t)dt-a.e. or P (dω)λ̃(t)dt-a.e. By definition of intensities

P (dω)N(ω, dt) = P (dω)λ(ω, t)dt = P (dω)λ̃(ω, t)dt on P(F·). (2.25)

Now, consider C(t) = 1(λ(t)>λ̃(t))1(Tn−1<t≤Tn), t ≥ 0. Then

0 = E
[∫ Tn

Tn−1

1(λ(s)>λ̃(s))λ(s)ds

]
=E
[∫ ∞

0

1(λ(s)>λ̃(s))1(Tn−1<s≤Tn)N(ds)

]
(2.26)

=E
[∫ Tn

Tn−1

1(λ(s)>λ̃(s))N(ds)

]
(2.27)

=E
[
1(λ(s)>λ̃(s))1(Tn<∞)

]
. (2.28)

Similarly, for 1(λ(s)<λ̃(s)), and we get

λ(Tn) = λ̃(Tn) a.s. on {Tn <∞} , n ≥ 1. (2.29)
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Next, observe that∫ a

0

E
[
1(λ(s)>λ̃(s))

]
λ(s)ds =E

[∫ a

0

1(λ(s)>λ̃(s))λ(s)ds

]
(2.30)

=E
[∫ a

0

1(λ(s)>λ̃(s))λ̃(s)ds

]
(2.31)

=

∫ a

0

E
[
1(λ(s)>λ̃(s))

]
λ̃(s)ds = 0, (2.32)

so we conclude that λ(ω, t) = λ̃(ω, t), λ(ω, t)dt-a.e. and λ̃(ω, t)dt-a.e.

Finally, take C(t) = 1(λ(t)=0)1(Tn−1<t≤Tn), t ≥ 0.

E
[
1(λ(t)=0)1(Tn<∞)

]
= E

[∫ Tn

Tn−1

1(λ(t)=0)λ(t)dt

]
= 0. (2.33)

Hence λ(Tn) > 0 a.s. on {Tn <∞}.

Remark. Since P (dω)λ(ω, t)dt = P (dω)N(ω, dt) on P(F·), we see that λ̃(t) is the
(Ft)-predictable process given by the Radon-Nikodym derivative

λ̃(ω, t) =

(
dPN(du)

dPdu

)
(t, ω). (2.34)

The following result is known as Komatsu’s Lemma and is useful for writing the explicit
form of the intensity.

Lemma 2.12 (Komatsu [24, Lemma 1.4]). Let (Xt)t≥0 be a real-valued (Ft)-progressive
process such that XT is integrable and E[XT ] = E[X0] for all bounded (Ft)-stopping times
T . Then (Xt)t≥0 is an (Ft)-martingale.

Proof. For any bounded stopping times S and T , we have

E[XT ] = E[XS] . (2.35)

We take then a particular choice of S and T . Fix 0 ≤ s ≤ t and take A ∈ Fs arbitrarily.
Define T and S as

T (ω) = t, (2.36)

S(ω) =

{
s if ω ∈ A,
t if ω ∈ Ac.

(2.37)

Clearly T is a stopping time, since it is deterministic. On the other hand, for any v ≥ 0,
we have

{S ≤ v} =


∅ ∈ Fv if 0 ≤ v < s,

A ∈ Fs ⊂ Fv if s ≤ v < t,
Ω ∈ Fv if t ≤ v,

(2.38)
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and thus S is an (Ft)-stopping time. Now

E[XS] = E[Xs1A] + E[Xt1Ac ] , (2.39)

E[XT ] = E[Xt1A] + E[Xt1Ac ] , (2.40)

E[Xs1A] = E[Xt1A] , ∀A ∈ Fs. (2.41)

Therefore, we conclude that (Xt)t≥0 is an (Ft)-martingale.

Let us now introduce a predictable representation of the intensity.

Theorem 2.13. Let N be a point process and let (FN
t )t≥0 be its natural filtration. In

order for the process (Xt) to be (FN
t )-predictable, it is necessary and sufficient that it

admits the representation

Xt(ω) =
∑
n≥1

f (n)(t, ω)1(Tn<t≤Tn+1) + f (∞)(t, ω)1(T∞<t<∞), (2.42)

where (t, ω) 7→ f (n)(t, ω) are B+ ⊗FN
Tn
-measurable for all n ∈ N.

Proof. To show sufficiency, it is enough to show that for all n ≥ 0, f (n)(t, ω)1(Tn<t≤Tn+1)

is (FN
t )-predictable. We show it for

f (n)(t, ω) = 1A(ω)1B(t), A ∈ FN
Tn
, B ∈ B+. (2.43)

Consider TA
n = +∞ · 1Ac(ω) + Tn1A(ω), then

f (n)(t, ω)1(Tn<t≤Tn) = 1B(t)1(TA
n <t≤TA

n+1)
, (2.44)

and 1B(t) is deterministic, hence (FN
t )-predictable. Moreover, the process 1(TA

n <t≤TA
n+1)

is left-continuous and
{
TA
n ≤ t

}
= A ∩{Tn ≤ t} ∈ FN

t (by the definition of FN
Tn
). This

means that TA
n is an (FN

t )-stopping time for all n ≥ 0 and for all A ∈ FN
Tn
. Also

A ∈ FN
Tn

⊂ FN
Tn+1, so by definition of FN

Tn+1, A ∩{Tn+1 ≤ t} ∈ FN
t , which means that

TA
n+1 is also an (FN

t )-stopping time. Therefore, f (n)(t)1(Tn<t≤Tn+1) is (FN
t )-predictable.

For necessity, we know that P(Ft) is generated by sets of the form {T ≤ t} where T
are bounded stopping times. We can restrict ourselves to processes Xt = 1(t≤S), where S
is a finite (FN

t )-stopping time. If we stick to the convention T0 = 0 and T∞+1 = ∞, then

1(t≤S) =
∞∑
n=0

1(t≤S)1(Tn<t≤Tn+1) + 1(t≤S)1(T∞<t<∞) (2.45)

=
∞∑
n=0

1(Tn<t≤S∧Tn+1) + 1(T∞<t≤S∧T∞+1) (2.46)

=
∞∑
n=0

1(Tn<t≤(Tn+Rn)∧Tn+1) + 1(T∞<t≤(T∞+R∞)∧T∞+1) (2.47)

=
∞∑
n=0

1(t≤Tn+Rn)1(Tn<t≤Tn+1) + 1(t≤T∞+R∞)1(T∞<t<∞), (2.48)

where each 1(t≤Tn+Rn) is B+ ⊗FN
Tn
-measurable.
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We can now introduce the following result that allows us to compute the intensity
explicitly. For a comprehensive exposition of this see for example [7, Ch.3, T7]. Let us
denote Sn+1 := Tn+1 − Tn and assume that the conditional distributions of Sn+1 given
GTn = σ(T0, . . . , Tn) admit densities, i.e. for all n ≥ 0 and B ∈ B(R+),

P(Sn+1 ∈ B | GTn) (ω) =

∫
B

g(n+1)(ω, t)dt = G(n+1)(ω,B), (2.49)

where (ω, t) 7→ g(n+1)(ω, t) are GTn ⊗B(R+)-measurable. Also, for all n ≥ 0, B ∈ B(R+),

P(Sn+1 ∈ B | GTn) (ω) =

∫
B

g(n+1)(ω, t)dt = G(n+1)(ω,B), (2.50)

where g(n+1)(ω, t) =
∑m

i=1 g
(n+1)(ω, t, i).

Note that P(Sn+1 = ∞ | GTn) = 1−
∫
R+
g(n+1)(t)dt.

Theorem 2.14. Under the previous assumptions, if we define process

λ(t) =
∑
n≥0

g(n+1)(t− Tn)

G(n+1)([t− Tn,∞])
1(Tn≤t≤Tn+1) (2.51)

A(t) =

∫ t

0

λ(s)ds, (2.52)

then N(t ∧ Tn)− A(t ∧ Tn) is a Gt-martingale for all n ≥ 0.

Proof. Notice that the processes defined are right-continuous and adapted, hence they
are Gt-progressive. We want to use Komatsu’s Lemma 2.12. Let us check that the other
hypothesis holds, i.e.

E[N(S ∧ Tn)] = E[A(S ∧ Tn)] , (2.53)

for all n ≥ 0 and all finite Gt-stopping times S. By [7, Theorem A2.T33], we know that
S admits the representation

S ∧ Tn+1 =(Tn +Rn) ∧ Tn+1 on {S ≤ Tn} , (2.54)

with Rn nonnegative GTn-measurable random variables, and the convention T∞+1 = ∞.
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We have

E[A(S ∧ Tn)] =E

[∫ S∧Tn

0

∑
j≥0

g(j+1)(u− Tj)

G(j+1)([u− Tj,∞])
1(Tj≤u<Tj+1)du

]
(2.55)

=E

[
n−1∑
j=0

∫ S∧Tn

0

g(j+1)(u− Tj)

G(j+1)([u− Tj,∞])
1(Tj≤u<Tj+1)du

]
(2.56)

=E

[
n−1∑
j=0

∫ S∧Tj+1

0

g(j+1)(u− Tj)

G(j+1)([u− Tj,∞])
1(Tj≤u<Tj+1)du 1(S≥Tj)

]
(2.57)

=E

[
n−1∑
j=0

∫ Tj+Rj

0

g(j+1)(u− Tj)

G(j+1)([u− Tj,∞])
1(Tj≤u<Tj+1)du 1(S≥Tj)

]
(2.58)

=E

[
n−1∑
j=0

∫ Rj

0

g(j+1)(r)

G(j+1)([r,∞])
1(0≤u<Sj+1)dr 1(S≥Tj)

]
(2.59)

=E

[
n−1∑
j=0

∫ Rj∧Sj+1

0

g(j+1)(r)

G(j+1)([r,∞])
dr 1(S≥Tj)

]
(2.60)

=E

[
n−1∑
j=0

E
[∫ Rj∧Sj+1

0

g(j+1)(r)

G(j+1)([r,∞])
dr 1(S≥Tj)

∣∣∣∣GTj

]]
(2.61)

=E

[
n−1∑
j=0

E
[∫ Rj∧Sj+1

0

g(j+1)(r)

G(j+1)([r,∞])
dr

∣∣∣∣GTj

]
1(S≥Tj)

]
. (2.62)

Notice now that given Tj, we can regard Rj as a constant, we then compute the conditional
expectation, by integrating with respect to the conditional density of Sj+1 given GTj

, as

E
[∫ Rj∧Sj+1

0

g(j+1)(r)

G(j+1)([r,∞])
dr

∣∣∣∣GTj

]
=

∫ ∞

0

g(j+1)(u)

∫ Rj∧u

0

g(j+1)(r)

G(j+1)([r,∞])
drdu (2.63)

=

∫ Rj

0

g(j+1)(r)

G(j+1)([r,∞])
dr

∫ ∞

r

g(j+1)(u)du (2.64)

=

∫ Rj

0

g(j+1)(r)

G(j+1)([r,∞])
drG(j+1)([r,∞]) (2.65)

=

∫ Rj

0

g(j+1)(r)dr. (2.66)

This means that

E[A(S ∧ Tn)] = E

[
n−1∑
j=0

∫ Rj

0

g(n+1)(r)dr 1(S≥Tj)

]
. (2.67)
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Now, computing the left hand side of (2.53), we have

E[N(S ∧ Tn)] =E

[
n−1∑
j=0

(N(S ∧ Tj+1)−N(S ∧ Tj)) 1(S≥Tj)

]
(2.68)

=E

[
n−1∑
j=0

(N((Tj +Rj) ∧ Tj+1)−N(S ∧ Tj)) 1(S≥Tj)

]
. (2.69)

Here notice that if N(Tj+Rj)∧Tj+1
−NS∧Tj

= 1, then Tj +Rj ≥ Tj+1implies Rj ≥ Sj+1, so

E

[
n−1∑
j=0

(
N(Tj+Rj)∧Tj+1

−NS∧Tj

)
1(S≥Tj)

]
(2.70)

=E

[
n−1∑
j=0

1(Rj≥Sj+1)1(S≥Tj)

]
(2.71)

=E

[
n−1∑
j=0

E
[
1(Rj≥Sj+1) | GTj

]
1(S≥Tj)

]
(2.72)

=E

[
n−1∑
j=0

P
(
Sj+1 ≤ Rj | GTj

)
1(S≥Tj)

]
. (2.73)

Therefore

E[N(S ∧ Tn)] =E

[
n−1∑
j=0

∫ Rj

0

g(n+1)(r)dr 1(S≥Tj)

]
= E[A(S ∧ Tn)] . (2.74)

Hence, by Komatsu’s Lemma 2.12 Nt∧Tn − At∧Tn is a Gt-martingale, which finalizes the
proof.

Remark. Theorem 2.14 remains valid if

λ(t) =
∑
n≥0

g(n+1)(t− Tn)

G(n+1)([t− Tn,∞])
1(Tn≤t≤Tn+1). (2.75)

We have covered all the basic theory of the martingale approach to point processes
that we require for this thesis. One particular kind of point process to which we apply
the previous results is the renewal process, which we present in the following Section.

2.3 Renewal Theory

We introduce now the basic definitions related to renewal processes and state some general
results that we apply in subsequent sections. Consider τ1, τ2, . . . a sequence of i.i.d.
random variables on (0,∞) defined on a probability space (Ω,F ,P) with interarrival

12



distribution function F (x) = P(τ1 ≤ x) for x ≥ 0. Additionally, consider a random
variable τ0 on [0,∞) defined on the same space, which is independent of τ1, τ2, . . . , with
delay distribution F0(x) = P(τ0 ≤ x), x ≥ 0, not necessarily equal to F . We will work in
the setting of the following definition.

Definition 2.15. Let {Ŝn}n≥0 be the sequence of partial sums given as

Ŝn = τ0 + τ1 + · · ·+ τn, n ≥ 0, (2.76)

to which we associate the counting measure

N̂(B) =
∑
n≥0

1{Ŝn∈B}, B ∈ B([0,∞)). (2.77)

In particular, we identify the renewals {Ŝn}n≥0 with the delayed renewal process

N̂(t) := N̂([0, t]) =
∑
n≥0

1{Ŝn≤t}. (2.78)

If instead we consider the partial sums

S0 = 0, and Sn = τ1 + · · ·+ τn, n ≥ 1 (2.79)

then

N(t) := N([0, t]) =
∑
n≥0

1{Sn≤t} (2.80)

is called a zero-delayed or pure renewal process.

Notice that since the inter-arrival distributions do not have an atom at x = 0, then
necessarily Sn+1 > Sn on {Sn <∞} for all n ≥ 0, which implies that the renewal process

is a simple point process, i.e. P
(
N̂({x}) = 0 or 1 for all x ≥ 0

)
= 1. From the definition

of N , the following processes can be derived.

Definition 2.16. Given a renewal process N , the backward recurrence time {At}t≥0 and
forward recurrence time {Bt}t≥0 are given for t ≥ 0 as

At = t− SN(t)−1, Bt = SN(t) − t. (2.81)

It is notable that {At}t≥0 and {Bt}t≥0 are time-homogeneous strong Markov processes

(c.f. [1, Proposition V.1.5]). Denote by (FN
t )t≥0 the augmentation of the natural filtration

generated by the renewal process, given for each t ≥ 0 by σ(N(s); 0 ≤ s ≤ t). The process
N is increasing and predictable, hence, by the Doob–Meyer decomposition theorem, it
has an a.s. finite compensator Λ such that the process

M := N − Λ, (2.82)
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is an (FN
t )-martingale.

If we assume that m−1 :=
∫∞
0
xF (dx) < ∞, it is possible to make a delayed renewal

process stationary, in the sense that for any t > 0 the distribution of the increments{
N̂(t+ s)− N̂(t)

}
s≥0

does not depend on t, by choosing the delay distribution F0 equals

to Π(dt) = π(t)dt with density π given as

π(t) := mF (t) := m(1− F (t)), t ≥ 0, (2.83)

in which case, the corresponding backward and forward recurrence times, Ât and B̂t

respectively, have common distribution Π for all t ≥ 0 (see for example [10, Proposition
4.2.I]).

Throughout this thesis, if f and g are both functions, we will denote their convolution
as

f ∗ g(t) =
∫ t

0

f(t− s)g(s)ds, (2.84)

whereas, if F is a measure on [0,∞) and g is a function, the convention that F ∗ g is a
function is used, and we write

F ∗ g(t) =
∫ t

0

g(t− s)F (ds). (2.85)

We sometimes identify the measure F (ds) with its cumulative distribution function F (t) =∫ t

0
F (ds). If F and G are both measures, we will denote their convolution as

F ∗G(t) =
∫ t

0

F (t− s)G(ds) =

∫ t

0

G(t− s)F (ds). (2.86)

The Key Renewal Theorem states the limiting behavior of the solution to the renewal
equation

Z(t) = z(t) +

∫ t

0

Z(t− u)F (du), t ≥ 0, (2.87)

where z : [0,∞) → [0,∞) is known, Z : [0,∞) → [0,∞) is unknown and F is a given
probability distribution on [0,∞). If additionally z is bounded on finite intervals, i.e.
sup0≤t≤T |z(t)| < ∞ for all T < ∞, then the only solution to (2.87) which is bounded on
finite intervals is given by

Z(t) = Φ ∗ z(t) =
∫ t

0

z(t− u)Φ(du), t ≥ 0, (2.88)

where the increasing function Φ(t) = Φ([0, t]) is given as

Φ =
∑
n≥0

F ∗n, (2.89)
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with

F ∗0 = δ0, and F ∗(n+1)(t) = F ∗n ∗ F (t) :=
∫ t

0

F ∗n(t− s)F (ds), t ≥ 0. (2.90)

The function Φ(t) is called the renewal function, and its induced measure Φ(dt) is called
the renewal measure. One renewal equation of particular importance is that generated by
the density π in (2.83). As we can see below, such renewal equations have linear solutions.

Lemma 2.17. Assume that m−1 :=
∫∞
0
xF (dx) <∞ holds. Then, the renewal equation

Z(t) = z(t) +

∫ t

0

Z(t− x)F (dx), (2.91)

has the linear solution Z0(t) = mt, t ≥ 0, if and only if

z(t) = m

∫ t

0

F (x)dx, (2.92)

where F = 1− F .

Proof. Let us suppose that equation (2.87) has a linear solution Z0(t) = mt, which entails

mt = z(t) +

∫ t

0

m(t− x)F (dx). (2.93)

Solving for z(t) we get

z(t) =mt−
∫ t

0

m(t− x)F (dx) (2.94)

=mt−
∫ t

0

m

∫ t

x

duF (dx) (2.95)

=mt−
∫ t

0

m

∫ u

0

F (dx)du (2.96)

=

∫ t

0

mdx−
∫ t

0

mF (x)dx (2.97)

=

∫ t

0

m(1− F (x))dx (2.98)

=

∫ t

0

mF (x)dx. (2.99)

Reversing the order of the above steps we can see that the function z(t) =
∫ t

0
mF (x)dx

generates a renewal Equation with solution

mt = Z0(t) =

∫ t

0

m

∫ t−u

0

F (x)dxΦ(du). (2.100)

The proof is now complete.
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One of the properties that is often required from the function z to know the asymptotic
behavior of Z is that of being directly Riemann integrable (abbreviated d.R.i.). This
property is defined as follows.

Definition 2.18. Let z be a nonnegative measurable function, and let h > 0. Define

zh(x) =sup
y∈Ihn

z(y), zh(x) = inf
y∈Ihn

z(y), x ∈ Ihn = (nh, (n+ 1)h]. (2.101)

We say that z is directly Riemann integrable if
∫∞
0
zh(d)dx is finite for some h and∫ ∞

0

zh(x)dx−
∫ ∞

0

zh(x)dx −→
h→0

0. (2.102)

We the state the most typical form of the Key Renewal Theorem.

Theorem 2.19. Suppose that m−1 :=
∫∞
0
xF (dx) <∞ and the function z in the renewal

equation (2.87) is d.R.i. Then

Z(t) = Φ ∗ z(t) −→
t→∞

m

∫ ∞

0

z(x)dx. (2.103)

For a proof of this Theorem see for example [1, Section V.5] for an analytic proof and
[10, Theorem 4.4.I and 4.4.II] for a probabilistic proof.

While there are many sufficient conditions for a function being d.R.i., for a certain
class of renewal processes such a condition can be dropped for a simpler one. This is the
case when the inter-arrival distribution F of a renewal process is spread out.

Definition 2.20 ([1, Sec VII. p.186]). A distribution F on [0,∞) is called spread out if
for some n ≥ 1, there exists a nonnegative measure G such that 0 ̸= G ≤ F ∗n and G is
absolutely continuous with respect to the Lebesgue measure. The measure G is called an
absolutely continuous component of F ∗n.

It has been shown that when F is spread out, the renewal measure can be written
as a sum of a finite and an absolutely continuous component (see Stone [35]). This
decomposition is not unique, as it depends on the absolutely continuous component from
Definition (2.20). For our purposes, it is convenient to select uniform components, i.e.
measures of the form

G(dx) = c1(a,b)(x)dx, (2.104)

where 0 ≤ a < b < ∞ and c is a positive constant. This can always be done as shown in
the following Lemma.

Lemma 2.21. (see e.g., VII.1.2 from [1]) If F is spread out, then F ∗n0 has a uniform
component on (a, a+ b) for some a, b, n0 > 0.
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Proof. Since F is spread out, there exists a measure G and an n ≥ 0 such that 0 ̸= G ≤
F ∗n and G has a density g with respect to the Lebesgue measure. Suppose, without loss of
generality, that g is bounded with compact support. Choose continuous functions gk ∈ L1

with compact supports such that

∥g − gk∥1 =
∫

|g(t)− gk(t)| dt −→
k→∞

0. (2.105)

Then

sup
|x−x′|<δ

|gk ∗ g(x)− gk ∗ g(x′)| ≤ sup
|z−z′|<δ

|gk(z)− gk(z
′)|
∫
g(y)dy −→

δ→0
0. (2.106)

So gk ∗ g is uniformly continuous. Since∥∥g∗2 − g ∗ gk
∥∥
∞ ≤ ∥g∥∞ ∥g − gk∥1 −→

k→∞
0. (2.107)

we see that g∗2 is continuous as a uniform limit of continuous functions, hence there exist
a, b, δ > 0 such that g∗2(x) ≥ δ for x ∈ (a, a+ b). Finally, take n0 = 2n, and then

G0(dx) = δ1(a,a+b)(x)dx (2.108)

is a uniform component of F ∗n0 .

We can then write Stone’s decomposition for the renewal measure.

Theorem 2.22 (Stone [35]). If the inter-arrival distribution F is spread out, then we
can write Φ = Φ1 + Φ2, where Φ1 and Φ2 are nonnegative measures on [0,∞), Φ2 is
bounded (i.e. ∥Φ2∥t.v. < ∞) and Φ1 has a bounded density φ1(x) = dΦ1(x)/dx satisfying
φ1(x) −→

x→∞
m.

The following proof is taken from Asmussen [1] with a slight correction.

Proof. Let G0 denote the uniform component of F ∗n0 which was given in the proof of
Lemma 2.21, and g0 its density, given as

g0(x) =
∥G0∥t.v.

b
1[a,a+b)(x), x ≥ 0, (2.109)

and define H := F ∗n0 −G0. We then note that

Φ =

n0−1∑
k=0

F ∗k ∗ Φ0, (2.110)

where

Φ0 =
∞∑
n=0

F ∗nn0 . (2.111)
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We can check by induction that

F ∗nn0 =(H +G0)
∗n = G0 ∗

n−1∑
k=0

F ∗(n−k−1)n0 ∗H∗k +H∗n, (2.112)

so Φ0 becomes

Φ0 =
∞∑
n=0

(
G0 ∗

n−1∑
k=0

F ∗(n−k−1)n0 ∗H∗k +H∗n

)
(2.113)

=G0 ∗
∞∑
k=0

H∗k ∗
∞∑

n=k+1

F ∗(n−k−1)n0 +
∞∑
n=0

H∗n (2.114)

=G0 ∗
∞∑
n=0

H∗n ∗ Φ0 +
∞∑
n=0

H∗n (2.115)

Then a decomposition of Φ0 is given as Φ0 = Φ
(1)
0 + Φ

(2)
0 where

Φ
(2)
0 =

∞∑
n=0

H∗n, Φ
(1)
0 = G0 ∗ Φ(2)

0 ∗ Φ0. (2.116)

Since ∥H∥t.v. = 1− ∥G0∥t.v. < 1, we have that∥∥∥Φ(2)
0

∥∥∥
t.v.

=
1

1− ∥H∥t.v.
=

1

∥G0∥t.v.
<∞. (2.117)

Moreover, since G0 is absolutely continuous, so is Φ
(1)
0 , with density φ

(1)
0 = Φ

(2)
0 ∗ (Φ0 ∗g0).

From Blackwell’s renewal theorem (c.f. [10, Theorem 4.4.I]) we have that

Φ0 ∗ g0(x) =
∥G0∥t.v.

b
Φ0((x− a− b, x− a]) −→

x→∞

m

n0

∥G0∥t.v. . (2.118)

From the subadditivity of the renewal function (c.f. [1, Theorem V.2.4]):

Φ0((x− a− b, x− a]) ≤ Φ0(b) for all x ≥ 0, (2.119)

and the total finiteness of Φ
(2)
0 , we have from the Dominated Convergence Theorem,

(2.117) and (2.118) that

φ
(1)
0 (x) =

∫ x

0

Φ0 ∗ g0(x− y)Φ
(2)
0 (dy) −→

x→∞

m

n0

∥G0∥t.v.
∥∥∥Φ(2)

0

∥∥∥
t.v.

=
m

n0

. (2.120)

Finally, using (2.110) and (2.115), we decompose Φ as Φ = Φ1 + Φ2 with

Φ2 =

n0−1∑
k=0

F ∗k ∗ Φ(2)
0 , Φ1 =

n0−1∑
k=0

F ∗k ∗G0 ∗ Φ(2)
0 ∗ Φ0 = G0 ∗ Φ(2)

0 ∗ Φ, (2.121)
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where

∥Φ2∥t.v. =
n0

∥G0∥t.v.
<∞, (2.122)

and G0 ∗ Φ(2)
0 ∗ Φ has density φ1 = Φ

(2)
0 ∗ (Φ ∗ g0) such that

φ1(x) =

∫ x

0

Φ ∗ g0(x− y)Φ
(2)
0 (dy) −→

x→∞
m ∥G0∥t.v.

∥∥∥Φ(2)
0

∥∥∥
t.v.

= m. (2.123)

Moreover, this density is also bounded since from subadditivity we have

Φ ∗ g0(x) =
∥G0∥t.v.

b
Φ([x− a− b, x− a)) ≤ ∥G0∥t.v.

b
Φ(b), (2.124)

from which we conclude that

∥Φ ∗ g0∥∞ ≤ ∥G0∥t.v.
b

Φ(b) <∞ (2.125)

∥φ1∥∞ ≤ ∥Φ ∗ g0∥∞ sup
x≥0

Φ
(2)
0 ((x− a− b, x− a]) <∞, (2.126)

which concludes the proof.

In the remainder of this thesis we use the decomposition given by (2.121). We proceed
now to state a version of Theorem 2.19 for the case of spread out distributions.

Theorem 2.23 ([1, Corollary VII.1.3]). Let m−1 :=
∫∞
0
xF (dx) <∞ and let z be bounded

and Lebesgue integrable with z(x) −→ 0 as x→ ∞. Then

Φ ∗ z(t) −→
t→∞

m

∫ ∞

0

z(x)dx, (2.127)

provided F is spread out.

Proof. From Stone’s decomposition, we can write Φ = Φ1 + Φ2 as in (2.121). Then

Z(x) = Φ1 ∗ z(x) + Φ2 ∗ z(x). (2.128)

Using the boundedness of z and the finiteness of the measure Φ2, we have from the
Dominated Convergence Theorem that

Φ1 ∗ z(x) + Φ2 ∗ z(x) =
∫ x

0

z(y)φ1(x− y)dy +

∫ x

0

z(x− y)Φ2(dy) (2.129)

−→
x→∞

m

∫ ∞

0

z(y)dy +

∫ ∞

0

0 · Φ2(dy). (2.130)

The result is proved.

19



To finalize this Section, let us utilize renewal equations to derive some other important
tools for the prove of our results. The first of those is the distribution of the forward
recurrence time, which can be found through a renewal argument as follows.

Lemma 2.24. The distribution function of the forward recurrence time is given for x ≥ 0
as

P(Bt ≤ x) =

∫ t

0

F ((t− u, t+ x− u]) Φ(du). (2.131)

Proof. Write Zx(t) = P(Bt ≤ x), and zx(t) = P(Bt ≤ x; τ1 > t). Then,

Zx(t) =zx(t) + P(Bt ≤ x; τ1 ≤ t) (2.132)

=zx(t) +

∫ t

0

P(Bt ≤ x | τ1 = u)F (du) (2.133)

=zx(t) +

∫ t

0

P(Bt−u ≤ x)F (du) (by the Strong Markov property of Bt) (2.134)

=zx(t) +

∫ t

0

Zx(t− u)F (du) =

∫ t

0

zx(t− u)Φ(du). (2.135)

Now, analyzing zx(t), we have,

zx(t) =P(Bt ≤ x; τ1 > t) (2.136)

=P(τ1 − t ≤ x; τ1 > t) (2.137)

=F (t+ x)− F (t). (2.138)

Therefore, we obtain,

Zx(t) =

∫ t

0

F ((t− u, t+ x− u]) Φ(du), (2.139)

which concludes the proof.

Finally, we can find the following results for Φ whenever the inter-arrival distribution
has a finite second moment.

Lemma 2.25. Suppose that the distribution F has finite second moment σ2 + 1
m2 . Then

Φ(t)−mt −→
t→∞

1

2

(
m2σ2 + 1

)
. (2.140)

Proof. Set z(t) = m
∫∞
t
F (y)dy in (2.87). We know then that the solution to this equation

is given by

Z0(t) =

∫ t

0

m

∫ ∞

t−u

F (x)dxΦ(du) (2.141)

=

∫ t

0

m

∫ ∞

0

F (x)dxΦ(du)−
∫ t

0

m

∫ t−u

0

F (x)dxΦ(du). (2.142)
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From Lemma 2.17, we know that the second summand is equal to mt. Let us look at the
other integral,∫ ∞

0

F (x)dx =

∫ ∞

0

∫ ∞

x

F (dy)dx =

∫ ∞

0

∫ y

0

dxF (dy) =

∫ ∞

0

yF (dy) =
1

m
(2.143)

⇒
∫ t

0

m

∫ ∞

0

F (x)dxΦ(du) =

∫ t

0

1

m
mΦ(du) =

∫ t

0

Φ(du) = Φ(t). (2.144)

Using these two arguments, we obtain

Z0(t) = Φ(t)−mt. (2.145)

We can immediately see that Z0 is nonnegative. Now, observe that z(t) is d.R.i. In effect,
it is monotonically decreasing, then it is enough to show that it is integrable.∫ ∞

0

z(t)dt =m

∫ ∞

0

∫ ∞

t

F (x)dxdt (2.146)

=m

∫ ∞

0

∫ x

0

F (x)dtdx (2.147)

=m

∫ ∞

0

xF (x)dx (2.148)

=m

∫ ∞

0

x

∫ ∞

x

F (dy)dx (2.149)

=m

∫ ∞

0

x

∫ y

0

xdxF (dy) (2.150)

=m

∫ ∞

0

y2

2
F (dy) =

m

2

(
σ2 +

1

m2

)
. (2.151)

This shows that z(t) is d.R.i., hence we can apply the Key renewal Theorem to find the
limit

0 ≤ Φ(t)−mt =

∫ t

0

m

∫ ∞

t−u

F (x)dxΦ(du) −→
t→∞

m

∫ ∞

0

z(t)dt (2.152)

⇒0 ≤ Φ(t)−mt −→
t→∞

1

2

(
m2σ2 + 1

)
(2.153)

Lemma 2.26. In the same context as Lemma 2.25,

mt ≤ Φ(t) ≤ mt+m2σ2 + 1 (2.154)

Proof. The left side of the inequality has already been proved in the previous Lemma. For
the right side, consider T1 and T2 independent random variables with the same distribution
P(T1 > t) = m

∫∞
t
F (x)dx. Let t ≥ 0, from the subadditivity of Φ we get,

Φ(t) = E[Φ(t)] =E[Φ(t+ T1 − T1 + T2 − T2)] (2.155)

≤E[Φ(t+ T1 − T2)] + E[Φ(T2 − T1)] (2.156)

⇒ Φ(t) ≤E[E[Φ(t+ T1 − T2) | T1]] + E[E[Φ(T2 − T1) | T2]] . (2.157)
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From the independence of T1 and T2,

E[Φ(t+ T1 − T2) | T1] =
∫ ∞

0

Φ(t+ T1 − s)FT2(ds) (2.158)

=

∫ ∞

0

∫ t+T1−s

0

Φ(du)FT2(ds) (2.159)

=

∫ t+T1

0

∫ t+T1−u

0

FT2(ds)Φ(du) (2.160)

=

∫ t+T1

0

FT2(t+ T1 − u)Φ(du) (2.161)

=

∫ t+T1

0

m

∫ t+T1−u

0

F (s)dsΦ(du) (from definition of FT2)

(2.162)

=m(t+ T1) (from Lemma 2.17) (2.163)

Similarly, E[Φ(T2 − T1) | T2] = mT2. Then,

Φ(t) ≤ E[m(t+ T1)] + E[mT2] = mt+ 2mE[T1] . (2.164)

Let us then compute E[T1],

E[T1] =
∫ t

0

ms(1− F (s)) ds (2.165)

=

∫ t

0

ms

∫ ∞

s

F (du)ds (2.166)

=

∫ ∞

0

∫ u

0

msdsF (du) (2.167)

=

∫ ∞

0

mu2

2
F (du) =

m

2

(
σ2 +

1

m2

)
. (2.168)

So we ultimately get,

mt ≤ Φ(t) ≤ mt+m2σ2 + 1. (2.169)

From the previous Lemma, it is easy to check that

0 ≤ lim
t→∞

(Φ(t)−mt)k

t
≤ lim

t→∞

(m2σ2 + 1)
k

t
= 0, (2.170)

which implies that for all k > 0,

lim
t→∞

(Φ(t)−mt)k

t
= 0. (2.171)

This concludes the treatment of renewal processes. However, in the next Section we
review some basic results for a more general class of processes.
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2.4 Regenerative processes

We now turn to the notion of regenerative processes. Intuitively, such processes evolve in
cycles between the epochs of a renewal process. Formally, we have the following definition.

Definition 2.27 (Sec VI. p.169 in [1]). Let {Xt}t≥0 be a stochastic process with state
space E. We call {Xt}t≥0 regenerative (pure or delayed) if there exists a renewal process

(pure or delayed)
{
Ŝn

}
= {τ0 + τ1 + · · ·+ τn} such that for each n ≥ 0, the post-Ŝn

process

θŜn
X :=

(
τn+1, τn+2, . . . ,

{
XŜn+t

}
t≥0

)
, (2.172)

is independent of τ0, . . . , τn, and its distribution does not depend upon n.

Now, let{Xt}t≥0 be a regenerative process. It will be useful to compute the distribution

of the maximum of XT := max0≤t≤T Xt for any T > 0. To do this, we use the following
result of Rootzén and give its proof in slightly more detail than presented in [1, Proposition
VI.4.7].

Theorem 2.28 (Rootzén [32]). Assume that E is a real interval and define

G(x) := P0

(
Xτ1 ≤ x

)
, FT (x) = P

(
XT ≤ x

)
. (2.173)

Then,

lim
T→∞

∥∥FT −GmT
∥∥
∞ = 0. (2.174)

In the delayed case with G having finite support we need additionally,

P
(
ξ0 > max

k=1,...,n
ξk

)
−→
n→∞

0. (2.175)

Proof. First we look at the function z(1− zγ), γ ∈ R+, z ∈ [0, 1].

d

dz
z(1− zγ) = 1− zγ − γzγ = 0, (2.176)

zγ =
1

1 + γ
, (2.177)

which means that

z0 =

(
1

1 + γ

)1/γ

(2.178)

is a critical point. Computing the second derivative,

d2

dz2
z(1− zγ) = −γzγ−1 − γ2zγ−1 = −zγ−1

(
γ + γ2

)
< 0 for all z ∈ (0, 1). (2.179)
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Since the function vanishes at the endpoints of the interval, we can conclude that z0
corresponds to a maximum, with value,

(1 + γ)−1/γ
(
1− (1 + γ)−1

)
(2.180)

=
1 + γ − 1

(1 + γ)1+1/γ
(2.181)

=
γ

(1 + γ)1+1/γ
≤ γ. (2.182)

Therefore, the function is bounded by γ. Hence, for all T, x, and ϵ,∣∣G(x)T −G(x)T (1+ϵ)
∣∣ ≤ ϵ. (2.183)

Define k±T =⌊mT (1± δ)⌋ for some δ > 0. Then

FT (x) ≥P
(
XSN(T )+1

≤ x
)

(2.184)

≥P

(
N(T ) + 1 ≤ k+T , max

0≤k≤k+T

ξk ≤ x

)
, (2.185)

because

{
N(T ) + 1 ≤ k+T , max

0≤k≤k+T

ξk ≤ x

}
⊂
{
SN(T )+1 ≤ x

}
. Further,

P

(
N(T ) + 1 ≤ k+T , max

0≤k≤k+T

ξk ≤ x

)
(2.186)

=P

(
max

0≤k≤k+T

ξk ≤ x

)
− P

(
N(T ) + 1 > k+T , max

0≤k≤k+T

ξk ≤ x

)
(2.187)

≥P

(
max

0≤k≤k+T

ξk ≤ x

)
− P

(
N(T ) + 1 > k+T

)
(2.188)

=P

(
max

1≤k≤k+T

ξk ≤ x

)
− P

(
max

1≤k≤k+T

ξk ≤ x, ξ0 > max
k=1,...,n

ξk

)
− P

(
N(T ) + 1 > k+T

)
(2.189)

≥P

(
max

1≤k≤k+T

ξk ≤ x

)
− P

(
ξ0 > max

k=1,...,n
ξk

)
− P

(
N(T ) + 1 > k+T

)
. (2.190)

We can see from the assumptions that the second term on the r.h.s. tends to zero as
T → ∞. In the case of the third term on the r.h.s. convergence to zero also occurs due to

lim
T→∞

N(T ) + 1

⌊mT (1 + δ)⌋
=

1

1 + δ
< 1 a.s., (2.191)

so by the Dominated Convergence Theorem

P
(
N(T ) + 1

k+T
> 1

)
−→
T→∞

0. (2.192)
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From the independence of the ξk, we get,

P

(
max

1≤k≤k+T

ξk ≤ x

)
=P
(
ξ1 ≤ x, . . . , ξk+T

≤ x
)

(2.193)

=P
(
max
t<Y1

Xt ≤ x

)k+T

= G(x)k
+
T , (2.194)

so

FT (x) ≥ G(x)k
+
T + o(1), (2.195)

independently of x. We can say,

FT (x)−G(x)mT ≥ G(x)k
+
T −G(x)mT + o(1). (2.196)

Now, G(x) ≤ 1 and limT→∞
k+T
mT

= 1 + δ, so there exists T1 ∈ T s.t. for all T > T1,

mT < k+T < mT (1 + 2δ), (2.197)

Gk+T −GmT < G(mT )(1+2δ) −GmT < 2δ −→
δ→0

0 uniformly in x. (2.198)

Therefore,

lim inf
T→∞

(
inf
x≥0

[
FT (x)−G(x)mT

])
≥ 0. (2.199)

Now we look for an upper estimate. We have,

FT (x) =P
(
N(T ) + 1 > k−T , XT ≤ x

)
+ P

(
N(T ) + 1 ≤ k−T , XT ≤ x

)
(2.200)

≤P

(
N(T ) + 1 > k−T , max

k=0,1,...,k−T

ξk ≤ x

)
+ P

(
N(T ) + 1 ≤ k−T

)
. (2.201)

This last argument hold for the following reason: on the event N(T ) + 1 > k−T , N(T )
cannot be any smaller than k−T . This entails T ≥ SN(T ) ≥ Sk−T

, and hence,

{
N(T ) + 1 > k−T , XT ≤ x

}
⊂

{
N(T ) + 1 > k−T , max

k=0,1,...,k−T

ξk ≤ x

}
. (2.202)

Moreover,

P

(
N(T ) + 1 > k−T , max

k=0,1,...,k−T

ξk ≤ x

)
+ P

(
N(T ) + 1 ≤ k−T

)
(2.203)

≤P

(
max

k=1,...,k−T

ξk ≤ x

)
+ P

(
N(T ) + 1 ≤ k−T

)
. (2.204)
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By a Dominated Convergence argument, as before, we have

P
(
N(T ) + 1 ≤ k−T

)
−→
T→∞

0, (2.205)

which gives us the upper estimate

lim sup
T→∞

(
sup
x≥0

[
FT (x)−G(x)mT

])
≤ 0. (2.206)

We conclude that

lim
T→∞

sup
x≥0

∣∣FT (x)−G(x)mT
∣∣ = 0. (2.207)

The proof is complete.

With this, we have covered all the general theory that is necessary for the proof of our
results. We now proceed to state the assumptions under which said results were obtained.

3 Assumptions

Now that the necessary theoretical framework for the proofs of our results has been
established, we proceed to introduce the Hawkes processes and the set of assumptions
under which our results hold. Hawkes processes are defined through their intensity.

Definition 3.1. A point process N is called a classical (univariate) Hawkes process if N
admits an (Ft)-intensity given as

λ(t) = µ+

∫ t

0

h(t− u)N(du), t ≥ 0, (3.1)

where µ is a positive constant and h is a nonnegative measurable function on [0,∞)
satisfying

∫∞
0
h(t)dt < 1.

In (3.1), the intensity λ of N contains not only the constant rate µ at which immigrants
arrive following a Poisson process, but also an additional term relative to N . For this
reason, Hawkes processes are also known as self-exciting processes.

The notion of classical Hawkes processes can then be generalized in the following way.
Let {Ti}i≥0 be a point process on [0,∞) with counting process N and {Di}i≥0, be a
sequence of {0, 1}-valued random variables. For any index j such that Dj = 0, we say
that the point Tj represents an immigrant, and if j is such that Dj = 1, we say that
Tj represents an offspring. Define for any t ≥ 0, I(t) := max{i; Ti ≤ t,Di = 0}, i.e.
the index of the last immigrant up to time t. Consider a filtration (Ft)t≥0 to which N
and I are adapted. Additionally, consider a function h and a probability distribution F
satisfying the assumptions:
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(A0) h is a nonnegative measurable function on [0,∞) satisfying α :=
∫∞
0
h(t)dt < 1.

(B0) F is a probability distribution on [0,∞) with finite mean m−1 :=
∫∞
0
xF (dx) <

∞ and density f , i.e. F (x) =
∫ x

0
f(s)ds.

Then, we can define the RHP through its intensity.

Definition 3.2. A point process N is called a renewal Hawkes process if N admits the
(Ft)-intensity,

λ(t) = µ
(
t− TI(t)

)
+

∫ t

0

h(t− u)N(du), (3.2)

where h satisfies (A0) and µ is a function on [0,∞) satisfying

µ(t) =
f(t)

1−
∫ t

0
f(s)ds

(3.3)

for the probability density function f in (B0). The function µ is often called the hazard
function.

Additionally, we introduce the following assumptions:

(A1) The function h is bounded and h(t) −→
t→∞

0.

(C0) F is a spread-out probability distribution on [0,∞) with finite mean m−1 :=∫∞
0
xF (dx) <∞.

Remark. Note that (B0) implies (C0).

In the following, Section 4 makes use of assumptions (A0) and (B0) only. Since
Section 5 only treats with renewal processes, assumptions will be limited to (B0) and
(C0). Section 6 will make use of assumptions (A0),(B0) and (A1). Whenever any
additional assumptions are needed, it will be indicated accordingly.

4 Cluster representation for renewal Hawkes processes

It was shown in Hawkes–Oakes [16] that the process with intensity (3.1) can be represented
as a cluster process on [0,∞) with an homogeneous Poisson center process of intensity
µ and satellite processes given by generalized branching processes. These branching pro-
cesses consist of inhomogeneous Poisson processes of characteristic intensity h that start
at each one of the previous points of the process up to time t. We want to generalize this
to the case of the RHP.

The goal of this section is to obtain a cluster representation for the RHP and indicate
explicitly what the center and satellite processes are. Our proof for existence of the cluster
process is based on a result of Westcott [39] and we will use the uniqueness of predictable
intensities of Theorem 2.11 to verify that the proposed construction indeed represents
an RHP. Finally, we find the limit process for the RHP at long times and compute its
probability generating functional.
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Definition 4.1. In the same context as Definition 3.2, let N be a renewal Hawkes process
adapted to a filtration (Ft)t≥0. The (Ft)-predictable intensity for N is given as

λ(t) = µ
(
t− TI(t−)

)
+

∫ t−

0

h(t− u)N(du). (4.1)

Note that we still have the property (2.17) with the predictable version (4.1) because
the integral with respect to the Lebesgue measure stays unaltered by adding one point at
t.

Before continuing with the construction of the RHP, it is necessary to review some
basic theory of Galton–Watson processes.

4.1 Galton–Watson processes

Galton–Watson processes are a particular kind of branching processes that provide simple
models for population dynamics. All of the results in this section were consulted in [14].

Definition 4.2. Let (Zn)n≥0 be a sequence of integer-valued random variables recursively
defined by

Zn =

Zn−1∑
k=1

Xn,k, n ≥ 1 (4.2)

where {Xn,k : n, k ≥ 1} forms a family of i.i.d. nonnegative integer-valued random vari-
ables with common distribution (pn)n≥0 and independent of Z0. For each n ≥ 0, the
random variable Zn is interpreted as the size of the n-th generation of a given popula-
tion, and (Zn)n≥0 is called a Galton-Watson Process (abbreviated GWP) with offspring
distribution (pn)n≥0.

Remark. Throughout this thesis, we will assume that in the GWP Z0 = 1 with
probability one.

Proposition 4.3. The probability generating function (p.g.f) of Zn, E
[
sZn
]
, is given by

the n-fold composition θ◦n(s) = (θ ◦ · · · ◦ θ)(s), where θ is the p.g.f. of the offspring
distribution (pn)n≥0. Moreover, if E[Z1] = ρ, then E[Zn] = ρn.

Proof. In effect, let |s| ≤ 1, notice that

E[sZ0 ] = s, E[sZ1 ] = θ(s) =
∞∑
n=0

pns
n. (4.3)
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For n ≥ 1 we have

E[sZn+1 ] =E
[
s
∑Zn

k=0 Xn+1,k

]
(4.4)

=
∞∑
j=0

P(Zn = j)E
[
s
∑j

k=0 Xn+1,k

]
(4.5)

=
∞∑
j=0

P(Zn = j) (θ(s))j (4.6)

=E
[
θ(s)Zn

]
. (4.7)

By induction we then see that

E
[
sZn+1

]
= E

[
θ(s)Zn

]
= θ◦n (θ(s)) (4.8)

⇒E
[
sZn+1

]
= θ◦(n+1)(s) (4.9)

The expectation can be obtained by differentiation, for n ≥ 2,

θ′n(s) =E
[
Zns

Zn−1 ;Zn ≥ 1
]
, (4.10)

and Zns
Zn−1 is nonnegative and increasing as s ↑ 1. By the monotone convergence theo-

rem,

θ′(1) = E [Zn] ≤ ∞ (4.11)

On the other hand,

E [Zn] = lim
s↑1

d

ds
E
[
sZn
]

(4.12)

= lim
s↑1

d

ds
θ◦(n)(s) (4.13)

= lim
s↑1

d

ds
θ◦(n−1)(θ(s)) (4.14)

= lim
s↑1

(
θ◦(n−1)(θ(s))

)′
θ′(s) (4.15)

=
(
θ◦(n−1)(1)

)′
θ′(1) (4.16)

=ρE [Zn−1] . (4.17)

By induction, we obtain E [Zn] = ρn.

Proposition 4.4. The multivariate joint p.g.f. for Z1, . . . , Zn in the GWP is given by

E
[
sZ1
1 · · · sZn

n

]
= θ(s1θ(s2 · · · θ(sn−1θ(sn)) · · · )) (4.18)

29



Proof. Consider the filtration

Fn = σ (Z0, Xm,k : m ≤ n, k ∈ N) , (4.19)

and notice that Zn is Fn-measurable forall n ≥ 0. Computing the expectation

E
[
sZ1
1 · · · sZn

n

]
=E

[
E
[
sZ1
1 · · · sZn−1

n−1 s
Zn
n

∣∣∣∣ Fn−1

]]
(4.20)

=E
[
sZ1
1 · · · sZn−1

n−1 E
[
sZn
n

∣∣∣∣ Fn−1

]]
(4.21)

=E
[
sZ1
1 · · · sZn−1

n−1 E
[
s
∑Zn−1

k=0 Xn,k
n

∣∣∣∣ Fn−1

]]
(4.22)

=E
[
sZ1
1 · · · sZn−1

n−1 θ
Zn−1(sn)

]
(4.23)

=E
[
sZ1
1 · · · sZn−2

n−2 (sn−1θ(sn))
Zn−1

]
(4.24)

=E
[
sZ1
1 · · · sZn−2

n−2 θ (sn−1θ(sn))
]
= . . . (4.25)

=θ(s1θ(s2 · · · θ(sn−1θ(sn)) · · · )), (4.26)

where the last equality was obtained by taking conditional expectation iteratively.

The total size of the GWP is the sum of the number of individuals from all generations,
including the original ancestor. The following proposition allows us to find the p.g.f. for
the size of the GWP.

Proposition 4.5. Let ϕn(s) be the p.g.f. for the size of the GWP up to the n-th generation
Z0 + Z1 + · · ·+ Zn, in other words,

ϕn(s) = E
[
sZ0+Z1+···+Zn

]
. (4.27)

Then the following recurrence relation is satisfied

ϕn+1(s) = sθ(ϕn(s)), n ≥ 0. (4.28)

Moreover, the p.g.f. ϕ(s) for the total size of the GWP Z = Z0 + Z1 + . . . , i.e.

ϕ(s) = E
[
sZ
]
, (4.29)

satisfies the relation

ϕ(s) = sθ(ϕ(s)). (4.30)
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Proof. Once again, consider the filtration (4.19). Computing the expectation

ϕn+1(s) =E
[
sZ0+Z1+···+Zn+1

]
(4.31)

=E
[
sZ0
]
E
[
sZ1+···+Zn+1

]
(4.32)

=s E
[
E
[
sZ1+···+Zn+1

∣∣∣∣ Fn

]]
(4.33)

=s E
[
sZ1 · · · sZnE

[
sZn+1

∣∣∣∣ Fn

]]
(4.34)

=s E
[
sZ1 · · · sZnθZn(s)

]
= . . . (4.35)

=s E
[
[sθ(sθ(s · · · θ(sθ(s)) · · · ))]Z1

]
, (4.36)

where the p.g.f. θ(s) inside the expectation is iterated n times. Comparing this to the
p.g.f. from Proposition 4.4, we notice that it corresponds to the joint p.g.f of

ϕn(s) = E
[
sZ0+Z1+···+Zn

]
= sE

[
sZ1 · · · sZn

]
= s θ(sθ(s · · · θ(sθ(s)) · · · ))︸ ︷︷ ︸

n times

, (4.37)

thus

ϕn+1(s) = sE
[
ϕn(s)

Z1
]
= sθ(ϕn(s)). (4.38)

Notice now that the sequence

sZ0+···+Zn (4.39)

is decreasing in n, dominated by 1 since |s| ≤ 1, and converges pointwise

lim
n→∞

sZ0+···+Zn = sZ0+Z1+... = sZ . (4.40)

Then, by the Dominated Convergence Theorem

lim
n→∞

ϕn(s) = lim
n→∞

E
[
sZ0+Z1+···+Zn

]
(4.41)

=E
[
lim
n→∞

sZ0+Z1+···+Zn

]
(4.42)

=E
[
sZ
]
= ϕ(s) (4.43)

Taking limits on both sides of (4.38) and using the continuity of θ(s)

lim
n→∞

ϕn+1(s) = lim
n→∞

sθ(ϕn(s)), (4.44)

ϕ(s) = sθ
(
lim
n→∞

ϕn(s)
)
, (4.45)

ϕ(s) = sθ (ϕ(s)) , (4.46)

which is the result we wanted.
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If the generation n has zero offspring, we say that the population went extinct at
generation n. Let T := inf{n : Zn = 0}, we call T the extinction time. The events
{Zn = 0} is the same as the event {T ≤ n}. Define

En := θn(0) = P(Zn = 0) = P(T ≤ n). (4.47)

The sequence of events {T ≤ n} is increasing and ∪n∈N{T ≤ n} = {T < ∞}. From the
monotonicity and continuity of the probability measure it is obvious that the sequence
{En} is non decreasing and converges,

lim
n→∞

En = lim
n→∞

P(T ≤ n) = P(T <∞) =: E. (4.48)

Proposition 4.6. Let E = P(T < ∞), then E = 1 for ρ ≤ 1, while E < 1 for ρ > 1,
where E is the unique root of θ(s) = s strictly between 0 and 1.

Proof. There are two trivial cases. One of them is p0 = 0, in which E = 0 because Zn

can never become zero. The second case is when 0 < p0 ≤ p0 + p1 = 1, so that θ(s) is a
linear function and θ(1) = 1, so E = 1. We assume then that 0 < p0 ≤ p0+ p1 < 1, which
means that θ(x) is strictly convex. The extinction probabilities for the n-th generation
satisfy the following recurrence relation

En+1 = θn+1(0) =θ
◦(n+1)(0) = θ(θ◦(n)(0)) = θ(En) (4.49)

⇒En+1 = θ(En). (4.50)

Taking the limit as n→ ∞ in (4.50) and using the continuity of θ we obtain

E = θ(E), (4.51)

therefore E should be a root of g(s) := θ(s) − s. Let x0 be the smallest positive root in
(0, 1]. θ(s) is increasing for s > 0, thus

0 < E1 = θ(0) < θ(x0) = x0. (4.52)

From E1 < x0 and θ being increasing, we get by induction that

0 < En < x0 for all n ∈ N (4.53)

⇒ lim
n→∞

En = x0. (4.54)

Computing some values of g and its derivatives

g(1) = 0, g(0) = θ(0) > 0 (4.55)

g′(1) = θ′(1)− 1 = ρ− 1. (4.56)

Since θ is convex, θ′ is increasing and g′′ = θ′′ ≥ 0. Considering the cases for ρ we have
that if ρ ≤ 1, from (4.56), g′(1) ≤ 0, thus

g′(s) = θ′(s)− 1 ≤ θ′(1)− 1 for all s ∈ [0, 1], (4.57)
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so g will be decreasing, and hence the only possible root is x0 = 1.

If on the other hand ρ > 1, g′(1) > 0, and by continuity of g′, there exists δ1 > 0 such
that g′(s) > 0 for all s ∈ (1 − δ1, 1]. In this neighborhood, g is increasing, and since
g(1) = 0, that means that in the neighborhood g(x) < 0. Since g(0) is nonnegative, by the
Intermediate Value Theorem, there should be a root s1 of g(s) in (0, 1]. Let us suppose
there is another root s2 in (0, 1] and without loss of generality assume that s1 < s2. Then
we have g(s1) = g(s2) = g(1) = 0, hence, by Rolle’s Lemma, there exist a, b ∈ (0, 1] with
s1 < a < s2 < b < 1 and g′(a) = g′(b) = 0, which implies θ′(a) = θ′(b), contradicting the
strict convexity of θ. Thus, the root x0 should be unique in (0, 1], and this finalizes the
proof.

With the last Proposition we finish the exposition of the necessary results from the
Galton–Watson theory. We now proceed with the introduction of cluster processes.

4.2 Cluster processes

Cluster processes are defined in a general setting. Let X and Y be complete separable
metric spaces. As in Section 2.1, (N ♯

X ,B(N
♯
X )) denotes the measurable space of counting

measures ν on X which are locally finite with its Borel σ-field B(N ♯
X ). Let also P(N ♯

X )
denote the space of probability measures on N ♯

X . The convolution of Π and Π′ ∈ P(N ♯
X )

is defined as

(Π ∗ Π′) (U) =

∫
N ♯

X×N ♯
X

1(ν+ν′∈U)Π(dν)Π
′(dν ′) for all U ∈ B(N ♯

X ). (4.58)

If we have two independent point processes N(·) and N ′(·) on X , we can then use (4.58)
to write the law of their sum. Let Π(·) = P(N ∈ ·) and Π′(·) = P(N ′ ∈ ·), then

Π ∗ Π′ = P(N +N ′ ∈ ·). (4.59)

We can also write an expression for the p.g.fl. If we denote

GΠ[z] = E
[
exp

∫
log z(t)N(dt)

]
, and GΠ′ [z] = E

[
exp

∫
log z(t)N ′(dt)

]
, (4.60)

where the expectation is taken w.r.t. Π and Π′ respectively, then the p.g.fl. of N +N ′ is
given as

GΠ∗Π′ [z] =E
[
exp

∫
log z(t)(N +N ′)(dt)

]
(4.61)

=GΠ[z]GΠ′ [z]. (4.62)

Definition 4.7 ([10, Ch.6 p.165]). A (symbolic) measurable family of point processes on
X is a family {N(· | y) : y ∈ Y} where for all y ∈ Y , N(· | y) is a point process on X , and
for all U ∈ B(N ♯

X ) the function

y 7−→ P(N(· | y) ∈ U) (4.63)

is B(Y)-measurable.
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The construction of a cluster process involves two components: a point process Nc of
cluster centers whose realization consists of the points {yi}i≥0 ⊂ Y , and a family of point
processes on X , namely {Ns(· | y); y ∈ Y}, whose superposition constitute the observed
process. We formalize this idea through the convolution in P(N ♯

X ).

Definition 4.8. Let Nc be a point process on Y and {Ns(· | y) : y ∈ Y} a measurable
family of point processes on X . (The family {Ns(· | y) : y ∈ Y} is considered to be
mutually independent and to be independent ofNc.) Then, the independent cluster process
on X , with center process Nc and satellite processes {Ns(· | y) : y ∈ Y}, which we denote
by

N(·) =
∫
Y
Ns(· | y)Nc(dy) =

∑
y∈Nc(·)

Ns(· | y), (4.64)

is defined in law as

P(N ∈ U) =

∫
N♯

Y

P(Ns(· | µ) ∈ U)P(Nc ∈ dµ) , U ∈ B(N ♯
X ), (4.65)

where P(Ns(· | µ) ∈ U) for µ =
∑

i δyi ∈ N ♯
Y is defined as the infinite convolution

P(Ns(· | µ) ∈ U) =(Πy1 ∗ Πy2 ∗ · · ·) (U) for U ∈ B(N ♯
X ), (4.66)

with Πy(U) = P(Ns(· | y) ∈ U) for U ∈ B(N ♯
X ) and y ∈ Y .

We now give an expression for the p.g.fl. of the independent cluster process in the
following Theorem.

Theorem 4.9. Let N be an independent cluster process with center process Nc and satel-
lite processes {Ns(· | y) : y ∈ Y}. Let Gc[z] denote the p.g.fl. of the center process and
Gs[z | y] the p.g.fl. of Ns(· | y). Then G[z], the p.g.fl. of N(·), is given by

G[z] = Gc[Gs[z | ·]] for any z ∈ Ξ. (4.67)

Proof. In the definition of the p.g.fl. we take expectation with respect to the law of N(·)
given by (4.65), and we obtain

G[z] =E
[
exp

∫
log z(x)N(dx)

]
(4.68)

=

∫
N ♯

Y

(
E
[
exp

∫
X
log z(x)Ns(dx | µ)

])
P(Nc ∈ dµ) (4.69)

=

∫
N ♯

Y

 ∏
y∈µ(·)

Gs[z | y]

P(Nc ∈ dµ) (4.70)

=E

 ∏
y∈Nc(·)

Gs[z | y]

 (4.71)

=Gc[Gs[z | ·]], (4.72)

concluding the proof.
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A necessary and sufficient condition for the superposition (4.64) to define a point
process on X , in which case we say that the independent cluster process exists, is that
for every bounded set B ∈ B(X ),

N(B) =

∫
Y
Ns(B | y)Nc(dy) =

∑
y∈Nc(·)

Ns(B | y) <∞ a.s. (4.73)

Under the assumption that the process has almost surely finite clusters, i.e.

Ns(X | y) <∞ a.s. for all y ∈ Y , (4.74)

equivalent conditions for verifying (4.73) were presented in Westcott [39], namely the
following theorem and its corollary.

Theorem 4.10 ([39, Theorem 3]). The independent cluster process N exists if and only
if for every bounded set B ∈ B(X ),∫

Y
P(Ns(B | y) > 0)Nc(dy) <∞ a.s. (4.75)

We give a more detailed proof than that in [39].

Proof. Let B ∈ B(X ) bounded, then the probability generating function (p.g.f.) for
the random variable N(B) is obtained by evaluating the p.g.fl. of N in the function
ξ(u) = 1− (1− z)1B(u) where z is a constant in (0, 1). We obtain

E
[
zN(B)

]
= E

[
exp

{
−
∫
Y
QB(z | y)Nc(dy)

}]
, (4.76)

where we defined QB(z | y) := − logE
[
zNs(B|y)]. Considering now the sequence {zn}n∈N

given by zn = 1− 1
n
we can compute

P(N(B) <∞) = lim
n→∞

E
[
zN(B)
n

]
(4.77)

= lim
n→∞

E
[
exp

{
−
∫
Y
QB(zn | y)Nc(dy)

}]
(4.78)

=E
[
exp

{
− lim

n→∞

∫
Y
QB(zn | y)Nc(dy)

}]
. (4.79)

The last equality is the result of applying the Monotone Convergence Theorem to the in-
creasing sequence {−QB(zn | y)}n∈N and using the continuity of the exponential function.
Hence P(N(B) <∞) = 1 if and only if

lim
n→∞

∫
QB(zn | y)Nc(dy) = 0 a.s. (4.80)

Since 0 ≤ QB(zn | y) ≤ 1 and QB(zn | y) ↓ 0 as n → ∞, this is equivalent, by the
Dominated Convergence Theorem, to∫

QB(z | y)Nc(dy) <∞ for some 0 < z < 1 a.s. (4.81)
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Notice that if 0 < a ≤ x ≤ 1,

1− x ≤ − log x ≤ c(a)(1− x) for c(a) :=
− log a

1− a
. (4.82)

Since z is a constant in (0, 1),

EzNs(B|y) ≥ E

 ∏
y′∈Nc(·)

zNs(B|y′)

 = EzN(B), (4.83)

and QB(z | y) := − logEzNs(B|y), we have from (4.82)

1− EzNs(B|y) ≤ QB(z | y) ≤ c̃(z)
(
1− EzNs(B|y)) , (4.84)

for c̃(z) := c
(
EzN(B)

)
. Hence, condition (4.81) holds if and only if∫ (

1− EzNs(B|y))Nc(dy) <∞ for some 0 < z < 1 a.s. (4.85)

Additionally,

∞∑
n=0

P(Ns(B | y) > n)zn =
∞∑
n=0

zn
∞∑

m=n+1

P(Ns(B | y) = m) (4.86)

=
∞∑

m=1

P(Ns(B | y) = m)
m−1∑
n=0

zn (4.87)

=
∞∑

m=1

P(Ns(B | y) = m)
1− zm

1− z
(4.88)

=
1

1− z

(
1− EzNs(B|y)) , (4.89)

since 1− z0 = 0. Hence condition (4.85) holds if and only if

∞∑
n=0

{∫
P(Ns(B | y) > n)Nc(dy)

}
zn <∞ for some 0 < z < 1 a.s. (4.90)

Since P(Ns(B | y) > n) is decreasing in n, we see that condition (4.90) holds if and only
if ∫

P(Ns(B | y) > 0)Nc(dy) <∞ a.s. (4.91)

Corollary 4.11 ([39, Corollary 3.3]). Let X ,Y = R and assume the following condi-
tions:

(i) supt E[Nc(I − t)] <∞ for all bounded interval I.
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(ii) Ns(· | t)
d
= Ns(· − t | 0) for all t ∈ R.

(iii) E[Ns(R | 0)] <∞.

Then (4.75) is satisfied.

We give a simpler proof than that in [39].

Proof. Notice that

E[Ns(I | t)] ≥ E[Ns(I | t);Ns(I | t) > 0] ≥ P(Ns(I | t) > 0) , (4.92)

because Ns(I | t) is integer-valued. From (ii), we have

E[Ns(I | t)] = E[Ns(I − t | 0)] . (4.93)

Taking expectation in (4.75) and using (4.92) and (4.93) we have∫
R
P(Ns(I | t) > 0)E[Nc(dt)] ≤

∫
R
E[Ns(I − t | 0)]E[Nc(dt)] (4.94)

=

∫
R

(∫
R
1I−t(u)E[Ns(du | 0)]

)
E[Nc(dt)] (4.95)

=

∫
R

(∫
R
1I−u(t)E[Nc(dt)]

)
E[Ns(du | 0)] (4.96)

=

∫
R
E[Nc(I − u)]E[Ns(du | 0)] (4.97)

≤E[Ns(R | 0)] sup
t

E[Nc(I − t)] <∞, (4.98)

from (i) and (iii), which implies (4.75).

4.3 The center process

In the RHP, immigration is given by a renewal process, which naturally we take as our
center process. Let τ, τ1, τ2, . . . , be positive i.i.d. random variables whose probability
distribution function

F (t) := P(τ ≤ t), (4.99)

satisfies the assumption (B0), and let τ0 = 0.

The epochs of this zero-delayed renewal process correspond to the partial sums S0 = 0,
Sn = τ1 + · · ·+ τn, and we denote its associated counting process as NR(t) :=

∑
i 1{Si≤t}.

For each n ≥ 0 and x ≥ 0, the distribution of Sn is P(Sn ≤ x) = F ∗n(x), where

F ∗0(x) = δ0(x), F ∗(n+1)(x) =

∫ x

0

F ∗n(x− y)F (dy). (4.100)
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The mean number of events up to time t is given by the corresponding renewal function,

Φ(t) =
∑
n≥0

F ∗n(t). (4.101)

Since the distribution function F has a density f , the renewal measure Φ(dt) is absolutely
continuous w.r.t. the Lebesgue measure with density φ(t) =

∑
n≥1 f

∗n(t) for all t ≥ 0 [1,
Proposition V.2.7].

Denote by (FR
t )t≥0 the augmentation of the natural filtration of the renewal process

σ(NR(s); 0 ≤ s ≤ t), and take the hazard function µ(t) as in (3.3). We use Theorem 2.14
to see that

λR(t) := µ(t− SNR(t−)−1), (4.102)

is a predictable (FR
t )-intensity of NR (a more detailed proof is given later in Section 6).

We will also want to consider a delayed renewal process where S0 is replaced by a
positive random variable Ŝ0 independent of τ1, τ2, . . . , with distribution function F0 not
necessarily equal to F . The partial sums Ŝn = Ŝ0 + τ1 + · · · + τn have the associated
counting process N̂R(t) =

∑
i 1{Ŝi≤t}, where the distribution of Ŝn for n ≥ 1 is given by

P(Ŝn ≤ x) = F0 ∗ F ∗n(x) for x ≥ 0.

4.4 The satellite processes

One feature of the RHP is that in addition to immigrants being able to generate offspring,
these offspring themselves can generate further offspring. Thus, offspring points could be
described as higher-level center processes. In order to represent this structure, we use
a notation similar to Neyman–Scott [29]. The renewal process will be named a zero-th

order center process N
(0)
c (·) := NR(·).

Let
{
N

(n)
s (· | t); t ∈ [0,∞)

}
n≥1

be a sequence of measurable families of point processes

which is considered to be i.i.d. and to be independent of N
(0)
c , such that N

(n)
s (· | t) has

the same law as Ns(· | t) whose p.g.fl. is given by

E

 ∏
x∈Ns(·|t)

z(x)

 = exp

(∫ ∞

0

(z(x+ t)− 1)h(x)dx

)
, (4.103)

with h satisfying (A0). If we take z(x) = e−λ for λ > 0, we have

E
[
e−λNs([0,∞)|t)] = exp

((
e−λ − 1

) ∫ ∞

0

h(x)dx

)
= e−α(1−e−λ), (4.104)

which shows that Ns([0,∞) | t) d
= Poi(α). More generally, if we substitute the function

z(x) =

{
e−λi (x ∈ (ai, bi]) ,
1

(
x /∈ ∪k

i=1(ai, bi]
)
,

(4.105)
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into (4.103), we obtain

E
[
e−λ1Ns((a1,b1]|t) · · · e−λkNs((ak,bk]|t)

]
=

k∏
i=1

exp

(
(e−λi − 1)

∫ bi

ai

h(x− t)dx

)
. (4.106)

This shows that {Ns([ai, bi) | t)}ki=1 is mutually independent and

Ns([ai, bi) | t)
d
= Poi

(∫ bi

ai

h(x− t)dx

)
, (4.107)

or in other words, Ns(· | t) is an inhomogeneous Poisson process with intensity h(x− t)dx,
where we understand h(x) = 0 for x < 0. In particular, we see that{Ns(· | t) : t ≥ 0} is a
measurable family of point processes.

Given that there is a center at t0 ≥ 0, we construct higher-level center processes N
(n)
c ,

for n ≥ 1, from a superposition of the processesN
(n)
s with the following recursive structure:

N (0)
c (· | t0) := δt0 , N(n+1)

c (· | t0) =
∑

t∈N(n)
c (·|t0)

N(n+1)
s (· | t), (4.108)

where N
(0)
c (· | t0) is the original immigrant at t0 and N

(n)
c (· | t0) represents its n-th

generation offspring. We define as well some processes of interest, namely, the total
number of n-th generation descendants,

N (n)
c (·) =

∑
t0∈NR(·)

N (n)
c (· | t0), (4.109)

and the complete offspring of the immigrant at t0 (including the immigrant),

Nc(· | t0) =
∑
n≥0

N (n)
c (· | t0). (4.110)

We take the processes defined as in (4.110) as the satellite processes of our construction
for a center located at t0. Finally, the RHP is given by the superposition:

N(·) =
∫ ∞

0

Nc(· | t)NR(dt) =
∑

t0∈NR(·)

∑
n≥0

N (n)
c (· | t0). (4.111)

Note that (4.111) can also be written as

N(·) =
∑
n≥0

∑
t0∈NR(·)

N (n)
c (· | t0) = NR(·) +

∑
n≥1

N (n)
c (·). (4.112)

4.5 Validity of the construction

We are concerned with whether our construction of the RHP in fact represents a valid
cluster process. In the following Theorem we show that with the assumptions made for
its construction, it is a valid definition.
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Theorem 4.12. If h is a function satisfying (A0), and NR(·) is a renewal process sat-
isfying (B0), then the cluster process defined as in (4.111) exists and has a.s. finite
clusters.

Proof. Using Corollary 4.11 , the existence of the cluster process is proved if we can show
that conditions (i)-(iii) hold.

Claim (i) can be obtained by using the fact that

E[NR(t+ a)−NR(t)] ≤ Φ(a), for all a > 0, (4.113)

(see for example [1, Sec. V, Theorem 2.4, p.146]). Let I be any bounded interval in [0,∞)
and write |I| for its Lebesgue measure. Then, from (4.113) we can see that E[NR(I)] ≤
Φ(|I|) and we can conclude that,

sup
t≥0

E[NR(I − t)] ≤sup
t≥0

Φ(|I − t|) = Φ(|I|) <∞ (4.114)

Claim (ii) follows from the construction of the satellites as superposition of inhomo-
geneous Poisson processes with p.g.fl. (4.103) that originate at previous points of the
process and the observation (4.107).

Finally, to prove claim (iii), let t0 ≥ 0 and consider Nc(· | t0) a cluster with center at

t0. Let us call Zn := N
(n)
c ([0,∞) | t0) for n ≥ 0 and Z := Nc([0,∞) | t0) so that Zn and

Z represent respectively the number of n-th generation points and the total number of
points in the cluster. These random variables satisfy:

Zn =

Zn−1∑
k=0

Xn,k,

N
(n)
c (· | t0) = {Y (n)

1 , . . . , Y
(n)
Zn

} for n ≥ 0, and Xn,k := N
(n)
s ([0,∞) | Y (n−1)

k ). This shows
that the variables Zn form a Galton–Watson process with offspring density h, and that
the number of points per generation follows a Poisson distribution of parameter α. Then
Z is given by the total size of the Galton–Watson process. From the Galton–Watson
theory [14, Theorem 6.1, p.7] we know that P

(
Z <∞

)
= 1 if α < 1, and the p.g.f. of the

cluster size π(u) = E
[
uZ
]
, 0 < u < 1 [14, Section 13.2, p.32] satisfies,

π(u) = u exp{α[π(u)− 1]} ,

from which we can conclude that π′(1−) = E
[
Z
]
= 1

1−α
. We then see that the three

assumptions needed are satisfied, which proves the existence of the cluster process repre-
sentation for the RHP.

4.6 Verification of the intensity

In this section we show that the process constructed in the previous section admits the
desired intensity of an RHP. Let us consider a cluster process N(·) = {T1, T2, . . .} given
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by (4.111). Define the random variables

Di =

{
1 (if Ti ∈ NR(·)) ,
0 (otherwise) ,

(4.115)

and the function I(t) = max{i; Ti ≤ t,Di = 0} as before. We construct the filtration
(Ft)t≥0 by the augmentation of the natural filtration (F0

t )t≥0 defined as

F0
t = σ

(
N (n)

c ((a, b]) ; 0 ≤ a ≤ b ≤ t, n = 0, 1, 2, . . .
)
, t ≥ 0. (4.116)

Notice that in the definition of the intensity (4.1), the term µ
(
t− TI(t−)

)
is only affected

by the terms that come from the renewal process. This is because the points TI(t−) all
correspond to immigrants. Since NR(t) = min{i : Si ≤ t}, let us then denote NR(·) =
{Ti : Di = 0} ={S1, S2, . . .}, and notice then that

µ(t− TI(t−)) = µ(t− SNR(t−)−1), t ≥ 0. (4.117)

Consider now an arbitrary (Ft)-predictable process C(u) = 1A1(r,t](u) for A ∈ Fr and
0 ≤ r ≤ t. Then

E
[∫

C(u)N(du)

]
= E

[
1A

∫ t

r

NR(du)

]
+ E

[
1A

∫ t

r

∑
n≥0

N (n+1)
c (du)

]
. (4.118)

Since λR(t) is an (Ft)-intensity of NR, the first term on the R.H.S. equals

E
[
1A

∫ t

r

NR(du)

]
= E

[
1A

∫ t

r

µ(u− SNR(u−)−1)du

]
= E

[
1A

∫ t

r

µ(u− TI(u−))du

]
.

(4.119)

We also have,

E

[
1A

∫ t

r

∑
n≥0

N (n+1)
c (du)

]
=E

1A ∫ t

r

∑
n≥0

∑
x∈N(n)

c (·)

N (n+1)
s (du | x)

 (4.120)

=
∑
n≥0

E

1A ∑
x∈N(n)

c (·)

N (n+1)
s ((r, t] | x)

 . (4.121)

Because of the independence property of a Poisson point process, we have independence
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of
{
N

(n+1)
s ((r, t] | x); t > r, x ≥ 0

}
from Fr ∨ σ

(
N

(n)
c

)
, and by (4.107) we obtain

∑
n≥0

E

1A ∑
x∈N(n)

c (·)

N (n+1)
s ((r, t] | x)

 =
∑
n≥0

E

1A ∑
x∈N(n)

c (·)

∫ t

r

h(u− x)du

 (4.122)

=E

[
1A

∫ ∞

0

(∫ t

r

h(u− x)du

)∑
n≥0

N (n)
c (dx)

]
(4.123)

=E
[
1A

∫ ∞

0

(∫ t

r

h(u− x)du

)
N(dx)

]
(4.124)

=E
[
1A

∫ t

r

(∫ u

0

h(u− x)N(dx)

)
du

]
. (4.125)

From the chain of equalities we obtain the identity

E
[∫

C(u)N(du)

]
= E

[∫
C(u)

{
µ(u− TI(u−)) +

∫ u−

0

h(u− x)N(dx)

}
du

]
, (4.126)

which may be extended to all (Ft)-predictable processes C. Thus, we can say that N
admits the predictable (Ft)-intensity

λ(t) := µ(t− TI(t−)) +

∫ t−

0

h(t− x)N(dx), t ≥ 0. (4.127)

4.7 Probability generating functional for the RHP

In this section we investigate the p.g.fl. of the RHP. The difficulty of finding the complete
p.g.fl. lies on the fact that the renewal process is not a finite point process. We begin
with the p.g.fl. of the renewal process.

Denote pn(T ) := P(NR((0, T ]) = n) for T ≥ 0 and any nonnegative integer n, and for
any z ∈ Ξ and T ≥ 0 define

zT (t) :=

{
z(t) (t ≤ T ),
1 (t > T ).

(4.128)

Since
{
zT
}
T≥0

is decreasing in T for z ∈ Ξ, and all zT are dominated by the constant 1,
it is a consequence of the Dominated Convergence Theorem that

GR[z] = lim
T→∞

GR[z
T ], (4.129)
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where

GR[z
T ] =

∞∑
n=0

E

 ∏
x∈NR(·)

zT (x) ;NR((0, T ]) = n

 (4.130)

=p0(T ) +
∞∑
n=1

E[z(S1) · · · z(Sn) ;NR((0, T ]) = n] (4.131)

=p0(T ) +
∞∑
n=1

pn(T )

∫ T

0

∫ T−s1

0

· · ·
∫ T−sn−1

0

z(s1) · · · z(sn)f(s1) · · · f(sn − sn−1)dsn · · · ds1,

(4.132)

but this expression cannot be further simplified in general.

Now we focus on the p.g.fl. for the satellite processes. A cluster whose center is located
at t0, for some t0 ≥ 0, is formed by the immigrant that originated it together with all
the generations of its offspring. The following relation has been already established in
Hawkes–Oakes [16], and we provide a proof using our construction.

Theorem 4.13. Let t0 ≥ 0. The p.g.fl. for a cluster starting at t0, namely

Gc[z | t0] = E
[
exp

∫ ∞

0

log z(t)Nc(dt | t0)
]
, (4.133)

satisfies the functional relation

Gc[z | t0] = z(t0) exp

{∫ ∞

0

(Gc[z(x+ ·) | t0]− 1)h(x)dx

}
. (4.134)

Proof. Let t0 ≥ 0. We want the p.g.fl. for the cluster

Nc(· | t0) =
∑
n≥0

N (n)
c (· | t0), (4.135)

Let us call G
(n)
c the p.g.fl. of the cluster up to generation n, namely

G(n)
c [z | t0] = E

[
exp

∫ ∞

0

log z(t)
n∑

i=0

N (i)
c (dt | t0)

]
. (4.136)

Denote F0 :={Ω, ∅} and Fn := σ
(
N

(1)
c (· | t0), . . . , N (n)

c (· | t0)
)
. We have,

G(n+1)
c [z | t0] = z(t0)E

[
exp

{∫
log z(x)

n∑
i=0

N (i+1)
c (dx | t0)

}]
. (4.137)

Note that the above expectation can be written as,

E

[
exp

{∫
log z(x)

n∑
i=0

N (i+1)
c (dx | t0)

}]
(4.138)

=E

exp


n∑
i=0

∑
y∈N(i)

c (·|t0)

∫
log z(x)N (i+1)

s (dx | y)


 (4.139)
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Using that the processes N
(i+1)
s (· | y) are an i.i.d. family and independent from N

(i)
c (· | t0),

we can rewrite the above expectation by recursively applying the tower property,

E

exp


n∑
i=0

∑
y∈N(i)

c (·|t0)

∫
log z(x)N (i+1)

s (dx | y)


 (4.140)

=E

 n∏
i=0

∏
y∈N(i)

c (·|t0)

E
[
exp

{∫
log z(x)N (i+1)

s (dx | y)
} ∣∣∣∣Fi

] (4.141)

=E

 n∏
i=0

∏
y∈N(i)

c (·|t0)

E
[
exp

{∫
log z(x)N (i+1)

s (dx | y)
}] (4.142)

=E

 n∏
i=0

∏
y∈N(i)

c (·|t0)

E
[
exp

{∫
log z(x+ y)N (n+1)

s (dx | 0)
}] (4.143)

=E

 n∏
i=0

∏
y∈N(i)

c (·|t0)

exp

{∫
log z(x+ y)N (n+1)

s (dx | 0)
} (4.144)

=E

exp


n∑
i=0

∑
y∈N(i)

c (·|t0)

∫
log z(x+ y)N (n+1)

s (dx | 0)


 . (4.145)

Writing the summation above as an integral w.r.t. the counting measure N
(i)
c (· | t0) and

using Fubini’s Theorem we get,

E

exp


n∑
i=0

∑
y∈N(i)

c (·|t0)

∫
log z(x+ y)N (n+1)

s (dx | 0)


 (4.146)

=E

[
exp

{∫ ∫
log z(x+ y)

n∑
i=0

N (i)
c (dy | t0)N (n+1)

s (dx | 0)

}]
(4.147)

=E

 ∏
x∈N(n+1)

s (·|0)

E

[
exp

{∫
log z(x+ y)

n∑
i=0

N (i)
c (dy | t0)

}] (4.148)

=E

 ∏
x∈N(n+1)

s (·|0)

G(n)
c [z(x+ ·) | t0]

 (4.149)

=E

 ∏
x∈N(n+1)

s (·|0)

G(n)
c [zx(·) | t0]

 , (4.150)

where in the last expression we introduced zx(·) := z(x + ·). We recognize the p.g.fl. of
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the process Ns(· | 0) and from equation (4.107), we have

G(n+1)
c [z | t0] =z(t0)Gs

[
G(n)

c [z· | t0] | 0
]

(4.151)

=z(t0) exp

{∫ ∞

0

(
G(n)

c [zx | t0]− 1
)
h(x)dx

}
. (4.152)

Now, we want to take the limit as n→ ∞. First notice that for any measurable function
z such that 0 ≤ z(y) ≤ 1 for all y ≥ 0 and 1− z vanishes outside a bounded set, it holds
that

lim
n→∞

n∏
i=0

∏
x∈N(i)

c (·|t0)

z(x) =
∏
i≥0

∏
x∈N(i)

c (·|t0)

z(x). (4.153)

Since,

E

∏
i≥0

∏
x∈N(i)

c (·|t0)

z(x)

 <∞, (4.154)

we have from the Dominated Convergence Theorem,

lim
n→∞

G(n)
c [z | t0] = lim

n→∞
E

 n∏
i=0

∏
x∈N(i)

c (·|t0)

z(x)

 = E

∏
i≥0

∏
x∈N(i)

c (·|t0)

z(x)

 = Gc[z | t0],

(4.155)

this means that Fn converges to F pointwise. Now, since 0 ≤ G
(n)
c [zx | t0] ≤ 1 for all

n ≥ 0 and
∣∣∣G(n)

c [zx | t0]− 1
∣∣∣h(x) ≤ h(x) with

∫∞
0
h(x)dx < ∞, from the Dominated

Convergence Theorem we get,

Gc[z | t0] = lim
n→∞

G(n)
c [z | t0] = lim

n→∞
z(t0) exp

{∫ ∞

0

(
G(n)

c [zx | t0]− 1
)
h(x)dx

}
(4.156)

=z(t0) exp

{∫ ∞

0

(Gc[zx | t0]− 1)h(x)dx

}
, (4.157)

which concludes the proof.

4.8 The stationary RHP

As pointed out in Lemma 2.17, under assumption (B0), we can obtain a stationary version

of the renewal process N̂R by considering an appropriate delay distribution F0 which has
a density given as

f0(t) = m(1− F (t)) t ≥ 0. (4.158)
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In the stationary case, the p.g.fl. for the renewal process can be computed on the entirety
of [0,∞). For this, we use the general formula [10, (5.5.4) in Sec. V. p.146] to expand the

p.g.fl. of the point process N̂R as

ĜR[z] = 1 +
∞∑
k=1

1

k!

∫
Rk

(z(x1)− 1) · · · (z(xk)− 1)M[k](dx1 × · · · × dxk), (4.159)

where the factorial moment measures M[k](·) for N̂R are given for A1, . . . , Ar ∈ B(R) and
nonnegative integers k1, . . . , kr such that kr ≥ 1 and k1 + · · ·+ kr = k as

M[k](A
(k1)
1 × · · · × A(kr)

r ) = E
[
[N(A1)]

[k1] · · · [N(Ar)]
[kr]
]
, (4.160)

with the factorial powers defined as

n[k] =

{
n(n− 1) · · · (n− k + 1) (k = 0, . . . , n),
0 (k > n),

(4.161)

for any nonnegative integer n. We use the formula [10, (5.4.15) in p.139] for the stationary

renewal process and see that the factorial measures of N̂R have densities on x1 < · · · < xk
given by [10, (5.4.15) in Sec. V. p.139]

M[k](dx1 × · · · × dxk) = mdx1φ(x2 − x1)dx2 · · ·φ(xk − xk−1)dxk, (4.162)

where we recall that m−1 = E[τ ] and φ =
∑

n≥1 f
∗n. We can rewrite the integral in

(4.159) using the factorial densities to obtain

ĜR[z] = 1+
∞∑
k=1

m

k!

∫ ∞

0

∫ ∞

x1

· · ·
∫ ∞

xk−1

[z(x1)− 1] · · ·

· · · [z(xk)− 1]dx1φ(x2 − x1) · · ·φ(xk − sk−1)dxk. (4.163)

Consider now a RHP in which we have replaced the center process NR for its stationary
version N̂R. We denote this process by

N̂(·) :=
∫ ∞

0

Nc(· | t)N̂R(dt) =
∑

t0∈N̂R(·)

∑
n≥0

N (n)
c (· | t0), (4.164)

whose p.g.fl. Ĝ[z] = ĜR[Gc[z | ·]] is given as

Ĝ[z] = 1+
∞∑
k=1

m

k!

∫ ∞

0

∫ ∞

t1

· · ·
∫ ∞

tk−1

(Gc[z | t1]− 1) · · ·

· · · (Gc[z | tk]− 1)dt1φ(t2 − t1) · · ·φ(tk − tk−1)dtk. (4.165)

Since an RHP with p.g.fl. given by (4.165) has a stationary center process and its satellite

processes satisfy Nc(· | t0)
d
= Nc(·−t0 | 0) for t0 ≥ 0, from Vere-Jones [37] we can conclude

that the process is stationary and we call it the stationary renewal Hawkes process.
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Example 4.14. In particular, consider the renewal process N̂R(·) to be an homogeneous
Poisson process of constant intensity µ > 0. In this case, the renewal density is constant
φ(t) = µ for all t ≥ 0, and m = µ. We have

Ĝ[z] =1 +
∞∑
k=1

µk

k!

∫ ∞

0

· · ·
∫ ∞

0

(Gc[z | s1]− 1) · · · (Gc[z | sk]− 1)ds1 · · · dsk (4.166)

=1 +
∞∑
k=1

µk

k!

(∫ ∞

0

(Gc[z | s]− 1)ds

)k

(4.167)

=
∞∑
k=0

1

k!

(∫ ∞

0

µ(Gc[z | s]− 1)ds

)k

(4.168)

= exp

{∫ ∞

0

µ(Gc[z | s]− 1)ds

}
. (4.169)

Now observe that the p.g.fl. for the satellite processes satisfies

Gc[z | t] = Gc[zt | 0] = Gc[z(t+ ·) | 0], (4.170)

so we get

Ĝ[z] = exp

{∫ ∞

0

µ(Gc[z(s+ ·) | 0]− 1) ds

}
, (4.171)

which is the p.g.fl. obtained by Hawkes–Oakes in [16] for the classical Hawkes process.

Finally, let us come back to the general case. We can relate the RHP with the stationary
RHP in the limit through the following result.

Theorem 4.15. Let N be an RHP and N̂ be the stationary version (4.164). Then, under
assumptions (A0) and (B0),

N(·+ t)
d−→

t→∞
N̂(·), (4.172)

where N ♯
R is equipped with the topology of vague convergence.

The proof of this Theorem follows from the convergence of the renewal process to its
stationary version (see for example [1, Sec. VI. Example 2a]),

NR(·+ t)
d−→

t→∞
N̂R(·). (4.173)

Heuristically, we could say that

N(·+ t) =

∫
R
Nc(·+ t | y)NR(dy) (4.174)

d
=

∫
R
Nc(· | y − t)NR(dy) (4.175)

=

∫
R
Nc(· | y)NR(dy + t) (4.176)

d−→
t→∞

∫
R
Nc(· | y)N̂R(dy). (4.177)
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This result can be formalized by the convergence of the p.g.fl. Let Ξc denote the class
of continuous functions z : R → (0, 1] such that 1 − z vanishes outside a bounded set.

Then, to prove (4.172) it is enough to show convergence of the p.g.fl. of N to that of N̂
for z ∈ Ξc (c.f. [11, Proposition 11.1.VIII]), which we do as follows.

Proof. Let G[z], Ĝ[z] be the p.g.fls. of N , N̂ respectively, and GR[z], ĜR[z], the p.g.fls.

for NR and N̂R respectively. Notice that the p.g.fl. of N(· + t) is given by G[z(· − t)],
then for z ∈ Ξc,

G[z(· − t)] =GR[Gc[z−t | · ]] (4.178)

=GR[Gc[z | · − t]] . (4.179)

Note as well that z ∈ Ξc implies

z̃(·) := Gc[z | ·] ∈ Ξc, (4.180)

since for t0 ≥ 0 and z ∈ Ξ,

lim
t→t0

Gc[z | t] = lim
t→t0

E
[
exp

∫ ∞

0

log z(s)Nc(ds | t)
]

(4.181)

= lim
t→t0

E
[
exp

∫ ∞

0

log z(s+ t)Nc(ds | 0)
]
, (4.182)

and the integrals are nonpositive, so the exponential functions inside the expectation are
dominated by the constant 1. Applying the Dominated Convergence Theorem once and
using the continuity of the exponential function yields

lim
t→t0

Gc[z | t] =E
[
exp

{
lim
t→t0

∫ ∞

0

log z(s+ t)Nc(ds | 0)
}]

, (4.183)

and Nc([0,∞) | 0) is a.s. finite, thus applying the Dominated Convergence Theorem once
more and using the continuity of the logarithm and z, yields

lim
t→t0

Gc[z | t] =E
[
exp

∫ ∞

0

log z(s+ t0)Nc(ds | 0)
]
, (4.184)

=E
[
exp

∫ ∞

0

log z(s)Nc(ds | t0)
]

(4.185)

=Gc[z | t0]. (4.186)

And from (4.173) we have

GR[z̃(· − t)] −→
t→∞

ĜR[z̃] for z̃ ∈ Ξc. (4.187)

In summary

G[z(· − t)] −→
t→∞

Ĝ[z] for all z ∈ Ξc, (4.188)

which proves (4.172).
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This last result implies that the p.g.fl. for the stationary RHP can be used as an
approximation to the p.g.fl. of the general RHP as t→ ∞.

As we have seen throughout this section, many properties of the RHP depend on the
properties of the corresponding renewal process. It is of particular interest for us the
asymptotic behavior of the RHP. Because of this, the next Section is dedicated to finding
necessary asymptotic results for renewal processes.

5 Decay rates for renewal processes

Since there is an imbedded renewal process in an RHP, as was shown in Section 4, it is
only natural that some of the results on the asymptotic behavior of renewal processes
will be of aid for establishing limit theorems for the RHP. The purpose of this section is
twofold. First, we want to establish power law decay rates for the Key Renewal Theorem
under the assumption of existence of moments. In particular, we are interested in the case
of a spread out inter-arrival distribution. We obtain these results by means of a coupling
argument as was done in the proof of the following Theorem (see for example [1, Theorem
VII.2.10]).

Theorem 5.1 (Lund–Meyn–Tweedie [27]). Assume that the distribution F is spread out
with finite mean m−1 :=

∫∞
0
xF (dx) < ∞ and that for some η > 0,

∫∞
0
eηxF (dx) < ∞.

Take 0 < ϵ < η. If the function z in (2.87) is measurable with z(x) = O(e−δx) as x→ ∞
for some δ > ϵ, then

Φ ∗ z(x) = m

∫ ∞

0

z(y)dy +O(e−ϵx) as x→ ∞. (5.1)

Secondly, we want to study the convergence in distribution of the recurrence times and
compensator of a renewal process as elements of the càdlàg space D([0, 1]). We do so by
noting that these processes evolve in cycles between renewals and satisfy the regenerative
property of Section 2.4.

We proceed then to state our results. The following Theorem improves the error term
in Theorem 5.1.

Theorem 5.2. Suppose that F satisfies (C0) and E[τ s1 ] =
∫∞
0
xs F (dx) < ∞ for s ≥ 2.

Let z : [0,∞) → [0,∞) be a measurable function that is integrable, bounded, and z(x) =
O(x−r) as x→ ∞ for r > 1. Then, for q = s− 1,

Φ ∗ z(x) = m

∫ ∞

0

z(y)dy +O
(
xmax{1−r,−q}) as x→ ∞. (5.2)

Moreover, if z(x) = o(x−r) as x → ∞, then (5.2) holds with o
(
xmax{1−r,−q}) instead of

O
(
xmax{1−r,−q}).
The next result establishes the speed of convergence in distribution for the compensator

of the renewal process.
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Theorem 5.3. Let N be a zero-delayed renewal process satisfying (B0). For any p > 0,
the convergence in distribution(

1

T p

[
Λ(Tv)− Λ(SN(Tv)−1)

])
v∈[0,1]

d−→
T→∞

0 (5.3)

holds in the Skorokhod topology.

Finally, we have the following Theorem that establishes the speed of convergence for
the recurrence times.

Theorem 5.4. Let N be a renewal process satisfying E[τ s1 ] =
∫∞
0
xs F (dx) < ∞ for

s ≥ 1. Then, the convergence in distribution(
1

T 1/s
(ATv, BTv)

)
v∈[0,1]

d−→
T→∞

(0, 0) (5.4)

holds in the Skorokhod topology.

5.1 Coupling for renewal processes

Throughout this section, we will suppose that (C0) holds and we will review some known
consequences of this assumption. Given a finite signed measure µ on the measurable space
(Ω,F), denote by ∥µ∥t.v. the total variation norm

∥µ∥t.v. := sup
B1,B2∈F

(µ(B1)− µ(B2)) . (5.5)

Note that for measures, the total variation reduces to ∥µ∥t.v. = µ(Ω).

Consider two stochastic processes {X ′
t}t≥0, {X ′′

t }t≥0, with the same state space and
defined a priori on different probability spaces. By a coupling of X ′, X ′′, we mean a

pair
(
X̃ ′, X̃ ′′

)
and an associated random time T (coupling time), defined on a common

probability space with

X̃ ′ d
= X ′, X̃ ′′ d

= X ′′, (5.6)

and such that

X̃ ′
t = X̃ ′′

t , for all t ≥ T . (5.7)

We want to make use of the coupling inequality. Let {X ′
t}t≥0, {X ′′

t }t≥0 be stochastic
processes and T ≤ ∞ be a random time defined on a common probability space such that
X ′

t = X ′′
t for all t ≥ T . Then,

∥P(θtX ′ ∈ ·)− P(θtX ′′ ∈ ·)∥t.v. ≤ 2P(T > t) , (5.8)
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where θt stands for the shift operator given for any t ≥ 0 as

{θtX}s = Xt+s, (5.9)

for any stochastic process X.

For two arbitrary probability distributions λ and µ, we define a measure λ ∧ µ as

λ ∧ µ(·) :=
∫
·
(f ∧ g)d(λ+ µ), (5.10)

where f and g are the densities of µ and ν with respect to µ + ν given by the Radon–
Nikodym derivatives

f =
dλ

d(λ+ µ)
, g =

dµ

d(λ+ µ)
. (5.11)

Then we have

λ ∧ µ(·) =
∫
·
(f̃ ∧ g̃)dν, (5.12)

if λ(·) =
∫
· f̃dν and µ(·) =

∫
· g̃dν for an arbitrary dominating measure ν. Notice that∫

(f̃ − g̃)dν = 1− 1 = 0, (5.13)

implies ∫
{f̃>g̃}

(f̃ − g̃)dν = −
∫
{f̃≤g̃}

(f̃ − g̃)dν. (5.14)

As a consequence,

∥λ− µ∥t.v. =
∫ ∣∣∣f̃ − g̃

∣∣∣ dν (5.15)

=

∫
{f̃>g̃}

(f̃ − g̃)dν −
∫
{f̃≤g̃}

(f̃ − g̃)dν (5.16)

=2

∫
{f̃>g̃}

(f̃ − g̃)dν (5.17)

=2

∫
(f̃ − f̃ ∧ g̃)dν (5.18)

=2(1− ∥λ ∧ µ∥t.v.) . (5.19)

The following Lemma is sometimes referred to as maximal coupling.

Lemma 5.5. Given two probability distributions F , G on a measurable space (X ,B(X )),
there exist random variables X, Y defined on a common probability space (Ω,F ,P) such
that X has distribution F , Y has distribution G, and

∥F −G∥t.v. = 2P(X ̸= Y ). (5.20)
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Proof. Write δ := ∥F ∧G∥t.v. and H = δ−1(F ∧G) and define the distributions

F ′ =
F − δH

1− δ
, G′ =

G− δH

1− δ
. (5.21)

It is clear that

F = δH + (1− δ)F ′, G = δH + (1− δ)G′. (5.22)

Now we take independent random variables ξ, X ′, Y ′ and Z defined on a common proba-
bility space (Ω,F ,P) and such that X ′ has distribution F ′, Y ′ has distribution G′, Z has
distribution H, and ξ ∼ Bernoulli(δ). Define

X := ξZ + (1− ξ)X ′, and Y := ξZ + (1− ξ)Y ′, (5.23)

and notice that X has distribution F , Y has distribution G, and

P(X ̸= Y ) = P(ξ = 0) = 1− δ =
1

2
∥F −G∥t.v. , (5.24)

by (5.19).

5.2 Construction of the coupling

We follow the construction of the coupling presented in [36]. First, we have the following
Lemma for the forward recurrence time Bt that has been introduced in Definition 2.16.

Lemma 5.6. For a zero-delayed spread out renewal process, there exist positive constants
b and d such that the distributions of the Bt with t ≥ d have a common uniform component
on (0, b). That is, for some δ ∈ (0, 1) and all t ≥ d,

P(u < Bt ≤ b) ≥ δ
v − u

b
, 0 < u < v < b. (5.25)

We give a more detailed version of the proof found in [1, Lemma VII.2.8].

Proof. From Lemma 2.21 we have that for some n0 ≥ 1, F ∗n0 has a uniform component on
an interval, so there exist constants 0 < p < q and η > 0 s.t. F ∗n0(v)−F ∗n0(u) ≥ η(v − u)
for 0 < p < u < v < q. Let

b =
(q − p)

2
, a =

(p+ q)

2
. (5.26)

When p < z < a, 0 < u < v < b, we have (u+ z, v + z) ⊂ (p, q), and hence from Lemma
2.24 we have

P(u < Bt ≤ b) =

∫ t

0

F ((t+ u− s, t+ b− s]) Φ(ds). (5.27)
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Note that

Φ(ds) =
∑
n≥0

F ∗n(ds) ≥
∑

n≥n0−1

F ∗n(ds) = F ∗(n0−1) ∗ Φ(ds), (5.28)

from which we can say that

P(u < Bt ≤ b) (5.29)

=

∫ ∞

0

1[0,t](s1)F ((t+ u− s1, t+ b− s1]) Φ(ds1) (5.30)

=

∫ ∞

0

∫ ∞

0

1(t+u,t+b](s1 + s2)1[0,t](s1)F (ds2)Φ(ds1) (5.31)

≥
∫ ∞

0

∫ ∞

0

1(t+u,t+v](s1 + s2)1[0,t](s1)F (ds2)(F
∗(n0−1) ∗ Φ)(ds1) (5.32)

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

1(t+u,t+v](s2 + s3 + s4)1[0,t](s3 + s4)F (ds2)F
∗(n0−1)(ds3)Φ(ds4). (5.33)

It is easy to see that

1(t+u,t+v](s2 + s3 + s4)1(t−p,t−a](s4) (5.34)

≥1(t+u,t+v](s2 + s3 + s4)1[0,t−a](s4)1[0,v+p](s3), (5.35)

≥1(t+u,t+v](s2 + s3 + s4)1[0,t](s3 + s4), (5.36)

hence∫ ∞

0

∫ ∞

0

∫ ∞

0

1(t+u,t+v](s2 + s3 + s4)1[0,t](s3 + s4)F (ds2)F
∗(n0−1)(ds3)Φ(ds4) (5.37)

≥
∫ ∞

0

∫ ∞

0

∫ ∞

0

1(t+u,t+v](s2 + s3 + s4)1(t−p,t−a](s4)F (ds2)F
∗(n0−1)(ds3)Φ(ds4) (5.38)

=

∫ ∞

0

∫ ∞

0

1(t+u,t+v](s4 + s5)1(t−p,t−a](s4)F
∗n0(ds5)Φ(ds4) (5.39)

=

∫ t−a

t−p

F ∗n0((t+ u− s4, t+ v − s4])Φ(ds4). (5.40)

Using (5.27) and (5.40), we obtain the inequality

P(u < Bt ≤ b) ≥
∫ t−a

t−p

F ∗n0((t+ u− s, t+ v − s])Φ(ds) (5.41)

≥
∫ a

p

F ∗n0((u+ z, v + z]) Φ(t− dz) (5.42)

≥
∫ a

p

η(v + z − u− z) Φ(t− dz) (5.43)

=η(v − u)[Φ(t− a)− Φ(t− p)] . (5.44)

Using Blackwell’s renewal theorem, we have

Φ(t− a)− Φ(t− p) −→
t→∞

m(a− p) = mb. (5.45)
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So, for 0 < δ < min{1,mηb2}, there exists d > 0 such that for all t ≥ d,

Φ(t− a)− Φ(t− p) ≥ δ

bη
, (5.46)

thus, for all t ≥ d,

P(u < Bt ≤ b) ≥ δ
v − u

b
. (5.47)

The proof is complete.

We proceed with the construction of the coupling for the forward recurrence time of
the renewal process.

Lemma 5.7 (Chapter 10, Theorem 6.2 from [36]). Let {Sn}n≥0 be a zero-delayed renewal

process satisfying (C0), and B = {Bt}t≥0 its forward recurrence time. Let {Ŝn}n≥0 be

the stationary version of the renewal process whose forward recurrence time B̂ = {B̂t}t≥0

has stationary distribution Π. Then, the underlying probability space can be extended to
support a coupling (S ′, Ŝ ′) of S and Ŝ, and a geometric random variable σ such that the
coupling event occurs in a σ number of trials.

Proof. Let the positive constants b, d and δ be as in Lemma 5.6 so that for all t ≥ d, the
distribution of Bt has a common component δU where U has uniform distribution µ on
(0, b). Define a Markov process (ηk, η̂k)k≥0 in [0,∞)× [0,∞) in the following way:

(η0, η̂0) := (S0, Ŝ0), and (ηk, η̂k) := (SNLk− , ŜN̂Lk−
), k ≥ 1, (5.48)

where

Lk := ηk ∨ η̂k + d. (5.49)

Then, since B is a time-homogeneous strong Markov process, we can see that conditionally
on (ηk, η̂k) = (s, ŝ) the random variables

βk+1 := ηk+1 − Lk, β̂k+1 := η̂k+1 − Lk, k ≥ 0, (5.50)

satisfy

P(βk+1 ∈ A, β̂k+1 ∈ Â | (ηk, η̂k) = (s, ŝ)) = P(B((ŝ−s)++d)− ∈ A)P(B((s−ŝ)++d)− ∈ Â).
(5.51)

Thus, from Lemma 5.6,

P((βk+1, β̂k+1) ∈ · | (ηk, η̂k)) ≥ δ2µ⊗ µ, k ≥ 0. (5.52)

Using [36, Chapter 3, Corollary 5.1], we can extend the underlying probability space to
support 0-1 random variables I0, I1, . . . such that for k ≥ 0,

(S, Ŝ, I0, I1, . . . , Ik−1) ⊥⊥ Ik, given ((ηk, η̂k), (ηk+1, η̂k+1)), (5.53)
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and

P(Ik = 1 | ηk, η̂k) = δ2, (5.54)

P((βk+1, β̂k+1) ∈ · | (ηk, η̂k) = (s, ŝ), Ik = 1) = µ⊗ µ. (5.55)

Fix an m ≥ 1. Because of (5.53) and the fact that ((ηi, η̂i), (ηi+1, η̂i+1)) is a measurable
mapping of (ηk, η̂k)

m
k=0, we have that for 0 ≤ i < m

(S, Ŝ, I0, I1, . . . , Ii−1) ⊥⊥ Ii given (ηk, η̂k)
m
k=0. (5.56)

In particular, for the m-tail of the Markov sequence it holds that

(ηm+k, η̂m+k)k≥1 ⊥⊥ Ii given ((ηk, η̂k)
m
k=0, I0, . . . , Ii−1) , (5.57)

thus,

(ηm+k, η̂m+k)k≥1 ⊥⊥Im−1 given ((ηk, η̂k)
m
k=0, I0, . . . , Im−2) , (5.58)

(ηm+k, η̂m+k)k≥1 ⊥⊥Im−2 given ((ηk, η̂k)
m
k=0, I0, . . . , Im−3) , (5.59)

... (5.60)

(ηm+k, η̂m+k)k≥1 ⊥⊥I0 given (ηk, η̂k)
m
k=0, (5.61)

which combined with the Markov property of (ηk, η̂k)k≥1 we can use to deduce that

(ηm+k, η̂m+k)k≥1 ⊥⊥((ηk, η̂k)
m
k=0, I0, . . . , Im−1) given (ηm, η̂m). (5.62)

Using (5.53) on Im we obtain that

((ηk, η̂k)
m
k=0, I0, . . . , Im−1) ⊥⊥ Im given ((ηm, η̂m), (ηm+k, η̂m+k)k≥1) , (5.63)

which in addition to (5.62) gives

((ηk, η̂k)
m
k=0, I0, . . . , Im−1) ⊥⊥(Im, (ηm+k, η̂m+k)k≥1) given (ηm, η̂m). (5.64)

Once again, by using (5.53) repeatedly we note that for each n ≥ 1

(ηk, η̂k, Ik)
m
k=0 ⊥⊥Im+n given ((ηm+k, η̂m+k)k≥1, Im+1, . . . , Im+n−1) , (5.65)

(ηk, η̂k, Ik)
m
k=0 ⊥⊥Im+n−1 given ((ηm+k, η̂m+k)k≥1, Im+1, . . . , Im+n−2) , (5.66)

... (5.67)

(ηk, η̂k, Ik)
m
k=0 ⊥⊥Im+1 given (ηm+k, η̂m+k)k≥1. (5.68)

We note from (5.64) that

(ηk, η̂k, Ik)
m
k=0 ⊥⊥ (ηm+k, η̂m+k)k≥1 given (ηm, η̂m, Im). (5.69)

We can then conclude that

(ηk, η̂k, Ik)
m
k=0 ⊥⊥ (ηm+k, η̂m+k, Im+k)k≥1 given (ηm, η̂m, Im), (5.70)
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hence, (ηk, η̂k, Ik)k≥0 is a Markov process. Furthermore, from (5.54) and (5.64) we know
that the random variables I1, I2, . . . , are i.i.d. and P(I1 = 1) = δ2. Thus,

σ := inf{k ≥ 0 : Ik = 1} , (5.71)

is geometrically distributed with P(σ = m) = (1− δ2)mδ2. Now, recall that η0 = 0 (which
implies η0 ∨ η̂0 = η̂0) and define

T := Lσ + U = Tσ, (5.72)

where for n ≥ 0,

Tn := η̂0 + d+
n∑

i=1

(βi ∨ β̂i + d) + U. (5.73)

Let us define as well

K := NLσ−, K̂ := N̂Lσ−. (5.74)

Since σ is a stopping time with respect to the Markov process (ηk, η̂k, Ik)k≥0, we obtain

P
(
(βσ+1, β̂σ+1) ∈ · | (ησ, η̂σ) = (s, ŝ)

)
(5.75)

=P
(
(β1, β̂1) ∈ · | (η0, η̂0) = (s, ŝ), I0 = 1

)
= µ⊗ µ. (5.76)

In other words, βσ+1 and β̂σ+1 are i.i.d. with distribution µ and (βσ+1, β̂σ+1) is independent
of (ησ, η̂σ) and thus of Lσ. From which we get that

SK = ησ+1 = Lσ + βσ+1
d
= Lσ + β̂σ+1 = η̂σ+1 = ŜK . (5.77)

And due to Lσ + βσ+1
d
= Lσ + U , the processes S and Ŝ have a common renewal at T .

Taking S ′ = S and Ŝ ′ with the same renewals as Ŝ before T and with the same renewals
as S after T gives the desired coupling.

Remark. Due to (5.54) and the fact that (ηk, η̂k, Ik)k≥0 is a Markov process, we have
for i ∈ {0, 1} and k ≥ 1 that

P((η0, η̂0) ∈ ·, I0 = i)) = P(I0 = i)P((η0, η̂0) ∈ ·) , (5.78)

and

P((ηk, η̂k) ∈ ·, Ik = i | (ηk−1, η̂k−1) = (s, ŝ), Ik = 0) (5.79)

=P(Ik = i)P((ηk, η̂k) ∈ · | (ηk−1, η̂k−1) = (s, ŝ)) . (5.80)

Since the event

{σ = m} ={I0 = 0, I1 = 0, . . . , Im−1 = 0, Im = 1} , (5.81)

56



we have that for any Borel sets D0, D1, . . . , Dm−1,

P((η0, η̂0) ∈ D0, . . . , (ηm−1, η̂m−1) ∈ Dm−1, σ = m) (5.82)

=

∫
D0

· · ·
∫
Dm−1

P((ηm−1, η̂m−1) ∈ dum−1, Im−1 = 0 | (ηm−2, η̂m−2) = um−2, Im−2 = 0) · · ·

(5.83)

· · ·P((η1, η̂1) ∈ du1, I1 = 0 | (η0, η̂0) = u0, I0 = 0)P((η0, η̂0) ∈ du0, I0 = 0) (5.84)

=P(Im = 1)P(Im−1 = 0) · · ·P(I0 = 0)P((η0, η̂0) ∈ D0, . . . , (ηm−1, η̂m−1) ∈ Dm−1) ,
(5.85)

hence,

P((η0, η̂0) ∈ ·, . . . , (ηm−1, η̂m−1) ∈ ·, σ = m) (5.86)

=P(σ = m)P((η0, η̂0) ∈ ·, . . . , (ηm−1, η̂m−1) ∈ ·) . (5.87)

5.3 Decay rates for the Key Renewal Theorem

We work in the same context as the previous section. For the coupling time T constructed
in Lemma 5.7 we have the following result that we prove along the lines of [26].

Lemma 5.8. Assume E[τ s1 ] <∞ for s ≥ 2. Then, E[T q] <∞ for q = s− 1.

Proof. Let us find some estimates for E[Bq
t ]. Consider first

E[Bt] =E
[
SN(t)

]
− t (5.88)

=m−1E[N(t)]− t (5.89)

=m−1Φ(t)− t. (5.90)

Since Φ(t)/t −→
t→∞

m, for any ϵ0 > 0 we can find a t0 > 0 such that

Φ(t) <(ϵ0 +m)t, for all t ≥ t0, (5.91)

Φ(t) ≤Φ(t0) + (ϵ0 +m)t, for all t ≥ 0. (5.92)

Hence, for any arbitrary ρ > 0, there exists a constant aρ such that

E[Bt] ≤ aρ + ρt, for all t ≥ 0. (5.93)

For E[Bq
t ], we can use Lemma 2.24 to find

E[Bq
t ] =

∫ t

0

∫ ∞

0

xqF (t− u+ dx) Φ(du) (5.94)

≤
∫ t

0

∫ ∞

t−u

xqF (dx) Φ(du) (5.95)

≤
(∫ ∞

0

xqF (dx)

)
Φ(t), (5.96)
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where
∫∞
0
xqF (dx) < ∞. Then, using (5.92) with ϵ0 = 1, we find positive constants a1

and b1 independent of k such that

E[Bq
t ] ≤ a1 + b1t, t ≥ 0 (5.97)

and by Fatou’s Lemma also

E[Bq
t−] ≤ lim inf

n→∞
E
[
Bq

t−1/n

]
≤ a1 + b1t, t ≥ 0. (5.98)

Since there exist constants a2 and b2 such that (d + x)q ≤ a2 + b2x
q, for all x ≥ 0, we

have

E
[
(d+ βk ∨ β̂k)q

]
≤ a0 + b0E

[
(βk ∨ β̂k)q

]
. (5.99)

From (5.51) we have

E
[(
βk ∨ β̂k

)q ∣∣∣∣(ηk−1, η̂k−1) = (y, ŷ)

]
(5.100)

≤E
[
βq
k + β̂q

k

∣∣∣∣(ηk−1, η̂k−1) = (y, ŷ)

]
(5.101)

=E
[
Bq

((ŷ−y)++d)−

]
+ E

[
Bq

((y−ŷ)++d)−

]
. (5.102)

Then, from (5.98), we obtain

E
[
(βk ∨ β̂k)q | ηk−1, η̂k−1

]
≤2a1 + 2b1d+ b1 |ηk−1 − η̂k−1| (5.103)

=2a1 + 2b1d+ b1

∣∣∣βk−1 − β̂k−1

∣∣∣ (5.104)

≤2a1 + 2b1d+ b1(βk−1 ∨ β̂k−1). (5.105)

We define a3 := 2(a1 + b1d) and b3 := b1 to write

E
[
(βk ∨ β̂k)q | ηk−1, η̂k−1

]
≤ a3 + b3(βk−1 ∨ β̂k−1). (5.106)

Now we shift our attention to E
[
βk ∨ β̂k

]
for k ≥ 1. We follow the same steps as in

(5.102) (but with q = 1), and use (5.93) with ρ = 1/2 to find a constant aρ such that

E
[
βk ∨ β̂k | ηk−1, η̂k−1

]
≤ 2aρ + d+

1

2

(
βk−1 ∨ β̂k−1

)
. (5.107)

By taking conditional expectation given (ηk−2, η̂k−2), (ηk−3, η̂k−3), . . . , recursively and us-
ing (5.93) with ρ = 1/2 we ultimately obtain

E
[
βk ∨ β̂k | η0, η̂0

]
≤ aρ(2 + 1 + · · ·+ 22−k) + d(1 + 2−1 + · · ·+ 21−k) + 2−k(η0 ∨ η̂0) ,

(5.108)
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which can be simplified by recalling that η0 = 0 and by noting that for any k ≥ 1:
2 + 1 + · · ·+ 22−k < 4, 1 + 2−1 + · · ·+ 21−k < 2, and 2−k < 1. In summary,

E
[
βk ∨ β̂k | η0, η̂0

]
≤ 4aρ + 2d+ η̂0 = a4 + η̂0, (5.109)

where a4 := 4aρ + 2d. Now note that since η̂0 is taken from the stationary distribution Π
and 0 < q ≤ s− 1, then

E[η̂q0] =
∫ ∞

0

xqmF (x)dx (5.110)

=
m

q + 1

∫ ∞

0

yq+1F (dy) <∞. (5.111)

There are two notable cases. Let us focus first on the case q = s− 1 ≥ 1. In this case
c0 := E[(d+ η̂0)

q] < ∞. We take the expectation on both sides of (5.109) and (5.99),
which together with (5.106) yields

E
[
(d+ βk ∨ β̂k)q

]
≤a2 + b2

(
a3 + b3E

[
(βk ∨ β̂k)q

])
(5.112)

≤a2 + b2{a3 + b3(a4 + c0)} . (5.113)

We take aq := a2 + b2{a3 + b3(a4 + c0)}. Because q ≥ 1, we can apply Minkowski’s
inequality to obtain that

E[T q
n ]

1/q ≤E[(d+ η̂0)
q]1/q +

n∑
k=1

E
[(
d+ βk ∨ β̂k

)q]1/q
+ (bq)1/q (5.114)

≤c1/q0 + na1/qq + b. (5.115)

Since {σ = m} is independent from Tn by (5.87) and (5.73), and since σ has geometric
distribution, we have

E[T q] =E[T q
σ ] (5.116)

=
∞∑
n=0

E[T q
n ]P(σ = n) (5.117)

≤
∞∑
n=0

(c
1/q
0 + na1/qq + b)qδ2(1− δ2)n <∞, (5.118)

because (1− δ2)n vanishes exponentially.

For the case where q = s − 1 < 1 we use the subadditivity of the function x 7→ xq,
x ≥ 0, to get

E[T q] =E

[(
n∑

k=0

(d+ βk ∨ β̂k) + U

)q

;σ = n

]
(5.119)

≤E[(d+ η̂0)
q] +

∞∑
k=1

E
[
(d+ βk ∨ β̂k)q1{σ≥k}

]
+ bq (5.120)

≤c0 +
∞∑
k=1

E
[
E
[
(d+ βk ∨ β̂k)q1{σ≥k} | η0, η̂0

]]
+ bq. (5.121)
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Since 0 < q < 1, we can apply Hölder’s inequality with p > 1 such that q + 1
p
= 1 to

obtain

E
[
E
[
(d+ βk ∨ β̂k)q1{σ≥k} | η0, η̂0

]]
≤E
[
E
[
(d+ βk ∨ β̂k) | η0, η̂0

]q
E
[
1{σ≥k} | η0, η̂0

]1/p]
(5.122)

≤E
[
dq + E

[
βk ∨ β̂k | η0, η̂0

]q]
P(σ ≥ k)1/p . (5.123)

From (5.109) we know that

E
[
βk ∨ β̂k | η0, η̂0

]q
≤ aq4 + η̂q0, (5.124)

hence,

E
[
E
[
(d+ βk ∨ β̂k)q1{σ≥k} | η0, η̂0

]]
≤(dq + aq4 + E[η̂q0])P(σ ≥ k)1/p (5.125)

=cqP(σ ≥ k)1/p , (5.126)

where cq := dq + aq4 + E[η̂q0] < ∞. The random variable σ is geometrically distributed so
P(σ ≥ k) = (1− δ2)k. From the above, we have that

E[T q] ≤c0 + bq +
∞∑
k=1

cq(1− δ2)k/p <∞, (5.127)

since (1− δ2)k/p decreases exponentially in k. This ultimately means that E[T q] <∞ for
0 < q ≤ s− 1, which concludes the proof.

Before proceeding, let us make the following observation. Let h : [0,∞) → [0,∞) be
a non-decreasing function with limt→∞ h(t) = ∞ and suppose that E[h(T )] < ∞ for the
coupling time T , then, by the Dominated Convergence Theorem,

h(t)P(T > t) ≤E
[
h(T )1{T >t}

]
−→
t→∞

0 (5.128)

which means that

P(T > t) = o

(
1

h(t)

)
as t→ ∞. (5.129)

We use the previous remark to prove the following Lemma.

Lemma 5.9. Let {Sn}n≥0 be a zero-delayed renewal process that satisfies E[τ s1 ] < ∞ for
s ≥ 2. Then, for q = s− 1,

∥P(Bt ∈ ·)− Π(·)∥t.v. = o
(
t−q
)
as t→ ∞, (5.130)

where Π is the stationary distribution given in (2.83), and

Φ2([x,∞)) = o
(
x−q
)
as x→ ∞, φ1(x) = m+ o

(
x−q
)
as x→ ∞. (5.131)
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Proof. Let q = s − 1. Notice that the function h : [0,∞) → [0,∞) given by h(t) = tq is
non-decreasing and E[T q] <∞, by Lemma 5.8. By definition of Π and T we have

∥P(Bt ∈ ·)− Π(·)∥t.v. =
∥∥∥P(Bt ∈ ·)− P(B̂t ∈ ·)

∥∥∥
t.v.

≤ 2P(T > t) , (5.132)

and thus, from (5.129),

lim
t→∞

tq ∥P(Bt ∈ ·)− Π(·)∥t.v. ≤ lim
t→∞

2tqP(T > t) = 0, (5.133)

which implies

∥P(Bt ∈ ·)− Π(·)∥t.v. = o
(
t−q
)

as t→ ∞. (5.134)

Now consider Stone’s decomposition Φ = Φ1 +Φ2 obtained from the uniform component

G0 with density g0(x) =
∥G0∥t.v.

b
1{a≤x<a+b}, x ≥ 0. Since H = F ∗n0 − G0 < F , from the

finiteness of E[τ s1 ], we get that ∫ ∞

0

xsH(dx) <∞, (5.135)

and hence, ∫ ∞

0

xsΦ2(dx) <∞, (5.136)

and

lim sup
x→∞

xq
∫
[x,∞)

Φ2(dt) ≤ lim
x→∞

∫
[x,∞)

tqΦ2(dt) = 0, (5.137)

from which we get that

Φ2([x,∞)) = o
(
x−q
)
as x→ ∞. (5.138)

From [1, Sec. V. Theorem 2.4 (iii)] we have that for a general renewal process

Φ((x− a− b, x− a]) (5.139)

=E
[
N(x−a−b)+b −Nx−a−b

]
(5.140)

=

∫ b

0

Φ(b− ξ)P(Bx−a−b ∈ dξ) (5.141)

=

∫ b

0

Φ(b− ξ)Π(dξ) +

∫ b

0

Φ(b− ξ)[P(Bx−a−b ∈ dξ)− Π(dξ)] . (5.142)

Since ∣∣∣∣∫ b

0

Φ(b− ξ)[P(Bx−a−b ∈ dξ)− Π(dξ)]

∣∣∣∣ ≤ Φ(b) ∥P(Bt ∈ ·)− Π(·)∥t.v. , (5.143)
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we can use (5.134) and Lemma 2.17 to obtain,∫ b

0

Φ(b− ξ)Π(dξ) +

∫ b

0

Φ(b− ξ)[P(Bx−a−b ∈ dξ)− Π(dξ)] (5.144)

=mb+ o
(
(x− a− b)−q) (5.145)

=mb+ o
(
x−q
)
. (5.146)

In other words, Φ((x− a− b, x− a]) = mb + o(x−q) as x → ∞. From Stone’s decompo-
sition the density φ1 is given as

φ1(x) =

∫ x

0

Φ ∗ g0(x− y)Φ
(2)
0 (dy), (5.147)

where from the previous reasoning

Φ ∗ g0(x)−m ∥G0∥t.v. = o(x−q) (5.148)

Notice that ∣∣∣∣∣
∫ x/2

0

(Φ ∗ g0(x− y)−m ∥G0∥t.v.) Φ
(2)
0 (dy)

∣∣∣∣∣ (5.149)

≤ sup
y′≤x/2

|Φ ∗ g0(x− y′)−m ∥G0∥t.v.|
∥∥∥Φ(2)

0

∥∥∥
t.v.

= o(x−q), (5.150)

and ∣∣∣∣∫ x

x/2

(Φ ∗ g0(x− y)−m ∥G0∥t.v.) Φ
(2)
0 (dy)

∣∣∣∣ (5.151)

≤(∥Φ ∗ g0∥∞ +m ∥G0∥t.v.) Φ
(2)
0 ((x/2,∞)) = o(x−q), (5.152)

from which we conclude that

φ1(x) =m ∥G0∥t.v.
∥∥∥Φ(2)

0

∥∥∥
t.v.

+ o(x−q) (5.153)

=m+ o(x−q), (5.154)

by (2.117).

We proceed to the proof of Theorem 5.2.

Proof of Theorem 5.2. We prove the case where z(x) = o(x−r) as x → ∞ and the case
for z(x) = O(x−r) as x → ∞ follows similarly. Assume that 0 ≤ q ≤ s− 1. We compute
the convolution explicitly using Stone’s decomposition.

Φ ∗ z(x) =
∫ x

0

z(x− y)Φ2(dy) +

∫ x

0

z(x− y)φ1(y)dy. (5.155)
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The first integral can be split as∫ x

0

z(x− y)Φ2(dy) =

∫ x/2

0

z(x− y)Φ2(dy) +

∫ x

x/2

z(x− y)Φ2(dy), (5.156)

where ∣∣∣∣∣
∫ x/2

0

z(x− y)Φ2(dy)

∣∣∣∣∣ ≤ sup
y′≥x/2

|z(y′)| ∥Φ2∥t.v. = o(x−r) (5.157)∣∣∣∣∫ x

x/2

z(x− y)Φ2(dy)

∣∣∣∣ ≤ ∥z∥∞ Φ2((x/2,∞)) = o(x−q). (5.158)

The second integral can be written as∫ x

0

z(y)φ1(x− y)dy =

∫ x/2

0

z(y)φ1(x− y)dy +

∫ x

x/2

z(y)φ1(x− y)dy. (5.159)

From Lemma 5.9, we have φ̃1(x) := φ1(x)−m = o(x−q) as x→ ∞. This entails,∣∣∣∣∣
∫ x/2

0

z(y)φ̃1(x− y)dy

∣∣∣∣∣ ≤
∫ x/2

0

z(y) |φ̃1(x− y)| dy (5.160)

≤ sup
y′≥x/2

|φ̃1(y
′)|
∫ ∞

0

z(y)dy (5.161)

=o(x−q) (5.162)

On the other hand, ∣∣∣∣∫ x

x/2

z(y)φ̃1(x− y)dy

∣∣∣∣ ≤∫ x

x/2

z(y) |φ̃1(x− y)| dy (5.163)

≤∥φ̃1∥∞
∫ x

x/2

z(y)dy, (5.164)

Let ϵ > 0 be arbitrary. Since z(x) = o(x−r) as x → ∞, there exists x0 > 0 such that
xr |z(x)| < ϵ for all x > x0. Then, for all x > 2x0,∫ x

x/2

|z(y)| dy <ϵ
∫ x

x/2

y−rdy (5.165)

<ϵ
(x/2)1−r

r − 1
, (5.166)

from which we obtain that ∫ x

x/2

|z(y)| dy = o(x1−r). (5.167)
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This means that, ∫ x/2

0

z(y)φ1(x− y)dy = m

∫ x/2

0

z(y)dy + o(x−q), (5.168)∫ x

x/2

z(y)φ1(x− y)dy = m

∫ x

x/2

z(y)dy + o(x1−r). (5.169)

Ultimately, we get,

Φ ∗ z(x) =m
∫ ∞

0

z(y)dy + o(x−q) + o(x−r) + o(x1−r) + o(x−q) (5.170)

=m

∫ ∞

0

z(y)dy + o(xmax{1−r,−q}), (5.171)

which is the desired result.

5.4 Some Regenerative Processes

In this section we exhibit that the processes of interest satisfy the regenerative property.
Let us begin with the recurrence times. Since the renewals are stopping times for a renewal
process, from the strong Markov property it is obvious that the forward and backward
recurrence times from Definition 2.16 are regenerative. We can show as well that the
compensator of a zero-delayed renewal process that satisfies assumption (B0) can be
written in terms of a regenerative process. Let µ : [0,∞) → [0,∞) be the nonnegative
measurable function given by

µ(x) =
f(x)

1−
∫ x

0
f(y)dy

, x ≥ 0. (5.172)

From [7, Sec. II Theorem T7], we have that the process {M(t)}t≥0 given as

M(t) = N(t)−
∫ t

0

µ(u− SN(u))du, t ≥ 0, (5.173)

is an (FN
t )-martingale, with compensator Λ:

Λ(t) :=

∫ t

0

µ(u− SN(u))du, t ≥ 0. (5.174)

Notice that Λ can be rewritten as

Λ(t) =

N(t)−1∑
i=1

ξi +

∫ t

SN(t)−1

µ(u− SN(t)−1)du (5.175)

:=

N(t)−1∑
i=1

∫ Si

Si−1

µ(u− Si−1)du+

∫ t

SN(t)−1

µ(u− SN(t)−1)du, (5.176)
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where the random variables ξi are independent and identically distributed with

ξi
d
=

∫ τ1

0

µ(u)du i = 1, 2 . . . (5.177)

Observe that the process ∫ t

SN(t)−1

µ(u− SN(t)−1)du (5.178)

is regenerative. In effect, let n ≥ 0 be arbitrary, then from the strong Markov property
of the backward recurrence time At we have∫ t+Sn

SN(t+Sn)−1

µ(u− SN(t+Sn)−1)du =

∫ t+Sn−SN(t+Sn)−1

0

µ(v)dv (5.179)

=

∫ At+Sn

0

µ(v)dv (5.180)

d
=

∫ At

0

µ(v)dv (5.181)

and since this is a measurable function whose argument is the regenerative process At,
from [1, Proposition VI.1.1], we can conclude that this process is itself regenerative.

5.5 Convergence of processes

Now we can proceed with the proof of our Theorems 5.3 and 5.4. We work in the context
of regenerative processes introduced in the previous section.

Proof of Theorem 5.3. As we noted above, for all i = 1, 2, . . . ,

ξi :=

∫ Si

Si−1

µ(s− Si−1)ds
d
=

∫ τ1

0

µ(s)ds. (5.182)

We now look for the distribution of the latter. Let x > 0, we have

µ(x) =
f(x)

1− F (x)
= − d

dx
log(1− F (x)), (5.183)

or in other words,

exp

(
−
∫ x

0

µ(s)ds

)
= 1− F (x), (5.184)

which implies that

G(x) :=P
(∫ τ1

0

µ(s)ds ≤ x

)
(5.185)

=P
(
exp

(
−
∫ τ1

0

µ(s)ds

)
≥ e−x

)
(5.186)

=P
(
F (τ1) ≤ 1− e−x

)
= 1− e−x, (5.187)
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where in the last equality we used that if F (x) = P(τ1 ≤ x), then the random variable
F (τ1) ∼ Uniform[0, 1]. This means that∫ τ1

0

µ(s)ds ∼ exp(1). (5.188)

We have for any p > 0 that

sup
v∈[0,1]

1

T p

[
Λ(Tv)− Λ(SN(Tv)−1)

]
= sup

v∈[0,1]

1

T p

∫ Tv

SN(Tv)−1

µ(s− SN(Tv)−1)ds (5.189)

≤ 1

T p
max

k≤N(T )
ξk, (5.190)

and since G does not have finite support, from Theorem 2.28, we know that FT (x) :=

P
(

max
k≤N(T )

ξk ≤ x

)
can be uniformly approximated by G(x)mT , in the sense that

lim
T→∞

sup
x≥0

∣∣FT (x)−G(x)mT
∣∣ = 0, (5.191)

where G(x) = P
(∫ τ1

0
µ(s)ds ≤ x

)
= 1− e−x. If we take x = ϵT p for ϵ > 0, we have,

G(ϵT p)mT =
(
1− e−ϵT p)mT

=exp
{
mT log

(
1− e−ϵT p)}

(5.192)

= exp
{
mT
(
e−ϵT p

(1 + o(1))
)}

−→
T→∞

1, (5.193)

which proves that for any p > 0

lim
T→∞

P
(

1

T p
max

k≤N(T )
ξk ≤ ϵ

)
= 1 (5.194)

and hence, (
1

T p

∫ Tv

SN(Tv)−1

µ(s− SNR(Tv)−1)ds

)
v∈[0,1]

d−→
T→∞

0. (5.195)

The proof is complete.

We proceed similarly in the case of the recurrence times. As we will see, the dominating
process will be the maximum process of the inter-arrival times.

Proof of Theorem 5.4. Let p ≤ s. Notice that

sup
v∈[0,1]

1

T 1/p

(
Tv − SN(Tv)−1

)
≤ 1

T 1/p
max

k≤N(T )
τk, (5.196)

sup
v∈[0,1]

1

T 1/p

(
SN(Tv) − Tv

)
≤ 1

T 1/p
max

k≤N(T )
τk. (5.197)
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It is clear that if F (x) := P(τ1 ≤ x) has finite support, the result is trivial. Thus, we
assume that F does not have a finite support. In this case we can approximate the
distribution of the maximum by

F (x)mT , (5.198)

and by taking x = ϵT 1/p we can compute,

F (ϵT 1/p)mT =exp
{
mT log

(
F (ϵT 1/p)

)}
(5.199)

= exp
{
mT log

(
1− F (ϵT 1/p)

)}
(5.200)

= exp
{
mT
(
F (ϵT 1/p)(1 + o(1))

)}
. (5.201)

Since E[τ s1 ] <∞, it follows by the Dominated Convergence Theorem that

xpF (x) = xpP(τ1 > x) ≤ E[τ p1 ; τ1 > x] −→
x→∞

0. (5.202)

The previous reasoning implies that

TF (ϵT 1/p) −→
T→∞

0, (5.203)

exp
{
mT
(
F (ϵT 1/p)(1 + o(1))

)}
−→
T→∞

1, (5.204)

lim
T→∞

P
(

1

T 1/p
max

k≤N(T )
τk ≤ ϵ

)
= 1, (5.205)

from which we can conclude that(
1

T 1/p

(
Tv − SN(Tv)−1

)
,

1

T 1/p

(
SN(Tv) − Tv

))
v∈[0,1]

d−→
T→∞

(0, 0), (5.206)

which completes the proof.

With this, we conclude the exposition of our convergence rates results for renewal
processes. Nevertheless, each one of them will see an application in the derivation of the
limit theorems of the following Section.

6 Limit theorems for renewal Hawkes processes

The purpose of this Section is to establish limit theorems for the RHP, namely, a law of
large numbers and a central limit theorem, as Bacry–Delattre–Hoffmann–Muzy [5] did for
the classical (multivariate) Hawkes process via a martingale approach. In the case of one
dimension, if α :=

∫∞
0
h(t)dt < 1, a law of large numbers (LLN) is given as

Theorem 6.1 (Bacry–Delattre–Hoffmann–Muzy [5, Theorem 1]). We have
N(t) ∈ L2(P) for all t ≥ 0 and the convergence

sup
v∈[0,1]

∣∣∣∣T−1N(Tv)− v
µ

1− α

∣∣∣∣ −→T→∞
0 (6.1)

holds a.s. and in L2(P).
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A central limit theorem (CLT) was also proved, namely,

Theorem 6.2 (Bacry–Delattre–Hoffmann–Muzy [5, Theorem 2]). The convergence(
1√
T
(NTv − E[NTv])

)
v∈[0,1]

d−→
T→∞

(√
µ

(1− α)3
Wv

)
v∈[0,1]

(6.2)

holds in the Skorokhod topology, where (Wv)v∈[0,1] is a standard Brownian motion.

6.1 Limit theorems for the renewal Hawkes process

We extend these results to the RHP. First, we have a law of large numbers, in which we
show that the mean number of arrivals can be consistently estimated as follows.

Theorem 6.3. Assume (A0, A1) and (B0). Then,

sup
v∈[0,1]

∣∣∣∣T−1N(Tv)− v
m

1− α

∣∣∣∣ a.s.−→
T→∞

0. (6.3)

The central limit theorem for the RHP takes the form,

Theorem 6.4. Under assumptions (A0, A1) and (B0), if
∫∞
0
x2F (dx) < ∞, the con-

vergence in distribution(
1√
T
(N(Tv)− E[N(Tv)])

)
v∈[0,1]

d−→
T→∞

(σW (v))v∈[0,1] , (6.4)

holds in the Skorokhod topology, where (W (v))v∈[0,1] is a standard Brownian motion and

σ =

√
σ2
M + σ2

R

(1− α)
, σ2

M =
m

1− α
,

σ2
R

m
= 3 +m2Var[τ ]− 2mE

[
τ

∫ τ

0

µ(s)ds

]
, (6.5)

and τ is a random variable such that for x ≥ 0, P(τ ≤ x) = F (x).

And finally, we have the following result of asymptotic normality:

Corollary 6.5. Under assumptions (A0, A1) and (B0), if
∫∞
0
x3F (dx) < ∞ and∫∞

0
xrh(x)dx <∞ for some r > 1, the convergence in distribution(

1√
T
N(Tv)− v

m

1− α

√
T

)
v∈[0,1]

d−→
T→∞

(σW (v))v∈[0,1] , (6.6)

holds in the Skorokhod topology, where σ is the same as in Theorem 6.4 and (W (v))v∈[0,1]
is a standard Brownian motion.

We make use of the decay rate results found in Section 5 for the proof of our limit
theorems. In the following section, we find renewal type equations whose solutions yield
useful identities for our study.
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6.2 Results for the mean number of arrivals

As mentioned in Section 4, the arrivals in the RHP are of two types: those coming from
a renewal process and those coming from the self-exciting part of the process. For the
proofs of our results, it is often convenient to work with the imbedded renewal process
separately. To make this distinction denote NR(·) :={Ti : Di = 0} ={0 = S0, S1, S2, . . .}
with S0 < S1 < S2 < . . . , and consider the counting process NR(t) = min{i : Si ≤ t},
t ≥ 0. Then, it is clear that

µ(t− TI(t)) = µ(t− SNR(t)−1), t ≥ 0. (6.7)

Furthermore, NR is a renewal process with inter-arrivals τi := Si − Si−1 which have
distribution F , and the renewal function

Φ(t) := E[NR(t)] =
∑
n≥0

F ∗n(t), t ≥ 0, (6.8)

where

F ∗0(x) = δ0(x), F ∗(n+1)(x) =

∫ x

0

F ∗n(x− y)F (dy), x ≥ 0, n ≥ 0, (6.9)

as shown in the following Lemma.

Lemma 6.6. Let τ1, τ2, . . . be i.i.d. random variables with distribution F that satisfies
assumption (B0), and define the partial sums Sn := τ1+· · ·+τn, n ≥ 1. Then the counting
process NR(t) =

∑
i≥0 1{Si≤t}, t ≥ 0, admits the (Ft)-intensity µ(t− TI(t)). Moreover

E
[∫ t

0

µ
(
s− TI(s)

)
ds

]
= Φ(t). (6.10)

Proof. From Theorem 2.14 we know that the intensity for the process NR(·) is given by

λR(t) =
∑
n≥0

f (n+1)(t− Sn)

1−
∫ t−Sn

0
f (n+1)(x)dx

1{Sn≤t<Sn+1}, (6.11)

where for a Borel set A, we have

F (n+1)(A) := P[Sn+1 ∈ A | FSn ] =

∫
A

f (n+1)(x)dx. (6.12)

In the case of NR(·), we have that F (n+1) = F and f (n+1) = f for all n ≥ 0. We can the
substitute this in (6.11) to get

λR(t) =
∑
n≥0

f(t− Sn)

1− F (t− Sn)
1{Sn≤t<Sn+1} (6.13)

=
∑
n≥0

µ(t− Sn) 1{Sn≤t<Sn+1} (6.14)

=
∑
n≥0

µ
(
t− SNR(t)−1

)
1{Sn≤t<Sn+1} (6.15)

=µ
(
t− SNR(t)−1

)
. (6.16)
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Now, since the process C(s) = 1(0,t](s), s ≥ 0 is (Ft)-predictable, we can compute

E
[∫ t

0

µ(s− SNR(s)−1)ds

]
= E

[∫ t

0

NR(ds)

]
= E[NR(t)] = Φ(t). (6.17)

Finally, from the observation (6.7), the proof follows.

As stated in Theorem 2.22, if the imbedded renewal process has an inter-arrival distri-
bution that satisfies (B0), then the induced renewal measure Φ(dt) can be decomposed
using Stone’s decomposition (2.121) as

Φ = Φ1 + Φ2, (6.18)

where Φ2([0,∞)) < ∞ and Φ1 is absolutely continuous with bounded density φ1 that
satisfies

φ1(t) −→
t→∞

m. (6.19)

In order to study the arrivals related to the self-exciting part of the process, we define the
following function:

ψ(t) =
∑
n≥1

h∗n(t), t ≥ 0, (6.20)

where h∗n denotes the n-fold convolution of h. Then, we can state the following Lemma.

Lemma 6.7. Assume (A0) and (B0). For any t ≥ 0, the mean number of events
E[N(t)] is given as,

E[N(t)] = Φ(t) +

∫ t

0

ψ(t− s)Φ(s)ds. (6.21)

Proof. Let t ≥ 0. Since the process C(s) = 1(0,t](s), s ≥ 0 is (Ft)-predictable, from the
property (2.17) of the intensity and Lemma 6.7, we have

E[N(t)] =E
[∫ t

0

µ(s− TI(s))ds

]
+ E

[∫ t

0

∫ s

0

h(s− u)N(du)ds

]
(6.22)

=Φ(t) + E
[∫ t

0

h(t− s)N(s)ds

]
(6.23)

=Φ(t) +

∫ t

0

h(t− s)E[N(s)] ds. (6.24)

This is a renewal type integral equation for E[N(t)]. Since the renewal function is always
finite, Φ is bounded on finite intervals, and the integral equation has a unique solution
bounded on finite intervals given by

E[N(t)] = Φ(t) +

∫ t

0

ψ(t− s)Φ(s)ds, t ≥ 0, (6.25)

and this concludes the proof.
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In the following, it will be useful to write the process

X(t) := N(t)− E[N(t)] , t ≥ 0, (6.26)

as a linear functional of the characteristic martingale, as it is done below.

Lemma 6.8. Assume (A0) and (B0). Set

A(t) :=M(t) +

∫ t

0

µ
(
s− TI(s)

)
ds− Φ(t). (6.27)

Then, for all t ≥ 0, the process (Xt)t≥0 satisfies,

X(t) = A(t) +

∫ t

0

ψ(t− s)A(s)ds. (6.28)

Proof. We have

X(t) =M(t) +

∫ t

0

λ(s)ds− E[N(t)] . (6.29)

From the proof of Lemma 6.7 we have

X(t) =M(t) +

∫ t

0

λ(s)ds− Φ(t)−
∫ t

0

h(t− s)E[N(s)] ds (6.30)

=M(t) +

∫ t

0

µ(s− TI(s))ds+

∫ t

0

∫ s

0

h(s− u)N(du)ds− Φ(t)−
∫ t

0

h(t− s)E[N(s)] ds

(6.31)

=M(t) +

∫ t

0

µ(s− TI(s))ds+

∫ t

0

h(t− s)N(s)ds− Φ(t)−
∫ t

0

h(t− s)E[N(s)] ds (6.32)

=M(t) +

∫ t

0

µ(s− TI(s))ds− Φ(t) +

∫ t

0

h(t− s)X(s)ds. (6.33)

=A(t) +

∫ t

0

h(t− s)X(s)ds. (6.34)

Since the function µ is locally integrable, then the process (At)t≥0 is a.s. bounded on
finite intervals, therefore we have a solution for X(t) given by

X(t) = A(t) +

∫ t

0

ψ(t− s)A(s)ds, t ≥ 0. (6.35)

The proof is complete.

6.3 Law of large numbers

In preparation for the proof of Theorem 6.3, we need the following Lemmata.
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Lemma 6.9. Assume (A0, A1) and (B0). Then,

sup
v∈[0,1]

∣∣∣∣T−1E[N(Tv)]− v
m

1− α

∣∣∣∣ −→T→∞
0. (6.36)

If additionally we assume
∫∞
0
xrh(x)dx < ∞ for r > 1 and

∫∞
0
x3F (dx) < ∞, we have

for 0 ≤ p < 1 that

T p sup
v∈[0,1]

∣∣∣∣T−1E[N(Tv)]− v
m

1− α

∣∣∣∣ −→T→∞
0. (6.37)

Proof. We define the function

G(t) :=

∫ t

0

ψ(t− s)Φ(s)ds, t ≥ 0. (6.38)

By changing the order of integration and setting Ψ(t) =
∫ t

0
ψ(s)ds (note that Φ(t) =∫ t

0
Φ(ds)) we can rewrite G as

G(t) =

∫ t

0

Ψ(t− s)Φ(ds), t ≥ 0. (6.39)

From the relation (f ∗ g)′ = f ′ ∗ g, we can deduce

G′(t) =

∫ t

0

ψ(t− s)Φ(ds), t ≥ 0. (6.40)

Let us analyze the asymptotics of ψ =
∑

n≥1 h
∗n. For this, note that we can write ψ as

the solution to the renewal equation,

ψ = h+H ∗ ψ, (6.41)

where H :=
∫ t

0
h(u)du. Equation (6.41) is a defective renewal equation (i.e. H(∞) =

limt→∞H(t) = α < 1) with solution ψ =
∑

n≥1 h
∗n = h ∗ (1 + ψ). In the case of a

defective renewal equation, it holds (c.f. V.7.4 in [1]),

ψ(t) −→
t→∞

h(∞)

1−H(∞)
=

0

1− α
= 0. (6.42)

Furthermore, ψ is uniformly continuous since it is the convolution of the integrable func-
tion h with the bounded function 1 + ψ. Boundedness of ψ can be seen from

h∗n ∗ h =

∫ t

0

h∗n(t− s)h(s)ds ≤ α ∥h∗n∥∞ , (6.43)

∥h∗n∥∞ ≤ αn−1 ∥h∥∞ , (6.44)

∥ψ∥∞ ≤ ∥h∥∞
1− α

. (6.45)
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Then from (6.42), (6.45), and the Key renewal Theorem for spread-out distributions (c.f.
Corollary VII.1.3 in [1]),

G′(∞) := lim
t→∞

G′(t) = m

∫ ∞

0

ψ(s)ds (6.46)

=m
∑
n≥1

∫ ∞

0

h∗n(s)ds = m
∑
n≥1

αn =
mα

1− α
. (6.47)

From Lemma 6.7, (2.121), and the fact that v m
1−α

= v
(
m+ mα

1−α

)
, we have

T p

(
T−1E[N(Tv)]− v

m

1− α

)
(6.48)

=T p

[(
vm− Φ(Tv)

T

)
+

(
v
mα

1− α
−
∫ Tv

0
ψ(Tv − s)Φ(s)ds

T

)]
(6.49)

=T p

[(
vm−

Φ2(Tv) +
∫ Tv

0
φ1(s)ds

T

)
+

(
vG′(∞)−

∫ Tv

0
G′(s)ds

T

)]
(6.50)

=

[(∫ Tv

0
m− φ1(s)ds

T 1−p

)
+

(∫ Tv

0
G′(∞)−G′(s)ds

T 1−p

)
− Φ2(Tv)

T 1−p

]
. (6.51)

Now we notice that

T p sup
v∈[0,1]

∣∣∣∣(T−1E[N(Tv)]− v
m

1− α

)∣∣∣∣ (6.52)

≤ sup
v∈[0,1]

∣∣∣∣∣
∫ Tv

0
m− φ1(s)ds

T 1−p

∣∣∣∣∣+ sup
v∈[0,1]

∣∣∣∣∣
∫ Tv

0
G′(∞)−G′(s)ds

T 1−p

∣∣∣∣∣+ Φ2(Tv)

T 1−p
(6.53)

≤
∫ T

0
|m− φ1(s)| ds

T 1−p
+

∫ T

0
|G′(∞)−G′(s)| ds

T 1−p
+

Φ2([0,∞))

T 1−p
. (6.54)

If we assume (B0) and take p = 0, the result (6.36) follows immediately from the finiteness
of the measure Φ2 and the convergence of G′(t) −→

t→∞
G′(∞) and φ1(t) −→

t→∞
m.

For p > 0 we want to study the rates of convergence of φ1 and G′. From Lemma 5.9
we have that φ1(s) = m+ o(s−2) as s→ ∞. Hence,∫ T

0
|m− φ1(s)| ds

T 1−p
=
O(log T )

T 1−p
−→
T→∞

0. (6.55)
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For the second term, we have that∫ ∞

0

xrψ(x)dx =
∞∑
n=1

∫ ∞

0

xrh∗n(x)dx (6.56)

=
∞∑
n=1

∫ ∞

0

· · ·
∫ ∞

0

(x1 + · · ·+ xn)
rh(x1) · · ·h(xn)dx1 · · · dxn (6.57)

≤
∞∑
n=1

∫ ∞

0

· · ·
∫ ∞

0

nr−1(xr1 + · · ·+ xrn)h(x1) · · ·h(xn)dx1 · · · dxn (6.58)

=
∞∑
n=1

nrαn−1

∫ ∞

0

xrh(x)dx <∞. (6.59)

It suffices to show that ∫ T

1

|G′(∞)−G′(s)| ds = O(log T ). (6.60)

We can proceed along the lines of the proof of Theorem 5.2 from which we have the bound

|G′(∞)−G′(x)| ≤C
∫ ∞

x/2

ψ(y)dy +

∫ x

x/2

|φ1(y)−m| dy +
∫ x

0

ψ(x− y)Φ2(dy), (6.61)

and the constant C can be taken as m + ∥φ1 −m∥∞ < ∞. Looking at the first integral
on the RHS, we notice that∫ ∞

1

∫ ∞

x/2

ψ(y)dydx ≤
∫ ∞

1

∫ ∞

x/2

(2y)r

xr
ψ(y)dydx (6.62)

≤
∫ ∞

1

x−rdx

∫ ∞

x/2

(2y)rψ(y)dy (6.63)

≤
∫ ∞

1

x−rdx

∫ ∞

0

(2y)rψ(y)dy <∞. (6.64)

For the second term, we see that the integral is at most of logarithmic order. Indeed,∫ T

1

∫ x

x/2

|φ1(y)−m| dydx ≤
∫ T

1/2

∫ 2y

y

|φ1(y)−m| dxdy (6.65)

=

∫ T

1/2

y |φ1(y)−m| dy (6.66)

=O(log T ). (6.67)

On the other hand,∫ ∞

0

∫ x

0

ψ(x− y)Φ2(dy)dx =

∫ ∞

0

ψ(u)du

∫ ∞

0

Φ2(dy) <∞. (6.68)

This concludes the proof.
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The next result treats the asymptotic behavior of the renewal process part.

Lemma 6.10. Under (B0), we have almost surely that

T−1 sup
t≤T

∣∣∣∣∫ t

0

µ(s− TI(s))ds− Φ(t)

∣∣∣∣ −→T→∞
0. (6.69)

Proof. We rewrite the integral term as∫ t

0

µ(s− TI(s))ds =

∫ t

0

µ(s− SNR(s)−1)ds (6.70)

=

NR(t)−1∑
j=1

∫ Sj

Sj−1

µ(s− Sj−1)ds+

∫ t

SNR(t)−1

µ(s− SNR(t)−1)ds (6.71)

=

NR(t)−1∑
j=1

ξj +

∫ t

SNR(t)−1

µ(s− SNR(t)−1)ds, (6.72)

where the ξj are i.i.d. random variables. To compute their mean we use the property
(2.17) of the intensity and the fact that the process 1(Sj−1,Sj ](t) is predictable. We have,

E[ξj] =E

[∫ Sj

Sj−1

µ(s− Sj−1)ds

]
(6.73)

=E
[∫ ∞

0

1(Sj−1,Sj ](s)µ(s− Sj−1)ds

]
(6.74)

=E
[∫ ∞

0

1(Sj−1,Sj ](s)NR(ds)

]
(6.75)

=E[NR((Sj−1, Sj])] = 1, (6.76)

for all 1 ≤ j ≤ NR(t) − 1. On the one hand, from the Law of Large Numbers for ξj we
have

1

n

n∑
j=1

ξj
a.s.−→ 1, (6.77)

while from the LLN for the inter-arrival times of NR(·) we have

1

n
Sn =

1

n

n∑
j=1

τj
a.s.−→ 1

m
. (6.78)

Combining these two facts we obtain that

1

Sn

∫ Sn

0

µ(s− TI(s))ds =
1

Sn

n∑
j=1

∫ Sj

Sj−1

µ(s− Sj−1)ds =
1

Sn

n∑
j=1

ξj
a.s.−→ m (6.79)
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Since for t > 0 we may take n = n(t) such that Sn−1 < t ≤ Sn,

Rt :=
1

t

∫ t

0

µ(s− TI(s))ds
a.s.−→
t→∞

m, (6.80)

because,

1

Sn−1 + τn

∫ Sn−1

0

µ(s− TI(s))ds ≤ Rt ≤
1

Sn − τn−1

∫ Sn

0

µ(s− TI(s))ds, (6.81)

and the limit on each side is equal to m a.s.

Furthermore, from the elementary renewal theorem, i.e.

Φ(t)

t
−→
t→∞

m, (6.82)

and the fact that Φ(t) ≥ mt for all t ≥ 0, we obtain the desired conclusion.

We can proceed with the proof of Theorem 6.3.

Proof of Theorem 6.3. We use (6.36) of Lemma 6.9, then it suffices to prove that

T−1 sup
v∈[0,1]

|N(Tv)− E[N(Tv)]| a.s.−→
T→∞

0. (6.83)

Set

X(t) := N(t)− E[N(t)] , t ≥ 0. (6.84)

From Lemma 6.8 we know that for T ≥ 0 and v ∈ [0, 1]

X(Tv) = A(Tv) +

∫ Tv

0

ψ(Tv − s)A(s)ds, (6.85)

with A(Tv) =M(Tv) +
∫ Tv

0
µ
(
s− TI(s)

)
ds− Φ(Tv). Then

sup
v∈[0,1]

|X(Tv)| ≤ sup
t≤T

|A(t)|+ sup
t≤T

∫ t

0

ψ(t− s) |A(s)| ds (6.86)

≤ sup
t≤T

|A(t)|
(
1 +

∫ ∞

0

ψ(s)ds

)
, (6.87)

where we note that ψ(·) is integrable. Now, shifting attention to sup
t≤T

|A(t)|, we obtain

the bound

sup
t≤T

|A(t)| ≤ sup
t≤T

|M(t)|+ sup
t≤T

∣∣∣∣∫ t

0

µ(s− TI(s))ds− Φ(t)

∣∣∣∣ . (6.88)
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Consider the characteristic martingale M(t), and define the martingale

Z(t) =

∫
(0,t]

1

s+ 1
dMs. (6.89)

We compute its quadratic variation

[Z,Z]t =
∑

0<u≤t

(Z(u)− Z(u−))2 (6.90)

=
∑

0<u≤t

(∫
(0,u]

1

s+ 1
dMs −

∫
(0,u)

1

s+ 1
dMs

)2

(6.91)

=
∑

0<u≤t

(
1

u+ 1
(N(u)−N(u−))

)2

(6.92)

=

∫
(0,t]

1

(s+ 1)2
N(ds). (6.93)

Now, by integration by parts, we obtain∫ t

0

1

(u+ 1)2
N(du)− N(t)

(t+ 1)2
=

∫ t

0

[
1

(u+ 1)2
− 1

(t+ 1)2

]
N(du) (6.94)

=

∫ t

0

∫ t

u

2

(s+ 1)3
dsN(du) (6.95)

=2

∫ t

0

∫ s

0

N(du)

(s+ 1)3
ds (6.96)

=2

∫ t

0

N(s)

(s+ 1)3
ds. (6.97)

From the previous equalities, we have

E
[∫ t

0

1

(s+ 1)2
N(ds)

]
= 2E

[∫ t

0

N(s)

(s+ 1)3
ds

]
+

E[N(t)]

(t+ 1)2
. (6.98)

We can analyze the second term on the RHS by using Lemma 6.7 and the increasingness
of Φ(·),

E[N(t)]

(t+ 1)2
=

Φ(t)

(t+ 1)2
+

∫ t

0

ψ(t− s)

(t+ 1)2
Φ(s)ds ≤ Φ(t)

(t+ 1)2

{
1 +

∫ t

0

ψ(t− s)ds

}
−→
t→∞

0. (6.99)

Using the monotone convergence theorem and the elementary renewal theorem, we obtain,

E
[∫ ∞

0

1

(s+ 1)2
N(ds)

]
= 2E

[∫ ∞

0

N(s)

(s+ 1)3
ds

]
(6.100)

=2

∫ ∞

0

E[N(s)]

(s+ 1)3
ds = 2

∫ ∞

0

Φ(s)

(s+ 1)3
ds+ 2

∫ ∞

0

∫ s

0
ψ(s− u)Φ(u)du

(s+ 1)3
ds (6.101)

≤2

∫ ∞

0

Φ(s)

(s+ 1)3
ds+ 2

∫ ∞

0

Φ(s)

(s+ 1)3
ds

∫ ∞

0

ψ(u)du < +∞. (6.102)
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This tells us that Z(·) is a martingale bounded in L2(P), therefore, by the martingale
convergence theorem limt→∞ Z(t) exists and is finite a.s. Let us recall that M(0) = 0,
and consider ∫ t

0

Z(s)ds =

∫ t

0

∫ s

0

dMu

u+ 1
ds (6.103)

=

∫ t

0

t− u

u+ 1
dMu (6.104)

=(t+ 1)

∫ t

0

dMu

u+ 1
−
∫ t

0

u+ 1

u+ 1
dMu (6.105)

=(t+ 1)Z(t)−M(t). (6.106)

Furthermore, from the finiteness of the limit of Z(t) it holds that

1

t+ 1
M(t) = Z(t)− 1

t+ 1

∫ t

0

Z(s)ds
a.s.−→
t→∞

0. (6.107)

Finally, we show that the convergence is uniform in v ∈ [0, 1]. Let 0 < ϵ < 1. For
0 ≤ v < ϵ, we have, ∣∣∣∣M(Tv)

T

∣∣∣∣ = ∣∣∣∣M(Tv)

Tv
v

∣∣∣∣ ≤ ϵ sup
0<t<∞

∣∣∣∣M(t)

t

∣∣∣∣ . (6.108)

Meanwhile, for ϵ ≤ v ≤ 1, ∣∣∣∣M(Tv)

T

∣∣∣∣ ≤ sup
Tϵ<t<∞

∣∣∣∣M(t)

t

∣∣∣∣ . (6.109)

Hence, we obtain,

lim sup
T→∞

(
sup
v∈[0,1]

∣∣∣∣M(Tv)

T

∣∣∣∣
)

≤ sup
0<t<∞

∣∣∣∣M(t)

t

∣∣∣∣ ϵ. (6.110)

Since this was done for an arbitrary ϵ, we conclude the desired uniform convergence.

Remark. Notice that we recover the result of Bacry–Delattre–Hoffman–Muzy [5] by
taking the imbedded renewal process as an homogeneous Poisson process of constant
intensity m.

6.4 Central limit theorem

Lemma 6.11. Assume (A0, A1), (B0) and
∫∞
0
x2F (dx) <∞. Set

Q(t) :=

∫ t

0

µ
(
s− TI(s)

)
ds− Φ(t), (6.111)
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and define for each T > 0,

Q(T )(v) :=
(
T−1/2Q(Tv)

)
v∈[0,1] and M (T ) :=

(
T−1/2M(Tv)

)
v∈[0,1] . (6.112)

Then, the processes
(
M (T ), Q(T )

)
converge jointly in distribution to

(
σMW,σRW̃

)
, where

W = (W (v))v∈[0,1] and W̃ = (W̃ (v))v∈[0,1] are independent standard Brownian motions
and,

σ2
M =

m

1− α
,

σ2
R

m
= 3 +m2Var[τ ]− 2mE

[
τ

∫ τ

0

µ(s)ds

]
. (6.113)

Proof. Since from Lemma 2.26 we can conclude that

lim
T→∞

1√
T
(Φ(Tv)−mTv) = 0, (6.114)

then we can look instead of Q(T ) at the convergence of

Q̃(T )(v) :=
1√
T

[∫ Tv

0

µ(s− TI(s))ds−mTv

]
, (6.115)

as T → ∞. Recall our definition for ξj :=
∫ Sj

Sj−1
µ(s− Sj−1)ds. We can rewrite,

Q̃(T )(v) =
1√
T

NR(Tv)−1∑
j=1

ξj +

∫ Tv

SNR(Tv)−1

µ(s− SNR(Tv)−1)ds−mTv

 . (6.116)

From Theorem 5.3 we know that,

1√
T

∫ Tv

SNR(Tv)−1

µ(s− SNR(Tv)−1)ds
d−→

T→∞
0, (6.117)

hence, it is enough to study the convergence of

1√
T

NR(Tv)−1∑
j=1

ξj −mTv

 =
1√
T

NR(Tv)−1∑
j=1

(ξj −mτj)−m
(
Tv − SNR(Tv)−1

) . (6.118)

From Theorem 5.4 we also have,

1√
T

Tv − NR(Tv)−1∑
j=1

mτj

 =
1√
T

(
Tv − SNR(Tv)−1

) d−→
T→∞

0. (6.119)

This means that Q(T ) has the same limit in distribution as

M
(T )
Q (v) :=

1√
T

NR(Tv)−1∑
j=1

(ξj −mτj) . (6.120)
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Notice that {ξj −mτj}j≥1 is a sequence of i.i.d. random variables with mean zero, as

E[ξj −mτj] = 1−m 1
m

= 0. Thus, M
(T )
Q (v) is integrable, and clearly it is adapted. Now,

take 0 < δ < v,

E

[
M

(T )
Q (v)

∣∣∣∣∣FTδ

]
=

1√
T

NR(Tδ)−1∑
j=1

(ξj −mτj) + E

 1√
T

NR(Tv)∑
j=NR(Tδ)

(ξj −mτj)

∣∣∣∣∣FTδ

 (6.121)

=
1√
T

NR(Tδ)−1∑
j=1

(ξj −mτj) =M
(T )
Q (δ). (6.122)

Thus, M
(T )
Q (v) is a martingale. We have then reduced the analysis of the convergence of

M (T )+Q(T ) to that of the martingale M (T )+M
(T )
Q . Since the martingales have uniformly

bounded jumps, by appealing to a suitable version of the martingale convergence theorem,
c.f.(Theorem 14.14 in [20]), we can find the limit if we compute the quadratic variation.
From Theorem 6.3 we get,[

M (T ),M (T )
]
v
=
∑
s≤v

[
T−1/2(N(Ts)−N(Ts−))

]2
(6.123)

=T−1N(Tv) −→
T→∞

σ2
Mv. (6.124)

For the cross-term, we have that only the common jumps ofM (T ) andM
(T )
Q do not vanish,[

M (T ),M
(T )
Q

]
v
=
1

T

∑
s≤v

(
M (T )(s)−M (T )(s−)

)(
M

(T )
Q (s)−M

(T )
Q (s−)

)
(6.125)

=
1

T

∑
s≤v

(NR(Ts)−NR(Ts−))
(
ξNR(Ts) −mτNR(Ts)

)
(6.126)

=
1

T

∑
s≤v

1 ·
(
ξNR(Ts) −mτNR(Ts)

)
(6.127)

=
1

T

NR(Tv)−1∑
j=1

(ξj −mτj) −→
T→∞

0. (6.128)

Finally, [
M

(T )
Q ,M

(T )
Q

]
v
=
1

T

∑
s≤v

(
ξNR(Ts) −mτNR(Ts)

)2
(6.129)

=
1

T

NR(Tv)−1∑
j=1

(ξj −mτj)
2 −→

T→∞
mvVar[ξ −mτ ] . (6.130)

Let us compute this variance:

Var[ξ −mτ ] =Var[ξ] +m2Var[τ ]− 2mCov[ξ, τ ] . (6.131)
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We need to find Var[ξ]. First we compute

E
[
ξ2
]
= E

[(∫ τ1

0

µ(s) ds

)2
]
=

∫ ∞

0

(∫ t

0

µ(s) ds

)2

f(t)dt. (6.132)

From the definition of the hazard function in (3.3) we have

(∫ t

0

µ(s)ds

)2

=

(
log

(
f(t)

µ(t)

))2

= log2

 f(t)
f(t)

1−
∫ t
0 f(s)ds

 (6.133)

=

(
log

(
1−

∫ t

0

f(s)ds

))2

. (6.134)

Substituting this into (6.132) yields

E

[(∫ τ1

0

µ(s) ds

)2
]
=

∫ ∞

0

log2
(
1−

∫ t

0

f(s)ds

)
f(t)dt. (6.135)

We make the change of variable u = 1−
∫ t

0
f(s)ds, so du = −f(t)dt.∫ ∞

0

(
log

(
1−

∫ t

0

f(s)ds

))2

f(t)dt =

∫ 1

0

(log(u))2du = 2. (6.136)

Thus,

Var[ξ] = E
[
ξ2
]
− E[ξ]2 = 2− 1 = 1, (6.137)

and hence,

Var[ξ −mτ ] =1 +m2Var[τ ]− 2m(E[ξτ ]− E[ξ]E[τ ]) (6.138)

=1 +m2Var[τ ]− 2m

(
E
[
τ

∫ τ

0

µ(s)ds

]
− 1

m

)
(6.139)

=3 +m2Var[τ ]− 2E
[
τ

∫ τ

0

µ(s)ds

]
=
σ2
R

m
. (6.140)

We therefore obtain the desired result.

We can now present the proof of the central limit theorem.

Proof of Theorem 6.4. Let us write ∥f∥∞ = sup
v∈[0,1]

|f(v)|. For δ > 0, we denote,

ωδ(f) := sup
|u−u′|≤δ

|f(u)− f(u′)| . (6.141)
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From Lemma 6.11 we have M (T ) d−→ σMW , so by Skorokhod’s Representation Theorem

there exists an a.s. convergent coupling
(
M̂ (T ), Ŵ

)
, i.e.,

M (T ) d
= M̂ (T ) a.s.−→ σMŴ

d
= σMW. (6.142)

Because Ŵ is a continuous process, we have
∥∥∥M̂ (T ) − σMŴ

∥∥∥
∞

a.s.−→ 0. Hence we obtain

∥∥M (T )
∥∥
∞

d−→
∥∥∥σMŴ∥∥∥

∞
, (6.143)

ωδ

(
M (T )

) d−→ ωδ

(
σMŴ

)
. (6.144)

Set

X(T )(v) :=T−1/2(N(Tv)− E[N(Tv)]) (6.145)

=T−1/2

{
M(Tv) +Q(Tv) +

∫ Tv

0

ψ(Tv − s)[M(s) +Q(s)] ds

}
. (6.146)

From Lemma 6.11, it is enough to show that∥∥∥∥X(T ) − 1

1− α
M (T ) − 1

1− α
Q(T )

∥∥∥∥
∞

p−→
T→∞

0. (6.147)

Since α
1−α

=
∫∞
0
ψ(t)dt,

X(T )(v)− 1

1− α
M (T )(v)− 1

1− α
Q(T )(v) = X

(T )
M (v) +X

(T )
Q (v), (6.148)

where,

X
(T )
M (v) :=

∫ v

0

Tψ(Tu)M (T )(v − u)du−
(∫ ∞

0

ψ(t)dt

)
M (T )(v), (6.149)

X
(T )
Q (v) :=

∫ v

0

Tψ(Tu)Q(T )(v − u)du−
(∫ ∞

0

ψ(t)dt

)
Q(T )(v). (6.150)

We want to find a bound for∥∥∥X(T )
M +X

(T )
Q

∥∥∥
∞

≤
∥∥∥X(T )

M

∥∥∥
∞
+
∥∥∥X(T )

Q

∥∥∥
∞
. (6.151)

Let us consider
∥∥∥X(T )

M

∥∥∥
∞
. Take 0 < δ ≤ 1 and note that

sup
v∈[0,δ]

∣∣∣X(T )
M (v)

∣∣∣ ≤ 2

(
sup
v∈[0,δ]

∣∣M (T )(v)
∣∣)∫ ∞

0

ψ(u)du
d−→ 2

(
sup
v∈[0,δ]

|σMW (v)|

)∫ ∞

0

ψ(u)du.

(6.152)
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Note also that

sup
v∈[δ,1]

∣∣∣∣∫ v

δ

Tψ(Tu)M (T )(v − u)du

∣∣∣∣ ≤∥∥M (T )
∥∥
∞

∫ ∞

δ

Tψ(Tu)du (6.153)

=
∥∥M (T )

∥∥
∞

∫ ∞

Tδ

ψ(u)du
d−→

T→∞
0, (6.154)

since
∥∥M (T )

∥∥
∞

d−→ ∥σMW∥∞ <∞. It is easily seen that,

sup
v∈[δ,1]

∣∣∣∣∫ δ

0

Tψ(Tu)du M (T )(v)−
∫ ∞

0

ψ(u)du M (T )(v)

∣∣∣∣ ≤ ∥∥M (T )
∥∥
∞

∫ ∞

Tδ

ψ(u)du
d−→ 0,

(6.155)

and that,

sup
v∈[δ,1]

∣∣∣∣∫ δ

0

Tψ(Tu)M (T )(v − u)du−
∫ δ

0

Tψ(Tu)M (T )(v)du

∣∣∣∣ (6.156)

≤ωδ(M
(T ))

∫ ∞

0

ψ(u)du
d−→

T→∞
ωδ(σMW )

∫ ∞

0

ψ(u)du. (6.157)

In summary, if we denote

GM(T, δ) :=2
∥∥M (T )

∥∥
∞

∫ ∞

Tδ

ψ(u)du+

(
2 sup

v∈[0,δ]

∣∣M (T )(v)
∣∣+ ωδ(M

(T ))

)∫ ∞

0

ψ(u)du,

(6.158)

GM(δ) :=

(
2 sup

v∈[0,δ]
|σMW (v)|+ ωδ(σMW )

)∫ ∞

0

ψ(u)du, (6.159)

then, ∥∥∥X(T )
M

∥∥∥
∞

≤ GM(T, δ)
d−→

T→∞
GM(δ)

d−→
δ↓0

0. (6.160)

For ϵ > 0, from the Portmanteau Theorem applied to the closed set [ϵ,∞), we have

lim sup
T→∞

P
(∥∥∥X(T )

M

∥∥∥
∞

≥ ϵ
)
≤ lim sup

T→∞
P(GM(T, δ) ≥ ϵ) ≤ P(GM(δ) ≥ ϵ) −→

δ↓0
0. (6.161)

Since ϵ was taken arbitrarily, that means,∥∥∥X(T )
M

∥∥∥
∞

p−→
T→∞

0. (6.162)

Notice that the proof of
∥∥∥X(T )

Q

∥∥∥
∞

p−→
T→∞

0 can be carried out in exactly the same way.

Ultimately, the previous reasoning proves (6.147), and therefore the proof is complete.

83



Remark. This result reduces to that of Bacry–Delattre–Hoffman–Muzy [5] since by
taking the imbedded renewal process as an homogeneous Poisson process of constant
intensity m, then σR = 0 and σM is that of Theorem 6.4.

Finally, we prove the asymptotic normality stated in Corollary 6.5.

Proof of Corollary 6.5. Taking Lemma 6.9 with p = 1
2
yields

sup
v∈[0,1]

∣∣∣∣ 1√
T
E[N(Tv)]− v

m

1− α

√
T

∣∣∣∣ −→T→∞
0. (6.163)

Furthermore, from Theorem 6.4 we know that(
1√
T
N(Tv)− 1√

T
E[N(Tv)]

)
v∈[0,1]

d−→
T→∞

(σW (v))v∈[0,1] , (6.164)

from which the result follows.

This consolidates our treatment of the RHP and renewal processes. As for possible
room for improvement there can be further refinements for the speed of convergence in
the law of large numbers. We can as well look into convergence in L1 and L2 to completely
extend the law of large numbers presented in Bacry–Delattre–Hoffman–Muzy. This could
lead to the possibility of analyzing second order properties too, namely, the estimation of
the covariance. We conclude this thesis here.
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