On the ramified Siegel series
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Abstract

The ramified Siegel series is an essential factor in the Fourier coefficient of the Siegel-
Eisenstein series. There are already many results, but the explicit formula of the general
condition is currently an open problem. In this article, by programming PARI/GP, we
computationally obtain the matrix of intertwining operators when n is 1 to 8. We also
calculate the recursion formula of the ramified Siegel series.

1 Introduction

1.1 Background of the Siegel series
1.1.1 Hilbert’s 11th problem

On August 8, 1900, at the Paris conference of the International Congress of Mathemati-
cians, German mathematician David Hilbert presented ten open problems. Later, in 1902, he
published an article titled ”Mathematical Problems” [11]. This article has 23 open problems,
now famous for Hilbert’s 23 problems.

The 11th problem of this article is about ”Quadratic forms with any algebraic numerical
coefficients.” Hilbert’s article says that this problem is concerned to attach successfully the theory
of quadratic forms with any number of variables and with any algebraic numerical coefficients.

Quadratic forms have been studied for centuries. It is defined as when K is a field,

n n
Qz1,T2,+++ ,n) = Z Zaijxixja

i=1 j=1

where the coefficients a;; are elements in K.

Several famous results had already been known until the 1900s, for example, Fermat’s the-
orem on sums of two squares. Let p be an odd prime number. The statement of this theorem
is

p=1 (mod4) & 2,ycZ p=a®+y>

Fermat announced this theorem in 1640 without any proof. The first proof was given by Euler,
which is based on infinite descent [1] [2].

Quadratic forms had been usually studied with the coefficients in R or C, but Minkowski
[24] solved the equivalence theorem of quadratic forms over Q. Hilbert himself studied in
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1899 [10] where the coefficients in a non-real algebraic number fields with odd class numbers.
He introduced the Hilbert symbol and showed the condition if az? + by? = 1 has a solution in
K.

In 1923 and 1924, Hasse published five papers about quadratic forms [5-9]. The First to
the third one was about the quadratic forms over QQ, and the fourth and the fifth were about
algebraic number fields. His result is famous for Hasse’s local-global principle.

We need some definition. Let D be an integral domain, and f(z) = ‘xSz, x =*(z1, -+ , Zm),
S =8 € M,,(D) be a quadratic form with m variants with coefficients in D. We say the
quadratic from ¢(y) = 'yTy associated to T is represented by f over D if there exists X €
M,,,(D) such that T ='XSX. When m = n and X is invertible, f and g is called equivalent.
For ¢ € D, we say f represents ¢ over D when there exists a € D\{0} such that f(a) = c.

Let k£ be an algebraic number field of finite degree. For each place p of k, we write the
completion of k as k,. Let €2 be the set of all places of k.

Then Hasse’s principle is written as

Theorem 1.1. Let f, g be two quadratic forms over algebraic number field k. P;(k) (i = 1,2,3)
are propositions with variable k defined as

Pi(k): f represents 0 over k.
Py(k): f and g are equivalent over k.

Ps(k): g is represented by [ over k.
Then for each i, Pi(k) holds if and only if P;(k,) holds for all p € Q.

1.1.2 Siegel’s study and the local density

In Siegel’s paper [29], he studied the localization principle of the number of how many
matrices X represent g by f.

Let S and T be positive definite symmetric matrix over Z, and we write their size as m and
n. Let A(S,T) be a number of matrix X € M,,,,(Z) such that *XSX = T. We write E(S)
for A(S,S). When S and S; are equivalent over R and Q, for all prime p, we say they are in
the same genus. Each genus is the sum of finitely many equivalent classes, hence we denote by

S1, -+, 5y, the representative of the equivalent classes contained in the same genus with S. Put
h h
A(Sy, T) 1 M(S,T)
MS,T:E—, MS:EES . Ag(S,T) = ——"—-—=.
( ) — E(Sk) ( ) — ( k) 0( ) M(S)

Let ¢ > 0 be a natural number, and A,(S,T") be the number of the solution of the equation
EXSX =T mod gq. We assume g = p® for some prime p. In this case, when a is sufficiently
large, the number g~™"*+n(n+1)/24 (S T) is independent of a. We put this value o, (S, T).

We identify Sym, (R), the set of symmetric matrices over R of size n, and R™™+1)/2 the
Euclid space of degree n(n +1)/2. Let B ¢ R™"*1/2 he a Jordan measurable open subset
which has a point T. Define By as

B = {X e R""V/2 |t XSX € B}.

VOl(Bl)
vol(B)
limit oo (S, 7). Then the Siegel’s theorem is

Since the limit of the value as the radius of B approaches to 0 exists, we write this



Theorem 1.2. We have

Ap(S,T) = ae(S,T) [ [ (S, 7).

This theorem says that some weighted average of the measures Z-solutions of the equation
txSx = T over the representative of each genus of S is related to local density. In [30], he
extended this result to the case when S and T are not definite, and in [31], to the quadratic
form over an arbitrary algebraic number field.

WEeil reinterpreted this theorem in terms of representation theory and extended this result
to more classical groups. [38] His result is known as the Siegel-Weil formula, which says that a
theta integral corresponds to the Eisenstein series when both are absolutely convergent.

1.1.3 Local density

We assume the field F'is a non-dyadic, non-archimedean local field. Later the Haar measure
on Sym,,(F) and M,,,(F) is normalized as

/ dy =1, / dx = 1.
Sym,, (0) Mymn (o)

For S € H'(0), T € H,(0) and an integer e > 0, we define A.(S,T) as
A (S, T) ={X € My,(0) | S[X]—T € m°H,(0)}.
The local density is defined as follows.

Theorem 1.3. The following limit exists, which is known as the local density related to S and
T.

(S, T) := lim ¢ " /20l (A.(S,T)).

e—00

Siegel [29] calculated when p does not divide 2det S'det T', and after this, some results are
known.

e Ozeki [26], when S is unimodular, size of S > 4, size of T = 2, p is odd.

e Kitaoka [21], when S is unimodular, size of S > 3, size of T'= 2, p is odd.
e Kitaoka [22], when S is unimodular, size of T'= 3, p is odd.

e Katsurada [20], when S is unimodular, size of 7' = 3.

Katsurada [19] gave a complete formula when S is unimodular. Yang [39] calculated when
the size of T"is 2 and p is odd. Compared to Katsurada’s article, by using the recursion formula
of the local density, Yang did by calculating some character sum. This idea was also used in
the article of Sato and Hironaka.



1.1.4 The result of Sato and Hironaka

Sato and Hironaka [12] gives an explicit formula of the local density «(S,T') in the case
p # 2 and F = Q,. They give the complete representative of I'g(p)\Sym,,(Q,), where I'y(p) is
the Iwahori subgroup of GL,(Q,):

Fo(p) = {7 = (1) € GLa(Zy) | 73 =0 mod pif i > j}.
This representative is written as {S,.. | (0,€,¢) € A,,}, where the set A, is defined as
Ap={(0,6,6) €6, xZ" x {1,6}" | 0> =1, eypy =e; (1 <i<n), &5 =1(c(i) #4)},
and the symmetric matrix S, . is defined as
Soee = (5ipei5i,0(j))z‘,j :

Compared with I' = GL,,(Z,), this choice of I'y(p) can give us the calculation of the Gauss sum

Gr(Y,T) = / B(—tx(Y - Ty

Since the local density is written using this term, an explicit formula of the local density can
be represented.
In particular, the local density is given as

_ Z 2—01(0)(1 _p—1)62(0)p—02(0) Z p—T({Ii})—t(Uv{fi})

UEGn I:IOU"'UIT‘
o?2=1

r+1 2C§k)(0)(1 . p_l)cgk)(o_)p_ Z;:k;+1 TL(Z)
pae [1— (1 = p=®)

k—1
X ZPZI =0 () =n(l) H Bttt (03T, 5),
{vhe =0

X

where the notations are

I={1,2,--- ,n},
alo)=#{iel|o(i) =1},
(o) =#lie I | oli) = i},

o) = g#li € T |oli) # i},
T({L}) = Z#{” el x(lyu---Ul_4)|j<i},

to {I}) = Z#{(m) el xI|i<j<oa(i), o)) <@}
n(l) = #Il,



and the definition of Z; \(0; T, ) is
El,)\(a; T7 S) - qpl’)\(U;T’S) H Ci,)\(Ta S)
iel;

o(i)=i

e . 1 L
oo T, S) = ! Z min{ax + A, 0} + 3 Z Zmln{ek + esik + A, 0}

k=1 iel; k=1
0 (k<i, k<ol)),
Coir =41 (o(i)<k<iori<k<o(i))
{2 (i <k,o(i) <k)
GaT8) =2 ] x(—=w) ] x(v)
keA(N) keB;(N)
0 (Bi+A>0, #AN) +#Bi(\)#0 mod 2),
(1= g (D)2 (3 x>0, #AO) +#B:(\) =0 mod 2),
: X x(—D) (g =~ #AN) + #B;(0) 20 mod 2),
—g iy (—1) (Bi+X=—1, #AN+#B;(\) =0 mod 2).

AN ={k|1<k<m, o +A <0, ap #ZX mod 2},
B{AN)={1<k<i—-1 Bi+A<0, Br#X mod 2}
U{k|i+1<k<n, B +A+2<0, B ZA mod 2}.
Here we assume that the matrix S and 7" is diagonal matrix such that
S = diag(ulpa17 e 7umpam>7
T = dia’g(vlpﬁla T 7Unp5n>‘

The summation with respect to I = IoU---U [, is taken over all partitions of I into o-invariant
disjoint subsets, and the summation with respect to {v}, for k > 1 is taken over the finite set

{(vo,v1, 1) €EZx N (o, T) <vp+v1 4+ +u <=1 (0<1<k—1)}.
where the value b;(o,T) is defined as
bi(o,T)=min{{G; |i € I,,0(i) >i} U{B;+1|i€ ;,0(i) <i}}.

Thus, the local density is given by finite sums and finite products. We will quote their result
to show the main theorem.

1.1.5 The Eisenstein series for the modular group

The Eisenstein series is an essential example of the modular form.
Let H be the upper half-plane, which is # = {z € C | Imz > 0}. The group SLy(Z) acts on
the upper half-plane H as

ar +b

(1) = : (1)

cT+d

where v = (Z 2) € SLy(Z) and 7 € H.



Definition 1.1. A modular form of weight k& for the modular group SLy(Z) is a holomorphic
function f : H — C satisfies

o f(v(1)) = (et +d)kf(7) for 7,7 is the same as (1),
e f is bounded when z — ioo.
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01
period one and the Fourier expansion.

When v = , the condition is f(7 4+ 1) = f(7). It implies that the function f has the

Let k > 2 be an integer. We define the Eisenstein series Gai(7) as

Galn= ¥

(m.n)eZ2\{(0,0)}

The Eisenstein series satisfies the following Fourier expansion

2213 2k
Gar(7) = 2¢(2k) + 22mi) ook—1(n)exp(2minT),
(2k — 1)1 &=
— 1
where ((z) is the Riemann zeta function defined by ((s) = Z vt and the division function
n=1

or(n) is defined as oy (n) = Z d*.
dn

1.1.6 The Siegel Eisenstein Series and the Siegel Series

Now, we consider the Siegel-Eisenstein series. In this section, Maass’ lecture note [23] is

fundamental.
Let £ > 2, I,n > 1 be integers, and ¥ be a Dirichlet character modulo [. The Siegel-
Eisenstein series £y, ,(Z) is defined as

ER ,(2) = > Y(det D) det(CZ + D)7,
A B ern \I'n (1)
C D oo 0

where the set I and I'j(l) are subgroups of I'" = Sp,,(Z) defined by

n o o.__ A B n _
FOO._{(C D)eF C-O},
o) ::{(g f)) el C=0 modl},

respectively, and Z € H" := {Z € M,,(C) |'Z = Z, Tm(Z) is positive definite}.
The Fourier expansion of the Siegel-Eisenstein series can be written as

Bl (Z)= > c(A)exp(2mi Tr(AZ)),
A€ESx,A>0



where
Sy ={A = (a;) € Sym,(Q) | a € Z, ai; € Z/2 (i # j)},

and c(A) is a constant depending only on the matrix A. The symbol A > 0 means that the
matrix A is positive definite. More precisely, the Fourier coefficient ¢(A) is calculated as
n(n—1) .
2777 (—2mi)"™
Iz Qm_(l il —(det A5 [ (A, s)
™4 Hj:() F(S - j/2) p: prime

when A > 0 and the factor b2 (A, s) is called the ramified Siegel series when p is divided by I.
Here, we note I'(s) the Gamma function.

c(A) =

1.1.7 Siegel series

Let F' be a non-Archimedean, non-dyadic local field. Let 0 = or denote the integral ring of
the local field F. The matrix B = (b;;) € Sym,, (F) is called the half-integral matrix when

H,(0) denotes the set of all half-integral matrices of size n, and we define H*4(0) = {B €
H,(0) | det B # 0}.
For B € H(0), we put D = (—4)"/? det B. We define the Kronecker invariant £p and
the Clifford invariant ng as follows.
1 if Dy e F*?,
&g =&(B) =< —1 if the extension F'(v/Dp)/F is unramified,
0  if the extension F'(y/Dg)/F is ramified.

1 if Bis split on F,
ng =n(B) = )
0 otherwise.

For B € Sym,, (F'), there exists a matrix X € GL,(F) such that
B[X]:tXBX:dlag(bl,bg, ,bn>, biEFX.

When B, B" € H,(0), they are called GL,(0)-equivalent if there exists a matrix X € GL,(0)
such that B = B’[X]. {B} denotes the equivalent class of the matrix B € H,(0).

We write ( ,) = (,)r for the Hilbert symbol of the field F'. The Hasse-Minkowski invariant
of the matrix B € Sym,, (F') is defined as

ep= [ (b)),
1<i<j<n

where b; is taken as above. This definition does not depend on the choice of the b;. The
Hasse-Minkowski invariant and the Clifford invariant satisfy the following relations

(=1, =y D2(—1)™ det B)ep if n=2m + 1,
1B (21, —1ymen D21y det BYe  if n = 2m.



The diagonal matrix diag(by, ba,- - ,b,) is called the Jordan diagonal matrix when 0 <
ord(b;) < --- < ord(b,). It is known that all matrix B € H%(0) is GL,(0)-equivalent to a
unique Jordan diagonal matrix. We call GK(B) := (ord(by),--- ,ord(b,)) the Gross-Keating
invariant of the matrix B.

For B € H"(0), we define the polynomial (B, X) as

(

1-X £ |
m H(l — QQZXQ) if n is eveln,
- B .
7(B7X) = < anl =1
1-X) ] - X7 if n is odd.
\ =1

The additive character ¢ : F' — C is taken as order 0, which is
{x e F|y(ay) =1, "y €0} =o.

The (unramified) Siegel series b(B, s) is defined as
b(B, s) = / P(te(BX))[Xo" + 0" : 0] *dX,
Sym,, (F)

which is absolutely convergence when Res > 0. This definition is not independent of the choice
of the additive character .
The following theorem is well-known.

Theorem 1.4. There is a polynomial F (B, X) € Z(X) which satisfies
b(B,s) =v(B,q °)F(B,q°).

Let ®p be a discriminant ideal of the field extension F'(v/Dp)/F and put ep as

o ord(Dp) —ord(®p) n is even,
v ord(Dp) n is odd.

We put F(B, X) := X*5/2F(B, ¢~ "t)/2X). From the definition of the polynomial F, we have

F(B.X) e Q[¢*?[X, X7 nis even,
’ Q[X'2, X712 nis odd.

The following functional equation is well known.

Theorem 1.5. The functional equation of the polynomial F is as follows.

ﬁ(B X1 = F(B,X) n is even,
7  \nsF(B,X) nis odd.

Shimura [28], [27] gave the formula that the Siegel series is related to local density. In

0 1/2) and S=H,=H L H1---1 H (k times), then it

particular, when we put H = (1/2 0

follows

a(Hy, B) = b(B,k) (k> n).



On the Fourier expansion of the Siegel Eisenstein series, when [ = 1, the explicit formula of
the full-modular Siegel series is known by Katsurada [19]. He gives this formula in this article
by calculating the local density a(S,T") where S is unimodular.

This result is closely related to the main theorem of this article, i.e., our result is the extension
of Katsurada’s result for the ramified character case. We now write down Katsurada’s results.

We assume the matrix B is diagonal. Let e, € be integers, and let £ be a real number. The
rational functions C'(e, é,&;Y, X) and D(e,é,§;Y, X) in Y2 and X2 are defined as

Yé/2X—(e—é')/2—1(1 _ gy—lx)
X1-X ’
Yé/ZXf(efé)/Q
1—¢x

C(e,é,f;Y,X) =
D(e,e,&Y, X) =

For a positive integer i, we define the rational function C;(e,é,&;Y, X) as

Cle,6,&Y,X) ifiis even,

Ci 7~7 7Y7X = ot )
(e,€,¢ ) {D(e,e,{;Y,X) if 7 is odd.

Definition 1.2. Let a = (ay,- -+ ,a,) € Z" be a sequence of integers. For an integer i which
satisfies 1 <1i < n, we define ¢; = ¢;(a) as

. ar+ay+---+a;—1 ifiisevenand Y ,_, a is odd,
L ar+as+ -+ a; otherwise.

We define £5 as
£y = 0 if °p_, e is even,
x(Dp) if Y, _ e is odd.

Katsurada’s result for the recursion formula of the unramified character can be written as
follows.

Theorem 1.6. We put X = ¢ ° and Y = q%. The function f(B,X) satisfies the following
recursion formula.

F(B,X) = Ci(en, en_1,& Y, X)F(B™ D, Y X)
+ GC(en, 01, &Y, X HF(B D Yy XY,

where ¢; and & are defined as

G = -

1 ifn is even, ¢ = éB if n s even,
neg if n is odd, gty if nois odd.

Later, several results of the Fourier expansion of the Siegel-Eisenstein series became known.
e Mizuno [25], when n = 2, [: square-free odd, 1: primitive.
e Takemori [33], when n = 2, [: any integer, 1: primitive.

e Takemori [34], when n: arbitrary, I: odd, ¢ = [[¢,: primitive, ¢, # x,.



Gunji [3] gives the case where n is=3, p is an odd prime, and ¥ is primitive. We note that
when v, # x,, the result is given by Takemori [34], so he calculated when v, = x,.

Also, he [4] calculated when n is arbitrary, p is an odd prime, and ¢ is primitive. In this
article, he used the theory of genus theta series. Sato and Hironaka’s result gives the Fourier
coefficients of the genus theta series so that he can give the formula. In our previous paper [36],
we use Sato and Hironaka’s result directly and locally to the Siegel series. We extend their
result to general non-dyadic, non-archimedean local field cases, introducing the Weil constant
and explicitly writing down the formula.

Ikeda and Katsurada’s paper [17], [18] shows that the explicit formula given by Katsurada
is written by using the extended Gross-Keating invariant of the matrix.

1.1.8 Functional equation of the Siegel series

Sweet gives the precise formula of the functional equation of the Whittaker functional [32].
Before his article, Igusa [13,14] investigated the functional equations of p-adic zeta integrals
concerning some prehomogeneous vector spaces. Sweet calculated when X = Sym,, (k) where k
is a non-archimedean field of characteristic 0. In this case, the calculation of the zeta integrals
means to that of the Siegel series.

Ikeda [15] reformulated Sweet’s result more explicitly. He showed the functional equation
of the Whittaker functional over the non-archimedean local field F'. He used the Weil constant
ay(a) which satisfies

/F<Z5(ar)¢(asc2)dx = a¢(a)\2a|5/FqB(x)¢ <_£) dz,

where ¢ € S(F) is a Schwartz function and ¢ is a Fourier transform of ¢ with self-dual Haar
measure. Weil first introduced this constant [37].

Let M) and Whp(s) be as following integration: **

o= [ (o} ¥)o)ax
ym,

Whata)f = [ (w5 7)) eumaax

w,, denotes the matrix (10 _g "

>. Then Ikeda’s article says that there exists a functional

equation
Whp(—s) o M) = w™!(det B)| det B|*cp(w, s)Whp(s)
and the term cp(w, s) is calculated as

Theorem 1.7 ( [15] Theorem 2.1). If n = 2m + 1, then we have

co(w,s) =¢€'(s —m,w) ™! Hs’(23 —2m — 1+ 2r,w?) ™!
r=1

x 2|~ 2ms+ 2O e gy,

10



If n = 2m, then we have

m

1
co(w,s) =€'(s—m+ §,w)’1 Hs’(25 —2m + 2r,w?) !

m(2m—1 _D ) ].
9 —2ms4 m2m=1) ) —m 4 O{( QJ - .
><| | 2 ( ) Oé(l) €<S+27WXDQ)
Here we note that ¢'(s,w) is defined as
L(1—s,w!
g(s,w) =€ (s,w, ) = g(s,w,w)ﬁ,

a(a) = ay(a) is Weil constant and 7 is the Clifford invariant of the matrix Q.

1.2 Main theorems on this article
1.2.1 Notations and definitions

We need some notations. Let G = Sp,,(F') be the symplectic group of rank n over a non-
dyadic, non-archimedean local field F'. Put o and p be the ring of integers of F' and the maximal
ideal of o, respectively. We fix a prime element 7. We write K = Sp,,(0). The set I' is defined

as
A B
FZ{(C’ D)‘CEO modp}.

We can choose {w; }o<i<n, & complete set of representatives of the double coset P\G/I', by

Let ¢ be an additive character of F' of order 0 and x be a ramified nontrivial character of
F* satisfying x? = 1. We extend the character y on I' as

N <(é g)) — y(det D).

We will denote by I,,(x,s) = Ind5(x o | det |*) the space of the induced representation; the
space of C'*°-functions on G satisfying

A spntl
(5 ) ) = xtaee e+ fig),
and we also define I,,(w, s)1'X as

L(x, )" = {f € I(w, ) | f(gk) = x(k)f(g) for all k € T}.

For 0 <t <mn,let f; € I, (X,s — ”T“)F’X which satisfies fi(w;) = ;. This function f; is
uniquely determined.

11



We assume the matrix B is the diagonal matrix
B = diag(agm®, -+ o, ), a; €07, 0< e <---<ep.

The ramified Siegel series S;(B, s)X is defined as, when 0 < t < n,

sr= [ n((1F)) v

1

Let 5y = a¢(ﬁ)X(W) 32, and D = (—4)[%] det B. We write the function fs(s) = fsn(s)

for fs(s) Z B fi(s). (Here the function f; is taken in the space I,,(x, s)!"X.) We also define

FB( )7 FB( )
( S
Whp(s) f5” o
if n is odd,
(1—q22)(1—q24).. (1—q 2t
Whi(s) f5”
Fp(s) = 5(5)15 if n is even and ) ,_, ey is even,

g = 00— #9) (1 g =)
(1— X(_DB)Q_S_%)WhB(S>f,éS)

(L =g ) (1 —g7273) - (1L — g2+

(¢5Ek=1estDF(s)  if o is odd,

F(s) = ¢ gz Zk=1F(s) if n is even and ) _, ey is even,

g2 k=1t DF(s) if nis even and Y, ey is odd.

if n is even and ), _, ey is odd.

1.2.2 Main theorems

The first main theorem of this article is the explicit formula of the ramified Siegel series.
The statement is written as follows.

Theorem 1.8. The Siegel series Sy(B,s)X associated with the function f, (0 <t < n) is as
follows;

r (1)
. . 1— q_1>zl:k ¢ (U)qn(k)
S B X — n—t 1 _ -1 CQ(U) —02(0) _T({Iz})_t(av{lz})(
(B, s) oy (1) E ( q ) q E q H;:k(qn(n —1)

c€Gy, I=IpU---Ul,
o2=1 n(k) —¢
(1) _p (k) ) _n( ®) —n (k) +p1u v, (03B
« E HX Vzn n )ql/z((sn —n(1))—(sn'™) —n(k)))+p1,vg 4+, (03B) H Eivot- +Vl(B)X
{v}t 1=0 i€l

o(i)=t
Here the summation with respect to {v}. for k > 1 is taken over the finite set
{(o,v1, -+ ) €ZXZES | =bi(0,B) <vg+m 4+ < —1(0< 1< k—1), n®™ =t}

The second main theorem of this article is the recursion formula of the ramified Siegel
series. It is written as follows. The rational function Cj(e,é,&;Y, X) is as above. However, the
definition of ¢; and &g differs from the unramified case.

12



Definition 1.3. Let a = (a1, ,a,) € Z" be a sequence of integers. For an integer i which
satisfies 1 <1i < n, we define ¢; = ¢;(a) as

a1+ as+ -+ a; if 7 is even and Y _;_, ay is even,
i = )
ap+as+---+a; +1 otherwise.

We define &g as

£y = 0 if Y °p_, ek is even,
x(—Dp) if > p_, ek is odd.

Then it follows that

Theorem 1.9. We put X = ¢ and Y = q2 and write Fg(q~*) = Fg(s). The function Fz(X)
satisfies the following recursion formula.

FB(X) = BoCi(en, en-1,§;Y, X)FB(TLA)(YX)
=+ 50<’ici(en> Cn—1, 57 Y, Xﬁl)ﬁB(nfl) (YXil),

where ¢; and & are defined as

G = {1 if n 1s even, ¢ {{B if n is even,

nx(—Dp) if n is odd, B Epm-v  if n is odd.

In Section 2, we recall some fundamental notations and results. More precisely, Section 2.1
is the induced representation. Section 2.2 is the result of Sato and Hironaka, and Section 2.3 is
the Weil constant.

Section 3 is the first main theorem about the explicit formula for the ramified Siegel series
Si(B, s)X. The content of Sections 2 and 3 is the same as our previous paper, which is under
publishing now.

Section 4 is about calculating the matrix of the intertwining operator Ml(f;b) In Section 4.1,
we will show why /] is needed from the point of view of the Weil representation on the finite
field. In Section 4.2, we recall how E{Y is calculated when n = 2 and, in Section 4.3, we
write a programming code in PARI/GP to calculate when n > 3. In Section 4.4, we show the
eigenvectors and eigenvalues of the matrix when n is 1 to 8.

Section 5 shows the functional equation of the ramified Siegel series.

In Section 6, we prove the recursion formula of the ramified Siegel series. In Section 6.1,
we calculate the term where e, shows in the explicit formula of the ramified Siegel series. In
Section 6.2, we show that the Clifford invariant np is written explicitly with x(c;) and x(—1),
and the term of Gauss sum &, ,,(B), is written concisely. In Section 6.3, we state the second
main theorem and prove it in Section 6.4.

The author would like to thank Tamotsu Ikeda of Kyoto University for his constant support.

2 Basic notations

2.1 Induced representations

Let F' be a non-archimedean local field of characteristic 0. We denote by 0 = op the ring
of integers of F'. We write p = pp, £ = € for the maximal ideal and the reside field of o,

13



respectively. We fix a prime element 7 € p satistying p = mo. Let ¢ denote the cardinality of
t = o/p, and we assume ¢ is odd.
The set of symmetric matrices of degree n over F' is defined by

Sym, (F) := {X = (z;;) € Mn(F) | 2;; = zj; for all 1 <i,j <n},

and we denote by S, (F') the subset of non-degenerate symmetric matrices.
The symplectic group of degree n over F'is defined by

G = Sp,(F) i= {M € GLyn(F) | Mw,M = w,},

0 -1,
1, O
is now considered an algebraic group over F. We write K = Sp,(0) as a maximal compact
subgroup of G. Also, we define

P:{(é g) GSpn(F)‘Czo}

by the Siegel parabolic subgroup of G. The decomposition G = PK is well-known and called
the Iwasawa decomposition. Set

A B
F:{(C D) EK‘CEOmodp}.

Let w be a character of F* satisfying w? = 1. Later, we only consider w = 1 the trivial
character or w = x a ramified nontrivial character. We define a character w' on I' with

wh ((é g)) = w(det D)

and we write w for w! (by agree of notation).
We will write I,(w,s) = Ind%(w o | det |*) for the space of the induced representation; the
space of C'*°-functions on G satisfying

(5 ) a) =wteraiaee = s

where we write ‘M for the transpose of a matrix M, and w, for ) The group G

and we also define I, (w, s)I

L(w,s)" = {f € I(w,s) | f(gk) = w(k)f(g) for all k € T'}.

The double coset P\G/T' = (PN K)\K/T' ~ T'\K/T is a finite set, and one can choose a
complete set of representatives {w;}o<i<n by

1n—i

as

—1;

w; =
! 1n—i

1;

It is known that ( c g) € K is an element of I'w,[" if and only if the matrix C' has rank ¢
when it is considered as mod p.
Each f € I,(w,s)" is determined by its value on K, and also by {f(w;)}o<i<n. Now we

take the following result;
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Proposition 2.1. Define f; € I(w,s)™ satisfying fi(w;) = 6;;. Then
L(w, s)" = @ Cf;.
i=0

2.2 The result of Sato and Hironaka

For the proofs of the following results when F' = Q,, we refer the reader to [12]. This proof
remains valid when F' is an arbitrary non-archimedean non-dyadic local field, considering the
structure of a non-archimedean local field.

We put

Sn(F) ={X € Sym,(F) | det X # 0}
and we define
Lo ={y = (7;) € GLy(0) | v €p (i > j)},

which acts on S, (F) by Y — 7-Y = 4Y'y. We fix a non-square unit 6 € 0*\(0*)?. The
following theorem determines the orbits of this action. Put I = {1,2,--- ,n} and consider the
standard action of &,, on I.

Theorem 2.1 ( [12] Theorem 2.1). Let A,, be the collection of (0,e,¢) € &, x Z™ x {1,0}"
satisfying

o’=1, e,py=ei (i €1), e;=1(i € I,a(i) # ).
For a (0,e,¢) € A, we define a symmetric matric S, . by
So',e,s = (Sij)7 Sij = Eiﬂeiéi,o(j)a

where 6; o(jy is the Kronecker delta. Then the set {Socc | (0,e,€) € Ay} gives the complete set
of representatives of I'y-equivalence classes in S, (F).

Before writing the second theorem, we need some preparation.
For Y € S, (F), we define

a(T;Y) = Jim ¢ U2 Ny Y,
—00
where
Ni(Tg;Y) = #{y € Iy mod p' | yY'y =Y mod p'}.

We normalize the Haar measures dy and dY on M, (F') and Sym,, (F'), respectively, by

/ dy =1, / dy =1.
My (o) Sym,, (0)

Theorem 2.2 ( [12] Proposition 1.2). Let Yy € S,,(F') then the following integral formula holds
for any continuous function f on I'y- Yy:

fV)AY = a(lo; o)™ [ f(yYo'y)dy.

T'o-Yo 1)

15



Now we introduce some notations.
For a (0,e,¢) € A, let

{A0, AL, A Ao < A < <A,
be the set of integers A such that A = ¢; for some ¢ € I. We put
L={jelle=N\}, 0<i<r
Then Iy, - - - , I, are o-stable subsets of [ and I = IoUI; U---U I, (disjoint union). We also put

I =LulL,U---UIL, 0<i<r.

We set
} A @ (@ 4 1
Put
Vi:)\i—)\i,l(lgigr), V():)\o.
Then vy € Z and vq, -+ , v, € Zy.

Theorem 2.3 ( [12] Theorem 2.2). Put
a(o) =#{iel]o(i) =1},
ea(0) = %#{i € 1| oli) i),
to{L}) =Y #{(i.j) el x I |i<j<oali), o(j) <o(i)},

=0

r({I;}) = Z#{” el x (LyU---UIL4)|j<i}.

Then we have
OC(FOS Sa,e,s) — 261(0)(1 _ q*1>02(0)qc(a,e,5),
where

n(n—1)

e(o,e,e) = ———— +1({I}) + t{o. {Ii}) + ca(o +Zym

For a € F', we put

/¢ az®)dz, I*(a / Y(az?)dx = I(a) — 1I(W).

q

For T'Y € S,(F), put
Gr (Y, T) = A (=tr(Y - T[y]))dy.

where we write T'[y] = !vTy. Let T = diag(v,7™, von®, - v, 7%") (v; € 0%, B; € Z).
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Theorem 2.4 ( [12] Proposition 3.3). For (o,e,e) € A, the character sum %, (Sye:,T) van-
ishes unless
6> —Bi—1 ifo)i) >
—B; if o(i) > 1
for any i € I. When the condition above is satisfied, we have

)2@(0) q ()

=1 k=1 k=i+1
o(i)=t *
where
n i—1 o(i)—1 n
d(o,e, ) = Z Z min{e; + fx, 0} + Z min{e; + B + 1,0} + Z min{e; + fy + 2,0}
z(:)1> k=1 k=i+1 k=0c(i)+1

2.3 Welil constant

We recall the definition of the Weil constant as in [15]. )
For each Schwartz function ¢ € S(F'), the Fourier transform ¢ is defined by

_ /F o) (xy)dy

Note that the Haar measure dy satisfying / dy = 1 is the self-dual Haar measure for the Fourier

0
transform ¢ — ¢.

Definition 2.1. Let i) be an additive character over F' and let a € F'*. The Weil constant
ay(a) is a complex number satisfying

[ oarstartite =as(aalt [ dow (-5 )dw 1)

The following lemmas are fundamental. Let (x,x) denote the Hilbert symbol of index two
on F.

for any ¢ € S(F).

Lemma 2.1. For any a,b € F*,

o(@ou)
(D)~ (@

Here we note that, for a,b € F*, ay(ab?) = ay(a).

Lemma 2.2. Fora € F*, we write a = en™(e € 0*,n € Z). Then we have

1 if n is even,

ay(em”) = {X(s)aw(w) if n is odd.
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Proof. 1t is sufficient to show the following equations.
u(8) = ay(1) = L. @)
ay (07) = —ary(m). (3)
(2) is trivial. To prove (3), we use Lemma 2.1. We have
ClQp(é)Oéw(ﬂ') _ <5’ 7T>,
A (0m) vy (1)
Because the fact that a,(0) = ay(1) =1 and (9, 7) = —1, the lemma is proved. O

3 The explicit formula of the ramified Siegel series

3.1 Calculation of the Siegel series associated to ¢ = f;

This section considers the case where ¢ = f; (0 <t <n).
Let B € Sym,, (F'). Recall that we define the Siegel series as

s = [ gy Y))ecuxas

:/Symn(F) fi (((1) }1)) Y(—tr(BX))dX.

Note that the function f; is taken in the space I, (w, 5 — ”TH)F’w. We can certainly assume
that X is an invertible matrix since the measure of Sym,, (F)\S,(F') is 0. We need the Iwasawa

. . -1
decomposition of the matrix (0

1 X)' The following lemma is well-known and called the

Jordan splitting;

Lemma 3.1. For X € Sym,(0), there are U € GL,(0) and diagonal matriz Y such that
X ='YU. Moreover, when we write Y = diag(cn @, -+, a,m") (o € 0*,v; > 0) then for
each m > 0, the value

#{i|v;=m} and H a;

are uniquely determined by the matriz X .

When we write X = 'UYU where U € GL,(0) we have
(o) = () V) )
(X)) = () () (7 U)<)

=w(detUTMU") |[det U1 U~ 1\‘Sft( (1) Y))
0 —1
V)
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since w? = 1 and det U € o*.
!

Y

We write Y = where Y and Y are diagonal matrices of degree r and n — r

Y//
(0 < r < n), respectively. We assume that Y’ € M, (o) and Y"~! € pM,,_,(0). Since
0 —1 0 —1 1 Y’
0 ~1 | 0 -1 1| 0
1 Y’ B 0 0 1 ’
1 Y” 1 Y” 0 1

we may assume that Y’ = 0. Now we consider an Iwasawa decomposition;
0 —1 1 0 1 0 0 -1
0 —1 1 Y y’—1 0 1
0 0 1 0 1 1
1 Y” 0 1 0 Y” y’—1

0

1 0

1

We note that 'Y” = Y”, since Y is diagonal. Therefore, in order to f; ((? }1)) # 0, we

assume the rank of the matrix (1 Y,,_1> as mod p (: (1 0

subset of S, (F') by

)) is t. We define S, ;(F) the

Sua(F) = {X € Su(F) | (x) : #:{i | e < 0} =n — 1},

where the notation e; is the same as in the Lemma 3.1. From the discussion above, we have

1 0 1 0 0 ~1
0 —1 1 Y Y"1 0 1 0
ft<(1 X)> =l o 0 1 1 0
0 1 0| Y” Y1 1
0 —1
= w(det Y H|det Y"|* £, ; ! 0 0
Y//—l 1

= w(det Y")|det Y"|7*,

hence the ramified Siegel series can be written as

sar= [ a((§ ) v
= /Sn(F)t w (det Y |det Y| ¢p(—tr(BX))dX.

3.2 Calculation of the integral

Now, we calculate the integral

S(B, s)* = / w (det V) [det Y| * w(—tr(BX))dX, 0<t<n
Sn(F)t
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by using the above theorems. Later we put B = diag(ay7®, -+, a,7"), where o; € 0, and
0<e; <ey<---<e, Fromlemma 3.1, we assume B as this type without loss of generality.

First, we divide the domain of integration by I'y orbits. Each representatives S, . is in the
element of S, (F)" if and only if

(%) : #{i | hy <0} =n —t.
Therefore
SiB,s) = > / w(det Y")| det Y| ~*p(—tr(BX))dX.
ohe(x) Y L0S0h.e

Lemma 3.2. The term w(detY")| det Y"|~* depends only on its I'g-orbit.

Proof. Let X' be a matrix with the same equivalence class as X. Here we write X’ = v X'y
for some v € T'y. We note that I'y C GL,(0). Therefore the two matrices X and X' are
GL, (0)-equivalent.

From Lemma 3.1, since H a; = det Y is uniquely determined by its GL,,(0)-equivalence

;<0
class, we can show the statement of the lemma. Il

Let S, 5. satisfy the condition (x). Let

{Ml,/wa“‘ a/in—t}, pr < po < -vr < fhp—y

be the set of integers p: 1 <y < n such that h, < 0. We define a square matrix Sgw of size
n — t defined by

t
(Sé,%,s) i = <Sg’h’€>ﬂi7Uj ’

Then we note that Y” and S

o,h,e

We denote ¢, pc0(s) = w(det s®

o,h,e

are GL,,_;(0)-equivalent.
)| det SV

—S : .
U,hﬁ] . Using the previous lemma,

SiB,5) = > Conewls) / Y(—tr(BX))dX.

0he (%) LoSo.n.e

Now using Theorem 2.2 when f(X) = ¢(—tr(BX)), we can deduce

1
—tr(BX))dX = ———— —tr(ByS,pt))d
/Fosg’h’g 1/}< ( >) O[(FO;SUJL,&) Fol/}( ( V2o, fy>> v
1
T Al Son ) —tr(B - Sone[)d
a(To; Sopz) FO“ ( hel 7)) dy

CV(FO; Sa,h,a) ‘
We can write the main theorem of this article:

Theorem 3.1. Let the notation be as above. Then we have

gf‘ (B So'ha)
Si(B,s)* = Cohew(s)—=—"T"222
t( ) tha;*) e, ( ) a(FO;SO',h,E)

Here we note that the sum for o, h, ¢ is finite.
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3.3 An explicit formula for the Siegel series

In this section, we give an explicit formula for

Z c B Sahe)
a'hsw F Sghg)

o,h,e
e;<—1

with the notation in the previous section. At first, we assume that w = y.
We put

0 ifk<i, k<o(i)
Coik =1 ifo(i)<k<iori<k<o(i)
2 ifi<k,o(i) <k,
bi(o, B) =min{{e; |i € I;,0(i) > i} U{e; +1]|i€ [;,0(i) <i}},
Bi(A)={k|1<k<i—1, e+ A<0, e, # A mod 2}
U{k!i+1<k<n Br+A+2<0, B # A mod 2},

pia(o; B) = Zme{ek—i-emk—i-/\ 0},

zEIl k=1
0 ei+A >0, #B;(\) : even
(1 — g Hx(=1)FBNATT e X >0, #B;()\) : odd
o kel;lwx ) @ DEREN A= -1, #B,() : even
—q VA (—)FBN/AL e N = —1, #B;()) : odd.

Now we have the following theorem.

Theorem 3.2. The Siegel series Sy(B,s)X associated with the function f, (0 <t < n) is as
follows;

(l)

Si(Bs)X = ay(m)" " Y (1— g )2@ge@ N gl

oeB, I=IhU---UI, Hl:k(qn() a 1)
0.271 n(k):t
(l) n(k) U, 5n<l) —n S’I’L(k) —-n v, v
% Z HX ) g M)—( (B +P1wg 441, ( H Eivotti (
{I/}zl -0 i€l;

o(i)=i
Here the summation with respect to {v}. for k > 1 is taken over the finite set
{(o,v1, -+ ,ve1) €EZ X ZEG | —bi(0.B) <vo+vi 4+ <-10<1<k—1),n (k) =t}

and we put
(o) = #{i € Iy | oi) = i}.

Proof. From Theorem 3.1, we consider

gf‘ (B Sahe)
B S X = Z Co’hEX OFQ,SO—’}L,E) )

o,h,e
el< 1
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where

t) t) |-
Conen(s) = X(det ST, )] det ST, |
— ((—1)65(0) H giﬂzhj<0 h]) _1)05(0) H 6i7TZhj<O hj
h;<0 h;<0
= X<_1)02( )X< )Zh <0 M H X(gi)quhj@hj

h;<0

since x(m) = x(—1). Here we note that x satisfies x(—n) = (7, —m) = 1, and we put
1
(o) = 5#{2 €l|o(i)#1, h; <O0}.

Therefore we have

Si(B,s)* = /S " ft(<(1) ;(1))¢(—tr(BX))dX
— Z /F X (det Y1) |det Y " p(—tr(BX))dX

o,h,e(*) OSU”E

szh <ol gFO(B Sa'hs)

= Z /F c X( )Zh <ohi H X(Q) —(F(]’,S'Uha) dX.

o, h 8(* OSa h,e ei<0

By using Theorem 2.3 and Theorem 2.4, we have

St(B,S)X = Z X(_1>CE(U)X(_1)Zhj<OhJ' H X(gi)qsz:hj<0hj(1 o q—l)ch(a)q—Lngl)+d(a,h,e)
0,h,e(*) h;<0

n —1 n
X H { — T h+ei)HI(—5ivk7rhi+ek) H I(—eivkﬁhﬁe’“”)}

i=1 k=1 k=i+1
o(i)=i

x 971(0)(1 — g~1)meal0) M —r({I) —to{ LD —ealo)=Tio vn(D)
where the summation with respect to (o, h,¢) is taken over all (o,h,e) € A, satisfying the

condition (x).
We replace the sum with respect to (o, h) with (o, I, {v}). Then it follows

Sy(B, s)X = Z X(_1)05(0)2*61(0)(1 _ qfl)cz(v)q*@(cr) Z gDt

ceG, I=IyU---Ul,
o2=1
« § : X(_l)Zhj<O hjqd(gvhve)‘f‘S Zhj<0 hj—=>21—ovin(l)

Vg, U (k)

i—1 n
X ZX 51 H H { €ivi7T)‘l+ei) H](_givkﬂ.)\z—l-ek) H I(—€ivkﬂ'>‘l+ek+2)} 7

1=0 i€l k=1 k=i+1
o(i)=t
where \y = vg+v1+ -+, (I =0,1,--- ,r), and the summation with respect to vy, vy, , 1,
is taken over all (1/0, Vi, V) satlsfylng

(k%) v, > 1, —=b(o,B) <\ <-1 (I=0,1,---,7).

22



Here we also define y(g;)" as

~—

X(g‘)/ _ X(el) (67; <0
' 1 (e; > 0).
Put
Qi (0:B) = quAlUB
€1}
o(i)=t
where

q’L )\l 0— B {X [* EU 7Tel+)\l HI E’/U Wek+>‘l H I —ev 7Tek+)\l+2)}

e= k=1 k=i+1

We note that, when o(i) # 4, &; must be 1 and [, x(&:) = [, ;)= x(&:)-
We conclude

SiB,s) = Y x(~1)E@027a)(1 — g hye@gmal) N i -ted)

o€6n I=IhU---UI,

% Z X(_l)Zh]’<0 hjqd(ovhve)“ ;<0 hi=2i—ovn(l) H H qa)\l(a; B)

V0, 5w (k%) =0 i€l

o(i)=i
where {v;} takes

(xx)" vy, > 1, —=b(o, B) < A, Zn(l) =n—t.

<0
We define
i1 .
Gin (03 B) = Z {X(S),]*(—gvﬂeﬁ/\l)HI(—gvkwek“l) H I(_gvkﬂ.ek—&-)\l-ﬂ)}
e=1,6 k=1 k=i+1

and since 1 € [; we get
gi(0; B AN <0
G (03 B) = l _1) =0
20—q¢ ") (M >0).

We divide the summation with respect to (g, - ,v,) as follows:

r+1

RSP

vp (%)’ k=0 vo+-+rE_1<0
vo+-4uvp >0

Note here that, if vg+ -+ + v > 0, then vy + --- + 1, > 0 for any [ > k, since vq,--- , v, > 1.

The term 2, o h; is

Z hj =mnovo +m(vo+v1) + - +mpea (Mo +vi+ -+ V)

hj<0
k—1
= Vl(nl + -+ nk_l)
=0
k-1
— yl(n(l) n(k))
1=0
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Thus we have

Z X(_1)Zhj<0 hquZhj<0 hj=321—o vin(l) H H qz/})\z(g; B)

vo+--Frvp_1<0 =0 €l
v+ +vE >0 o(i)=i
k—1
= Y x(-1 f;&uz(n<l>—n<k>>qz§‘;olw(sn<l>—sn<k>—n<l>>H 1] ¢ (e:B)
Vo, 3y Vk—1 =0 ’iell
o(i)=i
- > > . 0
X Z Z Z q_Zz:k Vl”(l){Q(l —q )}Zl k€ : (o)
vp=—o++vg_1) Vk+1=1 vr=1

r (]
20— )T g
[[-(a"® —1)

k=1 (W) —p (k) kill/ snD—n sn(k> —n(
« Z x(—1)Zi=0 1 ) g2i=o 1l ) H H q.,,(0:B).

Vo W1 =0 i€l

o(i)=t

(5)
It is easy to check that, when A\; > 0,
- c(l) o
II ¢(osB) = {201 —g "} @

iel;

o(i)=i
where we put
o) =#{ie | o(i) =i}
Lemma 3.3. When we put

n

i1

1
r{:—E min{e + A;, 0} + = E min{e; + A\; + 2,0},
l k=1 et A0l 2k:i+1 A }

N[ —

we have
ql’)\z(J? B) = 20%( )C] Z+2 mln{eﬁ)\m}fl ( )X'

Proof. Now we use the fact that, for v € 0* and k € Z,

1 k>0
I(vm*) = -
(U7T ) {Ozw(vﬂ'k)qkﬂ L < 0.

It becomes

i—1 n
q; >\l g, B = qn Z X —eum eri—/\z) H aw(—svkﬂe’““l) H aw(—gvkﬂek+)‘l+2)
e=1: k=1 k=i+1
ex+X <0 ex+A+2<0
We recall
1 L= qil (k > 0)
I*(vr*) = I(vn®) — 5[(U7Tk+2) = ay(vr g2 —qg b (k=-1)
0 (k < -2)
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Hence

i—1 n
di )\l o, B = qﬁ Z X(g) H aw(_gvk,ﬂ_ek-i-)\l) H aw(—evkweﬁ’\’“)
e=1,0 k=1 k=i+1
erth<0 ex+X+2<0
L—q™! (ei+ X >0)
X
%(—5%‘7—1)61_1/2 —q ' (es+N=-1).

To calculate ¢; 5, (0; B), we use following lemmas.

Lemma 3.4. Fora, € F*(1 <k <r), we define A :={k | orda : odd}. In this situation,

Z x(€) ﬁ%p(éa” — QHaw(ak) #A :odd

k=1

e=1, k=1 0 #A : even.

Proof. From Lemma 2.2, we have ay(da) = (—1)”%a,(a). Hence

> x(@) [ ] ewlear) = T ] evwlar) + x() H%((Sak)

e=1,0 k=1 k=1
= HCWJ CLk H 1)°rda’“aw(ak)
k=1
= (1 - H(—l)ord“k> [T evs(an).
k=1 k=1

Since the term 1 — [],_,(—1)°"% is 2 and 0 when #A is odd and even, respectively, we can
prove this lemma. O

Lemma 3.5. Let a,b € mo. Then ay(a)ay(b) = x(—ab).

Proof. From the Lemma 2.1,

vy (a)ary (D)

= {(a, b).
a (1) vy (ab)
Now the denominator of the left-hand side is oy (1)ay(ab) = 1-1 =1 and the right-hand side
of the Hilbert symbol is x(—ab), we proved the lemma. O

First, we assume e; + A\; > 0. We note that the order of the set

Bi()\l):{]{?|1§k5§i—1, er + N <0, ekgé)\lmod2}
U{k|i+1<k<g, e+ N+2<0, ep )\ mod 2}

is odd. If we fix an element ko € B;(\;), then #B;(\;)\{ko} is even and by Lemma 3.5, we give
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i—1 n

an (0 B) = (1=¢ g 30 ) J[ awl-enns™) [ ap(-eun )
e=1,0 k=1 k=i+1
ex+Ai<0 ekt N+2<0
=2(1—q g [ awl—uvm)
kEB;(N\)

=201—q )g" ] ew(umt ) oy (—ugm ot
keB;(A)\{ko}

=2(1 — ¢ N ix(—)FFMZTT x(o)ay(—vg, ™)
A

=2(1 — ¢ g ix(=)FFAET () T ()
keBi(\)
We use auy(— gm0t = x(—vy, )ay, (), since ey, + A; is an odd number.
When e; + \; = —1, we can similarly calculate as
qi,)\l (07 B)
2qr;—§x(vi)x(_1)[#Bl-(xz)/2]+1%(7r) H X(ve)  #Bi(\) : even
_ keB; ()‘l)
2q" Iy (—1)FBO/A+ H X (vg) #B;(\) : odd.
keBi(\)
Therefore,

Gin (0, B) = 200 (m)g e mintert Al | (B
and the lemma holds.

From (4), (5), and Lemma 4.1, It follows that

Si(B,s) = Y x(~1)E@27a@) (1 — g hye@gma) N g -ted)

ceS, I=IpU---Ul,
o?=1 n(k) —¢

r (]
{2(1 —_ q_l)}Zl:k Cl (U)qn(k)
[L—i(q® — 1)
x Yy (1) Tt 1O =n) pdoe S+ T m((sn®—n)—(sn®—n(k)))

Vo, V-1

k—1
'+ 1 min{B;
< TT T 20(marstemnenote,  (B),,

1=0 i€l
o(i)=t

X
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hence we have

T (1)
n— —1\eca (o) ,—c2(o (I L V) —t(o AT 1— q_l 2k ci (U)qn(k’)
Si(B, s)X = ay(m)"" § :(1 — g )R ge) E : g~ T 4 € _ ) —
oE6n I:I%...UIT Hz:k(q - )
o°=1 n(F) =t

k—1
v (nW=n®) 1y ((sn®—n —(snF)—p Olunt-eduy (O
> Z HX(_l) d ) g\ M)—=( (D) +P1ug 441 (03B) H Eiotin(B)y

1}, 1=0 i<l
o(i)=t

To show the main theorem, we recall

n o(i)—1

i—1
d(o,h,e) = Z { min{h; + e, 0} + Z min{h; + e, + 1,0}
k=1

0%31% k=i+1
+ Y min{h + e + 2,0}}
k=0 (i)+1
= Z Z mln{hz + ep + €o,i,k> O}
051% ki,0 (i)
and
k—1 |
d(o, h "+ —min{e; + )\, 0
(o, h,e) +Z Z (7’2—1— 2mm{e + N, })
1=0 i€l
o(i)=i
1 k—1 n 1 T n
=3 Z Z Zmin{ek + AN+ €50k, 0} + 3 Z Z Z min{e; + A\ + €5%, 0}
1=0 iel; k=1 I=k i€l k=1
o(i)#i
k—1
=> pixnl(o;B).
1=0

4 The action of the intertwining operator

In this section, we first recall the calculation of the matrix of the intertwining operators
when n = 2. We use this method to compute the matrix ES where 1 < n < 8 by using a
computer algebra system, PARI/GP. Moreover, we write down the eigenvalue and eigenvector
of the matrix where 1 <n < 8.

We define an intertwining operator M) : I, (w, s)' — I,(w,n + 1 — s)°¢ by

n

MEN(f) = /X . (F)f <wn ((1) )f) g) X,

We can give a matrix representation of the linear map Mlsf) as
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MG [0 f0 o 0] = [ g ] (BO))

where B = ((BS)ij)0<ij<n is a square matrix of size n -+ 1.
We can write down as

M@(U?f](s) = (ET(LS),w)Ojfén—&-l—S) + (E(S),w)ljfl(n+l—s) 4t (ET(LS)”w)TLjfr(Ln—Fl_S)‘

n

The value of the above function at g = wj is

ME) £ (wy) = (EL)y,

n

therefore the value of intertwining operator at w; is the entries of the matrix ES.
When n = 1, we give the representation matrix of the intertwining operator as

s), O 1
B = (X(—l)q_1 0) '

In other words, the intertwining operator M satisfies the following two equations.

M) = x(=1)a " 17,
M,L(US)fl(S) — (52_5)‘

1

Here if we fix a complex number 3 that satisfies 32 = y(—1)q¢ !, the above two equations equal
to

MO + B = B + 8,
MO = BFY = =B = BFE)).

Hence the functions fy £+ S f; can be seen as the eigenvector of the intertwining operator, and
the eigenvalue is +0.
When n = 2, the representation matrix is

—2s

X(=Dg ' —q )it 0 1
BN = 0 X(—1)g 0 :
q° 0 X(=1)g ' (1= ¢ ") ===
and we can calculate the eigenvector as above. Each eigenvector and its eigenvalue are
—25—1 —2s+1
(fo + 81+ 5 fa, 5211__61?) > (fo — B¢ fo, —5261111_}?) :
(s)x

We note that, for example when n = 1, the representation matrix E,”* is written as

wx (1 1\ /(B 1 1\
& —(5 _5)( —ﬁ) (ﬁ _5) |

Therefore the information of eigenvectors and eigenvalues derive the matrix of the intertwining
operator.

Remark 4.1. The definition of 5 depends on the definition of y, which is a fixed one of two
ramified characters. Since this situation is an inconvenience, we define a character y = x, and
a complex number 3 = [, as follows:
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4.1 The Weil representation on the finite field

Let notations as above. We write [F, as a finite field with ¢ elements. S(F;) denotes the set
of the Schwartz functions over F,. Let Sp, = Sp,,(F,) be the symplectic group over I, of size
n. The Weil representation w,, is defined as

wy 1 Sp,(Fy) S(IFZ)
is defined as
wy(m(A x(det A)®(vA), A e GL,(F,),
wy(n(B))®(v) = w(vBt )®(v), B € Sym,(F,),
wy (W) P(v) = G"FO(—v).

Here the unitary Fourier transform F is defined as

Fo(v) =Y O(v)yp(2y - 'v)

yeFy

and the Gauss sum Gy, is defined as Gy, = Z Y(2?). We define the matrices m(A) and n(B)
x€F,

by

m(A) = (g‘ tjl) . A€GL,(F,),

n(B) = (10" ﬁ) . B eSym,(F,).

Let P C Sp,, be a Siegel parabolic subgroup. We define the space of induced representation
as

IndP"x = {f : Sp, = C | f(pg) = x(det A) f(g), p = m(A)n(B) € P}.

For each Schwartz function ¢ € S(F}), the function g +— wy(g)¢(0) is an element of the space
of induced representation, i.e.,

Dy : S(FT) — IndyP"x
¢ [g = wy(g)p(0)].

Let ¢g be the characteristic function of {0} and let f be the image of the above map wy, : in
other words, f(g) = (w ( )o)(0). This f plays an important role in Ind" » "X, since it is in the
set (Im ww) X, Since w, := Im Wy is the function of the even function, this is an irreducible
representation. Also we note that since the Hecke ring H(P\Sp,, /P, x) is commutative, the
dimension of (Im &,)"X is at most 1.

We conclude that this f generates this P, y-invariant subspace.

Let w; be an element of the Weyl group
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and we want to know the value of wy(w;)po. We consider the inclusion Sp; < Sp,, as

1n—i

A BY _, A B
C D Ls

C D

From this inclusion, the space S(F7) is written as S(F;~*) ® S(IF}), and ¢g = o @ ¢l We

(n) (n—1) (n—1)

also note that wy, = w,” =w,” "~ ® w(l and w, " trivially acts on gb(()”_i), thus we have

wi(wi)on(0) = w,) (w:)of (0) = G

From the fact that the Gauss sum is equal to 3, ', we conclude that the function fa = fo+
Bofi+ -+ By fn gives an eigenvector of the intertwining operator (i.e., an idempotent element
of the Hecke ring).

4.2 The case where n =2 and w =y

We recall the calculation of the matrix of order 2. We wrote this method in our previous

paper.
Now, we define some notations which the same as [16].
Let a; (i = 1,2) be simple roots of the Lie group G = Sp,y(F');

Q1 = T1 — T2

Qg — 21’2.

We denote by ¢ : SLy(F) — G the corresponding homomorphism of «. That is, for A =

a b o put
c d) we pu
bay (A ( tA 1) L012

o ().

Let B, be the Borel subgroup of Sp,(F), i.

and we set

—_
CD

* %
By — 0 =*

€ Spy(F)

* K| *x %
* O % %

The space of the induced representation Ind% (x| - |, x| - |®2) is the space of C* functions
on ( satisfying
f(bg) = x(ar)|ar|"***x(az)]as|*** £ (g)
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ap  * * *
a * * .
2 —T € Bs. We consider that

for any b =

Io(x. 8) € Indg, (x| - 1”72, x| - "2,
We define the intertwining operator
M, = M(w, x) : Inde(X) — Inde(Xw)
by
M, f(h) = / Flwnh)dn
NonwNy w1

where Ny and N, denotes the unipotent radical of B, (resp. of the opposite parabolic subgroups
of Bg)
Then for f € Ind$ (),

artwoon = (7 5 ) )

as a function on SLy(F). We note the fact that when I(w;)+1(w2) = (wiws), My, My, = My, w,-
According to the above notations,

—1 1
B, | 1 Bo —1
wy;T = -1 ) Wy~ = 1 )
1 1
and we put
1 —1
By ._ ,.,B2, By __ 1 By ._ ,.,B2, By __ -1
1 1
1 1
By ._ ,,B2, B2, By __ —1 By ._ ,.,B2, B2, By __ —1
ws? =Wt wytwyt = , Wt = Wy twy Rt wy = 1 ,
—1 1
1
By ._ . B2, B2, By By __  Bos Bs By By __ 1
wr? = W wy W Wy = wytwywywy =
—1

The Weyl group of G is defined as W := {w? | 1 <i < 7} U {w? = 1,}. Next we define the
function f”X(0 < ¢ < 7) by satisfying its support has Byw??B, and f>X (wZBQ) = 1. The

function fiBQ’l are similarly defined.
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1 — —1
Put ¢° = X, x(=1) = n, and f(s) = ] q_ . We define the square matrices A(s) and
— q S
B(s) of size 8 by

/ Ba,x I X ! Ba,x
fi (wz (0 1) g) dX =" fPX(g)(A(s))y
Sme(F) 7=0

/ Ft (w2 (1 i 9> dxX = ifo’l(g)(B(S))ij-
Symy (F) 01 3=0

Because ¢}, (M (w, x)f) = M (<(1) —01) ,LZX) (12 f), we can easily calculate the entries of
A(s) and B(s) by using the entries of Efs)’x and Efs)’l;

0 1
0 1
ng! 0
0 1
A(s) = 7761_1 0
0] |1
ng! 0
ng| |0
and
Xf(s) 1
qg '] f(s)
Xf(sz
B(s) = q | f(s) o N
g '] f(s)
Xf(s) 1
g '] f(s)

When we consider

1

Ly(x,s) € Ind§, (x| - [*72, x| - [**2)
MS;%)

Indf, (x| - =72, x| - |7*72)
Ml(ff)
Ind§, (x| - 772, x| - [*72)
(s—3)

Moy

md$, (x| - |77, x| - [7*2) D L(x, —s)
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the matrix representation of the intertwining operator is A(s+3)B(2s)A(s—3), thus we calculate
the matrix E2? = A(s +1/2)B(2s)A(s — 1/2).

X2f(2s)ng™t - 1y 0 0 11
gBe _ 0 X?f(2s)ng " -1a mg 'y 0
? 0 ng?- 1y f(2s)ng™" - 1y 0
g - 1y 0 0 f2s)ng™" - 1,

Lemma 4.1. The following three equations hold;
o= g0 152
h=0R+ 2+ 2+
fo= [ + [T2.
Proof. We show the first equation. As the space of the induced representation according to By is

spanned by the function {2, there are some ¢y, ¢; € C such that fo = cof2?+c1 f2. Considering
the value at wg? and wP?, it is obvious that ¢y = fo(we?) = 1 and ¢; = fo(w?) = 1. O

Now we can calculate the matrix ES™™.

ME) fo = ME)(fo* + f17*)
= (X?F@s)na~ " fo? + a2 ) + (X2 (2s)ng P2+ a0 f77)
= X2f(28)ng " fo+n*q > f

—2s
_ _ q _
=x(-Dg (1 -q¢ ") —— salota *fa,

1
and
ME) fr = ME) (72 + 2 + f12 + f272)
= (X?F@2s)ng " 32 +ng 2 f02) + (X2 F(28)ng " 32 +ng > f2)
+ (f2s)ng ' 72 + g 132) + (F2s)ng  f22 +ng ' f372).

Here we note that

) ) - - - 1— q—1—2s
X2f(2s)ng™" +ng”" = f2sng™" +ng™" = x(=1)g = g%
and we get
B 1 q—1—25
Mt(usz)fl = X<_1)q ! 1 q72s fl'
Finally,

ME) fo = ME)(f2 + f72)
= (fs)ng ™" [ + f2) + (f(2s)ng ™" f72 + f1)
= f(2s)ng~" f2 + fo

XD =g e+ fo
In conclusion, we get the following theorem.
Theorem 4.1.
X(=1)g (1 = ¢ i 0 1
B = 0 NG — 0
g’ 0 X(=D¢ 1= )=
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4.3 The case where n =2 and w=1

When we calculate the matrix £5” when w = 1, we have

Theorem 4.2.
“25(1—¢ 1) (1— —s=3 —st+3 —2
a a a g ""2(1-q"?)
1 1 1
(1fq‘2$)<17q’5+?) 1-¢—°Fz2
<3 _ _ _ 5 _ _ _ 3
E&L _ a* 2(—g ) q 3l 4q 25:7(1—2(1 11)—q St(2—g"")+q2 l—q’l1
2 1-g~**2 a2 (1-g7*+2)(1-g2%) 1-q~*%2
_s_3
-3 1—q—2 (1_‘171)(1_‘1 ) 2)
q T T
q(l—qﬂ*?) (1—g—2) 1—q75+5)

Remark 4.2. The calculation of (1, 1) entry (the center) of the matrix Eés)’l is mistaken in our
previous article; The above calculation is true.

4.4 The programming code of calculating the intertwining operator

By using the method of calculating the intertwining operator when n = 2, we can com-
putationally calculate ES™ when n is greater than 2. We note that the order of the Weyl
group associated with the Borel subgroup W, is 2" x n! and the number of multiplying rank 1
intertwining operator is n(n + 1)/2. We have to multiply matrices (sparse matrices) of too big
size many times.

We note that the Weyl group W, is isomorphic to &,, x {+1}", known as the signed per-
mutation group. Later, we explain the case where n is 2. The generator of Weyl group, wf? 2

Bo - - .
and wy? is identified as

1 2 1 2
wf2<:>01:<2 1>, w232<:>02:<1 _2).

In general n, the generator of signed permutation group is (1 2),(2 3),---,(n — 1 n), which
correspond to short roots, and (n — n), which corresponds to the long root.

Next, we translate the matrix A(s) and B(s) into the word of the signed permutation group.
For w,w" € W, it follows that

(1 w' = whw, l(ws?w) > 1(w)
(A ww = { X(~D)g" ' = wpw, I(wyw) < I(w)
L0 otherwise.
4 1 - —1
q’s1 q_ w' = w, (wPw) > 1(w)
q S
1-— qil

w' = w, (wPw) < I(w)

w' = wPw, (wPw) > 1(w)

w' = wPw, (wPw) < l(w)

otherwise.

Thus the calculation of A(s+ 1/2)B(2s)A(s — 1/2) is equivalent to taking the finite sum

(A(s+1/2)B(2s5)A(s — 1/2))wuw = Z (A5 +1/2))wwa (B(25))wa,ws (A(s = 1/2) ) -

Wa,wgEW2
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We also note that, in the matrix A(s), (A(S))ww = 0 unless w’ = w?w. In B(s), (B(5))ww =0

unless w' = w or w' = wP?w. Therefore the summation with 1w, wg is running over

B
_ Bs _ wl wO“ ! Bo
Wq = Wy "W, ’U]g— w W = Wy "Wq-
s

We identify the Weyl group and the signed permutation group. Each w € W5, corresponding
signed permutation o, is charactered by o,(1) and 0,(2) since o,(—i) = —o,(i). Later we
only consider the sequence (0,(1),0,(2)). Their sign is arbitrary, and without their signs,
(0w(1),04(2)) is an permutation of {1,2}.

The following is elemental.

+1 is located on the left side of +2,
l(w?w) > l(w) < { —2 is located on the left side of —1,

the sign of 1 is + and 2 is —,
l(wH?w) > I(w) < the sign of 2 is +.

Br
n—1

B2

In general n, the short root w?", - wP, satisfies the same length condition as w! and long

root wBr satisfies the same as ws”
4.4.1 The motivation of programming

We can construct the programming code to calculate (A(s+1/2)B(2s)A(s—1/2))y .. Here,
we use PARI/GP because it is easy to handle rational functions.
First, we define some notations. X, (), Z is defined as

X :q—87 Q =q-z, Z:X<_1)

Storing data of the signed permutation &,, x {£1}" is a little difficult.

=

e Storing data as the permutation of order 2n (Identified —1,--- | —nasn+1,---,2n)
= 0, satisfies o, (n + 1) — 0, (i) = £n (1 <i < n) and writing this condition is difficult.

e Storing data as the sequence of length n
= Checking whether the sign-missing sequence is in &,, or not is difficult, and writing this
condition that the transposition (each short/long root) does not move signs is difficult.
For example, if 0, (1) = —i and wy = (i i + 1), we easily show oy, (1) = —(i +1). If
0w, (1) = i, then 04,4, (1) =i+ 1 and we have the data of wy contain ¢ — ¢ + 1 and
—i+— —(i+ 1). It is inconvenient.

Therefore we separate the information of signs and permutations, i.e., identify W,, as &,, x {£1}"
as sets. (The group structure of permutations is preserved).

In PARI/GP, Vecsmall [ay, - - - ,a,] represents the permutation Loeom € S,,. Vec-

1 ... an
small can be seen as vectors when there is no multiplying. If we use the inner product, we
should use Vec. In this case, we also use Vecsmall to store the signs’ datum. In the vectors of
the datum of signs, 1 means the sign is +1, and 0 (not -1) means the sign is —1.
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4.4.2
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The example of code when n = 2

Listing 1: The calculation of intertwining operator

search(q,i)=for(j=1,2,if(q[jl-1i, ,return(j)));

change2(q,i)={

if (i==1,

Vecsmall([1-q[1],q[2]]),
Vecsmall([q[1],1-q[2]])

);
};

E2p(al, a2, bl, b2, n) = {

local(x);
x = 0;

for (il

AO
pl
ql
Al
p2
q2
A2

=0, 1,

Vecsmall([al, a2, bl, b2]);
Vecsmall([AO[3], A0[4]]);

change2(pl, search(A0, 2));
Vecsmall([AO[1], A0[2], q1[1], q1[2]1]);
Vecsmall([A1[1], A1[2]]1);

if (i1 == 0, p2, Vecsmall([2, 1]) * p2);
Vecsmall([q2[1], q2[2], A1[3], A1[4]]);

if (A2[3] + A2[4] == n,

);
);

Q1 = if (AO[search(A0, 2) + 2] == 0, 1, Z * q"(-1));
Q2 = if(i1 == 0,
if (search(Al, 2) > search(al, 1),
if (Al[search(Al, 1) + 2] == 0,
X*xqg2x (1 -q9°(-1))/ (1 -X%*qg°2),
1 - q”(—l)) / (1 - X % qA2)
if (A1 [search(Al, 2) + 2] == 0,
(1 -q9g(C¢1D)/ 1 -Xx%q2),
X*x g2 (1-q9°(1)/ L-Xx*qg°2)
);
)

if (search(Al, 2) > search(al, 1),
if (A1 [search(Al, 1) + 2] == 0,
1,
q~(-1)

if (Al [search(Al, 2) + 2] == 0,
q~(-1),
1
);
);

);
Q3 = if (A2[search(A2, 2) + 2] == 0, 1, Z *x q~(-1));
X

=x + Q1 * Q2 * Q3;

return(x) ;

};

E2(m,n)={

ri=if (m>=1,1,0);
r2=if (m>=2,1,0);
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55 E2p(1,2,r1,r2,n);
56 };

There are many conditional branches and nested if statements. There must be a more concise
code, but we don’t know. However, it is easy to extend this code to the case n > 3, and then
we can calculate the intertwining operator for the case n > 3 this way.

We will write the meaning of the above code.

e line 1: search function
In this function, ¢ is some vector whose length is two or more, and 7 is 1 or 2. More
precisely, we consider the case where {¢[1],¢[2]} = {1,2}. j runs 1 to 2 and if ¢[j] = 1,
return the value of j.
Hence this function gives where the number ¢ is in the vector q.

e line 3-8: change function
In this function, we consider the case where ¢ € {0,1}? and 4 is 1 or 2. The i-th element
of vector ¢ changes from 0 to 1 or 1 to 0.

e line 10-50: main function
In this function, we calculate the value

D> (A(s+1/2)B(25)A(s — 1/2))

w’: rank n

where (aq,ay) is sign-missing permutation of w and (b, by) is the sign of w. We describe
this main function more precisely.

— line 11, 12, 46, 49: the summation for each w,
x is declared as a variable and since x = x + Q1% ()2 x ()3 this term is added. Return
the total sum z.

— line 15-17: Change the sign corresponding to the number 2, i.e., change +2 to —2 or
—2 to +2.

— line 18-20: if il = 0 (¢ wy = w,) then nothing happens, if i = 1 (& wz = W w,)
then the number 1 and 2 changes.

— line 21: We note that the rank (of the lower-left 2 x 2 matrix of modulo p) equals

the number of the signs of +. Therefore, we determined that 0 means the sign —. In
line 21, we take a sum if the rank w’ is equal to given n.

— line 22-46: the value of A(s) or B(s) is calculated. In the term of @2, it is difficult
for us to write the condition down shortly whether I(w{w) > I(w).

e line 52-56: the calculation of the (Eés)’x)mn
In this function, the initial value a;, b; is fixed. We fix a; = 1 and ay = 2, and we choose
a non-negative number r; + ro = m. In this function, we get

(0,0) if m =0,
(r1,m2) = ¢ (1,0) if m=1,
(1,1) ifm=2

Therefore we can calculate the (m,n)-entry of the matrix.
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4.5 The matrix of the intertwining operator of n < 8

In this section, we calculate the intertwining operator and write the eigenvalues and eigen-
vectors of the matrix when n < 8. We calculate these matrices with PARI/GP. When n > 9, it
is difficult to calculate with our computer because of working too much time.

Here we write the function a; fo + anBofi + - -+ + @iy fn as a0, ain, - - - , ain) and the eigen-

vector of the intertwining operator as e(()"), e&”) o ,e%n) . The corresponding eigenvalue of el(-n)

)

is written as A For example, when n = 1,

Aél) =B, e(()l) = [1,1],
MY = -8, e =11, -1].
and when n = 2,
—2s5—1
2 _ m2l—q @ _
)\0 _6 1_q_28 ) 60 == [1,1,1],
—2s5—1
@ _ pl—q @ _
/\1 ﬂ 1_q—25 ’ € = [17_171]7
B 51 _ q2571
>\52) = B2q 2 ﬁ? 652) = [Q707 _1]
—q
(i) n=3
e =11,1,1,1],
e =[1,-1,1,-1],
) =1 — ¢ q' — ¢~ + q,—* + 1],
) ="~ —d'+ ¢~ + ¢, ¢ —1].
We note that, when [a;, a;1, -+ ,a:,] i an eigenvector, then [a;, —a;1, -+, (—1)"a;,] is

(n

also eigenvector except for eg:b). Later, we will not write e ) when i is odd.

(i) n =4
el =11,1,1,1,1],
4
S =1+ — P —q, - — 1],
4
eV =" —q40,—¢* + ¢%,0,8* — 1].
(iii) n =5

e =1[1,1,1,1,1,1],
5
S = - - -+ - =+ =+, — + 1],

5
& =" = = ="+ P+ = — 1),
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e =1,1,1,1,1,1,1],

e =" " - -+ - -+ - -+ -+,

ey = -+ +1),¢° —¢"°,¢" =" ="+ =+ 4", - + ¢,
"+ -+ + = = (- D)+ + 1)),

e’ =[0"—¢",0,—¢" +¢%,0,¢"—¢°,0,—¢" + 1].

el =11,1,1,1,1,1,1,1],
ey’ =[¢"—¢"¢" ¢ ¢" —¢" - +¢¢"° ¢ — "+ ¢,
- -+ - -+ - +q,—q +1],

= [¢"(" = (" = 1),¢"(¢" = 1)(¢° = 1), £13(q), {3 (),
11(a), £i5(@), ¢*(@* = 1)(¢° = 1), <q6—1>< T 1),
=[¢"*(¢ = D(¢" = 1),¢"(q = D(¢" = 1), =¢" (¢ = 1)(¢" = 1), —¢"*(¢ = 1) (¢ — 1),
(g —1)(¢" —1),¢" (¢ —1)(¢" - 1), —q3(q -1’ —1),—(¢" = 1)(¢" = 1)],
where
3@ =@ D@D+ +d° — ¢ - 1),
£190) = (¢ = V)(@* - (@ - ¢ - 1),
A1) = =@ - 1)@ - D)@ +q-1),
1) = —a" (g - D)@ -+~ —q—1).
(vi) n=28

el = [1,1,1,1,1,1,1,1,1}
(8)

e’ =1q"—q",q" —q ¢ —q° - q7+q6 "¢ -+ d" - -+,
-+ - -+ - +q, -+ 1],
e = [g%(¢" + 1)(¢" — 1),¢"(¢" —
= -+ 1), " - -+ 1), 1), (¢" = 1)(¢" - 1)),
e) =[a"(¢* + 1)(q* +1>< — 1,67 = 1),¢" (¢~ 1)(¢" —¢* — - 1),
—¢®(* = 1), —¢" (¢ — (@ +1)(¢* = 1),¢"(¢* - 1),
¢°(q — 1)(q" +q +¢*—1),—¢*(¢" = 1), (> + D) (¢* + 1)(¢" — 1)),
e = [¢"(¢° = 1)(¢" = 1),0,—¢" (¢ — 1)(¢> = 1),0,¢"*(q — 1)(¢* — 1),
0,—q"(q — 1)(¢° = 1),0,(¢° = 1)(¢" — 1)],

where f{%(q) = ¢3¢ — 1)(¢® — ¢* — 2¢* — ¢* + 1).
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Each eigenvalue is calculated as follows. When n = 2m is even, i.e. n = 4,6, and 8, we
define for each 0 < i < m,

km;ll(l o q—2s+1—2k) . H;n:l(l o q—28+2m+1—2k)
(1 _ q72s)(1 _ q72572) - (1 _ q72572m+2)

A& (_l)mﬁngQmi—iQ I1

)

IN

thus A*™ is the eigenvalue with respect to eigenvector e5™ (0 < i < m) and e57)(0 < i
m —1).
When n =2m + 1 is odd, i.e., n = 3,5, and 7, we define for each 0 < i < m,

)\(2m+1) _ (_1)m52m+1 2n;z<1 . q—23—2k) . H?:l(l _ q—25—2m—2—|—2k)
0 (1 — g 25t1)(1 — g 2513) ... (1 — g~ 2sH2m1)

)

thus A®™ is the eigenvalue with respect to eigenvector e>™(0 < i < m) and —A*™ is with
(2m)
€2i4+1-

5 The functional equation of the Siegel series

5.1 The functional equation of the Whittaker functional

Let Q € Sym, (F) satisfying det Q # 0. For each Q, we put Dy = (—4)"/? det Q. For
0 € F*/F** we define the character xy by xs(z) = (8, z). Let a(z) denote the Weil constant
ay ().

For a character w of F* (we may not assume that w? = 1), we write £(s,w, 1) and L(s,w)
for the € and L factor of w, respectively. We also use the notation

L1l —s,w™)

g'(s,w) =€'(s,w, ) = e(s,w, ) L(s, )

We denote by ng the Hasse invariant of the Clifford algebra (resp. the even Clifford algebra)
of @ if n is even (resp. odd).

Lemma 5.1. Assume that the matriz Q) is equivalent to the diagonal matriz diag(qi, ga, -+ , qn)-
If n=2m+1 is odd, then

nQ = <_17 _1>m(m+1)/2<(_1)m7 det Q>5Q‘
If n =2m is even, then

no = (=1, =1)mm=D2((_1)™H det Q)ep.

Here ¢¢ is defined as eq = H (9, qj)-

1<i<j<n

For ® € S(Sym,,(F)), the Fourier transform & is defined as

B(x) = /S o Ry
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Here, dy is the self-dual measure for this Fourier transform. From the prehomogeneity of the
space Sym,,(F'), there exists a meromorphic function cg(w, s) which satisfies

/ (X )wo(det X)| det X[~ dX = 3 eqlw, ) / B(X ) (det X)| det X|*dX
Sym,, (F') Qeo Va

where O is the set of open orbits of Sym,,(F') under the action of algebraic group GL,,, and Vg
is the open orbit containing Q.
We define degenerate Whittaker functional Whp as

MO f(g) = / , fwn(@
ym,

Whp(s)f = f(wnn(x))ip(tr(Br))dr.

Sym,, (F)

It is well known that these integrals are absolutely convergent for Re(s) > 0, and they can be
meromorphically continued to the whole s € C.

Theorem 5.1 ( [15] Lemma 3.1). The following functional equation of the Whittaker functional
holds.

Whg(—s) o 15;1) = w!(det B)| det B| *cp(w, s)Whp(s).

Theorem 5.2 ( [15] Theorem 2.1). If n = 2m + 1, then we have

co(w,s) =€'(s —m,w) ™! He’(23 —2m — 1+ 2r,w?) ™

r=1
—9ms m(2m+1) _m
X |27 w T (4.
If n =2m, then we have
1 m
co(w,s) =€'(s—m+ §,w)’1 Hs’(2s —2m + 2r,w?) !
r=1
m(2m—1) a(D 1
% ’2|72ms+ : 1 7m(4) ( Q>5/<8+—,WXDQ).

2
We need some lemma relating to &’-factor.

Lemma 5.2. When w is a character over F* and 1 is an additive character of order 0, we
have
q(%’s)%’(%,w,@b) w : ramified,
g (s,w, ) = 1—w(m)gs
1 —wHm)gs!

w : unramified.

Here ¢ denotes the conductor of the character w.

Proof. This lemma is well-known for the theory of L-factor and e-factor of the local zeta integral.
See [35]. O

We note that, when y is a ramified character on F'* which satisfies x> = 1 (and ¢ is odd),
the conductor c¢ is equal to 1.
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Lemma 5.3. When w = xy and s = %, the value of €' -factor is represented by Weil constants

as follows:
/ 1 _ adl(l)
€ <§7X97w) - aw(e)

Proof. By taking the residue of Lemma 1.3 in [15], the statement holds. O

From the above lemma, we know that & (%, X, ¢) = ay(m)x () since x = Xx-

5.2 The functional equations

Later each function f; = ft(s) is taken in the space I,(x,s)l"X. We write the function
15 = o as f57 = 3200 84S Then
Theorem 5.3. The functional equations of the ramified Siegel series are written as follows:
(1) If n is odd,
g4 (1 — g2

—s s> ey (1 B q28 2><1 s
WhB(_S)fé )= X(—Dp)npg* =t A= =1 —g o). (1= q2sn+1)WhB<3)fﬂ( ),
(2) If n is even and ) e; is even,
s . 28 1 1— 23 3Y... 1— 2s—n+1 s
WhB(_S)flé ) — queJ ( )( ) ( q ) WhB(s)fé»)

(1 q—23 1)(1 q—2s 3) (1 _ q—25—n+1)

(3) If n is even and ) e; is odd,

Why(—s) £ = g*(CertD) 1— X(—DB)qfst% (1— g N1 —g>3)- (1 — g ")
B — x(=Dp)g=: (1 —q° 23 D1 —q23)... (1 — gz nt)

Whp(s) f5.

We show the proof of the functional equations later.

Definition 5.1. We define the function F(s) = Fg(s) as

' Whi(s) f5” '
(1—q22)(1 — g 254)... (1 — g~ 2sn1) n is odd,
Wh(s) £
F(s) = B(s)f nis even and > 7, e is even,

(1—g 21— q—25—32 (1= g B
(1= x(=Dp)g~")Whi(s) fs”
L (1 _ q*QS*l)(l _ q72373> . (1 _ q72$7n+1>

Then the functional equation is written as follows:

nis even and Y ;_, ey is odd.

nex(—Dp)¢* k=1 4tV F(s)  n is odd,
F(—s) = ¢°Zk=1%F(5s) nis even and Y, _, ey is even,
Pk et F(s) n is even and >, _, e is odd.

Later, we further define the function F(s) = Fi(s) as

2 Zk=1 D P (s)  n s odd,
F(s) = q2 k= % F'(s) nis even and Y, _, ey is even,
Xkt D F(s)  nis even and Y_p_, ey is odd.
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5.3 The proof of the functional equation

In this section, we are going to prove Theorem 5.3. First we have to prove the following
lemma.

Lemma 5.4. The function fz = fés) satisfies

| [n/2] 1 — —25—n—1+24
S S
M =65 1] <=

=1

(=s)
—25+n—21 f :

q

Proof. We consider the following intertwining operators of rank 1, in the same method as n = 2.

3 -1
L(x.s) © Ind§, (x| - "2 x| - [ "2 x| 7))
DR
n—1 n—3 n_3 -
Indgn(X’ . ’LT,X‘ . ’877’ e ’X’ . ’SJFT?X‘ ) ’,sz)
M’L(U27f+? 2)
n—1 _n—3 _ _;1 ns
Indg, (|- 772 x| 1775, X 7 )
ngj215>
n—1 _n—1 nes ns
Il’ldgn(X| ’ |_S_n2 7X’ ’ |S 2, 7X‘ . |5+n2 7X| . ‘5+ 2 )
M(n—l,s—%)
s n n—3 n—1
Ind, (x| |75 x| R ),

We note that the space I,,(x, —s) is contained in the space at the bottom of the table above.
Here notations are defined as

e B,: the Borel subgroup of Sp,, (F).

. w : In this section it means the generators of the Weyl group, which corresponds to the
sunple root a; = x; — ;11 (1 <i<n-—1)and o, = 2z, (i = n); in other words,

(1 ifj=kandj#ii+1l,n+in+i+1

Buy., — 1 ?f (j,k) = (z.lel,z),(n—H.—i-l,?ThLz) Q<i<n_1)
-1 if (j,k)=(,i+1),(n+i,n+i+1)

(0 otherwise.

(1 if j=kand j #n,2n

G k) = (2n,n)

—1 if (j, k) = (n,2n)

L0 otherwise.
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We can show that

wir - wpmwht - wlrowin wh - (wfrwPr - wl)
(=1
1
B -1
- S
—1
1
and that the determinant of the lower left block is
(_1)n—1
B 1 2 I ) B [g] o
det . —sgn(n N1 ... 1) (-2l =1.

e Indf (x||", -, x|-|™): the space of C* functions on G satisfying, for any b = (b;;) € B,

F(bg) = x(b1)[baa [ X (byn) b " 1 £ (9).

. Méz?Bn) = ]\7&‘? the intertwining operator induced by that of rank 1, which corresponds
to the element w; of the Weyl group.

e M(n,s): the intertwining operator I,(x,s) — I,(x, —s) with respect to the Borel sub-
group.

Hence we have

M(n,s)=M(n—1,s— E)M(QS)M(%H) e ]\7(2”"_2)]/\\42(”?”771).

2 w1 w2 Wn—1

Let Ai(s) = (Ai(S)ww )wwew be the square matrix of size 2" x n! representing the operator
va‘i) As in Section 4.4, we have

( e
q_s1 — w=w, H(wPrw) > 1(w)
1-— q_lq B
— w' =w, l(wy"w) < l(w)
(Ai(8))wr = 4 174 (1<i<n—1)
1 w' = w’mw, l(w’mw) > l(w)
g ! w' = wlw, l(wlw) < l(w)
L0 otherwise,
(1 w' = wBrw, [(wPrw) > 1(w)
(An(8)ww = § x(=1)g (= F) v =wiw, l(wi"w) < l(w)
L0 otherwise.
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For each w € W, we define the rank of w (different from the usual meaning) as the number
of the long root w?" contained in the minimal representation of w. In other words, when we
write w € W as the element of signed permutation, the rank is equal to the number of the set
{i]1<7<nw() <0}

We define the vector v = (vy)wew as v, = B2, (Note that this vector v corresponds to
the function fz.) We consider this vector v as a column vector. Then it follows that

Ay(s)v = 11__%@ (1<i<n—1), A®) = Fow. (6)

In other words, the vector v is an eigenvector of all A;(s). We prove this equation (6). First,
when 1 <i <n —1, we fix an element w € W. Then

w'eW
—S 1 — qil 3 B'n
T (V)w + 1 (V) i Hw™w) > l(w),
= o
T (V)w + ¢ (V) w0 if [(wPrw) < l(w).

Since w?" is a short root of the Weyl group, the rank of w”"w is the same as that of w. Hence

. T e+ 1 L) > i),
l ’ 1 : Z_s (1) + ¢ (V) if [(wPw) < l(w)
1 q—s—l
=T e

Secondly, we prove the wP» case. The element w € W is fixed as above. Then

(An(s)v)w = Z (An(8))ww (V)wr

w'eW

_ {(v>wnw if [(wBw) > l(w),
BV wpw i HwBrw) < I(w).

When [(wPrw) > I(w), we have rank(wPrw) = rankw + 1. Hence we have

(An(s)'l))w — (U)wfnw — /Bgank(’wnnw) — /86&nkw+1 — Bo(v)w‘

When [(wPrw) < I(w), we have rank(wPrw) = rankw — 1. Hence we have

ran wf"w rankw—
(An(8)0)w = B2(0) y5uy, = BB = BRAEUY = By ().

Therefore we have A,,(s)v = fyv and equation (6) holds.
Now we calculate the operator

M(n,s)=M(n—1,s— E)M(%)M(%H) e M(25+"_2)]/\\42(Ui+n771).

2 w1 w2 Wn—1
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gy~ — (spn=l
The operator My M ... M&%ﬂ”_mM&? z) corresponds the matrix

n—1

A1(25)Ap(25 4+ 1) -+ Apa(25 41 = 2) Ay (s + ).

From the equation (6), we have

<A1(25)A2(25 1) Ap1(25+ 1 — 2)An(s + — > 1)) v

—2s5—1 1— —25—2 1— —25—n+1 1 —

l—gq q q q
I g2 1 — g 21 1 q_gs_nHBOU = 50_—1}.

We define the constant c¢(n, s) as M(n, s)v = ¢(n, s)v. Thus c(n, s) satisfies

1— q—25—n+1 1
c(n,s) = 601_—(]_280(71 — 1,5 — 5), C(l,S) = Bo,
(/2] 1 — q—25—n—1+2i
and we have ¢(n, s) = fj H —- - Lherefore Lemma 5.4 holds. O
q STN—al
i=1

We can prove the functional equation by using Theorem 5.1, 5.2, and Lemma 5.4. We divide
by 3 cases.

(i) When n is odd, the value cp(x, s) is calculated as

n—1

1 -1 72
cp(x,s) =¢ (s U 5 X) H £(2s —n+2r, 1) 'np
r=1
n—1
" —2s+n 2r -1

:(q2 H(l_q2s n+2r— 1) B-

r=1

From Theorem 5.1, we have
Whp(—s)M{) f§) = X" (det B)| det B|*cp(x, s)Wha(s) f5”.

From Theorem 5.2 and Lemma 5.4, it follows that

-1

(=s) _ n 1 — q —2s—n—1+421 . .,
WhB( )f - 50 H q—23+n—2i X (det B)' det B‘

i=1

n—1

—2s+n—2r

2 -1
n__ -1 1 - q S
X (q2 H < 2s—nt2r— 1) nBWhB(S)fB()
r=1

n—1

_ 25—n—1423

ntl s3> e, 1 q S
= X(=1)" x(det B)npg* > T — q_QS_n_1+2iWhB(S)fé )

i=1

Since Dy = (—4)"z" det B, it follows that x(—1)"z" x(det B) = x(—Dp) and the functional
equation holds.
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(ii) When n is even and Y_,_, e is even, the value of oy (Dg) and €'(s + 1, xxp,) is

ay(Dp) =1,
e'(s+1/2,xxpp) = €'(s +1/2,XDpr)
=q ¢'(1/2,Xpyr)
= q Say(Dpm)™?
= ¢ *Xx(Dp)ay(m)~".

Therefore the value of cp(x, s) is

~1 -1
cg(x,s) =¢ (s _n , X) e(2s —n+ 2r, 1)’10%(1?]3)5’(5 +1/2,xxDy)

N 1 1 — q—23+n—27‘ 1 ,
= (¢2 oy (m)x(m)) (1 o +2,_1) q °Xx(Dp)ay ()

and combined with Theorem 5.1 and Lemma 5.4, we have

n -1
2

(—s) 1— q—25—n—1+2i . -
Whs(=s)f5 " = B [ = S | X (det B)|det B

=1

_ —25+n—2r

X (q%_sazb(W)X(W))_l H (11_ quanrl) q_SX(DB)a¢(7T)_1WhB(S)féS)

_ 25—n—1423

5 | s
=] — ¢ Whi(s) f57.

1 — q72sfn71+2i

(ili) When n is even and Y} ¢ is odd, the value of ay(Dp) and €'(s + 3, xXpy) is

ay(Dp) = x(Dpm)ay(m),
(s +1/2,xxp;) = €'(s +1/2,XDpr)
_ 1 — Xppr(m)g™*"
1= Xpur(m) 72

1
2

Therefore the value of cg(x, s) is

1 -1
cg(x,s) =¢ (s _n , X) £(2s —n + 2r, 1)_1a¢(DB)5’(s +1/2,xxpp)

1 — Xppr(m)g™

1- XDBTr<7T)_1qs_%

1 1 — q—25+n—2r -1
() X(Domocta)
=1
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and combined with Theorem 5.1 and Lemma 5.4, we have

-1
1— q—ZS—n—l—i-Zi
1— q—2$+n—2i

X (det B)| det BI™* (g7 g (m)x(m)

S3
: ol

Whp(—s)f5 " = | 8

1

1— q—25+n—2r )—1 1 — XD 7r(77)q
X(Dpm)ay (T =
(1 — gl ( 4 )1 — XDpr(T) 71

7

o1

—Whp(s) f5

X
=

NI

n

2 1— 2s—n—1423

1—x(=D )Q—S_% 2 ‘
S(Zej+1) - — WhB S f(S)
1- X(_DB)QS_% E 1 — g 2s—n-1+2 (s)f35

=dq

6 The ramified Siegel series and the recursion formulas

6.1 ¢, term of the ramified Siegel series

We put the diagonal matrix B’ as

A T e en— en+2
B' = diag(ay 7, -+, ap Y @, ).

In other words, we substitute e, as e, + 2. We calculate the value of 2S;(B,s) := S;(B’,s) —
St(B, S).
First we assume that e, > e, 1. (More precisely, we assume e, — e,_1 > 2,4, or 6 contex-
tually.) When e, — e,_1 is smaller, see Remark 6.1.
We define the sets B¢ and B° as
B ={k|1<k<n-1, e, =¢; (mod?2)},
B={k|1<k<n-1, e, #Ze, (mod2)}.

These sets satisfy the following lemma.
Lemma 6.1. (1) #B¢+ #B° =n— 1, i.e., the parity of n and # B¢ + #B° are different.

(2) If n is even, then Y ,_, ey is even if and only if #B° is even. If n is odd, then 22;11 ey 18
odd if and only if #B° is odd.

We calculate 2S,(B, s) divided by 4 cases, if n is even or odd, and if #B° is even or odd.

Lemma 6.2. In the formula of the ramified Siegel series Si(B, s)X, the sum of the term vy >
—e,_1 — 1 is independent of e,,.

Proof. First we see that, since vy > —e,_1 — 1, the set {v}t defined as
{(vo,v1, ) €ZXZEG | =bi(0,B) <vo+mi+ -+ < —1(0< 1< k—1), n®™ =t}

is independent of e,,. Therefore each v; does not depend on e, ;. Also, when vy > —e,,_1 — 1,
it follows that n ¢ B;(\) and min{e, + e, ;,, + A, 0} = 0. Since the term p; (o, B) and & \(B)y
does not depend on e, the total sum of S;(B”, s)X also does not depend on e, ]

Remark 6.1. The above argument assumes that e, —e,,_y > 1. It is because, when e,,—e,,_1 = 0,
the sum of the term [y = {n} and o(n) = n vanishes, and the formula differs from that of
en — €n—1 > 1. When e,, — e,_; = 0, it satisfies the same theorem later (for example, Theorem
6.1), since the ramified Siegel series has an analytic continuation to the rational function of ¢—*
and each ¢~“°. Here we need more precise discussion.
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Theorem 6.1. We put 2Sy(B, s)X = Sy(B’,s)X — Sy(B, s)X. Then, it is calculated as follows.

(1) #B¢: odd, #B° : even
ASt(B, S)X = —O_/w 6n+1 H X Oék #326+1

keBe
x (24 — 1) g~ U5 Gt D et 6, (B )X,

(2) #B¢: even, #B° : odd

A5 (B, s = ay(m)x(m) T xlew)x(an)x(~1) "%

keBe

% (q—2s+n+1 . 1) q—%(zs—nwé ZE:lekSt(B(”_l), S)X
4 Oéw H X 0% #BQ+1 X(W)E"q* en2+2 (2s—n71)+% ZZ;} 6k<1 _ qil)St<B(n71)7 S)X_
keBe

(3) #B°, #B° : even

25(B,s)* = ay(m) [] xleamx(—an)x(—1)"F x(m)=*

keBe
% (q—23+n+1 o 1) q—

en2+1 (25—n)+% > i€k St(B(n_l), S)X.

(4) #B°, #B° : odd

2S1(B, )X = —ay(m)x () H Xy (-1
keBe
% <q—25+n _ 1) q—%(%—n)ﬂ-% >he1 ek-‘r%St(B(n—l)’ S)X
+ o% en H X Olk #B;+1q_enT+2(25—n—1)+%ZQ;ll ek<1 . q_l)St(B(”_l),s)X.
keBe

Here we note that, when t = n, the term S,(B™Y, s)X is considered as 0.

6.1.1 n is even and #B° is even

In this case, the number # B¢ is odd and ), _, e is even. From the above lemma, we must
calculate the sum of the term for —e, — 1 <1y < —e,_1 — 2.
The Gauss sum &; \(B), is

#B®41 1
— T x(er)x(=1)"> ¢ 2 v = —e, — 1,

keBe

$nwo(B)y = H X(ak)x(—l)#Bzﬂ(l —q ") > —en, vy#Ee, mod 2,
keBe

0 Vg > —epn, Vg =€, mod 2,

B° vy=e, mod 2,

since B, (1) = {Be vy # e, mod 2
0 n '
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We note that, since vy < —e,—1 — 1 < vy + vy, it follows that Iy = {n} and o(n) = n. Put
0 =0lp1] € Gy

First, we calculate the sum of the term with respect to vy = —e,, — 1. We call this sum
Si(B, s)§. This sum is written as

(1— g )T @gn®

SUB. sy =ay(m)" Y (1—g)2@ge@ Y gl

T n(l) _
ceS, I=IyU---UI, Hl:k(q ® 1)
o?=1,0(n)=n n(F) =t Ioy={n}
1/ n(l) n®) v ((sn® —n(l))—(sn®) —n o o;
% Z HX 1 )q 1 (( M) —( B+ Pt,vg+- 41, (03B) H ot (B)
{y}t =0 1€l]
V():—en—l o(i)=i
_ g Vi (@) gnik)
_ et L 1yes(o!) —ca(o”) -ty L —a7) q
ap(m)" > (=g )2 Y g T (70 1)
o' €6n1 I'=14u-0I_, I=k
0?=1 nF)=¢ Io= {n}
U n(o)—n(k) v Sn(o)—n sn(k vo\O;
% Z x(7) o( )q o(( (0)—( n(k)))+po,uq ( B)g wo(B)y
i
vo=—en—1
k—1
v (n®—n®)) y((sn®—n(l))—(snF)—n p, T
x HX(W) 1 )q 1 (( M)—( (B)) 1o+ 4, (03B) H Eimottn(B)y-
=1 i€l
o(i)=i
Here we use the fact that co(0’) = co(0). Put I = I, I} = I,--- ,I/_, = I,.. It is a o’-invariant

partition of I’ = {1,2,--- ,n — 1}. The term 7({I/}) and t(o ,{]Z’}) is calculated as
T({I;}) = Z#{ i,j)el x (IU---UIL_y)|j<i}

- Z#{(i,j) €L x(LU---UlL)|j<i}=1{L}),

=2

to (1)) = Y _#{(i.4) € Lhx I | i < j < oli),a(j) < o(i)} = t(o, {I}}).

=0

Weput I'’=1—1and k' =k — 1. Later we assume ¢t # n (if £ = n then k£ = 0). Here we note

k>—t<:>2#]l_t<:> Z #I =t = /) =t

I=k—1
Also we put v}, vy, -+ ,v,_, as
’ r_ / _
Vo=Vt V1, V] =Vo, -+ V1 = Vg_1.

v, and (vg,v4) is not 1 to 1, but if vy is fixed, 1) and vy is 1 to 1. In other words, 11 = v — 1.
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Therefore it follows that

)Y (o g )

n— —1\ca2(o') ,—ca(o’ —r({I!V)—t(c’ {I! ]-_qi
SUBL ) = o) T (g e S graneeun =)

()
0'€Gn_1 I'=I{u--UI._, =i ( 1)
o2=1 n’(’“,):t
X § X () (10— &D) (5 —n(0)) (s *) =’ (K)))+ .1 Bt (B)y
v},
1(0) ! (K) 10) _n/ (0))— (1" *) =1 (K'))) 450 vt
> X(W)m(n W) g (s =n" (0))—(sm ' (k') +po,vg+v1 ( fnuo+u1(3)x
K —1
/ /(l) (k") / 1Y o 1 (11YY — (e /(K) 0t = .
=1 il
o' (i)=1

= ay(m)x(m)0ge @ Be, L (B), x Si(BMTY, s)X,

Here we note that, the order of x(m) is

k-1
vo(n® — n'*)) 4 () — 1) ('@ — /) Z v (n/©) — n/*)
=1
k-1 K1

v(n© — @) 4 Z vy (0@ —n/®)) =y 4 Z vy (') — /),
and the order of ¢ is

o((5n® = n(0)) = (sn'®) = ' (K))) + (v — o) (s7®) = ' (0)) — (sm™) — (k')
£ 30 () = (@) = (s — ' (1))

= sp(n® — @) = vo(n(0) = n'(0)) + 3 (s — (1)) — (sn'® —n'(k)))

K1
= (s —n)y + Z vl ((sn') — 0/ (1)) — (sn'® —n/(k))).
1'=0
When n and #B? is even and when vy = —e,, — 1, the value of pg,,(c; B) is

u n(e, +1
Po.v, (03 B) me{ek + 19,0} = Zek — %,
23

hence we have

St(B,S)%C — a¢(W)X(W)V0q(S_n)VO+% SR ek n(€n+1) ( H X Oék #Bzﬂq—é) St(B("_l),s)X
keBe
— _041/1 €n+1 H X ak %‘i“q_%@s—n)ﬂ-% She ek_%St(B(n_l),S)X.
keBe
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Next, we calculate the sum of the term for vy > —e,, vy Z e, mod 2. We call this sum
Sy(B, s)y. The range of vy is —e, < vy < —e,_1 — 2. We note that if 1y = e, mod 2, the sum
vanishes since &, ,,(B), vanishes.

First, we assume e, — e, is even. In this case, the sum S;(B, s){ is written as Sy(B, s)7 .
If e, —e,_1 = 2, then 1y must be —e,, and the sum vanishes. We suppose e, —e,_1 > 4. In
this case, we put

Vo= —€p1+1—2i (295%).

I' o' k', V] is the same as above. We have

(1— g )i @ gn®)

St(B, 5)>1<,e _ Oéq/)(ﬂ')nit Z (1 . qfl)CQ(O')q*CQ(U) Z q*T({Ii})*t(U:{Ii}) - I
[Tk (q 1)

O'EGn I:IOU"'UIT
o*=Laln)=n w0 =4, To={n)
k—1
v(n®DZn®Y o ((sn® —n())—(sn*) —n B .
x> T x() P 0)—( 0750 B) T] Eugroon (B
{V}i = S
vozen ()=
t Hyelegmelo) (o (L= ) Z0= A7) g #)
— n— 1_ —1\ca(o —ca(o _r N—t(o! {1
a¢(7r) Z ( q ) q Z q T/__l/(qnl(l’) B 1)
0'€6n_1 I'=nu-ull._, V—k
o2=1 n’(k/):t

=2 ()

x X(ﬂ_)yl (n/(O)—n/(k/))qyl((Sn/(o)—n/(O))—(Sn/(k/)—n/(k/)))_’_ﬁoyyoJﬂ,l (J;B)€n7V0+V1 (B)X
k' —1

> H X v, (')~ n’(’“))ql/{/((sn’(l)*n’(l’))*(sn’('“*n( I FPlvg+-tvy (O H Eivot +Vz/ )
I'=1 161’

o (i) i

We note that, when vy = —e,_; + 1 — 24, the value of py,,(0; B) is

-1
Po.w, (03 B) Zmln{ek + 19,0} = Z ek IS (n )

therefore the sum is

1
i(en_en—l)
S(B.5)}. = ay(m) XTIt De, L (B), x S,(B, 5)y
=2
$(en—en—1)

en+1 2 q(S—n)V(H‘% Zz;ll ek—i-w

1=2

= ay(m)x(m)

X(memewﬁ“u—lgﬁwwww

keBe
#Be+1

= a (m)x () ! H X (ag)x 2
keBe
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%(en*enfl)
—ep_1+1—2i (

X q 2
1=2

2s—n—1)+3 3021 €k<1 o q—l)st(B(n—l)7 S)x_

Secondly, we assume e, —e,,_1 is odd. In this case, the sum S;(B, 5)] is written as S;(B, s) .
We put

The sum S;(B, s), is given as

SuB, )Y, = a(mx(met [T M-
keBe
%(enfen_lfl) ‘
" Z qfen_21721(2s—n—1)+% 22;11 ek(l . q_l)St(B(n_l), S)X.

=1

We calculate the value of 25;(B, s)X. From the above calculations, we have

Si(B,s)y + Si(B,s)}. en—en1: even,

S B7 X = (t t d d n) +
t( S) ( TS O epend on € ) {St(B, S)g + St<Ba S)i{,o €n — Ep-1: odd.

Therefore, to calculate 25;(B, s)X, we need 2S;(B, 5)§ and 2S;(B, s){. The first one is

ASt(B, 8)§ = St(B/ S)X — St(B S)X

#Be+1 _ent3 (9. 11l 1
I T o1y e e
kebBe
+ ap(m)x(@e T xlenx ) et e T a5 6, (B D) g)x
keBe
#B5+1 en+1 1 n 1
= _aw en+1 H X ak : <q—23+n+1 _ 1)(]——2 (2s—n)+35 >y ek_ESt(B(n_l),S)X.
kebBe

The second one is
ASt(B7 S)ie = St(B/ S)X - St(B S)i(e
N T e (—1) = g = o Rt en (1 - g71)S,(B Y, )X

keBe

and odd case is the same: 25,(B, s)}, = 25,(B, s)},
In conclusion,

25,(B,s)* =28,(B, s)x + 25,(B, s)¥

— _aw en+1 H X Olk #B +1 (q_25+n+1 o 1)(]—%(25—’@)—&—%22:1 ek—%st(B(n—l)’ S)X
keBe
+ ay(r r)entl H () #B;Jrlq,%(stnfl)Jr% Shot e (] — qil)St(B(”’l),s)X
keBe
— _aw 6n+1 H X O[k #B +1 (q—23+n _ 1)q—6’3—+1(2s—n)+%22:1 6k+%5t(B(n_1)7 S)X.
keBe
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6.1.2 n is even and #B° is odd

In this case, the number # B¢ is even and ), _, e is odd. The Gauss sum &, ,,(B), is

[T x(a)x(@)x(-D) " py=—e, -1,
keBe .
Enwo(B)y = H X(ak)x(—l)#(l —q¢ Y vw>—en, vy=e, mod 2,
keBe
0 vy > —eyn, Vg Z e, mod 2.

The notations of S;(B, s)y, Si(B, s){ . and S;(B, s)7, are the same as above. Since the method
of the the calculation is the same, we only show the value of each sum. The first one is

e #BC _entligs o yrlgm e
Si(B, s)y = ay(m)x(m)= T x(en)x(on)x(—1) 72 Hlg= ™5 GammtaZiciee g, (B g)x,
keBe

and the second one is calculated as follows. When e, — e,,_1 is even, we put

€, — €n_
V0:—€H,1—2’i <1§ZSHTM),
and we have

Si(B. )Y, = apmx(m) [T xon(-)™

1
E(en—enfl) .
x> gD i ek (] _ 1) 5, (B0 )X,

i=1

When e,, — e,,_1 is odd, we put

n -~ tn— _]-
Vo = —ey g — 1 — 2 <1§i§%),

hence we have

en #B°+1
Si(B, )Y, = ay(mx(m)™ [] xaw)x(=1)">
keBe
3(en—en1-1) en_1+142i
y Z q,%(257n71)+% SR ek (1 . qil)Sf/(B(nfl), S)X.

i=1

Thus the value of 2S;(B, 5)§ and 25,(B, s){ is

en #B°
A8(B, s)§ = ay(m)x (@) T xlaw)x(am)x(=1)7= "
keBe
X (qTEmt = 1) G R e g, (B ),
AS B.s)X = en -1 %OJA —%(25—71—1)—0—%22;11% 1— -1 S B(n—l) X
(B, s)Y = ay(m)x(m) J] xla)x(-1)"= ¢ (1—g )8  $)X.
keB°
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6.1.3 n is odd and #B° is even
In this case, the value # B¢ is even and ZZ;; ex is even. The Gauss sum &, ,,(B), is
#B°
H X(ak)X(an)X(_l) z f1 Vo = —€p — 1,

gn,uo(B)x = keBe
0 vy > —€p.

The sum S¢(B, s)j, the sum of the term with respect to vy = —e,, — 1, is

Su(B, s)Y = () x(m)en ! H (@) x () x(— 1)%Be+1q76n2—+1(257n)+52221 xS, (B, g)X,
keBe
and we have
A8,(B, S)X = 25,(B, s)§
= auy () x ()t H (o) x(an)x(~ 1)#Tge+1(q725+n+1 _ 1)qf€"T+l(237n)+%ZZ:1ekSt(B(nfl)’S)x'
keBe

6.1.4 n is odd and #B° is odd
In this case, the value #B° is odd and 37—} e, is odd. The Gauss sum &, ,,(B), is

— I x(es Tl oy =—e,— 1
keBe hou
gn,uo(B>X = < H X ak # 2+ (1 - q_1> Yy 2 —€n, Vo = €y mod 2,
keBe R
H x(ag)x #52“(1 —q ") w>—en vy#Ee, mod 2.
\ ke B¢

The notation of the sum of 3 cases is written as Sy(B, s)y, S;(B, s)Y and Sy(B,s)5. The first
one is the same for the first case;

#Be En n
St(B, 8) _ _aw en+1 H X Oék +1q %(Qan)Jr%Zk:l ekf%st<B(nfl)’ S)X.
keBe
The second one is calculated as follows. When e, — e,_1 is even, we put vy = —e,_1 — 2i

(1<i< ==ty thus

e #B"+1
Si(B,s)}, = ay(m n H x(ag)x 2
ke Bo
%(en_enil) e +24
» q_%(%—n—n%zz;} e (1 — q—l)St(B(n—n7 s)X,
i=1
and when e, — e, 1 is odd, we put vy = —e,, 1 — 1 —2i (1 <i < %), thus
en #B°+1
Si(B, 5)¥, = ay(m)x(m) T x(a)x(-=1)"=

keBe

en—1+1+24 n—
o Z qilf(2sfnfl)+% Zkzll ek (1 . qfl)St(B(nfl)7 S)X-
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The third one is calculated similarly.

#Be+1
Si(B, s)5, = ay(m)x ()t H x(ar)x 2

keBe

%(enfenfl)

ep—1+2i n—
y Z g s+ Ek:i%g — g S(B"Y, s)X,

#B8+1
Si(B,5)y, = ay(m)x (@) T xlaw)x

keBe¢

l(en—en—l—l)
5 )
y Z - en,1;1+21 (25—n—1)+% 22;11 ek (1 i q_l)St(B(n_l)a S)X.

=1

Then, we have the following equations.

ASt(B, S) _ _aw en+1 H X ak #325+1 (q_25+n+1 _ 1)(]—%(25—71)—&-%22:1 ek—%st(B(n—l)’ S)X
kebBe

Therefore, it follows that

ASt(B, S)X _ _aw en+1 H X Oék #B +1 (q—23+n . 1)q—6"2—“(2s—n)+%zzzl 8k+%St(B(n_l), S)X
keBe
+ O% en H X Oék #Bé’ﬂq_%(zs—n—l)-i—% PRy ekst(B(n_l), S)X7
keB°

and the theorem is proved.

Remark 6.2. When ¢t = n, the term of 25,(B, s) is 0 since S;(B, s)X = 1. However, we assume
S, (B™Y 5)X = 0 and the theorem holds.

Remark 6.3. The ramified Siegel series S(B, s)X = Y, 8°S:(B, s)X satisfies the same equation
of the above theorem. For example, when n is even and # B° is even, we recall

ASt(B, S)X _ _aw en+1 H X Oék #B25+1 <q72s+n _ 1)q—(6"2+1)(25*n)+%z;§:1 ekJr%St(B(nfl)’ S)X.
keBe

From the above remark, this satisfies when ¢ = n. Therefore we have

AS(B, )X = —ay(m)x(m) H law)x #B (g 1)q77(6”;1’(287n)+%27§:1 ets S(BMD, )X,
keBe

6.2 The calculation of the Clifford invariant

Theorem 6.2. (1) When n is odd, the Clifford invariant ng of the matriz B is

#B° n—1
H X () x 2 Y o €k even,

keBe

B = ¢
H X () x(an)x(—1) . " lex : odd.
keBe
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(2) When n is even, the Clifford invariant ngwm-1) of the matriv B™™Y s

#B° n
H x(ow)x(=1)2" >, er: even,

keBe

Npn-1) = 4#B° .
H xlap)x(=1)2" > _ ek odd

kebBe

Proof. First, we calculate the case when n is odd (1). np is defined as

e = (—1, —1) ™5 (1), det B)ep, (n=2m+1),
£p = H (T, ayme).
1<i<j<n

The Hilbert symbol is calculated as, when ¢; € 0* and n; > 0,

1 ny and ny are even
ey ym™2) = x(e1) ny is even and ny is odd
Y - . .

x(€2) n; is odd and ns is even

X(—¢e182) mny and ny are odd
— X(_1)n1n2x(€l>ngx(€2>n1’

because

(@, ) = 220D0B) (g ey

ay () ay (1)
a1 n is even <
ap(em”) = {X(&)a¢(ﬂ) n is odd. (e€o®, n20).

. —1 .
Therefore we have, when n is odd and ), ey is even,

e = x((—=1)™>=1% - TT x(=1)x(0a) % x ()"
1<i<j<n

= X(—l)mZZLZI ek+21§i<j§n €i€j H X(al)ZZ:1 Ck—Ci

=1
n

— X(—l)anlenJersKan ei€; H X(Ozi)eﬁe”.

i=1
The term [], oo x(cu) is written as
n—1 n
IT (o) =TT v(en)+* = L vton) e+
keBe —1 k=1

therefore, we have to prove that

B° -1
#2 En2 en + Z e;e; (mod 2)

1<i<j<n

& #B°=(n—1)e, +2 Z e;e; (mod 4).

1<i<j<n

o7



It is easy to show that

n 2 n
2
2 E eiej = E €6 = e, | — €
k k

1<i<j<n 1<i, j<n

—Y ee=—-) e2=) e (mod4),

and e? = 0 or 1 whether ¢ is even or odd. Since we assume that ZZ;; e is even, we know
that 3271 €2 is also even, and that the last equation — 37—  e? = Sr_le? (mod 4) holds.

We define the number ¢ as the number of ¢; (1 < ¢ < n — 1), which is odd. From the
assumption that ZZ: er is even, the number ¢ is also even and we have

t=2 Z e;e; (mod 4).

1<i<j<n

When e, is even, #B° =t and (n — 1)e,, is divided by 4. When e, is odd, we have #B° =
(n — 1) — t therefore

4B — ((n— l)en + 2 Z 61'6]‘)

1<i<j<n
=n—-1)(1-e,) —2t=0 (mod4).

In conclusion, we have

#B°=(n—1)e, +2 Z e;e; (mod 4)

1<i<j<n
#B°
and it follows that np = H x(ag)x(=1)"=2".
keBe°
When n is odd, and ZZ;; er is odd, and when n is even, we can prove the statement with
the same method. O]

6.3 Main Theorem: Recursion formulas

We define the rational functions C'(e, é,&;Y, X) and D(e, €,§;Y, X) as follows.

Definition 6.1. Let ¢, € be integers, and let £ be a real number.
The rational functions C'(e, é,&;Y, X) and D(e,é,&;Y, X) in Y2 and X2 are defined as

Yé/QX—(e—é)/Q—l(l _ éY_lX)
X1—-X ’
Yé/2x—(e—é)/2
1—¢x

Cle,6,&Y,X) =

D(e,e,&Y,X) =
For a positive integer i, we define the rational function C;(e,é,&;Y, X) as

C(e,6,&Y,X) i even,

Oi 7~7 aan - ~ .
(e,6:¢ ) {D(e,e,ﬁ; Y, X) i: odd.

o8



Definition 6.2. Let a = (a1, ,a,) € Z" be a sequence of integers. For an integer i which
satisfies 1 <1i < n, we define ¢; = ¢;(a) as

{a1 +as+---+a; if 7 is even and Y _;_, ay is even,
¢, =

N ap+as+---+a; +1 otherwise.
We put Dp = (—4)[2! det B and define £5 as
£y = 0 if Y ,_, ey is even,
P77\ x(=Dp) i 0, ex is odd.

The main theorem of this article is the recursion formula of the ramified Siegel series. It is
written as follows.

Theorem 6.3. We put X = ¢~* and Y = q2 and write Fg(q~*) = Fg(s). The function Fg(X)
satisfies the following recursion formula.

Fp(X) = BoCilens €1, &Y, X) Fon (Y X)
+ BoGiCilen, 1, &Y, X ) P (YX )
where ¢; and & are defined as
1 if n is even, x(—Dg) if n is even,
G = {ngx(—DB) if m is odd, = {X(—DB(TLU) if n is odd.
When we explicitly write down the function Cj(e,é,&;Y, X), the above theorem can be
expressed as follows.
Theorem 6.4. The ramified Siegel series satisfies the following equations.
(1) When n is even and Y ,_, ey is even,

_ 1
Fp(s) = ="

1
1— q2s
(2) When n is even and Y, _, ey is odd,

57l n— =~
/Boq% ZZ=1 ekaQ(Zk:% ek+1)FB(n71) (S - 1/2)

+

—s—1 n— -
60(]7% Shoiek——5=(Thot e’ﬁl)FB(nfl) (—s—1/2).

~ 1 — —D _s_l s n s—1 n—

FB(S) = 50 Xl( N q?gg - q5(2k21 ek—H)_TZ(Z’“:ll ek+1)FB(n—1) (8 — 1/2)

1—x(—Dp)g° 2
1— q2s

1
—s—3

g s i et ) - (et (g — 1/2).

+ fBo

(3) When n is odd and 3}~ ey is even,

~ s

IS
F(s) = fogi &z et D=2 Tisi ek fip (s — 1/2)
N D
+ Bonpx(—Dp)g E & DT T R e F i (—s — 1/2).

(4) When n is odd and 3.1~ ey is odd,
~ B 1
1= X(=Dpn-1)q

ol e i
— fogE i e =T i et D F Ly (s — 1/2)

Bonpx(—Dp)q~ 3 Ei=rent=—3
qs

(Criiet) |
4 et (—s — 1/2).
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6.4 Proof of the recursion formulas

We show the induction formulas of the ramified Siegel series by using the above theorems.
We calculate by dividing into 4 cases, considering the parity of n and #B°.

6.4.1 n: even, > ;e even (& #B°: odd, #B°: even)

In this case, it follows that

en #B°+1
AS(B, s)X = —ay(m)x(m) " ] xlew)x(=1)">
keBe
> (q725+n . 1) qfe”TH(Zsfn)Jr% >he1 €k+%S(B("*1)’ S)X, (7)

and the functional equation is
F(—s) = ¢*Xi=1% F(s).

We know that the Clifford invariant nzn-1) is calculated as

#B°
npe-n = [ ] x(an)x(=1)"
ke Be
from Theorem 6.2. From the fact that
n—1
#BC+1 #B° n o

IT xtaox(=07= - T xtaw)x(=1)"= = [ ] x(aw)x(~1)% = x(~Dpw-n7),
keBe keBe k=1

(7) is written as
A8(B, 5 = —ay(m)X(T)npw-nX(—Dpu-) (¢724" = 1) g~ 72 Bmma Dl et g )X,
and combined with WhB(s)ﬁ(Ls) = S(B, s + )X, we get

en+1

AWhp(s) = ay(m)x(7) 00X (— Do ) (1 — g2 )g2 Zim e 55 Gt DtaWh ) (5 4 1/2).

We write Whg(s) ) as Wh g(s) when there is no confusion.
Recall that 8y = aw(ﬂ)x(ﬂ)q_%. The function F is calculated as

WhB(S)
(1 _ q—2s—1)(1 _ q—2s—3) . (1 _ q—2s—n+1)’
Whonon (s + 1/2)
(1 _ q—2s—3)(1 _ q—25—5) . (1 _ q—25—n+1)’

FB(S) =

FB(n—l) (S + ]./2) —

and the above equation is equal to

1 n _
AFB(S) = BOWBO’“*UX(_DB(”*U )q§ Zk:l ek

We write four equations, (8), (8) substituted s into —s, the functional equations for B and

en+1
2

Gt (s 4 1/2). (8)

Ly o entliog
AFB(S) = BOT]B(n—l)X(_DB(n—l))qg =1k 7 (2 +1)+1FB(n—l)(S + 1/2),
1 n e _entl/ s
BFp(—5) = Bonpm-vX(—Dpm-y)qz Zh=r =" 20T EL () (-5 +1/2),
Fp(—s) = ¢"&i=144) i (s),
)

q
q° k=1 % Fp(s).
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From these equations, we make the equation of F(s) and Fgm-1)(E£s+1/2), by eliminating
Fp(—s) and Fp/(=£s).

1

1 n e _en+1 s
Fals) = _1——<1—255077B<7rl>X(—Dwa)qzl’Z’“:1 B P (s 4+ 1/2)
1
— QQS/BOTIB(”_I)X( D) )gtst2) Eimr ek AR A n(=s+1/2).
Combined with the functional equations for B™ 1) we get
1
1 —s> 7 e
+ 1 _ qzs 50q Zk:l kFB(nfl)(_S — 1/2)
and
~ 1 s n s—2 n— ~
Fp(s) = 1—,250@ Tharee = (5in ) oy (s — 1/2)
— q S
1 s n *3*1 n— ~
+ 1= q2sﬁoq*§ Shoren——52(Choy €k+1)FB(n71)(—S —1/2).
6.4.2

n: even, y ;_ e;: odd (& #B: even, #B° odd)
In this case, it follows that

AS(B, s = ay(m)x(m ! T xlaw)x(@n)x(=1) %+

keBe
« (q—2s+n+l . 1) 0 €n2+1 (28—71)4‘% > h—1 €k S(B(n_l), S)X

+ay(n H law)x #BQHX(W)enq—%(zs—n—l)Jr% Shoy (1 — q_l)S(B(”_l), s)X,

keBe

and the functional equation is

FB(—S) — q5(22:1 ek+1)FB(S).

The Clifford invariant is ngm-1 = H X(ak)x(—l)#TBe and we note that
keBe
#BO+1 - n
I e t T v ™5 = [Tx(@x(-1)# = x(~Dpm).
keBe keBe k=1

Hence we have

)X

en s+n 5"+1 s—n e n—
5(05,5) = (=0 (7) e (7 = 1) g (50
+ (2s—n— 1)+ Zk i ek(]_ . q_l)S(B(n_l), S)X.

+ oy ()X (=) X (T) " Npe-v X (—Dpm)q~
From the fact that Whg(s) = S(B, s + ”—“)X
AWhi(s) = Box(—0) X (1) e (72 — 1)g~ 2" VT2 Zimr 6t Whig o (s +1/2)
+ Box (=) X (1) g X(— D) (g — 1)g2 Zhet 6=t Whip ) (s + 1/2)
= Box(—an)x(7)" g0 { (472 = 1)+ X(=Dp)(g = g~}
x g~ Gt K bt 2 Whigo) (s 4 1/2).

, we have
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We note that
{@™ =D+ x(=Da)a =g | = = (L4 x(=Dp)a ) (1 = x(~Dy)g ™).

The function F' is calculated as

(1 — x(—Dp)g~*"2)Whp(s)
(I—q 2 ) (1—q23)..-(1— g 2 ntl)
Whpeon (s +1/2)
(1—q 2 3)(1—q25)... (1 —q2ntl)’

Fp(s) =

Fponon (s 4+ 1/2) =

and we have
AF5(s) = —Box(—a)x(7) " g1 (1 — X(_DB)C]_H_%) g st Eiaetapo (s +1/2).

We write four equations as well as in the above case.
AFB(S _ﬁOX( ) (71‘ en Npn-1) ( %) €n+1(28+1 )+3 5 Db 1ek+2FB( 1)(5 + 1/2)

) = )er
1 en+1
A Fp(—s) = —Box(—an)x(m)“ - 1)( \(=Dp)g’ f)q AR T et By (-5 +1/2),
Fp(—s) = ¢k a9 g (s),
Fy(—s) = S(ZZ:lek""l)FB(s)'

From these equations, we make the equation of F(s) and Fpm-1(£s + 1/2) as above.

1-— —-D 78+% _en+l 15 1
Fp(s) = By X1< - quf X(— )X (T) " npe-ng” 2 BT N et P (s +1/2)
1 — x(=Dg)g**2 n .
— qfﬁq X (=) X(F) g~ “F D B fy L (s 4-1/2).

Combined with the functional equation for B~ it follows that

1— x(=Dg)g="2
X( B)q FB(nfl) (S o 1/2)

Fi(s) = o1 — "
1 - _D qs_% —S w e
+ fo Xl( — qfs) g b= AtV Fp i (—s — 1/2).

We note that
X(Dyin v Dp) = x ((—4)"7‘2 det B (—4)% det B) — (—anm).

Therefore we have

. 1= v(=Dp)g~ 53 & ool
X( B)q 2 q5(2k=1 ert+1)— 52 (X721 6k+1)FB(n71) (8 B 1/2)

FB(‘S):BO 1_q—28
1 - _D 8_1 S n 757l n—
+ Bo Xl( - qfs)q — g3 i et D i et p ) (—s — 1/2).
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6.4.3 n: odd, 1| ex: even (& #B°: even, #B° even)
In this case, it follows that
#B° .
284(B, s)* ™) T xlaw)x(—am)x(=1) 7= x(m)*!

keBe
% (q—25+n+1 . 1) q—%(%—n)-l-% > b1 ekSt(B(n_l), S)X7

and the functional equation is

Fp(—s) = npx(—Dp)g" =TV Fp(s).

#B°

np is calculated as np = H X(ag)x(=1)"2 ", and we note that
keBe
#B°€ #B° - n41 e
T x(ax(- > ] xew)x(=1)72 = [ x(ex)x(~=1)" = x(~Dpr*").
keBe keBe k=1

The function F' is calculated as
WhB(S)
(1—q22)(1— g 24). - (1 — g 2snt1)’
Whpe-u(s +1/2)
(1 _ q72372)(1 _ (]72574) . (1 _ q72sfn+1)’

FB(S) =

FB(nq)(S + 1/2) =

and it follows that
AFp(s) = —Bonsx(—Dp)(1 — g *)g~
We write four equations as well as in the above case.
AFp(s) = —Bonex(—Dp)(1 — ¢ %)g~ 2 @I Tiaats po (s 4 1/2),
BFp(—s) = —ﬁoan( Dp)(1 — ¢*)q " TR et f ) (<5 +1/2),
Fg(—s) = npx(—Dp)q* k=149 Fpi (s),
Fp(—s) = nax(—Dp)g* i1 4D Fy(s).

entl(254+1)+1 S0, ek+%.

From these equations, we make the equation of Fig(s) and Fgnm-1)(£s+1/2). It is calculated

as
Fy(s) = Bonpx(=Dg)g™ "7 GHUT Ziai e ta By (s +1/2)
+ Boa- entl(—2s+1)+(—s+3) Sy ek*H%FB(nil) (—s+1/2).
Combined with the functional equation for B"~Y_ it follows that
Fg(s) = BoFpmn-n(s —1/2)
+ Bonpx(—Dp)q k=1t Fpi iy (—s — 1/2),
and

S
Fp(s) = foq? Zhar ot D)=28 Stk Fy (s — 1/2)

—I—ﬁongx(—DB)q_%(EZ:l ex+l)——7 g k= 16’“FB<H n(—s—1/2).
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6.4.4 n: odd, Y 7_!ep: odd (< #B°: odd, #B°: odd)
In this case, it follows that
#B¢
A8(B, )X = ay(m)x(m)= ] xlew)x(am)x(=1)7=

keBe
% (q—28+n+1 _ 1) q_ en2+1 (25—n)+% 22:1 ek S(B(n_l), S)X

+ Olqp H X CYk #B2 +1X(ﬂ_)enq—%(2s—n—l)+% 22;11 ek(l . q—l)S(B(n—l)7 S)X7
keBe

and the functional equation is

Fp(—s) = npx(—Dp)g* =+ Fg(s).

np is calculated as np = H X(ak)x(&n)x(—l)#32+l and we note that
keBe
n—1
#B¢+1 #BO+1 n+1
I xCenx(=0"= - I x(e)x(=1)" = =[] x(aw)x(-1)"* = x(—Dpw-nm).
keBe keBe k=1
Therefore we get
AWhB(S) _ _O“/T/) en+1 H X 04k; #B:+1 (q_25—1 o l)q—%(%—‘rl)ﬁ-% >h1 ek+%WhB(n71)(S + 1/2)
keBe
+ay(mx(m)e JT xla)x(—1) 77 g et Dt s Zimiee(1 — g Y Whie (s + 1/2)
keBe

_ —ﬁoX(W)E"X(Oén)nB(qﬂsfl - 1)q’en27+1(25+1)+%ZZ:le’“HWthfl) (s+1/2)
+ ﬁOX(W)enHX(@n)UBX(—DB(nfD77)((] _ 1)q% 22:1ek*e"“(28+1)+1q7871WhB<n71)(s + 1/2)
= Box(m) " x(ewn)np {—(¢7* 7" = 1) + x(=Dpe-n)(g — g}
en+1(25+1)+1WhB(n 1)(3 + 1/2)

X q% ZZ:I €k~
and that

{_(q72871 — 1) _|_ X(_DB(n 1) q — 1 -5 1} (1 + X DB(nfl))qis) (1 - X(_DB(nfl))qisil) .
The function F' is calculated as
WhB(S)
(1 _ q—2s—2)(1 q—2s—4) (1 q—2s—n+1)’

(1 = x(=Dpw-n)g* Y Whpu- (s +1/2)
P = (g () (L g o)

FB(S) =

and we have

—s\ L3m e —entl(og
AFg(s) = Box(m) x(an)np (1 + X(—Dpim—1)g ") gz k=1~ CsTDT L) (54 1/2).
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We write four equations as well as in the above case.

+1 (23—|—1)+1FB< 1) (S + 1/2),
PR (g4 1)2),

>
-
=
I
S
=

) ) x()ns (14 X(~Dpe-)g™) qézzzlek—En

) ) x (s (14 X(=Dpn)g®) g2 Zizs
Fp(=s) = BX( Dp)q*Zier 63 Fi(s),

) (—Dp)q* k=1 Fp(s).

I
&
=

From these equations, we make the equation of Fp(s) and Fgm-1)(£s + 1/2) as above.

1

1= x(=Dpe-1)g~
1

1= x(=Dpe-1)g*

Fp(s) = — 32 ko1 ek (2S+1)+1F£§(n (s +1/2)

~Box(m)" x(an)nBg

Box ()" x (o) x (= D) g5+ Tima er= =55 (S2st ) mstipr - (g 4 1/2),

Combined with the functional equation for B"~1_ it follows that

1
1= x(=Dge-1)g~*

1 s
—+ 1— X(—DB( _1))qs /BOT]BX(_DB>q (Zk:l k+1)FB(n71)(_S . 1/2>

FB(S> = 5OFB(n71)(S - 1/2)

Here, we note that
X(DpDyon) = x ((—4)%‘1 det B(—4)"%" det B<”—1>) — x(anT).

We conclude
- 1
Fg(s) =
B( ) 1 - X(—DB(nfl))qis

1 S n
+ 6 x(=D q_E(Zkzl ex+1)—
T (Do) VX D)

1
2

Bogs Chmr et D=2 (Cii etV (s 1/2)

1
) n—1

(opoy e tl )FB(n 1)( s — 1/2).

Remark 6.4. When the character chi is trivial, the same method can also be used to show
a recursion formula for the Siegel series from the explicit formula of the Siegel series. This
recursion formula is compatible with Katsurada’s result [19].
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