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Abstract
There has been work on the strength of semi-classical axioms over Heyting arithmetic such

as Σn-DNE (double negation elimination) and Πn-LEM (law of excluded middle). Among other
things, Akama et al. show that Σn-DNE does not imply Πn-LEM for any n ≥ 1 by using Kleene
realizability relativized to Turing degrees. These realizability notions are expressed by subtoposes of
the effective topos Eff and thus by corresponding local operators (a.k.a. Lawvere-Tierney topologies).

Our purpose is to provide a topos-theoretic explanation for separation of semi-classical axioms.
It consists of determining the least dense local operator of a given axiom φ in a topos E , which
completely characterizes the dense subtoposes of E satisfying φ. This idea is motivated by Caramello’s
study of intermediate propositional logics and van Oosten’s study of Lifschitz realizability.

We first investigate sufficient conditions for an arithmetical formula to have a least dense operator.
In particular, we show that each semi-classical axiom has a least dense operator in every elementary
topos with natural number object. This is a generalization of van Oosten’s result for Π1 ∨Π1-DNE in
Eff . We next determine least dense operators of semi-classical axioms in Eff in terms of (generalized)
Turing degrees. Not only does it immediately imply some separation results of Akama et al. but
also explain that realizability notions they used are optimal in the sense of minimality. We finally
point out a negative consequence that Πn-LEM, Σn-LEM and Σn+1-DNE are never separable by
any subtopos of Eff for any n ≥ 0.

2012 ACM Subject Classification Theory of computation → Constructive mathematics

Keywords and phrases local operator, elementary topos, effective topos, realizability, intuitionistic
arithmetic

Digital Object Identifier 10.4230/LIPIcs.CSL.2024.36

Funding This work is supported by JST Grant Number JPMJFS2123.

Acknowledgements I would like to thank my supervisor, Kazushige Terui, for careful reading and
many helpful suggestions. I am also grateful to Hisashi Aratake, Yutaka Maita, Takayuki Kihara
and the anonymous referees for their invaluable comments.

1 Introduction

Toposes are useful as semantics for logical systems and programming languages. In this
context, the effective topos of Hyland [10] and its generalization, realizability toposes [11],
have multiple applications. In particular, it is well known that the interpretation of logic and
arithmetic in realizability toposes corresponds to the traditional realizability interpretation
in intuitionistic proof theory. Van Oosten and others deeply investigate this correspondence
and analyze various realizability notions from a topos-theoretic perspective [25].

In this paper, we mainly focus on toposes as models of first-order intuitionistic arithmetic,
which is rich enough to encode and reason about programs and computations.

1.1 Various realizability methods and semi-classical axioms
Since Kleene [15] defined the first realizability interpretation (Kleene realizability) for Heyting
arithmetic HA, many variants have been proposed in the literature. For example,
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(1) Relativization to Turing degree d (d-realizability) [20].
(2) Lifschitz realizability [18, 23].
(3) Kreisel’s modified realizability [16, 24].
These realizability methods are strongly related to the hierarchy of semi-classical axioms
introduced by Akama, Berardi, Hayashi and Kohlenbach [1].

Σn−1-LEM

Πn ∨ Πn-DNE

Πn-LEM

Σn-DNE

Σn-LEM

...

...

Figure 1 The hierarchy of semi-classical axioms

In Figure 1, DNE and LEM stand for the double negation elimination and the law
of excluded middle, respectively. Of course, DNE is equivalent to LEM in intuitionistic
propositional logic. However, a difference arises when restricted to a class of arithmetical
formulas such as Σn and Πn. Indeed, Σn-LEM implies Σn-DNE in HA but the converse
does not hold. More interestingly, an axiom scheme often corresponds to a semi-constructive
principle such as the lesser limited principle of omniscience, the constant domain axiom, and
even some variant of Ramsey theorem (constructive reverse mathematics over HA) [1, 2, 9].

Akama et al. separate the axioms in Figure 1 by using the realizability notions (1), (2)
and a monotone variant of (3) above [1]. For instance, they show that Σn-DNE is realizable
while Σn-LEM, Πn-LEM and Πn ∨Πn-DNE are not under ∅(n−1)-realizability, meaning
that the former does not imply the latter. Similarly, Lifschitz realizability relativized to
degree ∅(n−1) is used to separate Πn ∨Πn-DNE and Πn-LEM.

It is known that the realizability notions (1), (2) and (3) correspond to subtoposes of
(extensions of) the effective topos Eff [10, 20, 23, 24]. Above all, van Oosten studied the
Lifschitz topos Lif ⊆ Eff , where a first-order arithmetical formula φ is true iff φ is Lifschitz
realizable. This representation leads to a topos-theoretic approach to the separation problem.

1.2 Least dense operators of logical and arithmetical formulas
Given an elementary topos E with subobject classifier Ω, the subtoposes of E are in one-to-one
correspondence with the local operators in E , that is, the meet-preserving closure operators
j : Ω → Ω (a.k.a. Lawvere-Tierney topologies). A typical example is the double negation
operator ¬¬ : Ω → Ω, which exists in every topos. No matter which logic E models, the
corresponding subtopos E¬¬ is always a model of classical logic. This link between the local
operators and the intermediate logics has been further explored by Caramello [5, 6] in the
context of categorical logic. A key notion there is what we call the least dense operator of a
formula φ, that completely determines the dense subtoposes of E which satisfy φ. The same
notion appears in van Oosten’s study of categorical realizability. He showed that the local
operator jLif in Eff corresponding to the Lifschitz topos Lif is the least dense operator of an
arithmetical formula, which is equivalent to Π1 ∨Π1-DNE over HA [23].
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The specifics of least dense operators are explained in Subsection 3.1. Our emphasis here
is the following observation: given two axioms, if their least dense operators are different,
then it automatically follows that they are separable.

1.3 Contents of this paper
We investigate the least dense operators of arithmetical formulas in relation to the separation
of semi-classical axioms. Throughout the investigation, our aim is to demonstrate the utility
of such a topos-theoretic notion in the study of intuitionistic proof theory. For the readers
interested in proof theory, we try to make this paper as self-contained as possible.

In Section 2, we give some background. In Section 3, we study sufficient conditions for
an arithmetical formula φ to have a least dense operator. For this purpose, we introduce two
properties for formulas: transparency and closedness. Transparency ensures that a formula
has a least dense operator under a mild assumption, while closedness is an intermediary
means to show that a formula is transparent. Our argument here is a reconstruction and
generalization of van Oosten’s [23] for all toposes. The main result of Section 3 is that all
semi-classical axioms in Figure 1 have least dense operators in every elementary topos with
natural number object (Theorem 33, Corollary 34).

In Section 4, we apply the general theory in the previous section to the effective topos
Eff . As shown by Hyland [10], the poset of Turing degrees can be embedded into the poset
of local operators in Eff (Figure 4). This allows us to relate the least dense operators of
semi-classical axioms to (generalized) Turing degrees. For example, the least operator of
Σn-DNE corresponds to Turing degree ∅(n−1), while that of Πn ∨Πn-DNE corresponds
to another degree Lif (n−1) (Theorems 45, 46, Figure 5). Noting that least dense operators
characterize separability by dense subtoposes, these expressions not only immediately imply
some separation results of [1] but also a negative consequence that Πn-LEM, Σn-LEM and
Σn+1-DNE are never separable by any subtopos of Eff for any n ≥ 0 (Corollary 47).

2 Preliminary

In this section, we review some basic facts on first-order intuitionistic arithmetic and
interpretation of first-order logic and arithmetic in a topos. Most of the facts mentioned here
can be found in standard textbooks [22, 21, 13, 19].

2.1 First-order intuitionistic arithmetic
Let LA be the language of arithmetic that consists of constant 0, successor Suc, and
function symbols for all primitive recursive functions. Heyting arithmetic, written as HA,
is a first-order intuitionistic LA-theory consisting of ∀x¬(Suc(x) = 0), defining equations
for all primitive recursive functions, and the induction axiom scheme for all LA-formulas.
Peano arithmetic, written as PA, is defined by PA = HA + LEM. We inductively define
the classes Σn, Πn of LA-formulas as follows: Σ0 = Π0 are the set of all quantifier-free
formulas, while Σn+1, Πn+1 are defined by Σn+1 := { ∃x1 · · · ∃xkφ | φ ∈ Πn, 0 ≤ k } and
Πn+1 := { ∀x1 · · · ∀xkφ | φ ∈ Σn, 0 ≤ k }. Πn ∨Πn denotes the set of formulas of the form
φ ∨ ψ with φ, ψ ∈ Πn.

Given a formula φ, the universal closure of φ is denoted by ∀φ. As in [1], we define some
semi-classical axiom schemes as follows: for a subclass Γ of LA-formulas, let

Γ-DNE := { ∀(¬¬φ→ φ) | φ ∈ Γ }, Γ-LEM := { ∀(φ ∨ ¬φ) | φ ∈ Γ }.

CSL 2024
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It is well known that HA proves Σ0-DNE and Σ0-LEM, and that for every n, Πn+1-DNE
is equivalent to Σn-DNE over HA. In this paper, a semi-classical axiom refers to either
Γ-DNE or Γ-LEM, where Γ is Σn, Πn, or Πn ∨Πn for some n ≥ 0.

Recall that HA formalizes a bijective primitive recursive pairing function ⟨−,−⟩ : N2 → N.
This allows us to code a finite sequence of natural numbers by a single one. Hence, without
loss of generality, we can assume that each LA-formula φ has at most one free variable.

By formalizing Post’s theorem in HA, we obtain a universal formula φΣn
(e, x) for

Σn with n ≥ 1. That is, for any Σn-formula A(x), there exists a numeral eA such that
∀(A(x)↔ φΣn

(eA, x)) is provable in HA (folklore). The same holds for Πn and Πn ∨ Πn.
For example, universal formulas φΣ1 , φΠ1 for Σ1, Π1 are given by φΣ1(e, x) := ∃wT (e, x, w),
φΠ1(e, x) := ∀w¬T (e, x, w), where T (e, x, w) is Kleene’s T -predicate. Thus, each axiom
scheme in Figure 1 is finitely axiomatizable in HA.

2.2 Interpretation of intuitionistic logic in a topos
An (elementary) topos is a cartesian closed category with all finite limits and subobject
classifier true : 1 ↣ Ω. According to the standard interpretation of many-sorted first-order
logic in a topos, each formula is interpreted by a subobject in a suitable subobject poset. So
let us first review the logical structure of a subobject poset.

For an object X in a topos E , we write U ↣ X for a subobject U of X and write
(SubE(X),≤) for the poset of subobjects of X. Given a morphism f : X → Y , f∗ stands for
the pullback functor along f . In a topos E , (SubE(X),≤) forms a Heyting algebra.

▶ Theorem 1. Let E be a topos.
(1) E is a coherent category. In particular, for any object X, SubE(X) forms a distributive

lattice with meet ∧, join ∨, top 1 and bottom 0. In addition, for any morphism f : X → Y ,
f∗ : SubE(Y )→ SubE(X) has a left adjoint ∃f : SubE(X)→ SubE(Y ).

(2) E is further a Heyting category. In particular, for any f : X → Y , f∗ has a right adjoint
∀f : SubE(X)→ SubE(Y ).

The last ∀f induces Heyting implication ⇒ on SubE(X). In fact, U ⇒ V can be defined to
be ∀mU

(U ∧V ), where mU is a representative of U ↣ X. If f is a projection π : X ×Z → Z,
∀π (resp. ∃π) provides an interpretation of first-order quantification ∀x (resp. ∃x).

Now assume that to each sort A is assigned an object [[A]] and to each function symbol
f : A1 × · · · ×An → B a morphism [[f ]] : [[A⃗]]→ [[B]], where [[A⃗]] := [[A1]]× · · · × [[An]]. Then
each term t = t(xA1

1 , · · · , xAn
n ) : B is interpreted by a morphism [[t]] : [[A⃗]]→ [[B]] and equality

t =B u by the equalizer [[t =B u]] ↣ [[A⃗]] of [[t]], [[u]] : [[A⃗]] ⇒ [[B]]. Interpretation of logical
connectives is as above.

For a formula φ = φ(xA1
1 , · · · , xAn

n ), if the interpretation [[φ]] ↣ [[A⃗]] is identical to the
greatest element of SubE([[A⃗]]) (that is the equivalence class of the identity id : [[A⃗]]→ [[A⃗]]),
we say that φ is true in E (under [[−]]) and write E |= φ. Under this interpretation, every
topos satisfies all axioms of first-order intuitionistic logic.

2.3 Local operators and subtoposes
Local operator (a.k.a. Lawvere-Tierney topology) is one of the most important tools for
creating a new topos from a given one.

▶ Theorem 2. In a topos E, there is a one-to-one correspondence among the following
notions:
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(1) Local operator j : Ω → Ω, that is an endomorphism on the subobject classifier Ω of E
which is an “internal” nucleus (recall that a nucleus on a lattice is a meet-preserving
closure operator).

(2) Universal closure operation c := { cX : SubE(X) → SubE(X) }X∈E , that is a family of
nuclei on subobject posets which is natural in X ∈ E. When it is clear from the context,
we will omit superscript X in cX .

(3) Subtopos F ↪→ E, that is a full subcategory of E which is itself a topos such that the
inclusion functor i : F ↪→ E has a cartesian left adjoint L : E → F . Such an L is called a
sheafification functor (or associated sheaf functor) on F .

Hereafter, Ej , cj and Lj denote the subtopos, the universal closure operation and the
sheafification functor associated with a local operator j, respectively. (Note that the subtopos
is usually denoted by shj(E).) We write Lop(E) for the class of local operators in E .

▶ Example 3. (1) The identity idΩ : Ω→ Ω and ⊤ := true ◦ ! : Ω→ Ω are local operators in
E , where ! is the unique morphism from Ω to the terminal object 1. The corresponding
subtoposes are E itself and the degenerate topos, respectively. ⊤ is called the degenerate
local operator.

(2) For every topos E , the family { ((· ⇒ 0)⇒ 0) : SubE(X)→ SubE(X) }X∈E always forms
a universal closure operation. The associated local operator is called the double negation
operator ¬¬ : Ω→ Ω. The corresponding subtopos E¬¬ is a model of classical logic.

The correspondence in Theorem 2 induces a natural order on Lop(E).

▶ Lemma 4. For j, k ∈ Lop(E), the following are equivalent:
(1) Ek is a subtopos of Ej.
(2) For any object X ∈ E and any subobject U ↣ X, cj(U) ≤ ck(U).

We write j ≤ k if the above equivalent conditions hold. (Lop(E),≤) forms a poset with
the bottom element idΩ and the top element ⊤.

Next, let us introduce two important notions.

▶ Definition 5. Let X be an object of E, U ↣ X a subobject of X and j ∈ Lop(E). We say
that U is j-dense if cj(U) = X, and that U is j-closed if cj(U) = U . Let CljSubE(X) denote
the class of j-closed subobjects of X.

The j-dense elements in SubE(X) are sent to the greatest element in SubEj
(LjX) by

Lj : E → Ej .

▶ Lemma 6. For a subobject U ↣ X and a local operator j, U is j-dense if and only if
LjU ↣ LjX is an isomorphism.

On the other hand, the j-closed objects form a subobject lattice in Ej : whenever F is an
object of Ej ⊆ E , we have CljSubE(F ) = SubEj

(F ). Moreover, the logical operations (∧j , ∨j ,
⇒j , ¬j , ∀jf , ∃jf ) on SubEj

(F ) are derived from (∧, ∨, ⇒, ¬, ∀f , ∃f ) on SubE(F ) by means
of the closure operation cj as follows:

▶ Lemma 7. Let F , G be objects of Ej , f : F → G a morphism of Ej , and A, B ∈ SubEj
(F ) =

CljSubE(F ). Then

A ∧j B = A ∧B, A ∨j B = cj(A ∨B), A⇒j B = A⇒ B,

∀jfA = ∀fA, ∃jfA = cj(∃fA), ¬j(A) = A⇒ cj(0).

CSL 2024
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2.4 Preservation of logical operations and degrees of openness
In this subsection, we have a look at when a sheafification functor Lj preserves a logical
operation. This leads to a distinction of various degrees of openness of local operators. Note
that Lj always preserves finite limits by definition, hence it preserves monomorphisms. Thus
Lj induces a map Lj : (SubE(X),≤)→ (SubEj (LjX),≤) for each object X ∈ E . As is well
known in categorical logic, Lj always preserves ∧, ∨, 0 and ∃f .

▶ Proposition 8 ([19, Chapter IX]). For any j ∈ Lop(E), Lj is a coherent functor. In
particular, for any objects X, Y , morphism f : X → Y and subobjects U , V ∈ SubE(X),

Lj(U ◦ V ) = LjU ◦j LjV, Lj0 = 0j , Lj(∃fU) = ∃jLjf
LjU,

where ◦ ∈ {∧,∨} and ◦j, 0j, ∃jLjf
are logical operations on SubEj (LjX).

In addition, the following proposition shows that ∀f and ⇒ are preserved by Lj under
an assumption of closedness.

▶ Proposition 9 ([10, Theorem 5.1]). Let X be an object of E, U , V ↣ X subobjects of X and
j ∈ Lop(E). If V is j-closed, then Lj(∀fV ) = ∀jLjf

(LjV ) and Lj(U ⇒ V ) = LjU ⇒j LjV .

However, Lj does not in general preserve universal quantification ∀f , Heyting implication
⇒ and negation ¬. Preservation of these operations is related to opneness of geometric
morphisms [13, Proposition A4.5.1]. Motivated by this observation, Caramello gave the
following definitions.

▶ Definition 10 ([6, Definition 3.2]). Let j be a local operator in E.
(1) j is open if Lj preserves universal quantification on every subobject lattice.
(2) j is implicationally open if Lj preserves Heyting implication on every subobject lattice.
(3) j is weakly open if Lj preserves negation on every subobject lattice.

We finally introduce another openness notion, denseness. This should not be confused
with the notion of j-dense subobject in Definition 5.

▶ Definition 11 ([6, Proposition 3.1]). For j ∈ Lop(E), we say that j (or the corresponding
subtopos Ej) is dense if it satisfies one of the following equivalent conditions:
(1) The inclusion functor i : Ej ↪→ E preserves the initial object 0.
(2) j ≤ ¬¬, where ¬¬ is the double negation operator.
(3) cj preserves negation on every subobject lattice.
(4) The least subobject 0 of the terminal object 1 is j-closed.

Considering the least element 0 as a subobject V in Proposition 9, the fourth condition
of Definition 11 implies Lj(¬U) = Lj(U ⇒ 0) = (Lj(U)⇒j 0j) = ¬jLj(U) (weak openness).
As a consequence, we have the following implications among the openness notions.

▶ Proposition 12 ([6, Section 3]). The following implications hold for local operators:

open =⇒ implicationally open =⇒ weakly open ⇐= dense.

In fact, the implications are strict as there is a topos in which all the openness notions
are different. The effective topos Eff provides such an example.
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2.5 Preservation of arithmetical equality
If a topos E has a natural number object (NNO) N , it is possible to interpret LA-terms
and LA-formulas in it. That is, we can assign to each function symbol f ∈ LA a morphism
[[f ]] : Nk → N so that the defining equation for f is true in E by the universal property of
NNO. Other axioms of Heyting arithmetic can also be verified ([17, Theorem 4.1]). Thus we
can regard every topos with NNO as a model of HA.

Every sheafification functor Lj : E → Ej preserves NNO ([13, Lemma A2.5.6]). That is, if
N is an NNO in E , then so is Nj := LjN in Ej . It automatically follows that Lj preserves
the interpretation of an atomic formula f(x⃗) = g(x⃗).

▶ Lemma 13. Let f(x⃗) and g(x⃗) be k-ary function symbols. We have

[[f(x⃗) = g(x⃗)]]Ej = θ∗(Lj [[f(x⃗) = g(x⃗)]]E) in SubEj (Nk
j ),

where θ : Nk
j → Lj(Nk) is the canonical isomorphism.

Proof. One can show that [[f ]]Ej
: Nk

j → Nj coincides with (Lj [[f ]]E) ◦ θ by induction on the
construction of primitive recursive functions. The result then follows since the interpretation
of f(x⃗) = g(x⃗) in E (resp. Ej) is given by an equalizer of [[f ]]E , [[g]]E : Nk → N (resp. [[f ]]Ej

,
[[g]]Ej

), which is preserved by Lj . ◀

3 Least dense operators of arithmetical formulas

Given a topos E and a formula φ, it is often possible to associate a local operator jE
φ that

completely determines the subtoposes of E which validate φ, in the sense that jE
φ ≤ k if and

only if Ek |= φ for any local operator k in E . Our purpose in this section is to develop a
general theory of such local operators. Although the main focus of this paper lies on the
effective topos Eff , we anticipate that our general theory will find a wide range of applications
in future, as will be discussed in Section 5. To achieve this, we need to restrict our treatment
of local operators to dense ones. This restriction is not essential since all nondegenerate
operators are dense in Eff . See Example 16 and Remark 35 for further justifications.

In Subsection 3.1, we introduce the notion of least dense operator and see how it is relevant
to the separation of subclassical axioms. In Subsections 3.2 and 3.3, we look at two properties
of arithmetical formulas: transparency and closedness. Transparent formulas have least dense
operators under a mild assumption, while the class of transparent and closed formulas enjoys
good closure properties. In particular, all Σ2-formulas are transparent and thus have least
dense operators (under a mild assumption). However, there is a non-transparent formula
in Π3 which does not have a least dense operator, so the above result is optimal. These
considerations lead us to a new technique to iterate the transparency argument. We show in
Subsection 3.4 that all axioms in Figure 1 have least dense operators in an arbitrary topos
with natural number object.

Throughout this section, we fix a topos E with natural number object N . By the
assumption that each LA-formula φ has at most one free variable (Subsection 2.1), the
interpretation of φ in E can be simply regarded as subobject [[φ]]E ↣ N .

3.1 Least dense operators
▶ Notation 14. Let DLop(E) := { k ∈ Lop(E) | k ≤ ¬¬} denote the class of dense local
operators in E. For a local operator j, define DLop(E)≥j := { k ∈ DLop(E) | j ≤ k }.
Lop(E)≥j is similarly defined. For an LA-formula φ, let ⟨φ⟩E := { k ∈ DLop(E) | Ek |= φ }.

CSL 2024
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▶ Definition 15. Let φ be an LA-formula. A dense local operator j in E is called the least
dense operator of φ in E, written jE

φ, if it satisfies

⟨φ⟩E = DLop(E)≥j .

Similarly, for an LA-theory T , we use notations ⟨T ⟩E := { k ∈ DLop(E) | Ek |= T } and jE
T .

The concept of least dense operator is illustrated in Figure 2. The filled region corresponds
to the class of dense operators whose associated subtoposes satisfy φ.

Ek |= φ

Ek′ ̸|= φ

idΩ

¬¬

jE
φ

k

k′

Figure 2 Least dense operator in DLop(E)

▶ Example 16. Similar concepts have been studied in various contexts.
(1) Blass and S̆c̆edrov [4], in their investigation of categorical logic, proved that in any

topos, propositional formula p ∨ ¬p has a unique local operator ¬¬, which is nothing
but the least dense operator in our terminology. It is significant for the study of the
classifying toposes of geometric theories ([12, 4, 5], [7, Section 4.2.3]). Caramello [6]
further investigated least dense operators for more general propositional formulas. She
revealed that propositional formulas have least dense operators in any topos as far as
they are implication-free. The reason for this restriction is that dense local operators are
not implicationally open in general.

(2) Least local operators of arithmetical formulas in Eff are studied by van Oosten [23]. It is
well known that in this topos, all nondegenerate operators are dense [10]. He identified a
certain restricted class of LA-formulas which have least local operators in Eff . He then
showed that the local operator jLif corresponding to the Lifschitz topos Lif ⊆ Eff is the
least operator of an LA-formula (O) in that class. It is known that (O) is equivalent to
Π1 ∨Π1-DNE over HA, so jLif is the least operator of Π1 ∨Π1-DNE in Eff too.

We remark that both lines of work rely on the denseness of local operators, either explicitly
or implicitly.

We also remark that least dense operators provide a good notion of “invariant”, which
is useful for the separation of subclassical axioms. In fact, the subset ⟨φ⟩E ⊆ DLop(E) is
invariant under HA-provable equivalence:

HA ⊢ φ↔ ψ =⇒ ⟨φ⟩E = ⟨ψ⟩E .

If φ and ψ further have least dense operators, we have

jE
φ ̸= jE

ψ =⇒ HA ̸⊢ φ↔ ψ.
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That is, we can separate two axioms just by showing that their least dense operators are
different. Moreover, even if jE

φ = jE
ψ, we obtain a negative consequence that φ and ψ are

never separable by a dense subtopos of E (Corollary 47). Thus, least dense operators provide
us with sufficient information on separability by dense subtoposes.

All least operators in Example 16 are obtained based on the theorem below due to Joyal.

▶ Theorem 17 ([13, Corollary A4.5.13]). Let X be an object in E and U ↣ X. There is a
unique local operator ℓ in E such that Lop(E)≥ℓ = { j ∈ Lop(E) | U ↣ X : j-dense } holds.

▶ Definition 18. The above ℓ is called the least operator of U in E and written as ℓE
U .

In particular, suppose that X is the natural number object N , U is the interpretation
[[φ]]E ↣ N of an LA-formula φ, and j ∈ Lop(E) satisfies the following condition:

Lj [[φ]]E = [[φ]]Ej . (j-transparency)

Then Lemma 6 implies that Ej |= φ if and only if [[φ]]E is j-dense. Hence by Theorem 17
we have Lop(E)≥ℓE

U = { j ∈ Lop(E) | Ej |= φ }. What is critical here is the assumption of
j-transparency, which will be the subject of the following subsections.

3.2 Transparency and closedness
▶ Definition 19. For a local operator j and an LA-formula φ,
(1) φ is j-transparent if Lj [[φ]]E = [[φ]]Ej holds. Let TrpE

j := {φ | φ is j-transparent }.
(2) φ is j-closed if cj [[φ]]E = [[φ]]E holds. Let ClEj := {φ | φ is j-closed }.
Let TrpE :=

⋂
j≤¬¬ TrpE

j and ClE :=
⋂
j≤¬¬ ClEj . We say φ is transparent in E if φ ∈ TrpE .

As an example, every quantifier-free formula is transparent and closed in E .

▶ Lemma 20. ClE = ClE¬¬ holds. Hence, for every LA-formula φ,
(1) φ ∈ ClE if and only if E |= ¬¬φ→ φ.
(2) Σ0, Π0 ⊆ TrpE ∩ ClE .

Proof. Notice that j ≤ ¬¬ implies cj [[φ]]E ≤ c¬¬[[φ]]E (Lemma 4). This leads to ClE = ClE¬¬.
(1) immediately follows from the fact that E |= ¬¬φ→ φ if and only if φ is ¬¬-closed.

To show (2), suppose that φ ∈ Σ0(= Π0). We then obtain φ ∈ ClE by (1) since
HA ⊢ φ ↔ ¬¬φ. By noting that every quantifier-free formula is equivalent to an atomic
formula in HA, φ ∈ TrpE follows from Lemma 13. ◀

Transparency and closedness are strongly related to the concept of least dense operator.
More precisely, we will show the following correspondence: under a natural assumption,

TrpE is a class of formulas which have least dense operators.
TrpE ∩ ClE is a class of formulas whose least dense operators are trivial.

Let us consider the latter first.

▶ Lemma 21. Let j ∈ DLop(E) and φ ∈ TrpE
j ∩ ClEj . Then Ej |= φ if and only if E |= φ.

Proof. The backward direction is clear since Lj preserves isomorphisms and Lj [[φ]]E = [[φ]]Ej .
For the forward direction, first note that [[φ]]Ej

= Lj [[φ]]E is the greatest element in
SubEj

(Nj). It then follows from Lemma 6 that [[φ]]E is j-dense. Since φ is j-closed, [[φ]]E is
also the greatest element in SubE(N). ◀

Therefore, we obtain the following.
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▶ Theorem 22. Let φ be an LA-formula. The following are equivalent:
(1) φ ∈ TrpE ∩ ClE and ⟨φ⟩E is nonempty.
(2) ⟨φ⟩E = DLop(E), that is, jE

φ = idΩ.

Proof. If (1) holds, then we have Ej |= φ for every dense local operator j by Lemma 21.
Hence ⟨φ⟩E = DLop(E). Conversely, assume that (2) holds. By assumption, [[φ]]Ej is the
greatest element in SubEj

(Nj) for any j ∈ DLop(E), so in particular [[φ]]E is also the greatest
in SubE(N). This implies [[φ]]Ej

= Lj [[φ]]E since Lj preserves isomorphisms. It is obvious
that φ is in ClE by E |= φ. ◀

▶ Corollary 23. Let φ be an LA-formula.
(1) If φ is provable in HA, φ ∈ TrpE ∩ ClE and jE

φ = idΩ.
(2) If φ is provable in PA, φ ∈ TrpE ∩ ClE iff jE

φ = idΩ.

Proof. If φ is provable in HA, then we have ⟨φ⟩E = DLop(E) since φ is true in any topos.
Hence we also have φ ∈ TrpE ∩ ClE by Theorem 22.

On the other hand, if φ is provable in PA, then the double negation operator ¬¬ is in
⟨φ⟩E since the corresponding subtopos E¬¬ satisfies any classically true formula, including φ.
This implies that ⟨φ⟩E is nonempty. ◀

3.3 Transparency yields least dense operators
We now turn our attention to transparent (but not necessarily closed) formulas. The argument
below is a reconstruction of van Oosten’s [23] in terms of transparency and closedness. The
following lemma (cf. [23, Proposition 2.1]) plays a crucial role.

▶ Lemma 24 (MAIN LEMMA). Let E be an arbitrary topos with natural number object.
(1) Suppose that an LA-formula φ is transparent in E. Then either ⟨φ⟩E = ∅ or φ has least

dense operator jE
φ = ℓE

[[φ]]E
, where ℓE

[[φ]]E
is the least operator of [[φ]]E .

(2) Suppose that LA-formulas φ, ψ are transparent in E and HA ⊢ φ → ψ. Then for
ρ := ψ → φ, either ⟨ρ⟩E = ∅ or ρ has least dense operator jE

ρ .

Proof. By taking an HA-provable formula as ψ, (1) can be regarded as a special case of (2)
(notice Corollary 23 (1)).

Let j be a dense local operator in E . The assumption HA ⊢ φ→ ψ implies that φ→ ψ

is true in any topos, including E and Ej . So [[φ]]E ≤ [[ψ]]E and [[φ]]Ej
≤ [[ψ]]Ej

hold. Now
consider a subobject U := [[φ]]E ↣ [[ψ]]E . Since φ and ψ are transparent, we get the equation
LjU = (Lj [[φ]]E ↣ Lj [[ψ]]E) = ([[φ]]Ej ↣ [[ψ]]Ej ). Thus the following equivalence holds:
Ej |= ρ iff LjU = [[φ]]Ej

↣ [[ψ]]Ej
is an isomorphism iff U is j-dense (the last equivalence

follows from Lemma 6).
By Theorem 17, we have the least operator ℓE

U such that U is dense. If ℓE
U /∈ DLop(E),

then ⟨ρ⟩E = ∅. If ℓE
U ∈ DLop(E), ℓE

U is the least dense operator of ρ in E . ◀

The next step of our reconstruction is to examine the closure properties satisfied by TrpE

and ClE . The proof of the case ¬ relies on the restriction to dense local operators.

▶ Lemma 25. (1) TrpE is closed under ∧, ∨, ∃, ¬.
(2) ClE is closed under ∧, →, ∀, ¬.
(3) Suppose that φ ∈ TrpE ∩ClE and ψ ∈ TrpE . Then ψ → φ and ∀xφ belong to TrpE ∩ClE .

In particular, TrpE ∩ ClE is closed under ∧, →, ∀, ¬.
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Proof. (1) Closure under ∧, ∨, ∃ is due to Proposition 8. For ¬, just recall that dense local
operators are weakly open (Proposition 12). (2) ClE is closed under ∧, →, ∀ by Lemma 7,
and under ¬ by denseness (Definition 11 (3)). (3) holds by Proposition 9. ◀

Together with Lemma 20, we obtain the following:

▶ Corollary 26. Π1 ⊆ TrpE ∩ ClE and Σ2 ⊆ TrpE .

▶ Corollary 27. Suppose that an LA-formula φ is transparent in E. Then φ ∨ ¬φ and
¬¬φ→ φ have least dense operators in E.

Proof. Note that ⟨φ ∨ ¬φ⟩E and ⟨¬¬φ→ φ⟩E are always nonempty because both formulas
are provable in PA, so true in E¬¬. φ∨¬φ belongs to TrpE by Lemma 25 (1), hence φ∨¬φ
has least dense operator in E by Lemma 24 (1).

For ¬¬φ→ φ, we apply the case (2) of Lemma 24. ◀

This corollary can be extended to semi-classical axioms. Recall that for n ≥ 1, there
exist universal formulas φΣn

and φΠn
for the classes Σn and Πn. Hence axiom scheme

Σn-LEM, for example, is equivalent to formula ∀(φΣn
∨ ¬φΣn

) over HA. Moreover, we have
E |=∀ (φΣn

∨ ¬φΣn
) iff E |= φΣn

∨ ¬φΣn
. Thus we obtain:

▶ Lemma 28. Let Γ be one of Σn, Πn and Πn ∨ Πn and assume that Γ ⊆ TrpE . Then
Γ-LEM and Γ-DNE have least dense operators in E.

As we saw in Corollary 26, Σ2 ⊆ TrpE always holds. This fact ensures that Σ2-DNE and
Σ2-LEM have least dense operators in E . On the other hand, we can show that Π3 ⊆ TrpE

does not hold in general (see Theorem 49 in Appendix A). Therefore, to show the existence
of least dense operators of semi-classical axioms for n ≥ 3, we need another technique, that
is to be discussed in the next subsection.

3.4 Iteration argument and least dense operators of semi-classical
axioms

In this subsection, we prove that all semi-classical axioms have least dense operators in every
topos. The key idea is to iterate the construction of Lemma 28.

▶ Lemma 29. Let n ≥ 0. If E |= Σn-DNE, then Πn+1 ⊆ TrpE ∩ ClE , so Σn+2 ⊆ TrpE .

Proof. By induction on n, recalling that E |= Σn-DNE iff Σn ⊆ ClE (Lemma 20). The base
case is true by Corollary 26. Next assume that Σn+1 ⊆ ClE . By the induction hypothesis
Πn ⊆ Πn+1 ⊆ TrpE ∩ ClE , so Σn+1 ⊆ TrpE by Lemma 25 (1), that is, Σn+1 ⊆ TrpE ∩ ClE .
By Lemma 25 (3), we conclude Πn+2 ⊆ TrpE ∩ ClE . ◀

For the sake of the argument below, let us note a natural correspondence between
Lop(E)≥j and Lop(Ej).

▶ Notation 30. Let j ∈ Lop(E). There is a one-to-one correspondence between Lop(E)≥j

and Lop(Ej). We write kj for the local operator in Lop(Ej) corresponding to k ∈ Lop(E)≥j .
Under this notation we have (Ej)kj

= Ek.

▶ Lemma 31 ([7, Corollary 4.2.9]). If j is a dense local operator in E, ¬¬j is identical to the
double negation operator in Lop(Ej). Thus, the correspondence in Notation 30 holds even if
restricted to the dense local operators (Figure 3).
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idΩ

¬¬

j

k

idΩj

¬¬j

kj

Figure 3 Correspondence between DLop(E)≥j and DLop(Ej)

The following lemma allows us to iterate Lemma 28.

▶ Lemma 32. Let T , S be LA-theories such that HA + T ⊢ S. Suppose further that
(1) S has least dense operator jS := jE

S ∈ DLop(E) in E.
(2) T has least dense operator j′

T := j
EjS

T ∈ DLop(EjS
) in EjS

.
Then jT ∈ DLop(E)≥jS corresponding to j′

T is the least dense operator of T in E.

Proof. Let k ∈ DLop(E). We show that Ek |= T if and only if jT ≤ k. Assume that Ek |= T .
jS ≤ k clearly follows from the assumption (1) and HA + T ⊢ S. So k ∈ DLop(E)≥jS and
the corresponding operator kjS

∈ DLop(EjS
) yields a dense subtopos of EjS

that satisfies T .
Hence, by the assumption (2), we get j′

T ≤ kjS
. This implies jT ≤ k.

Conversely, suppose jT ≤ k. Since jT ∈ DLop(E)≥jS , the corresponding operator
j′
T ∈ DLop(EjS

) satisfies j′
T ≤ kjS

. By the assumption (2) again, (EjS
)kjS

= Ek |= T

holds. ◀

▶ Theorem 33. For every topos E with natural number object and n ≥ 0, Σn-DNE has least
dense operator jn := jE

Σn-DNE in E.

Proof. By induction on n. For n = 0, let j0 = idΩ (See Corollary 23).
Next, assume that Σn-DNE has least dense operator jn in E . Then Σn-DNE is true in

Ejn
, hence we have Σn+1 ⊆ Σn+2 ⊆ TrpEjn by Lemma 29. Thus, it follows from Lemma 28

that Σn+1-DNE has least dense operator in Ejn . Since HA + Σn+1-DNE implies Σn-DNE,
all assumptions of Lemma 32 are satisfied. We therefore conclude that Σn+1-DNE has least
dense operator in E . ◀

The local operators { jn } can be used as the “footholds” to obtain least dense operators
of other semi-classical axioms.

▶ Corollary 34. For every topos E with natural number object and n ≥ 0, Σn-LEM, Πn-LEM
and Πn ∨Πn-DNE have least dense operators in E.

Proof. We here focus on Πn+1-LEM. Considering the least dense operator jn of Σn-DNE
in Theorem 33, we have Πn+1 ⊆ Σn+2 ⊆ TrpEjn . Thus, it follows from Lemma 28 that
Πn+1-LEM has least dense operator in Ejn . Since HA + Πn+1-LEM proves Σn-DNE
(Figure 1), it also has least dense operator in E by Lemma 32. ◀

▶ Remark 35. Let us finally discuss (dis)advantages of the restriction to dense operators.
One clear disadvantage is that it forces us to introduce an additional assumption ⟨φ⟩E ̸= ∅
in Lemma 24 (MAIN LEMMA). Although this may appear inconvenient, it does not cause
any problem as long as semi-classical axioms are concerned (See the proof of Corollary 27).
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On the other hand, the restriction is really essential for Lemma 20. In fact, this lemma
does not hold without the assumption of denseness, as indicated by the following:

▶ Theorem 36. Let j be a local operator. All Σ0-formulas are j-closed iff j is dense.

Proof. The backward direction is shown in Lemma 20. To see the forward direction, consider
Σ0-formula ¬(x = x), whose interpretation is the least element 0 in the subobject poset of
NNO. If it is j-closed, then the least subobject 0 of the terminal object 1 is also j-closed.
The latter condition is equivalent to being a dense local operator (Definition 11 (4)). ◀

Failure of Lemma 20 would affect most of the subsequent theorems in Section 3. For example,
there is no guarantee that all Σ2-formulas are transparent. We would say that denseness is a
price to pay to obtain these theorems in the general setting.

4 Least operators in the effective topos

In this section, we apply the general theory developed in the previous section to the effective
topos Eff . As explained in Example 16, any non-degenerate operator is dense in this topos.
Henceforth, we speak of least operators instead of least dense ones.

In Subsection 4.1, we briefly review the structure of subobjects and that of local operators
in Eff . We also mention that there are local operators corresponding to Turing degrees.
In Subsection 4.2, we express all least dense operators of semi-classical axioms in terms of
(generalized) Turing degrees. This immediately leads to some separation results conforming
to [1]. For details on Eff , the reader is referred to [25].

4.1 Subobjects of NNO and local operators in Eff

Let us first recall the effective topos and associated concepts.

▶ Notation 37. We fix a primitive recursive pairing function ⟨−,−⟩ : N2 → N with the
associated projections (−)0, (−)1 : N → N. For natural numbers e and n, we write e · n
for the result of applying the e-th partial computable function to n, and write e · n ↓ if the
computation terminates. If ψ is a closed LA-formula, n rK ψ means that n realizes ψ under
Kleene realizability. Also we use λ-notation: for a partial computable function t :⊆ N→ N
in variable x, λx.t denotes an index of t. Similarly, for u :⊆ N2 → N in variable x and y,
λxy.u is an abbreviation for λx.(λy.u).

Given a set X, we consider the following operations on P(N)X . For any φ, ψ : X → P(N),

φ ∧ ψ(x) := { ⟨n,m⟩ | n ∈ φ(x) ∧ m ∈ ψ(x) }, ⊤(x) := N,
φ ∨ ψ(x) := { ⟨0, n⟩ | n ∈ φ(x) } ∪ { ⟨1,m⟩ | m ∈ ψ(x) }, ⊥(x) := ∅,
φ→ ψ(x) := { e | ∀n ∈ φ(x) (e · n ↓ ∧ e · n ∈ ψ(x)) }, ¬φ(x) := φ→ ⊥(x).

In addition, we define a preorder ⊑ on P(N)X : φ ⊑ ψ if
⋂
x∈X(φ → ψ(x)) is nonempty.

Then (P(N)X ,⊑) forms a Heyting prealgebra and induces the effective tripos PEff : X 7→
(P(N)X ,⊑). The effective topos Eff is given by the tripos-to-topos construction on PEff . For
example, an object X of Eff is a pair X = (X,=X) where X is a set and =X : X×X → P(N)
is a “P(N)-valued equality” with respect to PEff , and a morphism f : X → Y of Eff is an
(equivalence class of) “P(N)-valued functional relation” F : X × Y → P(N) that respects
=X and =Y ([25, Chapter 2]).
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Eff has a natural number object N = (N,=N ), where [n =N m] := {n } if n = m and
:= ∅ otherwise. A subobject classifier Ω = (P(N),=Ω) is given by defining [p =Ω q] := (p→
q) ∧ (q → p), where ∧, → are operations on P(N) ∼= P(N){ ∗ }.

Similarly, the structure of subobjects in Eff is determined by PEff . Indeed, a subobject U
of X ∈ Eff can be described by a “strict relational” function U : X → P(N) with respect to
=X . As far as the subobjects of N are concerned, relationality is trivial so that they admit
much simpler descriptions below.

▶ Definition 38. A function U : N→ P(N) is called a (partial) multifunction and written
as U :⊆ N ⇒ N. Let Mfunc denote the set of all multifunctions. A preorder on Mfunc
can be defined by invoking Notation 37 for the case of X = N: U ⊑s V iff U ′ ⊑ V , where
U ′(e) := { ⟨e, n⟩ | n ∈ U(e) }. The latter means that

∃f ∈ N∀e, n ∈ N (n ∈ U(e) =⇒ f · ⟨e, n⟩ ∈ V (e)).

We write U ≡s V if U ⊑s V and V ⊑s U .

This preorder induces a correspondence between the multifunctions and the subobjects
of N . The reason for using U ′ is that U is not strict with respect to =N in general.

▶ Proposition 39. (Mfunc,⊑s) ≃ (SubEff (N),≤).

We thus think of a multifunction U :⊆ N ⇒ N as a subobject of N . In the sequel, we are
mainly interested in the subobjects of N that are interpretations of LA-formulas. Given an
LA-formula φ, the interpretation [[φ]]Eff corresponds to a multifunction [[φ]]Mfunc as follows:

[[φ]]Mfunc(e) := {n ∈ N | n rK φ(e) }.

Hence, φ is true in Eff iff [[φ]]Eff is the greatest element in SubEff (N) iff ⊤ ⊑s [[φ]]Mfunc iff
∃f ∈ N ∀e ∈ N (f ·e ↓ and f ·e rK φ(e)) iff ∀φ is Kleene realizable [25]. Notice that [[φ]]Mfunc
is coherent with the operations introduced in Notation 37. That is, for each ◦ ∈ {∧,∨,→},

[[φ ◦ ψ]]Mfunc = [[φ]]Mfunc ◦ [[ψ]]Mfunc, [[¬φ]]Mfunc = ¬[[φ]]Mfunc.

Each local operator in Eff has a simple expression as an endofunction on P(N), but we
omit its details here. It is important that there are local operators corresponding to Turing
degrees. Recall Joyal’s theorem (Theorem 17) in the previous section, which shows that every
subobject U ↣ N has least local operator ℓE

U that makes U dense. The following observation
is due to Hyland [10].

▶ Theorem 40 ([10, Theorem 17.2]). Let A, B ⊆ N. A is Turing reducible to B if and only
if jA ≤ jB in Lop(Eff), where jA is the least operator of the characteristic function χA of A
in Mfunc. Hence the poset of Turing degrees can be embedded into (Lop(Eff),≤).

In other words, the local operators in Eff can be regarded as generalized Turing degrees.
For example, the Lifschitz operator jLif in Example 16 is in between j∅ and j∅(1) , but it
is never equal to jd for any Turing degree d (see the notation below and Figure 4). This
connection with degree theory is further extended and refined by Faber and van Oosten [8]
and Kihara [14].

▶ Notation 41. Given a set D ⊆ N with Turing degree d (i.e., D ∈ d), we write jd to denote
the least operator ℓEff

χD
of χD : N → N. For example, when D is a decidable set, we have

jd = ℓEff
χD

= j∅ = idΩ. It is known that a closed formula is true in the subtopos Effjd
if and
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only if it is realizable under the Kleene realizability relativized to d (d-realizability) [20]. For
n ∈ N, ∅(n) denotes the n-th Turing jump of ∅ and Eff (n) the subtopos Effj∅(n) . By letting r(n)

K

be the ∅(n)-realizability relation, the structure of subobjects in Eff (n) can be described by r(n)
K .

For instance, [[φ]]Eff(n) corresponds to a multifunction [[φ]](n)
Mfunc(e) := {m | m r(n)

K φ(e) }.

idΩ = j∅

j∅(1)

j∅(2)

¬¬
⊤

jLif

...

Turing degrees

Figure 4 Turing degrees embedded in Lop(Eff)

4.2 Turing degrees and least operators of semi-classical axioms
In this subsection, we give concrete representations to the least operators of semi-classical
axioms in terms of generalized Turing degrees. First of all, the following is straightforward
by Corollary 23 and Figure 1.

▶ Lemma 42. For every topos E with natural number object and n ≥ 0,
(1) jE

Σ0-DNE = jE
Π0-LEM = jE

Σ0-LEM = idΩ.
(2) jE

Πn-LEM ≤ jE
Σn-LEM ≤ jE

Σn+1-DNE.

It is well known that Σ1-DNE is Kleene realizable, so the least dense operator of Σ1-DNE
in Eff is just idΩ. Using Notation 41, this can be expressed by Turing degree ∅:

jEff
Π0-LEM = jEff

Σ0-LEM = jEff
Σ1-DNE = j∅. (♣)

This equation (♣) can be extended to any n ≥ 1 (Theorem 45). Here we give only a proof of
the case n = 1 because there is no great difficulty in generalizing the following arguments.
The complete proof can be found in Appendix B.

Let us recall Subsection 2.1 and a primitive recursive function S(e, x) obtained by
formalizing the parameter theorem in HA. S(e, x) has the ability to “shift” a variable, that
is, “S(e, x) · y ↓ iff e · ⟨x, y⟩ ↓” is provable in HA. Then we can describe the universal formula
for Σ2 by φΣ2(e, x) := ∃y φΠ1(S(e, x), y) = ∃y∀w¬T (S(e, x), y, w), which is equivalent to
∃y∀w¬T (e, ⟨x, y⟩, w) in HA.

Now let p1(e, x) := λw.0 and define s2(e, x) := ⟨y0, λw.0⟩, where y0 is the least number
such that N |= φΠ1(S(e, x), y0) holds if it exists. Note that p1 is a total computable function
and s2 a partial ∅(1)-computable one. Then, by the standard definition of realizability
interpretation, we can easily verify that
(1) For any e, x ∈ N, N |= φΠ1(e, x) implies p1(e, x) rK φΠ1(e, x).
(2) For any e, x ∈ N, N |= φΣ2(e, x) implies s2(e, x) r(1)

K φΣ2(e, x).
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The second property immediately implies that λex.λm.s2(e, x) realizes ∀(¬¬φΣ2 → φΣ2)
under ∅(1)-realizability, where λm. is a dummy abstraction. Hence Σ2-DNE is true in
Eff (1). This allows us to estimate an upper bound for jEff

Σ2-DNE. This argument can be
straightforwardly extended to jEff

Σn+1-DNE (Lemma 50 in Appendix B). So we have

▶ Lemma 43. For any n ≥ 0, Eff (n) |= Σn+1-DNE. Thus jEff
Σn+1-DNE ≤ j∅(n) .

Next, notice that if a formula φ is transparent in Eff , then we have jEff
φ∨¬φ = ℓEff

[[φ∨¬φ]]Eff
,

where the latter is Joyal’s least operator of subobject [[φ ∨ ¬φ]]Eff (Lemma 24, Corollary 27).
The following lemma gives us a simple description of [[φΠ1 ∨ ¬φΠ1 ]]Eff .

▶ Lemma 44. Let φ(x) be an LA-formula and let χφ be the characteristic function of
{m ∈ N | N |= φ(m) }. Suppose further that there is a total computable function p(x) such
that the following two conditions hold:
(a) For any m ∈ N, Eff |= φ(m) implies N |= φ(m).
(b) For any m ∈ N, N |= φ(m) implies p(m) rK φ(m).
Then [[¬φ ∨ φ]]Mfunc ≡s χφ in Mfunc ≃ SubEff (N).

Proof. Assume that φ(x) and p(x) satisfy (a) and (b), and let m ∈ N. The assumptions
imply that p(m) rK φ(m) iff N |= φ(m). Because ¬ψ is Kleene realizable by any natural
number iff ψ is not Kleene realizable for a closed formula ψ, we have p(m) rK ¬φ(m)
iff N |= ¬φ(m). Hence we obtain that ⟨i, p(m)⟩ ∈ [[¬φ ∨ φ]]Mfunc(m) iff χφ(m) = i for
any i ∈ { 0, 1 }. Therefore, λx.(x1)0 and λx.⟨x1, p(x0)⟩ witness [[¬φ ∨ φ]]Mfunc ⊑s χφ and
χφ ⊑s [[¬φ ∨ φ]]Mfunc, respectively. ◀

Let us apply Lemma 44 to φ := φΠ1 and p := p1. We have already mentioned that (b) holds.
Moreover, (a) follows from the categorical equivalence Eff¬¬ ≃ Set ([10, Proposition 4.4])
and Lemma 21 (this is another transparency argument). Thus we obtain ℓEff

[[φ∨¬φ]]Eff
= ℓEff

χφ
.

In addition, the subset of natural numbers defined by φΠ1 has Turing degree ∅(1) by Post’s
theorem, so ℓEff

χφΠ1
= j∅(1) holds in the sense of Notation 41. Hence we have the equation:

jEff
Π1-LEM = jEff

φΠ1 ∨¬φΠ1
= ℓEff

[[φΠ1 ∨¬φΠ1 ]]Eff
= ℓEff

χφΠ1
= j∅(1) .

This argument can also be extended to jEff
Πn-LEM (Lemma 51, 52 in Appendix B). Therefore,

combining this with Lemma 42 (2) and Lemma 43, we obtain

▶ Theorem 45. For any n ≥ 0, jEff
Πn-LEM = jEff

Σn-LEM = jEff
Σn+1-DNE = j∅(n) .

On the other hand, as in van Oosten’s work [23], the least operator of Π1 ∨Π1-DNE is
equal to Lifschitz operator jLif in Eff . His argument can be lifted to Eff (n). We define a
multifunction ULif(n) :⊆ N ⇒ N by

ULif(n)(e) := { ⟨0, e⟩ | N |= φΠn+1(e0) } ∪ { ⟨1, e⟩ | N |= φΠn+1(e1) }.

Following his observation in [23], we see that the least operator of ULif(n) in Eff (n) represents
Lifschitz realizability relativized to degree ∅(n). Hence we write jLif(n) for that least operator.
Recall that jLif is strictly in between j∅ and j∅(1) . This can be generalized to j∅(n) < jLif(n) <

j∅(n+1) for any n ≥ 0 since the proof can be relativized to ∅(n).
By using a “realizer” of φΠn+1 (pn+1 in Lemma 50), we can prove the equivalence of

[[ψ]]Eff(n) ↣ [[¬¬ψ]]Eff(n) and ULif(n) as subobject in Eff (n), where ψ is a universal formula
for Πn+1 ∨Πn+1. By reasoning similarly to the proof of Theorem 45, we conclude

▶ Theorem 46. For any n ≥ 0, jEff
Πn+1∨Πn+1-DNE = jLif(n) .

We have thus determined all least operators of semi-classical axioms in Eff (Figure 5).
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Σ0-LEM

Π1 ∨ Π1-DNE Π1-LEM

Σ1-DNE

Σ1-LEM

Π2 ∨ Π2-DNE Π2-LEM

Σ2-DNE

Σ2-LEM

Π3 ∨ Π3-DNE Π3-LEM

Σ3-DNE

· · ·

j∅ j∅(1) j∅(2)

jLif jLif(1) jLif(2)

Figure 5 Summary of least operators in Lop(Eff)

5 Conclusion

As we explained in Subsection 3.1, least dense operators behave as “invariants” under HA-
provability. Figure 5 gives us the complete information about separation of semi-classical
axioms in Figure 1 by subtoposes of Eff .

▶ Corollary 47. (1) Any two axioms belonging to different circles in Figure 5 are separable.
(2) Those in the same circle are never separable by any subtopos of Eff .

While the first part of Corollary 47 is already established in [1], the second part is
genuinely our original contribution. In addition:

We have a complete characterization of separability of semi-classical axioms by a subtopos.
Take Σn-DNE and Πn ∨Πn-DNE as an example. It follows from the nature of least
operator that for any k ∈ Lop(Eff), Effk separates them if and only if j∅(n−1) ≤ k and
jLif(n−1) ̸≤ k. This is a refinement of [1] and indicates that realizability notions they used
are “optimal” in the sense of minimality.
In addition to the separation results explained above, [1] also separates Πn-LEM and
Σn-LEM by using monotone modified realizability. As a by-product of Corollary 47 (2),
we find that this realizability notion cannot be captured by a subtopos of Eff . We are
thus led to look for another suitable topos. A candidate is the topos Eff·→· proposed by
van Oosten [24], that contains the modified realizability topos in addition to Eff . In future
work, we plan to explore such richer toposes and to determine the least dense operators
of various axioms in them.
Our detailed analysis of transparency gives a systematic account on previous work on
least dense operators by Caramello and van Oosten. Since we have worked on an arbitrary
topos, our results in Section 3 may also be applied to another semantics instead of
realizability, sheaf semantics including Kripke frame semantics and Beth semantics [3].
The major advantage of our framework is that we acquire a new methodology to prove
impossibility of separation (Corollary 47 (2)). In further study of intuitionistic arithmetic,
other variants of semi-classical axioms have been proposed, but many of them have not
yet been separated [9]. The least dense operators may allow us to analyze the “difficulty”
of separation from a topos-theoretic point of view.
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A TrpE and Π3

We here give an example of a Π3-formula that is non-transparent. In fact, non-transparent
formulas are easily found as in the following lemma.

▶ Lemma 48. Let E be a topos and φ a formula such that E |= φ but E¬¬ ̸|= φ. Then
⟨φ⟩E ̸= ∅ and φ has no least dense operator in E. So φ is not transparent in E.

Proof. By assumption, we have idΩ ∈ ⟨φ⟩E , so ⟨φ⟩E ̸= ∅. Now assume that φ has least dense
operator jE

φ in E . Then, jE
φ = idΩ holds by minimality. This leads to ⟨φ⟩E = DLop(E), and

in particular ¬¬ ∈ ⟨φ⟩E , which contradicts the assumption that E¬¬ ̸|= φ. ◀

This suggests that “constructively true” but “classically false” formulas are likely to be non-
transparent. Let us consider the effective topos Eff and recall that for a closed LA-formula
ψ, Eff |= ψ iff ψ is Kleene realizable. With this in mind, define Σ2-formula H(x, y) to be
the graph of the characteristic function of Halting problem. That is,

H(x, y) := ∃v∀u((T (x, x, u)→ y = 1) ∧ (¬T (x, x, v)→ y = 0)).

Furthermore, define Church’s thesis with respect to H by

CTH0 := ∀x∃yH(x, y)→ ∃e∀x∃w(H(x, U(w)) ∧ T (e, x, w)),

where U is Kleene’s U -function. Then Eff |= CTH0 is obtained by the fact that Church’s
thesis is Kleene realizable [22]. However, Eff¬¬ ̸|= CTH0 because Eff¬¬ is equivalent to the
category Set of sets.

▶ Theorem 49. Π3 ̸⊆ TrpEff in the effective topos Eff .

Proof. It is obvious that the antecedent of CTH0 is Π3 and the consequent is equivalent to a
Σ4-formula in HA. In addition, the converse of CTH0 is provable in HA.

Now assume that Π3 ⊆ TrpEff . Then Σ4 ⊆ TrpEff by Lemma 25 (1), hence CTH0 has
least dense operator in Eff by Lemma 24 (2). This contradicts Lemma 48. ◀

B Proof of Theorem 45 in the general case

To show Theorem 45, we provide generalized versions of p1, s2 and Lemma 44 in Subsection 4.2.
Recall that S(e, x) denotes the function from the parameter theorem. Then we can inductively
define universal formulas for Σn and Πn by φΣn+1 := ∃y φΠn

(S(e, x), y) and φΠn+1 :=
∀y φΣn

(S(e, x), y).

▶ Lemma 50. For every n ≥ 0, there are a total ∅(n)-computable function pn+1(e, x) and a
partial ∅(n)-computable function sn+1(e, x) such that the following two conditions hold:
(1) For any e, x ∈ N, N |= φΠn+1(e, x) implies pn+1(e, x) r(n)

K φΠn+1(e, x).
(2) For any e, x ∈ N, N |= φΣn+1(e, x) implies sn+1(e, x) r(n)

K φΣn+1(e, x).

Proof. By induction on n. For n = 0, we have already given p1(e, x) := λw.0. Define a
partial computable function s1 by s1(e, x) := ⟨w0, 0⟩, where w0 is the code of computation
history of e · x when e · x ↓. It is clear from the description of φΣ1(e, x) that (2) holds.

Next assume that the statement holds for n. Let us define pn+2(e, x) := λy.sn+1(S(e, x), y)
and sn+2(e, x) := ⟨y0, pn+1(S(e, x), y0)⟩, where y0 is the least number such that φΠn+1(S(e, x), y0)
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is true in N if it exists. Note that pn+2 can be obtained as a total ∅(n)-computable function
and sn+2 as a partial ∅(n+1)-computable one. Then, for any e, x ∈ N,

N |= φΠn+2(e, x) =⇒ ∀y ∈ N N |= φΣn+1(S(e, x), y)

=⇒ ∀y ∈ N sn+1(S(e, x), y) r(n)
K φΣn+1(S(e, x), y)

=⇒ pn+2(e, x) r(n+1)
K ∀y φΣn+1(S(e, x), y)

N |= φΣn+2(e, x) =⇒ ∃y ∈ N N |= φΠn+1(S(e, x), y)

=⇒ ∃y ∈ N (N |= φΠn+1(S(e, x), y) ∧ pn+1(S(e, x), y) r(n)
K φΠn+1(S(e, x), y))

=⇒ sn+2(e, x) r(n+1)
K ∃y φΠn+1(S(e, x), y). ◀

The condition (2) of Lemma 50 implies that λex.λm.sn+1(e, x) realizes ∀(¬¬φΣn+1 → φΣn+1)
under ∅(n)-realizability. This means that we have confirmed Lemma 43.

Next, let us generalize Lemma 44. It is simply given by relativizing to ∅(n), so the proof
is obtained exactly in the same way.

▶ Lemma 51. Let φ(x) be an LA-formula and let χφ be the characteristic function of
{m ∈ N | N |= φ(m) }. Suppose further that there is a total ∅(n)-computable function p(x)
such that the following two conditions hold:
(a) For any m ∈ N, Eff (n) |= φ(m) implies N |= φ(m).
(b) For any m ∈ N, N |= φ(m) implies p(m) r(n)

K φ(m).
Then [[¬φ ∨ φ]](n)

Mfunc ≡s χφ in SubEff(n)(N).

Let φ := φΠn+1 and p := pn+1. Note that φ ∈ Πn+1 is transparent in Eff (n) by Lemma 29
and Lemma 43, so φ ∨ ¬φ has least operator jEff(n)

φ∨¬φ in Eff (n). By Lemma 51 and the same
reasoning as in the proof for n = 0, we have the equation below in Lop(Eff (n)):

jEff(n)

φ∨¬φ = ℓEff(n)

[[φ∨¬φ]]Eff(n)
= ℓEff(n)

χφ
. (♦)

The following lemma is the final piece to establish Theorem 45.

▶ Lemma 52. Let j be a local operator in a topos E and U ↣ X a subobject in E. Further
suppose that j ≤ ℓE

U , where ℓE
U is the least operator of U in E. Then ℓE

U ∈ Lop(E)≥j

corresponds to the least operator ℓEj

LjU
∈ Lop(Ej) of the subobject LjU ↣ LjX in Ej in the

sense of Notation 30.

Proof. Fix k ∈ Lop(E)≥j and the corresponding local operator kj in Lop(Ej). Note that
Lk ≃ Lkj ◦ Lj holds since Ek is equal to the subtopos (Ej)kj of Ej corresponding kj . Hence
LkU ↣ LkX is an isomorphism if and only if so is Lkj

(LjU) ↣ Lkj
(LjX). Recalling

Lemma 6, we obtain that ℓE
U ≤ k in Lop(E)≥j iff U is k-dense in E iff Lkj (LjU) is kj-dense

in Ej iff ℓ
Ej

LjU
≤ kj in Lop(Ej). This means that ℓE

U corresponds to ℓEj

LjU
. ◀

In particular, considering X := N , U := χφ and j := j∅(n) in Eff , we have the correspond-
ence between ℓEff

U = j∅(n+1) ∈ Lop(Eff) and ℓEff(n)

LjU
∈ Lop(Eff (n)). In addition, ℓEff(n)

LjU
can

be regarded as the least operator ℓEff(n)

χφ
because the subobject LjU ↣ LjN(= Nj) can be

described by a multifunction χφ in Eff (n). So we have the following correspondence:

ℓEff(n)

χφ
∈ Lop(Eff (n)) ←→ j∅(n+1) ∈ Lop(Eff). (♠)

Thus, combining this correspondence (♠) with the equation (♦), we obtain
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▶ Theorem 53. For any n ≥ 0, jEff(n)

Πn+1-LEM ∈ Lop(Eff (n)) corresponds to j∅(n+1) ∈ Lop(Eff).

Finally, we prove Theorem 45 by using the iteration argument developed in Subsection 3.4.

Proof of Theorem 45. It is sufficient to show that jEff
Πn-LEM = j∅(n) by induction on n. The

base case is already discussed in Subsection 4.2.
Assume that it holds for n; in particular, k := jEff

Σn-LEM = j∅(n) holds. Recall that
Πn+1-LEM implies Σn-LEM over HA (Figure 1). By Lemma 32, the least operator
jEff

Πn+1-LEM of Πn+1-LEM in Eff corresponds to the least operator jEffk

Πn+1-LEM of that in

Effk, which is described as jEff(n)

Πn+1-LEM. Therefore, we conclude jEff
Πn+1-LEM = j∅(n+1) by

Theorem 53. ◀
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