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Abstract

Odd-parity superconductivity serves as a foundational platform for realizing topological su-
perconductivity, wherein Majorana fermions emerge at the edges or defects of systems. In
the realm of quantum computation, Majorana fermions are recognized as key candidates for
fault-tolerant quantum computing. Consequently, the pursuit and realization of topological
superconductivity have been central topics in condensed matter physics. Among the various
potential candidates, spin-triplet superconductors are particularly promising due to their odd
parity of inversion symmetry. However, naturally occurring spin-triplet superconductors are
exceedingly rare, leading to a demand for alternative principles to achieve odd-parity super-
conductivity. In 2012, Yoshida et al. introduced a groundbreaking principle, suggesting that
sublattice degrees of freedom could enable the formation of odd-parity superconductivity in
spin-singlet superconductors. About a decade after this proposal, the discovery of CeRh2As2

by Khim et al. in 2021, which exhibits a multiple superconducting phase diagram, has at-
tracted considerable attention. This discovery has spurred numerous experimental studies
aimed at elucidating the characteristics of CeRh2As2, unveiling several mysteries. In light
of this context, this thesis focuses on the topological aspects and strong correlation effects
in CeRh2As2, as well as field-induced superconductivity, which is intrinsically linked to the
sublattice degrees of freedom.

First, we establish the presence of topological crystalline superconductivity in the high-
field phase of CeRh2As2. By clarifying the algebraic relationships of the space group, we
demonstrate that a one-dimensional odd-parity superconducting state can be defined within
a restricted Hilbert space. This space is conceptualized as a glide-symmetry-preserved one-
dimensional subspace embedded in the full three-dimensional space. Within this frame-
work, we define the Zak phase in this one-dimensional domain and express it through a
Fermi-surface formula. These formulas are instrumental in indicating the topological num-
ber through the shape of the Fermi surface. Conducting electronic structure calculations
based on density functional theory, we predict the existence of topological crystalline super-
conductivity. Furthermore, the validity of our formulas is corroborated by analyzing a simple
tight-binding model, applicable across all odd-parity irreducible representations.

Second, we delve into the strong correlation effects in CeRh2As2. While the phase diagram
of this material can be interpreted using Yoshida et al.’s original proposal, discrepancies arise
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concerning the value of the parity transition field. To address this, we developed a bilayer
Rashba-Hubbard model, which we analyzed using the fluctuation-exchange approximation.
This model highlights the interplay between staggered Rashba spin-orbit coupling and mag-
netic fields, leading us to discover two-dimensional XY -type magnetic fluctuations. These
fluctuations are consistent with the nuclear-magnetic resonance measurements reported by
Kitagawa et al.. Further, by solving the linearized Éliashberg equation, we observed a parity
transition characterized by a dominant dx2−y2-wave and a subdominant p-wave gap function,
both contributing to superconductivity. Our phase diagram, for a wide range of spin-orbit
coupling strengths, indicates a significant enhancement of parity transition fields due to an-
tiferromagnetic fluctuations. Notably, these antiferromagnetic quantum critical fluctuations
confer robustness to the system against external magnetic fields.

Third, we introduce a novel mechanism for field-induced superconductivity. Historically,
field-induced superconductivity has been observed in Chevrel-phase materials and organic
superconductors, typically attributed to the Jaccarino-Peter effect. Additionally, in uranium-
based superconductors, this phenomenon is linked to ferromagnetic quantum critical fluctua-
tions. Recently, the discovery of a field-induced phase transition within the superconducting
state of CeRh2As2 has shed light on the role of sublattice degrees of freedom in strongly
correlated superconductors. Notably, certain uranium-based superconductors and the locally
noncentrosymmetric cerium-based superconductor CeSb2, along with magic-angle twisted tri-
layer graphene, also exhibit field-induced superconductivity. These observations in cerium-
and uranium-based heavy fermion superconductors, as well as in magic-angle twisted trilayer
graphene, underscore the potential of electron correlation effects in driving superconductiv-
ity. In our study, we demonstrate how the degeneracy of multipole fluctuations can be lifted,
creating an unconventional channel for inter-sublattice Cooper pairing. The application of
a magnetic field, which disrupts time-reversal symmetry, facilitates the emergence of un-
conventional Cooper pairing, driven by these degeneracy-lifted multipole fluctuations. Our
calculated phase diagrams indicate the formation of a field-induced odd-parity superconduct-
ing state across a wide spectrum of spin-orbit coupling strengths.
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Chapter 1

Introduction

This chapter introduces the locally non-centrosymmetric heavy-fermion superconductor CeRh2As2

and related topics. First, we explain the concept of the locally non-centrosymmetric crys-
talline structure and their indication on the electronic structure and the superconducting
state (Sec. 1.1). The locally-inversion symmetry broken structure impacts as the staggered
spin-orbit coupling which leads to the non-trivial spin-structure in the Kramers doublets.
Second, we summarize all experimental results including the thermodynamic, spectroscopic,
transport, and nuclear resonance measurements are summarized (Sec. 1.2). Some exper-
iments serve the theoretical future problems. To conclude this chapter, we overview the
organization of the thesis (Sec. 1.3)

This chapter delves into the intriguing property of the locally non-centrosymmetric heavy-
fermion superconductor CeRh2As2 and associated topics. Initially, we explore the concept
of locally non-centrosymmetric crystalline structures and their implications for electronic
structure and superconducting states (Sec. 1.1). The locally broken inversion symmetry
introduces staggered spin-orbit coupling, leading to non-trivial spin structures within the
Kramers doublets. Subsequently, we provide a comprehensive summary of all experimen-
tal findings, encompassing thermodynamic, spectroscopic, transport, and nuclear resonance
measurements (Sec. 1.2). These experimental insights pose intriguing theoretical challenges
for future research. To conclude this chapter, we offer an overview of the thesis’s organization
and the direction of our investigation (Sec. 1.3).

1.1 Local inversion symmetric breaking and odd-parity
superconductivity

Locally non-centrosymmetric superconductors possess a distinctive crystalline structure where
inversion symmetry is broken at the sites of heavy ions while being preserved in the intermedi-
ate regions. Similar to the well-known phenomena associated with global inversion symmetry
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Figure 1.1: The phase diagrams for the bilayer superconductor for (a) α/t⊥ = 0 (b) α/t⊥ = 1
(c) α/t⊥ = 2 (d) α/t⊥ = 3, respectively. This figure was taken from Ref. [1]. Reprinted figure
with permission from Ref. [1] © 2012 by the American Physical Society.

breaking, which leads to momentum-dependent spin-splitting and a variety of rich phenom-
ena, local inversion symmetry breaking in these materials induces a non-trivial spin structure
within the degenerate Kramers doublets. This unique spin structure facilitates the formation
of sublattice-antisymmetric Cooper pairs. With the application of a magnetic field, the odd-
parity superconducting state emerges as the most stable configuration. In the H − T phase
diagram of these systems, a phase transition could be observed from an even-parity state
to an odd-parity state [Fig. 1.1]. This transition underscores the complex interplay between
local structural asymmetry and superconductivity.

1.2 The overview on experimental observations
A decade has passed since the proposition of odd-parity superconductivity in crystals with lo-
cally broken inversion symmetry. During this period, the multiple superconducting phase dia-
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gram has been observed in the locally non-centrosymmetric heavy-fermion system CeRh2As2 [2].
This phase diagram is commonly interpreted as resulting from a transition between even and
odd-parity states within the superconducting phase. Following the discovery of CeRh2As2,
extensive experimental efforts have been conducted, leading to the observation of several un-
familiar physical properties. Some of these findings present theoretical challenges that remain
unresolved. In this section, we aim to summarize all known experimental results related to
CeRh2As2 up to the time of writing this thesis.

1.2.1 Discovery of CeRh2As2 (Ref. [2])
In 2021, the discovery of the locally-noncentrosymmetric heavy-fermion superconductor CeRh2As2

has shed light on the importance of the crystalline structure of superconductor and their im-
plications. [2]. In this compound, the two-phase superconducting state was observed in the
H-T phase diagram. There is a kinked structure in the critical field curve in the phase di-
agram that indicates the phase transition between one superconducting phase into another
superconducting phase 1.2(b). A similar kink structure was proposed in theoretical work on
locally noncentrosymmetric superconductors [1]. This theory revealed that the application
of the external magnetic field causes the phase transition from even- to odd-parity supercon-
ductivity. The realized odd-parity superconducting phase in the high-magnetic phase has the
unusual Cooper pairing potential in which their sign changes depending on layers. Indeed,
in CeRh2As2, the inversion symmetry is locally broken at Ce sites, while the inversion sym-
metry is globally preserved 1.2(a). These crystalline structures introduce sublattice degrees
of freedom into electrons forming Cooper pairs. Therefore, odd-parity superconductivity in
CeRh2As2 is intrinsic to a local non-centrosymmetric crystalline structure.

While a basic mean-field analysis using a two-sublattice model sheds light on key prop-
erties of CeRh2As2, several enigmatic aspects remain unresolved. Notably, specific heat
measurements have indicated non-Fermi liquid behavior, diverging from conventional spin-
fluctuation theory. This suggests the presence of non-magnetic quantum critical fluctuations
in CeRh2As2. The nature of the compound’s ground state also remains elusive. Crystal
field analysis predicts that the energy gap between the ground state and the first excited
state is approximately 30 K, coincidentally similar to the Kondo temperature (30-40 K), in-
dicative of heavy-electron behavior. This overlap between crystal field levels and the Kondo
temperature implies that the many-body ground state of CeRh2As2 might possess a multi-
orbital character, being a hybrid of the ground state and first excited state of the crystal
field, intricately intermixed via the Kondo effect. This scenario accounts for the quadrupole
degrees of freedom in the electrons at the Fermi surface, potentially explaining the ’hidden
order’ observed in CeRh2As2. Renormalized band calculations have revealed Fermi surfaces
with varying quadrupole moment expectations. Nesting between these Fermi surfaces could
trigger a quadrupole density wave state. However, charge degrees of freedom are typically
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Figure 1.2: (a) Crystal structure of CeRh2As2. (b) Experimentally determined phase diagram
of CeRh2As2. The transition line was determined by specific heat, magnetic susceptibility,
Magnetization, and Magnetostriction measurements. From Ref. [2]. Reprinted with permis-
sion from AAAS.
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suppressed by Coulomb correlation effects in such systems, pointing towards the need for
further investigation to fully comprehend the origin of the quadrupole density wave state in
CeRh2As2

1.2.2 Optical conductivity (Ref. [3])
Optical conductivity measurements provide insights into band dispersion above the Fermi
level, EF. In most cerium compounds, where Ce+3 ions adopt an f 1 configuration, the flat
bands originating from f -orbitals are typically unoccupied. Therefore, the optical conductiv-
ity measurements reflect the optical transition probabilities, |4fncm⟩+ℏω → |4fn+1cm−1⟩ [4].
As a result, optical conductivity measurements are crucial for understanding the low-energy
structure of single-particle excitations. Kimura et al. have reported such measurement,
highlighting inconsistencies between experimental observations and theoretical predictions
based on density functional theory as shown in Fig. 1.3 [3]. This result suggests that
strong-correlation effects plays an essential role in single-particle excitations. In contrast, for
compounds with the ThCr2Si2-type crystal structure, which is the locally-centrosymmetric
counterpart, there are reported agreements between theory and experiment [4, 5, 6]. The
reasons for these discrepancies remain unclear, but they may be attributed to the strong
c-f hybridization effects associated with the Kondo effect which is not taken into account
in density functional theory. The reasons for the discrepancies observed in other structures
remain unclear, but they may be related to strong c-f hybridization effects, characteristic of
the Kondo effect, which is not adequately captured by density functional theory. Moreover,
they also observed a trend of an enhanced density of states at the Fermi level, D(EF), in the
CaCe2Ge2-type crystal structure compared to the ThCr2Si2-type structure.

1.2.3 Thermodynamic measurements (Ref [7, 8, 9, 10, 11, 12, 13])
To confirm the presence of a bulk phase transition, observations of thermodynamic quanti-
ties are essential. In CeRh2As2, two distinct phenomena are observed: two superconducting
phases at Tsc and an unconventional hidden ordered phase at T0. Precise measurements of
thermodynamic quantities are also crucial for determining the order of these phase tran-
sitions. Hafner et al. have performed specific heat, thermal expansion coefficients, and
Grüneisen parameter measurements [7]. Utilizing the Ehrenfest relation, they determined
the pressure dependence of T0 to be dT0/dp = 1.5 K/GPa. This result suggests that the
unconventional order at T0 differs from the antiferromagnetic order in typical Kondo lattice
systems. Analysis of the Grüneisen parameter indicated that 4f hybridization stabilizes the
order at T0. Furthermore, the authors explored the magnetic field dependence of anomalies
in thermodynamic quantities. Under in-plane magnetic fields, the transition temperature T0

increases. Remarkably, around H⊥ ∼ 9 T, a phase transition from the order at T0 (phase I) to
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Figure 1.3: The measured optical conductivity in magenta, alongside the theoretical results
in blue (without spin-orbit interaction) and red (with spin-orbit interaction). Reprinted
figure with permission from Ref. [3] © 2021 by the American Physical Society.

another unconventional order (phase II) was observed, as shown in Fig. 1.4. Measurements of
magnetostriction coefficient, resistivity, field derivative of magnetization, and torque revealed
clear hysteresis. The absence of anomalies in AC susceptibility and magnetization rules out
magnetic order, leading to the proposal of quadrupole order as the order parameter at T0. In
CeRh2As2, the Ce atom’s C4v site symmetry results in CEF splitting from j = 5/2 multiplets
into three Kramers doublets. Naively, one might not expect quadrupole degrees of freedom
in a heavy fermion system. However, the energy difference between the ground state and the
first excited state is comparable to the Kondo temperature in this system. The simple An-
derson impurity model, solved via non-crossing approximation, shows significant changes in
quadrupole moments. In renormalized calculations, the expectation value of the quadrupole
moment ⟨nk|3J2

z − J2|nk⟩ exhibits different values on different Fermi surfaces [14]. Fur-
thermore, the nesting property between Fermi surfaces with different quadrupole moments
suggests a quadrupolar density wave phase at T0.

Determining the angle at which the high-magnetic odd-parity SC2 phase vanishes is cru-
cial, as the field-angle dependence of the upper critical field provides insights into the micro-
scopic state. Landaeta et al. conducted ac susceptibility, magnetic torque, and specific heat
measurements across various magnetic field directions [Fig.1.5(a)] [8]. Their comprehensive
study confirmed that the SC2 phase is rapidly suppressed around 35◦. Additionally, they ob-
served that Hcr, which delineates phase I from phase II, is enhanced when the magnetic field
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Figure 1.4: The phase diagram for the in-plane magnetic field. At Hcr ∼ 9 K, the phase
transition from phase I into phase II is indicated. From Ref. [7] © 2022 D. Hafner, P.
Khanenko, E.-O. Eljaouhari, R. Küchler, J. Banda, N. Bannor, T. Lühmann, J. F. Landaeta,
S. Mishra, I. Sheikin, E. Hassinger, S. Khim, C. Geibel, G. Zwicknagl, and M. Brando

13



Figure 1.5: The phase diagram of the field-angle dependence of the superconducting phase
transition and the unusual T0 order. From Ref. [8] © 2022 J. F. Landaeta, P. Khanenko, D.
C. Cavanagh, C. Geibel, S. Khim, S. Mishra, I. Sheikin, P. M. R. Brydon, D. F. Agterberg,
M. Brando, and E. Hassinger.

is tilted [Fig. 1.5(a)]. To elucidate the source of the anisotropy in the superconducting phase
diagram, they evaluated the angle dependence of the orbital limit, Horb. The experimental
data was fitted using the theoretical formula:

Hc2(θ) = Hc
c2√

Γ2 sin2 θ + cos2 θ
(1.2.1)

where Γ represents the anisotropy parameter. Assuming vF/m
∗, they deduced that m∗

a/m
∗
c =

2.6. Moreover, by incorporating both orbital and Pauli limiting effects into the analysis, they
found that HP/gθ exhibits angular dependence similar to Hc2(θ) [Fig. 1.5(b)]. Further, they
investigated the angle dependence of the upper critical field of the SC2 state. They concluded
that the anisotropy of the SC2 phase stems from the in-plane alignment of the d-vector in
the pseud-spin basis. Unlike other spin-triplet superconductors, where the anisotropy of the
d-vector is obscured by orbital depairing effects and quantum criticality, CeRh2As2 appears
to be the first example demonstrating the intrinsic anisotropy of spin-triplet superconductors.

The dimensionality of the electronic structure in CeRh2As2 is a crucial factor for under-
standing its multiple superconducting phase diagrams. A two-dimensional Fermi surface is
conducive to a sublattice anti-symmetric odd-parity superconducting state. The anisotropy
observed in electronic resistivity offers insights into the dimensionality of the electronic states
in such compounds. Mishra et al. conducted electronic resistivity measurements in both
in-plane and out-of-plane directions [9]. Their results show that the in-plane electronic re-
sistivity ρa(T ) is approximately three-fourths the value of the out-of-plane resistivity ρc(T )
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Figure 1.6: (a) Resistivities ρa and ρc. The inset shows the resistivities ρa(0T ), ρa(0.1T ),
and ρc(0T ). (b-c) shows a zoomed-in view of the low-temperature resistivities ρa and ρc.
Reprinted figure with permission from Ref. [9] © 2022 by the American Physical Society.

[Fig. 1.6]. This finding indicates that CeRh2As2 possesses a mildly anisotropic electronic
structure. Moreover, the out-of-plane measurements reveal a distinct hump at the T0 or-
der. This observation suggests that the q-vector of the QDW phase includes a significant z
component, potentially leading to the opening of a gap along the c-axis.

The unidentified order at T0 presents an alternative explanation for the superconducting
multiple-phase diagram of CeRh2As2. Specifically, it suggests that the transition line of the
T0 order intersects with the bicritical point, where Tc(H) and H∗(T ) merge. From a ther-
modynamic perspective, determining whether this point is a bicritical or tetracritical point
is crucial, as it defines the nature of the transition lines. Semeniuk et al. [10] conducted
detailed measurements on the H − T phase diagram of CeRh2As2, focusing on heat capac-
ity and electrical resistivity. In earlier studies, the inhomogeneity of the sample obscured
the transition of the T0 order, masked by the superconducting transition. However, in their
study, the sample quality is significantly improved, raising the superconducting transition
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Figure 1.7: The H−T phase diagram for the refined new samples. The transition line for T0

order does not merge to the bicritical point. From Ref. [10] © 2023 K. Semeniuk, D. Hafner,
P. Khanenko, T. Lühmann, J. Banda, J. F. Landaeta, C. Geibel, S. Khim, E. Hassinger, and
M. Brando.

temperature to 0.31,K. This enhancement in sample quality allowed both the supercon-
ducting transition and the T0 transition to be distinctly observed in the heat capacity data,
enabling a refinement of the phase diagram. The refined phase diagram, as shown in Fig. 1.7,
clearly indicates that the T0 transition does not intersect with the point where transitions
within the superconducting state occur. This observation provides valuable insights into the
complex superconducting behavior of CeRh2As2.

Applying pressure influences the electronic structure of the system, in particular, the
heavy-fermion systems have a renormalized small energy scale and the duality of f -electrons
is controlled by the pressure. In CeRh2As2, f -electron is thought to be itinerant. Siddiquee et
al. have conducted the resistivity measurements under pressure [11]. The authors determined
the phase diagram under pressure and found that odd-parity superconductivity is suppressed
faster than the even-parity superconducting phase [Fig. 1.8]. Firstly, the transition temper-
ature decreases by pressure until 2.5 GPa. Above 2.5 GPa, the transition temperature turns
out to be enhanced. From data of resistivity, they would rule out the possibility of the valence
fluctuation.

Separate studies by Pfeiffer et al. have shed light on the behavior of CeRh2As2 under
high-pressure conditions, as detailed in their recent preprints [12, 13]. These studies primar-
ily focused on resistivity measurements and their implications for the material’s electronic

16



Figure 1.8: (a) The temperature-magnetic field phase diagrams for various pressure. (b)-(g)
Theoretical fitting of even- and odd- superconducting states. From Ref. [11] © 2023 by the
American Physical Society.

properties. Initially, the authors measured the temperature dependence of electrical resis-
tivity under high pressure [12]. At ambient pressure, CeRh2As2 exhibits non-Fermi liquid
behavior, characterized by a resistivity proportional to T 0.5. Intriguingly, the material en-
ters a superconducting state before any transition to Fermi-liquid behavior occurs. However,
when a pressure of 2.7,GPa is applied, Fermi-liquid behavior (ρ(T ) ∼ T 2) is observed, in-
dicating that the applied pressure drives the system away from its quantum critical point
[Fig. 1.9(left a)]. Additionally, the study explores the pressure dependence of a hidden or-
dering temperature, T0. It was discovered that the hidden order is completely suppressed at
around 0.5 GPa. This observation suggests that the conceptual phase diagram of CeRh2As2

aligns with other cerium-based heavy-fermion systems, where superconductivity is typically
located near the quantum critical point. Notably, the superconducting ’dome’ in CeRh2As2

is larger compared to other heavy-fermion systems, a phenomenon whose origin remains
unclear. Furthermore, Pfeiffer et al. investigated the pressure dependence of the supercon-
ducting phase diagram [13]. Their results indicated a decrease in the parity transition field,
suggesting a degeneracy in the transition temperatures of even- and odd-parity supercon-
ducting states [Fig. 1.9(right a)]. Initially, the interplay between the hidden order and the
multiple superconducting phase diagram in CeRh2As2 garnered significant interest. Although
the quantum critical point for the hidden order is located at 0.5 GPa, the distinct multiple-
phase diagram persists up to 2.67 GPa. This persistence implies that the nature of the hidden
order may not be directly related to the multiple superconducting phase transitions observed
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in CeRh2As2.

1.2.4 NMR/NQR (Ref. [15, 16, 17])
Nuclear magnetic/quadrupole resonance measurements are crucial for gaining microscopic
insights into the spin-state of heavy fermions near the Fermi level, EF. Generally, unconven-
tional superconductivity in heavy-fermion systems is driven by magnetic fluctuations, with
some systems even exhibiting coexisting magnetic order and superconductivity. Understand-
ing the nature of these magnetic states is thus key to comprehending superconductivity.
Kibune et al. conducted 75As nuclear quadrupole resonance measurements on CeRh2As2 and
observed a mysterious broadening in the NQR spectra below TN = 0.25 K[15]. Notably, while
the As(2) NQR spectra broadened below TN , the As(1) spectra remained unaffected. This
broadening is believed to be a manifestation of anti-ferromagnetic order within the super-
conducting state. Utilizing the classical dipole model, the authors proposed the presence of
A-type AFM (in-plane ferromagnetic and inter-plane antiferromagnetic) order with magnetic
moments aligned parallel to the c-axis or a helical order with in-plane moments [Fig.1.10].
The former suggests an intriguing ferroic odd-parity magnetic multipole order. CeRh2As2

stands out as the only known material that exhibits magnetic order within the supercon-
ducting phase, where TN < Tc. This contrasts with other cerium-based superconductors,
where magnetic order typically appears at temperatures higher than the superconducting
transition temperature. To further substantiate the presence of AFM order coexisting with
superconductivity, comprehensive thermodynamic measurements are eagerly anticipated.

Kitagawa et al. have conducted 75As nuclear magnetic resonance studies. Initially, they
observed temperature variations in the Knight shift. Notably, while the Knight shift par-
allel to the c-axis exhibited a broad maximum at 3K, the shift perpendicular to the c-axis
continued to increase. These observations suggest that CeRh2As2 possesses XY -type mag-
netic anisotropy, a characteristic typically observed in cerium-based superconductors. The
authors also measured the spin-lattice relaxation time, 1/T1, and found that it reaches a
constant value, as shown in Fig. 1.11(a-b). According to the self-consistent renormalization
theory, a widely accepted phenomenological theory for quantum critical fluctuations, such
constant behavior of 1/T1 can be attributed to the two-dimensional nature of the magnetic
fluctuations. This finding is particularly notable, as heavy-fermion superconductors usually
exhibit three-dimensional magnetic fluctuations. Further, their observations of 1/T1T , which
reflects fluctuating hyperfine fields, show distinctive behaviors. While 1/T1T parallel to the
c-axis displays a broad maximum at 3K, the measurement perpendicular to the c-axis shows
a continuous increase [Fig. 1.11(c)]. This again points to XY -type anisotropic magnetic
fluctuations.

The parity of the Cooper pair significantly impacts the spin response in a superconduct-
ing system. In an even-parity spin-singlet superconductor, the spin susceptibility decreases
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Figure 1.9: (left) The investigation into resistivity ρ against temperature T at selected pres-
sures is outlined. Notably, the curvature of ρ(T ) increases with pressure. Additionally, the
pressure dependence of ρ at 30 mK and the power-law exponent n for a 0.1-0.3 K temperature
interval are presented, with magnetic field applied. This exponent was obtained from fitting
the data with a power-law function, ρ(T ) = ρ0 +A∗(T/Tref)n, where ρ0 and A∗ are constants
and Tref = 0.3 K. The zero-field phase diagram (c) Data from heat capacity measurements,
represented by triangular markers. An inset provides a schematic of a possible broader phase
diagram, highlighting the pressure-temperature range explored in this study. Phase diagram
(d) for a 6 T in-plane field is also presented, including the pressure dependence of the A∗ co-
efficient of the power-law function. (right) the focus shifts to superconductivity in CeRh2As2

under pressure in an out-of-plane magnetic field (H ∥ c). Field-temperature (µ0H-T ) phase
diagrams show transitions between two superconducting phases, SC1 and SC2, at a magnetic
field H∗, identifiable as a kink in the critical field curves, as marked for P = 0. An inset at
2.67 GPa illustrates the continuation of the SC1-SC2 transition. The pressure dependence
of the orbital-limiting upper critical field (H∥

orb), estimated from the slopes of Hc2(T ) curves
at Tc, and the zero-temperature limit of the upper critical field H

∥
c2 are compared with data

from an independent study. Lastly, the pressure dependence of the phase switching field H∗

is detailed. Left figure is from Ref. [12] © 2023 M. Pfeiffer, K. Semeniuk, J. F. Landaeta,
R. Borth, C. Geibel, M. Nicklas, M. Brando, S. Khim, E. Hassinger. Right figure is from
Ref. [13] © 2023 M. Pfeiffer, K. Semeniuk, J. F. Landaeta, M. Nicklas, C. Geibel, M. Brando,
S. Khim, E. Hassinger
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Figure 1.10: (Left) The magnetic structure of in-plane ferromagnetic and inter-plane antifer-
romagnetic order. (Right) The magnetic structure of a helical order with in-plane moment.
Reprinted figure with permission from Ref. [15] © 2022 by the American Physical Society.

Figure 1.11: Temperature dependence of 1/T1 for (a) H||c and (b) H ⊥ c in CeRh2As2

LaRh2As2. (c) Temperature dependence of Ra and Rc at As(2) site in CeRh2As2. From
Ref. [16] © 2022 Shunsaku Kitagawa, Mayu Kibune, Katsuki Kinjo, Masahiro Manago,
Takanori Taniguchi, Kenji Ishida, Manuel Brando, Elena Hassinger, Christoph Geibel, and
Seunghyun Khim.
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following the superconducting phase transition. However, in an odd-parity spin-triplet su-
perconductor, spin susceptibility persists in directions perpendicular to the d-vector. Conse-
quently, a detailed study of spin susceptibility is crucial for understanding the microscopic
nature of superconductivity. Ogata et al. have performed nuclear magnetic resonance mea-
surements in a high magnetic field environment [17]. Initially, they observed the Knight shift
from low to high fields and noted that the spin susceptibility in the SC2 phase decreases,
contradicting theoretical predictions [Fig. 1.12(b)]. If the SC2 phase were a modulated odd-
parity phase, the spin susceptibility along the c-axis should remain unchanged [18], raising
questions yet to be answered. Furthermore, using the standard expression for estimating the
Pauli limiting field,

1
2δχµ0H

2
P = 1

2µ0H
2
c , (1.2.2)

where Hc is the thermodynamic critical field, they estimated it to be 3.4 T in the SC1 phase,
aligning well with the parity transition field between the SC1 and SC2 phases. Applying
the same method to the SC2 phase, they estimated a Pauli limiting field of 4.8 T, which
starkly contrasts with the observed critical field of 14 T. In CeRh2As2, the spin susceptibility
decreases in the SC2 phase, yet the Pauli limiting effect seems inactive, indicating an unusual
superconductivity nature. The authors suggest that these conflicting observations may be
due to the inhomogeneity of superconductivity in the SC2 phase. In this phase, the phase of
superconducting order parameter oscillates between layers. Since measurements were taken
at the As site, the spin susceptibility at the As site might decrease while that at the Ce
sites remains unaffected [Fig. 1.12(c) inset]. In the band basis, these significant decreases in
spin susceptibility could manifest as Van Vleck susceptibility, which does not largely affect
superconductivity.

1.2.5 Thermal conductivity (Ref. [19])
Thermal conductivity measurements are pivotal in determining the structure of the gap
function in superconductivity. While Cooper pairs do not transport heat, Bogoliubov quasi-
particles act as heat carriers. Therefore, these measurements offer insights into the shape
and position of the node structure, shedding light on the microscopic details of supercon-
ducting order parameters. Onishi et al. conducted thermal transport measurements on
CeRh2As2 [19]. By assuming the Wiedemann-Franz law, they analyzed the temperature
dependence of the phononic thermal conductivity, κph(T ). Their findings indicate a near
T -linear temperature dependence, κph(T ) = T 1.24, deviating from the expected κph(T ) = T 3

behavior [Fig. 1.13(A)]. Such quasi-linear-in-T behaviors have also been observed in other
Ce-based heavy-fermion compounds [20, 21]. The underlying origin of this deviation remains
an open question for future theoretical research. Furthermore, they investigated the valid-
ity of the Wiedemann-Franz law in their experiments. Their results confirmed the law’s
applicability within the precision of the experiments, although a small deviation could not
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Figure 1.12: (Left) The magnetic structure of in-plane ferromagnetic and inter-plane antifer-
romagnetic order. (Right) The magnetic structure of a helical order with in-plane moment.
Reprinted figure with permission from Ref. [17] © 2023 by the American Physical Society.

be completely ruled out [Fig. 1.13(B)]. Lastly, they explored the field dependence of ther-
mal transport measurements to identify the node structure. However, due to impurities in
the sample, they were unable to conclusively observe evidence of the node structure in the
superconductivity of CeRh2As2.

1.2.6 Spectroscopic measurements (Ref. [22])
Spectroscopic measurements are pivotal for probing the wave function of a system, as they
adhere to the selection rules governed by the light-matter coupling matrix element. In
CeRh2As2, the Kondo effect leads to a complex admixture of localized f -electron and con-
duction electron wave functions, resulting in a non-trivial ground state. This complexity has
been hinted at through magnetic entropy measurements and renormalized band calculations,
suggesting a multi-orbital nature of the ground state [7]. Thus, a comprehensive study of
the wave function at low temperatures using spectroscopic techniques is essential. Christo-
vam et al. conducted Core-level photoelectron spectroscopy with hard x-rays (HAXPES),
x-ray absorption spectroscopy (XAS), and non-resonant inelastic x-ray scattering (NIXS)
measurements. The HAXPES and XAS measurements revealed a faint signal from the f 0

configuration, implying that the carrier density of f -electrons, nf , is less than 1. Addition-
ally, the temperature dependence of the linear dichroism, LD(T ), exhibited characteristics
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Figure 1.13: (A) The temperature dependence of the thermal conductivity of the compound.
The electric resistivity is also shown. (B) The temperature dependence of the Lorenz ratio.
From Ref. [19] © 2022 Onishi, Stockert, Khim, Banda, Brando and Hassinger.

unique to heavy-fermion systems. While the behavior between 50,K and 200,K aligned with
simulations assuming a simple localized model, significant deviations at 3,K indicated the in-
fluence of the Kondo effect on CeRh2As2’s electronic structure [Fig 1.14(a-b)]. Analysis using
a simplified Anderson impurity model with the non-crossing approximation could replicate
this temperature dependency, underscoring the importance of hybridization due to the Kondo
effect [Fig 1.14(c)]. To ascertain the shape of the wave function, NIXS measurements were
performed, leading to the conclusion that the ground state wave function exhibits anisotropy
aligned along the (110) direction. Ultimately, the ground state wave function was identified
as a linear combination of crystalline field levels, expressed as:

√
0.58 |Γ−

7 ⟩ ,
√

0.29 |Γ6⟩ ,
√

0.08 |Γ+
7 ⟩ . (1.2.3)

This discovery provides a deeper understanding of the ground state properties in CeRh2As2.

1.2.7 Angle-resolved photoemission spectroscopy (Ref. [23, 24])
Angle-resolved photoemission spectroscopy (ARPES) measurements are crucial for revealing
the spectral features of single-particle fermionic excitations in superconductors, providing a
basis for comparison with electronic structure calculations. In strongly correlated electron
systems like CeRh2As2, the nature of superconductivity is highly sensitive to the position
of the van Hope singularity and the Fermi surface’s shape. Thus, accurately determining
the electronic structure and the shape of the Fermi surface is essential for understanding
the multiple superconducting phase diagrams. Chen et al. and Wu et al. have performed
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Figure 1.14: (a) The measured temperature dependence (T-dependence) of the Linear
Dichroism (LD) is shown at various temperatures: 3 K (purple), 50 K (green), 100 K (yellow),
and 200 K (red). The lower panels display two distinct simulations: (b) an ionic crystal-
field calculation that considers the Boltzmann occupation of excited states but excludes
the Kondo effect, and (c) the same crystal-field model that incorporates the Kondo effect,
as detailed in the text. To enhance visibility, the scale of the LD has been multiplied by
100, representing the percentage of LD. From Ref. [22] © 2023 Denise S. Christovam, Miguel
Ferreira-Carvalho, Andrea Marino, Martin Sundermann, Daisuke Takegami, Anna Melendez-
Sans, Ku Ding Tsuei, Zhiwei Hu, Sahana Roessler, Manuel Valvidares, Maurits W. Haverkort,
Yu Liu, Eric D. Bauer, Liu Hao Tjeng, Gertrud Zwicknagl, Andrea Severing.
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Figure 1.15: (a) (upper panel) The spectral weight of ARPES measurements with DFT+U
calculation. (lower panel) The calculated band dispersion with orbital character weight. (b)
(left low) The experimentally determined Fermi suerface (middle low) The Fermi surface
of DFT calculation in which f -electron is treated as the core state. (right low) The Fermi
surface of DFT+DMFT calculation. The nesting vectors are shown respectively. The figure
(a) is from Ref. [23] © 2023 Xuezhi Chen, Le Wang, Jun Ishizuka, Kosuke Nogaki, Yiwei
Cheng, Fazhi Yang, Renjie Zhang, Zhenhua Chen, Fangyuan Zhu, Youichi Yanase, Baiqing
Lv, Yaobo Huang. The figure (b) is from Ref. [24] © 2023 Yi Wu, Yongjun Zhang, Sailong
Ju, Yong Hu, Yanen Huang, Yanan Zhang, Huali Zhang, Hao Zheng, Guowei Yang, Evrard-
Ouicem Eljaouhari, Baopeng Song, Nicholas C. Plumb, Frank Steglich, Ming Shi, Gertrud
Zwicknagl, Chao Cao, Huiqiu Yuan, Yang Liu.

ARPES measurements on CeRh2As2 [23, 24]. Both studies report that CeRh2As2 exhibits a
predominantly two-dimensional electronic structure. Chen et al. found that their experimen-
tal results align well with DFT+U calculations, but they noted a discrepancy: the van Hove
singularity is positioned closer to the Fermi energy than predicted by the calculations. This
deviation could be explained by renormalization effects due to the Kondo effect. Meanwhile,
Wu et al. also confirmed the two-dimensional nature of the Fermi surface and showed that
a density functional theory combined with dynamical mean-field theory (DFT+DMFT) cal-
culation accurately reproduces the observed Fermi surface. The electronic structure derived
from DFT+DMFT closely resembles that of DFT calculations where f -electrons are treated
as core states. Both studies highlight that the nesting vector at kz = 0 is compatible with
that at kz = π, suggesting that CeRh2As2 possesses strong two-dimensional nesting proper-
ties. These properties likely contribute to the material’s quadrupole density wave (QDW)
order and its superconductivity.
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1.3 Organization of this thesis
Currently, odd-parity superconductivity is widely recognized as a promising platform for
realizing topological superconductivity. Developing a comprehensive formulation to confirm
topological superconductivity in CeRh2As2 stands as a crucial objective within the condensed
matter physics community. However, there is no topological number in the three-dimensional
system without time-reversal symmetry. Notably, the phase diagram of CeRh2As2 and results
from theoretical mean-field calculations exhibit qualitative inconsistencies, presenting com-
plex theoretical problems that have yet to be resolved. Moreover, the discovery of CeRh2As2

has highlighted the critical influence of sublattice degrees of freedom in superconductivity.
This is not only relevant to CeRh2As2 but extends to certain uranium- and cerium-based com-
pounds, as well as moiré systems, all of which possess crystalline structures with sublattice
degrees of freedom and exhibit magnetic field-induced superconductivity. These develop-
ments suggest that a deeper exploration of sublattice degrees of freedom could be key to
unlocking new insights into the nature of superconductivity in these materials.

The structure of this thesis is organized as follows: In Chapter 2, we delve into the realm
of topological crystalline superconductivity in the high-magnetic field phase of CeRh2As2.
Utilizing group theoretical methods, we derive a Fermi surface formula that reveals a topo-
logical Z2 number, inferred from the Fermi surface’s shape. Additionally, we employ density
functional theory to predict the existence of Majorana surface states, which are protected by
glide symmetry. Chapter 3 focuses on the results derived from a strongly correlated model.
Here, we explore how antiferromagnetic fluctuations contribute to the system’s robustness
against external magnetic fields. We also propose a novel mechanism for field-induced su-
perconductivity, deeply rooted in the sublattice degrees of freedom in Chapter 4. The thesis
concludes with Chapter 5, where we summarize the key findings and implications of our
research.
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Chapter 2

Topological crystalline
superconductivity in locally
noncentrosymmetric CeRh2As2

For decades, the concept of symmetry breaking has been pivotal in describing various phases
of quantum matter, such as magnetism, density-wave, and superconductivity, as well as crit-
ical phenomena in condensed matter physics [25]. In recent years, the burgeoning field of
topological science has illuminated new facets of quantum matter, revealing phases transi-
tions beyond the conventional framework of symmetry breaking [26, 27, 28, 29]. This includes
the discovery of topological phase transitions that occur without symmetry breaking and the
recognition of topological insulators and superconductors as novel and intriguing phases of
matter. One particularly exotic phenomenon in topological materials is the emergence of
gapless modes at the boundaries and defects, despite topology being determined solely by
bulk properties. Topological superconductors, for instance, are known to host Majorana
fermions, which hold promise for applications in topological fault-tolerant quantum compu-
tation [30, 31]. This intersection of unique fundamental properties and potential applications
has spurred extensive research efforts aimed at uncovering and understanding topological
superconductivity [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69]. Despite these efforts, the
realization and definitive characterization of topological superconductivity remain subjects
of intense scientific debate.

Pioneering research has led to the classification of topological phases based on local sym-
metries, namely time-reversal, particle-hole, and chiral symmetries [70, 71, 72]. It has since
been recognized that the unique symmetries of solid materials can enrich their topological
properties. This understanding gave rise to the concept of topological crystalline insulators
and superconductors (TCIs/TCSCs) [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94]. Despite this progress, the primary candidates for TCSCs
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are typically odd-parity superconductors, similar to most known topological superconduc-
tors [27, 28, 29]. However, these odd-parity superconductors are often spin-triplet, a rarity
in nature. Recently, there has been growing interest in superconductivity that defies the
standard classification theory [95], with reports of odd-parity superconductivity arising from
conventional spin-singlet pairing in CeRh2As2 [2]. This groundbreaking discovery could pave
a new path for realizing topological superconductivity

The work described in this Chapter was inspired by a recent experimental discovery of an
unconventional superconducting H-T phase diagram in the newly identified heavy-fermion
superconductor CeRh2As2 [2]. This material exhibits a high upper critical field exceeding
the Pauli-Clogston-Chandrasekhar limit and a phase transition between two distinct super-
conducting phases, making CeRh2As2 a prime candidate for exploring multiple supercon-
ducting phases. Unlike previous examples such as UPt3 [96] and UTe2 [97, 98, 99, 100], the
unique phase diagram of CeRh2As2 has been linked to its locally noncentrosymmetric crystal
structure [2], resonating with earlier theoretical predictions [1]. Following this experimen-
tal revelation, a flurry of theoretical investigations has emerged to explore this intriguing
phenomenon [101, 102, 103, 104]

Noncentrosymmetric superconductivity in globally inversion asymmetric systems has been
a subject of research for several decades [33, 34, 35, 36, 37, 67, 68, 105, 106, 107, 108, 109,
110, 111, 112, 113, 114]. This concept has been recently extended to locally noncentrosym-
metric systems, uncovering unique superconducting phenomena [1, 18, 81, 115, 116, 117,
118, 119, 120, 121, 122]. The H-T phase diagram of CeRh2As2 aligns with predictions from
a two-sublattice Rashba model [1, 121]. The consistency between experimental observa-
tions [2] and theoretical models [1, 121] suggests that local inversion symmetry breaking is
critical in CeRh2As2, with the high magnetic field region likely hosting a pair-density-wave
(PDW) state. In the PDW state, the superconducting gap function alternates in sign across
different Ce layers. A key feature of this phase is its odd-parity superconductivity, predom-
inantly characterized by spin-singlet pairing. This odd parity arises due to the inversion
symmetry-related sign change of the gap function between sublattices. Hence, locally non-
centrosymmetric crystals offer a platform for odd-parity superconductivity without the need
for rare spin-triplet pairing. CeRh2As2 may thus represent a novel type of topological super-
conductor, distinct from potential spin-triplet superconductors like UPt3[78, 86], UCoGe[87],
and UTe2 [123].

2.1 Symmetry and notations in superconducting state
We begin with clarifying notations for general space group operation ĝ in the normal and
superconducting states, which will be used in this chapter. Here, ˆemphasizes that it is an
element of abstract algebras. In the following section, the special case ĝ = Ĝ (the glide
operation) is considered. In Seitz notation, ĝ is given by {p|τ}, in which p and τ are point
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group operation and translation operation, respectively. It acts on real-space coordinates as:

ĝx = px + τ . (2.1.1)

In the crystals, the relation x = R + rn holds, where R and rn are the center of a unit cell
and relative position of the n-th sublattice within a unit cell. For electrons with internal
degrees of freedom labeled by l is transformed as,

ĝc†
l (R + rn) ĝ−1 = c†

l′ (pR + ∆Rg
n + rn′) DSL

n′n(p)Dint
l′l (p), (2.1.2)

where DSL
n′n(p) = δn′,ĝ(n), Dint

l′l (p) is a representation matrix associated with internal degrees
of freedom, and ∆Rg

n represents the displacement of the unit cells before and after the
symmetry operation ĝ. The relation: prn = ∆Rg

n + rn′ must be held. In the periodic
boundary conditions, we conduct Fourier transform:

c†
kln ≡ 1√

V

∑
R

eik·Rc†
l (R + rn) , (2.1.3)

in which the basis is periodic in the Brillouin zone,

c†
kln = c†

k+Gln, (2.1.4)

with any reciprocal lattice vector G. Assuming that T̂a is a primitive lattice translation
operator, we have

T̂ac
†
klnT̂

†
a = 1√

V

∑
R

eik·Rc†
l (R + a + rn) (2.1.5)

= 1√
V
e−k·a∑

R

eik·(R+a)c†
l (R + a + rn) (2.1.6)

= e−k·ac†
kln. (2.1.7)

Therefore, k labels eigenvalues of the primitive lattice translation, and from the fact that
[Ĥ, T̂a] = 0, we can divide the Hilbert space into each k sector,

V =
⊕

k

Vk. (2.1.8)

This is nothing but the Bloch theorem. The dimension of Vk is identical with the number of
degrees of freedom such as spin, orbital, and sublattice. In the space Vk, we can represent
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the symmetry operation ĝ,

ĝc†
k,αĝ

−1 = 1√
V

∑
R

eik·Rc†
l′ (pR + ∆Rg

n + rn′) DSL
n′n(p)Dint

l′l (p) (2.1.9)

= 1√
V

∑
R′=pR+∆Rg

n

eik·(p−1(R′−∆Rg
n))c†

l′ (R′ + rn′) DSL
n′n(p)Dint

l′l (p) (2.1.10)

= 1√
V
e−ipk·∆Rg

n
∑
R′
eipk·R′

c†
l′ (R′ + rn′) DSL

n′n(p)Dint
l′l (p) (2.1.11)

= c†
pk l′n′e−ipk·∆Rg

nDSL
n′n(p)Dint

l′l (p) (2.1.12)
= c†

pk,βDg(k)βα, (2.1.13)

where α, β represent total internal degrees of freedom of electrons, α = (l, n), β = (l′, n′), and
Dg(k) is the representation matrix of ĝ. From Eq. (2.1.13), Dg(k)βα = e−ipk·∆Rg

nDSL
n′n(p)Dint

l′l (p).
When the Hamiltonian Ĥ = ∑

k,α,β c
†
kα[H(k)]αβckβ preserves the symmetry ĝ, [Ĥ, ĝ] = 0, the

following relation is satisfied

Dg(k)H(k)(Dg(k))† = H(pk). (2.1.14)

Though superconducting gap function may break the space group symmetry ĝ, the sym-
metry in the normal state is preserved in combination with the U(1) symmetry, at least
when the superconductivity belongs to a one-dimensional irreducible representation. The
representation matrix is given by

Dg
BdG(k) =

(
Dg(k) 0

0 ± (Dg(−k))∗

)
τ

, (2.1.15)

where the positive (negative) sign corresponds to ĝ-even (ĝ-odd) superconductivity, as

Dg(k)∆(k)(Dg(−k))⊤ = ±∆(pk), (2.1.16)

and we take Nambu basis as ψ(k) = (ck, c
†
−k)⊤. In the Nambu space, the Bogoliubov–de

Gennes (BdG) Hamiltonian takes the form:

ĤBdG = 1
2
∑

k

ψ†(k)HBdG(k)ψ(k), (2.1.17)

HBdG(k) =
(

H(k) ∆(k)
∆†(k) −H⊤(−k)

)
τ

, (2.1.18)

where we represent the index of Nambu space as τ . In the superconducting state, the particle-
hole symmetry is always preserved,

CHBdG(k)C−1 = −HBdG(−k), (2.1.19)

C =
(

0 1
1 0

)
τ

K, (2.1.20)
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with K being the complex conjugation. From direct calculations, we confirm the following
relation:

CDg
BdG(k) = ±Dg

BdG(−k)C. (2.1.21)

In the following, we adopt the notation {ĝ, Ĉ} = 0 in the sense of Eq. (2.1.21) with the
negative sign.

2.2 Crystal structure and glide symmetry
CeRh2As2 crystallizes in the centrosymmetric tetragonal CaBe2Ge2-type structure [2], fea-
turing alternating layers of Ce and Rh2As2. A key characteristic of this structure is the local
inversion symmetry breaking at Ce sites, despite the presence of a global inversion center
between two Ce sites in the unit cell. The space group of CeRh2As2 is P4/nmm (No.129),
which includes a glide reflection and three screw rotations. When a magnetic field is applied
parallel to the c-axis, the screw symmetries are disrupted, leaving only the glide symmetry
intact. In our analysis, we focus on the glide operation Ĝ, represented in Seitz notation as
{Mz|a/2 + b/2}, where a and b are lattice vectors along the a and b axes, respectively.

In the Brillouin zone, the glide symmetry is maintained in the glide-invariant planes at
kz = 0, π. The Hilbert space can thus be divided based on each Bloch state and glide sector
as follows:

Vkz=0,π =
⊕

k∈BZkz=0,π

Vg
+

k ⊕ Vg
−

k . (2.2.1)

Here, Vk represents the Hilbert space of Bloch states labeled by k, and g± are the eigenvalues
of the glide operation. Since the Hamiltonian preserves glide symmetry, i.e., [Ĥ, Ĝ] = 0,
eigenstates of the Hamiltonian can be labeled by glide eigenvalues as |kg±⟩ ∈ Vg

±

k . To
determine the eigenvalues in the spinful case, we consider the relation:

Ĝ2 = {−E|a + b}. (2.2.2)

According to Eq. (2.2.2), any state |k⟩ in Vkz=0,π satisfies:

Ĝ2 |k⟩ = −e−i(kx+ky) |k⟩ , (2.2.3)

leading to the conclusion that the glide eigenvalues are given by:

g
± = ±ie−i(kx+ky)/2. (2.2.4)
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2.3 Symmetry of superconductivity
Superconductivity in CeRh2As2 is categorized under the point group D4h, which encom-
passes 8 one-dimensional (1D) irreducible representations and 2 two-dimensional (2D) rep-
resentations. Commonly, many Ce-based heavy-fermion systems exhibit spin-singlet super-
conductivity, and CeRh2As2 is expected to follow this trend at zero magnetic field (H = 0).
Consequently, the low-field superconducting phase of CeRh2As2 is likely to be an even-parity
state, corresponding to one of the A1g, A2g, B1g, B2g, or Eg states. On the other hand, in
the presence of a high magnetic field, if we assume a pair-density-wave (PDW) state, the su-
perconducting phase would transition to an odd-parity state, specifically A1u, A2u, B1u, B2u,
or Eu. However, for the scope of this discussion, we will focus primarily on 1D odd-parity
representations, as the Eu state is considered unlikely in CeRh2As2 [2].

2.4 Z2 invariants
In our discussion of the Z2 topological invariants, we focus on their protection by glide
symmetry in the context of the PDW state. The PDW state is characterized as glide-odd
superconductivity, where the superconducting gap function adheres to the following relation:

G(k)∆(k)G⊤(−k) = −∆(Mzk). (2.4.1)

In this equation, G(k) denotes the representation matrix of the glide operation Ĝ within
the Hilbert space Vk. The term Mzk is defined as (kx, ky,−kz), and ∆(k) represents the
superconducting gap function. This relation encapsulates the key characteristic of the PDW
state in terms of its behavior under the glide operation.

In our analysis, we concentrate on the glide invariant planes within the Brillouin zone,
specifically at kz = 0, π. Based on Eq.(2.4.1), we note that the particle-hole operation Ĉ and
the glide operation Ĝ anti-commute, satisfying {Ĉ, Ĝ} = 0. Additionally, from Eq.(2.2.4),
the glide eigenvalues are determined to be purely imaginary (±i) within the restricted Hilbert
space on the line where kx + ky = 0. Integrating these results, we confirm that particle-hole
symmetry is preserved within each glide sector:

ĜĈ |kg±⟩ = −Ĉ(±i) |kg±⟩ = (±i)Ĉ |kg±⟩ . (2.4.2)

Considering the breakdown of time-reversal symmetry under a magnetic field, each glide
sector along this line is classified as 1D class D superconductivity. This classification is
defined by a topological invariant Z2, as described by the integral of the Berry connection
outlined in Ref. [84]:

νg
± = 1

π

∫ Γ2

Γ1
d ki Ag±i (k) (mod 2), (2.4.3)
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where Ag±i (k) represents the i-th components of the Berry connection in each glide sector,
expressed as i∑occ. ⟨ψg±k |∂ki

|ψg±k ⟩. Here, |ψg±k ⟩ denotes the occupied eigenstates of the Bogoli-
ubov–de Gennes (BdG) Hamiltonian in each glide sector with the glide eigenvalue g±. The
time-reversal invariant momenta (TRIM) are designated as Γ1 = (0, 0, 0) (at the Γ point) or
(0, 0, π) (at the Z point) and Γ2 = (π,−π, 0) (at the M point) or (π,−π, π) (at the A point),
varying based on whether kz = 0 or π.

In addition to the glide Z2 invariants νg± , it’s possible to define the Chern number C as
well as two Zak phases, γ and γ′, on the lines kx + ky = π and 0, respectively. However,
these invariants are not independent entities. Specifically, it holds that γ′ = νg

+ + νg
− . We

will later demonstrate that γ = 0. Consequently, the topological nature of the PDW state
for kz = 0, π can be effectively characterized by identifying νg± and C, denoted as νg±0,π and
C0,π for each respective kz value. The Chern number is related to these invariants as follows:

C = γ′ − γ (mod 2), (2.4.4)
= νg

+ + νg
− (mod 2). (2.4.5)

This implies that only one of νg± is a strong topological index, in line with the K-theory
classification for the strong indices Z⊕Z2 [84]. In this paper, we focus on νg± and C modulo
two in the context of CeRh2As2, as their determination does not depend on the specific details
of the order parameter. They are dictated solely by the topology of the Fermi surfaces and
do not necessitate a comprehensive calculation of the symmetry indicators [88, 89, 90, 91,
92, 93, 94].

To further simplify the expression in Eq. (2.4.3), we consider the relationship between the
space inversion operation Î and the glide operation Ĝ:

ÎĜ = ĜÎ{E|a + b}, (2.4.6)

In this equation, {E|a + b} effectively reduces to a phase factor e−i(kx+ky). Consequently, in
the Hilbert space Vkx+ky=0,kz=0,π, the operations Î and Ĝ commute. This implies that the
space inversion parity is well-defined within each glide sector, categorizing each sector as a
1D class D odd-parity superconductor. Utilizing the Fermi-surface formula for odd-parity
superconductors [55, 56], we can evaluate the Z2 invariant based on the topology of the Fermi
surfaces. This leads to the conclusion that the glide Z2 invariant νg± is nontrivial (trivial)
when the number of Fermi surfaces between Γ1 and Γ2 is odd (even):

νg
±

0 = #FS±
Γ→M (mod 2), (2.4.7)

νg
±

π = #FS±
Z→A (mod 2). (2.4.8)

Thus, the topological nature of the PDW state in CeRh2As2 for kz = 0, π can be characterized
by these simplified Z2 invariants.
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In a similar fashion, the Zak phase γ can also be connected to the number of Fermi
surfaces. Considering the Bogoliubov–de Gennes (BdG) Hamiltonian on the line kx +ky = π,
which can be treated as a 1D odd-parity superconductor, the Fermi surface formula [55, 56]
gives us:

γ0,π = #FSΓ1→Γ2 (mod 2). (2.4.9)

Here, for kz = 0, π, Γ1 and Γ2 correspond to X,R and X ′, R′, respectively. Due to the four-
fold rotation symmetry Cz

4 , the occupation numbers of electrons at Γ1 and Γ2 are equal. As
a result, electron bands must intersect the Fermi level an even number of times between Γ1

and Γ2. This leads to the conclusion that γ0,π = 0.
In the following analysis, we perform first-principles calculations for CeRh2As2 to evaluate

the Z2 invariants. These calculations are conducted in the absence of a magnetic field, where
all electronic bands are doubly degenerate. The degenerate states, |kg±⟩ and ÎΘ̂ |kg±⟩, are a
consequence of the inversion symmetry Î and time-reversal symmetry Θ̂. The relationship:

ĜÎΘ̂ |kg±⟩ = ÎΘ̂Ĝ |kg±⟩ = g∓ÎΘ̂ |kg±⟩ , (2.4.10)

indicates that the degenerate states belong to distinct glide sectors. As a result, the number of
Fermi surfaces is equal across the two glide sectors, aligning with the number of spinful bands
that cross the Fermi level: #FS+

Γ1→Γ2 = #FS−
Γ1→Γ2 ≡ #FSΓ1→Γ2 . Notably, the application

of a magnetic field does not modify the Z2 invariants and the Chern number modulo two,
provided it does not induce a Lifshitz transition. The implications of potential Lifshitz
transitions will be addressed later in our discussion.

2.5 Band structure of CeRh2As2

We have conducted a DFT band structure calculation for CeRh2As2 using the wien2k
code [124]. CeRh2As2 crystallizes in the space group P4/nmm (No.129), with crystallo-
graphic parameters as experimentally determined and listed in Table 2.1 [2]. Our approach
utilizes the full-potential linearized augmented plane wave plus local orbitals (LAPW+lo)
method within the generalized gradient approximation (GGA), incorporating spin-orbit cou-
pling effects. For our calculation, the maximum reciprocal lattice vector Kmax is set such that
RMTKmax = 8.0. We have chosen muffin-tin radii RMT of 2.50, 2.42, and 2.15 atomic units
(a.u.) for Ce, Rh, and As atoms, respectively. A 13×13×5 k-points grid is used for the self-
consistent calculation. We have verified that increasing the density to an 18×18×8 k-points
grid yields almost identical results. Because the experimental values of the crystallographic
parameters are different from those obtained by a lattice optimizing calculation [103], we cal-
culated the electronic band structure using wien2k for the latter parameters and obtained
nearly the same results.
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Table 2.1: Atomic coordinates of CeRh2As2 [2]. Lattice constants are a = b = 4.2801 Å and
c = 9.8616 Å.

Atom x y z

Ce (2c) 0.25 0.25 0.25469
Rh1 (2a) 0.75 0.25 0
Rh2 (2c) 0.25 0.25 0.61742
As1 (2b) 0.75 0.25 0.5
As2 (2c) 0.25 0.25 0.86407

Figure 2.1(a) presents the band structure of CeRh2As2, which notably features heavy
bands of Ce 4f electrons in proximity to the Fermi level. These Ce 4f orbitals predomi-
nantly contribute to the density of states at the Fermi level. The Fermi surfaces derived
from our calculations are depicted in Fig. 2.2. We observe that the Fermi surface is pri-
marily composed of Ce 4f electrons, with significant hybridization with Rh 4dx2−y2 elec-
trons, except for the pink pockets near the A point [Fig. 2.2(d)]. The largest Fermi surface
[Fig. 2.2(c)] exhibits a quasi-two-dimensional character, aligning with the predictions for
the field-induced PDW state[1]. This is corroborated by experimental observations of the
Kondo effect in CeRh2As2 [2], with an electronic specific heat coefficient γ of approximately
1000,mJ/mol,K2, indicating the presence of heavy-fermion bands. Further insight is pro-
vided in Fig.2.3, where the partial density of states for Ce and Rh atoms, along with the
total density of states, are displayed. Additionally, the orbital weights for the Ce 4f , Rh1
4d, Rh2 4d, As1 4p, and As2 4p-orbitals are illustrated in Fig.2.4. The data confirm that
the primary contributions near the Fermi level are from the Ce 4f -orbital, in line with the
heavy-fermion behavior observed in experiments on CeRh2As2 [2].

In the subsequent discussion, we base our analysis on DFT calculations. The universality
of the formulas (2.4.7) and (2.4.8) for Z2 invariants allows us to assess whether CeRh2As2

qualifies as a TCSC, contingent upon the topology of its Fermi surfaces. While our focus is
on the spin-singlet pairing dominant pair-density-wave (PDW) state, it’s important to note
that the key aspects for applying the Fermi-surface formula are the odd-parity and glide-odd
characteristics of the PDW state. These characteristics are underpinned by the inversion
operation’s negative character and the glide operation for A1u, A2u, B1u, and B2u states,
irrespective of whether the spin-singlet or spin-triplet component predominates. Thus, our
formula remains applicable to spin-triplet dominant states as well, such as those proposed in
Ref. [101]. It should be noted that the magnitude of the spin-triplet channel influences various
physical properties, including the paramagnetic effect and the local density of states [118].
These properties can be experimentally measured, underscoring the need for further theoret-
ical and experimental efforts to elucidate the nuances of the high-field phase. However, our
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Figure 2.1: Electronic band structure of CeRh2As2 with spin-orbit coupling calculated by
wien2k. (a) The whole bands along symmetric lines. The heavy bands of Ce 4f electrons
are seen near the Fermi level. (b) Enlarged view along the M -Γ line. The bands cross the
Fermi level three times. (c) Enlarged view along the A-Z line. The bands cross the Fermi
level four times.

36



Figure 2.2: (a) Fermi surfaces of CeRh2As2. Each Fermi surface is shown in (b)–(d). The
Fermi surfaces other than the pockets around the A point in (d) are mainly constituted by
Ce 4f electrons. The figures are generated by XCrySDen software [125].

 

  

  

  

  

  

  

                     

 
 
 
  
  
  
 
  
 
 

           

     
  

   
   

Figure 2.3: Total density of states and partial density of states of Ce, Rh1, and Rh2 sites.
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Figure 2.4: Orbital weight for the Ce-4f , Rh1-4d, Rh2-4d, As1-4p, and As2-4p orbitals.
Symmetry points in the Brillouin zone are also illustrated.
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forthcoming results remain valid regardless of these specifics.

2.6 TCSC in CeRh2As2

We now turn our attention to the Z2 invariants in CeRh2As2. Specifically, we examine the
topology on the glide-invariant plane at kz = 0. Analysis of the Γ-M line, as shown in
Fig. 2.1(b), reveals that bands intersect the Fermi level three times. Consequently, both
νg

±

0 are determined to be nontrivial, signifying the presence of TCSC. Notably, TCSC in
CeRh2As2 is robust against Zeeman splitting. Under a magnetic field range of 4 T to 14 T,
where the PDW state is observed [2], the Zeeman splitting energy is estimated to be within
the range of 2 ∼ 8 meV, assuming a g-factor of g = 10, which is likely an overestimation. At
the Γ point (indicated by the red arrow in the figure), the conduction band is approximately
30 meV below the Fermi level, which implies that the occupation number remains unchanged
under the influence of the magnetic field. While the band crossings marked by the blue
arrow might be affected by the magnetic field, this does not alter the Z2 invariants as per the
formula (2.4.7). Therefore, the parity of the number of Fermi surfaces is preserved under the
magnetic field, maintaining the nontrivial nature of the Z2 invariants νg±0 in the PDW state.

We now turn our attention to the other glide-invariant plane, kz = π. Along the Z-A line,
as depicted in Fig.2.1(c), the bands intersect the Fermi level four times, making νg±π trivial.
However, the presence of a shallow hole band (marked by a green arrow), with its energy at
the Z point estimated to be around ∼ 4 meV, suggests the possibility of a Lifshitz transition in
a magnetic field, potentially leading to nontrivial Z2 invariants. The Z2 topological invariants
of CeRh2As2, based on band structure calculations, are detailed in Table 2.2. We hypothesize
that under high magnetic fields at the Z point, a Zeeman split band may undergo this Lifshitz
transition, rendering both the Chern number and Z2 invariant nontrivial. The well-defined
nature of the Chern number on any constant kz plane, and the observed difference between
C0 and Cπ, suggests a parallel with the Weyl superconducting state as in UPt3 [126].

Table 2.2: Z2 topological invariants and Chern number of CeRh2As2 in the PDW state based
on the first-principles calculation. A possibility of a Weyl superconducting state is shown. In
the high-field region, one of the Zeeman split bands is supposed to cause Lifshitz transition
at the Z point.

(νg+0 , νg−0 , C0) (νg+π , νg−π , Cπ) Weyl SC
Low field (1, 1, even) (0, 0, even) ×
High field (1, 1, even) (1, 0, odd) or (0, 1, odd) ◦

These results establish CeRh2As2 as a promising platform for topological crystalline super-
conductivity (TCSC). It is important to emphasize that the glide Z2 invariants are nontriv-
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ial, specifically on the kz = 0 plane. Consequently, this leads to the emergence of boundary
Majorana states on the (1̄10) surface, which maintains glide symmetry. This symmetry is
constituted by the vectors a + b and c.

2.7 Model study
To demonstrate the emergence of Majorana surface states, we employed numerical calcula-
tions using a tight-binding model tailored for CeRh2As2. This model aligns with our first-
principles calculations, with parameters set to ensure #FS±

Γ1→Γ2 are odd (even) at kz = 0
(kz = π). Here, we present a single-orbital tight-binding model focused solely on the Ce
atoms. The model incorporates superconducting gap functions represented in the A1u, A2u,
B1u, and B2u categories. This framework is specifically designed for analyzing topological
surface states in CeRh2As2.

2.7.1 Normal-part Hamiltonian and model parameters
First, we show the spin-independent part of the Hamiltonian:

Ĥkin = −t
∑
i,s,σ

(
c†

i+a,s,σci,s,σ + c†
i+b,s,σci,s,σ + h.c

)
(2.7.1)

− t′
∑
i,s

(
c†

i,s,Aci,s,B + c†
i+a,s,Aci,s,B + c†

i+b,s,Aci,s,B + c†
i+a+b,s,Aci,s,B

+ c†
i+c,s,Aci,s,B + c†

i+a+c,s,Aci,s,B + c†
i+b+c,s,Aci,s,B + c†

i+a+b+c,s,Aci,s,B + h.c.
)

(2.7.2)

=
∑
k,s

[
−2t(cos kxa+ cos kya)σ0 − t′

2 (1 + e−ikxa)(1 + e−ikya)(1 + e−ikzc)(σx + iσy)

(2.7.3)

− t′

2 (1 + eikxa)(1 + eikya)(1 + eikzc)(σx − iσy)
]

σσ′
c†

k,s,σck,s,σ′ . (2.7.4)

where we take primitive translation vectors as a = (a, 0, 0), b = (0, a, 0), and c = (0, 0, c).
Here, ci,s,σ (c†

i,s,σ) are annihilation (creation) operators for the Ce 4f electron with the lat-
tice point Ri, spin s, and sublattice σ. Equations (2.7.1) and (2.7.2) represent the intra-
sublattice hopping and inter-sublattice hopping, respectively, with t and t′ being intra- and
inter-sublattice hopping integrals (Fig. 2.5). To obtain Eq. (2.7.3), we conducted Fourier
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transform in which Bloch basis is periodic in the Brillouin zone,

ci,s,A = 1√
N

∑
k

ck,s,Ae
ik·Ri , (2.7.5)

ci,s,B = 1√
N

∑
k

ck,s,Be
ik·Ri . (2.7.6)

Next, we show the spin-dependent part of the Hamiltonian:

ĤASOC =
∑

s,s′,σ

ασg(k) · c†
k,s,σss,s′ck,s′,σ, (2.7.7)

ĤZeeman =
∑

s,s′,σ

−µBH · c†
k,s,σss,s′ck,s′,σ. (2.7.8)

ĤASOC represents the antisymmetric spin-orbit coupling (ASOC) depending on the sublattice,
that is, αA = −αB = α. Since the site symmetry of the Ce site is C4v, the g-vector has a
Rashba-type form, g(k) = (−2t sin kya, 2t sin kxa, 0). The inter-sublattice ASOC is forbidden
due to the presence of inversion center between A and B sublattices. ĤZeeman represents the
Zeeman coupling, and hereafter we assume H = (0, 0, H).

Figure 2.5: Structure of the tight-binding model. The Ce atoms of CeRh2As2 form the
body-centered tetragonal lattice. The environmental Rh2As2 layers break the local inversion
symmetry at the Ce sites. The local inversion symmetry breaking introduces the A and B
sublattice structure. The Rashba-type antisymmetric spin-orbit coupling on each sublattice
affects the electronic structure, and the sign of the spin-orbit coupling is opposite between
the A and B sublattices. The red circle represents a unit cell, and t (t′) represents intra-
(inter-)sublattice hopping. We set the A sublattice as a center of a unit cell.
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Taking the basis as ϕ(k) = (ck↑A, ck↓A, ck↑B, ck↓B)⊤, the representation matrix of total
Hamiltonian takes the form,

Ĥ = Ĥkin + ĤASOC + ĤZeeman =
∑

k

ϕ†(k)H(k)ϕ(k). (2.7.9)

The glide symmetry playing the key role in this Chapter is

Ĝ = {Mz|a/2 + b/2}. (2.7.10)

Acting on the one-particle basis, Ĝ yields the following relationship:

Ĝ |R, ↑, A⟩ = i |Rx, Ry,−Rz, ↑, B⟩ , (2.7.11)
Ĝ |R, ↓, A⟩ = −i |Rx, Ry,−Rz, ↓, B⟩ , (2.7.12)
Ĝ |R, ↑, B⟩ = i |Rx + a,Ry + a,−Rz, ↑, A⟩ , (2.7.13)
Ĝ |R, ↓, B⟩ = −i |Rx + a,Ry + a,−Rz, ↓, A⟩ . (2.7.14)

Therefore, we represent Ĝ in this basis as,

Ĝϕ†(k)Ĝ−1 = ϕ†(kx, ky,−kz)


0 0 ie−i(kx+ky)a 0
0 0 0 −ie−i(kx+ky)a

i 0 0 0
0 −i 0 0

 (2.7.15)

= ϕ†(kx, ky,−kz)
(

0 e−i(kx+ky)a

1 0

)
σ

⊗ (isz) (2.7.16)

= ϕ†(kx, ky,−kz)G(k). (2.7.17)

On the glide-invariant planes, kz = 0 or π, we can block diagonalize the Hamiltonian with
the basis diagonalizing the representation matrix of glide symmetry G(k),

U †H(k)U =
(

Hg+(k) 0
0 Hg−(k)

)
, (2.7.18)

Hg±(k) = −2t(cos kx + cos ky)s0 − αg(k) · s −
(
µBH ± 4t′ cos kx

2 cos ky

2 δkz ,0

)
sz.

(2.7.19)

Here, Hg±(k) are the glide sector Hamiltonian. The unitary matrix U is obtained as,

U = 1√
2


e−i(kx+ky)a/2 0 −e−i(kx+ky)a/2 0

0 −e−i(kx+ky)a/2 0 e−i(kx+ky)a/2

1 0 1 0
0 1 0 1

 (2.7.20)

= 1√
2

(
e−i(kx+ky)a/2sz −e−i(kx+ky)a/2sz

s0 s0

)
. (2.7.21)
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To demonstrate the bulk-boundary correspondence and the emergence of Majorana states
in CeRh2As2, we adopt the following parameters

(t, t′, α, h, µ) = (1.0, 0.1, 0.3,−0.1,−3.8), (2.7.22)

in which the number of Fermi surfaces, #FS±
Γi→Γj

modulo 2, is equivalent to the band struc-
ture calculation for CeRh2As2. Figure 2.6 shows the Fermi surfaces of the tight-binding
model on the glide-invariant planes, kz = 0, π. The number of Fermi surfaces in each glide
sector is odd at kz = 0, while it is even at kz = π, consistent with the main text.

Figure 2.6: Fermi surfaces of the tight-binding model on (a) kz = 0 and (b) kz = π. (a)
Orange and blue lines show the Fermi surface belonging to the glide-positive and glide-
negative sector, respectively. (b) On kz = π, the energy spectrum of each glide sector are
doubly degenerate, and we show them by black lines. Thus, the number of Fermi surfaces
counted for the glide Z2 invariants is odd on kz = 0, while it is even on kz = π.

2.7.2 Superconducting gap functions, BdG Hamiltonian, and glide
sectors for each irreducible representations

Now, we discuss the superconducting order parameter. We here ignore inter-sublattice pairing
for simplicity. Since the site symmetry of the Ce site is C4v, spin-singlet component and spin-
triplet component can locally mix, although the inversion parity can be globally defined. In
the BCS state, which is the conventional even-parity state expected as the low-field phase in
CeRh2As2, the gap function has the form,

∆BCS(k) =
(

(ψ(k) + d(k) · s) isy 0
0 (ψ(k) − d(k) · s) isy

)
σ

. (2.7.23)
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The spin-triplet component of gap functions appear with the different sign between sublattices
in accordance with the sign of ASOC. As the inversion operation Î interchanges sublattices
and flips the wave number k, the space inversion parity is globally even. On the other hand,
in the PDW state [1], the spin-singlet (spin-triplet) gap functions have different (same) sign,

∆PDW(k) =
(

(ψ(k) + d(k) · s) isy 0
0 (−ψ(k) + d(k) · s) isy

)
σ

, (2.7.24)

and therefore, the space inversion parity is globally odd even when the spin-singlet pairing
is dominant. The even-odd parity transition between the BCS and PDW states has been
theoretically proposed [1]. Because the odd-parity PDW state is more robust against the
magnetic field than the BCS state, the two phases appear in the H-T phase diagram. The
low-field phase is the BCS state, while the high-field phase is the PDW state, as illustrated
in the main text [Fig. 1(b)].

The gap functions are classified by the global point group symmetry D4h, and the odd-
parity PDW state belongs to one of the odd-parity irreducible representations. In this work we
focus on the one-dimensional representations, A1u, A2u, B1u, B2u, as we mention in the main
text. Here, we describe the gap functions with using the basis functions as ψ(k) = ψ0×(basis)
and d(k) = d0 × (basis). The basis are shown in Table. 3.2.

Table 2.3: Superconducting gap functions classified by the irreducible representations of D4h

point group.
Irreducible representation ψ(k)iσy/ψ0 [d(k) · σ]iσy/d0

A1u sin kx sin ky (cos kx − cos ky) sin kxx̂ + sin kyŷ

A2u 1 sin kyx̂ − sin kxŷ

B1u sin kx sin ky sin kxx̂ − sin kyŷ

B2u cos kx − cos ky sin kyx̂ + sin kxŷ

We perform the unitary transformation for the BdG Hamiltonian on the glide-invariant
planes with

UBdG = 1√
2


e−i(kx+ky)a/2sz 0 −e−i(kx+ky)a/2sz 0

s0 0 s0 0
0 e−i(kx+ky)a/2sz 0 −e−i(kx+ky)a/2sz

0 s0 0 s0

 ,
(2.7.25)
(2.7.26)
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and obtain the block-diagonalized (glide sector) Hamiltonian Hg±BdG(k) as in the normal state,

U †
BdGHBdG(k)UBdG =

 Hg+BdG(k) 0
0 Hg−BdG(k)


σ

, (2.7.27)

Hg±BdG(k) =
 Hg±(k) ∆g(k)

(∆g(k))†
(
−Hg±(−k)

)⊤

 , (2.7.28)

Hg±(k) = −2t(cos kx + cos ky)s0 − αg(k) · s −
(
µBH ± 4t′ cos kx

2 cos ky

2 δkz ,0

)
σz, (2.7.29)

∆g(k) = (−ψ(k) + d(k) · s) isy. (2.7.30)

Since Majorana states appear at surfaces preserving the glide symmetry, which is gener-
ated by a + b and c, the (1̄10) surface is the host of Majorana surface states. To calculate
the energy spectrum in the open boundary condition, we retake primitive translation vector
as a′ = a + b = (a, a, 0), b′ = b = (0, a, 0), and c′ = c = (0, 0, c). The volume of a unit cell
does not change under this operation,

V = |(a × b) · c| = |(a′ × b′) · c′|. (2.7.31)

Correspondingly, the wave numbers are ka′ = k·a′ = kx+ky, kb′ = k·b′ = ky, and kc′ = k·c′ =
kz. We conduct calculations in the effective cubic Brillouin zone (−π < ka′ , kb′ , kc′ ≤ π), with
assuming the open boundary condition for kb′ though periodic boundary condition for ka′ .
We take Lb′ = 64 and La′ = 256 for the system size.

2.8 Majorana states on glide-symmetric surfaces
In this section, we present the surface state calculations obtained by diagonalizing the BdG
Hamiltonian, as introduced in the previous section, under open boundary conditions. Fig-
ure 2.7 displays the (1̄10) and (11̄0) surface states at kz = 0, π across all odd-parity and
glide-odd irreducible representations. Specifically, for the kz = 0 plane, we differentiate the
glide sectors using color coding: orange lines represent the glide-positive sector, while blue
lines denote the glide-negative sector. Conversely, for kz = π, we only depict the glide-positive
sector, as it is degenerate with the glide-negative sector.

All our results align with the theoretical formula that connects Fermi surface topology to
the glide Z2 invariants. In Figs. 2.7(a)-(d), we observe a unique, non-degenerate Majorana
state at zero energy in each glide sector, specifically at ka′ = 0. This finding correlates
with the odd number of #FS±

Γ→M shown in Fig. 2.6(a) and the nontrivial Z2 invariants on
the kz = 0 plane. Conversely, Figs. 2.7(e), (f), and (h) display an energy gap in the surface
spectrum at kz = π. This observation is in line with the trivial glide Z2 invariants, as inferred
from the even #FS±

Z→A count [Fig. 2.6(b)]. Despite Fig. 2.7(g) showing zero modes at ka′ = 0,
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these zero-energy states do not constitute stable Majorana states due to the presence of two
modes for each sector and boundary. This observation too is consistent with the trivial glide
Z2 invariants.

From the results in this section, our statements on the topological superconductivity and
Majorana states have been verified based on the minimal tight-binding model study. We
stress that the arguments do not essentially depend on the details of superconducting order
parameter as well as the electronic structure, unless the topology of Fermi surfaces is altered.

Figure 2.7: (1̄10) and (11̄0) surface states of the tight-binding BdG Hamiltonian on (a-d)
kz = 0 and (e-f) kz = π. Symmetry of superconducting gap functions is (a,e) A1u, (b,f)
A2u, (c,g) B1u, and (d,h) B2u representations. We take ψ0 = 0.1, d0 = 0.05 for the A2u

representation while ψ0 = 0.3, d0 = 0.2 for the others. The orange and blue lines represent
the glide-positive and glide-negative sectors, respectively. For kz = π, only the spectrum of
glide-positive sector is shown because it is equivalent to the glide-negative sector.

2.9 Summary and conclusion
In this chapter, we present a theoretical investigation into the electronic structure and topo-
logical superconductivity of the recently discovered heavy-fermion superconductor CeRh2As2.
Initially, we utilized group theory to elucidate the algebra of symmetry operations in the
Bloch representation. This allowed us to decompose the Hilbert space on the glide-invariant
planes at kz = 0 and kz = π into distinct glide sectors. Considering the PDW state in the
high-field superconducting phase, as proposed, we derived a Fermi-surface formula for the
Z2 invariants. These invariants specify the TCSC that is protected by nonsymmorphic glide
symmetry. Furthermore, we performed first-principles calculations to analyze CeRh2As2’s
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electronic structure. By evaluating the Z2 invariants, we identified TCSC originating from
the heavy-fermion bands of Ce 4f electrons hybridized with conduction electrons. The emer-
gence of Majorana fermions on surfaces preserving the glide symmetry was demonstrated
using a tight-binding model. This work positions CeRh2As2 as a novel class of topological
superconductors for two primary reasons: (1) The topological superconductivity observed
does not require spin-triplet pairing or a topological band structure. (2) Its topological na-
ture is safeguarded by nonsymmorphic symmetry, unique in that it lacks an equivalent in
continuous systems [127].
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Chapter 3

Even-odd parity transition in strongly
correlated locally noncentrosymmetric
superconductors : An application to
CeRh2As2

The quest for odd-parity superconductors is pivotal in the design of topological materials,
a topic extensively discussed in literature [26, 27, 28, 29]. According to Fermi statistics
and within the framework of the Bardeen, Cooper, and Schrieffer (BCS) theory [128], odd-
parity superconductors are generally categorized as spin-triplet superconductors. This BCS
theory has been instrumental in explaining a wide range of superconductivity phenomena.
In the realm of topological science, the constraints on Cooper pairs have reignited inter-
est in relatively rare spin-triplet superconductors. Examples include UPt3 [68, 78, 86, 96],
UCoGe [87, 129, 130], and UTe2 [99, 100, 123, 131]. However, it is important to note that
some internal degrees of freedom of Cooper pairs are not accounted for in the conventional
BCS theory.

Recent studies have increasingly focused on local noncentrosymmetry in superconductors,
bringing to light the significance of the sublattice degree of freedom in Cooper pairs [1, 18,
81, 86, 115, 117, 118, 119, 120, 121, 122, 132, 133, 134, 135]. Intriguingly, this research has
revealed that sublattice antisymmetric Cooper pairing is permissible, resulting in odd-parity
superconducting states without requiring spin-triplet pairs. Consequently, the sublattice de-
gree of freedom offers a novel approach to designing topological odd-parity superconductors
through conventional spin-singlet pairing mechanisms [81, 127]. In the context of locally non-
centrosymmetric superconductors under high magnetic fields, theoretical predictions suggest
the thermodynamic stability of a sublattice antisymmetric superconducting state, referred to
as the pair-density-wave (PDW) state [1].

The discovery of two distinct superconducting phases in the H-T phase diagram of
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CeRh2As2 has heightened interest in the sublattice degree of freedom in superconductors, as
evidenced by numerous studies [2, 3, 7, 8, 15, 16, 19, 101, 102, 103, 104, 127, 136, 137, 138].
The unique two-sublattice crystalline structure of CeRh2As2 results in local inversion sym-
metry breaking at the Ce sites while maintaining global symmetry [2]. The striking similarity
between the experimental phase diagrams and those predicted by weak-coupling theory [1, 2]
strongly indicates the pivotal role of local inversion symmetry breaking in CeRh2As2. This
observation has led to the interpretation of the two superconducting phases as a manifestation
of an even-odd parity transition within the superconducting state [2, 8].

Contrary to the earlier discussions, two critical issues concerning CeRh2As2 warrant fur-
ther examination. Firstly, the exact microscopic mechanism underlying the superconductiv-
ity in CeRh2As2 remains an open question. This chapter delves into the hypothesis that
unconventional superconductivity in this material may be mediated by quantum critical fluc-
tuations. Secondly, the observed parity transition field in CeRh2As2 notably surpasses the
Pauli-Clogston-Chandrasekhar limit, exceeding the predictions of weak-coupling theory by a
factor of five [1, 2]. While two scenarios have been previously proposed within the framework
of weak-coupling theory [104, 137], our approach seeks to shed light on these discrepancies by
exploring an intrinsic phase diagram pertinent to strongly correlated, locally noncentrosym-
metric superconductors.

To address the aforementioned challenges, we concentrate on the electronic correlation
effects in Ce f -electrons, which exhibit a localized character. The significantly large elec-
tronic specific heat coefficient, γ ∼ 1000,mJ/mol K2, is indicative of heavy-fermion bands
in proximity to the Fermi level in CeRh2As2. Additionally, the observed non-Fermi-liquid
behaviors are suggestive of quantum criticality within this material [2, 7, 16]. These experi-
mental findings underscore the profound influence of Coulomb interactions on the electronic
state of CeRh2As2. Consequently, there is a burgeoning interest in theoretical investigations
of strong correlation effects, especially in locally noncentrosymmetric superconductors.

In this chapter, we embark on an in-depth analysis of quantum critical multipole fluc-
tuations, their role in superconductivity, and the superconducting phase diagrams specific
to locally noncentrosymmetric, strongly correlated electron systems. For this purpose, we
employ the fluctuation exchange (FLEX) approximation, known for effectively replicating
the critical behaviors as outlined in self-consistent renormalization theory [139]. The FLEX
approach intricately links the Green function and self-energy, thereby incorporating vital
factors such as retardation effects, quasi-particle scattering, and internal fields. We then
compare our theoretical findings with the superconducting phase diagrams of CeRh2As2 to
discuss the origins of superconductivity in this material. Through this comparison, we unveil
XY -type antiferromagnetic fluctuations that align with nuclear magnetic resonance (NMR)
observations [16]. Furthermore, our results indicate superconductivity predominantly char-
acterized by dx2−y2-wave pairing. Significantly, the enhanced parity transition field observed
in our study offers a resolution to the previously identified discrepancies in the phase diagram
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Figure 3.1: Schematic figure of the bilayer Rashba-Hubbard model. Yellow circles represent
the Ce atoms of CeRh2As2. We introduce first- and second-neighbor intra-layer hopping
integrals. We also introduce an inter-layer hopping integral as t⊥. The staggered Rashba-type
antisymmetric spin-orbit coupling is included in the model as it arises from the asymmetric
potential by Rh2As2 layers. The magnetic field is applied parallel to the z axis.

of CeRh2As2.

3.1 Bilayer Rashba-Hubbard model
We focus on the low-energy coherent heavy-fermion band and construct the bilayer Rashba-
Hubbard model, in which Coulomb correlation and spin-orbit coupling are taken into ac-
count [140, 141]. Note that all parameters of our model are renormalized through the Kondo
effect. The model is given by

Ĥ =
∑

k

φ†(k)H0(k)φ(k) + U
∑
i,σ

ni↑σni↓σ, (3.1.1)

where U is the on-site Coulomb repulsion, H0(k) = ε(k)s0 ⊗ σ0 + αg(k) · s ⊗ σz − µBHsz ⊗
σ0 + t̃⊥(k)s0 ⊗ σ+ + t̃⊥(−k)s0 ⊗ σ−, φ(k) = (ck↑A, ck↓A, ck↑B, ck↓B)⊤, and cksσ (c†

ksσ) is an
annihilation (creation) operator for an electron with momentum k, spin s, and sublattice
σ ∈ {A,B} (Fig. 3.1). Here, sµ and σµ consisting of the 2 × 2 unit matrix and three
Pauli matrices represent spin and sublattice degrees of freedom, respectively.1 The first
term of H0 represents intra-layer hopping including the chemical potential and is given by
ε(k) = −2t(cos kx + cos ky) + 4t′ cos kx cos ky − µ. The vector g(k) describes the Rashba-
type antisymmetric spin-orbit coupling given by g(k) = [−∂ε(k)/∂ky, ∂ε(k)/∂kx, 0], and H

represents the Zeeman magnetic field parallel to the z-axis. The last two terms of H0 describe
1µ runs over {0, x, y, z}, and σ± are given by (σx ± iσy)/2.
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inter-layer hopping given as t̃⊥(k) = t⊥(1 + e−ikx)(1 + e−iky). This model is a straightforward
extension of the Rashba-Hubbard model for globally inversion-asymmetric strongly correlated
electron systems [109, 114, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152]. Hereafter,
we set t′ = 0.3, t⊥ = 0.1, µB = 1, and U = 3.9 with a unit of energy t = 1 and determine the
chemical potential so that the electron density per site n is 0.85. In the present numerical
study, we use 64×64 k-meshes, and 16384, 8192, or 4096 Matsubara frequencies for T = 0.004,
0.004 < T < 0.01, or 0.01 ≤ T , respectively. By comparing with the quantum Monte
Carlo method, the FLEX approximation was confirmed as a reliable method within the
intermediate-coupling region in which the Coulomb interaction U is smaller than half of
the bandwidth W , namely, the condition for justification of the FLEX approximation is
U/W ⪅ 0.5 [153, 154, 155, 156, 157]. Our choice of model parameters satisfies this condition
and the FLEX approximation is expected to give a good description of strongly correlated
superconductors in this case.

3.2 Self-consistent condition for fluctuation exchange
approximation

The noninteracting Green functions for U = 0 are expressed by the 4 × 4 matrix form in the
spin and sublattice basis,

G(0)(k, iωn) = (iωns0 ⊗ σ0 − H0(k))−1 , (3.2.1)

where ωn = (2n+ 1)πT are fermionic Matsubara frequencies. In the interacting case U , 0,
the dressed Green functions contain a self-energy, Σ(k, iωn),

G(k, iωn) = (iωns0 ⊗ σ0 − H0(k) − Σ(k, iωn))−1 . (3.2.2)

Within the FLEX approximation, the self-energy is expressed with use of an effective inter-
action, Γn(k, iνn), as

Σξξ′(k, iωn) = T

N

∑
q,iνn

Γn
ξξ1ξ′ξ2(q, iνn)Gξ1ξ2(k − q, iωn − iνn), (3.2.3)

and the effective interaction is given by

Γn
ξ1ξ2ξ3ξ4(k, iνn) = Uξ1ξ2ξ5ξ6

(
χξ5ξ6ξ7ξ8(k, iνn) − 1

2χ
(0)
ξ5ξ6ξ7ξ8(k, iνn)

)
Uξ7ξ8ξ3ξ4 , (3.2.4)

where Uξ1ξ2ξ3ξ4 is bare interaction tensor which satisfies the following relation∑
ξ1ξ2ξ3ξ4

Uξ1ξ2ξ3ξ4c
†
ξ1cξ2cξ3c

†
ξ4 = U

∑
i,σ

ni↑σni↓σ, (3.2.5)

Uξ1ξ2ξ3ξ4 = δσ1,σ2δσ2,σ3δσ3,σ4Us1s2s3s4 , (3.2.6)
U↑↓↑↓ = U↓↑↓↑ = −U↑↑↓↓ = −U↓↓↑↑ = U, (3.2.7)
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and iνn are bosonic Matsubara frequencies. Here, χ(k, iνn) is the generalized susceptibility.
We introduce the bare susceptibility

χ
(0)
ξ1ξ2ξ3ξ4(q, iνn) = − T

N

∑
k,iωn

Gξ1ξ3(k, iωn)Gξ4ξ2(k − q, iωn − iνn), (3.2.8)

and compute the generalized susceptibility by

χξ1ξ2ξ3ξ4(q, iνn) = χ
(0)
ξ1ξ2ξ3ξ4(q, iνn) + χ

(0)
ξ1ξ2ξ5ξ6(q, iνn)Uξ5ξ6ξ7ξ8χξ7ξ8ξ3ξ4(q, iνn). (3.2.9)

According to Eqs. (3.2.2)-(3.2.9), G, Σ, Γn, χ(0), and χ depend on each other, and therefore,
we self-consistently determine these functions.

For functions with fermionic Matsubara frequencies A(q, iωn), the static limit A(q, 0) is
evaluated by an approximation justified at low temperatures,

A(q, 0) ≃ A(q, iπT ) + A(q,−iπT )
2 . (3.2.10)

For the analyze of superconducting phase transition, particle-particle channel irreducible
vertex function Γa is needed. Γa is obtained by

Γa
ξ1ξ2ξ3ξ4(q, iνn) = Uξ1ξ2ξ3ξ4/2 + Uξ1ξ2ξ5ξ6χξ5ξ6ξ7ξ8(q, iνn)Uξ7ξ8ξ3ξ4 . (3.2.11)

3.3 Multipole susceptibility
Initially, our discussion centers on quantum critical multipole fluctuations. The dynamical
susceptibility tensor in this context is represented by the generalized susceptibility, defined
as:

χÔ(q, iνn) =
∑

ξ1ξ2ξ3ξ4

Ôξ1ξ2χξ2ξ1ξ3ξ4(q, iνn)Ôξ3ξ4 , (3.3.1)

where iνn denote the bosonic Matsubara frequencies and ξ, in a shortened form, represents
ξ = (s, σ).

In this framework, the operators Ô are identified as (extended) multipole operators, such
as Ô = ŝ ⊗ σ̂ [158, 159, 160]. These are classified into even-parity (odd-parity) multipoles
corresponding to σ̂0, σ̂x (σ̂y, σ̂z). Table 3.1 provides a comprehensive classification of these
multipole operators in our system. For the purpose of normalization, we follow the convention
tr
[
Ô†Ô

]
= 1. Consequently, the operators are expressed in terms of Pauli matrices as

ŝµ = sµ/
√

2 and σ̂µ = σµ/
√

2.
In Fig. 4.1(a), we present the magnetic field’s influence on the maximum values of both

transverse and longitudinal magnetic susceptibilities. It is observed that while the transverse
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Table 3.1: Classification of the multipole operators in the bilayer Rashba-Hubbard model.
Here, ŝ± = (ŝx ± iŝy)/

√
2 are ladder operators for spin. E (O) represents the even-parity

(odd-parity) multipole operators. C, L, and T represent charge, longitudinal spin, and trans-
verse spin operators, respectively. σ̂0 and σ̂z (σ̂x and σ̂y) are intrasublattice (intersublattice)
operators.

Ô σ̂0 σ̂x σ̂y σ̂z

ŝ0 E C intra E C inter O C inter O C intra
ŝz E L intra E L inter O L inter O L intra
ŝ± E T intra E T inter O T inter O T intra

susceptibility increases with the magnetic field, the longitudinal susceptibility shows a de-
crease. Notably, the even-parity magnetic multipole fluctuation, represented by s ⊗ σ0, and
the odd-parity magnetic multipole fluctuation, corresponding to s ⊗ σz, are nearly degener-
ate. However, a slight preference for the odd-parity multipole is evident. The susceptibilities
of other multipoles are found to be negligibly small in comparison. From Fig. 4.1(b), both
transverse and longitudinal magnetic susceptibilities exhibit peak structures around the an-
tiferromagnetic wave vector Q = (π, π). This pattern suggests the development of antiferro-
magnetic spin fluctuations in the system. Importantly, the momentum dependence of these
susceptibilities appears to be unaffected by the magnetic field. Based on these observations,
we postulate a predominant XY -type antiferromagnetic fluctuation,2 aligning with NMR
measurements conducted on CeRh2As2 [16]. Furthermore, we have verified that the behavior
of the multipole susceptibility remains qualitatively consistent across different strengths of
spin-orbit coupling, denoted as α/t⊥.

3.4 Superconductivity
To investigate superconductivity, we adopt the linearized Éliashberg equation which is given
by

λ∆ξξ′(k) = T

N

∑
k′

Γa
ξξ1ξ2ξ′(k − k′)Fξ1ξ2(k), (3.4.1)

Fξ1ξ2(k) = Gξ1ξ3(k′)∆ξ3ξ4(k′)Gξ2ξ4(−k′), (3.4.2)

where ∆ is the gap function and Γa is the particle-particle channel irreducible vertex func-
tion. Here, we adopted abbreviated notation k = (k, iωn). With the power method, we

2The term ’XY-type fluctuation’ indicates that transverse fluctuations are more prominent than longitu-
dinal ones in the paramagnetic state.
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Figure 3.2: (a) The magnetic field dependence of static multipole fluctuations. The maxima
of the longitudinal and transverse magnetic susceptibilities are shown. Note that the even-
parity and odd-parity multipole fluctuations are nearly degenerate. We assume α/t⊥ = 2
and T = 0.01. (b) The momentum dependence of longitudinal magnetic susceptibility (left)
and transverse magnetic susceptibility (right) at H = 0.15.

54



numerically evaluate λ, eigenvalues of the linearized Éliashberg equation and determine the
critical temperature Tc from the criterion λ = 1.

The crystal structure of CeRh2As2 belongs to the space group P4/nmm (No.129), leading
to the D4h point group classification. However, when a magnetic field is applied parallel to the
z axis, certain symmetry operations become forbidden, resulting in a reduction of the point
group to C4h. Consequently, the superconducting gap functions of CeRh2As2 are categorized
based on the irreducible representations of the C4h group. To describe these gap functions, we
use a conventional notation that separates them into spin-singlet and spin-triplet components
for both intrasublattice and intersublattice pairing channels:

∆σσ′(k) = {ψσσ′(k) + dσσ′(k) · s}isy, (3.4.3)

where ψAA(k) and ψAB(k) denote the intrasublattice and intersublattice spin-singlet order pa-
rameters, respectively. Similarly, dAA(k) and dAB(k) represent the corresponding spin-triplet
order parameters. It is important to note that, in our calculations, the order parameters as-
sociated with intersublattice pairing are found to be negligibly small. For a comprehensive
understanding, we have summarized the basis functions of the intrasublattice order param-
eters corresponding to each irreducible representation of C4h in Table 3.2. Note that, In
our system, intrasublattice pairing is equivalent to intra-layer pairing, while intersublattice
pairing corresponds to inter-layer pairing.

Table 3.2: The basis functions for the intrasublattice superconducting order parameter. IR
represents the irreducible representations of the point group C4h. We take into account the
time-reversal symmetry breaking under the magnetic field, and the degeneracy of the Eg/u

states is lifted. Thus, we distinguish them as E1
g/u and E2

g/u. Note that the spin-singlet
component ψ(k) and spin-triplet in-plane component dx,y(k) for the E representations are
prohibited due to the Cz

2 rotation symmetry.
IR ψ(k) d(k)

Ag, Au 1, kxky

(
k2

x − k2
y

)
kxx̂ + kyŷ, kyx̂ − kxŷ

Bg, Bu kxky, k2
x − k2

y kxx̂ − kyŷ, kyx̂ + kxŷ

E1
g , E1

u 0 (kx + iky) ẑ

E2
g , E2

u 0 (kx − iky) ẑ

In Fig. 4.2(a), we illustrate the eigenvalues of the Éliashberg equation corresponding to
each irreducible representation. Notably, the representations Bg and Bu emerge as the dom-
inant ones. As evidenced by the momentum dependence depicted in Fig. 4.2(b), both these
states predominantly exhibit spin-singlet dx2−y2-wave pairing. Additionally, they possess a
spin-triplet subdominant pairing component characterized by p-wave symmetry. These un-
conventional Cooper pairings are primarily stabilized by the antiferromagnetic fluctuations
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Figure 3.3: (a) The magnetic field dependence of eigenvalues of the Éliashberg equation
for each irreducible representation. We assume α/t⊥ = 2 and T = 0.01. (b) The momen-
tum dependence of intra-sublattice spin-singlet and spin-triplet gap functions, ψAA(k) and
dAA(k), of the Bg representation for H = 0.15. Note that dσσ

z (k) = 0. Results for the Bu

representation are almost the same as the figures.

and the presence of spin-orbit coupling. Remarkably, their stability remains largely unaf-
fected by the application of a magnetic field.

The momentum dependence of the gap functions is similar for both Bg and Bu repre-
sentations; however, their distinct sublattice structures set them apart. In the even-parity
Bg representation, the spin-singlet gap function exhibits the same sign on both sublattices
A and B, as demonstrated by ψAA(k) = ψBB(k). Conversely, the spin-triplet gap func-
tion shows opposite signs, as indicated by dAA(k) = −dBB(k). In contrast, the odd-parity
Bu representation displays opposite signs for the spin-singlet gap function between the sub-
lattices, ψAA(k) = −ψBB(k), while the spin-triplet gap function maintains the same sign,
dAA(k) = dBB(k). These distinctions imply that the Bg and Bu representations correspond
to the BCS and PDW states, respectively, as predicted in weak-coupling theory [1]. As il-
lustrated in Fig 4.2(a), the eigenvalues of the ’Eliashberg equation for both representations
diminish under the influence of a magnetic field, a result of the Pauli depairing effect. No-

56



tably, the Bu state demonstrates greater robustness against the magnetic field compared to
the Bg state. Consequently, at a magnetic field strength of H = 0.24, a parity transition
occurs from the even-parity Bg state to the odd-parity Bu state. This transition can be inter-
preted through the intrinsic magnetic response of these states, where the Bg state is limited
by Pauli susceptibility, but the Bu state largely circumvents Pauli limiting as the magnetic
susceptibility remains unchanged through the superconducting transition [18, 122].

3.5 Phase diagram
In this section, we analyze the H-T phase diagrams of the bilayer Rashba-Hubbard model,
as depicted in Figs. 4.4(a)-(d). These phase diagrams correspond to different values of the
parameter α/t⊥, a key control variable for local noncentrosymmetry, as for Maruyama et
al. [18]. We consider cases where α/t⊥ = 0, 1, 2, and 3. It’s notable that the case α/t⊥ =
0 represents the bilayer system without spin-orbit coupling, whereas at α/t⊥ = ∞, the
system effectively behaves like a collection of monolayer systems with Rashba-type spin-orbit
coupling [18]. The superconducting transition lines for the Bg and Bu states are also depicted,
corresponding respectively to the BCS and PDW states as mentioned earlier

Based on the phase diagrams we have derived, the zero-field superconducting transi-
tion temperature, denoted as Tc, and the magnetic field strength at the parity transition
point, denoted as H∗, have been estimated. For α/t⊥ = 1, 2, and 3, these values are
(Tc, H

∗) = (0.0141, 0.195), (0.0135, 0.212), and (0.0124, 0.192), respectively. From these val-
ues, we proceed to evaluate H∗ in units of Tc, enabling a normalized comparison across
different α/t⊥ ratios.

H∗

Tc
=


13.8 (α/t⊥ = 1)
15.7 (α/t⊥ = 2)
15.5 (α/t⊥ = 3).

(3.5.1)

From this analysis, we find that the parity transition fields, when scaled by the superconduct-
ing transition temperature, approximate to a universal value of H/Tc ≃ 15, irrespective of
variations in α/t⊥. This result contrasts with the much smaller value of H/Tc ≃ 2 predicted
by mean-field theory [1]. However, in the case of CeRh2As2, experimental observations reveal
H∗ ≃ 3.9,T and T c ≃ 0.26,K, leading to an experimental ratio of (H∗/Tc)exp ≃ 10 [2]. Our
theoretical findings, therefore, show quantitative consistency with the experimental phase di-
agram of CeRh2As2 and effectively bridge the gap between weak-coupling theory predictions
and experimental data

Now, we examine potential reasons for the observed enhancement in the parity transition
field H∗. First, one possibility is the influence of nonsymmorphic crystalline symmetry, as
suggested in Ref. [104]. Indeed, the local noncentrosymmetricity indicator α/t̃⊥(k) diverges
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Figure 3.4: (a)-(d) H-T phase diagrams of the bilayer Rashba-Hubbard model for α/t⊥ =
0, 1, 2, 3. We show the superconducting transition lines of the even-parity Bg and odd-parity
Bu states, on which eigenvalues of the Éliashberg equation become unity. The BCS and
PDW states correspond to the Bg and Bu superconducting phases, respectively. H∗ denotes
the magnetic field at the parity transition point.

at the Brillouin zone faces in nonsymmorphic crystals, due to t̃⊥(kface) = 0, which implies a
more pronounced effect of spin-orbit coupling compared to the symmorphic case [104, 161].
However, our analysis of the bilayer Rashba-Hubbard model does not support this hypothesis,
as the ratio H∗/Tc remains constant across different values of α/t⊥. Secondly, the presence of
a spin-triplet component in the gap function could potentially alter the spin state of Cooper
pairs, thus increasing H∗. Yet, this seems unlikely since a strong dependence of the parity
mixing parameter r on α/t⊥ is observed (Fig. 3.5), defined as:

r = maxk |dAA(k)|2
maxk |ψAA(k)|2 . (3.5.2)

From Eq. (3.5.1) and Fig. 3.5, we note that there is no significant correlation between H∗/Tc

and r. Thirdly, the field dependence of the effective interaction is also considered. In the
bilayer Rashba-Hubbard model, the effective pairing interaction varies with the field due to
field-enhanced magnetic anisotropy (see Fig. 4.1). Figure 3.6 illustrates the eigenvalues of
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Figure 3.5: The parity mixing parameter r as a function of α/t⊥. The values for the Bg and
Bu representations are nearly the same. We assume T = 0.01 and H = 0.15.

the ’Eliashberg equation both with and without the field dependence of magnetic anisotropy,3
and we observe that this anisotropy weakens superconducting instabilities. However, it has a
negligible effect on H∗. Consequently, field-enhanced magnetic anisotropy is not the primary
factor in the enhancement of H∗. Conclusively, our findings suggest that the large parity
transition field in CeRh2As2 is primarily due to the internal field resulting from quantum
critical antiferromagnetic fluctuation. Near the antiferromagnetic critical point, electron
spin correlations significantly intensify, and electrons exert an internal field on one another.
In our model, the external Zeeman field applied to an electron is effectively screened by
surrounding electrons, substantially increasing the scale of the magnetic fields [162]. This
theory aligns with the observation of large upper critical fields in CeRh2As2, which notably
surpass the Pauli-Clogston-Chandrasekhar limit, even in the in-plane direction [2].

3.6 Conclusion
Our study delved into the nature of quantum critical multipole fluctuation and superconduc-
tivity within the framework of the bilayer Rashba-Hubbard model, a simplified representa-

3To assess the impact of field-induced changes in the effective interaction, we solve the ’Eliashberg equation
using zero-field vertex functions while adopting Green functions at H , 0. The eigenvalue without field-
enhanced magnetic anisotropy, λiso, is defined by the following equations:

λiso∆ξξ′(k) = T

N

∑
k′

Γa,H=0
ξξ1ξ2ξ′(k − k′)F H,0

ξ1ξ2
(k),

F H,0
ξ1ξ2

(k) = GH,0
ξ1ξ3

(k′)∆ξ3ξ4(k′)GH,0
ξ2ξ4

(−k′).
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Figure 3.6: The magnetic field dependence of eigenvalues of the Éliashberg equation for
the Bg and Bu representations. Biso

g and Biso
u represent the eigenvalues without the field-

enhanced magnetic anisotropy. The parity transition points are indicated by the gray dashed
line. We assume α/t⊥ = 2 and T = 0.01.

tion of locally noncentrosymmetric, strongly correlated electron systems. This investigation
was partly inspired by recent experimental findings in the newly discovered superconduc-
tor CeRh2As2 [2]. We found that XY -type antiferromagnetic fluctuations, which align with
the results of NMR studies [16], are enhanced when a magnetic field is applied along the
z axis. Due to these critical antiferromagnetic fluctuations, superconductivity characterized
by dominant dx2−y2-wave pairing and a subdominant p-wave pairing component is stabilized.
Consequently, two distinct superconducting phases, differing in space inversion parity, emerge
in the H-T phase diagram. This is consistent with observations made in CeRh2As2. Notably,
the parity transition field is significantly enhanced by the quantum critical fluctuations, with
the calculated value showing quantitative agreement with experimental measurements. These
findings not only corroborate the parity transition observed in the superconducting state of
CeRh2As2 [2] but also suggest the presence of topological superconductivity [127]. Fur-
thermore, our theoretical framework contributes to resolving outstanding issues related to
CeRh2As2 and provides insights into the general behavior of locally noncentrosymmetric,
strongly correlated superconductors [163].
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Chapter 4

Field-induced superconductivity
mediated by odd-parity multipole
fluctuation

Superconductivity, traditionally known to be suppressed by a magnetic field due to both Pauli
and orbital-depairing effects [164], can paradoxically be induced by the magnetic field in cer-
tain systems. This counterintuitive phenomenon has attracted significant interest for its po-
tential to reveal unconventional mechanisms underlying superconductivity. A well-recognized
mechanism driving field-induced superconductivity is the Jaccarino-Peter effect [165, 166].
This effect describes how an external magnetic field can counterbalance the internal field
generated by magnetic ions. Notable examples include the Chevrel phase superconductor
EuxSn1−xMo6S8 [167, 168], and the organic superconductors λ-(BETS)2FeCl4 [169, 170] and
κ-(BETS)2FeBr4 [171], where the Jaccarino-Peter effect has been observed. Furthermore, the
reduction of Kondo scattering [172, 173] and the diminishment of the quasi-particle renormal-
ization effect [174] are also theorized as alternative mechanisms contributing to field-induced
superconductivity.

Field-induced superconductivity in uranium-based superconductors has been experimen-
tally established in compounds such as UGe2 [175, 176], URhGe [177, 178], UCoGe [179, 180],
and UTe2 [130, 181, 182, 183]. This phenomenon is largely attributed to changes in the ef-
fective interactions facilitating Cooper pairing, particularly through the enhancement of fer-
romagnetic fluctuations. The application of a magnetic field in these systems approaches a
quantum critical point, thereby intensifying the effective interactions crucial for field-induced
superconductivity. This relationship between field-induced superconductivity and quantum
criticality has been supported by a range of studies [184, 185, 186, 187, 188, 189, 190, 191, 192],
emphasizing the importance of ferromagnetic fluctuations near the quantum critical point.

The recent discovery of field-induced parity transition in CeRh2As2 has shed light on the
role of sublattice degrees of freedom in heavy-fermion systems [2]. This finding has sparked
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a flurry of both experimental and theoretical research, demonstrating that local inversion
symmetry breaking can facilitate the formation of odd-parity pairings in Cooper pairs under
high magnetic fields [3, 7, 8, 9, 10, 11, 15, 16, 17, 19, 22, 23, 24, 101, 102, 103, 104, 127,
137, 138, 163, 193, 194, 195, 196, 197, 198]. Interestingly, similar sublattice structures are
also present in the uranium compounds discussed earlier, suggesting a broader relevance of
these findings. Additionally, field-induced superconductivity has been reported in the lo-
cally noncentrosymmetric cerium-based superconductor CeSb2 [199, 200] and in magic-angle
twisted trilayer graphene [201, 202]. These observations in both uranium- and cerium-based
superconductors, as well as in moiré systems, indicate that electron correlation effects might
drive the superconducting states in these materials. Thus, theoretical investigations that con-
centrate on the interplay between strong correlation effects, sublattice degrees of freedom,
and magnetic fields are of paramount importance. However, it is critical to note that most
previous theoretical studies have relied on weak coupling theory, often assuming degenerate
interactions within the sublattice degrees of freedom. This assumption may overlook key
aspects of these complex systems, pointing to the need for more comprehensive theoretical
models.

4.1 Effective Action
In this chapter, we present a novel mechanism for field-induced superconductivity, stemming
from degeneracy-lifted pairing interactions within the sublattice degrees of freedom in strongly
correlated superconductors. The theoretical underpinning of our model is encapsulated in
the following effective action:

Seff [ψ̄, ψ] = Seff, 0[ψ̄, ψ] + Seff, int[ψ̄, ψ]
=
∑

k

ψ̄k,α(−iωnδ
αβ + Hαβ

k + Σαβ
k )ψk,β

+
∑

k,k′,q

ψ̄k+q,αψk,βΓαβγδ
q ψ̄−k′,δψ−k′+q,γ, (4.1.1)

where we employ the abbreviated notation: k = (k, iωn), q = (q, iνn), and α = (s, σ).
In this notation, k denotes the momentum, while ωn = (2n + 1)πT and νn = 2nπT are
the fermionic and bosonic Matsubara frequencies, respectively. These represent the space-
time dependence of the electron field ψk,α and the associated correlation functions. The
indices s and σ correspond to spin and sublattice degrees of freedom, respectively. The term
Hαβk represents the single-particle Hamiltonian. We also introduce the self-energy (Σ) and
the vertex function (Γ). The self-energy is responsible for the renormalization of mass and
damping of quasi-particles, while the vertex function facilitates superconductivity. These
elements adhere to the Ward-Takahashi identity: Σαβ

k = ∑
q Γαγβδ

q Gδγ
k−q [203, 204], where

Gαβ
k = −⟨ψk,αψ̄k,β⟩ denotes the single-particle Green function. While we simplify the model
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by omitting k and k′ dependence in the vertex function, extending the analysis to include
such momentum dependence is feasible and can be found in other works [205, 206].

In our study, we utilize diagrammatic techniques, such as the fluctuation exchange (FLEX)
approximation [207, 208, 209] and the Parquet approximation [210, 211], to derive the effec-
tive action from the following bare action:

Sbare[ψ̄, ψ] =
∑

k

ψ̄k,α(−iωnδ
αβ + Hαβ

k )ψk,β

+
∑

k,k′,q

ψ̄k+q,αψk,βΓ0,αβγδ
q ψ̄−k′,δψ−k′+q,γ. (4.1.2)

This study primarily focuses on two-sublattice superconductors, encompassing both bilayer
superconductors and two-fold non-symmorphic crystalline superconductors. The Hamilto-
nian Hαβ

k in the bare action describes the two-sublattice system and is given by:

Hk = εks0 ⊗ σ0 + αgk · s ⊗ σz + t⊥s0 ⊗ σx − µBHsz ⊗ σ0.

Here, εk = −2t(cos kx +cos ky)+4t′ cos kx cos ky −µ and t⊥ denote intra- and inter-sublattice
hopping terms, respectively. The sublattice-dependent gk · s term represents staggered
Rashba-type spin-orbit coupling, arising from local inversion symmetry breaking [1, 18, 81,
101, 115, 116, 117, 118, 121, 122, 141, 212, 213]. The g-vector gk = [−∂εk/∂ky, ∂εk/∂kx, 0]
introduces momentum-dependent spin polarization [109]. The term H represents the Zeeman
magnetic field parallel to the z-axis. The bare action also includes the Hubbard-type on-site
Coulomb repulsion as its interaction term:

Sbare, int = U
∑

σ

ψ̄i,↑,σψi,↑,σψ̄i,↓,σψi,↓,σ.

From this interaction, the bare interaction tensor Γ0 is derived, serving as the basis for further
analysis.

In our two-sublattice model, the internal degrees of freedom are characterized using
the augmented multipole operator Q̂ [158, 159, 160]. This operator is defined as Q̂µν =∑

k ψ̄k+q,αQµναβψk,β, where Qµν = s̄µ ⊗ σ̄ν adheres to the normalization condition tr[QQ†] =
1. Here, s̄µ = sµ/

√
2 and σ̄µ = σµ/

√
2 represent the normalized Pauli and unit matrices,

respectively. The interaction term of the effective action, Seff, int, can be reformulated as a
sum of bilinear interactions of these multipoles [214, 215, 216, 217, 218]:

Seff, int[ψ̄, ψ] ≈
∑
Q,q

Q̂qV
Q

q Q̂−q, (4.1.3)

where V Q
q = QαβΓβαγδ

q Qγδ represents the coupling constants for interactions between the
augmented multipoles. To simplify the discussion, interactions between different types of
multipoles are omitted in this context.
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In this chapter, we delve into the mechanism of field-induced superconductivity originat-
ing from degeneracy-lifted pairing interactions in sublattice degrees of freedom. Utilizing
multipole resolved interactions, zero-momentum (q = k − k′ = 0) Cooper pairing interac-
tions are derived [205, 206]. Specifically, intra-sublattice even- and odd-parity multipole
fluctuations, denoted by σ̄0 and σ̄z, give rise to distinct Cooper pairing interactions [206]:

Sσ0 [ψ̄, ψ] = 1
2
∑
k,k′

V σ0

k−k′{P̂0,†
k P̂0

k′ + P̂z,†
k P̂z

k′

+P̂x,†
k P̂x

k′ + P̂y,†
k P̂y

k′}, (4.1.4)

Sσz [ψ̄, ψ] = 1
2
∑
k,k′

V σz

k−k′{P̂0,†
k P̂0

k′ + P̂z,†
k P̂z

k′

−P̂x,†
k P̂x

k′ − P̂y,†
k P̂y

k′}, (4.1.5)

where P̂µ = ψασ̄
µ
αβψβ. In scenarios where even- and odd-parity multipole interactions share

the same coupling constant (i.e., Vk−k′ := V σ0
k−k′ = V σz

k−k′), a degenerate interaction model is
realized:

Sdegenerate =
∑
k,k′

Vk−k′{P̂0,†
k P̂0

k′ + P̂z,†
k P̂z

k′}. (4.1.6)

This model represents the typical pairing interaction often assumed for two-sublattice mod-
els [1, 18, 101, 115, 116, 117, 118, 121, 219, 220]. When degeneracy is lifted, as in Eqs. (4.1.4)
and (4.1.5), unconventional inter-sublattice Cooper pairing channels emerge. This degeneracy-
lifted interaction, commonplace in strongly correlated systems, is key to field-induced super-
conductivity, as discussed in this chapter. The FLEX approximation extended to spin-orbit-
coupled two-sublattice systems is applied to derive the effective action in our model [221,
222, 223, 224] (for detail see Sec. 3.2). Hereafter, we set t′ = 0.3, µB = 1, and U = 3.9 with
a unit of energy t = 1 and determine the chemical potential so that the electron density per
site n is 0.85. In the numerical study, we use 64 × 64 k-meshes, and 16384, 8192, or 4096
Matsubara frequencies for T = 0.004, 0.004 < T < 0.01, or 0.01 ≤ T , respectively.

4.2 Odd-parity multipole fluctuation
First, we summarize multipole operator in our system and multipole decomposition of the
generalized susceptibility. The normalized Pauli matrices (σ̄ = σ/

√
2) and the unit matrix

(σ̄0 = σ0/
√

2) compose a complete basis of 2 × 2 matrix space. Here, we adopt the normal-
ization convention tr[(σµ)†σµ] = 1. Namely, any 2 × 2 complex matrix A can be represented
as a linear combination of the normalized Pauli matrices and the unit matrix,

A =
∑

µ

aµσ̄
µ, (4.2.1)
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where aµ are complex coefficients. When A is a Hermitian matrix, aµ should be real numbers.
The completeness of the Pauli matrices and the unit matrix leads to the following identity:∑

µ

σ̄µ
ij(σ̄

µ
kl)∗ =

∑
µ

σ̄µ
ijσ̄

µ
lk = δikδjl, (4.2.2)

where δij is Kronecker delta. Here, the Hermite property of the Pauli and unit matrices
σ̄ij = (σ̄ji)∗ is used in the first equal sign.

The multipole operator in a two-sublattice system is represented by the tensor product of
the Pauli matrices in spin- and sublattice-spaces: Q̄µν = s̄µ ⊗ σ̄ν . Consequently, the following
identity holds: ∑

Q
Q̄ijQ̄kl = δilδjk. (4.2.3)

This identity facilitates the analysis of multipole-resolved fluctuations. It should be noted
that extending the current discussion to cases with general N degrees of freedom is straight-
forward. This involves replacing the Pauli matrix with the su(N) Lie algebra.

Upon inserting Eq. (4.2.3), Eq. (3.2.9) can be reformulated into a multipole-resolved form
as,

χQ(q, iνn) = Q̄ξ1ξ2χξ2ξ1ξ3ξ4(q, iνn)Q̄ξ3ξ4

= χ0,Q(q, iνn)
+
∑

Q′Q′′
Q̄ξ1ξ2χ

0
ξ2ξ1ξ5ξ6(q, iνn)Q̄′

ξ5ξ6Q̄′
ξ7ξ8Uξ8ξ7ξ9ξ10Q̄′′

ξ9ξ10Q̄′′
ξ11ξ12χξ12ξ11ξ3ξ4(q, iνn)Q̄ξ3ξ4

(4.2.4)
≈ χ0,Q(q, iνn) + χ0,Q(q, iνn)UQχQ(q, iνn), (4.2.5)

where UQ = Q̄ξ1ξ2Uξ1ξ2ξ3ξ4Q̄ξ4ξ3 . In this final expression, the cross terms between different
multipole terms, denoted as χQQ′ = Q̄ξ1ξ2χξ1ξ2ξ3ξ4Q̄′

ξ4ξ3 , are ignored. Solving Eq. (4.2.5), we
obtain the enhanced multipole susceptibility due to interactions:

χQ(q) ≈ χ0,Q(q)
1 − UQχ0,Q(q) . (4.2.6)

A sufficient condition for achieving a large χQ(q) entails having a large χ0,Q(q) and a pos-
itive UQ. When we ignore the self-energy, the bare multipole susceptibility χ0,Q(q) can be
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expressed in the band basis as,

χ0,Q(q) = Q̄βαχ
(0)
αβγδ(q)Q̄γδ

= −Q̄βα
T

N

∑
k

Gαγ(k)Gδβ(k − q)Q̄γδ

= −Q̄βα
T

N

∑
k

Uαζ(k)Gζ(k)U∗
γζ(k)Uδη(k − q)Gη(k − q)U∗

βη(k − q)Q̄γδ

= − T

N

∑
k

(
U †(k − q)Q̄U(k)

)
ηζ

Gζ(k)Gη(k − q)
(
U †(k)Q̄U(k − q)

)
ζη

= − 1
N

∑
k

⟨uη,k−q|Q̄|uζ,k⟩ ⟨uζ,k|Q̄|uη,k−q⟩ × f(εη(k − q)) − f(εζ(k))
iνn + εη(k − q) − εζ(k)

=
∑

k

⟨uη,k−q|Q̄|uζ,k⟩ ⟨uζ,k|Q̄|uη,k−q⟩Lζη(k, q, iνn), (4.2.7)

where Lζη(k, q, iνn) = − 1
N

{f(εη(k − q)) − f(εζ(k))}/{iνn + εη(k − q) − εζ(k)} denotes the
momentum-resolved Lindhard function between ζ and η bands. Here, U(k)αζ = ⟨α|uζ,k⟩
represents the unitary matrix that diagonalizes Hamiltonian:

U †(k)H(k)U(k) = Hdiag(k), (4.2.8)
H(k) |uζ,k⟩ = εζ(k) |uζ,k⟩ . (4.2.9)

The Green function in the band basis is given by

G(k) = U †(k)G(k)U(k),

Gζ(k) = 1
iωn − εζ(k) . (4.2.10)

In the same manner, we can decompose the effective interaction Γn(q) [as defined in
Eq. (3.2.4)] and Γa(q) [as defined in Eq. (3.2.11)] into their respective multipole channels.
The decomposition is expressed as follows:

Γn,Q(q) ≈ UQ
(
χQ(q) − 1

2χ
0,Q(q)

)
UQ, (4.2.11)

Γa,Q(q) ≈ UQ

2 + UQχQ(q)UQ. (4.2.12)

In Eq. (4.2.11), the effective interaction for the particle-hole channel, Γn,Q(q), is expressed as
a function of the multipole susceptibility χQ(q) and the bare susceptibility χ0,Q(q) modulated
by the interaction UQ. Similarly, Eq. (4.2.12) depicts the effective interaction for the particle-
particle channel, Γa,Q(q), also as a function of the multipole susceptibility and interaction.

In this work, we demonstrate that a two-sublattice structure inherently encourages odd-
parity multipole fluctuations. As depicted in Figure 4.1(a), the Fermi surfaces of our two-
sublattice tight-binding model are characterized by two bands, labeled |1⟩ and |2⟩. A notable
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Figure 4.1: (a) The Fermi surface of the two-sublattice tight-binding model with the model
parameters: α = 0.2, t⊥ = 0.2. The coloration on the Fermi surface signifies the expec-
tation value of the inversion symmetry operator I = s0 ⊗ σz. (b) The inter-sublattice
hopping t⊥ dependence of static multipole fluctuations. The maximum of the even-parity
(odd-parity) longitudinal (transverse) magnetic multipole susceptibilities are shown. Other
multipole fluctuations are negligibly small. We assume α = 0.2, t⊥ = 0.2 and T = 0.01.
(c), (d) The momentum dependence of the even-parity and odd-parity longitudinal magnetic
susceptibilities, respectively.

feature of our system is the presence of type-II van Hove singularities, a consequence of
Rashba-type spin-orbit coupling [114, 225, 226]. These singularities are specifically located at
k = (±δ, π), (0, π± δ), (π,±δ), and (π± δ, 0), positions distinct from time-reversal invariant
momentum points that satisfy K = −K modulo reciprocal lattice vectors. Furthermore,
Figure 4.1(a) illustrates the expectation values of the inversion symmetry operator I = s0⊗σz

on the Fermi surfaces. The bonding and anti-bonding orbitals, defined as |BO⟩ ≡ (1, 1)⊤
σ /

√
2

and |ABO⟩ ≡ (1,−1)⊤
σ /

√
2, interact with I such that I |BO⟩ = |BO⟩ and I |ABO⟩ =

− |ABO⟩. Given that the expectation values of I on the Fermi surfaces are approximately
±1, it can be inferred that the wave functions around the type-II van Hove singularities
predominantly resemble either bonding or anti-bonding orbitals.

In itinerant electron systems, multipole fluctuations are often driven by the nesting of
Fermi surfaces, particularly near van Hove singularities [139, 227]. There are two primary
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nesting scenarios to consider: the first involves nesting within the same Fermi surface, either
from bonding to bonding or anti-bonding to anti-bonding states. The second scenario entails
nesting between different Fermi surfaces, such as bonding to anti-bonding. Figure 4.1(a)
illustrates the nesting vectors corresponding to each of these scenarios. It is important
to note that while the nesting vectors connecting identical Fermi surfaces (i.e., bonding to
bonding or anti-bonding to anti-bonding) differ from one another, those that connect different
Fermi surfaces (bonding to anti-bonding) are equivalent. Consequently, in the context of a
two-sublattice model, the nesting between different Fermi surfaces plays a crucial role in
significantly enhancing multipole fluctuations. This enhancement is particularly pronounced
for operators with strong matrix elements between the Fermi surfaces |1⟩ and |2⟩.

By utilizing the approximated wave functions established earlier, we can conduct a rough
estimation of the matrix elements for the sublattice operator. Specifically, we find that
⟨1|σ0|1⟩ ≈ ⟨1|σz|2⟩ ≈ 1 and ⟨1|σ0|2⟩ ≈ ⟨1|σz|1⟩ ≈ 0. This analysis indicates that nesting
within the same Fermi surface predominantly enhances even-parity multipole fluctuations.
Conversely, nesting between different Fermi surfaces is more likely to lead to odd-parity fluc-
tuations. From these observations, we infer that a two-sublattice structure inherently favors
the emergence of odd-parity multipole fluctuations. This tendency is particularly pronounced
when the inter-sublattice hopping term, t⊥, is large and the chemical potential is positioned
near the van Hove singularity. This conclusion is vital for understanding the nature of mul-
tipole fluctuations in two-sublattice systems and their implications for superconductivity.

In our model, the Hubbard-type Coulomb interaction is articulated in the multipole basis
as follows:

Sint = −U
∑

ν=0,z

Q̂0ν
q Q̂0ν

−q + U
∑

µ=x,y,z
ν=0,z

Q̂µν
q Q̂µν

−q. (4.2.13)

This formulation of the multipole-resolved interaction indicates that the Coulomb interac-
tion promotes both even-parity and odd-parity magnetic multipoles with equal strength.
Figure 4.1(b) visualizes how these multipole fluctuations vary with changes in t⊥, as cal-
culated using the fluctuation exchange (FLEX) approximation. We observe that with an
increase in the inter-sublattice hopping parameter t⊥, there is a pronounced enhancement
in odd-parity fluctuations, while even-parity fluctuations tend to be suppressed. This trend
aligns with our previous discussions and the theoretical framework outlined in the model.

Figures 4.1(c) and (d) present the momentum dependence of the multipole susceptibilities.
Specifically, the even-parity longitudinal magnetic fluctuation, represented by the multipole
operator Qz0 = s̄z ⊗ σ̄0, is characterized by a double peak structure around Q ∼ (π, π) and
(π − δ, π − δ), as shown in Figure 4.1(c). Conversely, the odd-parity longitudinal magnetic
fluctuation, denoted by the multipole operator Qzz = s̄z ⊗ σ̄z, displays a single peak structure
centered around Q ∼ (π, π), as depicted in Figure 4.1(d). These observations lend further
support to our prior analysis concerning the nesting and wave functions of the Fermi surfaces,
providing a more quantitative perspective. It is also noteworthy that the transverse magnetic
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fluctuations exhibit a momentum dependence similar to that of the longitudinal fluctuations,
indicating a consistent pattern across different types of magnetic fluctuations in the system.

It is important to note that the Hubbard-type Coulomb interaction, as expressed in Equa-
tion (4.2.13), appears degenerate when analyzed within a multipole basis. This degeneracy
implies that, at a mean-field level, all magnetic multipole interactions are considered to be
equivalent. However, this degeneracy is not absolute and gets lifted when many-body effects
are taken into account. Specifically, the intrinsic properties of the wave functions of itinerant
electrons play a crucial role in this context, leading to a predominance of odd-parity mul-
tipole fluctuations at low energy levels. This observation highlights the dynamic nature of
the interaction in itinerant electron systems. While the mean-field analysis provides a foun-
dational understanding, the inclusion of many-body effects reveals a more nuanced picture,
particularly in the emergence of dominant odd-parity multipole fluctuations, which are key
to understanding the low-energy behavior of these systems.

4.3 Superconductivity
In our study, we examine superconductivity predominantly mediated by odd-parity multi-
pole fluctuations through the linearized Éliashberg equation. Figure 4.2(a) illustrates how
the eigenvalues of this equation vary with the external magnetic field. In the left panel, cor-
responding to t⊥ = 0.1, a typical response of superconductivity to an external magnetic field
is observed. The eigenvalues for all irreducible representations are progressively suppressed
as the magnetic field strength increases. A notable feature at H = 0.22 is the intersection of
the eigenvalue curves for the Bg and Bu representations. This intersection indicates a phase
transition from even-parity to odd-parity superconductivity, a phenomenon similar to that
observed in CeRh2As2 [1, 2, 163]. Conversely, the right panel for t⊥ = 0.2 demonstrates a
distinct behavior. Here, the eigenvalue for the Bu representation actually increases with the
application of the magnetic field, whereas the eigenvalue for the Bg representation decreases.
This pattern suggests the intriguing possibility of field-induced odd-parity superconductivity
emerging in two-sublattice strongly correlated electron systems.

We investigate the underlying mechanism of field-induced superconductivity in our model.
Initially, we examine the intra-sublattice pair potential, ∆intra

Bu
(k) = ψ(k)isy ⊗ σz + d(k) ·

s, isy ⊗σ0, as illustrated in Figs. 4.2(b)-(d). Influenced by antiferromagnetic fluctuation, the
spin-singlet component of this potential adopts a dx2−y2-wave form, while the spin-triplet com-
ponents, induced by spin-orbit coupling, exhibit a p-wave momentum dependence. Notably,
these gap functions show a relative insensitivity to the external magnetic field [1, 2, 163].
Next, we analyze the inter-sublattice pair potentials. As shown in Fig.4.2(e), the magnetic
field influences these gap functions significantly. A key observation is the induction of a
sizable spin-triplet and inter-sublattice anti-symmetric pair potential by the magnetic field,
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Figure 4.2: (a) The magnetic field dependence of eigenvalues of the Éliashberg equation for
each irreducible representation. We assume α = 0.2 and T = 0.01. (Left) t⊥ = 0.1. (Right)
t⊥ = 0.2. Superconducting instabilities are classified by the irreducible representation of
the point group of the system, C4h. The superscript of E1,2

g/u representations expresses the
degeneracy lifted by time-reversal symmetry breaking due to the magnetic field. (b-d) The
momentum dependence of intra-sublattice spin-singlet and spin-triplet gap functions, ψ(k)
and d(k), of the Bu representation for H = 0.15. Results for the Bg representation are almost
the same as the figures. (e) The magnetic field dependence of the component-resolved weight
of the inter-sublattice gap function. (f) The momentum dependence of the inter-sublattice
spin-triplet gap function, Im dAB

z (k).
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represented by:
Im dAB

z (k)szisy ⊗ σy, (4.3.1)

This pair potential, which is forbidden in the absence of a magnetic field due to time-reversal
symmetry, gains prominence under magnetic influence. Its momentum dependence is de-
picted in Fig.4.2(f). Equation (4.3.1) highlights the σy-component in the sublattice degree
of freedom, signifying that the pairing channel Py

k , as discussed in Eqs. (4.1.4) and (4.1.5),
becomes crucial. This channel arises due to the lifting of degeneracy between even-parity and
odd-parity multipole fluctuations. In summary, the Cooper pairing described by Eq.(4.3.1)
is fundamentally a result of multipole-mediated interactions [Eqs.(4.1.4) and (4.1.5)] and the
disruption of time-reversal symmetry by the external magnetic field. Consequently, field-
induced superconductivity in the two-sublattice system emerges through a synergistic inter-
action between the odd-parity multipole fluctuation and the magnetic field.

Additional support for our interpretation of the mechanism driving field-induced super-
conductivity emerges from analyses based on Feynman diagrams. These diagrams provide a
visual and analytical method to understand the interactions and processes occurring within
the system. Specifically, the gap function, as described in Eq. (4.3.1), assumes a vital role
in this context. It facilitates the coupling between intra-sublattice gap functions through
a second-order scattering process. This process, visualized and analyzed using Feynman
diagrams, illustrates how the gap function effectively acts as an intermediary, enabling inter-
actions between gap functions of the same sublattice. The second-order scattering process,
involving the exchange of virtual quasiparticles or collective excitations, contributes signifi-
cantly to the development of superconductivity under the influence of an external magnetic
field.

Let us elucidate the distinctive role of inter-sublattice pairing in the field-induced odd-
parity superconductivity. Utilizing the diagrammatic expression of the Éliashberg equation,
we specify the important scattering process. While simplification is attained by solely consid-
ering the transverse spin fluctuation denoted by χ± or χ∓, expanding the following analysis
to include longitudinal spin fluctuation χzz is straightforward. In the following, we denote
the dominant intra-sublattice spin-singlet component in the A and B sublattices as ψAA(k)
and ψBB(k), respectively.

The scattering processes illustrated in Figs. 4.3(a-b) highlight how the unusual inter-
sublattice pairing, represented by Im dAB

z (k)szisy⊗σy, introduces the attractive force between
ψAA(k) and ψBB(k). By amalgamating these two diagrams and tracing out the gap function
dBA

z , a composite diagram elucidating the second-order scattering process between ψAA(k)
and ψBB(k) is derived. Due to the positive sign of χ±

AA and the negative sign of χ∓
BA [see

Fig. 4.3(c,d)], the overall sign of this second-order scattering process is negative. This scatter-
ing process with negative sign necessitates a sign change of gap functions through 2q = (0, 0)
momentum transfer, a condition intrinsically met due to the relation ψAA(k) = −ψBB(k).
Notably, spin-orbit coupling is not required in this mechanism, thereby implying that field-
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Figure 4.3: (a) (b) The diagrammatic representation of the dominant scattering process
between the Cooper pairs represented by ψAA, ψBB, and dAB

z . The black line and orange line
represent the intra-sublattice Green function GAA(k) and the inter-sublattice Green function
GAB(k), respectively. The scattering process between dAB

z and ψAA or ψBB via the transverse
magnetic fluctuation are shown. (c) The momentum dependence of the intra-sublattice trans-
verse magnetic fluctuation which appears in the diagram (a). (d) The momentum dependence
of the inter-sublattice transverse magnetic fluctuation which appears in the diagram (b).

induced superconductivity can be achieved in materials with weak spin-orbit coupling.

4.4 Phase diagram
Figures 4.4(a)-(d) display the phase diagrams for various ratios of α/t⊥, namely 0, 0.5, 1, and
2, while keeping t⊥ = 0.2 constant. In all these scenarios, the odd-parity superconducting
state demonstrates field-induced behaviors. A notable observation is that even in the absence
of spin-orbit coupling (α = 0), the external magnetic field still induces the odd-parity su-
perconducting phase. This finding indicates that field-induced superconductivity can occur
independently of spin-orbit coupling. However, the presence of stronger spin-orbit coupling
(α > 0) significantly enhances the stability of the field-induced odd-parity superconducting
phase, as evidenced by the increase in transition temperature. In the context of spin-orbit
coupling, the gap function described in Eq. (4.3.1) includes intra-band components, expressed
as:

∆±(k) = dAB
z (k)

|g(k)|2 + t2⊥

{
∓d̃ · s̃ + iψ̃(k)s̃0

}
is̃y, (4.4.1)
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Figure 4.4: (a)-(d) H-T phase diagrams of the two-sublattice Rashba-Hubbard model for
α/t⊥ = 0, 0.5, 1, 2. We show the superconducting transition lines of the even-parity Bg and
odd-parity Bu states, on which eigenvalues of the Éliashberg equation become unity.

where ψ̃(k) = |g(k)|2 and d̃ = [gy(k), gx(k), 0]. These expressions demonstrate how the
spin-orbit coupling, by incorporating intra-band components, significantly contributes to the
thermodynamic stability of the odd-parity superconducting phase.

The field-induced odd-parity superconducting state, while robust under certain condi-
tions, encounters a significant challenge when subjected to extremely high magnetic fields,
specifically those exceeding H > 0.3. In such intense fields, the Pauli depairing effect,
which disrupts Cooper pairs, becomes a dominant factor. Consequently, this effect leads to
a decrease in the stability of the odd-parity superconducting state, manifesting as the non-
monotonic behavior observed in the phase transition line of the Bu state. This nonmonotonic
behavior can be understood as resulting from the interplay between two opposing influences:
the enhancement of the superconducting state due to the field, particularly as facilitated
by the inter-sublattice gap function, and the disruptive Pauli depairing effect under high
magnetic fields. The observed phase transition line’s behavior, therefore, reflects the balance
between these competing mechanisms, underscoring the complex dynamics of field-induced
superconductivity in the presence of high magnetic fields.
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4.5 Summary
In conclusion, our study has performed a detailed multipole-resolved analysis to investigate
unconventional superconductivity in strongly-correlated two-sublattice systems. A critical
aspect of our findings is the lifting of degeneracy between even- and odd-parity multipole
fluctuations, which leads to the emergence of an unconventional pairing channel. Our re-
sults demonstrate that the two-sublattice structure inherently encourages fluctuations pre-
dominantly of an odd-parity nature. These fluctuations, in turn, lead to the formation of
sublattice-antisymmetric pairing, but only under the influence of an external magnetic field.
This phenomenon results in field-induced superconductivity, a notable finding of our re-
search. Furthermore, the phase diagrams obtained from our analysis reveal the existence of
field-reentrant odd-parity superconducting states. This observation underscores the complex
interplay between the two-sublattice structure, multipole fluctuations, and external magnetic
fields, contributing to a deeper understanding of the mechanisms driving unconventional su-
perconductivity in such systems [228].

Field-induced superconductivity within the bilayer model, similar to what we have ex-
plored, has been previously proposed in several studies [229, 230, 231, 232, 233]. These earlier
theories generally posit that an applied magnetic field shifts the energy levels of electronic
states, thereby promoting unconventional inter-band Cooper pairing. However, a crucial
distinction between these models and the mechanism we present in this Chapter lies in the
interaction within the layers. Unlike the earlier models which assume isotropic interaction
within the layers, our proposal is fundamentally built on the concept of anisotropic effective
interaction. This anisotropy is a direct consequence of degeneracy-lifted multipole fluctua-
tions, forming the cornerstone of our theoretical framework. This distinction highlights the
uniqueness of our approach in explaining field-induced superconductivity. The anisotropic
nature of the effective interaction, stemming from multipole fluctuations, provides a deeper
understanding of the complexities involved in the bilayer superconducting system, particu-
larly under the influence of an external magnetic field.

In conclusion, our theoretical insights into multipole fluctuations and field-induced super-
conductivity could have significant implications for understanding the electronic structure of
materials such as magic-angle twisted trilayer graphene. In this system, the electronic struc-
ture comprises a flat band from the moiré pattern and a dispersive Dirac band, notably in the
absence of a displacement field [234, 235, 236]. The presence of the flat band could amplify
degenerated multipole fluctuations, which are inherently symmetrical. A relevant example is
the fifteen-fold degenerate fluctuations protected by SU(4) symmetry, as proposed in magic-
angle twisted bilayer graphene [237]. When a displacement field is introduced, it leads to
the hybridization of these bands, potentially resulting in the lifting of multipole fluctuation
degeneracy [202]. The application of an external magnetic field in such a system could induce
unconventional Cooper pairing via the degeneracy-lifted multipole fluctuations, as elucidated
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in our study. This proposed mechanism may offer an explanation for the magnetic field-
reentrant superconductivity observed in magic-angle twisted trilayer graphene [202]. Our
theory may also find relevance in other materials such as uni-axially strained CeRh2As2 and
pressurized CeSb2 [200]. In these materials, pressure could amplify inter-sublattice hopping,
leading to the similar lifting of multipole fluctuation degeneracy. The potential applications
of our theory to these diverse and complex systems underscore the significance of our findings.
Comprehensive investigations into these phenomena, particularly focusing on the interplay
between electronic structures, external fields, and superconductivity, are highly anticipated
and could further validate and extend the applicability of our theoretical framework.
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Chapter 5

Conclusion

In this thesis, we studied a novel topological superconductivity and bulk-boundary corre-
spondence.

In Chap. 2, we classified the group-theoretical relation and showed that the Fermi sur-
face formula preserved by the non-symmorphic glide symmetry can be defined in the one-
dimensional system in the Brillouin Zone. By virtue of the Fermi surface formula, we can de-
termine the topological number that characterizes the emergence of the Majorana edge state
on the glide-symmetry preserved surface. Calculating the electronic structure of CeRh2As2

by density functional theory calculation, we revealed the Fermi surface theoretically. Count-
ing the number of the Fermi surface along the glide-preserved one-dimensional system, we
showed that the glide-preserved topological invariants have non-trivial value in CeRh2As2.
We also pointed out that the possibility of Lifshitz transition resulting in Weyl superconduc-
tivity. Finally, the demonstration of the Majorana surface state in the simple tight-binding
model is given for all odd-parity irreducible representations.

In Chap. 3, we constructed non-symmorphic bilayer Rashba-Hubbard model which mimic
the crystalline structure of CeRh2As2. Adopting the fluctuation exchange (FLEX) approxi-
mation, we revealed that XY -type antiferromagnetic fluctuation and resulting dx2−y2 +p-wave
superconductivity. Following after the unity of the eigenvalue of the linearized Éliashberg
equation, the phase diagrams for a wide range of the spin-orbit coupling were calculated.
For all phase diagrams which shows a finite odd-parity superconducting state, the parity
transition field are significantly enhanced. By this study, the discrepancy between mean-field
theory and experiment is resolved.

In Chap. 4, we analyzed symmorphic two-sublattice model which is minimal model for
many heavy-fermion systems. We first decompose the multipole fluctuations into the Cooper
pairing channnel and showed that degeneracy-lift of multipole fluctuationos leads to the
unconventional Cooper pairing. Second, the two-sublattice crystaline structure intrinsicly
favoars the odd-parity multipole dominant fluctuations, especialy in the large inter-sublattice
hopping. The origin is due to the nature of the wave function of the system. Third, the field-
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reinforcement behavior for such parameter region is shown. The microscopic mechanism
is undoerstood by the diagramatic considerations. Fourth, the calculated phase diagrams
exhivit the field-induced odd-parity superconducting state for a wide range of the spin-orbit
coupling.

We have contributed to the deeper understanding of the topological properties and strong
correlation effect in hidden symmetry breaking superconductors, through the studies pre-
sented in Chaps. 2, 3, and 4. It is also an interesting future issue to further develop the
theories presented above, as discussed in each chapter.
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