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Abstract

The θ term, the redundant term in gauge theories, has been attracting a large amount of
interest due to its intriguing features. The effects of the θ term are purely quantum since
the term does not affect the classical equation of motion. Additionally, the θ term explicitly
breaks the CP symmetry except for the special case θ = π, where the CP symmetry is not
explicitly broken due to the topological nature of the term. Despite the theoretical interest,
investigating the effects of the θ term by the Monte Carlo method is known to be very
challenging due to the sign problem.

The purpose of this thesis is to investigate the interplay between the quantum effects of
the θ term and thermal effects through the first-principle Monte Carlo study of quantum
electrodynamics in 1 + 1 dimensions, known as the Schwinger model. The Schwinger model
describes confinement, the chiral anomaly, and the nontrivial topological θ vacuum, similar
to quantum chromodynamics in 3 + 1 dimensions. After reviewing the lattice formulations
of the Schwinger model, we point out that the sign problem at finite θ can be circumvented
by using the bosonization technique, in which the Dirac fermion is transformed into boson,
effectively evading the fermion doubling problem and preserving the chiral anomaly intact
simultaneously. We explicitly confirm its validity and effectiveness through detailed compar-
isons with analytical and previous numerical results.

Using the proposed method, we perform a precise calculation of the string tension and
quantitatively reveal the confining properties in the Schwinger model at finite temperature
and θ. We find that the string tension is strongly affected by the θ term and can become
negative for noninteger probe charges near θ = π at low temperatures. Furthermore, we
observe that the string tension becomes less dependent as temperature increases, indicating
the thermal suppression of the quantum effects of the θ term.

We also explore the phase structure of the Schwinger model at θ = π in the temperature
and fermion mass plane focusing on the CP-breaking quantum critical point (QCP) at zero
temperature, which belongs to the Ising universality class. Specifically, we perform a detailed
investigation of the correlation function of the electric field near the QCP and find that it
shares the same asymptotic form as the quantum Ising chain. This finding indicates the
existence of three regions near the QCP, each characterized by a specific asymptotic form
of the correlation length, and demonstrates that the long-range order at zero temperature is
broken by infinitesimally small thermal effects.
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Chapter 1

Introduction

1.1 Background and purpose

Gauge theories form the basis of our understanding of subatomic physics. All fundamental
interactions except gravity, the strong, weak, and electromagnetic interactions, are described
by gauge theories. Historically, the gauge principle has played a crucial role in the develop-
ment of fundamental theories, imposing significant constraints on the form of the Lagrangian.

The strong interaction is described by quantum chromodynamics (QCD), whose gauge
group is SU(3). Under the guiding principle of SU(3) gauge symmetry and renormalizability,
the QCD action is almost uniquely determined to take the simple form of

SQCD =

∫
d4x

1

2
tr(GµνGµν) +

∑
f

qf (γµDµ +mf )qf , (1.1)

where qf represents quark of mass mf , Gµν is the field strength of gluon Aµ, and the inter-
action among them is encoded in the covariant derivative Dµ = ∂µ + igAµ.

The gauge symmetry has a significant impact on the properties of the theory. In QCD,
due to the non-Abelian nature of SU(3) gauge group, which appears characteristically in the
field strength

Gµν :=
1

ig
[Dµ, Dν ] = ∂µAν − ∂νAµ + ig[Aµ, Aν ], (1.2)

gluon has self-interactions. This feature, which is absent in Abelian gauge theories, leads to
the remarkable energy scale Q dependence of the renormalized gauge coupling [3, 4]

αs(Q) :=
g2

4π
≃ 12π

33− 2Nf

1

ln
(
Q2/Λ2

QCD

) , (1.3)

where ΛQCD ≃ 200MeV is the empirically determined scale parameter, and Nf is the number
of massless quark flavors. In our real world, there exist two light flavors, called up and
down quarks. Therefore, the gauge coupling of QCD becomes small as the energy scale
increases, allowing for the perturbative analysis. This property is called asymptotic freedom.
In contrast to asymptotic freedom, the QCD gauge coupling becomes large as the energy scale
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decreases. This property makes the analytical investigation of low-energy QCD extremely
difficult. Nevertheless, it also gives rise to important nonperturbative phenomena, such as
confinement of quark and spontaneous breaking of the chiral symmetry. Figure 1.1 shows
a summary of measurements of αs(Q) at various energy scales, compared to the theoretical
curve incorporating the higher-order loop effects [5]. We find that the theoretical curve

αs(MZ
2) = 0.1179 ± 0.0009

August 2021

α s
(Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)
HERA jets (NNLO)

Heavy Quarkonia (NNLO)
e+e- jets/shapes (NNLO+res)

pp/p-p (jets NLO)
EW precision fit (N3LO)

pp (top, NNLO)

 0.05

 0.1

 0.15
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 0.3

 0.35
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Figure 1.1: Summary of measurements of αs(Q) at various energy scales Q. This figure is
taken from Review of Particle Physics, 2022 [5].

successfully explains diverse experimental results over a wide range of energy scales. This
provides strong evidence that QCD is the fundamental theory of the strong interaction.

Behind the success of QCD, there remains one theoretical open problem related to the
formulation of QCD, the strong CP problem. In fact, the gauge principle and renormaliz-
ability do not uniquely determine the QCD Lagrangian. It is possible to add the so-called θ
term into the action

iθQ, Q =

∫
d4x

g2

32π2
ϵµνρσ tr(GµνGρσ), (1.4)

where ϵµνρσ is the antisymmetric tensor. Unlike the action of QCD (1.1), the θ term is
antisymmetric under the CP transformation. Therefore, the real parameter θ determines the
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degree of the explicit CP symmetry breaking in the strong interaction. In our real world, the
most recent measurement on the neutron electric dipole moment yields [6]

dn = (0.0± 1.1stat ± 0.2sys)× 10−26 e.cm, (1.5)

indicating that the absolute value of θ must be extremely small

|θ| ≲ 3× 10−12. (1.6)

While the most popular solution to the strong CP problem is the Peccei–Quinn mechanism,
which predicts a new particle called axion, the existence of axion is not experimentally
confirmed at present (see, e.g., Ref. [7] for a review).

Aside from the strong CP problem, the θ term has intriguing features due to its topological
nature. It is known that the topological charge Q (1.4) takes an integer for any gluonic
configuration that gives a finite contribution to the Euclidean path-integral. Therefore, θ has
2π periodicity, and the most distinct point from our vacuum is θ = π. Interestingly, the most
distinct point θ = π is, in a sense, similar to our vacuum θ = 0 as the CP symmetry is not
explicitly broken despite the presence of the θ term, as evident from the equivalence between
θ = π and θ = −π. Additionally, the effects of the θ term are purely quantum since the term
is a total derivative term and does not affect the classical equation of motion. Hence, by
examining the quantum effects of the θ term, we can gain insights into the quantum nature
of the system and also deepen the understanding of our vacuum θ = 0.

Despite the theoretical interest, investigating the quantum effects of the θ term is difficult.
While the Monte Carlo simulation is currently the only first-principle method to investigate
the low-energy properties of QCD, the conventional Monte Carlo method can not be applied
as the θ term appears purely imaginary in the Euclidean path-integral. This problem is called
the sign problem. Despite the proposal and testing of various approaches to overcome the
sign problem, the simulation of QCD in 3+1 dimensions is not yet satisfactory, in particular,
near θ = π.

In this thesis, we investigate the quantum effects of the θ term not in QCD but in quantum
electrodynamics in 1 + 1 dimensions, commonly referred to as the Schwinger model [8]. The
Schwinger model describes the nontrivial topological θ vacuum, the chiral anomaly, and
confinement, similar to QCD. Therefore, the Schwinger model can be regarded as a toy model
of QCD. Due to the low dimensionality, the Schwinger model can be investigated to some
extent analytically using the bosonization technique [9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
and is even exactly solvable when the fermion is massless [8, 14, 15, 16, 19]. Recently,
many approaches have been applied to the Schwinger model, including the tensor network
method [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33], the quantum computing [34,
35, 36, 37, 38, 39, 40, 41, 42, 43], the dual formulation [44, 45], and the Lefschetz thimble
method [46, 47].

We particularly focus on the interplay between the quantum effects of the θ term and
thermal effects. In general, quantum effects are more pronounced in low-dimensional systems.
On the other hand, thermal effects tend to spoil the quantum nature of the system. Therefore,
investigating how the quantum effects of the θ term are disputed by thermal effects is an
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interesting research topic. For this purpose, we propose a novel method to simulate the
Schwinger model at finite temperature and θ without suffering the sign problem, the Monte
Carlo study of the lattice bosonized Schwinger model. After explicitly confirming the validity
and effectiveness of the proposed method, we apply the method to the study of the confining
properties of the Schwinger model at finite temperature and θ [1] and also the phase structure
of the model at θ = π in the temperature and fermion mass plane [2].

1.2 Schwinger model and the θ term

In this section, we review the basic properties of the Schwinger model and the θ term in the
Euclidean space-time.

1.2.1 Schwinger model

The Schwinger model is quantum electrodynamics in 1 + 1 dimensions [8]. The Euclidean
action of the Schwinger model is given by

SE =

∫
d2x

1

4
FµνFµν + ψ(γµDµ +m)ψ, (1.7)

where Aµ is the U(1) gauge field, ψ the Dirac fermion, m the fermion mass, and g > 0 the
dimensionful gauge coupling. The covariant derivative and the field strength are defined as

Dµ = ∂µ + igAµ, (1.8)

Fµν =
1

ig
[Dµ, Dν ] = ∂µAν − ∂νAµ, (1.9)

respectively. γµ, µ = 0, 1 are the gamma matrices, which satisfy the anticommutation relation

{γµ, γν} = 2δµν , (1.10)

where δµν in Kronecker’s delta, and ψ = ψ†γ0 is the Dirac conjugate.

1.2.2 Symmetry in the Schwinger model

The Euclidean action (1.7) is symmetric under the U(1) gauge transformation eiα(x) ∈ U(1),

Aµ(x) → Aµ(x)−
1

g
∂µα(x), (1.11)

ψ(x) → eiα(x)ψ(x), (1.12)

ψ(x) → ψ(x)e−iα(x). (1.13)

Indeed, under the U(1) gauge transformation, the covariant derivative and the field strength
transform as

Dµ → eiα(x)Dµe
−iα(x), (1.14)

Fµν → Fµν , (1.15)
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respectively. Therefore, the Euclidean action (1.7) is symmetric under the U(1) gauge trans-
formation.

We next introduce the vector and chiral symmetries. The vector transformation is defined
by

ψ → eiαψ, (1.16)

ψ → ψe−iα, (1.17)

where α is a constant real number in the Euclidean space-time. Similarly, the chiral trans-
formation is defined by

ψ → eiαγ5ψ, (1.18)

ψ → ψeiαγ5 , (1.19)

where γ5 is defined as
γ5 = γ0γ1. (1.20)

The Euclidean action (1.7) is invariant under the vector transformation. In contrast, the Eu-
clidean action (1.7) is invariant under the chiral transformation only at m = 0. Interestingly,
the chiral symmetry is explicitly broken even at m = 0 due to the chiral anomaly [48, 49, 50].
The conservation law of the chiral current

j5µ = ψγ5γµψ (1.21)

is known to be violated as
∂µj

5
µ =

g

π
E, (1.22)

where E is the electric field. The relation (1.22) can be derived from the diagrammatic
analysis or the chiral transformation properties of the path-integral measure [51, 52]. The
existence of the chiral anomaly is closely related to the fermion doubling problem, a significant
obstacle in formulating the fermion field on a lattice.

Let us discuss the effect of the chiral anomaly on the vacuum expectation value of the chi-
ral condensate ψψ. Because the chiral condensate is not invariant under the chiral transforma-
tion, and spontaneous breaking of continuous symmetry is prohibited in (1 + 1)-dimensional
relativistic quantum field theories [53], the vacuum expectation value of the chiral conden-
sate must be zero if not for the chiral anomaly. In fact, the chiral condensate has a nonzero
expectation value of [8] 〈

ψψ
〉
= − eγ

2π3/2
g, (1.23)

where γ = 0.57721... is Euler’s constant. Thus, the breaking of the chiral symmetry in the
Schwinger model is driven by the chiral anomaly.

In addition to the continuous local and global symmetries, the Euclidean action of the
Schwinger model (1.7) also has discrete global symmetries, such as charge conjugation (C),
parity (P), and time reversal (T) symmetries. Unlike continuous symmetries, spontaneous
symmetry breaking of such symmetry is not prohibited. We discuss the spontaneous breaking
of the CP symmetry in Chapter 5.
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1.2.3 θ term

While the gauge principle imposes significant constraints on the Lagrangian, it is possible to
introduce the θ term in (1 + 1)-dimensional U(1) gauge theory

iθQ, Q =

∫
d2x

g

4π
ϵµνFµν , (1.24)

where ϵµν is the antisymmetric tensor. The θ term is antisymmetric under the CP transfor-
mation, unlike the Euclidean action of the Schwinger model (1.7). Thus, introducing the θ
term into the action typically results in the explicit breaking of the CP symmetry.

Intriguing features of the θ term arise from the fact that the topological charge Q takes
an integer for any gauge configuration that is finite in R2. By converting the volume integral
to a circular integral of radius R, which is sent to infinity, using Gauss’s divergence theorem,
the topological charge Q is expressed as

Q =
g

2π

∫
R2

d2x ∂0A1 + ∂1(−A0) (1.25a)

= lim
R→∞

g

2π
R2

∫ 2π

0

dφ (A1 cosφ− A0 sinφ). (1.25b)

Because only gauge configurations that are finite in R2∫
d2x

1

4
FµνFµν =

∫
d2x

1

2
E2 <∞ (1.26)

contribute to the Euclidean path-integral, the electric field E must approach zero in the
infinite radius limit R → ∞. Equivalently, the gauge field must take the pure gauge form

Aµ = −1

g
∂µα(φ). (1.27)

By substituting the form into Eq. (1.25b), we find

Q = − 1

2π

∫ 2π

0

dφ ∂φα(φ). (1.28)

Because of the 2π periodicity of the gauge function α(φ), we can conclude that Q takes an
integer. The following intriguing properties are now easily understood:

• The effects of the θ term are purely quantum since the term does not affect the classical
equation of motion.

• The θ angle has 2π periodicity.

• The θ term explicitly breaks the CP symmetry except for the special case θ = π, where
the CP symmetry is not explicitly broken.
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In the Euclidean formulation, the expectation value of an observable can be decomposed as

⟨O⟩ =
∫
DψDψDAO exp(−SE − iθQ)

/
Z (1.29a)

=
∑

Q=0,±1,±2,...

exp(−iθQ)
∫
DψDψDA(Q)O exp(−SE)

/
Z, (1.29b)

where DA(Q) denotes the path-integral over all gauge configurations of topological charge
Q, and Z is the partition function. Thus, the θ angle governs the relative weight between
different topological charge vacua.

1.3 Hamiltonian formalism

In this section, we discuss the Hamiltonian formalism of the Schwinger model to gain a
different perspective from the Euclidean formulation. We start with the Minkowski action of
the Schwinger model with the θ term

SM =

∫
d2xL, (1.30)

L = −1

4
FµνF

µν + θ
g

4π
ϵµνF

µν + ψ(iγµDµ −m)ψ, (1.31)

where γµ, µ = 0, 1 are the gamma matrices in the Minkowski space-time, which satisfy the
anticommutation relation

{γµ, γν} = 2gµν , (1.32)

and the Dirac conjugate is defined by ψ = ψ†γ0. We use the following notation in the
Minkowski space-time throughout this thesis:

x0 = t, x1 = x, gµν = diag(1,−1), ϵ01 = 1. (1.33)

The conjugate momenta are defined as

πψ := ∂L/∂ψ̇ = iψ†, (1.34)

πψ† :=
(
∂/∂ψ̇†

)
L = 0, (1.35)

π0 :=
∂L
∂Ȧ0

= 0, (1.36)

E :=
∂L
∂Ȧ1

= Ȧ1 + ∂xA
0 − θg

2π
, (1.37)

respectively. While πψ† and π0 do not appear in the Hamiltonian since they are equal to zeros,
equations (1.35, 1.36) form constraints on the physical Hilbert space. From the nonzero parts
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of the conjugate momenta, the Hamiltonian is obtained as

H =

∫
dxEȦ1 + πψψ̇ − L (1.38)

=

∫
dx

1

2

(
E +

gθ

2π

)2

− E∂xA
0 + πψ

(
igA0 − γ5∂x + igA1γ5 − imγ0

)
ψ. (1.39)

Under the Hamiltonian (1.39), the time evolution of πψ† , A0, π0 are calculated as

˙πψ† = −
(
δ/δψ†)H = 0, (1.40)

Ȧ0 =
δH

δπ0
= 0, (1.41)

π̇0 = − δH

δA0
= −∂xE + gψ†ψ. (1.42)

By taking the temporal gauge A0 = 0 at the initial state, A0 remains zero at any time,
allowing us to simplify the Hamiltonian. For the constraint (1.36) to be satisfied, the Gauss
law

∂xE − gψ†ψ = 0 (1.43)

must be imposed. Combining these together, we arrive at the simplified Hamiltonian

H =

∫
dx

1

2

(
E +

gθ

2π

)2

− πψ
(
∂x − igA1

)
γ5ψ − imπψγ

0ψ (1.44a)

=

∫
dx

1

2

(
E +

gθ

2π

)2

− ψ
(
i∂x + gA1

)
γ1ψ +mψψ, (1.44b)

where the electric field and the fermion density are constrained by the Gauss law (1.43).
The quantization is performed by imposing the equal-time (anti)commutation relations{

ψα(x, t), ψ
†
β(y, t)

}
= δαβδ(x− y), (1.45)

{ψα(x, t), ψβ(y, t)} =
{
ψ†
α(x, t), ψ

†
β(y, t)

}
= 0, (1.46)[

A1(x, t), E(y, t)
]
= iδ(x− y), (1.47)

where α, β denote the spinor indices.

1.3.1 Bosonized Hamiltonian

The physics of the Schwinger model becomes much more transparent using the bosonization
technique, in which the Dirac field ψ is transformed into the scalar field ϕ and its conju-
gate momenta π. The concept of bosonization of the Dirac fermion first appeared in Cole-
man’s proof of the equivalence between the Thirring model and the sine-Gordon model [9].
Coleman’s proof was based on the explicit confirmation of equivalence in the coefficients of
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perturbation expansion at any order, and its generalization to other models, such as the
Schwinger model, was not clear. Subsequently, Mandelstam explicitly constructed the Dirac
fermion from the bosonic fields, establishing that bosonization is a universal concept in 1 + 1
dimensions [10] (see Appendix A). The bosonized form of the Schwinger model first appeared
in Ref. [11]. In this subsection, we use the chiral representation of the gamma matrices

γ0 = σ1, γ1 = iσ2, γ5 = γ0γ1 = −σ3. (1.48)

For bosonization of the Hamiltonian of the Schwinger model (1.44b), the following bosoniza-
tion formulae are necessary:

jµ = ψγµψ =

{
1√
π
∂xϕ, µ = 0,

− 1√
π
π, µ = 1,

(1.49)

−ψi∂xγ1ψ =
1

2
π2 +

1

2
(∂xϕ)

2, (1.50)

ψψ = − eγ

2π
µNµ cos

(
2
√
πϕ
)
. (1.51)

Here, the symbol Nµ denotes the normal ordering with respect to the bosonic creation and
annihilation operators defined as

ϕ(x) =:

∫
dk

2π

(
1

2ω(k, µ)

)1/2[
a(k, µ)e−ikx + a†(k, µ)eikx

]
, (1.52)

π(x) =: −i
∫

dk

2π

(
ω(k, µ)

2

)1/2[
a(k, µ)e−ikx − a†(k, µ)eikx

]
, (1.53)

where ω(k, µ) =
√
k2 + µ2 and µ being the energy scale to define the normal ordering. The

derivation of these bosonization formulae requires somewhat complicated manipulations and
the detail can be found in Appendix A.

We note that the chiral condensate does not depend on the energy scale µ. This can
be seen by removing the normal ordering using Wick’s theorem. Coleman showed that the
normal ordering can be removed as [9]

Nµ exp
(
i2
√
πϕ
)
= exp{2π∆(x = 0;µ)} exp

(
i2
√
πϕ
)
, (1.54)

where ∆(x;µ) is the Feynman propagator for the scalar field of mass µ. The Feynman
propagator is divergent at the origin in the continuum. This divergence can be regularized
with an ultraviolet (UV) cutoff Λ by subtracting the divergent part as

∆(x;µ; Λ) := ∆(x;µ)−∆(x; Λ) =
1

2π
ln

Λ

µ
+O(x2), (1.55)

leading to the formula [9]

Nµ exp
(
i2
√
πϕ
)
=

Λ

µ
exp
(
i2
√
πϕ
)
. (1.56)
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The re-normal ordering formula [9], which states the connection between the normal orderings
using different energy scales,

µNµ exp
(
i2
√
πϕ
)
= µ′Nµ′ exp

(
i2
√
πϕ
)

(1.57)

is derived from Eq. (1.56). The re-normal ordering formula ensures the independence of the
energy scale µ in the bosonized form of the chiral condensate (1.51).

Using the bosonized form of the fermion density (1.49), the Gauss law (1.43) is

∂x

(
E − g√

π
ϕ

)
= 0, (1.58)

and solved as
E =

g√
π
ϕ. (1.59)

The constant of integration is interpreted as the external electric field and absorbed into θ.
Conversely, the θ angle is physically interpreted as the external electric field

Eex =
gθ

2π
(1.60)

in the Schwinger model [12]. This perspective is useful for the description of the pair of static
probe charges and the semiclassical picture of confinement in Chapter 4. The total electric
field is given by

Etot = E + Eex =
g√
π

(
ϕ+

θ

2
√
π

)
. (1.61)

Henceforth, we refer to Etot as the electric field and write Etot as E.
Using the bosonization formulae (1.49, 1.50, 1.51), and setting the energy scale to µ =

g/
√
π, we arrive at the Hamiltonian of the bosonized Schwinger model [11]

H =

∫
dx

1

2
π2 +

1

2
(∂xϕ)

2 +
g2

2π

(
ϕ+

θ

2
√
π

)2

− eγ

2π3/2
mgNg/

√
π cos

(
2
√
πϕ
)
. (1.62)

Note that the term proportional to A1 is expressed as

−ψgA1γ1ψ =
gA1

√
π
π (1.63)

and eliminated by a redefinition of the conjugate momentum π. It is now evident that the
Schwinger model is equivalent to the free boson theory of mass g/

√
π at m = 0. Therefore,

the massless Schwinger model is exactly solvable. At m ̸= 0, the Hamiltonian includes both
the bosonic mass term and the cosine term, making an analytically exact treatment extremely
difficult. For small fermion mass, the perturbation in terms of the fermion mass m/g can be
used and discussed in Refs. [54, 55, 56]. For large fermion mass, ordinary perturbation in
terms of the gauge coupling g/m is possible.
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1.3.2 Chiral anomaly

Let us finally discuss the chiral anomaly in the bosonized Hamiltonian (1.62). From the
bosonized form of the vector current (1.49), the chiral current turns out to be

jµ5 = ψγ5γµψ =

{
1√
π
π, µ = 0,

− 1√
π
∂xϕ, µ = 1.

(1.64)

The chiral charge is given by

Q5 =

∫
dx j05 =

1√
π

∫
dx π, (1.65)

and satisfies the commutation relations

[ϕ(x), Q5] =
i√
π
, (1.66)

[π(x), Q5] = 0. (1.67)

The chiral transformation acts on the scalar field and its conjugate momenta as [57]

ϕ→ e−iαQ5ϕeiαQ5 = ϕ− α√
π
, (1.68)

π → e−iαQ5πeiαQ5 = π, (1.69)

respectively. Therefore, the bosonized Hamiltonian is not invariant under the chiral trans-
formation even at m = 0, as expected from the chiral anomaly. More specifically, at
m = 0, θ = 0, because the time evolution of the scalar field and its conjugate momentum are
given by

ϕ̇ =
δH

δπ
= π, (1.70)

π̇ = −δH
δϕ

= ∂2xϕ− g2

π
ϕ, (1.71)

the conservation law of the chiral current is violated

∂µj
µ
5 =

1√
π

(
π̇ − ∂2xϕ

)
=
g

π
E. (1.72)

In contrast, the conservation law of the vector current is preserved

∂µj
µ =

1√
π
∂x

(
ϕ̇− π

)
= 0. (1.73)
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1.4 Outline of this thesis

In this chapter, we first presented the theoretical background and purpose of this thesis. We
next reviewed the basic properties of the Schwinger and the θ term in both the Lagrangian
and Hamiltonian formalism, including the bosonized Schwinger model in the Hamiltonian
formalism.

The remaining part of this thesis is organized as follows. In Chapter 2, we introduce three
different lattice formulations of the Schwinger model. We compare their respective advantages
and disadvantages and conclude that the lattice formulation of the bosonized Schwinger model
is the most preferable formulation from both theoretical and practical numerical sides for our
purpose. In Chapter 3, we perform an explicit verification of the lattice bosonized Schwinger
model from analytical and numerical analyses. In Chapter 4, we investigate the confining
properties in the Schwinger model at finite temperature and θ. In Chapter 5, we study the
phase structure of the Schwinger model at θ = π in the temperature and fermion mass plane.
Chapter 6 is devoted to summary and outlook.
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Chapter 2

Lattice formulation of the Schwinger
model

As seen in the previous chapter, the massive Schwinger model is far from being exactly
solvable. First-principle numerical simulations are desired for a quantitative and conclusive
understanding of the model. For numerical simulations, it is necessary to formulate the
model on a lattice. In this chapter, we introduce three different lattice formulations of the
Schwinger model and compare their respective advantages and disadvantages. We stress that
the lattice formulation itself is important as a mathematically rigorous formulation of the
model. Special attention is given to the manifestation of the chiral anomaly on a lattice.

2.1 Lattice gauge theory

We first review the lattice discretization of the Euclidean action of the Schwinger model (1.7)
using lattice gauge theory of Wilson [58]. The most significant feature of lattice gauge theory
is that the gauge symmetry is manifestly preserved on a lattice. While the concept of lattice
gauge theory was first invented to discuss confinement of quark in QCD [58], the formulation
can also be readily applied to the Schwinger model, whose gauge group is U(1).

In lattice gauge theory, the fermion field is defined on a site, and the gauge field is defined
on a link, as shown in Fig. 2.1. To preserve the gauge symmetry on a lattice, Wilson proposed
to express the gauge field in terms of the link variable [58]

Uµ,x ↔ eiagAµ(x), (2.1)

where a is the lattice spacing. Under the U(1) gauge transformation eiαx ∈ U(1), the link
variable and the fermion field are transformed as

Uµ,x → eiαxUµ,xe
−iαx+µ̂ , (2.2)

ψx → eiαxψx, (2.3)

ψx → ψxe
−iαx , (2.4)

respectively.
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link µ, x

site x

lattice spacing a

plaquette µν, x

Figure 2.1: Terminology of lattice gauge theory.

2.1.1 Plaquette gauge action

From the gauge transformation property of the link variable (2.2), it is clear that loop objects
are gauge invariant. The simplest one is the so-called plaquette variable (see Fig. 2.1) defined
as

□µν,x := Uµ,xUν,x+µ̂U
†
µ,x+ν̂U

†
ν,x (2.5a)

= exp
(
ia2gFµν,x

)
, (2.5b)

where

aFµν,x = (Aν,x+µ̂ − Aν,x)− (Aµ,x+ν̂ − Aµ,x) (2.6)

is the field strength on a lattice. In the continuum limit ag → 0, we can easily confirm that
the plaquette gauge action

Sg =
1

(ag)2

∑
x

∑
µ>ν

Re(1−□µν,x) (2.7)

converges to the gauge action in the continuum∫
d2x

1

4
FµνFµν . (2.8)

2.1.2 θ term on a lattice

Using the principle value of the field strength on a lattice

a2gF01 =: a
2gG01 + 2πn01, a2gG01 ∈ [−π, π), n01 ∈ Z, (2.9)
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a lattice discretization of the θ term can be obtained as [24]

Q =

∫
d2x

g

2π
F01 →

∑
x

a2
g

2π
G01,x =

1

2π

∑
x

a2gG01,x. (2.10)

With periodic boundary conditions in both spatial and imaginary time directions, Q is guar-
anteed to be an integer, as the summation of the field strength at all sites vanishes∑

x

a2gF01,x = 0. (2.11)

2.1.3 Fermion doubling problem

We next consider the lattice discretization of the fermion action∫
d2xψ(γµDµ +m)ψ. (2.12)

We readily find that the naive lattice fermion action

a
∑
x

[
1

2

(
ψxγµUx,µψx+µ̂ψx+µ̂ − ψxγµU

†
µ,x−µ̂ψx−µ̂

)
+maψxψx

]
(2.13)

converges to the continuum action and is gauge invariant. However, it is well known that the
naive lattice action (2.13) describes four-flavor fermions of mass m. This can be seen from
the Feynman propagator for the fermion field of mass m on a lattice:

∆

(
x;m;

1

a

)
:=
〈
(ψx)α

(
ψ0

)
β

〉
U=1

(2.14a)

=
1

a

∫ π

−π

d2k

(2π)2
eikx

[−iγµ sin(kµ) +ma]αβ∑
µ sin

2(kµ) + (ma)2
, (2.14b)

where α, β denote the spinor indices. Thus, in the lattice discretization, the momentum in
each direction is transformed from k̂µ = kµ to k̂µ = sin(kµ). Figure 2.2 shows the behavior of
the momentum in the continuum and on a lattice. We find that the lattice momentum has
two zero points at kµ = 0, π for each direction. Therefore, the naive lattice action describes
a one-flavor fermion and three doublers. This problem is known as the fermion doubling
problem.

The appearance of the three doublers is related to the absence of the chiral anomaly in
the naive lattice formulation of the Dirac fermion. The Nielsen–Ninomiya theorem [59, 60]
states that if a lattice fermion satisfies the following conditions:

• chiral symmetry,

• translational invariance,

• hermiticity,
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kµ

k̂µ
k̂µ = kµ

k̂µ = sin(kµ)

π−π

Figure 2.2: Behavior of the momentum k̂µ in the continuum (solid curve) and on a lattice
(dashed curve) in kµ ∈ [−π, π]

• bilinear form of the fermion field,

• locality,

the doublers emerge so as to cancel out the chiral anomaly. Hence, it is difficult to formulate
a chiral fermion on a lattice while preserving the chiral anomaly intact.

2.1.4 Wilson fermion

To achieve a one-flavor fermion in 1+1 dimensions, the Wilson fermion is the simplest lattice
discretization. The Wilson fermion is defined by adding the Wilson term

−a
∫
d2xψDµDµψ → −a

∑
x

[
1

2

(
ψxUx,µψx+µ̂ + ψxU

†
µ,x−µ̂ψx−µ̂

)
− 2ψxψx

]
, (2.15)

which vanishes in the continuum limit, to the naive lattice fermion action (2.13). The Wilson
fermion formulation of the action is given by

Sf = a
∑
x,y

ψxDx,y(m)ψy, (2.16)

Dx,y(m) =
1

2

{
(γµ − 1)Uµ,xδy,x+µ̂ − (γµ + 1)U †

µ,x−µ̂δy,x−µ̂

}
+ (ma+ 2)δy,x. (2.17)

The Feynman propagator is modified as

∆

(
x;m;

1

a

)
:=
〈
(ψx)α

(
ψ0

)
β

〉
U=1

(2.18a)

=
1

a

∫ π

−π

d2k

(2π)2
eikx

[−iγµ sin(kµ) + m̃a]αβ∑
µ sin

2(kµ) + (m̃a)2
, (2.18b)
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where m̃ is the modified mass, which depends on the momentum as

m̃(k) = m+
1

a

∑
µ

(1− cos kµ) (2.19a)

=

{
m, k0 → 0 and k1 → 0,

m+O(1/a), k0 → π or k1 → π.
(2.19b)

Thus, the Wilson term works to make the mass of the three doublers infinitely large in the
continuum limit.

In the Wilson fermion, the Nielsen–Ninomiya theorem is evaded by explicitly breaking
the chiral symmetry. Consequently, the chiral anomaly is tainted by the finite lattice spacing
effect. Although the recovery of the chiral anomaly is naively anticipated in the continuum
limit, it remains theoretically unclear whether this expectation is realized. Additionally,
since our numerical data from computer simulations are restricted to finite lattice spacings,
nontrivial contamination could lead to incorrect conclusions about the continuum model.

Other than the Wilson fermion, various lattice fermions, such as the Kogut–Susskind
fermion and the overlap fermion, have been proposed for a better lattice formulation of
QCD [61]. In particular, the Kogut–Susskind fermion has been widely used in practical
numerical simulations due to its low numerical cost. However, at least naively, the Kogut–
Susskind fermion can not describe a one-flavor fermion in 1+1 dimensional Euclidean space-
time, as explained in subsection 2.2.1.

2.1.5 Numerical method

We here discuss the numerical method to simulate the Schwinger model using lattice gauge
theory in Euclidean space-time. The expectation value of an observable O(U) is written as

⟨O(U)⟩ =
∫
DUDψDψO(U) exp(−Sg − Sf − iθQ)∫
DUDψDψ exp(−Sg − Sf − iθQ)

, (2.20)

where the lattice actions are given in Eqs (2.7, 2.10, 2.16). Since the Grassmann number can
not be treated on a computer in the Monte Carlo method, the integration over the fermion
field must be performed in advance as

⟨O(U)⟩ =
∫
DU det(D(m))O(U) exp(−Sg − iθQ)∫
DU det(D(m)) exp(−Sg − iθQ)

, (2.21)

where D(m) is the kernel of the Wilson fermion (2.17).
There are two difficulties in simulating the Schwinger model by the Monte Carlo method

using the present lattice formulation. One difficulty comes from the fermionic determinant
det(D(m)), which breaks the locality of the action. Although the generation of the Monte
Carlo configurations is commonly performed using the hybrid Monte Carlo method [62, 61]
in this case, the large-scale linear equation for the Wilson kernel must be solved repeatedly.
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As the fermion mass decreases, the diagonal components of the Wilson kernel become small,
leading to a significant increase in the numerical cost of solving the linear equation.

Another difficulty is, of course, the sign problem. Although various approaches to over-
come the sign problem within the Euclidean formulation, such as the reweighting method,
the Lefschetz thimble method, and the complex Langevin method, have been proposed,
simulating the Schwinger model at large θ is still very challenging. At present, the most
successful approach would be the Grassmann tensor renormalization group [63], in which the
Grassmann number can be directly treated [23, 24].

2.2 Spin Hamiltonian formulation

After explaining lattice gauge theory in Euclidean space-time, we next apply it to the lattice
discretization of the Hamiltonian (1.44b). Since only spatial direction is discretized in the
Hamiltonian formalism, the naive lattice fermion describes two-flavor fermions. We here
employ the Kogut–Susskind fermion [64], also known as the staggered fermion, to formulate
a one-flavor fermion and derive the spin Hamiltonian formulation of the Schwinger model by
applying the Jordan–Wigner transformation [65].

2.2.1 Kogut–Susskind fermion

The basic idea of the Kogut–Susskind fermion is to construct the fermion field, which is two-
component in the Schwinger model, from 2d-flavor one-component fermion field, where d is the
number of lattice discretized directions. Thus, in the lattice Euclidean formulation (d = 2),
we can construct two-flavor fermions. On the other hand, in the Hamiltonian formulation,
the Kogut-Susskind formulation allows us to construct a one-flavor fermion since only the
spatial direction is discretized (d = 1).

Let the number of the spatial lattice sites Lx be even. The Dirac fermion is constructed
by the one-component fermion field, the staggered field, at even and odd adjacent sites as

ψx ↔
1√
2a

(
χ2[x/2]

χ2[x/2]+1

)
, x = 0, . . . , Lx/2− 1, (2.22)

where [r] denotes the largest integer that is even or smaller than a real number r. We
introduce the link variable corresponding to the gauge field A1 as

Ux ↔ e−iagA
1(x). (2.23)

It is important to notice that the effective lattice spacing between the adjacent Dirac field is
now 2a. Hence, the doubling problem is avoided because the integration interval in momen-
tum space is now k ∈ [−π/2, π/2].

The (anti)commutation relations in the continuum (1.45, 1.46, 1.47) are now expressed
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as {
χx, χ

†
y

}
= δxy, (2.24)

{χx, χy} =
{
χ†
x, χ

†
y

}
= 0, (2.25)

[Ux,−Ey] = gδxyUx, (2.26)

respectively. Using the Dirac representation of the gamma matrices

γ0 = σ3, γ1 = iσ2, γ5 = γ0γ1 = σ1, (2.27)

the Hamiltonian (1.39) is expressed in terms of the staggered field as

aH =
(ag)2

2

Lx−2∑
x=0

(
E

g
− θ

2π

)2

− i

2

Lx−2∑
x=0

(
χ†
xUxχx+1 − χ†

x+1U
†
xχx

)
+ma

Lx−1∑
x=0

(−1)xχ†
xχx, (2.28)

where the open boundary condition is imposed for later convenience.

2.2.2 Elimination of the gauge field

The Gauss law (1.43) is now written as

Ex − Ex−1 + g

(
χ†
xχx −

1− (−1)x

2

)
= 0. (2.29)

In the open boundary condition, the Gauss law is solved as

Ex = −g
x∑
y=0

(
χ†
yχy −

1− (−1)y

2

)
, (2.30)

where the boundary term is neglected as it can be absorbed into θ. The gauge field A1 is
also eliminated by the following redefinition of the staggered field:

χx =:

(
x−1∏
y=0

U †
y

)
χ′
x, (2.31)

χ†
x =: (χ

†
x)

′

(
x−1∏
y=0

Uy

)
, (2.32)

as

χ†
xUxχx+1 =

(
χ†
x

)′
χ′
x+1, (2.33)

χ†
x+1U

†
xχx =

(
χ†
x+1

)′
χ′
x. (2.34)

It is important to note that the set of the transformations (2.31, 2.32) is not a gauge trans-
formation since no transformation has been performed on the link variable. However, if we
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focus only on the staggered field, it is a gauge transformation. Therefore, when considering
gauge invariant quantities composed of the staggered field, we need not distinguish between
χ and χ′. Henceforth, we write χ′ as χ. The lattice Hamiltonian can now be expressed solely
in terms of the staggered field as

aH =
(ag)2

2

Lx−2∑
x=0

{
x∑
y=0

(
χ†
yχy −

1− (−1)y

2

)
+

θ

2π

}2

− i

2

Lx−2∑
x=0

(
χ†
xχx+1 − χ†

x+1χx

)
+ma

Lx−1∑
x=0

(−1)xχ†
xχx. (2.35)

2.2.3 Map to a spin system

The lattice Hamiltonian (2.35) can be transformed into a spin system by using the Jordan–
Wigner transformation [65]

χx =
Xx − iYx

2

x−1∏
y=0

(−iZy), (2.36)

χ†
x =

Xx + iYx
2

x−1∏
y=0

(iZy), (2.37)

where Xx, Yx, Zx denote the Pauli matrices σ1, σ2, σ3 that reside on a spatial site x, respec-
tively. The resulting spin Hamiltonian formulation of the Schwinger model reads

aH =
(ag)2

2

Lx−2∑
x

(
x∑
y=0

Zy + (−1)y

2
+

θ

2π

)2

+
1

4

Lx−2∑
y=0

(XxXx+1 + YxYx+1) +
ma

2

Lx−1∑
x=0

(−1)xZx. (2.38)

In Ref. [66], the lattice spacing dependence of the vacuum expectation value of the chiral
condensate at m = 0 was investigated using the spin Hamiltonian (2.38). It was found that
the analytically exact chiral condensate (1.23) is reproduced only after taking the continuum
limit. This contradicts the fact that the chiral anomaly is independent of the ultraviolet
regulator of the model. Hence, we can deduce that the chiral anomaly is tainted by the finite
lattice spacing effects in the Kogut–Susskind fermion formulation, similar to the Wilson
fermion formulation.

2.2.4 Numerical method

The most significant feature of the spin Hamiltonian formulation (2.38) is that the Hamil-
tonian is expressed in terms of the Pauli matrices, and the dimension of the Hamiltonian is
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finite, albeit exponentially large 2Lx . Therefore, the spin Hamiltonian is an ideal formulation
for the tensor network method [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and
quantum computing [34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

In contrast to the Monte Carlo method, evaluation of the thermal expectation value is
generally more difficult than the vacuum expectation value in the Hamiltonian formalism.
In Refs. [26, 28, 29], the Schwinger model at finite temperature was investigated using the
matrix product operators. It was found that the precision of the numerical results becomes
worse as the temperature increases.

2.3 Lattice bosonized Schwinger model

We finally introduce the lattice formulation of the bosonized Hamiltonian (1.62). The lat-
tice discretization of the free bosonic part is straightforward: define the scalar field and its
conjugate momenta on a site and replace the derivative with the forward derivative

∂xϕ(x) →
1

a
∂xϕx :=

ϕx+1 − ϕx
a

. (2.39)

The lattice discretization of the chiral condensate

ψψ = − eγ

2π3/2
gNg/

√
π cos

(
2
√
πϕ
)

(2.40)

can be done by replacing the Feynman propagator, which appears in removing the normal
ordering as explained in subsection 1.3.1, with that on a lattice [67]

∆

(
x;µ;

1

a

)
=

∫ π

−π

d2k

(2π)2
eikx∆(k, aµ), (2.41)

∆(k, aµ) =

(
4
∑
µ

sin2

(
kµ
2

)
+ (aµ)2

)−1

(2.42)

as

Ng/
√
π exp

(
i2
√
πϕx

)
= O(1/ag) exp

(
i2
√
πϕx

)
, (2.43)

O(1/ag) := exp

{
2π∆

(
0;

g√
π
;
1

a

)}
. (2.44)

The factor O(1/ag) defined here appears frequently throughout this thesis, and we call it
the ultraviolet (UV) divergent factor since it is divergent in the continuum limit ag → 0.
Figure 2.3 shows the lattice spacing dependence of the UV divergent factor (2.44). We find
that the UV divergent factor behaves as O(1/ag) ≃ 10/ag at ag ≪ 1.
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Figure 2.3: Lattice spacing dependence of the UV divergent factor (2.44).

The lattice counterpart of the bosonized Hamiltonian (1.62) can now be expressed without
using the normal ordering

aH =
Lx−1∑
x=0

1

2
(aπx)

2 +
1

2
(∂xϕx)

2 +
(ag)2

2π

(
ϕx +

θ

2
√
π

)2

− eγ

2π3/2

m

g
(ag)2O(1/ag) cos

(
2
√
πϕx

)
. (2.45)

Since bosonization is performed on an infinite line (1.62), the spatial length Lxag should
be infinitely large in principle. However, in practical numerical simulations, Lx must be
finite and some boundary condition must be specified. Throughout this thesis, we impose
the periodic boundary condition to preserve the translational symmetry and expect that the
boundary condition becomes irrelevant in the large spatial length limit Lxag → ∞.

The thermal expectation value of an observable O(ϕ) at temperature T/g = (Lτag)
−1

can be expressed using the path-integral

⟨O(ϕ)⟩ = trO(ϕ)e−H/T
/
tr e−H/T (2.46a)

=

∫
DϕO(ϕ)e−SE

/∫
Dϕe−SE , (2.46b)

where SE is the lattice Euclidean action of the bosonized Schwinger model

SE =
Lτ−1∑
τ=0

Lx−1∑
x=0

1

2
(∂τϕx,τ )

2 +
1

2
(∂xϕx,τ )

2 +
(ag)2

2π

(
ϕx,τ +

θ

2
√
π

)2

− eγ

2π3/2

m

g
(ag)2O(1/ag) cos

(
2
√
πϕx,τ

)
. (2.47)

30



The periodic boundary condition must be imposed for the imaginary time direction since the
scalar field is bosonic. We stress that the analytic continuation is not used from Eq. (2.46a) to
Eq. (2.46b); we just need the completeness relations and the canonical commutation relations
among the bosonic operators.

The CP symmetry in the Euclidean action becomes more transparent by shifting the
scalar field ϕ+ θ

2
√
π
→ ϕ. After the shift, the Euclidean action (2.47) becomes

SE =
Lτ−1∑
τ=0

Lx−1∑
x=0

1

2
(∂τϕx,τ )

2 +
1

2
(∂xϕx,τ )

2 +
(ag)2

2π
(ϕx,τ )

2

− eγ

2π3/2

m

g
(ag)2O(1/ag) cos

(
2
√
πϕx,τ − θ

)
, (2.48)

and the electric field (1.61) is expressed as

E =
g√
π
ϕ, (2.49)

respectively. We find that the Euclidean action (2.48) is indeed symmetric at θ = 0, π under
the CP transformation ϕ→ −ϕ. The 2π periodicity of the θ angle is also apparent now.

In the present lattice discretization, the fermion doubling problem does not emerge from
the beginning as the fermion is transformed into boson in the continuum. Thus, bosonization
provides a novel lattice fermion formulation, which is independent of the specific choice of
the lattice fermions.

One of the other advantages of the lattice bosonized Schwinger model is that the chiral
anomaly remains intact. This is obvious from the chiral transformation property in the
bosonized Hamiltonian, as described in subsection 1.3.1. Indeed, in Chapter 3, we find
that the analytically exact chiral condensate (1.23), which arises from the chiral anomaly,
is completely reproduced at any lattice spacing, as long as the system size Lxag is sent to
infinity.

We note that the method of addressing the normal ordering on a lattice was initially
proposed by Bender, Rothe, and Rothe in 1985 [67] to numerically obtain the static potential
at θ = 0 by evaluating its ground state energy in the presence of static probe charges. In
their paper, the cosine term in the bosonized Hamiltonian was introduced symbolically as

M2

4π
cos
(
2
√
πϕ
)

(2.50)

without explicitly specifying the scale of the normal ordering or the relation between M and
the fermion mass m. Probably because of the absence of the explicit prefactor in terms of the
fermion mass m, their paper has not received much attention to date despite its significance.
Their method was recently rediscovered, and the correct prefactor of the cosine term was
explicitly described by the author in Ref. [1].
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2.3.1 Numerical method

The thermal expectation value (2.46b) can be evaluated by the Monte Carlo method. The
Monte Carlo configurations can be easily generated by combined use of the heat-bath algo-
rithm and the rejection sampling, just like the case of SU(2) Yang–Mills theory [68]. This
allows for low-cost Monte Carlo simulations. In the heat-bath algorithm, each update of the
Monte Carlo configuration {ϕx,τ} consists of updating the scalar field ϕx,τ at each site with
the probability density P (ϕx,τ ) ∝ exp(−Sx,τE ), where Sx,τE is the part of the lattice Euclidean
action (2.48) dependent on ϕx,τ :

Sx,τE = 2
(
ϕx,τ − ϕx,τ

)2
+

(ag)2

2π
ϕ2
x,τ − C(ag) cos

(
2
√
πϕx,τ − θ

)
, (2.51)

ϕx,τ :=
ϕx+1,τ + ϕx−1,τ + ϕx,τ+1 + ϕx,τ−1

4
, (2.52)

C(ag) :=
eγ

2π3/2

m

g
(ag)2O(1/ag). (2.53)

To update the scalar field ϕx,τ with the probability density P (ϕx,τ ) ∝ exp(−Sx,τE ), the rejec-
tion sampling can be used in the following steps:

1. Generate a Gaussian random number g with the probability density P (g) ∝ exp(−2g2).

2. Set the trial scalar field ϕtrial
x,τ = ϕx,τ + g.

3. Generate a uniform random number r ∈ [0, 1].

4. If r exp{C(ag)} < exp
{
C(ag) cos

(
2
√
πϕtrial

x,τ − θ
)
− (ag)2

2π

(
ϕtrial
x,τ

)2}
, accept the trial scalar

field ϕnew
x,τ = ϕtrial

x,τ ; otherwise, reject the trial scalar field.

For an efficient rejection sampling, a high acceptance rate at the fourth step is crucial. In
practical simulations near the continuum limit ag ≪ 1, the small values of the prefactors
C(ag), (ag)2/2π lead to high acceptance rates. For example, the acceptance rate is approxi-
mately 93% in the equilibrium at ag = 0.1,m/g = 0.5, θ = 0.

The sign problem is circumvented since lattice Euclidean action (2.47) is real and bounded
below even at θ ̸= 0. The absence of the sign problem is related to excluding the gauge degrees
of freedom and obtaining the Euclidean action (2.47) without the need for the analytic
continuation. This was pointed out and utilized for the first time by the author in Ref. [1].

Unfortunately, the vacuum expectation value can not be evaluated directly since the limit
Lτag → ∞ can not be taken on a computer. While the thermal expectation value at almost
zero temperature can be obtained by setting Lτag large, exact zero temperature can be
important in certain cases in 1 + 1 dimensions, as we will see in Chapter 5.

2.4 Comparison of the three lattice formulations

In this chapter, we have discussed the three lattice formulations of the Schwinger model. A
summary of the comparison among them is shown in Table 2.1. As evident from the lattice
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Table 2.1: Summary of the comparison among the three lattice formulations of the Schwinger
model.

Lattice gauge Spin Hamiltonian Lattice bosonized
Main numerical method Monte Carlo Tensor Network Monte Carlo

Sign problem exist not exist not exist
Lattice fermion dependence exist exist not exist

Chiral anomaly tainted tainted intact
Zero temperature impossible possible impossible
Finite temperature easy difficult easy
Numerical cost high medium low

fermion independence and the preservation of the chiral anomaly at finite lattice spacing, the
lattice bosonized Schwinger model stands out as the theoretically cleanest lattice formulation.
Furthermore, for our purpose in this thesis, which is to investigate the interplay between the
quantum effects of the θ term and thermal effects through first-principle calculations, the
Monte Carlo study of the lattice bosonized Schwinger model would be the most practical
method.
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Chapter 3

Verification of the lattice bosonized
Schwinger model

While the lattice bosonized Schwinger model is expected to be useful for investigating the
finite temperature and θ region of the Schwinger model, it is important to perform an explicit
verification before using it to explore new properties of the model. Such verification had never
been done before. In this chapter, we verify the lattice bosonized Schwinger model (2.47) by
reproducing analytical and numerical results in the literature. As an observable, we mainly
focus on the chiral condensate

ψψ = − eγ

2π3/2
gNg/

√
π cos

(
2
√
πϕ
)

(3.1a)

= − eγ

2π3/2
gO(1/ag) cos

(
2
√
πϕ
)
, (3.1b)

because it is directly related to the nontrivial normal ordering.

3.1 Analyical expression of the chiral condensate for a

massless fermion

We first derive the analytical expression for the chiral condensate at m = 0 and θ = 0

〈
ψψ
〉
lat.

= − eγ

2π3/2
gO(1/ag)

〈
cos
(
2
√
πϕ
)〉

(3.2)

at zero and finite temperatures. Using Wick’s theorem, the thermal expectation value of
exp(iβϕ) is analytically obtained as

⟨exp(iβϕ)⟩ = exp

{
−β

2

2
∆

(
0;

g√
π
;
1

a

)
Lx,Lτ

}
, (3.3)
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where ∆(0;µ; 1/a)Lx,Lτ is the Feynman propagator in the lattice system with Lx × Lτ sites
in the periodic boundary conditions. Its explicit form is given by

∆

(
x;µ;

1

a

)
Lx,Lτ

=
1

LxLτ

2π∑
kx=2π/Lx,4π/Lx,...

2π∑
kτ=2π/Lτ ,4π/Lτ ,...

eikx∆(k, aµ), (3.4)

where ∆(k, aµ) is the lattice Feynman propagator in the momentum space (2.42). Hence, we
obtain

〈
ψψ
〉
lat.

= − eγ

2π3/2
g exp

[
−2π

{
∆

(
0;

g√
π
;
1

a

)
Lx,Lτ

−∆

(
0;

g√
π
;
1

a

)}]
. (3.5)

The vacuum expectation value of the chiral condensate in the lattice bosonized Schwinger
model is obtained by setting the system size and the extent in the imaginary time direction
infinity

Lxag → ∞, Lτag → ∞. (3.6)

In these limits, the argument of the exponential in Eq. (3.5) becomes zero, and the analytically
exact chiral condensate 〈

ψψ
〉
cont.

= − eγ

2π3/2
g (3.7)

is reproduced. Thus, we find that the analytically exact chiral condensate is reproduced at
any lattice spacing ag, as long as the number of lattice sites in both directions is sent to
infinity. This feature reflects the preservation of the chiral anomaly on a lattice.

The thermal expectation value of the chiral condensate at temperature T/g = (Lτag)
−1

is obtained by taking the large spatial length and continuum limits

Lxag → ∞, ag → 0. (3.8)

In these limits, the lattice chiral condensate (3.5) converge to the analytically exact chiral
condensate in the continuum 1

〈
ψψ
〉
cont.

= − eγ

2π3/2
g exp

{
2I

(
g√
πT

)}
, (3.9)

I(x) :=

∫ ∞

0

dt
(
1− ex cosh t

)−1
, (3.10)

which can be obtained by directly evaluating the fermionic path-integral in the original
fermionic formulation [19].

The two analytical chiral condensates on a lattice (3.5) and in the continuum (3.9) enable
us to investigate the finite lattice spacing and spatial length effects atm = 0 analytically. The

1This expression first appeared in Ref. [16], in which the chiral condensate in the massless Schwinger model
on a circle (0 ≤ x < L) was analytically obtained using bosonization in the Hamiltonian formalism. Because
of the equivalence between space and time in (1 + 1)-dimensional Euclidean space-time, the resultant chiral
condensate is equivalent to that at temperature T = 1/L in the large spatial length limit.
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upper half of Fig. 3.1 shows the two analytical chiral condensates (3.5, 3.9) at various lattice
spacings ag and two spatial lengths Lxag = 11.2, 22.4. Remarkably, we find that the lattice
chiral condensate (3.5) appears to agree with the continuum one (3.9) even at a very large
lattice spacing ag = 2.8 and high temperature. 2 For a more detailed investigation, we show
the ratio of the two analytical chiral condensates (3.5, 3.9) at the same parameters in the
lower half of Fig. 3.1. We find that the ag dependence is almost negligible for ag ≤ 0.2. At
Lxag = 11.2, the spatial length is not satisfactory large, and some discrepancies can be seen.
These discrepancies are almost absent at Lxag = 22.4, except for the small discrepancies at
high temperatures (T/g)−1 ≲ 1. Those small discrepancies in the ratio should not be taken
seriously because the chiral condensate is almost zero at these temperatures. We conclude
that both continuum and large spatial length limits are reliably taken for ag ≲ 0.2, Lxag =
22.4 at m = 0. In the following numerical simulations at m ̸= 0 in this chapter, we very
conservatively use the lattice of ag = 0.025, Lx = 896 and generate Nconf = 106 Monte Carlo
configurations for each measurement, unless otherwise mentioned.

3.2 Chiral condensate for a massive fermion

We next calculate the chiral condensate at m ̸= 0 and θ = 0. While there exists no an-
alytically exact result, the chiral condensates at both zero and nonzero temperatures have
been extensively studied using the tensor network method [25, 28, 29]. We compare our
results with theirs and check the lattice bosonized Schwinger model. We stress that this
serves as another nontrivial check since we are dealing with the normal ordering dynamically
in this case. In this section, we remove the logarithmic divergence in the chiral condensate
at m ̸= 0 by subtracting the free chiral condensate at (almost) zero temperature following
Refs. [25, 28, 29]. We use the jackknife method to estimate statistical errors.

The chiral condensates at T/g = (448× 0.025)−1 obtained in this work and the most
recent results by the tensor network method at zero temperature [28] are summarized in
Table 3.1. Our numerical results match theirs with approximately one percent accuracy.
It is notable that our results are obtained with no continuum nor infinite spatial length
extrapolation in contrast to the tensor network calculations, although the errors are far
larger. If we aim at the precision of Ref. [28] using the current lattice parameters, around
Nconf = 1010–1012 configurations are required, which is not practically feasible.

The present method is advantageous against the tensor network method at finite tem-
peratures. Figure 3.2 shows the temperature dependence of the chiral condensate at m/g =
0.0625, 0.125, 0.25, 0.5, 1. Our numerical results are seemingly consistent with the tensor net-
work results by using the matrix product operator [28, 29] (see Fig. 4 in Ref. [29]), and higher
precision is achieved at high temperatures. Those results provide further evidence that the
lattice formulation of the bosonized Schwinger model is valid.

2In upper left of Fig. 3.1, the number of spatial sites is just Lx = 4 at the largest lattice spacing ag = 2.8.
The number of temporal sites is set to Lτ = 1, 2, 3, 4.
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Figure 3.1: (Upper half) The two analytical chiral condensates (3.5, 3.9) as functions of
temperature at Lxag = 11.2 (left) and Lxag = 22.4 (right). (Lower half) Ratio of the two
analytical chiral condensates at the same parameters. These figures are taken from Ref. [1].

3.3 Finite θ

After verifying the lattice bosonized Schwinger model, we here explicitly confirm that high-
precision calculation is possible even at θ ̸= 0 by studying the chiral condensate and the
electric field. Figure 3.3 shows the θ dependence of the chiral condensates〈

ψψ
〉
θ
= − eγ

2π3/2
gO(1/ag)

〈
cos
(
2
√
πϕ
)〉

θ
(3.11)

at m/g = 0.0625, 0.125, 0.25, 0.5. Here, Monte Carlo configurations only at θ ≤ π are
generated, and data points at θ > π are obtained using the line symmetry at θ = π.
The statistical errors are all smaller than the symbols, even though the chiral condensates
at nonzero θ are evaluated using Nconf = 105 configurations. The chiral condensates at
m/g = 0.0625, 0.125, 0.25 are compared with the leading-order mass perturbation [55, 56]〈

ψψ
〉
θ
−
〈
ψψ
〉
θ=0

=
eγ

2π3/2
g(1− cos θ)− 0.358m(1− cos 2θ). (3.12)
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Table 3.1: Absolute values of the chiral condensates at T/g = (448× 0.025)−1 obtained in
this work, compared with the tensor network results at zero temperature [28].

m/g This work Ref. [28] This work / Ref. [28]
0.0625 0.11506(91) 0.1139657(8) 1.0096(80)
0.125 0.09249(66) 0.0920205(5) 1.0051(72)
0.25 0.06629(62) 0.0666457(3) 0.9947(93)
0.5 0.04207(37) 0.0423492(20) 0.9935(87)
1 0.02385(22) 0.0238535(28) 0.9997(93)
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Figure 3.2: Temperature dependence of the chiral condensate at m/g =
0.0625, 0.125, 0.25, 0.5, 1. This figure is taken from Ref. [1].

The mass perturbation theory works well at m/g = 0.0625, 0.125, whereas sizable deviations
appear at m/g = 0.25. These behaviors are consistent with the tensor network results at
zero temperature [31, 32], although we are calculating the chiral condensates at very low yet
not zero temperature T/g = (448× 0.025)−1.

A cusp-like behavior is observed at θ = π for m/g = 0.5 in Fig. 3.3. A cusp at θ = π
indicates the spontaneous breaking of the CP symmetry, because the θ derivative of the
expectation value of the chiral condensate is calculated as

∂
〈
ψψ
〉
θ

∂θ
=

eγ

4π2
gO(1/ag)

{〈(
ϕ+

θ

2
√
π

)
cos
(
2
√
πϕ
)〉

θ

−
〈
ϕ+

θ

2
√
π

〉〈
cos
(
2
√
πϕ
)〉

θ

}
(3.13a)

=
eγ

4π2
gO(1/ag)

{〈
ϕ cos

(
2
√
πϕ− θ

)〉′
θ
− ⟨ϕ⟩′θ

〈
cos
(
2
√
πϕ− θ

)〉′
θ

}
, (3.13b)
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Figure 3.3: θ dependence of the chiral condensate at m/g = 0.0625, 0.125, 0.25, 0.5, T/g =
(448× 0.025)−1. The chiral condensates at m/g = 0.0625, 0.125, 0.25 are compared with the
leading-order mass perturbation (3.12) (solid line). This figure is taken from Ref. [1].

where ⟨⟩′ denotes the expectation value under the shifted Euclidean action (2.48). The
spontaneous CP symmetry breaking can also be probed by studying the θ dependence of the
electric field (1.61)

⟨E⟩ = g√
π

〈
ϕ+

θ

2
√
π

〉
θ

(3.14a)

=
g√
π
⟨ϕ⟩′θ . (3.14b)

Figure 3.4 shows the θ dependence of the electric field at m/g = 0.0625, 0.125, 0.25, 0.5, eval-
uated using the same Monte Carlo configurations. In Fig. 3.4, we find an approximate discon-
tinuity at θ = π for m/g = 0.5, which more directly suggests the spontaneous CP symmetry
breaking. In fact, at zero temperature, it is already established that the spontaneous CP
symmetry breaking occurs for sufficiently large fermion massesm/g ≳ 0.33 [66, 20, 24, 69, 40].
We investigate the fate of the CP symmetry at θ = π at finite temperature in Chapter 5.
Remarkably, we find that the CP symmetry is restored by infinitesimally small thermal ef-
fects. Therefore, the cusp-like behavior in Fig. 3.3 can never be a genuine cusp, and the
approximate discontinuity in Fig. 3.4 can never be a genuine discontinuity, even if we took
the infinite spatial length limit.
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(448× 0.025)−1.
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Chapter 4

Confinement at finite temperature
and θ

In this chapter, we investigate the confining properties in the Schwinger model at finite
temperature and θ. In Section 4.1, we introduce the basic methodology for discussing con-
finement in the Schwinger model and analytically discuss confinement at θ = 0. We explain
our numerical method to calculate the string tension at finite temperature and θ by devel-
oping the methodology in Section 4.2. We perform an extensive calculation of the string
tension at finite temperature and θ in Section 4.3.

4.1 Analytical examination of confinement

We here introduce the basic methodology for discussing confinement in preparation for the
next section and summarize analytically exact results known for a long time [11] using the
bosonized Schwinger model (2.47).

Consider to include the pair of static probe charges qpg,−qpg separated by distance r
in the vacuum. Since the probe charge can be treated classically, a constant electric field
E = qpg appears between the two static probe charges due to the classical Gauss law, as
shown in Fig. 4.1. As noted in subsection 1.3.1, the θ angle is physically interpreted as the
external electric field. Hence, the inclusion of the pair of static probe charges qpg,−qpg is
equivalent to setting θ = 2πqp in the interval of r. In the infinite distance limit r → ∞, the
linear term dominates the static potential. The string tension, the coefficient of the linear
term in the static potential, can be extracted from the difference in free energy densities

σ(qp) = f(2πqp)− f(θ = 0) =
−1

LxLτa2
ln
Z(2πqp)

Z(0)
, (4.1)

where Z(θ) is the partition function

Z(θ) = tr e−H(θ)/T ∝
∫
Dϕe−SE(θ). (4.2)
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equivalent if 

Figure 4.1: Schematic picture describing the equivalence between the system with the pair
of static probe charges qpg,−gpg and that with the external electric field Eex = (θ/2π)g
arising from the θ term.

From the Euclidean action of the bosonized Schwinger model (2.47), the following results can
be easily drawn [11]:

• The string tension is zero at m = 0 since the partition function does not depend on θ.

• The string tension is zero for any integer probe charge qp ∈ Z due to the 2π periodicity
of θ.

The vanishing of the string tension for any integer probe charge qp ∈ Z can be intuitively
understood by the creation of qp dynamical charge pairs g,−g from the vacuum, which
works to erase the total electric field. Conversely, the creation of these dynamical charge
pairs is the physical explanation for the 2π periodicity of the θ angle. The vanishing of the
string tension indicates that there is neither attractive nor repulsive force between the probe
charges. Of course, this does not correspond to the isolation of charge. The integer probe
charge is completely screened by dynamical charges and loses its physical presence. It is not
appropriate to link the vanishing of the string tension to deconfinement in this case. On the
other hand, a noninteger probe charge cannot be completely screened by dynamical charges
and retain its physical presence. In the following, we mainly consider the string tension
between noninteger probe charges.

4.2 Method to calculate the string tension

Extending the above methodology to finite θ is straightforward. Due to the principle of
superposition, the inclusion of the two static probe charges qpg,−qpg separated infinity to
the vacuum at any θ can be described through a modification of the θ angle

θ → 2πqp + θ. (4.3)
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The string tension can be obtained from the difference in free energy densities

σ(qp, θ) = f(2πqp + θ)− f(θ) =
−1

LxLτa2
ln
Z(2πqp + θ)

Z(θ)
. (4.4)

The computation of the free energy density itself is difficult by the Monte Carlo method since
it cannot be expressed as an expectation value. However, the difference can be:

σ(qp, θ) =
−1

LxLτa2
ln

〈
exp

[
−(ag)2√

π

∑
x,τ

qp

(
ϕx,τ +

θ + πqp
2
√
π

)]〉
θ

. (4.5)

In practical numerical simulations, direct evaluation using Eq. (4.5) leads to large statistical
and systematic errors at large qp. To avoid this problem, we consider to decompose the string
tension at

qp = Nδqp, θ =Mδθ, N,M ∈ Z, (4.6)

where δqp, δθ are some small step widths. Setting δqp = δθ/2π, the free energy density can
be expressed as

f(2πqp + θ) = f((N +M)δθ) =: fN+M . (4.7)

Using this notation, the string tension can be decomposed as

σ(Nδqp,Mδθ) = fN+M − fM (4.8a)

=
N−1∑
i=0

fi+M+1 − fi+M (4.8b)

=
−1

LxLτa2

N−1∑
i=0

ln

〈
exp

[
−(ag)2√

π

∑
x,τ

δqp

(
ϕx,τ +

θ + πδqp
2
√
π

)]〉
θ=(i+M)δθ

.

(4.8c)

By using Eq. (4.8c) instead of Eq. (4.5), we can greatly mitigate the large statistical and
systematic errors at large qp since qp in Eq. (4.5) is now replaced by δqp.

4.3 Numerical results

We first check the finite lattice spacing effects in the string tension, while the spatial length
is set to sufficiently large Lxag = 22.4. Figure 4.2 shows the probe charge dependence of
the string tension at ag = 0.4, 0.2, 0.1 and m/g = 0.25, 0.5. The results are obtained from
Nconf = 106 configurations at θ/π ranging from 0.0 to 1.0 with a step width of δθ/π = 0.1.
The temperature and spatial length are held constant at T/g = 11.2−1 and Lxag = 22.4,
respectively. We find that the results at ag = 0.4, 0.2, 0.1 exhibit exceptional precision and
agreement. Motivated by this, we use the lattice of ag = 0.2, Lx = 112 in the following
analysis.
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Figure 4.2: Probe charge dependence of the string tension for θ = 0, π at m/g = 0.25 (left)
and m/g = 0.5 (right). The string tensions at m/g = 0.25 and m/g = 0.5 are compared with
the mass perturbation (4.10) and the semiclassical estimates (4.9), respectively. The temper-
ature and spatial length are held constant at T/g = 11.2−1 and Lxag = 22.4, respectively.
These figures are taken from Ref. [2].

In Fig. 4.2, we observe peculiar behaviors in the string tension: at θ = 0, there is a peak
in the string tension at qp = 0.5. More interestingly, the string tension becomes negative
for noninteger probe charges at θ = π. These behaviors can be well understood through
semiclassical analysis of the string tension (see Fig. 4.3). For qp ∈ [0, 1/2], θ = 0, a constant
electric field E = qpg appears between the two static probe charges at the classical level
due to the classical Gauss law, as shown in the upper left of Fig. 4.3. Consequently, the
string tension increases quadratically as the probe charge qp increases. When qp exceeds
1/2, and the distance between the probe charges is sufficiently large, the vacuum produces
a dynamical charge pair, reducing the total electric field by forming a two “meson” system
(upper right of Fig. 4.3). Setting θ = π, i.e., applying an external electric field Eex = g/2, to
the two “meson” system, the external electric field works to decrease the total electric field,
resulting in the negative string tension. In the case of the single “meson” system (upper left
of Fig. 4.3), as the external electric field approaches g/2, the vacuum would again produce a
dynamical charge pair to decrease the total electric field by forming a two “meson“ system
at a certain value of θ. Therefore, at θ = π, the configuration is the same regardless of the
probe charge, as shown in the lower of Fig. 4.3. The resulting semiclassical estimate for the
string tension is given by

σ/g2 =


1
2
q2p, qp ∈

[
0, 1

2

]
, θ = 0,

1
2
(1− qp)

2, qp ∈
[
1
2
, 1
]
, θ = 0,

−1
2
qp(1− qp), qp ∈ [0, 1], θ = π.

(4.9)

In the right panel of Fig. 4.2, we find that the semiclassical string tension (4.9) successfully
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applying an external electric field

Figure 4.3: Semiclassical picture of the string tension between two static probe charges
qpg,−qpg. This figure is taken from Ref. [2].

explains the qualitative behavior of our numerical results. 1

While it is difficult to give an intuitive explanation for the negative string tension at small
fermion mass, the next-to-leading order mass perturbation [54, 55]

σ/g2 =
eγ

2π3/2

m

g
(cos(θ)− cos(2πqp + θ))− 0.179

(
m

g

)2

(cos(2θ)− cos(4πqp + 2θ)) (4.10)

successfully explains the qualitative behavior, as shown in the left panel of Fig. 4.2. We note
that the string tensions at θ = 0 at various masses, probe charges, and temperatures have
been already obtained with high precision by the tensor network method [27, 29, 31]. In
the case of the charge-3 Schwinger model, the string tension between integer probe charges
at nonzero θ was studied in Ref. [41] through quantum simulation on a classical simulator.
Negative string tension was observed at large θ, although reliable continuum extrapolation
was impossible due to a limited number of lattice sites (Lx ≤ 25) and slow convergence to
the continuum limit. In Refs. [70, 41], the negative string tension between integer probe
charges in the charge-q Schwinger model, where q is an integer larger than 1, was explained
in terms of the Zq 1-form symmetry. Unfortunately, their argument can not be applied to
the present case. Nevertheless, our numerical results demonstrate that the negative string
tension appears for noninteger probe charges at almost zero temperature in the standard
Schwinger model for the first time.

Let us consider the charge distribution when the probe charge is small qp ∈ (0, 1/2]. As
shown in Fig. 4.4, an attractive force appears between the noninteger probe charges at θ = 0,
indicating confinement. On the contrary, a repulsive force appears between the noninteger

1The cusp in the string tension at qp = 0.5 corresponds to the spontaneous breaking of the CP symmetry,
similar to the chiral condensate.
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probe charges at θ = π, indicating that the pair of the probe charges −(1 − qp)g, (1 − qp)g
tends to move away from each other. Thus, the isolation of charge is realized, distinct from
the cases involving the integer probe charges. In a sense, true deconfinement is taking place.
We refer to such state as inverse confining in the following.

attractive repulsive

Figure 4.4: Appearance of attractive and repulsive forces between the static probe charges
at θ = 0 and θ = π, when the probe charge is small qp ∈ (0, 1/2].

The above discussion is restricted to almost zero temperature. We finally investigate
the string tension at finite temperature and θ. To cover almost the entire (T, θ) plane, we
generate Nconf = 106 Monte Carlo configurations at Lτ = 4, 6, 8, 10, 12, 16, 20, 24, 28, 40, 56,
with θ/π ranging from 0.0 to 1.0 with a step width of δθ/π = 0.1. By combining these
configurations with the reweighing method, we achieve a very smooth surface in the (T, θ)
plane. For both T and θ directions, we obtain ten data points between adjacent simulation
points, each reweighted from the nearest simulation point. This results in 122 data points
within the unit cell formed by four simulation points.

Figure 4.5 shows the string tension at qp = 0.5 in the (T, θ) plane at m/g = 0.25 (upper
half) and m/g = 0.5 (lower half). At qp = 0.5, one can easily show that

σ(0.5, θ + π) = −σ(0.5, θ). (4.11)

For both m/g = 0.25 and m/g = 0.5, the string tension is positive around θ ≃ 0 at low
temperatures, indicating confinement. The string tension diminishes as θ increases and be-
comes zero at θ = π/2. With further increases in θ, the string tension becomes negative and
reaches its minimum at θ = π, indicating inverse confinement. The peak height is roughly
proportional to the fermion mass m/g. As temperature increases, the string tension gradu-
ally converges to zero at all θ, indicating deconfinement. In Fig. 4.6, we show similar plots
but at qp = 0.3, where simple constraint like Eq. (4.11) does not exist. Consequently, we
observe shifts in the peak positions. Nevertheless, the basic pattern remains the same: the
system undergoes a smooth transition from the confining phase to the inverse confining phase
as θ goes from 0 to π, and this transition becomes weakened as temperature increases. For
sufficiently high temperatures, the θ dependence almost vanishes, and the system is always
in the deconfining phase. Thus, we observe the thermal suppression of the quantum effects
of the θ term.
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Figure 4.5: The string tension at qp = 0.5 in the (T, θ) plane at m/g = 0.25 (upper half)
and m/g = 0.5 (lower half). These figures are taken from Ref. [2].
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Figure 4.6: The string tension at qp = 0.3 in the (T, θ) plane at m/g = 0.25 (upper half)
and m/g = 0.5 (lower half). These figures are taken from Ref. [2].
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Chapter 5

Phase diagram near the quantum
critical point at θ = π

In this chapter, we investigate the phase structure of the Schwinger model at θ = π in the
temperature and fermion mass plane. As already noted in Section 3.3 and suggested from
Figs. 3.3 and 3.4, at zero temperature, the CP symmetry at θ = π is spontaneously broken
for sufficiently large fermion mass m/g ≳ 0.33 [66, 20, 24, 69, 40]. Our primary question in
this chapter is how the CP symmetry is restored by thermal fluctuations and what kind of
phase structure is realized at finite temperatures.

To be self-contained, we review the spontaneous CP symmetry breaking at zero tem-
perature from both analytical and numerical sides in Section 5.1. In Section 5.2, we first
recall the quantum Ising chain and conjecture the phase diagram of the Schwinger model at
θ = π based on universality with the quantum Ising chain. Our strategy to establish the
conjectured phase diagram using the Monte Carlo method is also explained. In Section 5.3,
we perform a detailed numerical investigation of the correlation function and establish the
conjectured phase diagram.

5.1 Spontaneous CP symmetry breaking at zero tem-

perature

We review the spontaneous CP symmetry breaking at zero temperature in the Schwinger
model at θ = π. The spontaneous CP symmetry breaking at θ = π was first predicted
by Coleman with an intuitive analytical picture using the bosonized form of the Schwinger
model [12]. From the Euclidean action of the bosonized Schwinger model (2.48), the effective
potential of ϕ, which is proportional to the electric field (2.49), is given by

V (ϕ) =
g2

2π
ϕ2 − eγ

2π3/2
mg cos

(
2
√
πϕ− θ

)
. (5.1)

At θ = 0, the cosine term forms a pocket at ϕ = 0, indicating a unique CP-symmetric vacuum
at any fermion mass. This changes drastically at θ = π. Figure 5.1 shows the effective
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Figure 5.1: The effective potential of the bosonized Schwinger model (5.1) at θ = π. This
figure is taken from Ref. [2].

potential at θ = π at various fermion masses. For small fermion masses, the bosonic mass
term dominates the potential, and we expect a unique vacuum. On the other hand, for large
fermion masses, the cosine term forms a potential wall at ϕ = 0, and we expect degenerate
vacua, corresponding to the spontaneous CP symmetry breaking. In an intermediate fermion
mass region, where the CP symmetry is either maintained or at least well-preserved, by
expanding the cosine to the second order, the effective potential becomes [20]

V (ϕ) ≃ 1

2

{
g√
π

(
1−

√
πeγ

m

g

)}2

ϕ2. (5.2)

As m/g increases, the effective mass decreases and reaches zero at

mc

g
=

1√
πeγ

≃ 0.317, (5.3)

where we expect a second-order phase transition. It is important to note that this second-
order phase transition is driven purely by quantum fluctuations. Hence, the critical point
at zero temperature (mc, T = 0) is referred to as the quantum critical point (QCP) in the
following.

First-principle numerical simulations are needed for a more quantitative and conclusive
understanding. As described in Section 2.1, the conventional Monte Carlo method is not
applicable due to the severe sign problem at θ = π, when using the Euclidean lattice fermion
formulations. Consequently, numerical investigations of the QCP have been mainly per-
formed using the spin Hamiltonian (2.38).

The first numerical evidence of the above analytical picture was provided by Hamer et
al. [66], in which the spin Hamiltonian was combined with the finite-size scaling method [71]
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to identify the QCP. They estimated the critical mass to be mc/g = 0.325(20) and a critical
exponent ν = 0.9(1). A more precise investigation was done by Byrnes et al. [20] using the
density matrix renormalization group [72, 73]. They obtained at present the most precise
estimate of the critical mass

mc

g
= 0.3335(2), (5.4)

and two critical exponents

ν = 1.01(1),
β

ν
= 0.125(5). (5.5)

These two critical exponents precisely agree with those of the quantum Ising chain (ν =
1, β = 1/8), indicating that these two models are in the same universality class. As a quite
different approach, Shimizu and Kuramashi [24] applied the Grassmann tensor renormal-
ization group [63] to the conventional Wilson fermion formulation in Euclidean space-time,
explained in Section 2.1. Using the Lee–Yang and Fisher zero analyses, they provided further
evidence that the QCP belongs to the Ising universality class. Other approaches include, for
example, a conversion method from the imaginary θ term [69], and one using quantum com-
puting [40]. The resulting phase diagram of the Schwinger model at zero temperature in the
θ angle and fermion mass plane is shown in Fig. 5.2.

phase diagram of Schwinger model at

QCP

first-order phase transition

Ising universality class

Figure 5.2: Phase diagram of the Schwinger model at zero temperature in the θ angle and
fermion mass plane.

5.2 Method to explore phase diagram near the quan-

tum critical point

Compared to the comprehensive studies on the second-order phase transition at zero tem-
perature, the phase structure near the QCP at finite temperature remains much less known.
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In general, thermal fluctuations work to spoil the long-range order. Therefore, it is natural
to consider that the CP symmetry is restored at high temperatures. Figure 5.3 shows the
electric field at m/g = 0.5 in the (T, θ) plane, which is obtained in the same way as the
string tension in Section 4.3. It is clear that the discontinuity at θ = π disappears at high
temperatures. However, it is not clear from Fig. 5.3 at which temperature the CP symmetry
is restored.
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Figure 5.3: The electric field in the (T, θ) plane at m/g = 0.5.

To the best of the author’s knowledge, the only study addressing this issue was conducted
by Buyens et al. [29], in which they investigated the fate of the spontaneously broken CP
symmetry at finite temperature using the matrix product operators [74, 75] based on the spin
Hamiltonian formulation. For each θ ≃ π, they obtained the temperature T1/2(θ) at which
the electric field equals half of its vacuum expectation value. By empirically extrapolating
T1/2(θ) toward θ → π, they concluded that T1/2 diverges, implying that the CP symmetry
is restored at any nonzero temperature. The weakness of their argument lies in relying on
extrapolation based on empirical rules. Incorporating some analytical theory is necessary to
perform a more reliable extrapolation. 1

In this work, we explore broad characteristics near the QCP at finite temperature by
the Monte Carlo method incorporating the perspective of universality with the quantum
Ising chain. In this section, we first review the quantum Ising chain, in particular its phase
structure at finite temperature, and then explain our strategy to explore the phase diagram
of the Schwinger model at θ = π.

5.2.1 Quantum Ising chain

We here review the phase diagram of the quantum Ising chain following a review [76, Chapter
10]. The quantum Ising chain is the quantum analog of the two-dimensional classical Ising
model with no external magnetic field. The Hamiltonian of the quantum Ising chain is given

1In the Monte Carlo simulation of QCD, the numerical cost diverges as the quark mass approaches
zero. When studying the chiral properties of QCD, the chiral perturbation theory is conventionally used for
extrapolating numerical data at finite quark mass to the chiral limit.
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by

HI = −J
∑
ix

(ZxZx+1 + gXx), (5.6)

where J > 0 is an overall energy scale, g > 0 is the dimensionless coupling constant, and
Zx, Xx are the Pauli matrices

Z = σ3 =

(
1 0
0 −1

)
, X = σ1 =

(
0 1
1 0

)
, (5.7)

which reside on a spatial site x, respectively. Thus, the first term is diagonal, whereas the
second term is not. The Hamiltonian is symmetric under the Z2 transformation, generated
by the unitary operator

∏
xXx.

Unlike the massive Schwinger model, the quantum Ising chain is exactly solvable in the
sense that all eigenstates are obtained analytically by applying the Jordan–Wigner transfor-
mation and diagonalizing the Hamiltonian by the Bogoliubov transformation [77, 78]. At
zero temperature, as decreasing the coupling constant, the system undergoes a second-order
phase transition to the ferromagnetic (Z2 broken) phase at gc = 1, which is analogous to the
Schwinger model at θ = π.

The phase diagram of the quantum Ising chain in the temperature and coupling con-
stant plane can be deduced from the correlation function of the order parameter at finite
temperature 2

C(x) = ⟨Z0Zx⟩ = tr
(
Z0Zxe

−HI/T
)/

tr
(
e−HI/T

)
. (5.8)

A crucial feature that we will exploit throughout this chapter is the explicit asymptotic form
of the correlation function, derived by Sachdev [79]:

lim
x→∞

C(x) = ZT 1/4GI(∆/T ) exp

(
−Tx

c
FI(∆/T )

)
, ∆ = r(gc − g), (5.9)

where Z, c, r are the nonuniversal constants, and FI and GI are the universal scaling functions
of the quantum Ising chain. Their explicit forms read [79]

FI(s) = |s|Θ(−s) + 1

π

∫ ∞

0

dy ln coth
(y2 + s2)

1/2

2
, (5.10)

lnGI(s) =

∫ 1

s

dy

y

[(
dFI(y)

dy

)2

− 1

4

]
+

∫ ∞

1

dy

y

(
dFI(y)

dy

)2

, (5.11)

where Θ(x) is the step function. Figure 5.4 plots the universal scaling functions FI , GI ,
illustrating their smoothness throughout the entire region.

The correlation length is defined from the exponential decay of the correlation func-
tion (5.9) as

ξ−1 =
T

c
FI

(
∆

T

)
. (5.12)

2Note that we do not subtract the connected part ⟨Zx⟩2 from the correlation function.
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Figure 5.4: The universal scaling functions of the quantum Ising chain (5.10, 5.11). This
figure is taken from Ref. [2].

At any nonzero temperature, the correlation length is finite, indicating that the correla-
tion function vanishes in the long-distance limit. Simultaneously, the correlation function
converges to its connected part as

lim
x→∞

C(x) = ⟨Zx⟩2 . (5.13)

Thus, we can deduce that the system is in the paramagnetic (Z2 symmetric) phase at any
nonzero temperature.

In the vicinity of the QCP, even a slight shift in the coupling constant results in a sub-
stantial change in ∆/T . It is meaningful to categorize the phase into three depending on the
value of ∆/T , each characterized by a specific asymptotic form of the correlation length [79]:

ξ =


c
√

π
2∆T

e∆/T , ∆/T ≫ 1,
4c
πT
, |∆|/T ≪ 1,

c
|∆| , ∆/T ≪ −1.

(5.14)

In the low-temperature region with ∆ > 0, the correlation length diverges exponentially
toward the zero temperature limit, corresponding to the ferromagnetic phase at zero tem-
perature. Conversely, the long-range order at zero temperature is thermally destroyed. This
region is commonly referred to as the thermally disordered region in the context of condensed
matter physics [80]. In the other low-temperature region with ∆ < 0, the correlation length
saturates at a finite value in the zero temperature limit, resulting in a disordered phase even
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at zero temperature. This region is called the quantum disordered phase [80]. The final re-
gion with |∆|/T ≪ 1 is the so-called quantum critical region, where the physics is considered
to be governed by the thermal excitations of the quantum critical ground state [80]. The
resulting phase diagram of the quantum Ising chain is shown in the left panel of Fig. 5.5.
Universality with the quantum Ising chain implies the phase diagram of the Schwinger model
at θ = π near the QCP, as shown in the right panel of Fig. 5.5.

ferromagnetic phase 

phase diagram of quantum Ising chain

quantum critical

quantum
disordered

thermally
disordered

QCP

CP broken phase 

phase diagram of Schwinger model at

QCP

quantum critical

thermally
disordered

quantum
disordered

Figure 5.5: (Left) Phase diagram of the quantum Ising chain. (Right) Conjectured phase
diagram of the Schwinger model at θ = π. These figures are taken from Ref. [2].

5.2.2 Schwinger model at θ = π

We here explain our strategy to establish the conjectured phase diagram of the Schwinger
model at θ = π. In the previous subsection, we observed that the phase diagram of the
quantum Ising chain at finite temperature can be deduced from the asymptotic form of the
correlation function (5.9). Therefore, our approach is rather straightforward: we calculate
the correlation function of the electric field at θ = π at finite temperatures near the QCP and
examine whether the correlation function shares the same asymptotic form as the quantum
Ising chain (5.9). If this confirmation is obtained at a certain temperature, the scaling
behavior should also hold at lower temperatures, allowing us to determine the phase diagram
of the Schwinger model near the QCP. Our method does not aim to approach the QCP itself,
but rather inspect the scaling behavior near the QCP. We need not employ the finite-size
scaling method because the correlation length is always finite in our analysis. The most
significant difficulty is that we must circumvent the sign problem at θ = π in some way.

Using the lattice bosonized Schwinger model, the difficulty can be completely avoided.
The correlation function of the electric field at temperature T/g = (Lτag)

−1 can be expressed
by the path-integral, along with using the proportional relation between the electric field and
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the scalar field (2.49):

C(x) =
1

g2
⟨ExE0⟩′ (5.15a)

=
1

π
⟨ϕxϕ0⟩′ (5.15b)

=
1

π

∫
Dϕϕx,0ϕ0,0e

−SE

/∫
Dϕe−SE , (5.15c)

where ⟨·⟩′ denotes the expectation value under the shifted Euclidean action (2.48).

5.3 Numerical results

In this work, we use a sufficiently fine and large lattice of ag = 0.2, Lx = 1792; we verify that
the finite lattice spacing and finite spatial length effects are indeed nearly negligible in our
analysis. As for the temperature, we mainly consider two low temperatures Lτ = 112, 56 to
inspect the scaling behavior near the QCP.

5.3.1 Autocorrelation and lattice artifacts

In this subsection, we investigate the autocorrelation and lattice artifacts in preparation for
the large-scale numerical simulations in the next subsection.

We first investigate the autocorrelation among Monte Carlo configurations near the QCP
for reliable error estimates. The autocorrelation can be characterized by the autocorrelation
function [81]

A(t) =
1

N − t

N−t∑
i=1

ϕiϕi+t − ⟨ϕ⟩2 , (5.16)

where ϕi is the mean of ϕx,τ :

ϕi =
1

LxLτ

∑
x,τ

ϕx,τ (5.17)

at the i-th Monte Carlo configuration, and ⟨ϕ⟩ is the subtraction term, which should be 0 in
our analysis. From the normalized autocorrelation function

C(t) =
A(t)

A(0)
, (5.18)

the integrated autocorrelation time with finite lattice data is defined as

τint(t) =
1

2
+

t∑
i=1

C(i). (5.19)

Twice the integrated autocorrelation time

τint = lim
t→∞

τint(t) (5.20)
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gives an estimate of the number of iterations required to generate mostly independent config-
urations. Figure 5.6 shows the integrated autocorrelation time (5.19) at m/g = 0.2, 0.33, 0.4.
From such behaviors, we estimate the integrated autocorrelation time (5.20). The estimated

0 1000 2000 3000 4000 5000
t

0

200

400

600

800

1000

in
t(t

)

ag = 0.2, m/g = 0.20
Lx × L = 1792 × 112
Lx × L = 1792 × 56

0 100000 200000 300000 400000 500000
t

0

10000

20000

30000

40000

50000

60000

70000

in
t(t

)

ag = 0.2, m/g = 0.33
Lx × L = 1792 × 112
Lx × L = 1792 × 56

0.0 0.5 1.0 1.5 2.0 2.5 3.0
t 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

in
t(t

)

1e6 ag = 0.2, m/g = 0.40
Lx × L = 1792 × 112
Lx × L = 1792 × 56

Figure 5.6: The integrated autocorrelation time with finite lattice data (5.19) at m/g =
0.2, 0.33, 0.4. These figures are taken from Ref. [2].

integrated autocorrelation times at the two lattices and various fermion masses are summa-
rized in Table 5.1. We find that the integrated autocorrelation time is longer at larger fermion
masses and lower temperatures, which seems to be related to the expected correlation length
near the QCP, as shown in the right panel of Fig. 5.5. In this work, we set the number
of iterations to approximately τint/2 and use the binning of ten to eliminate the remaining
autocorrelation.

We also investigate the finite lattice spacing and finite spatial length effects. For this
purpose, we compare correlation functions at m/g = 0.32 calculated using three different
lattices:

• ag = 0.2, Lx × Lτ = 1792× 112,

• ag = 0.2, Lx × Lτ = 896× 112,

• ag = 0.1, Lx × Lτ = 3584× 224.
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Table 5.1: Estimated integrated autocorrelation times at the two lattices and various fermion
masses.

ag Lx × Lτ m/g τint
0.2 1792× 112 0.2 ∼ 8× 102

0.2 1792× 112 0.33 ∼ 6× 104

0.2 1792× 112 0.4 ∼ 2× 106

0.2 1792× 56 0.1 ∼ 2× 102

0.2 1792× 56 0.2 ∼ 8× 102

0.2 1792× 56 0.33 ∼ 1.4× 104

0.2 1792× 56 0.4 ∼ 1.2× 105

0.2 1792× 56 0.5 ∼ 5× 105

By comparing the first and the second lattices, we can assess the finite spatial length effect.
The finite lattice spacing effect can be examined by comparing the first and the third lat-
tices. Figure 5.7 shows the correlation functions at these three lattices. For each correlation

0 5 10 15 20 25 30
xg

10 1

C(
x)

correlation function at m/g = 0.32
( g) 1 = 0.0473(15), A = 0.0845(24), 2/dof = 1.14
( g) 1 = 0.0457(20), A = 0.0795(31), 2/dof = 1.07
( g) 1 = 0.0468(17), A = 0.0874(24), 2/dof = 1.75
ag = 0.2, Lx × L = 1792 × 112
ag = 0.2, Lx × L = 896 × 112
ag = 0.1, Lx × L = 3584 × 224

Figure 5.7: Correlation functions and fit results using the single exponential function (5.21)
at three lattices of ag = 0.2, Lx × Lτ = 1792 × 112, ag = 0.2, Lx × Lτ = 896 × 112, and
ag = 0.1, Lx×Lτ = 3584×224. For visibility, only one-fifth and one-tenth of the data points
are plotted for ag = 0.2 and ag = 0.1, respectively. This figure is taken from Ref. [2].

function, we perform a correlated fit using the single exponential function

C(x) = A exp

(
−x
ξ

)
, (5.21)

with the correlation length ξ and the amplitude A being the fit parameters. The fit range
is set as xg ∈ [25, 30]. The fit results are also shown in Fig. 5.7. We find that the resulting
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correlation lengths and amplitudes are consistent with each other, suggesting that both finite
lattice spacing and finite spatial length effects are nearly negligible in our analysis.

5.3.2 Correlation function near the quantum critical point

We now perform a detailed investigation of the correlation function near the QCP. To carefully
examine the behavior near the QCP, we analyze correlation functions over a broad range of
fermion masses. The simulation parameters relevant in this subsection are summarized in
Table 5.2.

Table 5.2: Summary of the simulation parameters.
ag Lx × Lτ m/g iterations, n configurations, n
0.2 1792× 112 0.16, 0.18, 0.2, 0.22, 0.24, 0.26 4× 102 105

0.2 1792× 112 0.28, 0.3, 0.32, 0.34, 0.36, 0.38 3× 104 2× 103

0.2 1792× 112 0.4, 0.42, 0.44 106 103

0.2 1792× 56 0.08, 0.10, 0.12, 0.14 102 105

0.2 1792× 56 0.16, 0.18, 0.2, 0.22, 0.24, 0.26 4× 102 105

0.2 1792× 56 0.28, 0.3, 0.32, 0.34, 0.36, 0.38 7× 103 104

0.2 1792× 56 0.4, 0.42, 0.44 6× 104 103

0.2 1792× 56 0.48, 0.5, 0.52 1.3× 105 103

For each correlation function, we perform a correlated fit using the single exponential
function (5.21) and extract the correlation length ξ and amplitude A. For demonstration, we
show the correlation functions and the fit results at m/g = 0.2, 0.26, 0.34, 0.44 at the lower
temperature in Fig. 5.8. The fit ranges are set as xg ∈ [20, 25], [20, 25], [25, 30], [30, 35], for
m/g = 0.2, 0.26, 0.34, 0.44, respectively.

We next perform fits to the correlation length and amplitude at the lower temperature,
independently. Universality with the quantum Ising chain suggests the asymptotic form of
the correlation function in the Schwinger model at θ = π as

lim
x→∞

C(x) = Z(T/g)1/4GI(∆/T ) exp

(
−Tx

c
FI(∆/T )

)
, ∆ = r(m−mc), (5.22)

where Z, c, r are the nonuniversal constants and the functional forms of FI and GI are given
in Eqs. (5.10, 5.11). Figure 5.9 shows the correlation length and amplitude as functions of
the fermion mass, fitted using

T

cg
FI(r(m−mc)/T ), Z(T/g)1/4GI(r(m−mc)/T ), (5.23)

respectively. In these fits, we set the critical mass to mc/g = 0.3335, using the wisdom
obtained by Byrnes et al. (5.4). From the fits, the nonuniversal constants are found to be

Z = 0.2435(16), c = 0.978(11), r = 1.593(46). (5.24)
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correlation function at ag = 0.2, Lx × L = 1792 × 112
m/g = 0.20, ( g) 1 = 0.244(19), A = 0.049(18), 2/dof = 0.99
m/g = 0.26, ( g) 1 = 0.1272(22), A = 0.0523(19), 2/dof = 0.66
m/g = 0.34, ( g) 1 = 0.03109(98), A = 0.0992(14), 2/dof = 1.34
m/g = 0.44, ( g) 1 = 0.00079(17), A = 0.15657(39), 2/dof = 1.50

Figure 5.8: Correlation functions and fit results by the single exponential function (5.21) at
m/g = 0.2, 0.26, 0.34, 0.44. The lattice is ag = 0.2, Lx×Lτ = 1792× 112. For visibility, only
one-fifth of the data points are plotted. This figure is taken from Ref. [2].

Note that the value of r is also obtained from the fit to the correlation length, as shown in
the left panel of Fig. 5.9. In the following analysis, however, we use the value obtained from
the amplitude since the fit seems to be more reliable, although they are consistent with each
other.
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Figure 5.9: Fits to the correlation length (left) and to the amplitude (right) using the
universal scaling functions of the quantum Ising chain (5.10, 5.11). The lattice is ag =
0.2, Lx × Lτ = 1792× 112. These figures are taken from Ref. [2].

We rescale the correlation lengths and amplitudes at the two temperatures using the
nonuniversal constants (5.24) and compare them to the universal scaling functions of the
quantum Ising chain (5.10, 5.11). Figure 5.10 demonstrates that the rescaled data align
beautifully with the expected analytical curves. In particular, we observe that data at the
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higher temperature also match the analytical curves, providing strong evidence that the
correlation function of the Schwinger model at θ = π shares the same asymptotic form as
the quantum Ising chain. Based on the argument in Section 5.2, we conclude that the phase
diagram of the Schwinger model at θ = π is entirely analogous to the quantum Ising chain
near the QCP, as schematically shown in Fig. 5.5.
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T/g = 0.0446
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Figure 5.10: Rescaled correlation length (left) and amplitude (right) using the nonuniver-
sal constants (5.24), compared with the universal scaling functions of the quantum Ising
chain (5.10, 5.11). These figures are taken from Ref. [2].

5.3.3 Range of the scaling behavior

With the established asymptotic form of the correlation function (5.22) and the explicit values
of the nonuniversal constants (5.24), we can quantitatively predict the behavior of certain
observables near the QCP. In this subsection, we estimate the range of the scaling behavior
by comparing the predictions to direct numerical results.

We first examine how well the scaling behavior holds at zero temperature by comparing
our prediction to Byrnes et al.’s results [20]. 3

At zero temperature in the CP symmetric phase (m ≤ mc), the inverse of the correlation
length, i.e., the energy gap, is given by

(ξg)−1 =
1

c

|∆|
g

=
r

c

(
mc

g
− m

g

)
. (5.25)

In Fig. 5.11, we compare Eq. (5.25) to their direct numerical results [20]. Figure 5.11 demon-
strates a strong agreement between the prediction and their direct numerical results, indi-
cating that the scaling behavior holds surprisingly well in the region m ∈ [0,mc] at zero
temperature.

We can also predict the electric field in the CP broken phase (m > mc) at zero temperature
from the asymptotic form of the correlation function (5.22). In this region, using the zero

3The explicit values can be found in Table 6.10 of Ref. [82].
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Figure 5.11: Fermion mass dependence of the energy gap at zero temperature. This figure
is taken from Ref. [2].

temperature limit of GI [79]

GI(∆/T ) → (∆/T )1/4, ∆/T ≫ 1, (5.26)

the correlation function behaves as

C(x) → Z(T/g)1/4(∆/T )1/4 = Z(∆/g)1/4 = Zr1/4
(
m

g
− mc

g

)1/4

. (5.27)

Therefore, the electric field in the CP broken phase is given by

|⟨E⟩|
g

= Z1/2r1/8
(
m

g
− mc

g

)1/8

. (5.28)

We plot Eq. (5.28) using the nonuniversal constants (5.24) in Fig. 5.12. We observe a rather
sharp but continuous increase in the electric field near the QCP, which corresponds to the
small critical exponent β = 1/8. In Fig. 5.12, the numerical results by Byrnes et al. [20] are
also plotted. We find that the analytical curve successfully explains their numerical results
near the QCP. While clear discrepancies are observed away from the QCP, the discrepancies
are very small even at m/g = 1. This allows us to conclude that the scaling behavior holds
well in the region m/g ∈ [mc/g, 1] at zero temperature.

The agreement with Byrnes et al.’s results near the QCP reinforces the validity of our
estimate for the nonuniversal constants (5.24) and indicates that the scaling behavior holds
well in the region m/g ∈ [0, 1] at zero temperature.
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Figure 5.12: Fermion mass dependence of the electric field at zero temperature. This figure
is taken from Ref. [2].

We also examine the range of the scaling behavior at the critical fermion mass. In this
region, the inverse of the correlation length is

(ξg)−1 =
πT

4cg
, (5.29)

and the amplitude is given by

A = 0.8587Z

(
T

g

)1/4

, (5.30)

from the behavior of GI [79]:

GI(∆/T ) = 0.8587..., |∆|/T ≪ 1. (5.31)

In Fig. 5.13, we compare Eqs. (5.29, 5.30) to our direct numerical results, which are obtained
in the same way as in the previous subsection. The simulation parameters are summarized
in Table. 5.3. We find that the direct numerical results agree with the analytical curves
with an accuracy of at least ninety percent up to T/g ≃ 0.4. This ensures that the scaling
behavior holds well in the region T/g ∈ [0, 0.4] at the critical fermion mass.

In Fig. 5.14, we finally present the inverse of the correlation length in the temperature
and fermion mass plane obtained from the asymptotic form (5.22) and the nonuniversal
constants (5.24). Based on the analysis in this subsection, the values are reliable at zero
temperature or at the critical fermion mass within the range plotted in Fig. 5.14. At m = 0,
the Schwinger model is equivalent to the free boson theory (1.62), resulting in an energy
gap of g/

√
π ≃ 0.564g at any temperature. In Fig. 5.14, we indeed observe approximate

temperature independence up to T/g ≃ 0.3, suggesting that Fig. 5.14 is to some extent
reliable except for the two edges on the finite-temperature side.
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Table 5.3: Simulation parameters and estimated autocorrelation times for investigating tem-
perature dependence of the correlation length and the amplitude at the critical fermion mass.

ag Lx × Lτ m/g τint iterations, n configurations, n
0.2 1792× 28 0.3335 ∼ 2× 103 103 105

0.2 1792× 16 0.3335 ∼ 103 5× 102 105

0.2 1792× 12 0.3335 ∼ 5× 102 2.5× 102 105

0.2 1792× 10 0.3335 ∼ 3× 102 1.5× 102 106
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Figure 5.13: Temperature dependence of the correlation length (left) and the amplitude
(right) at the critical fermion mass. These figures are taken from Ref. [2].
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Chapter 6

Summary and outlook

In this thesis, we have studied the interplay between the quantum effects of the θ term and
thermal effects in the Schwinger model by the Monte Carlo method while avoiding the sign
problem using the bosonization technique.

In Chapter 1, we first presented the theoretical background of the θ term mainly fo-
cusing on quantum chromodynamics and the purpose of this thesis. We next reviewed the
basic properties of the Schwinger model in both the Lagrangian and Hamiltonian formalism.
Bosonization, which played a fundamental role in this thesis, was also introduced in this
chapter.

In Chapter 2, we introduced three different lattice formulations of the Schwinger model in
detail. Special attention was given to the chiral anomaly as it is closely related to the fermion
doubling problem through the Nielsen–Ninomiya theorem. We observed that bosonization
provides a novel approach to formulate the Schwinger model on a lattice, effectively evading
the fermion doubling problem and preserving the chiral anomaly intact simultaneously. By
comparing the three formulations, we concluded that the Monte Carlo study of the lattice
bosonized Schwinger model is the best method to investigate the model at finite temperature
and θ region, both theoretically and practically.

In Chapter 3, before exploring new properties of the Schwinger model, we verified the
lattice bosonized Schwinger model by reproducing the analytical and numerical results in the
literature. We derived the analytical expression for the chiral condensate at the vanishing
fermion mass m = 0. We confirmed that the lattice chiral condensate converges to the
continuum one in the continuum limit. Notably, we observed that the vacuum expectation
value of the chiral condensate, which arises from the chiral anomaly, is reproduced at any
lattice spacing, demonstrating the perfect preservation of the chiral anomaly on a lattice.
We also calculated the chiral condensate for a massive fermion at almost zero and finite
temperatures. We compared them with those obtained by the tensor network method and
confirmed that the lattice bosonized Schwinger model produces consistent results at any
fermion mass.

In Chapter 4, we investigated the confining properties of the Schwinger model at finite
temperature and θ. We first obtained the probe charge dependence of the string tension at
θ = 0 and θ = π at almost zero temperature. At these θ, we found attractive and repulsive
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forces between noninteger probe charges, indicating confinement and inverse confinement at
low temperatures. To explain this peculiar behavior, we provided a semiclassical explanation
based on the pair creation of the dynamical charges. In light of this finding, we next calculated
the string tension at small probe charges qp = 0.3, 0.5 in the temperature and θ angle plane,
combining the reweighting method. We found that the system undergoes a smooth transition
from the confining phase to the inverse confining phase as θ goes from 0 to π, and this
transition is weekend as temperature increases. For high temperatures, the string tension is
kept almost at zero, indicating the thermal suppression of the quantum effects of the θ term.

In Chapter 5, we have explored the phase diagram of the Schwinger model at θ = π in the
temperature and fermion mass plane. From the perspective of universality, we conjectured
that the phase diagram of the Schwinger model at θ = π near the quantum critical point is
entirely analogous to the quantum Ising chain. This conjecture was subsequently confirmed
by verifying that the correlation function of the electric field shares the same asymptotic form
as the quantum Ising chain, leading to an interesting conclusion that the long-range order at
zero temperature is broken by infinitesimally small thermal effects. Despite the absence of
genuine phase transition, the Schwinger model at θ = π has a rich phase structure at finite
temperature, quite differently from θ = 0.

Thus, by utilizing bosonization as a method to circumvent the sign problem probably for
the first time, we have revealed some new aspects of the Schwinger model, which occur in
the interplay between the quantum effects of the θ term and thermal effects.

Our present studies have demonstrated that bosonization is a powerful tool not only for
analytical investigations but also for a theoretically clean lattice formulation and numerical
studies. An important question that arises here is the feasibility of applying the methodology
to other fermionic models in 1+1 dimensions, such as the multi-flavor Schwinger model, the
gauged Thirring model, quantum chromodynamics in (1+1) dimensions, and so on. Because
the key formula (2.43) is model-independent and bosonization is a universal concept in 1+ 1
dimensions, the methodology is expected to be applicable to a wide variety of fermionic
models.

Throughout this thesis, we focused on the θ term. However, the θ term is not the only
source of the sign problem. One well-known example where the sign problem arises is in
finite-density systems. Because the bosonized form of the fermion density is expressed by
the spatial derivative of the scalar field (1.49), the inclusion of the chemical potential term
does not induce the sign problem. Hence, the present methodology would also be useful for
investigating finite-density systems. Investigating finite-density systems using the present
methodology would provide a new perspective on interesting phenomena at finite density,
such as the breaking of homogeneity and the Silver Blaze phenomenon.
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Appendix A

Bosonization

In this Appendix, we explain bosonization following Mandelstam’s paper [10] and derive the
bosonization formulae used in the main text (1.49, 1.50, 1.51). Throughout this Appendix,
we work in the Schrödinger picture and use the chiral representation of the gamma matrices

γ0 = σ1, γ1 = iσ2, γ5 = γ0γ1 = −σ3. (A.1)

A.1 Constraction of the Dirac fermion by bosonic op-

erators

The Dirac fermion ψ = (ψ1, ψ2)
⊤ is constructed by the scalar field ϕ and its conjugate

momentum π as

ψ1(x) =
( cµ
2π

)1/2
Nµ exp

(
−i2π

β

∫ x

−∞
dx′ π(x′)− iβ

2
ϕ(x)

)
, (A.2)

ψ2(x) = −i
( cµ
2π

)1/2
Nµ exp

(
−i2π

β

∫ x

−∞
dx′ π(x′) +

iβ

2
ϕ(x)

)
, (A.3)

where c is a constant related to Euler’s constant γ = 0.57721... as

c =
eγ

2
. (A.4)

The real parameter β is specified later. As explained in the main text, the symbol Nµ denotes
the normal ordering with respect to the bosonic creation and annihilation operators defined
as

ϕ(x) =:

∫
dk

2π

(
1

2ω(k, µ)

)1/2[
a(k, µ)e−ikx + a†(k, µ)eikx

]
=: ϕ+(x) + ϕ−(x), (A.5)

π(x) =: −i
∫

dk

2π

(
ω(k, µ)

2

)1/2[
a(k, µ)e−ikx − a†(k, µ)eikx

]
=: π+(x) + π−(x), (A.6)
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with ω(k, µ) =
√
k2 + µ2 and µ being the energy scale to define the normal ordering. The

annihilation and creation components of ϕ are denoted by ϕ+ and ϕ−, respectively. The
scalar field and its conjugate momentum satisfy the canonical commutation relations

[ϕ(x), π(y)] = iδ(x− y), (A.7)

[ϕ(x), ϕ(y)] = [π(x), π(y)] = 0. (A.8)

We are now forced to confirm that the fermion fields constructed by the bosonic fields (A.2,
A.3) satisfy the canonical anticommutation relations{

ψα(x), ψ
†
β(y)

}
= δ(x− y)δα,β, (A.9)

{ψα(x), ψβ(y)} =
{
ψ†
α(x), ψ

†
β(y)

}
= 0. (A.10)

A.2 Useful relations

For the evaluation of the product of the fermion fields, we use an identity

Nµe
ANµe

B = e[A+,B−]Nµe
A+B, if [A+, B−] is a c number, (A.11)

which can be easily derived from a special case of the Campbell–Baker–Hausdorff (CBH)
formula

eAeB = e[A,B]eBeA, if [A,B] is a c number. (A.12)

These relations constitute the central part of the subsequent manipulations:

[ϕ+(x), ϕ−(y)] =

∫
dk

2π

1

2ω(k, µ)
e−ik(x−y) = ∆(x− y;µ), (A.13)

[π+(x), π−(y)] =

∫
dk

2π

ω(k, µ)

2
e−ik(x−y) = ∂x∂y∆(x− y;µ), (A.14)

[ϕ+(x), π−(y)] =
i

2

∫
dk

2π
e−ik(x−y) =

i

2
δ(x− y). (A.15)

Here, ∆(x;µ) is the Feynman propagator for the scalar field of mass µ, which behaves as

∆(x;µ) = − 1

2π
ln |cµx|+O(x2) (A.16)

for small separations. The constant c is defined in Eq. (A.4). In addition, the following
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relations are used in the subsequent manipulations:

exp

{
±
(
β

2

)2

[ϕ(x), ϕ(y)]

}
= |cµ(x− y)|∓β

2/8π exp
{
O((x− y)2)

}
, (A.17)

exp

{
±
(
2π

β

)2 ∫ x

−∞
dx′
∫ y

−∞
dy′ [π+(x

′), π−(y
′)]

}
= |cµ(x− y)|∓2π/β2

exp
{
O((x− y)2)

}
,

(A.18)

exp

{
±iπ

2
(Θ(x− y)−Θ(y − x))

}
= ±i |x− y|

x− y
, (A.19)

exp

{
±iπ

2
(Θ(x− y) + Θ(y − x))

}
= ±i, (A.20)

where Θ(x) is the step function.

A.3 Canonical anticommutation relations

Using the relations in the previous section, we now confirm the canonical anticommutation
relations

{
ψaα(x), ψ

b
β(y)

}
= δ(x− y)δαβδab. (A.21)

Here, α = 1, 2 denotes the spinor index, and a = 1, 2 corresponds to the absence or presence
of the dagger, respectively. Using this convention, the fermion field (A.2, A.3) can be written
as

ψaα(x) = ((−1)ai)α−1
( cµ
2π

)1/2
Nµ exp

{
(−1)a

(
i
2π

β

∫ x

−∞
dx′ π(x′) + (−1)α−1 iβ

2
ϕ(x)

)}
.

(A.22)
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We now evaluate the product of the fermion fields ψaα(x)ψ
b
β(y) using the identity (A.11). The

argument of the exponential factor without the normal ordering is calculated as

[A+(x), B−(y)] = (−1)a+b+1

[
2π

β

∫ x

−∞
dx′ π+(x

′) + (−1)α−1β

2
ϕ+(x),

2π

β

∫ y

−∞
dy′ π−(y

′) + (−1)β−1β

2
ϕ−(y)

]
(A.23a)

= (−1)a+b+1

[
(−1)α+β

(
β

2

)2

[ϕ+(x), ϕ−(y)] +

(
2π

β

)2 ∫ x

−∞
dx′
∫ y

−∞
dy′ [π+(x

′), π−(y
′)]

− (−1)απ

∫ y

−∞
dy′ [ϕ+(x), π−(y

′)]− (−1)βπ

∫ x

−∞
dx′ [π+(x

′), ϕ−(y)]

]
(A.23b)

= (−1)a+b+1

[
(−1)α+β

(
β

2

)2

[ϕ+(x), ϕ−(y)] +

(
2π

β

)2 ∫ x

−∞
dx′
∫ y

−∞
dy′ [π+(x

′), π−(y
′)]

+
iπ

2

{
(−1)βθ(x− y)− (−1)αθ(y − x)

}]
. (A.23c)

Hence, we obtain

ψaα(x)ψ
b
β(y) =((−1)ai)α−1((−1)bi

)β−1 cµ

2π
e[A+(x),B−(y)]

×Nµ exp

{
(−1)a

(
i
2π

β

∫ x

−∞
dx′π(x′) + (−1)α−1i

β

2
ϕ(x)

)
+(−1)b

(
i
2π

β

∫ y

−∞
dy′π(y′) + (−1)β−1i

β

2
ϕ(y)

)}
, (A.24)

where the exponential factor without the normal ordering is

e[A+(x),B−(y)] =|cµ(x− y)|(−1)a+b+α+ββ2/8π+(−1)a+b2π/β2

exp
(
O((x− y)2)

)
× (−1)a+b+β+1

{
i |x−y|
x−y , α = β,

i, α ̸= β.
(A.25)

The vanishing anticommutation relations at a = b can be easily seen:{
ψaα(x), ψ

a
β(y)

}
= some factor×

{
(−1)β+1i |x−y|

x−y + (−1)α+1i |y−x|
y−x , α = β

(−1)β+1i+ (−1)α+1i, α ̸= β
(A.26a)

= 0. (A.26b)

We next consider the anticommutation relation
{
ψ†
α(x), ψβ(y)

}
, i.e., the case of a = 2, b =

1. The first term is given by

ψ†
α(x)ψβ(y) =i

α−1(−i)β−1 cµ

2π
e[A+(x),B−(y)]

×Nµ exp

{
−i2π

β

∫ y

x

dξ π(ξ)− i
β

2

(
(−1)β−1ϕ(y)− (−1)α−1ϕ(x)

)}
, (A.27)
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where the exponential factor without the normal ordering is

e[A+(x),B−(y)] =|cµ(x− y)|(−1)α+β+1β2/8π−2π/β2

exp
(
O((x− y)2)

)
× (−1)β

{
i |x−y|
x−y , α = β,

i, α ̸= β.
(A.28)

The second term is given by

ψβ(y)ψ
†
α(x) =i

α−1(−i)β−1 cµ

2π
e[A+(y),B−(x)]

×Nµ exp

{
−i2π

β

∫ y

x

dξ π(ξ)− i
β

2

(
(−1)β−1ϕ(y)− (−1)α−1ϕ(x)

)}
, (A.29)

where the exponential factor without the normal ordering is

e[A+(y),B−(x)] =|cµ(x− y)|(−1)α+β+1β2/8π−2π/β2

exp
(
O((x− y)2)

)
× (−1)α

{
i |y−x|
y−x , α = β,

i, α ̸= β.
(A.30)

For α ̸= β, we find
{
ψ†
α(x), ψβ(y)

}
= 0, as expected. For α = β, we also find

{
ψ†
α(x), ψα(y)

}
=

0 at x ̸= y. In the limit x→ y, the product

ψ†
α(x)ψα(y) =(−1)αi

cµ

2π

|x− y|
x− y

|cµ(x− y)|−β
2/8π−2π/β2

×Nµ exp

{
−i2π

β

∫ y

x

dx′ π(x′) + (−1)α
iβ

2
(ϕ(y)− ϕ(x))

}
(A.31)

seems to be divergent, so careful analysis is required. Following Mandelstam, we indirectly
confirm the nonvanishing anticommutation relation by showing the commutation relations
among the vector currents jµ = ψγµψ:[

j0(x), ψα(y)
]
= −δ(x− y)ψα(x), (A.32)[

j1(x), ψα(y)
]
= −δ(x− y)

(
γ5ψ(x)

)
α
, (A.33)

after the bosonization of the vector current.

A.4 Bosonization formulae

In this section, we derive the bosonization formulae used in the main text (1.49, 1.50, 1.51).
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A.4.1 Bosonization of the vector current

Under the chiral representation (A.1), the vector current is written as

jµ = ψγµψ =

{
ψ†
1ψ1 + ψ†

2ψ2, µ = 0,

−ψ†
1ψ1 + ψ†

2ψ2, µ = 1.
(A.34)

Using Eq. (A.31), j0 is calculated as

j0(x) = lim
y→x

ψ†
1(x)ψ1(y) + ψ†

2(x)ψ2(y) (A.35a)

= lim
y→x

−i
2π(x− y)

|cµ(x− y)|1−β
2/8π−2π/β2

×Nµ

[
exp

{
−i2π

β

∫ y

x

dξ π(ξ)− iβ

2
(ϕ(y)− ϕ(x))

}
− exp

{
−i2π

β

∫ y

x

dξ π(ξ) +
iβ

2
(ϕ(y)− ϕ(x))

}]
. (A.35b)

Because the two components in the argument of the exponential are commutative[∫ y

x

dξ π(ξ), ϕ(y)− ϕ(x)

]
= 0, (A.36)

the vector current is written as

j0(x) = lim
y→x

1

π(y − x)
|cµ(x− y)|1−β

2/8π−2π/β2

×Nµ exp

(
−i2π

β

∫ y

x

dξ π(ξ)

)
sin

(
β

2
(ϕ(y)− ϕ(x))

)
(A.37a)

=
β

2π
|cµ(x− y)|1−β

2/8π−2π/β2

∂xϕ(x). (A.37b)

As for j1, we similarly find

j1(x) = lim
y→x

−ψ†
1(x)ψ1(y) + ψ†

2(x)ψ2(y) (A.38a)

= lim
y→x

−i
π(y − x)

|cµ(x− y)|1−β
2/8π−2π/β2

×Nµ exp

(
−i2π

β

∫ y

x

dξ π(ξ)

)
cos

(
β

2
(ϕ(y)− ϕ(x))

)
(A.38b)

=− 2

β
|cµ(x− y)|1−β

2/8π−2π/β2

π, (A.38c)

where we neglected an irrelevant additive constant. Because the exponent 1−β2/8π−2π/β2

takes its maximum value of zero at β = 2
√
π, the vector current is regularized only at

β = 2
√
π. The regularized vector current is then written as

jµ =

{
1√
π
∂xϕ, µ = 0,

− 1√
π
π, µ = 1,

(A.39)
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which is Eq. (1.49) in the main text.
We now confirm the commutation relations among the vector currents (A.32, A.33). Using

the bosonized form of j0, we find[
j0(x), ψ1(y)

]
=

β

2π
[∂xϕ(x), ψ1(y)] (A.40a)

=
β

2π

( cµ
2π

)1/2[
∂xϕ(x),Nµ exp

(
−i2π

β

∫ y

−∞
dy′ π(y)− i

β

2
ϕ(y)

)]
(A.40b)

=
β

2π

([
∂xϕ+(x),−i

2π

β

∫ y

−∞
dy′ π−(y

′)− i
β

2
ϕ−(y)

]
+

[
∂xϕ−(x),−i

2π

β

∫ y

−∞
dy′ π+(y

′)− i
β

2
ϕ+(y)

])
ψ1(y), (A.40c)

where an identity[
A,N eB

]
= ([A+, B−] + [A−, B+])N eB, if [A+, B−], [A−, B+] are c numbers, (A.41)

which can be derived from a special case of the CBH formula

AeB = eBA+ [A,B]eB, if [A,B] is a c number, (A.42)

is used from Eq. (A.40b) to Eq. (A.40c). The first and second terms are calculated as[
∂xϕ+(x),−i

2π

β

∫ y

−∞
dy′ π−(y

′)− i
β

2
ϕ−(y)

]
= −π

β
δ(x− y)− i

β

2
∂x∆(x− y;µ), (A.43)[

∂xϕ−(x),−i
2π

β

∫ y

−∞
dy′ π+(y

′)− i
β

2
ϕ+(y)

]
= −π

β
δ(x− y) + i

β

2
∂x∆(x− y;µ), (A.44)

respectively. Hence, we obtain[
j0(x), ψ1(y)

]
= −δ(x− y)ψ1(x). (A.45)

Similarly, we find [
j0(x), ψ2(y)

]
= −δ(x− y)ψ2(x), (A.46)[

j1(x), ψ1(y)
]
= δ(x− y)ψ1(y), (A.47)[

j1(x), ψ2(y)
]
= −δ(x− y)ψ1(y). (A.48)

Thus, the commutation relations (A.32, A.33) and the nonvanishing anticommutation rela-
tions are confirmed.

A.4.2 Bosonization of the free massless Dirac fermion

We next obtain the bosonized form of the free massless Dirac fermion component in the
Hamiltonian

−ψ(x)i∂xγ1ψ(x) = lim
dx→0

−i
2dx

ψ†(x)
(
γ5ψ(x+ dx)− γ5ψ(x− dx)

)
. (A.49)
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Recalling the bosonization of j1 = ψ†γ5ψ, we find

−ψ(x)i∂xγ1ψ(x) = lim
dx→0

−1

2π

1

dx2
|cµdx|1−β

2/8π−2π/β2

×Nµ

[
exp

(
−2πi

β
π(x)dx

)
cos

(
β

2
∂xϕ(x)dx

)
+exp

(
2πi

β
π(x)dx

)
cos

(
−β
2
∂xϕ(x)dx

)]
(A.50a)

= lim
dx→0

−1

2π

1

dx2
|cµdx|1−β

2/8π−2π/β2

×

[
2 +

{(
2πi

β

)2

π(x)2 −
(
β

2

)2

(∂xϕ(x))
2

}
(dx)2 +O

(
(dx)4

)]
(A.50b)

= lim
dx→0

|cµdx|1−β
2/8π−2π/β2

[
2π

β2
π(x)2 +

β2

8π
(∂xϕ)

2

]
, (A.50c)

where we neglected an irrelevant additive constant. Thus, at β = 2
√
π, we obtain

−ψi∂xγ1ψ =
1

2
π2 +

1

2
(∂xϕ)

2, (A.51)

which is Eq. (1.50) in the main text.

A.4.3 Bosonization of the chiral condensate

We finally obtain the bosonized form of the chiral condensate

ψ(x)ψ(x) = lim
y→x

ψ†
2(x)ψ1(y) + ψ†

1(x)ψ2(y). (A.52)

Using Eq. (A.31), the first term is evaluated as

lim
y→x

ψ†
2(x)ψ1(y) = lim

y→x

cµ

2π
eµ/4ϵ|cµ(x− y)|β

2/8π−2π/β2

×Nµ exp

{
−i2π

β

∫ y

x

dξ π(ξ)− i
β

2
(ϕ(y) + ϕ(x)) +O((x− y)2)

}
(A.53)

= lim
y→x

cµ

2π
|cµ(x− y)|β

2/8π−2π/β2

Nµ exp(−iβϕ(x)) (A.54)

Similarly, the second term is calculated as

lim
y→x

ψ†
1(x)ψ2(y) = lim

y→x

cµ

2π
|cµ(x− y)|β

2/8π−2π/β2

Nµ exp(iβϕ(x)). (A.55)

Hence, the chiral condensate is expressed by the scalar field as

ψ(x)ψ(x) = lim
y→x

eγ

2π
µ|cµ(x− y)|β

2/8π−2π/β2

Nµ cos(βϕ). (A.56)
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Note that the sign of the chiral condensate changes by the irrelevant shift

ψ′ = iγ5ψ, (A.57)

which corresponds to a change in the sign of the fermion mass. Therefore, by setting β = 2
√
π,

we obtain the bosonized form of the chiral condensate

ψψ = − eγ

2π
µNµ cos

(
2
√
πϕ
)
, (A.58)

which is Eq. (1.51) in the main text.
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[21] M.C. Bañuls, K. Cichy, K. Jansen and J.I. Cirac, The mass spectrum of the Schwinger
model with Matrix Product States, JHEP 11 (2013) 158 [1305.3765].

[22] B. Buyens, J. Haegeman, K. Van Acoleyen, H. Verschelde and F. Verstraete, Matrix
product states for gauge field theories, Phys. Rev. Lett. 113 (2014) 091601 [1312.6654].

[23] Y. Shimizu and Y. Kuramashi, Grassmann tensor renormalization group approach to
one-flavor lattice Schwinger model, Phys. Rev. D 90 (2014) 014508 [1403.0642].

[24] Y. Shimizu and Y. Kuramashi, Critical behavior of the lattice Schwinger model with a
topological term at θ = π using the Grassmann tensor renormalization group, Phys.
Rev. D 90 (2014) 074503 [1408.0897].

[25] B. Buyens, K. Van Acoleyen, J. Haegeman and F. Verstraete, Matrix product states for
Hamiltonian lattice gauge theories, PoS LATTICE2014 (2014) 308 [1411.0020].
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