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Abstract: The island rule provides the consistent method to tackle the black hole informa-

tion loss problem. Holographic derivation and replica wormhole derivation of the island rule

suggest that the quantum information inside a black hole can be extracted from an island

region through the Hawking radiation. We are interested in the operational procedure to

recover the black hole information from the Hawking radiation. Hayden and Preskill studied

the condition to succeed decoding of a quantum state thrown into a black hole by consider-

ing the black hole dynamics as a random matrix. Chandrasekaran and Levine studied the

Hayden-Preskill decoding protocol in another chaotic system, the SYK model. These two

models can be studied by the theoretical framework of quantum error correction, in which

the Petz recovery map is constructed as a general recovery map for a quantum noise channel

when the Knill-Laflamme condition is satisfied. We study properties of the Petz recovery

map in chaotic systems, such as the Hayden-Preskill setup for evaporating black holes and

the SYK model. Since these systems exhibit the phenomenon called scrambling, we expect

that the expression of the recovery channel R gets simplified, given by just the adjoint N †

of the original channel N which defines the time evolution of the states in the code subspace

embedded into the physical Hilbert space. We check this phenomenon in two examples. The

first one is the Hayden-Preskill setup described by Haar random unitaries. We compute the

relative entropy S(R [N [ρ]] ||ρ) and show that it vanishes when the decoupling is archived.

We further show that the simplified recovery map is equivalent to the protocol proposed by

Yoshida and Kitaev. The second example is the SYK model where the two-dimensional code

subspace is defined by an insertion of a fermionic operator, and the system is evolved by the

SYK Hamiltonian. We check the recovery phenomenon by relating some matrix elements

of an output density matrix ⟨T |R[N [ρ]] |T ′⟩ to Rényi-two modular flowed correlators, and

show that they coincide with the elements for the input density matrix with a small error

after twice the scrambling time. In this Ph.D thesis, we add the review of fundamental tools

and motivation to understand our paper, which contains the island rule, the Hayden-Preskill

decoding protocol, the theory of quantum error correction, the SYK model, the replica trick

calculation of modular flowed correlators in the SYK model.
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1 Introduction

The black hole information loss problem is one of the most important problems in theoretical

physics. It was proposed by S. W. Hawking in 1975. Hawking showed that a black hole has

finite temperature and evaporates emitting thermal radiation called Hawking radiation by

applying the perturbative quantum field theory (QFT) to the black hole. Although the black

hole is made of some astronomical object written by a pure quantum state, after the black

hole evaporates, only thermal radiation remains and it contradicts to quantum mechanics.

This is called black hole information loss problem. It means that the entanglement entropy of

Hawking radiation SR = − tr[ρR log ρR] remains finite quantity after the black hole evaporates

and disappears. Here, ρR is the density matrix of Hawking radiation. Against to this paradox,

D. N. Page proposed that since the whole state starts with a pure state |ψ⟩ and time evolves

with a unitary operator, the remaining radiation is written by a pure state ρR = U |ψ⟩ ⟨ψ|U †

and SR must become zero even if SR gradually increases in the radiation emitting process

since the entanglement between the radiation and the black hole becomes bigger and bigger.

This behavior that SR increases at first but starts to decrease at some time called the Page

time and becomes zero eventually is called the Page curve. The reason why the Hawking’s

calculation does not realize the Page curve is that it cannot deal with non-perturbative effects

in quantum gravity. It was not until the island rule[1–5] was discovered in 2019 that the

method to consider non-perturbative effects in the black hole physics is developed and we

become able to tackle the black hole information loss problem without contradictions. It has

been over 40 years since the Hawking’s proposal.

The black hole entropy was evaluated as SBH = A
4GN

by J. D. Bekenstein and S. W.

Hawking. Here, A is the area of the event horizon of the black hole andGN is Newton constant.

SBH is called the Bekentein-Hawking entropy. It is important that SBH is proportional to not

the black hole volume but the area of event horizon. It seems that the black hole microscopic

freedom exists on the surface of the black hole. From this interpretation, G. ’t Hooft and L.

Susskind proposed the holography principle, which suggests that quantum gravity is described

by the boundary QFT. A. Strominger and C. Vafa discovered that the black hole entropy

corresponds to the number of microstate in string theory. Soon after their proposal, the

famous example of the holography principle, the AdS/CFT correspondence was discovered by

J. Maldacena in 1997. It states that string theory, the strong candidate of quantum gravity,

in (d + 1)-dimensional anti de-Sitter (AdS) space has correspondence with d-dimensional

boundary conformal field theory (CFT). Here, string theory in the AdS space is called the

bulk theory comparing to the boundary theory. After Maldacena‘s paper, it was proppsed by

Gubser, Klebanov, Polyakov and E. Witten (GKP-Witten) that the partition function and

correlation functions in the bulk string theory and the boundary CFT is the same with an
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appropriate boundary condition. It makes non-pertubative calculations of quantum gravity

posssible. After the AdS/CFT correspondence was proposed, many important works which

solve CFT problems by calculation of the bulk gravity theory were provided, for example

the Ryu-Takayanagi formula and the Sakai-Sugimoto model. According to the AdS/CFT

correspondence, a black hole in AdS corresponds to the finite temperature boundary CFT,

and since CFT is a unitary quantum theory, it was believed that the black hole information

loss problem is solved by the AdS/CFT correspondence. However the concrete method to

tackle the black hole information loss problem was difficult to discover, so the island rule is

amazing and has a great impact in our study field of quantum gravity.

From here, we introduce briefly the story from the Ryu-Takayanagi’s holographic entan-

glement entropy formula to the East Coast model of the island rule. In 2006, S. Ryu and T.

Takayanagi showed that on some time slice, the entanglement entropy SA of subsystem A in

boundary CFT is evaluated by the area of a minimal surface in the AdS space as

SA = min
γA

Area(γA)

4GN
. (1.1)

Here, γA expresses a surface in the AdS bulk which ends on an A’s boundary ∂A. This

can be interpreted as an extent of the Bekentein-Hawking entropy SBH = A
4GN

. When the

space-time is dynamical, the RT formula is extended to the Hubeny-Rangamani-Takayanagi

(HRT) formula:

SA =
Area(γextA )

4GN
,

δArea

δγA

∣∣∣∣
γA=γ

ext
A

= 0 . (1.2)

By using the Ryu-Takayanagi (RT) formula, we can evaluate the entanglement entropy of

CFT by the gravitational calculation. Inversely, it is expected that quantum gravity in the

bulk can be studied by the entanglement of the boundary CFT. This motivation to reconstruct

the bulk theory by the entanglement of the boundary theory is called bulk reconstruction.

Especially, it is suggested that the bulk region reconstructed by the entanglement of region

A in CFT should be the entanglement wedge ΣA, which is surrounded by A and the minimal

surface γA. This is called entanglement wedge reconstruction. Here, if the whole state in

some time slice of CFT is a pure state, the entanglement entropy of A and Ā is the same:

SA = SĀ, so the minimal surface is the same: γA = γĀ. In this case the AdS bulk is divided

to two entanglement wedges ΣA,ΣĀ. The RT formula holds when the bulk gravity is classical:

GN → 0. Since we do not know quantum gravity completely, we consider classical gravity

and the bulk QFT as the contribution of G0
N semi-classically. According to the entanglement

wedge reconstruction, the RT formula including quantum corrections is

SA = min
γA

ext

[
Area(γA)

4GN
+ Sbulk(ΣA)

]
. (1.3)
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Here, Sbulk(ΣA) is the entanglement entropy of the region ΣA in the bulk QFT. We extremize

the quantity inside the square bracket, and choose the minimal value if we have multiple

extreme values. We can obtain the island rule by applying the RT formula including quantum

corrections to an evaporating black hole setup as

S(ρR) = min
I
ext

[
Area(∂I)

4GN
+ Sbulk(I ∪R)

]
(1.4)

where S(ρR) is the entanglement entropy of Hawking radiation and I is the island region. We

can interpret the island rule as the fact that the quantum information inside the black hole

escapes out through Hawking radiation, so it can be said that the black hole information loss

problem was partially solved because the Page curve of Hawking radiation is realized.

However, it still remains to be understood the precise way to recover a black hole interior

region from Hawking radiation. It has been realized that for this purpose, it is convenient to

regard the black hole interior as a code subspace embedded in the Hilbert space of Hawking

radiation as a quantum error correcting code [6–8]. For instance, the decoupling theorem

by Hayden and Preskill [6] implies that the black hole interior region is protected against

the erasure of black hole degrees of freedom, which assures the recovery. Once we regard an

evaporating black hole as a quantum error correcting (QEC) code, then the general argument

of QEC [9] tells us that the recovery is achieved by applying the Petz recovery map [10, 11].

In this paper, we study properties of the Petz recovery map in chaotic systems, such

as the Hayden-Preskill (HP) setup for evaporating black holes and the SYK model. Since

these systems exhibit the phenomenon called scrambling, we expect that the recovery channel

R gets simplified, given by just the adjoint N † of the original channel N which defines the

embedding of the black hole interior into the Hawking radiation. Therefore, schematically,

we have

R ∼ a N †, (1.5)

where a is some numerical factor depending on the dimensions of the Hilbert spaces of black

holes and Hawking radiation.

We will see this phenomenon in two examples. The first one is the Hayden-Preskill setup

where the dynamics of an evaporating black hole and Hawking radiation is described by Haar

random unitaries. We do this by computing the relative entropy S(R [N [ρ]] ||ρ) and show

that it is vanishing when the decoupling is archived. We further show that the simplified

recovery map is equivalent to the Yoshida-Kitaev protocol1. The second example is one of

the SYK model versions of the Hayden-Preskill setup, discussed in [14]2. In this setup, code

1This equivalence has not been directly shown, but such an equivalence is suggested by B. Yoshida in

[12, 13].
2In [15], the authors discuss another Hayden-Preskill setup in the SYK model, and their setup is different

from ours.
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information is expressed as excitations, and a system is evolved by the SYK Hamiltonian.

We check the recovery phenomenon by relating some elements of an output density matrix

⟨T |R[N [ρ]] |T ′⟩ to Rényi-two modular flowed correlators, and show that they give an input

density matrix ⟨T | ρ |T ′⟩ with small error after twice the scrambling time. However, there are

still remaining matrix elements, which we need to check, but it is difficult to evaluate them

directly. In an upcoming paper [16], we will give their direct evaluations. In this paper, we

do not evaluate them directly, but indirectly guess their expectations based on the result we

obtained.

We use the paper with Akihiro Miyata and Tomonori Ugajin in the abstract, Introduc-

tion, section 5, section 8, Conclusion and discussion, and Appendices C, D, E, F. We review

fundamental topics on our study in section 2, section 3, section 4, section 6, section 7, Ap-

pendices A, B. This Ph.D thesis is organized as follows. In section 2, we introduce Island

formula and explain the motivation of our study. In section 3, we review the Hayden-Preskill

decoding protocol and the Yoshida-Kitaev decoding protocol. In section 4, we review quan-

tum error correction and the Petz recovery map. In section 5, we start with introducing

a quantum channel induced by the Hayden-Preskill setup, and explain how we write down

the simplified recovery map in the original Hayden-Preskill setup, which is applicable to the

SYK case. We also explain a convenient notation to treat quantum channels induced by

the Hayden-Preskill setup, and in the notation, one can imagine gravitational interpretation

simply. In section 5.2, by using the convenient notation, we compute some relative entropies

to check the sufficiency that we can use the simplified recovery map as a recovery map. Also,

we show that the Yoshida-Kitaev protocol can be written as the recovery map. In section 6,

we review the fundamental topics of the SYK model. In section 7, we review the replica trick

calculation of modular flowed correlator in the SYK model proposed by Chandrasekaran and

Levine. In section 8, we explain one of the Hayden-Preskill setups using the SYK model, and

introduce a corresponding quantum channel. After that, we give the simplified recovery map,

and show that some matrix elements of output results can be written as “Rényi-two modular

flowed correlator”. By evaluating the “Rényi-two modular flowed correlators” analytically,

we show some matrix elements of output results by the simplified recovery map give desired

results. In section 8.3, from the previous section result we have computed, we estimate the

remaining matrix elements of output results, which we are evaluating. The details of the

remaining ones will be reported in the upcoming paper [16]. In section 9, we conclude this

paper with the discussion of our results and future directions. In appendix A, we review the

Uhlmann’s monotonicity theorem. In appendix B, we review JT graivty and Schwarzian ac-

tion. In appendix C, we give another derivation of the simplified recovery map using a Kraus

representation. In appendix D, we show the relation that holds for an EPR state, which is

used in section 5.2. In appendix E, conventions used in section 8 are listed. In appendix F,
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we show that, in the SYK version of the Hayden-Preskill setup, some recovery results can be

written as “Rényi-two modular flowed correlators”.
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2 Island rule and West Coast Paper

In this section, we introduce the island rule, which gives a motivation of our study. There are

two methods to realize the Page curve: the method of the entanglement wedge reconstruction

in the context of holography, and the method to average the randomness of microscopic

states in quantum gravity without holographic calculation. We call the former method the

East Coast model because it was developed by the Princeton team, and the latter method

the West Coast model because it was developed by the Stanford team. We introduce the

East Coast model in 2.1 and the West Coast model in 2.2. The calculation of the West Coast

model is essentially the same as the random matrix calculation, which we explain in 2.3 where

we also discuss the meaning of the Page curve. Finally, in 2.4, we explain the motivation of

our study.

2.1 Island rule (East Coast model)

We attach two non-gravitational heat baths (GN = 0) to both of two-sided AdS black hole’s

boundaries in order to collect Hawking radiation like figure 1. We can think of an AdS2 black

hole in JT gravity. We review JT gravity briefly in Appendix B. We can discuss a one-sided

black hole but here we consider the two-sided black hole. The whole pure state in some time

slice is given by

|Ψ⟩ = 1√
k

k∑

i=1

|ψi⟩AdS BH ⊗ |i⟩R . (2.1)

Here, total Hilbert space is Htot = HAdS BH ⊗ HR. |ψi⟩AdS BH ∈ HAdS BH expresses a

microstate of the AdS black hole and |i⟩R ∈ HR expresses a Hawking radiation state. HAdS BH

is defined on the boundary CFT holographically. Since the Hawking radiation and the black

hole make a pure state, if we write a state of the CFT corresponding to the black hole

ρCFT,BH , the entanglement entropy of Hawking radiation is evaluated as

S(ρR) = S(ρCFT,BH)

= min
γA

ext

[
Area(γA)

4GN
+ Sbulk(ΣA)

]

= min
I
ext

[
Area(∂I)

4GN
+ Sbulk(I ∪R)

]
(2.2)

The third line is the island formula. I in the third line is an island, which is a variable and

decided by extremizing and taking minimal value by this formula. In the second line, we

used the RT formula including quantum corrections. In the third line, we used the fact that

the RT surface of the black hole region in the CFT becomes the surface of the island, and

an entanglement wedge of the Hawking radiation and that of the black hole are complement
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|Ψ⟩

GN = 0 AdS BH (GN ̸= 0) GN = 0

Figure 1: Penrose diagram of the AdS black hole coupled to thermal baths for collecting

Hawking radiation. The red line expresses the whole quantum state |Ψ⟩ corresponding to

(2.1)

ΣA

γA
I

Figure 2: Left: Entanglement wedge of black hole. Blue dots express black hole microstates

in the boundary CFTs and red dots express the RT surfaces. Right: Entanglement wedge

of the Hawking radiation. An island region can appear in the AdS bulk.

with each other. See figure 2 for Penrose diagrams. In the East Coast model paper, it is

shown that the island region actually appears after the Page time using JT gravity.

2.2 West Coast model

In this section we review theWest Coast model [4] of the island rule, in which the entanglement

entropy is calculated by considering replica wormholes. The replica wormhole saddle is a key

point for realizing the Page curve. First, we consider the setup as a one-sided black hole with

an end of the world (EoW) brane. We can realize this situation by inserting an EoW brane

behind the horizon of a two-sided black hole. See figure 3 for the Lorentzian geometry and

the Euclidean path integral to prepare a Hartle-Hawking state with the EoW brane. We call

this Euclidean path integral, a gravitational path integral. In the original paper, this setup
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Euclidean

Figure 3: One-sided black hole coupled to an EoW brane. The blue line represents the EoW

behind the horizon. The left Penrose diagram is the Lorentzian geometry. The right diagram

represents the Euclidean gravitational path integral.

is made by Euclidean JT gravity coupled to the EoW brane. The action is

I = IJT + µ

∫

brane
ds . (2.3)

The pure JT gravity action is

IJT = −S0
2π

[
1

2

∫

M

√
gR+

∫

∂M

√
hK

]
− 1

2

∫

M

√
gϕ(R+ 2) +

∫

∂M

√
hϕK . (2.4)

On the AdS boundary, we impose an ordinary boundary condition to be asymptotic free:

ds2|∂M =
1

ϵ2
dτ2, ϕ =

1

ϵ
, ϵ→ 0 . (2.5)

On the EoW brane, we impose the following dynamical boundary condition:

∂nϕ = µ, K = 0 . (2.6)

The whole state is given by

|Ψ⟩ = 1√
k

k∑

i=1

|ψi⟩B ⊗ |i⟩R . (2.7)

Here, {|ψi⟩B} is the basis of the black hole system and {|i⟩R} is the basis of the Hawking

radiation system. {|i⟩R} is the orthogonal basis, but {|ψi⟩B} is not always orthogonal due

to gravitational effects. k is the dimension of the Hawking radiation system. The density

matrix of the Hawking radiation becomes

ρR = trB[|Ψ⟩ ⟨Ψ|]

=
1

k

k∑

i,j=1

|j⟩R ⟨i| ⟨ψi|ψj⟩B
(2.8)
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i

i

Z1

Figure 4: Gravitational path integral to calculate tr[ρR]. The EoW brane is the blue line.

j

i

Z1

j

i

Z1

j

i

j

i

Z2

Figure 5: Left: Hawking saddle. Right: Replica wormhole saddle.

If we take the trace of ρR to take average of randomness of gravitational microstates as in

figure 4,

tr[ρR] =
1

k

∑

i

⟨ψi|ψi⟩B

=
1

k
Z1

∑

i

δii

= Z1 .

(2.9)

Zn ∝ eSBH ·χ represents a gravitational path integral with the boundary condition which we

are considering. It comes from the topological term of JT gravity (2.4) and gives the Euler

character χ. See also Appendix B for the fundamental of JT gravity.

The average of ρR has only trivial Hawking saddle. On the other hand, the average of

ρnR (n ≥ 2) and SR have replica wormhole saddles in which the space-time is connected by

EoW branes. If we take average of ρ2R with figure 5,

tr
[
ρ2R
]
=

1

k2

k∑

i,j=1

⟨ψi|ψj⟩B ⟨ψj |ψi⟩B

=
1

k2


Z2

1

∑

i,j

δijδij + Z2

∑

i,j

δiiδjj




=
1

k2
(Z2

1k + Z2k
2)

(2.10)
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Here, Z1, Z2 = eSBH . After we normalize (2.10) with (tr[ρR])
2, we obtain

tr
[
ρ2R
]
=

1
k2
(Z2

1k + Z2k
2)

Z2
1

=
1

k
+
Z2

Z2
1

=
1

k
+ e−SBH =

{
1
k k ≪ eBH

e−SBH k ≫ eBH
.

(2.11)

Similarly, we can get the average of the entanglement entropy of the Hawking radiation

SR = S(ρR) with the replica trick:

SR =

{
log k k ≪ eBH

SBH k ≫ eBH
. (2.12)

We can realize the Page curve by this result.

2.3 Random matrix calculation

The West Coast model deals with the calculation of averaging randomness of gravitational

microstates. It is essentially the same as the quantum informational calculation with the

random matrix dynamics, which appears in the Hayden-Preskill decoding protocol. In this

subsection, we explain that the purely quantum informational calculation with the random

unitary matrix realizes the Page curve like the West Coast model. As we considered in

the last subsection, we divide the whole Hilbert space to the black hole and the Hawking

radiation: Htot = HBH ⊗ HR. We assume that dimension of each system is dimHBH ≡
dBH = eSBH , dimHR ≡ dR, respectively. Therefore the number of qubits is log dBH , log dR,

respectively. As the black hole evaporates, dBH decreases and dR increases. dR also decides

a time scale. The microscopic state of quantum gravity is given by

|Ψ⟩ = 1√
dBHdR

dBH∑

α=1

dR∑

i=1

Cαi |ψα⟩BH ⊗ |i⟩R . (2.13)

Here, Cαi is a dBH × dR-dimensional random matrix which represents the gravitational dy-

namics. We use the following Wick contraction-like rule to take average over the Gaussian

random matrix Cαi. Here we write the average of the product of less than four matrices,

but the average of the product of more than four matrices is defined similarly as the Wick

contraction.

CαiC
†
jβ = δαβδij (2.14)

CαiC
†
jβCγkC

†
mδ = CαiC

†
jβ · CγkC

†
mδ + CαiC

†
mδ · CγkC

†
jβ (2.15)

In (2.13), we set the normalization factor by imposing tr[ρR] = 1. We take average over Cαi to

evaluate physical quantities such as entanglement entropy. Let us calculate the entanglement
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dR = dBH
dR

S(ρR)

log dR log dBH

Figure 6: Initial growth of S(ρR) shows the Hawking’s result log dR. If we consider the

non-perturbative fluctuation from the randomness of the gravitational state, we realize the

Page curve log dBH . The vertical axis means S(ρR) in qubit numbers.

entropy SR = S(ρR) of the Hawking radiation. The density matrix of the Hawking radiation

is

ρR =
1

dRdBH

dR∑

i,j=1

dBH∑

α=1

CαiC
†
jα |i⟩R ⟨j| , (2.16)

and ρ2R is

ρ2R =
1

d2Rd
2
BH

dR∑

i,j,k=1

dBH∑

α,β=1

CαiC
†
jαCβjC

†
kβ |i⟩R ⟨k| . (2.17)

By taking average of tr
[
ρ2R
]
, we obtain

tr
[
ρ2R
]
=

1

d2Rd
2
BH

dR∑

i,j=1

dBH∑

α,β=1

CαiC
†
jαCβjC

†
iβ

=
1

dR
+

1

dBH
=

{
1
dR

dR ≪ dBH
1

dBH
dR ≫ dBH

.

(2.18)

We can calculate average of S(ρR) = − tr[ρR log ρR] = − limn→1 ∂ntr
[
ρnR
]
as

S(ρR) =

{
log dR dR ≪ dBH

log dBH dR ≫ dBH
. (2.19)

See figure 6 for this result. Hawking’s calculation tells only log dR growth, but we can

reproduce the Page curve behavior log dBH . We can see that the second term of (2.15)

makes a replica wormhole saddle. If we average ρR first, then we can consider only Hawking

saddle by (2.14). It is important to understand that if we consider two or more replicas
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like the calculation of the entanglement entropy or the Rényi-two entropy, the fluctuation

δρR in ρR = ρR + δρR cannot be ignored. The order of the fluctuation by the gravitational

randomness is O(e−SBH ), so it is initially small, but becomes large when the black hole

becomes small. Finally, we discuss the entanglement structure between the black hole and

the radiation. In early time, since there is little radiation, we cannot identify the quantum

information with ρR, i.e. ρR is a maximally mixed state IR
dR

. We find S(ρR) = log dR. However,

in late time, since the radiation system is larger than the black hole system, the radiation is

not maximally mixed. Gradually the quantum information seeps into the radiation system,

and eventually the whole information can be identified by the radiation, i.e. ρR becomes

a pure state. In late time, the black hole system becomes maximally mixed ρBH = IBH
dBH

.

Therefore, the entanglement entropy behaves as SR = SBH = SBH(ρBH) = log dBH and SR

decreases as dBH decreases.

2.4 Motivation of our study

The island rule papers elucidated that the quantum information of the black hole seeps out

through Hawking radiation, by the holographic calculation in the East Coast model and by

more abstract randomness calculation in the West Coast model. After the Page time, an

island region appears which is contained in the same entanglement wedge of the Hawking

radiation, so the black hole information can be extracted by the island through the Hawking

radiation. It provides the method to realize an information recovery scenario. We are strongly

interested in the problem whether the quantum information is actually contained in the

Hawking radiation and if so, how we can recover the original information with the Hawking

radiation operationally. We can solve this problem if we succeed to construct a decoder to

recover the original information by collecting the Hawking radiation and acting the decoder

to it. Hayden and Preskill discussed the condition to recover the quantum state thrown into

the black hole by acting some decoder to the Hawking radiation after the Page time. This

discussion provides the starting point of our study. In the next section, we introduce this

Hayden-Preskill thought experiment and the Yoshida-Kitaev decoder to realize the recovery.
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3 Hayden-Preskill decoding protocol and Yoshida-Kitaev decoding proto-

col

In this section, we review the Hayden-Preskill decoding protocol and the Yoshida-Kitaev

decoding protocol.

3.1 Hayden-Preskill decoding protocol

The Hayden-Preskill decoding protocol [6] is a purely quantum informational experiment that

deals with the black hole information loss problem. According to the island rule, quantum

information which consists of the black hole will be emitted through the Hawking radiation

after the Page time. Hayden-Preskill asked that how long does it take for Bob who sits away

from the black hole to catch the information that has been thrown into the black hole by

Alice after the Page time. The answer is that if the decoupling condition is satisfied, Bob

can catch the information immediately. If we think of a finite temperature black hole, Bob

has to wait for the scrambling time. The Hayden-Preskill setup deals with the black hole

dynamics as a random unitary gate. The motivation to consider the black hole dynamics as

a random matrix comes from the fast scrambling conjecture, which expects that the black

hole dynamics realizes the upper bound of the Lyapunov exponent, namely the chaos bound.

When the system realize the chaos bound, the chaos is realized in the scrambling time. The

random matrix dynamics is also considered to realize the chaos bound, so Hayden and Preskill

considered the random matrix dynamics as a toy model of the black hole dynamics. We will

review the setup of the thought experiment.

After the Page time, the black hole has emitted the half of the original black hole. We call

them the old black hole and the early radiation. They can be thought of making a Einstein

Podolsky Rosen brige, namely a EPR state.

|EPR⟩AB =
1√
dA

dA∑

i=1

|i⟩A |i⟩B (3.1)

The old black hole A is maximally entangled with the early radiation B. It is a high

temperature limit of a thermo-field-double (TFD) state. It can be thought of as an infinite

temperature black hole.

|TFD⟩AB =
1√
Zβ

∑

n

e−βEn/2 |n⟩A |n⟩B (3.2)

Here, Zβ is the partition function, Zβ =
∑

n e
−βEn .

Alice throws the quantum state |ψ⟩T into the old black hole. The density matrix is

ρT = |ψ⟩T ⟨ψ|. This state has the information of complex numbers ci.
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Figure 7: Left: |ΨCDB⟩, corresponding to eq.(3.4). Right: The state after the decoder is

acted.

|ψ⟩T =

dT∑

i=1

ci |i⟩ (3.3)

After the scrambling with a unitary operator U , we have the remaining black hole C and

the late radiation D. The state becomes

|Ψ⟩CDB = (UTA→CD ⊗ IB) |ψ⟩T ⊗ |EPR⟩AB (3.4)

The density matrix of |Ψ⟩CDB is ρCDB = |Ψ⟩CDB ⟨Ψ|. Bob can access to the radiation

DB, so we trace out the remaining black hole system C. The result state is ρDB = trC [ρCDB].

The successive process of throwing the state ρT to the black hole, scrambling with the random

unitary U and tracing out the remaining black hole is called the Hayden-Preskill noise channel,

which is stated as NT→DB.

NT→DB [ρT ] = ρDB (3.5)

The Hayden-Preskill decoding protocol asks the condition that there exists a recovery

map RDB→T which acts on the radiation DB and recovers the original state ρT .

RDB→T [ρDB] ≡ VDB→T ρDB V
†
DB→T = ρT (3.6)

VDB→T is called a decoder. Hayden-Preskill show that if the decoupling condition dT ≪
dD is satisfied, there exists a decoder and we succeed a recovery immediately. Figures of

|ΨCDB⟩ and the state after the decoder is acted are shown in figure 7.
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Figure 8: Hayden-Preskill state |ΨHP ⟩, corresponding to (3.7)

3.1.1 Decoupling condition

It is useful to introduce an additional system R called a reference system which is entangled

with the diary system T. In this setup, we obtain a Hayden-Preskill state |ψHP ⟩. We describe

the dynamics as a random unitary in this maximally chaotic situation. When we calculate

an entropy, we take average with a Haar measure of the random unitary matrix.

|ΨHP ⟩ = (IR ⊗ UTA→CD ⊗ IB) |EPR⟩RT ⊗ |EPR⟩AB (3.7)

|ΨHP ⟩ is shown in figure 8.

If we act ⟨ψ∗| to the R system, then we can reproduce |Ψ⟩CDB with some normalization.

Here, if we write |ψ⟩ =∑i ci |i⟩, we define ⟨ψ∗| =∑i ⟨i| ci as opposed to ⟨ψ| =∑i ⟨i| c∗i . The
reference system does not have the information of ci but is entangled with the diary system

T.

R ⟨ψ∗|ΨHP ⟩ =
1√
dT

(UTA→CD ⊗ IB) |ψ⟩T ⊗ |EPR⟩AB (3.8)

→ (UTA→CD ⊗ IB) |ψ⟩T ⊗ |EPR⟩AB = |Ψ⟩CDB (3.9)

The reference system R is maximally entangled with the diary system T. So, if R is

maximally entangled with the radiation system DB, T is maximally entangled with DB and

the information of the diary can be extracted by collecting the radiation DB. This situation

occurs if R is decoupled with C. This is the decoupling theorem.

The result of the decoupling theorem is stated as follows.

∥ρRC − ρR ⊗ ρC∥1 ≤
dT
dD

(3.10)

where ρRC , ρR, ρC are reduced density matrices:

ρRC = trDB [|ΨHP ⟩ ⟨ΨHP |] (3.11)

ρR = trCDB [|ΨHP ⟩ ⟨ΨHP |] (3.12)

ρC = trRDB [|ΨHP ⟩ ⟨ΨHP |] (3.13)
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The overline in (3.10) means average with the Haar measure.

∥ρRC − ρR ⊗ ρC∥1 =
∫
dU∥ρRC − ρR ⊗ ρC∥1 (3.14)

We use two norms ∥·∥1 and ∥·∥2, which are called the trace norm and the Hilbert-Schmidt

norm, respectively. They are examples of the Schatten p-norm.

∥M∥1 = tr
√
M †M (3.15)

∥M∥2 =
√

tr (M †M) (3.16)

where M is an arbitrary matrix. The two norms satisfy the following relation.

∥M∥2 ≤ ∥M∥1 ≤
√
d ∥M∥2 (3.17)

where d is the dimension of the Hilbert space that M acts.

By using this relation, (∥ρRC − ρR ⊗ ρC∥1)2 is bounded from above by the average of a

second Rényi entropy of ρRC .

(
∥ρRC − ρR ⊗ ρC∥1

)2
≤ ∥ρRC − ρR ⊗ ρC∥21
≤ dRdC∥ρRC − ρR ⊗ ρC∥22
= dRdCtr

[
ρ2RC

]
− 1

(3.18)

In the last line, we use the facts ρR ≈ IR
dR

and ρC ≈ IC
dC

. R and C are sufficiently smaller sys-

tems than the whole system, so they are maximally mixed. This can be proved by evaluating

the distance between the reduced density matrix and the maximally mixed state.

We can calculate the second Rényi entropy of ρRC

tr
[
ρ2RC

]
=

1

d2Td
2
A

∑
UCD,TAU

†
T ′A,C′DUC′D′,T ′A′U †

TA′,CD′ (3.19)

where the summation is taken over the indices of unitary matrices.

We use the Weingarten calculus to integrate over the Haar random unitary matrix U(d).

1 = 1 (3.20)

Ui1j1U
†
i2j2

=
1

d
δi1j2δj1i2 (3.21)

Ui1j1U
†
i2j2

Ui3j3U
†
i4j4

=
1

d2 − 1
(δi1j2δj1i2 · δi3j4δj3i4 + δi1j4δj1i4 · δi3j2δj3i2)

− 1

d (d2 − 1)
(δi1j2δj1i4 · δi3j4δj3i2 + δi1j4δj1i2 · δi3j2δj3i4) (3.22)
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The last line in (3.22) is an O( 1
d3
) subleading term, so in the large d limit we can ignore this

term.

Ui1j1U
†
i2j2

Ui3j3U
†
i4j4
≈ 1

d
δi1j2δj1i2 ·

1

d
δi3j4δj3i4 +

1

d
δi1j4δj1i4 ·

1

d
δi3j2δj3i2

= Ui1j1U
†
i2j2
· Ui3j3U †

i4j4
+ Ui1j1U

†
i4j4
· Ui3j3U †

i2j2
(3.23)

Then the Haar random average of the second Rényi entropy is

tr
[
ρ2RC

]
=

1

d2Td
2
A

∑
UCD,TAU

†
T ′A,C′DUC′D′,T ′A′U †

TA′,CD′

≈ 1

d2Td
2
A

∑(
UCD,TAU

†
T ′A,C′D · UC′D′,T ′A′U †

TA′,CD′ + UCD,TAU
†
TA′,CD′ · UC′D′,T ′A′U †

T ′A,C′D

)

=
1

d2Td
2
A

(dAdD + dTdC)

(3.24)

Using (3.18), we can evaluate the distance between ρRC and ρR ⊗ ρC as

(
∥ρRC − ρR ⊗ ρC∥1

)2
≤ dRdCtr

[
ρ2RC

]
− 1

=
dCdD
dTdA

+
d2C
d2A
− 1

=
d2C
d2A

=

(
dT
dD

)2

.

(3.25)

In the third line, we used that dimensions of both sides of unitary matrix U is the same, i.e.

dTdA = dCdD.

If the decoupling condition dT ≪ dD is satisfied, R and C decouple with each other and

there exists a recovery map. In the finite temperature case, dD has to be a bit more larger be-

cause the entanglement between the black hole system and the radiation system is weak and

a bit more time is needed to send information with the weak entanglement. The scrambling

time tscr ∼ β logSA is needed in the finite temperature black hole. In the infinite tempera-

ture limit, tscr becomes zero thanks to the strongest entanglement of the EPR pair. There

are several kinds of decoder that realize the recovery for the Hayden-Preskill noise channel.

Famous decoders are the Gao-Jafferis-Wall decoder[17] and the Yoshida-Kitaev decoder[18].

Gao-Jafferis-Wall uses unitary gates for the decoder and is known as a quantum teleportation

protocol by a traversable wormhole. Yoshida-Kitaev uses a projection measurement for its

decoder. It can also be thought of as a quantum teleportation using the projection. We

explain this Yoshida-Kitaev decodeing protocol in the following subsection.
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Figure 9: Left: Penrose diagram for showing a gravitational image of the HP protocol. We

throw the quantum state ρT into the black hole. Right: After the late radiation is emitted

sufficiently, R becomes maximally entangled with the radiation systems.

3.1.2 Gravitational image of Hayden-Preskill decoupling discussion

We show a gravitational image of the HP protocol by illustrating the Penrose diagram (figure

9). After the gravitational collapse, a black hole space-time and a Minkowski flat space-time

emerge. First, the whole quantum state Ψ is divided to an old black hole state |ψ⟩BH ∈ HA
and an early Hawking radiation state |i⟩R ∈ HB. We consider the situation of the infinite

temperature after the Page time, so they make an EPR state. We throw the diary state

ρT which makes an EPR pair with the reference system R into the black hole. After time

evolution with the black hole’s random dynamics, which we consider the random unitary

dynamics in this section, if the late radiation is emitted sufficiently, the reference system R

becomes maximally entangled with the radiation systems DB and we can collect the quantum

information of the original diary state ρT . More realistically, the old black hole and the early

radiation should make a TFD state in finite temperature and there should be a more concrete

bulk picture. We can overcome these requests by considering the SYK model, which we study

in the latter part of this Ph.D. thesis.

3.2 Yoshida-Kitaev decoding protocol

In this subsection, we introduce the Yoshida-Kitaev decoding protocol[18], which is well known

as the concrete decoder for the Haydne-Preskill noise channel. First, we explain the property

of a decoder using the reference system. We act a decoder VDB→C̄R̄ to the Hayden-Preskill

state |ΨHP ⟩ (See eq. (3.7)) in order to make the state VDB→C̄R̄ |ΨHP ⟩. See figure 10. As

we comment in the previous section, the reference system R contains the information of the
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Figure 10: The state VDB |ΨHP ⟩ after some decoder acted on the Hayden-Preskill state

|ΨHP ⟩

system T in the way that R is maximally entangled with T . In other words, R is the system

before the diary state acts: R ⟨ψ∗|EPR⟩RT = 1√
dT
|ψ⟩T ∼ |ψ⟩T .

After acting a decoder to the radiation systemsD,B, if R and R̄ are maximally entangled,

i.e.

VDB |ΨHP ⟩ = |EPR⟩RR̄ ⊗ |φ⟩CC̄ , (3.26)

then it can be said that the information of T is successfully teleported to R̄. Here, |φ⟩CC̄ is

an arbitrary state on CC̄. The teleportation succeeds if R and R̄ make an EPR state and

then the original state can be recovered on R̄:

R⟨ψ∗|EPR⟩RR̄ =
1√
dR
|ψ⟩R̄ ∼ |ψ⟩R̄ . (3.27)

Yoshida and Kitaev said that the decoder in the figure 11 satisfies the property (3.26) and

can be used as the decoder for the Hayden-Preskill noise channel. We call this decoder the

Yoshida-Kitaev decoder.

The Yoshida-Kitaev decoder can be constructed by the following process:

1. Bob, who tries to decode the original state which Alice threw into the black hole knows

that the black hole dynamics is random unitary and can prepare the EPR pair |EPR⟩T̄ R̄
of variable number of qubits. Bob acts the state (ID⊗U∗

D̄C̄→BT̄
⊗IR̄) |EPR⟩T̄ R̄ to |ΨHP ⟩

and makes

|Ψin⟩ = (IRC ⊗ ID ⊗ U∗
D̄C̄→BT̄ ⊗ IR̄) |ΨHP ⟩ ⊗ |EPR⟩T̄ R̄ . (3.28)

Here, U∗, the complex conjugate of U , physically means the reverse time evolution.

2. Bob carries out the projection measurement on D, D̄. The projection measurement is

realized by the projection operator PD = |EPR⟩DD̄ ⟨EPR| ⊗ IC̄R̄. The outcome state is

∣∣Ψ′
out

〉
=

1√
Pout

(IRC ⊗ PD) |Ψin⟩ (3.29)
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Figure 12: The probability Pout of getting |Ψ′
out⟩ by the projection measurement PD =

|EPR⟩DD̄ ⟨EPR| ⊗ IC̄R̄

Here, Pout is the probability of getting |Ψ′
out⟩ and represented in the figure 12. |Ψ′

out⟩
differs from |Ψout⟩ by just |EPR⟩DD̄. However, since DD̄ ⟨EPR|EPR⟩DD̄ = 1, we need

not mind this in the following calculation.

We show that the Yoshida-Kitaev decoder can be used as a decoder, which realizes a

recovery map by showing that we can express

|Ψout⟩ = |EPR⟩RR̄ ⊗ |φ⟩CC̄ . (3.30)
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We can show this by guaranteeing that the fidelity between |Ψout⟩ and |EPR⟩RR̄ becomes

1. C, C̄ can be contracted naturally. We define the projection measurement on R, R̄ as

PR = |EPR⟩RR̄ ⟨EPR|. The fidelity is calculated as follows:

F (|Ψout⟩ , |EPR⟩RR̄) = ⟨Ψout|PR |Ψout⟩
=
〈
Ψ′
out

∣∣PR
∣∣Ψ′

out

〉

=
⟨Ψin|PR(IRC ⊗ PD) |Ψin⟩

Pout

≥ ⟨Ψin|EPR⟩RCD ⟨EPR|Ψin⟩
Pout

=
1

dRdAPout

=
1

dRdC tr
[
ρ2RC

]

→ 1

1 +
(
dT
dD

)2

(3.31)

In the fourth line, we used PR(IRC⊗PD) = PR⊗ (PC+P⊥
C )⊗PD. Here, P⊥

C is the projection

measurement orthogonal to PC = |EPR⟩CC̄ ⟨EPR|. Note that the projection measurements

PC , P
⊥
C are both positive operators. The arrow in the last line expresses carrying out the

Haar random average. If the decoupling condition dT ≪ dD is satisfied, the fidelity becomes

close to 1, successfully.

We discuss the meaning of the Yoshida-Kitaev decoding protocol here. Why the EPR pair

appears on R, R̄ by the projection measurement on D, D̄ ? Let us think of the entanglement

structure in the state before the projection measurement on D, D̄. Since the decoupling

condition is satisfied if sufficient late Hawking radiation has been emitted, R is decoupled by

C, so R is entangled with D, D̄, C̄, R̄. In the same manner, since the dynamics of U∗ also

satisfies the decoupling condition, which means the time-scale around the Page time, R̄ is

decoupled by C̄ and is entangled with R,C,D, D̄. Since C and C̄ are the systems which are

decoupled by the whole system, so C and C̄ make a maximal entanglement structure with

each other. Therefore, R,D, D̄, D̄ make a maximal entanglement structure in themselves.

In this situation, the maximal entanglement structure is imposed to D, D̄ by the projection

measurement onD, D̄. Thus R and Rmust make a maximal entanglement structure with each

other, so an EPR pair on R, R̄ is realized. Thinking of the Yoshida-Kitaev protocol as a two-

sided black hole, the EPR pair means infinite temperature of Hartle-Hawking like TFD state.

We can interpret that if the entanglement between two-sided black hole is too strong like the

EPR, then the black hole realizes a traversable wormhole and a quantum teleportation from

one side to the other realizes. We discuss the relation between the Yoshida-Kitaev protocol

and the quantum teleportation in the next subsection.
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3.2.1 Relation with quantum teleportation

Finally, we introduce quantum teleportation and explain that the Yoshida-Kitaev protocol

can be interpreted as quantum teleportation. Quantum teleportation is the protocol to send

a quantum state |ψ⟩T which Alice possesses to Bob using the quantum entanglement of a

EPR state which is shared by Alice and Bob. The algorithm is as follows:

1. In its setup, Alice has a quantum state |ψ⟩T = ψ(0) |0⟩T + ψ(1) |1⟩T to send to Bob.

2. Alice (A) and Bob (B) share an EPR state |EPR⟩AB so they are maximally entangled.

The whole state can be expressed as

|ψ⟩T |EPR⟩AB =
1

2

[
|1⟩TA ⊗ (ψ(0) |0⟩B + ψ(1) |1⟩B)

+ |x⟩TA ⊗ (ψ(0) |1⟩B + ψ(1) |0⟩B)
+ |y⟩TA ⊗ (ψ(0) |1⟩B − ψ(1) |0⟩B)

+ |z⟩TA ⊗ (ψ(0) |0⟩B − ψ(1) |1⟩B)
]

=
1

2
√
2

∑

i=1,x,y,z

|i⟩TA ⊗ σ−1
i |ψ⟩B .

(3.32)

|1⟩TA , |x⟩TA , |y⟩TA , |z⟩TA are Bell states on TA:

|1⟩TA =
1√
2
(|0⟩T |0⟩A + |1⟩T |1⟩A)

|x⟩TA =
1√
2
(|0⟩T |1⟩A + |1⟩T |0⟩A)

|y⟩TA =
1√
2
(|0⟩T |1⟩A − |1⟩T |0⟩A)

|z⟩TA =
1√
2
(|0⟩T |0⟩A − |1⟩T |1⟩A) ,

(3.33)

and they are made by |ψ⟩B = ψ(0) |0⟩B + ψ(1) |1⟩B by unitary operators I, σx, iσy =

σzσx, σz, respectively. We write these {σi}. These four operations make the Klein four

group which is isomorphic to discrete components of the Lorentz group I, T, P, TP .

3. Alice carries out a Bell state measurement on TA. It measures which of the Bell states

{|1⟩TA , |x⟩TA , |y⟩TA , |z⟩TA} the state on TA is. After this measurement, Bob’s state

is decided to some |ψi⟩B ≡ σ−1
i |ψ⟩B.

4. Alice sends the result of the measurement classically to Bob.

5. Bob acts σi to |ψi⟩B depending on the measurement result received from Alice in order

to recover |ψ⟩ on B.
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This algorithm is made of local quantum operation (LO) and non-local classical communica-

tion (CC), which is called LOCC. Next, we try the same algorithm when T makes an EPR

pair with the reference system R. Since the whole state can be written as

|EPR⟩RT ⊗ |EPR⟩AB =
1√
2

∑

i

|i⟩R ⊗ (|i⟩T |EPR⟩AB)

=
1√
2

∑

i

|i⟩R ⊗


1

2

∑

j

|j⟩TA ⊗ σ−1
j |i⟩B


 ,

(3.34)

by carrying out the projection measurement on TA, the whole state becomes

1√
2

∑

i

|i⟩R ⊗
(
1

2
|j⟩TA ⊗ σ−1

j |i⟩
)
. (3.35)

After receiving the information of j from Alice, Bob acts unitary σj to make the state
(

1√
2

∑

i

|i⟩R ⊗ |i⟩B

)
⊗ 1

2
|j⟩TA . (3.36)

By the projection measurement on TA, we realize an EPR state on RB. This is the similar

situation as the YK protocol.

In the ordinary quantum teleportation algorithm above, Alice checks the result of the

measurement and send it to Bob classically. This can be expressed with only quantum

operations. We introduce the algorithm below:

1. Alice has |ψ⟩T , one side of |EPR⟩AB and two ancilla qubits |0⟩MA
= |00⟩. The initial

state can be written as

|Ψ0⟩ = |ψ⟩T ⊗ |EPR⟩AB ⊗ |0⟩MA

=
1

2
√
2

∑

i

|i⟩TA ⊗ |0⟩MA
⊗ σ−1

i |ψ⟩B .
(3.37)

2. Alice makes an interaction between TA and MA to make the state

|Ψ1⟩ =MA |Ψ0⟩ =
1

2
√
2

∑

i

|i⟩TA ⊗ |i⟩MA
⊗ σ−1

i |ψ⟩B . (3.38)

3. Bob also prepares two ancilla qubits |0⟩MB
= |00⟩. If Bob has the state |Φ0⟩B, the

initial state of Bob becomes

|Φ⟩B = |Φ0⟩B ⊗ |0⟩MB
. (3.39)

Bob makes the rule to act a decoder to |Φ⟩B as

ΣB |Φ⟩B =
∑

j

ZjB |Φ0⟩B ⊗ |j⟩MB
, (3.40)

where ZjB is set to be ZjB = σj .
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4. Bob acts the decoder to |Ψ1⟩. The whole state becomes

|Ψ2⟩ = (ITAMA
⊗ ΣB) |Ψ1⟩

=
1

2
√
2

∑

i

|i⟩TA |i⟩MA
⊗


∑

j

ZjBσ
−1
i |ψ⟩B ⊗ |j⟩MB




=
1

2
√
2

∑

ij

|i⟩MA
|j⟩MB

⊗
(
σjσ

−1
i |ψ⟩B

)
⊗ |i⟩TA .

(3.41)

5. Finally, we post select to the EPR on MAMB, which means acting the projection

operator |EPR⟩MAMB
⟨EPR|. Since |EPR⟩MAMB

= 1
2

∑
k=1,x,y,z |k⟩MA

|k⟩MB
, the final

state is obtained as

|Ψ3⟩ = |EPR⟩MAMB
⟨EPR|Ψ2⟩

=
1

8
√
2

∑

k

|k⟩MA
|k⟩MB

⊗ σkσ−1
k |ψ⟩B |k⟩TA

=
1

8
√
2

∑

k

|k⟩MA
|k⟩MB

|k⟩TA ⊗ |ψ⟩B .

(3.42)

Bob succeeds to get |ψ⟩B.

The situation that the original state can be sent to distant place by a post-selection of the

projection measurement is the same as the Yoshida-Kitaev decoding protocol. That is why

the YK protocol is explained as a quantum teleportation.
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4 Quantum Error Correction and Petz recovery map

The Hayden-Preskill decoding protocol can be reconsidered by the theory of quantum error

correction(QEC). The Hayden-Preskill noise channelNT→DB is one kind of the quantum noise

channel which attaches an EPR pair to the original state, then time evolves with a random

unitary gate and traces out the remaining black hole system. The decoupling condition can be

interpreted as a special form of the quantum error correction condition. If the QEC conditon

is satisfied, there exists a recovery map which is realized as a decoder. In the theory of QEC,

if the QEC condition is satisfied, we can constitute the Petz recovery map in general. We

show that the Yoshida-Kitaev decoder is one kind of Petz recovery map in the next section.

In this section, we introduce the basic idea of the QEC theory, quantum noise channel and

quantum error correction. Then we explain the QEC condition and the Petz recovery map

in detail.

4.1 Quantum noise channel

First, we introduce a quantum noise channel N .

Definition 1 (Quantum noise channel). Let H and K are finite dimensional Hilbert spaces.

Let B(H) is a set of operators which act to the Hilbert space H. A quantum noise channel N :

B(H)→ B(K) (ρ 7→ N [ρ]) is defined as a linear map which satisfies complete positive(CP)

and trace preserving(TP). (CP): If ρ is a positive operator(ρ ∈ B(H), ∀ |ψ⟩ ∈ H, ⟨ψ| ρ |ψ⟩ ≥
0), N [ρ] is also a positive operator. (TP): tr[ρ] = tr[N [ρ]]. We call that kind of the linear

map as a CPTP map.

The CPTP map contains operations such as unitary operators, a measument, attaching

to some environment, tracing out a environment and so on. Then we introduce the adjoint

channel of N as follows.

Definition 2 (Adjoint channel). Let N a quantum noise channel. Let O ∈ B(K). The

adjoint channel N † : B(K)→ B(H) is defined as a linear map which satisfies the following.

trK[N [ρ]O] = trH[ρN †[O]].

It is easy to show that N † is also a CPTP map.

There are two equivalent representations for a quantum noise channel. They are called

the Stinespring dilation theorem and the Kraus representation.
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4.1.1 Stinespring dilation and Kraus representation

Theorem 1 (Stinespring dilation theorem). For any quantum channel N : B(H)→ B(K), if
we prepare environment Henv of appropriate dimensions and some operator ρenv ∈ B(Henv),
there exists some unitary U ∈ B(H⊗Henv) and N can be expressed as follows:

N [ρ] = trenv′ [U(ρ⊗ ρenv)U †] (4.1)

This theorem tells that the CPTP map can be interpreted as a unitary evolution if

we attach an appropriate environment to the state which we consider. The quantum noise

channel is also expressed as the Kraus representation as follows and this expression is usually

more convenient in the theory of QEC.

Theorem 2 (Kraus representation). For any quantum channel N : B(H) → B(K), there

exists the Kraus operators {Ei}1≤i≤dimH ∈ B(H) and N can be expressed as follows:

N [ρ] =
∑

i

EiρE
†
i (4.2)

When N is TP, the Kraus operators satisfy the following relation

∑

i

E†
iEi = I (4.3)

The last relation is satisfied because

tr[N [ρ]] = tr

[∑

i

EiρE
†
i

]
= tr

[∑

i

E†
iEiρ

]
. (4.4)

Here we check that the Kraus representation is satisfied if we assume the Stinespring

dilation theorem. We set the state in the environment ρenv = |e0⟩env ⟨e0|. We can assume

this without loss of generality because any mixed state can be purified by considering an

appropriate dimensional environment. Then we can construct the Kraus operators in the

following way. See also figure 13.

N [ρ] = trenv′ [U(ρ⊗ ρenv)U †] (4.5)

=

denv′∑

i=1

env′ ⟨ei|U |e0⟩env ρ env ⟨e0|U † |ei⟩env′ (4.6)

=

denv′∑

i=1

EiρE
†
i (4.7)
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U

ρ

N [ρ]

ρenv

trace out

Figure 13: Stinespring dilation theorem can be represented as the form of Kraus represen-

tation.

Let (uij) a unitary matrix. If we act uij to the Kraus operator Ei, then the result

Fj ≡
∑

iEiuij is also the Kraus operator. There is a unitary arbitrariness in the Kraus

operators.

∑

j

FjρF
†
j =

∑

ijk

Eiuijρu
†
jkE

†
k

=
∑

i

EiρE
†
i

= N [ρ]

(4.8)

We review the adjoint of Kraus operator here.

trK [N [ρ]O] = trK

[∑

i

EiρE
†
iO
]

=
∑

i

trH

[
ρE†

iOEi
]

= trH

[
ρ
∑

i

E†
iOEi

]

= trH

[
ρN †[O]

]

(4.9)

So we conclude that the adjoint channel is represented by the Kraus operator as follows.

N †[O] =
∑

i

E†
iOEi (4.10)

4.2 Quantum error correction

In this subsection, we explain the motivation of the theory of quauntum error correction(QEC)

and the simplest example of QEC[19]. When we consider a quantum computation process
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or a quantum communication, quantum states are exposed to quantum errors such as bit

flip error and erasure error and so on. We should construct the theory where the method to

correct the state and recover the original state. That is the main motivation of the theory

of QEC. We reviewed the quantum noise in the previous subsection. In this subsection we

consider the condition where there exists a recovery map R : B(K) → B(H) which satisifies

R[N [ρ]] = ρ after some quantum noise N acts on the initial state ρ. That condition is

called the quantum error correction condition(QEC condition). We also study the method

to construct the recovery map which recovers the origianal state ρ. The Hayden-Preskill’s

decoupling condition is interpreted as a QEC condition where the noise channel is the Hayden-

Preskill noise channel. First we review the quantum error correcting code(QEC code). If we

add redundancy to the original state by some encoding method like adding redundant logical

qubits, it becomes easy to recover the original state. We explain the simplest example here.

The original state is |ψ⟩ = a |0⟩ + b |1⟩ and we assume a bit flip error which causes a bit

flip with a probability p > 0. Without adding any redundancy by the QEC coding, the

expectation that the result state is a |0⟩ + b |1⟩ is wrong with the probability p. Then we

embed the code subspace Hcode in which the original state |ψ⟩ = a |0⟩+ b |1⟩ lives to a three

qubit Hilbert space Hphysical and identify a |0⟩+ b |1⟩ with a |0L⟩+ b |1L⟩. Here we identify |0⟩
and |1⟩ to |0L⟩ = |000⟩ and |1L⟩ = |111⟩. We write the embedding map V = Vcode→physical.

Let us consider whether we succeed to recover a |0L⟩+b |1L⟩ = a |000⟩+b |111⟩ with a recovery

map R after the bit flip error to one qubit. The answer is that we can recover the original

state by a error detection and a recovery. The error detection is succeeded with the following

projection operators:

P0 ≡ |000⟩ ⟨000|+ |111⟩ ⟨111| (4.11)

P1 ≡ |100⟩ ⟨100|+ |011⟩ ⟨011| (4.12)

P2 ≡ |010⟩ ⟨010|+ |101⟩ ⟨101| (4.13)

P3 ≡ |001⟩ ⟨001|+ |110⟩ ⟨110| (4.14)

Suppose for example that a bit flip occurs on the second qubit. Then the result becomes

N [V [ρ]] = a |010⟩ + b |101⟩ ≡ |ψerror⟩. In this case, ⟨ψerror|P2 |ψerror⟩ = 1 and the other

measurements lead to 0. We can successfully detect the error with the four projection mea-

surements. Then we can recover the original physical state a |0L⟩ + b |1L⟩ with the recovery

map of the bit flip operation to the second qubit and finally recover |ψ⟩ = a |0⟩+ b |1⟩ with a

decoding map V †. Here we point out that we can recover |ψ⟩ without any information of a

and b. The above method can recover one or fewer bit flip error but we cannot recover two or

more bit flip error. The probability of two or more bit flip is pe = (1− p)3 +3p(1− p)2 and if

p < 1
2 then pe < p, so the probability of making wrong expectation becomes smaller with the

QEC code. The process from the encoding to the decoding is summarized as the following
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|ψ⟩ |ψ⟩ |ψ⟩
V N R

Hcode

Hphysical

Figure 14: The process of the encoding map V to the physical Hilbert space, a noise channel

N and a recovery map R. We recover |ψ⟩ with the decoding map V †.

equation:

V † [R [N [V [ρ]]]] = ρ , R ◦N = I (4.15)

Here, V is an isometry, satisfying V †V = I. See also the following picture (figure14).

In the above example, we consider the method made of the projection measurement and

the recovery. However we can construct a recovery map without checking the result of the

projection measurement. Suppose that Ui is a recovery unitary operator corresponding to

a projection Pi and |i⟩ is an ancilla state. Then in the following equation, W becomes a

recovery map.

W |ψerror⟩ ≡ U |ψerror⟩ |0⟩ ≡
∑

i

(UiPi |ψerror⟩) |i⟩ (4.16)

Here, U is unitary and W is an isometry(W †W = I).

⟨ψ1|W †W |ψ2⟩ =
∑

ij

⟨ψ1| ⟨i|P †
i U

†
i UjPj |ψ2⟩ |j⟩

=
∑

i

⟨ψ1|P †
i Pi |ψ2⟩

=
∑

i

⟨ψ1|Pi |ψ2⟩

= ⟨ψ1|ψ2⟩

(4.17)

See also figure 15 for the diagram corresponding to (4.17).

The encoding map V and the noise channel N must satisfy the QEC condition for the

existence of a recovery map R. There are several forms of QEC conditions. We introduce two

famous equivalent forms, the Knill-Laflamme conditon and the sufficiency condition. (We call

the sufficiency condition just like sufficiency in later discussion.)
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|ψerror⟩

|ψ⟩

W ≡

|ψerror⟩

|ψ⟩

|0⟩

U ≡ ∑
i

( )

|ψerror⟩

Pi

Ui

|i⟩

Figure 15: diagram of equation (4.17)

4.2.1 QEC conditon(Knill-Laflamme condition)

Theorem 3 (Knill-Laflamme condition[20]). For all quantum state ρ ∈ B(Hcode), when a

quantum channel N : B(Hcode)→ B(K) is expressed with Kraus operators {Ei}

N [ρ] =
∑

i

EiρE
†
i ,

then the necessary and sufficient condition that there exists a recovery map R : B(K) →
B(Hcode) such that R[N [ρ]] = ρ is that the Kraus operators satisfy the following Knill-

Laflamme condition:

PcodeE
†
iEjPcode = αijPcode (4.18)

Here, Pcode is a projection operator to a code subspace. (αij) is some Hermitian matrix. When

the Knill-Laflamme condition is satisfied, we call errors {Ei} correctable errors.

Proof. ←) First, we show that if we assume the Knill-Laflamme condition, we can construct

a recovery map R. α is a Hermitian matrix, so it can be diagonalized to d = u†αu where u is

some unitary matrix. If we use this unitary u and make operators Fk ≡
∑

iEiuik, the adjoint

operators satisfy F †
k =

∑
i u

†
kiE

†
i . We showed that {Fi} can also be used as Kraus operators,

which are equivalent to {Ei}. We get a simpler diagonalized form of the Knill-Laflamme

condition by using {Fi}.

PcodeF
†
kFlPcode =

∑

ij

u†kiujlPcodeE
†
iEjPcode

=
∑

ij

u†kiαijujlPcode

= dklPcode

(4.19)
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Then we consider the operational meaning of Fk. From a polar decomposition3, FkPcode

is decomposed as the following.

FkPcode = Uk

√
PcodeF

†
kFkPcode

=
√
dkkUkPcode

=
√
dkkUkPcodeU

†
kUk

=
√
dkkPkUk

(4.21)

Here, we difine Pk as

Pk ≡ UkPcodeU †
k =

1√
dkk

FkPcodeU
†
k (4.22)

Pk is a projection operator because P †
k = Pk and P 2

k = Pk are satisfied, so {Pk} satisfy∑
k Pk = I. From calculation 4.21, we can interpret Fk as an operator which rotates a state

|ψ⟩ = √ρ ∈ Hcode to Uk |ψ⟩ ∈ Hphysical and projects to the subspace Hk corresponding to

each noise Fk by using the projection operator Pk.

Fk |ψ⟩ =
√
dkkPkUk |ψ⟩ ∈ Hk (4.23)

We see that subspaces {Hk} do not have overlap with each other.

PkPl = P †
kPl =

UkPcodeF
†
kFlPcodeUl√
dkkdll

= 0 (4.24)

We see that if N acts to ρ, the state will go to some subspace Hk corresponding to the label

k which has no overlap with the other subspaces.

Rather, we can recover the original state ρ by constructing a recovery map in the following

way. The essence is returning by U †
k to the original code subspace Hcode. For O ∈ B(K),

suppose a recovery map R : B(K)→ B(H):

R[O] ≡
∑

k

U †
kPkOPkUk (4.25)

3From the polar decomposition, any linear operator A is decomposed by using a unitary operator U and

positive operators J,K as follows:

A = UJ = KU (4.20)

Here, J and K are defined as J =
√
A†A, K =

√
AA†. We call UJ and KU , left polar decomposition and

right polar decomposition, respectively.
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Then we can show that we recover ρ by this recovery map.

R[N [ρ]] =
∑

kl

U †
kPkFlρF

†
l PkUk

=
∑

kl

U †
kP

†
kFlPcodeρPcodeF

†
l PkUk

=
1

dkk

∑

kl

U †
kUkPcodeF

†
kFlPcodeρPcodeF

†
l FkPcodeU

†
kUk

=
1

dkk

∑

kl

dkkδklρdkkδkl

=
∑

l

dllρ

= ρ

(4.26)

In the third line, we used P †
k = 1√

dkk
UkPcodeF

†
k . In the fourth line, we use the Knill-Laflamme

condition. In the final line, we use the fact4 that
∑

l dll =
∑

l pl = 1. Here we define pl as the

diagonal element of d.

→) Next, we show that if a recovery map exists, the noise channel N and its Kraus operators

satisfy the Knill-Laflamme condition. Suppose ρ ∈ B(Hcode), then

N [ρ] = N [PcodeρPcode] (4.28)

Since a recovery map exists,

R[N [ρ]] = PcodeρPcode (4.29)

Since R is a CPTP map, it can be expressed with the Kraus operators and satisfies the TP

relation.

R[O] =
∑

i

RiOR†
i ,

∑

i

R†
iRi = I (4.30)

In the Kraus representation, equation (4.29) becomes

∑

ij

RjEiPcodeρPcodeE
†
iR

†
j = PcodeρPcode (4.31)

Then we get the equations as follows:

RjEiPcode = cjiPcode , PcodeE
†
iR

†
k = c†ikPcode (4.32)

4Since N satisfies TP, by using (4.21),

Pcode =
∑
i

PcodeF
†
i FiPcode =

∑
i

piPcode (4.27)

is satisfied and so we conclude
∑
i pi = 1.
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From these equations,

∑

k

PcodeE
†
iR

†
kRkEjPcode =

∑

k

c†ikckjPcode (4.33)

By using the TP relation of the recovery map
∑

k R
†
kRk = I in the left hand side of the last

equation, we get

PcodeE
†
iEjPcode = (c† c)ijPcode

= αijPcode
(4.34)

We write α = c† c and this matrix is an Hermitian matrix. In the end, we derived the

Knill-Laflamme condition(eq.(4.34)).

4.2.2 Sufficiency

Another form of the QEC condition is sufficiency[21], which is equivalent to the Knill-

Laflamme condition. We give the statement of the theorem without proof. See also appendixA

for more detailed discussion on the relative entropy and sufficiency.

Theorem 4 (Sufficiency[21]). For all quantum state ρ , σ ∈ B(Hcode), the necessary and suf-

ficient condition that there exists a recovery map R : B(K)→ B(Hcode) such that R[N [ρ]] = ρ

is that the relative entropy between ρ and σ satisfies the following equation(sufficiency):

S(ρ||σ) = S(N [ρ] || N [σ]) (4.35)

Here, the relative entropy between ρ and σ is defined as

S(ρ||σ) = tr[ρ(log ρ− log σ)] (4.36)

When the above equation is satisfied, N constructs so-called ”sufficient algebra”.

S(ρ||σ) ≥ 0 defines the distance between the quantum information ρ and σ. It is a

quantum extension of the classical relative entropy:

S(p, q) =
∑

i

pi(log pi − log qi) (4.37)

Here, p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) are probability distributions. H. Umegagi

made great progress in applying operator algebra to the relative entropy and construct the

theory of quantum relative entropy[11], which is the fundamental of quantum information

theory especially in continuous, infinite dimensional quantum information theory. When ρ

and σ are close to each other, the relative entropy comes down to the Fisher information.

– 34 –



According to the Uhlmann’s monotonicity theorem [21](See also appendix A), for the

CPTP map N , the relative entropy S(ρ||σ) monotonically decreases in general:

S(ρ||σ) ≥ S(N [ρ]||N [σ]) (4.38)

We can interpret that the noise channel acts as a coarse graining and the quantum informa-

tion becomes blurry due to the noise because the relative entropy measures the uncertainty

between two kinds of information. The derivation from the success of QEC to the conditon

of sufficiency is easy to check. If there exists a recovery map R : B(K) → B(H) such that

R[N [ρ]] = ρ, since R is a CPTP map,

S(ρ||σ) ≥ S(N [ρ]||N [σ]) ≥ S(R[N [ρ]]||R[N [σ]]) (4.39)

is satisfied. Since the first term and the third term are the same, sifficiency

S(ρ||σ) = S(N [ρ]||N [σ]) (4.40)

is satisfied for the noise channel N .

4.2.3 Relations between QEC conditions

Here, we check the relations between QEC conditions. First, we show that sufficiency is

satisfied in an assumption of the Knill-Laflamme condition. We use a replica trick

tr[ρ log ρ] = lim
n→1

tr[ρn log ρ] = lim
n→1

∂n tr[ρ
n] (4.41)

in calculating the relative entropy.

S(N [ρ]||N [σ]) = tr[N [ρ](logN [ρ]− logN [σ])]

= lim
n→1

∂n[tr[(N [ρ])n]− tr
[
N [ρ](N [σ])n−1

]
]

(4.42)

By using the Knill-Laflamme condition, the first term becomes

tr[(N [ρ])n] = tr

[(∑

i

EiρE
†
i

)n]

= tr


 ∑

i1,i2,··· ,in

Ei1ρE
†
i1
Ei2ρE

†
i2
· · ·EinρE†

in




= tr


 ∑

i1,i2,··· ,in

ρE†
i1
Ei2ρE

†
i2
· · ·EinρE†

in
Ei1




=
∑

i1,i2,··· ,in

αi1i2αi2i3 · · ·αini1 tr[ρn]

= tr[αn] tr[ρn]

(4.43)
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In the third line, we use the cyclic property of the trace. By similarly calculating the second

term of (4.42),

S(N [ρ]||N [σ]) = lim
n→1

∂n[tr[α
n](tr[ρn]− tr

[
ρσn−1

]
)]

= lim
n→1

[∂n tr[α
n] · (tr[ρn]− tr

[
ρσn−1

]
) + tr[αn] · ∂n(tr[ρn]− tr

[
ρσn−1

]
)]

= tr[α] · S(ρ||σ)
(4.44)

From the Knill-Laflamme condition,

∑

i

PcodeE
†
iEiPcode =

∑

i

αiiPcode (4.45)

The trace preserving property of N leads to
∑

iE
†
iEi = I, so we get

tr[α] =
∑

i

αii = 1 (4.46)

Thus we get the sufficiency S(N [ρ]||N [σ]) = S(ρ||σ).
Next, we show the relation between the Knill-Laflamme condition and the decoupling

principle, which we introduced in the Hayden-Preskill protocol. The Knill-Laflamme condition

leads to the decoupling between reference system which is isomorphic with the code subspace

and the environment system. In the Hayden-Preskill setup, the situation that the quantum

information thrown into the code subspace T completely flows into the radiation systems

D,B is equivalent to the decoupling between the reference system R which has the same

information as the code subspace with an EPR pair and the remaining black hole system C.

Here, before a time evolution with a random unitary, Hphisical is TAB (Hcode is T ) and the

environment Henv does not exist. After a time evolution, Hphysical is DB and Henv is C. (See
diagram of figure 7.) However the environment is contained in the physical Hilbert space, we

distinguish the subspace to be traced out from Hphysical and tell ”environment” Henv. By

preparing Href isomorphic to Hcode, the whole system after the noise channel becomes

|Ψ⟩ = 1√
dcode

dcode∑

i=1

∑

m

|i⟩ref Em |ψi⟩physical |em⟩env

= (Iref ⊗ UN )

[
1√
dcode

(
dcode∑

i=1

|i⟩ref |ψi⟩physical

)
|e0⟩env

] (4.47)

By defining ρref,env, ρref , ρenv as

ρref,env = trphysical[|Ψ⟩ ⟨Ψ|] (4.48)

ρref = trenv[ρref,env] , ρenv = trref [ρref,env] (4.49)
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and using the Knill-Laflamme condition, we get the decoupling between the reference and the

environment:

ρref,env =
1

dcode

∑

ij

∑

mn

|i⟩ref ⟨j| ⊗ |em⟩env ⟨en| · physical ⟨ψj |E†
nEm |ψi⟩physical

=

(
1

dcode

∑

i

|i⟩ref ⟨i|
)
⊗
(∑

mn

αmn |em⟩env ⟨en|
)

= ρref ⊗ ρenv

(4.50)

We can show the opposite in the similar manner. In conclusion, the Knill-Laflamme condition

is equivalent to the decoupling principle.

4.3 Petz recovery map

From both the Knill-Laflamme condition and the sufficiency, it is derived that the Petz

recovery map

RPetzσ,N [O] = σ
1
2N †

[
N [σ]−

1
2ON [σ]−

1
2

]
σ

1
2 (4.51)

can be used as a recovery map for the quantum noise channel N . Here, O ∈ B(K) and

RPetzσ,N : B(K)→ B(H). σ is an arbitrary state in the code subspace: ∀σ ∈ B(Hcode).

4.3.1 Construction of Petz map

We derive the Petz recovery map from the quantum information discussion used in the proof

of the Knill-Laflamme condition. This is the method developed by Barnum and Knill[22]. In

eq.(4.21), if we define wk ≡ PkUk then

FkPcode =
√
pkPkUk =

√
pkwk (4.52)

Here, dkl = pkδkl. By using the expression of wk and w†
k:

wk = PkUk =
1√
pk
FkPcode = UkPcode (4.53)

w†
k = U †

kP
†
k = U †

kPk =
1√
pk
PcodeF

†
k = PcodeU

†
k (4.54)

and eq.(4.24), we find that {wk} are isometries.

w†
kwl = δklPcode (4.55)

From the calculation of (4.26), we found that R in eq.(4.25) realizes the recovery map.

Eq.(4.25) can be written as

R[O] =
∑

j

w†
jOwj (4.56)
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We repeat the recoverability check here. Since N can be expressed as

N [ρ] = N [PcodeρPcode]

=
∑

i

FiPcodeρPcodeF
†
i

=
∑

i

piwiρw
†
i ,

(4.57)

we calculate
R[N [ρ]] =

∑

ij

piw
†
jwiρw

†
iwj

=
∑

j

pjPcodeρPcode

= ρ

(4.58)

In the last line, we used
∑

i pi = 1 from the TP property of N :

Pcode =
∑

i

PcodeF
†
i FiPcode =

∑

i

piw
†
iwi =

∑

i

piPcode (4.59)

Suppose σ is an arbitrary state in the code subspace σ ∈ B(Hcode). Then PcodeσPcode = σ is

satisfied. In fact, w†
j is expressed as follows.

w†
j = σ

1
2F †

jN [σ]−
1
2 (4.60)

We give a proof:

(rhs) = σ
1
2PcodeF

†
j

(∑

i

piwiσw
†
i

)− 1
2

= σ
1
2w†

j

√
pj

(∑

i

1√
pi
wiσ

− 1
2w†

i

)

= σ
1
2Pcodeσ

− 1
2w†

j

= w†
j

(4.61)

To derive the second line, we squared the second line, acted to the first line and used
∑

i Pi = I.

From eq.(4.60), we get

wj = N [σ]−
1
2Fjσ

1
2 (4.62)

Substituting w†
j , wj to eq.(4.56), we get the form of the Petz recovery map.

R[O] =
∑

j

w†
jOwj

=
∑

j

σ
1
2F †

jN [σ]−
1
2 ON [σ]−

1
2Fjσ

1
2

= σ
1
2N †

[
N [σ]−

1
2 ON [σ]−

1
2

]
σ

1
2

= RPetzσ,N [O]

(4.63)
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4.3.2 Derivation of Petz map with operator algebra

In this section, we rederive the Petz recovery map with operator algebra. This is the derivation

by Petz[10, 21, 23], which we discuss in more detail in Appendix A. Sufficiency S(ρ||σ) =

S(N [ρ]||N [σ]) is satisfied if and only if

ρitσ−it = N † [N [ρ]itN [σ]−it
]
, ∀t ∈ R (4.64)

We get the sufficiency by acting −i ddt and t → 0 on both sides of this equation. For some

unitary U ,

S(UρU †||UσU †) = S(ρ||σ) (4.65)

is satisfied, so we can change the sufficiency relation for a little bit:

S(σ||σis1ρσ−is1) = S(N [σ]||N [σ]is2N [ρ]N [σ]−is2) , ∀s1, s2 ∈ R (4.66)

By the similar manner as deriving eq.(4.64) from the sufficiency, we can derive

σis1ρitσ−i(t+s1) = N †
[
N [σ]is2ρitN [σ]−i(t+s2)

]
(4.67)

By analytic continuation t→ −i, s1 = s2 → s+ i
2 , we get

σis−
1
2 ρσ−is−

1
2 = N †

[
N [σ]is−

1
2N [ρ]N [σ]−is−

1
2

]
(4.68)

By continuing the calculation,

ρ = σ−isσ
1
2N †

[
N [σ]is−

1
2N [ρ]N [σ]−is−

1
2

]
σ

1
2σis

= σ−isRPetzσ,N
[
N [σ]isN [ρ]N [σ]−is

]
σis

= RRotatedPetzσ,N [N [ρ]]

(4.69)

We defined the rotated Petz map:

RRotatedPetzσ,N [O] ≡ σ−isRPetzσ,N
[
N [σ]isON [σ]−is

]
σis (4.70)

It reduces to the Petz map by taking s = 0. From here, we derived the Petz recovery map

from the sufficiency as the QEC condition.

4.4 Petz lite – chaotic case

The Petz recovery map is too complicated to understand the operational meaning directly.

However in some chaotic systems such as the Hayden-Preskill setup and the SYK model, the

Petz recovery map is known to reduce to a simpler form “the Petz lite”:

RLite[O] = cN †[O] (4.71)

– 39 –



c is some normalization constant. In next section, we study the recovery map for the Hayden-

Preskill noise channel. We expect that the Petz lite realizes a recovery. In this section,

we explain why the Petz map reduces to the simpler Petz lite in scrambling channel[4].

When scrambling is realized, Kraus operators are expected to realize a flat spectrum and the

diagonal element of the diagonalized Knill-Laflamme condition is the same with each other.

If we repeat eq.(4.19) for convenience,

PcodeF
†
i FjPcode = dijPcode = piδijPcode (4.72)

{pi} realize a flat spectrum:

p1 = p2 = · · · = pn =
1

denv
(4.73)

In this case, the noise channel and the recovery map satisfy

N [PcodeρPcode] =
∑

i

piwiρw
†
i =

1

denv

∑

i

wiρw
†
i (4.74)

R[O] =
∑

i

w†
iOwi

= denv
∑

i

PcodeF
†
i O FiPcode

= denvPcodeN †[O]Pcode

(4.75)

This is the Petz lite.

We can derive the Petz lite from the operator algebra method. If in eq.(4.64), we take

the analytic continuation t = −i and take σ → Icode = Pcode, we get

ρ = PcodeN † [N [ρ]N [Icode]
−1
]
Pcode (4.76)

If we take N [Icode] to a flat spectrum: N [Icode] =
1

denv
IsuppN [ρ], we get the Petz lite

ρ = denvPcodeN †[N [ρ]]Pcode (4.77)
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5 Recovery map for the Hayden-Preskill channel

The Hayden-Preskill setup is a tractable toy model for studying information flow in evap-

orating black holes. The setup consists of a black hole A that has been emitting Hawking

radiation B. We are particularly interested in the system after the Page time where the black

hole has emitted more than half of its original entropy 5, therefore approximately forming a

maximally entangled state |EPR⟩AB. Suppose Alice throws a quantum state ρT (often called

a diary) into this old black hole. Then, as the black hole further evaporates A → C +D by

emitting late Hawking radiation D, information thrown into the black hole will eventually

appear in total Hawking radiation DB. Here, we denoted by C the remaining black hole after

emitting the late radiation D, see the left panel of figure 16. The analysis of Hayden and

Preskill [6] showed that the diary appears in Hawking radiation almost immediately, namely

after the scrambling time.

To see this, it is useful to introduce an additional system called reference R and form

a maximally entangled state |EPR⟩RT with the diary T . Then, in this setup, the initial

condition of the process is |EPR⟩RT ⊗ |EPR⟩AB.
Owing to its chaotic dynamics, information of the diary thrown into the black hole gets

scrambled and spreads over the entire degrees of freedom. The resulting state is given by

|ΨHP ⟩ = (IR ⊗ UT,A→C,D ⊗ IB) |EPR⟩R,T ⊗ |EPR⟩A,B , (5.1)

where IR and IB are identities in R and B respectively, and UT,A→C,D is a random unitary

matrix from A, T to C,D, which models the chaotic dynamics of the black hole. By finding

the Hilbert space with which R is mostly entangled, one can find where information of the

original diary is in the final time slice. See again the left panel of figure 16.

The surprising result of HP is summarized in the following inequality,

∥ρRC − ρR ⊗ ρC∥21 ≤
(
dT
dD

)2

, (5.2)

where ∥A∥1 = tr
√
A†A, ρRC , ρR, ρC are the reduced density matrices of (5.1) on the indicated

subsystems, dD, dT are the Hilbert space dimensions of subsystems D and T respectively,

and in the left hand side we take average over random unitaries. This inequality (5.2) implies

that if one collects a sufficient number of late Hawking quanta so that dD ≫ dT the system

of the remaining black hole and the reference becomes no longer correlated ρRC = ρR ⊗ ρC ,
and therefore the information of the diary has to be encoded in Hawking radiation DB.

5We follow the notation of Yoshida-Kitaev [18].
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Figure 16: Left: Hayden-Preskill setup, corresponding to state (5.1). Right: Its decoder.

This result is also natural from the viewpoint of the framework of quantum error correc-

tion6. A quantum error correcting code is a scheme to protect quantum states (logical states)

in code subspace Hcode against various errors. Such an error is mathematically modeled by a

CPTP map called quantum channel N . The basic idea of quantum error correction is protect-

ing these quantum states in code subspace Hcode by embedding it to the larger Hilbert space,

often called physical Hilbert space Hphys. In the HP protocol, the Hilbert space of the diary

HT corresponds to Hcode in QEC, and Hphys is HDB. The quantum channel N : T → DB, is

obtained by tracing out the remaining black hole and the reference system degrees of freedom

C and R from |ΨHP ⟩ in (5.1) with replacing the reference state |EPR⟩R,T by
√
dTρT |EPR⟩R,T

(ρT is an input state),

NT→D,B [ρT ] = trC

[
(UT,A→C,D ⊗ IB)(ρT ⊗ |EPR⟩A,B⟨EPR|)(U

†
T,A→C,D ⊗ IB)

]

=
1

dB

dD∑

D̃,D̃′=1

dB∑

B̃,B̃′=1

∣∣∣D̃
〉
D

〈
D̃′
∣∣∣⊗
∣∣∣B̃
〉
B

〈
B̃′
∣∣∣
dC∑

C=1

dT∑

T̃ ,T̃ ′=1

UC,D̃;T̃ ,B̃ (ρT )T̃ T̃ ′ U
†
C,D̃′;T̃ ′,B̃′ .

(5.3)

We call this quantum channel the HP channel.

Then, a general theorem of QEC7 tells us that the decoupling condition is equivalent to

the existence of a recovery map R : DB → T which satisfies

R [N [ρT ]] = ρT ∀ρT ∈ HT . (5.4)

This again implies that the information of the diary is recoverable from Hawking radiation

DB. See the right panel of figure 16. Moreover, the concrete expression of the recovery map

is known [9], and is called the Petz recovery map

RPetz
σ,N [τ ] = σ

1
2N †[(N [σ])−

1
2 τ(N [σ])−

1
2 ]σ

1
2 . (5.5)

6We note that the possible maximum number of late Hawking radiation dD is given by the input for the

Haar random unitary, implying dD ≤ dT dB . Due to this bound, the combination dT /dD can not be 0, but at

most 1/dB . Thus, the exact equality does not hold ρRC = ρR ⊗ ρC , as long as dB is finite. This means that

strictly speaking, the recovery of the diary from Hawking radiation is, at best, approximate. However, for a

sufficiently large dimension of the early radiation, dB ≫ 1, we can almost ignore the deviation from the exact

factorization of ρRC for late times.
7See, e.g., [24, 25] for the theorem.
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where σ is a full rank arbitrary density matrix on the code subspace Hcode. N−1/2 factor of

the Petz recovery map is difficult to compute in general. One way for doing this is, as in [4]

first making the replacement N−1/2 → N n, where n is a positive integer, computing it for

all n, then taking analytic continuation n→ −1
2 . Also, the N−1/2 part is preventing us from

having an operational meaning of the map.

However, in systems exhibiting quantum chaos, we expect that the recovery map gets

simplified, because N [σ] has a flat spectrum, therefore the approximation R ∼ N † appears

to be possible8. If this is the case, since ρ ∼ N † [N [ρ]] for arbitrary density matrix ρ in the

code subspace, therefore the relative entropy between them S(ρ||N † [N [ρ]]) vanishes.

For the HP channel, the adjoint HP channel N † is given by

N †
D,B→T [ODB] = trA,B

[
|EPR⟩A,B⟨EPR| (U

†
T,A→C,DODB UT,A→C,D)

]

=A,B ⟨TFD| (U †
T,A→C,D ⊗ IB) (ODB ⊗ IC) (UT,A→C,D ⊗ IB) |TFD⟩A,B .

(5.6)

Here, the adjoint channel is defined by the relation9

trD,B [NT→D,B [ρT ] ODB] = trT

[
ρT N †

D,B→T [ODB]
]
. (5.8)

For later convenience, we introduce a correctly normalized recovery map

RLite
D,B→T [ODB] :=

1

N
· dBdD
dT
N †
D,B→T [ODB] , (5.9)

and define it as the Petz-lite10. Here, N is the normalization constant

N =

(
dD
dT

)2

+ 1, (5.10)

determined by the condition trT

[
RLite
D,B→T [NT→D,B[σT ] ]

]
= 1, where σT is some reference

state in T . In the Haar random case, the choice of the reference state σT is not important as

long as it is normalized.

8In appendix C, we give another equivalent argument supporting our expectation of this simplification in

terms of the Kraus representation of the HP channel.
9More generally, for a quantum channel N , its adjoint channel is defined by the similar relation,

tr [N [ρ]O] = tr
[
ρN † [O]

]
. (5.7)

10The terminology “Petz-lite” is introduced in [4], and we also use this terminology in this paper.
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With this N , the Petz-lite can be expressed as

RLite
D,B→T [ODB] =

1
(
dD
dT

)2

+ 1

· dBdD
dT
N †
D,B→T [ODB]

=
1

1 +

(
dT
dD

)2 · dC N
†
D,B→T [ODB] ,

(5.11)

where in the second line, we used the relation dBdT = dCdD due to the unitarity of the Haar

random unitary. For the parameter region dT /dD ≪ 1, the normalization is just given by dC ,

which coincides with an expression obtained from another discussion. In appendix C, we give

the discussion.

5.1 West-coast notation and replica-wormhole-like objects

In the following, we are interested in the typical properties of the recovery map R for the

HP channel N . To investigate these properties, we will consider replicated quantities, such

as tr(N [ρT ])
n involving a product of Haar random unitaries and its average. Since such

averaging involves Wick type contractions between various pairs of Haar random unitaries in

the product, it is convenient to introduce a graphical notation that manifests which pair of

unitaries are contracted. Therefore, here we introduce a notation similar to the one employed

in [4] for modeling the black hole microstates and their statistical properties, and call this

West-coast notation.

To begin with, let us define the following black hole microstate on C, involving a Haar

random unitary

∣∣ψTi
〉
C
:=
√
dC dD

dC∑

C=1

|C⟩UC,T ;i . (5.12)

Here, {|C⟩} is the set of basis states on the Hilbert spaceHC and the index i collectively denote

the indices for both late radiation D and early radiation B, i : (D,B) or more concretely

|i⟩ = |D⟩ ⊗ |B⟩, thus the label i rums from 1 to dDdB ≡ k.
In the following, we use this type of states

∣∣ψTi
〉
C

to write quantities of our interest,

instead of random unitary matrices UC,D;T,B. Under this notation, we can write

〈
ψTi

∣∣∣ψT ′
j

〉
= dC dD

dC∑

C=1

U †
i;C,T UC,T ′;j (5.13)

and therefore the HP channel (5.3) is given by

NT→D,B[ρT ] =
1

kdC

k∑

i,j=1

|i⟩⟨j| ·
dT∑

T̃ ,T̃ ′=1

〈
ψT̃

′
j

∣∣∣ψT̃i
〉
(ρT )T̃ T̃ ′ . (5.14)
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In this notation, we call the subscript index i Hawking radiation index, and the superscript

T code index.

The West-coast model treats each of these microstate |ψi⟩ by a single-sided AdS black

hole with insertion of “end of the world brane” (or EoW brane in short) labeled by the

index i behind the horizon. This state has a Hartle-Hawking type preparation, in terms of

a Euclidean path integral with the EoW brane which starts from the Euclidean conformal

boundary. In this model, the overlap between two such states ⟨ψi|ψj⟩ is computed by a

Euclidean gravitational path integral on a region of Euclidean disc enclosed by the part of

the asymptotic boundary (an interval) and the EoW brane in the bulk.

With this gravitational path integral picture in mind, here we explain the fact that there is

a simple diagrammatic prescription to compute a product of such overlaps
∏n
m=1⟨ψamim |ψ

bm
jm
⟩11

without directly applying the formulae for the Haar random averages, which becomes quite

involved when the number of unitary matrices appearing increases.

Then the prescription is the following:

1. For each overlap in the product ⟨ψamim |ψ
bm
jm
⟩ draw an interval with two endpoints, and

associate the labels (im, am) to one end and (jm, bm) to the other. (In the West-coast

model, this interval with indices at the endpoints provides the boundary condition to

the gravitational path integral for the product of the overlaps.)

2. The n intervals prepared in this way have 2n endpoints in total. We pick up two of

these endpoints and connect them by a line, which we call the EoW brane. We repeat

this until all the endpoints are connected to the other by EoW branes. There are many

different ways to do this. One possibility is that the endpoint of the m-th interval is

always connected to the other endpoint of the same interval. Or the other possibility

is that the endpoint of the m-th interval is always connected to the point on the next

(m+ 1)-th interval.

3. Each diagram D constructed in this way contains n EoW branes. We then associate

each EoW brane in the diagram with a Kronecker delta factor. If the EoW brane is

connecting two endpoints with the labels (il, al) and (jm, bm), then this factor is given

by δiljmδalbm . We compute this for all EoW branes in the diagram and then multiply

these factors. Let us denote this factor for the diagram by ID.

4. Since each diagram can be regarded as (disjoint union of) two-dimensional surfaces, we

can associate an Euler number χD to the diagram. We then pick up the factor (dC)
χD

11In the West-coast paper, this quantity is just called the product of overlap and denoted without the bar,

i.e.,
∏n
m=1⟨ψ

am
im

|ψbmjm ⟩
∣∣
ours

=
∏n
m=1⟨ψ

am
im

|ψbmjm ⟩WC . We will use the convention with the bar to keep in mind

that we do average over random unitaries in the computation.
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Figure 17: Diagrams for computing the average of overlaps (5.19). A black line connects two

points that appear in the same overlap, and the blue lines correspond to the EoW branes in

Haar random averaging. Left: The disconnected diagram. Right: The connected diagram.

which corresponds to the gravitational path integral part in the West-coast model. We

then sum the total factor ID(dC)
χD for all possible diagram D.

5. The average of the overlaps is equal to the sum of these factors over all possible diagrams;

n∏

m=1

⟨ψamim |ψ
bm
jm
⟩ =

∑

D∈All diagrams

ID (dC)
χD . (5.15)

Let us provide a few examples. First, for the single overlap
〈
ψTi

∣∣∣ψT ′
j

〉
. We can easily

evaluate it
〈
ψTi

∣∣∣ψT ′
j

〉
= dC dD

dC∑

C=1

U †
i;C,T UC,T ′;j

= dC δDiDj δBiBj︸ ︷︷ ︸
δij

δTT ′

= dC δij δTT ′ ,

(5.16)

where in the second line, we used the general result for two Haar random unitaries

Ua,bU
†
c,d =

1

d
δadδbc (a, b, c, d = 1, · · · , d). (5.17)

This result can be easily reproduced from the West-coast prescription.

Next, let us evaluate the Haar average of the combination of the overlaps for later con-

venience, 〈
ψT1i

∣∣∣ψT
′
1
j

〉
·
〈
ψ
T ′
2
j

∣∣∣ψT2i
〉
. (5.18)

Clearly, by setting T1 = T2 = T and T ′
1 = T ′

2 = T ′, the above combination reduces to the

variance of the overlap
∣∣∣
〈
ψTi

∣∣∣ψT ′
j

〉∣∣∣
2
. We can evaluate the above quantity by the diagrammatic

prescription mentioned above (see figure 17),

〈
ψT1i

∣∣∣ψT
′
1
j

〉
·
〈
ψ
T ′
2
j

∣∣∣ψT2i
〉
≈ (dC)

2 δijδT1T ′
1
· δjiδT ′

2T2
+ dC δiiδT1T2 · δjjδT ′

2T
′
1
. (5.19)
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This coincides with the result obtained by using the Weingarten formula,

Ua1,b1U
†
c1,d1
· Ua2,b2U †

c2,d2
=

1

d2 − 1
(δa1d1δb1c1 · δa2d2δb2c2 + δa1d2δb1c2 · δa2d1δb2c1)

+
1

d (d2 − 1)
(δa1d1δa2d2δb1c2δb2c1 + δa1d2δa2d1δb1c1δb2c2)

(a, b, c, d = 1, · · · , d).
(5.20)

In general, the prescription introduced here correctly computes the average over Haar

random unitaries in the product of overlaps, as long as the rank of the random unitaries

d = dC dD = dT dA is large.

Furthermore, the adjoint channel (5.6), in terms of the West-coast notation, is given by

N †
D,B→T [ODB] =

1

kdC

dT∑

T,T ′=1

∣∣T ′〉⟨T | ·
k∑

i,j=1

〈
ψT

′
j

∣∣∣ψTi
〉
⟨j| ODB |i⟩ . (5.21)

Below, using this graphical expression, we evaluate several relative entropies to check the

validity of the approximation R ∼ N †.

5.2 Relative entropy: Sufficiency

As we have mentioned, the decoupling condition (5.2) implies that there is a recovery map for

the Hayden-Preskill channel (5.3). Another characterization of the existence of the recovery

map R for given N is the notion of sufficiency [10, 11, 21]. To state this, let us first recall

the fact that relative entropy satisfies the monotonicity property

S(ρ||σ) ≥ S(N [ρ]||N [σ]) (5.22)

for any CPTP map N . By repeating this, we have

S(ρ||σ) ≥ S(N [ρ]||N [σ]) ≥ S(R [N [ρ]] ||R [N [σ]]), (5.23)

therefore if the recovery map exists R ◦ N = 1code, then S(ρ||σ) = S(N [ρ]||N [σ]), for any

density matrices on the code subspace. This condition is known as sufficiency, and it was

shown that if N satisfies this condition, the recovery map is given by (5.5). Here we would

like to check the HP channel (5.3) does satisfy sufficiency, by directly computing the relative

entropy S(N [ρ]||N [σ]) in the presence of the quantum channel N 12.

Since our interest is a typical result under the Haar random average, we consider the

Haar averaged relative entropy, S(N [ρ]||N [σ]). To evaluate the relative entropy, we use the

replica trick [28]

S(N [ρ]||N [σ]) = lim
n→1

1

n− 1

(
log tr [N [ρ]n]− log tr [N [ρ]N [σ]n−1]

)
. (5.24)

12See [26, 27] for related discussions on original Petz map cases.
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Figure 18: Left: The dominant diagram for (5.26) when dD ≪ dT (disconnected diagram).

Right: The connected diagram dominating the sum at dT ≪ dD.

Generally, since it is difficult to evaluate the Haar average of logarithmic functional, instead

of the expression, we consider

S(N [ρ]||N [σ]) ≈ lim
n→1

1

n− 1

(
log tr [N [ρ]n]− log tr [N [ρ]N [σ]n−1]

)
. (5.25)

It is known that in the large Hilbert dimension limit, this quantity is almost equal to the

original one [29, 30]. For a moment, let us focus on the first term of (5.25). Using the

West-coast notation (5.14), the trace tr [N [ρ]n] can be written in terms of overlaps,

tr [N [ρ]n] =
1

(k dC)
n

k∑

i=1

dT∑

T ,T̃=1

n−1∏

m=0

(
⟨ψT̃mim |ψ

Tm
im+1
⟩ ρTm T̃m

)
, (5.26)

where i0 = in, and the bold fonts i,T in the summation symbol mean the sum with respect

to the set of indices;
∑k

i=1 =
∑k

i0=1 · · ·
∑k

in−1=1.

In computing the Rényi entropy (5.26) we need to evaluate the product of overlaps∏n−1
m=0⟨ψT̃mim |ψ

Tm
im+1
⟩ with |ψTin⟩ ≡ |ψTi0⟩ and its Haar random average. We do this using the

diagrammatic technique introduced in the previous section.

Among all possible diagrams, we are particularly interested in the ones dominating the

sum, both in early times (dD ≪ dT ) and late times (dD ≫ dT ). We now argue that the

fully-disconnected diagram (the left panel of figure 18) where, for all EoW branes, the starting

point and endpoint are on the same interval dominates in early times, and the fully connected

diagram (the right panel of figure 18) where the indices form a single loop, dominates in late

times by explicit calculations. The calculation here is very similar to the ones in [4, 30].

First, let us evaluate the contribution of the fully disconnected diagram. Since the con-

tribution of this diagram is evaluated as



n−1∏

m=0

⟨ψT̃mim |ψ
Tm
im+1
⟩




discon

= dnC

n−1∏

m=0

(
δimim+1δT̃mTm

)
. (5.27)
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The contribution of this diagram to the Rényi entropy is

tr [N [ρ]n]
∣∣∣
fully discon

=
1

(k dC)
n · k (dC)

n
dT∑

T=1

ρT1T1 ρT2T2 · · · ρTnTn =
1

(k)n−1 (tr [ρ])
n . (5.28)

Similarly, the value of the fully connected diagram is given by


n−1∏

m=0

⟨ψT̃mim |ψ
Tm
im+1
⟩




fully conn

= dC

n−1∏

m=0

(
δT̃m+1Tm

)
⇒ tr [N [ρ]n]

∣∣∣
fully conn

=
1

(dC)
n−1 tr [ρ

n] .

(5.29)

Combining these two results, tr [N [ρ]n] is given by

tr [N [ρ]n] =
1

(k)n−1 (tr [ρ])
n +

1

(dC)
n−1 tr [ρ

n] + · · · , (5.30)

where · · · means contributions coming from partially connected saddles.

Since there are upper and lower bounds on tr [ρn], that is, 1/(dT )
n−1 ≤ tr [ρn] ≤ 1, we

can see that

tr [N [ρ]n] =
1

(k)n−1 (tr [ρ])
n +

1

(dC)
n−1 tr [ρ

n] + · · · ,

≈





1

(k)n−1 k ≪ dC ⇔ dT ≪
(
dT
dD

)2

1

(dC)
n−1 tr [ρ

n] dC dT ≪ k ⇔
(
dT
dD

)2

≪ 1

.

(5.31)

Thus, when the necessary condition for the decoupling condition, dT /dD ≪ 1, holds, the

dominant contribution is given by the fully connected saddle.

We have to carefully evaluate the precise range of m where the value of the connected

saddle gets larger than that of the disconnected saddle. This value of m depends on the

density matrix ρ on the code subspace, and gets maximized when it is the maximally mixed

state ρ = IT /dT . Therefore, after k > dCdT , the connected saddle becomes the dominant one

for all density matrices in Hcode.

Next, let us evaluate the second term of (5.25). This computation is completely parallel

to the above computation. In terms of the overlaps, it is given by

tr
[
N [ρ]N [σ]n−1

]
=

1

(k dC)
n

k∑

i=1

dT∑

T ,T̃=1

(
n−1∏

m=0

⟨ψT̃mim |ψ
Tm
im+1
⟩
)
ρT0 T̃0

(
n−1∏

m=1

σTm T̃m

)
. (5.32)

The contribution of the fully disconnected diagram and the connected diagram to the

second term of (5.25) can be evaluated, again by substituting the result (5.27) and (5.29)

tr
[
N [ρ]N [σ]n−1

]∣∣
discon

=
1

(k)n−1 tr [ρ] (tr [σ])n−1 , tr [N [ρ]N [σ]n−1]|conn =
1

(dC)
n−1 tr

[
ρ σn−1

]
.

(5.33)
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Thus, using these results, we obtain

tr [N [ρ]N [σ]n−1] =
1

(k)n−1 tr [ρ] (tr [σ])
n−1 +

1

(dC)
n−1 tr

[
ρσn−1

]
+ · · · ,

≈





1

(k)n−1 k ≪ dC ⇔ dT ≪
(
dT
dD

)2

1

(dC)
n−1 tr

[
ρσn−1

]
k ≫ dCdT ⇔

(
dT
dD

)2

≪ 1

,

(5.34)

where · · · again means contributions coming from partially connected saddles, and also in

the second approximate equality, we assumed that 1/(dT )
n−1 ≲ tr

[
ρσn−1

]
≤ 1 in order to

obtain the conditions13.

Now that we have evaluated the two terms that appeared in the relative entropy, we can

obtain the resulting relative entropy

S(N [ρ]||N [σ]) ≈ lim
n→1

1

n− 1

(
log tr [N [ρ]n]− log tr [N [ρ]N [σ]n−1]

)
,

≈





0 k ≪ dC ⇔ dT ≪
(
dT
dD

)2

lim
n→1

1

n− 1

(
log tr [ρn]− log tr

[
ρσn−1

])
k ≫ dCdT ⇔

(
dT
dD

)2

≪ 1

=





0 k ≪ dC ⇔ dT ≪
(
dT
dD

)2

S(ρ||σ) k ≫ dCdT ⇔
(
dT
dD

)2

≪ 1.

(5.35)

Thus we can conclude that, when the condition dT /dD ≪ 1 is satisfied, the relative entropies

obeys the relation

S(N [ρ]||N [σ]) ≈ S(ρ||σ). (5.36)

This result implies that the condition of sufficiency holds for the Hayden-Preskill channel

when
(
dT
dD

)2
≪ 1.

5.3 Check the recovery map

We argued that in chaotic systems, the Petz recovery map (5.5) gets simplified and is reduced

to so-called Petz-lite map RLitedefined in (5.11). In this section, we show this by checking

S(RLite [N [ρT ]] ||ρT ) = 0, when

(
dT
dD

)2

≪ 1. (5.37)

13If the support of the density matrix ρ is not contained in that of σ, then tr
[
ρσn−1

]
= 0, implying the

divergent relative entropy S(ρ||σ) = ∞. In that case, we would need another treatment, thus we do not

consider such a case in this paper.
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for any density matrix ρT on the code subspace. This means that at sufficiently late times,

one can recover ρT from the state of the Hawking radiation N [ρT ] by applying the recovery

map RLite.

One can show this by computing the relative entropy by the replica trick similar to (5.24),

S(RLite [N [ρT ]] ||ρT ) = lim
n→1

1

n− 1

(
log tr(RLite [N [ρ]])n − log tr(RLite [N [ρ]] ρn−1)

)
. (5.38)

In terms of Haar random unitaries, RLite [N [ρT ]] is given by

RLite [N [ρT ]] =
1

N
· dBdD
dT

· N †
D,B→T [NT→D,B [ρ]]

=
1

N

dT∑

T̃ ,T̃ ′=1

∣∣∣T̃
〉
T

〈
T̃ ′
∣∣∣ · 1

k(dC)2dT

dT∑

T,T ′=1

k∑

i,j=1

〈
ψT̃i

∣∣∣ψT̃ ′
j

〉〈
ψT

′
j

∣∣∣ψTi
〉
(ρ)TT ′ .

(5.39)

Therefore the first term in (5.38) is given by

tr(RLite [N [ρ]])n =
1

(Nkd2CdT )
n

dT∑

T ,T ′=1

dT∑

T̃ ,T̃ ′=1

k∑

i,j=1

n∏

m=1

(〈
ψTmim

∣∣∣ψTm+1

jm

〉〈
ψT̃mjm

∣∣∣ψT̃
′
m
im

〉
ρT̃mT̃ ′

m

)
.

(5.40)

We compute this by following the procedure explained in section 5.1, namely by preparing

an interval for each overlap, and connecting the endpoints of the intervals by EoW branes,

then evaluating each diagram generated in this way. As shown in the figure 19, the m-th

replica consists of two intervals with indices for Hawking radiation im, jm. Therefore, it is

clear that when k = dDdB is sufficiently large, the dominant diagram is the one connecting

the endpoint with the index im in the first interval to the endpoint of the second replica

with the same index in the same replica (the right panel of figure 19). Similarly, we connect

the endpoints with jm in this replica. This is because, if there is an EoW brane connecting

endpoints with distinct Hawking indices (say i, j), then the value of the diagram is significantly

reduced in the large-k limit because of the Kronecker delta factor δij coming from the EoW

brane.

This means that in the dominant saddle, two different replicas are not connected by any

EoW brane, because they start and end at the same replica. This means that the Rényi

entropy is a self-averaging quantity

tr(RLite [N [ρ]])n = tr
(
RLite [N [ρ]]

)n
. (5.41)

A similar statement holds for the second term of (5.38); therefore, we conclude that the

relative entropy of our interest is also self-averaging,

S(RLite [N [ρT ]] ||ρT ) = S(RLite [N [ρT ]] ||ρT ). (5.42)
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Figure 19: Diagrams for the product of overlaps appearing in the calculation of (5.40). Left:

disconnected diagram. Right: The connected diagram.

when k is sufficiently large. This implies that in the relative entropy, one can replace

RLite [N [ρT ]] with its average RLite [N [ρT ]]. The average of the density matrix is given by

RLite [N [ρT ]] =
1

1 +

(
dT
dD

)2

(
ρ+

(
dT
dD

)2

· IT
dT

)
. (5.43)

A more precise way to argue this is the following: Let us compute

tr

[(
RLite [N [ρT ]]−RLite [N [ρT ]]

)2]
= tr

[
(RLite [N [ρT ]])

2
]
− tr

[(
RLite [N [ρT ]]

)2]
.

(5.44)

Then, the right hand side of the above equation is given by

(k dC)
4

(Nk(dC)2dT )
2

{
1

k dC

[
1

k2
(
2 + dT tr

[
ρ2
]
+ (dT )

2
)

+
1

k dC

(
(dT )

2 tr
[
ρ2
]
+ 2dT + 2 tr

[
ρ2
])

+
1

(dC)2
dT tr

[
ρ2
]
]}

,

(5.45)

which becomes small when k ≫ dCdT . By plugging this expression, we have

S(RLite [N [ρT ]] ||ρT ) ≈ S(RLite [N [ρT ]] ||ρT )

=





S

(
ρ

∣∣∣∣
∣∣∣∣
IT
dT

)
k ≪ dC ⇔ dT ≪

(
dT
dD

)2

0 k ≫ dCdT ⇔
(
dT
dD

)2

≪ 1.

(5.46)

Thus, for early times k ≪ dC , the relative entropy is non-vanishing unless ρ = IT /dT , but

for late times dC dT ≪ k, the relative entropy is vanishing. This result implies that when

k ≫ dCdT , RLite indeed works as a recovery map.
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5.4 Relation to the Yoshida-Kitaev protocol

So far, we have shown that when k ≫ dCdT , the Petz-lite RLite ∼ N † indeed works as a

recovery map. However, we have not discussed the physical interpretation of the Petz-lite.

Thus, in this subsection, we explain the interpretation by showing the equivalence between

the Petz-lite and the well-known Yoshida-Kitaev (YK) protocol. The relation between the

Yoshida-Kitaev protocol and the Petz map has been suggested by Yoshida [12, 13].

In [18], Yoshida and Kitaev proposed an interesting recovery protocol for the object

thrown into the black hole T from late and early radiation DB. A brief summary of their

protocol is as follows:

1. In addition to the original Hayden-Preskill setup, introduce a copy of the diary and the

reference, denoted by R′T ′. We choose the state on R′T ′ to be an EPR state. Bob can

manipulate Hawking radiation DB and R′T ′. Before applying the decoding protocol,

the state of the total system is

|ΨHP ⟩ ⊗ |EPR⟩R′T ′ , (5.47)

where |ΨHP ⟩ is the state on RCDB given by (5.1).

2. We then use the early Hawking radiation B and the copy of the diary T ′ to simulate

the black hole dynamics by applying U∗ which is the complex conjugate of U for the

time evolution of the original system. After the simulation, the total system consists of

RCDR′C ′D′, and the state is

|ΨY K⟩RCDD′C′R′ = (IRC ⊗ ID ⊗ U∗
D′C′→BT ′ ⊗ IR) |ΨHP ⟩ ⊗ |EPR⟩R′T ′ . (5.48)

3. Post-select to the EPR pair on DD′. If it succeeds, the state on RR′ is the EPR state

with high fidelity, meaning the success of information recovery.

The quantum circuit for the protocol is shown in the left panel of figure 20. Combining these

steps, the quantum channel RY KD,B→R′ for the Yoshida-Kitaev (YK) recovery map is given by

RYK
D,B→R′ [ODB]

=
1

NYK
trC′

[
D,D′⟨EPR|U∗

B,T ′→C′,D′

(
ODB ⊗ |EPR⟩T ′,R′⟨EPR|

)
UTB,T ′→C′,D′ |EPR⟩D,D′

]
,

(5.49)

where NYK is a normalization factor given by

NYK =
∣∣
D,D′ ⟨EPR|ΨY K⟩

∣∣2 ≈ 1

(dT )2
+

1

(dD)2
. (5.50)
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Figure 20: Left: Yoshida-Kitaev decoding protocol. Right: operator transpose that pro-

viding the key equivalence (5.54).

For the above YK recovery map, we show the equivalence between the YK recovery map

RYK
D,B→R′ and the Petz-lite (5.9), RLite

D,B→T up to the isomorphism VT→R′ between systems T

and R′,

RY KD,B→R′ [ODB] = VT→R′ RLite
D,B→T [ODB] V †

T→R′ , (5.51)

where VT→R′ is explicitly given by

VT→R′ := dT T,T ′⟨EPR|EPR⟩T ′,R′ =

dT∑

T̃=1

∣∣∣T̃
〉
R′ T

〈
T̃
∣∣∣ . (5.52)

The argument for the equivalence is summarized in the right panel of figure 20. We start

with the YK recovery map (5.49). First, we rewrite the trace of subsystem C ′ in the YK

recovery map as

trC′ [O] = dC C,C′⟨EPR| (IC ⊗O) |EPR⟩C,C′ , (5.53)

and introduce two EPR states |EPR⟩D,D′ and |EPR⟩C,C′ .

Next, by using (5.53) and the relation (see appendix D for the derivation)

UTC′,D′→B,T ′ |EPR⟩C,C′ ⊗ |EPR⟩D,D′ = UA,T→C,D |EPR⟩A,B ⊗ |EPR⟩T,T ′ , (5.54)

the YK recovery map (5.51) can be rewritten as

RY KD,B→R′ [ODB]

=
dC
NYK

(
A,B⟨EPR| ⊗ T,T ′⟨EPR|

) [
U †
A,T→C,D

(
ODB ⊗ |EPR⟩T ′,R′⟨EPR|

)
UA,T→C,D

]

×
(
|EPR⟩A,B ⊗ |EPR⟩T,T ′

)

=
dC
NYK

(
T,T ′⟨EPR|EPR⟩T ′,R′

)

× A,B⟨EPR|
[
U †
T,A→C,DODB UT,A→C,D

]
|EPR⟩A,B
×
(
T ′,R′⟨EPR|EPR⟩T,T ′

)

=
dC

(dT )2NYK
VT→R′ N †

D,B→T,A [OD,B] V †
T→R′ ,

(5.55)
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where in the final line, we used the definition of the isomorphism (5.52) and the adjoint HP

channel (5.6). Additionally, the above overall constant dC
(dT )2NYK

coincides with that of the

Petz-lite (5.11), since
dC

(dT )2NYK
=

dC

1 +

(
dT
dD

)2 , (5.56)

where we used the definition of NYK, (5.50). Therefore, the above expression implies the

desired relation (5.51).
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6 SYK model and OTOC

The Sachdev-Ye-Kitaev (STK) model[31–36] is one-demensional quantum mechanics with all-

to-all random coupling made of N Majorana fermions. It gives a great insight of holography,

quantum gravity and also condenced matter physics such as strange metal and non Fermi

liquid. We review this SYK model here because we use this model as the chaotic system caus-

ing scrambling in the latter half of our paper. In the large N limit, the SYK model becomes

solvable and in low energy (IR) limit, it has a conformal symmetry. Small deformation from

the IR CFT theory is stated with the Schwarzian theory, which is a holographic dual theory

of JT gravity, so the SYK model is used in study of traversable wormhole in two dimensional

gravity. JT gravity with matter coupled is a fundamental tool of East Coast model of Island

rule, which we explain briefly in Appendix B. In this section, we introduce the basics of the

SYK model. First, we introduce the definition of the SYK model and show that in the large

N limit, the thoery becomes classical and solvable with a Schwinger-Dyson equation of the

propagators G and Σ. We explain this by two methods: diagrammatic perturbation theory

and an effective action. Then we show that in low energy (IR) limit, G and Σ have confor-

mal symmetry, so G can be decided as a conformal two point function. Next, we derive the

Schwarzian theory as a small deformation by CFT. Finally, we briefly explain the calcula-

tion of four point functions. There, behaviors of soft mode contributions by the Schwarzian

action in out-of-time orderd correlator (OTOC) case and time orderd correlator (TOC) case

are different in time dependence. In OTOC case, the correlator grows exponentially in time

whereas independent of time in TOC case. This behavior caused by scrambling of the SYK

model and has strong relation with quantum chaos. We explain OTOC and Lyapunov growth

briefly in the end.

6.1 Definition of SYK model

In this section, we review the fundamental topics of the SYK model, following the paper of

Sárosi [33] and the paper of Trunin [34]. The SYK model consists of N Majorana fermions

with all-to-all random coupling. The action is

ISY K =

∫
dτ


−1

2

N∑

i=1

ψi(τ)∂τψi(τ)−
1

4!

N∑

i,j,k,l=1

Jijkl ψi(τ)ψj(τ)ψk(τ)ψl(τ)


 (6.1)

where τ is a Euclidean time and is obtained by the Wick rotation τ = it. Fermion operators

ψi is Hermitian (ψ†
i = ψi) and satisfy the anti-commutation relations:

{ψi, ψj} = δij i, j = 1, · · · , N (6.2)
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Here, N is even (N = 2K, K ∈ N). We set a complex basis

ci =
1√
2
(ψ2i − iψ2i+1)

c†i =
1√
2
(ψ2i + iψ2i+1) i = 1, · · · ,K ,

(6.3)

then we get canonical commutation relations of fermions:

{ci, cj} = {c†i , c
†
j} = 0, {ci, c†j} = δij (6.4)

A vacuum state |0⟩ is defined by ci |0⟩ = 0 and then we get a general state as

(c†1)
n1(c†2)

n2 · · · (c†K)nK |0⟩ (nk = 0, 1) (6.5)

There are 2K = 2
N
2 states. These are the irreducible representation of the Clifford algebra.

Jijkl is chosen randomly and independently by the Gaussian distribution with mean µ = 0

and variance σ2 = 3!J2

N3 . It means that the probability distribution of Jijkl is

P (Jijkl) = exp

(
−
N3J2

ijkl

12J2

)
(6.6)

In the above explanation, we think of a four-body interaction. We can generalize it to q-body

interaction (q: even)

H = i
q
2

∑

1≤i1<···<iq≤N
Ji1···iqψi1 · · ·ψiq (6.7)

Here, Ji1···iq is chosen randomly and independently by the Gaussian distribution with mean

µ = 0 and variance σ2 = (q−1)!J2

Nq−1 . By thinking of 1
q expansion and taking large q limit of the

theory, we can get the deep and important essence of the SYK model.

6.2 large N

In the large N limit, the SYK model becomes solvable and gives a classical equation of motion:

the Schwinger-Dyson equation. We derive the Schwinger-Dyson equation by two methods.

First we explain a pertubation theory of coupling J

6.2.1 Diagrammatic derivation of Schwinger-Dyson equation

The mass dimension of ψ is 0, so Jijkl and J have the dimension of energy. A time ordered

two point function is defined as

Gij(τ − τ ′) = ⟨T ψi(τ)ψj(τ ′)⟩
≡ Θ(τ − τ ′)⟨ψi(τ)ψj(τ ′)⟩ −Θ(τ ′ − τ)⟨ψj(τ ′)ψi(τ)⟩

(6.8)
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where Θ(τ) is the Heaviside function and ψi(τ) = eτHψie
−τH . We define an averaged two

point function as

G(τ − τ ′) ≡ 1

N

N∑

i=1

Gii(τ − τ ′) (6.9)

We think of a free theory before explicating perturbation theory. In the free theory, H = 0

because of zero coupling, so ψi(τ) = ψi. Then the free propagator becomes

Gfree
ij (τ − τ ′) = 1

2
(Θ(τ − τ ′)−Θ(τ ′ − τ))⟨ψiψj + ψjψi⟩

=
1

2
δij sgn(τ − τ ′) .

(6.10)

Here, we used the symmetry of i ↔ j in Gfree
ij (τ − τ ′) and the anticommutation relation

(6.2). The signature function is defined as sgn τ ≡ Θ(τ)−Θ(−τ). Averaged free propagator

becomes

Gfree(τ − τ ′) = 1

N

N∑

i=1

Gfree
ii (τ − τ ′)

=
1

2
sgn(τ − τ ′)

(6.11)

In order to consider a thermal system with finite temperature β = 1
T , we move from

the Euclidean line τline ∈ (−∞,∞) to the Euclidean circle τcircle ∈ [−β
2 ,

β
2 ) with a monotone

function such as

τline = tan
πτcircle
β

(6.12)

τcircle has β periodicity: τcircle ∼ τcircle + β. Thermal two point function is defined as

Gij, β(τ − τ ′) = ⟨T ψi(τ)ψj(τ ′)⟩β (6.13)

Gβ(τ − τ ′) =
1

N

N∑

i=1

Gii, β(τ − τ ′) (6.14)

where ⟨· · · ⟩β denotes the average over the canonical ensemble:

⟨· · · ⟩β =
tr
[
e−βH · · ·

]

tr[e−βH ]
(6.15)

In the free theory, the propagator and the averaged propagator become

Gfree
ij, β(τ − τ ′) =

1

2
δijsgn

(
sin

π(τ − τ ′)
β

)
(6.16)

Gfree
β (τ − τ ′) = 1

2
sgn

(
sin

π(τ − τ ′)
β

)
(6.17)
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This reflects the fact that the thermal propagator is antiperiodic with τ → τ +β. Indeed, for

τ > 0,

Gij, β(τ + β) =
tr
[
e−βHψi(τ + β)ψj(0)

]

tr[e−βH ]

=
tr
[
ψi(τ)e

−βHψj(0)
]

tr[e−βH ]

=
tr
[
e−βHψj(0)ψi(τ)

]

tr[e−βH ]

= −tr
[
e−βHψi(τ)ψj(0)

]

tr[e−βH ]
= −Gij, β(τ)

(6.18)

In the third line, we used the cyclic property. Also Gij, β(τ − τ ′) is antisymmetric with τ , i.e.

Gij, β(τ − τ ′) = −Gij, β(τ ′ − τ).
From here, we consider the perturbation theory of a four-body interaction. It can be easily

applied to a q-body interaction theory. By an ordinary calculation of the loop correction

to the free propagator, a two point function is obtained as the product of Jijkl’s. Then

we take average of randomness of Jijkl’s, which is written as ⟨J · · · J⟩J where J ’s express

Jijkl’s. Because of the average over the Gaussian distribution, the product of even number

of J ’s can be divided to the product of ⟨J J⟩J called a ”disorder pairing”. We divide like

⟨J · · · J⟩J → ⟨J J⟩J · · · ⟨J J⟩J . The disorder pairing is calculated as

⟨Ji1j1k1l1Ji2j2k2l2⟩J = 3!
J2

N3
δi1i2δj1j2δk1k2δl1l2 (6.19)

There are several ways of the disorder pairing in the Wick contraction calculation. In the

Feynman diagram, a four point vertex corresponds to Jijkl. Diagrams which contain odd

number of Jijkl become zero. For example,

= ⟨JijklGfree
kl ⟩J = 0

The diagram with two vertices is the following melon diagram. There is one ⟨JJ⟩J so it

is necessary to calculate one disorder pairing.

= ⟨Ji1j1k1l1Ji2j2k2l2⟩J Gfree
l1l2
Gfree
k1k2

Gfree
j1j2

= 3!J2(Gfree)3δi1i2 = O(N0)
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When we consider a melonic diagram with more than two vertices, we must consider sev-

eral disorder pairings because there are several ways to divide ⟨J · · · J⟩J to ⟨JJ⟩J · · · ⟨JJ⟩J .
In fact, disorder pairings between different melons cause O(N−1) suppression and it is nec-

essary to think of only disorder pairings in the same melon if we take the large N limit.

For example, the following melonic diagram with four vertices has three ways of division

⟨JJJJ⟩J → ⟨JJ⟩J ⟨JJ⟩J .

= ⟨Ji1j1k1l1Ji2j2k2l2Ji3j3k3l3Ji4j4k4l4⟩J
×Gfree

l1i3
Gfree
l2i4

Gfree
l3l4
Gfree
k3k4

Gfree
j3j4

Gfree
k1k2

Gfree
j1j2

= (⟨Ji1j1k1l1Ji2j2k2l2⟩J ⟨Ji3j3k3l3Ji4j4k4l4⟩J
+⟨Ji1j1k1l1Ji3j3k3l3⟩J ⟨Ji2j2k2l2Ji4j4k4l4⟩J
+⟨Ji1j1k1l1Ji4j4k4l4⟩J ⟨Ji2j2k2l2Ji3j3k3l3⟩J)
×Gfree

l1i3
Gfree
l2i4

Gfree
l3l4
Gfree
k3k4

Gfree
j3j4

Gfree
k1k2

Gfree
j1j2

The first term, which takes disorder pairings in the same melon, becomes

⟨Ji1j1k1l1Ji2j2k2l2⟩J ⟨Ji3j3k3l3Ji4j4k4l4⟩J Gfree
l1i3G

free
l2i4G

free
l3l4G

free
k3k4G

free
j3j4G

free
k1k2G

free
j1j2 =

(3!)2

2
J4(Gfree)6δi1i2

= O(N0)

(6.20)

On the other hand, the second term, which takes disorder pairing between different melons,

becomes

⟨Ji1j1k1l1Ji3j3k3l3⟩J ⟨Ji2j2k2l2Ji4j4k4l4⟩J Gfree
l1i3G

free
l2i4G

free
l3l4G

free
k3k4G

free
j3j4G

free
k1k2G

free
j1j2 =

(3!)2

4

1

N2
J4(Gfree)4δi1i2

= O(N−2)

(6.21)

and is suppressed by O(N−1). The third term is similarly suppressed by O(N−1). Therefore,

we can carry out the ordinary process of loop correction to propagator, in which two point

function G(τ − τ ′) is obtained by the expression like figure 21. If we express a self energy Σ

and define a bilinear kernel as

(AB)(τ, τ ′) =

∫
dτ ′′A(τ, τ ′′)B(τ ′′, τ ′) (6.22)
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G(τ − τ ′) = + + + + · · ·

Figure 21: Loop correction to the propagator to calculate G(τ − τ ′). Dotted lines express

disorder pairing.

Then we get the Schwinger-Dyson equation as follows.

G = Gfree +GfreeΣGfree + · · ·
= Gfree[1 + ΣGfree + · · · ]
= Gfree[1− ΣGfree]−1

= [(Gfree)−1 − Σ]−1

(6.23)

Because of (Gfree)−1(τ, τ ′) = δ(τ − τ ′)∂τ ′ , we can express the Schwinger-Dyson equation as

G = [∂τ − Σ]−1 (6.24)

where Σ is calculated as

Σ(τ, τ ′) = J2[G(τ, τ ′)]3 (6.25)

In the q-body interaction theory, the Schwinger-Dyson equation can be obtained similarly as

G = [∂τ − Σ]−1

Σ = J2Gq−1
(6.26)

6.2.2 Effective action

In this subsection, we introduce the large N effective action Ieff of the SYK model and

expalin that the Schwinger-Dyson equation is derived as the classical equation of motion

extremizing Ieff . We assume q = 4 here, but the generalization to the q-body interaction is

straightforward. The partition function is expressed as the path integral

Z(Jijkl) =

∫
Dψi exp


−

∫
dτ


1

2

∑

i

ψi∂τψi +
∑

1≤i<j<k<l≤N
Jijklψiψjψkψl




 . (6.27)

We evaluate ⟨Z⟩J , the average of the partition function about Jijkl and derive largeN effective

action. The essence of the calculation is giving up the path integral calculation in N Majorana

fermion field ψi in eq. (6.27) and changing the variables to the fermion bilinear field G(τ, τ ′)

which is constructed by averaging large N Majorana fermions. Let us explain the method.
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Since Jijkl is chosen randomly and independently from the Gaussian distribution with mean

µ = 0 and variance σ2 = 3!J2

N3 ,

⟨Z⟩J =

√
N3

12πJ2

∫
dJijkl exp


−

∑

1≤i<j<k<l≤N

J2
ijkl

2 · 3!J2

N3


Z(Jijkl) . (6.28)

This integral can be carried out by the formula
∫
dxe−ax

2+bx =
√

π
ae

b2

4a and we obtain

⟨Z⟩J =

∫
Dψi exp


−

∫
dτ

1

2

∑

i

ψi(τ)∂τψi(τ) +
∑

1≤i<j<k<l≤N

3J2

N3

∫ ∫
dτdτ ′(ψiψjψkψl)(τ)(ψiψjψkψl)(τ

′)


 .

(6.29)

Using ψ2
i (τ) = 0, the second term can be rewritten as

∑

1≤i<j<k<l≤N
(ψiψjψkψl)(τ)(ψiψjψkψl)(τ

′) =
1

4!

[∑

i

ψi(τ)ψi(τ
′)

]4
. (6.30)

Then just like the Faddev-Popov path integral method, inserting 1:

1 =

∫
DGδ

(
NG(τ, τ ′)−

∑

i

ψi(τ)ψi(τ
′)

)

=

∫
DGDΣexp

[
−N

2

∫ ∫
dτdτ ′Σ(τ, τ ′)

(
G(τ, τ ′)− 1

N

∑

i

ψi(τ)ψi(τ
′)

)] (6.31)

to the path integral. Here, G(τ, τ ′) is the fermion bilinear field defined asG(τ, τ ′) = 1
N

∑
i ψi(τ)ψi(τ

′)

and the first line expresses the constraint. Σ(τ, τ ′) is the Lagrange multiplier giving the Delta

functional. After inserting 1 to the path integral, we obtain

⟨Z⟩J =

∫
DψiDGDΣexp

[
−
∫
dτ

1

2

∑

i

ψi(τ)∂τψi(τ)

− 1

2

∫ ∫
dτdτ ′NΣ(τ, τ ′)

(
G(τ, τ ′)− 1

N

∑

i

ψi(τ)ψi(τ
′)

)

+
J2N

8

∫ ∫
dτdτ ′

(
G(τ, τ ′)

)4 ]
.

(6.32)

Carrying out the path integral about ψi by using the Gaussian Berezin integral formula∫
dψe−

1
2
ψAψ =

√
detA, we obtain

⟨Z⟩J =

∫
DGDΣ [det(∂τ − Σ)]

N
2 exp

[
−N

2

∫ ∫
dτdτ ′

(
ΣG− J2

4
G4

)]

=

∫
DGDΣe−NIeff [G,Σ] .

(6.33)
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Here we defined the largeN effective action Ieff [G,Σ] = −1
2 log(det(∂τ − Σ))+1

2

∫ ∫
dτdτ ′(ΣG−

J2

4 G
4). We keep in mind that det(∂τ − Σ) means det(δ(τ − τ ′)∂τ − Σ(τ, τ ′)). We find out

that the reason why N−3 factor is contained in the Gaussian distribution is that we can ex-

clude N from the effective action Ieff . N behaves like ℏ−1, so the large N limit is correspond

to the classical limit. Finally, by applying the principle of the least action to Ieff , we can

obtain the Schwinger-Dyson equation. In q-body interaction theory, the large N effective

action becomes

Ieff [G,Σ] = −
1

2
log(det(∂τ − Σ)) +

1

2

∫ ∫
dτdτ ′(ΣG− J2

q
Gq) (6.34)

and the Schwinger-Dyson equation is eq. (6.26).

6.3 Conformal limit

In low energy (IR) limit, the SYKmodel becomes a one-dimensional CFT. We see the behavior

of the SD equation (6.26) in IR limit. The coupling constant J has the dimension of energy,

so IR limit means ω ≪ J . Using i∂τ = ω, the SD equation in the Fourier space becomes

1

G(ω)
= −iω − Σ(ω) . (6.35)

Since Σ ∝ J2 ≫ ω, we can drop the first term in the right hand side and the IR equation

becomes G(ω)Σ(ω) = −1. By inverse Fourier transform, we obtain the IR equation:
∫
dτ ′′G(τ, τ ′′)Σ(τ ′′, τ ′) = δ(τ − τ ′) ,

Σ(τ, τ ′) = J2[G(τ, τ ′)]q−1 .

(6.36)

This means that we can drop ∂τ in IR limit. We can show that G and Σ satisfy a conformal

Ward identity with a conformal dimension ∆ = 1
q :

G(τ, τ ′) 7−→ [φ′(τ)φ′(τ ′)]∆G(φ(τ), φ(τ ′))

Σ(τ, τ ′) 7−→ [φ′(τ)φ′(τ ′)]∆(q−1)Σ(φ(τ), φ(τ ′))
(6.37)

with some reparametrization τ 7→ φ(τ). We found that in the IR limit large N SYK model has

a conformal symmetry, which is realized as reparametrization symmetry τ 7→ φ(τ). ω ≪ J is

equivalent to |τ − τ ′| ≫ J−1. This reparametrization symmetry is broken away from IR due

to ∂τ term. In the CFT, the form of correlation function is decided without solving equation

of motion made by specific Lagrangian. By the conformal Ward identity, the conformal two

point function is decided as ⟨ϕ(x1)ϕ(x2)⟩ = const
|x1−x2|∆ for some quasi primary ϕ(x), we can

expect that in IR limit, G(τ, τ ′) becomes

Gc(τ, τ
′) =

b

|τ − τ ′|2∆ sgn(τ − τ ′) (6.38)
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with some constant b. Here, the subscript c of Gc means ”conformal” and ∆ is a conformal

dimension. We can guarantee this solution and decide b by solving the IR equation. If we

consider an ansatz like

Gc(τ, τ
′) = b d∆(τ − τ ′), Σc(τ, τ ′) = J2bq−1d∆(q−1)(τ − τ ′), d∆(τ − τ ′) =

sgn(τ − τ ′)
|τ − τ ′|2∆ (6.39)

the second equation of the IR equation (6.36) is satisfied. Thus we solve the first equation,

which is G(ω)Σ(ω) = −1 in the Fourier space. The Fourier transformation of d∆(τ − τ ′) is

d∆(ω) = 2i cos(π∆)Γ(1− 2∆)
1

ω1−2∆
(6.40)

in ω > 0, and ω < 0 case is considered by d∆(−ω) = −d∆(ω). Plugging this into G(ω)Σ(ω) =

−1, we can conclude

Gc(τ, τ
′) = b d∆(τ − τ ′)

Σc(τ, τ
′) = J2bq−1 d∆(q−1)(τ − τ ′)

d∆(τ) =
sgn(τ − τ ′)
|τ − τ ′|2∆

∆ =
1

q

bq =
1

πJ2

(
1

2
− 1

q

)
tan

π

q
.

(6.41)

We obtain the exact solution in IR limit. In the UV theory, we can also get an exact solution.

UV means τ ≪ J−1, so J → 0,Σ→ 0 leads to G ∼ ∂−1
τ . We obtain G(τ, τ ′)→ 1

2sgn(τ − τ ′)
in UV limit.

In a finite temperature theory on the circle τ ∼ τ + β, the thermal two point function is

obtained by the relation (6.12) as

Gβ,c(τ, τ
′) = b


 π

β
∣∣∣sin π(τ−τ ′)

β

∣∣∣



2∆

sgn(τ − τ ′)

∝ 1

(βJ)
2
q

1
∣∣∣sin π(τ−τ ′)

β

∣∣∣
2∆

.

(6.42)

We used that for τ ∈
[
−β

2 ,
β
2

)
, sgn

(
tan πτ

β

)
= sgn

(
sin πτ

β

)
= sgn(τ) is satisfied. By the

analytic continuation to the Lorentzian time t = −iτ , we find that

Gβ,c(t) ∝
1

(βJ)
2
q

1
∣∣∣sinh πt

β

∣∣∣
2∆
∝ e−

2π∆
β
t

(6.43)

and this becomes exponentially small as the time scale td = β
2π∆ ∼ β. We call this as a

”dissipation time”.
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6.4 Schwarzian action

In the previous section, we saw that in IR limit, the large N classical theory has a conformal

symmetry and the saddle point of the two point function G̃ is decided to conformal two point

function without solving the full SD equation. The appearance of ∂τ due to leaving away from

IR limit breaks the conformal symmetry. In this section, we review this symmetry breaking

carefully, following the paper of Trunin [34]. We consider q = 4 case. We divide the effective

action (6.34) to a conformally invariant part and a non-invariant part: Ieff = ICFT + IS . We

call IS the Schwarzian action. ICFT and IS are written as

ICFT = −1

2
log
(
det
(
−Σ(τ, τ ′)

))
+

1

2

∫ ∫
dτdτ ′

(
Σ(τ, τ ′)G(τ, τ ′)− J4

4
G(τ, τ ′)4

)
, (6.44)

IS = −1

2

∫ ∫
dτdτ ′δ(τ − τ ′)∂τG(τ, τ ′) = −

1

2

∫ ∫
dτdτ ′G−1

0 (τ, τ ′)G(τ, τ ′) , (6.45)

where we defined G−1
0 (τ, τ ′) ≡ δ(τ − τ ′)∂τ . ICFT reproduces the IR equation (6.36). IS is

not effective in IR limit (βJ ≫ 1) and is expected to be proportional to 1
βJ , representing the

physics around |τ − τ ′| ≪ J−1. We consider the deformation from the saddle point (G̃, Σ̃) as

G = G̃+ δG
|G̃| , Σ = Σ̃ + |G̃|δΣ. Ieff is written as

Ieff ≈
1

4

∫
dτ1dτ2dτ3dτ4δΣ(τ1, τ2)

(
|G̃(τ1, τ2)| G̃(τ1, τ3)G̃(τ2, τ4) |G̃(τ3, τ4)|

)
δΣ(τ3, τ4)

+
1

2

∫
dτ1dτ2

(
δG(τ1, τ2)δΣ(τ1, τ2)−

3J2

2
δG(τ1, τ2)

2

)

= − 1

12J2
⟨δΣ|K |δΣ⟩+ 1

2
⟨δG|δΣ⟩ − 3J2

4
⟨δG|δG⟩ = Ieff [δG, δΣ] ,

(6.46)

where we defined the ladder kernel K as

K(τ1, τ2; τ3, τ4) ≡ −3J2|G̃(τ1, τ2)| G̃(τ1, τ3)G̃(τ2, τ4) |G̃(τ3, τ4)| (6.47)

and |A⟩ ≡ A(τ, τ ′) is acted by K as

K |A⟩ ≡
∫
dτ3dτ4K(τ1, τ2; τ3, τ4)A(τ3, τ4) . (6.48)

An identity operator is defined as

I(τ1, τ2; τ3, τ4) ≡
1

2
(δ(τ1 − τ3)δ(τ2 − τ4)− δ(τ1 − τ4)δ(τ2 − τ3))

I |A⟩ = |A⟩
(6.49)

and an inner product of |A⟩ = A(τ, τ ′) and |B⟩ = B(τ, τ ′) is defined as

⟨A|B⟩ ≡
∫
dτ1dτ2A

∗(τ1, τ2)B(τ1, τ2) . (6.50)
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The ladder kernelK and the identity operator I are antisymmetric under τ1 ↔ τ2 and τ3 ↔ τ4,

and symmetric under (τ1, τ2) ↔ (τ3, τ4). After we integrate out the Lagrange multiplier Σ,

we obtain

Ieff [δG] = − log

∫
DδΣe−Ieff [δG,δΣ] =

3J2

4
⟨δG| (K−1 − I) |δG⟩ . (6.51)

If we take IR limit of this action naively, we may think of as

Ieff [δG] −→
IR

ICFT [δG] ≈
3J2

4
⟨δG| (Kc − I) |δG⟩ (6.52)

where Kc is the ladder kernel (6.47) with G̃ changed by Gc. However, this naive guess cannot

fully treat the fluctuation around the saddle point. The conformally invariant action (6.52)

becomes zero if we consider the fluctuation δG which conserves the conformal invariance.

Using G = Gc+
δG
|Gc| and Σ = J2G3

c +3J2|Gc|δG and solving the IR equation (6.36), we reach

(I − Kc)δG = 0 and (6.52) becomes zero. Thus we must study how IS changes under the

conformal transformation (6.37). After the reparametrization τ 7→ φ(τ), Gc(τ1, τ2) changes

as

Gc (φ(τ1), φ(τ2)) =
sgn(τ1 − τ2)
(4π)

1
4J2∆

φ′(τ1)
∆φ′(τ2)

∆

|φ(τ1)− φ(τ2)|2∆
. (6.53)

If we expand this near τ = τ1+τ2
2 in the power of τ12 = τ1 − τ2,

G(τ1, τ2) = Gc(τ1, τ2)

(
1 +

∆

6
τ212 Sch[φ(τ), τ ] +O(τ312)

)
(6.54)

where Sch[φ(τ), τ ] ≡ φ′′′
φ′ − 3

2

(
φ′′
φ′

)2
is the Schwarzian derivative. Using this and dropping

O(τ312) term, we can evaluate the Schwarzian action as

IS = −1

2

〈
G−1

0

∣∣δG
〉
= −1

2

∫
dτdτ12G

−1
0 (τ12)G̃(τ12)

∆

6
τ212 Sch[φ(τ), τ ]

= −∆

12

∫
dτ12δ(τ12)∂τ12

(
τ212G̃(τ12)

)∫
dτSch[φ(τ), τ ]

= − 1

J

∆

12

∫
dη δ(η)∂η

(
η2G̃(η)

)∫
dτSch[φ(τ), τ ]

(6.55)

where η = Jτ12. We set αS = ∆
12

∫
dη δ(η)∂η

(
η2G̃(η)

)
. This can be calculated as αS ≈

0.48 × ∆
12 by smearing δ(η) and introducing suitable UV and IR cutoffs. We reached the

concrete form of the Schwarzian action:

IS = −αS
J

∫
dτ Sch[φ(τ), τ ] . (6.56)

In the finite temperature theory, it becomes as follows.

IS = −αS
J

∫ β
2

−β
2

dτ Sch

[
tan

πφ(τ)

β
, τ

]
(6.57)
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6.5 Four point function

In this subsection, we explain the calculation of the four point function of the SYK model,

following the paper of Trunin [34]. We consider the following averaged four point function,

which is averaged over large N Majorana fermions:

1

N2

N∑

i,j=1

⟨T ψi(τ1)ψi(τ2)ψj(τ3)ψj(τ4)⟩

=
1

Z

∫
DGDΣ

[
G(τ1, τ2)G(τ3, τ4) +

1

N
(G(τ1, τ4)G(τ2, τ3)−G(τ1, τ3)G(τ2, τ4))

]
e−NIeff [G,Σ] .

(6.58)

Here, Ieff is the partition function which the effective action Ieff is used for the path integral.

We can set τ1 > τ2, τ3 > τ4, τ1 > τ3 without loss of generality. We define G̃ as a saddle point

(classical solution) of Ieff and define the connected four point function as follows.

F(τ1, τ2; τ3, τ4) ≡
1

N2

N∑

i,j=1

⟨T ψi(τ1)ψi(τ2)ψj(τ3)ψj(τ4)⟩ − G̃(τ1, τ2)G̃(τ3, τ4) (6.59)

In the IR limit, G̃ is the conformal two point function Gβc . We consider a small deformation

from the saddle point G̃ = Gβc which conserves the conformal symmetry as δG∥ and a small

deformation which breaks the conformal symmetry as δG⊥. If φ(τ) is some reparametrization

which conserves the conformal symmetry,

δG∥
φ(τ1, τ2) = Gβc (φ(τ1), φ(τ2))−Gβc (τ1, τ2) . (6.60)

The connected four point function F can be expressed in the following expansion:

F = F0 +
1

Z

∫
DδG∥DδG⊥DΣ (δG∥(τ1, τ2) + δG⊥(τ1, τ2))

× (δG∥(τ3, τ4) + δG⊥(τ3, τ4)) e
−N(ICFT+IS)

= F0 + FS + FCFT +O
(

1

N2

)
(6.61)

Here, the bare four point function F0, the Schwarzian term FS , the CFT term FCFT are

defined as:

F0 ≡
1

N
(G̃(τ1, τ4)G̃(τ2, τ3)− G̃(τ1, τ3)G̃(τ2, τ4)) (6.62)

FS ≡ ⟨δG∥(τ1, τ2) δG
∥(τ3, τ4)⟩S =

∫
Dφ δG∥

φ(τ1, τ2)δG
∥
φ(τ3, τ4) e

−NIS [φ]
∫
Dφe−NIS [φ] (6.63)

FCFT ≡ ⟨δG⊥(τ1, τ2) δG
⊥(τ3, τ4)⟩CFT =

∫
DδG⊥ δG⊥(τ1, τ2)δG

⊥(τ3, τ4) e
−NIeff [δG⊥]

∫
DδG⊥ e−NIeff [δG

⊥]

(6.64)
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respectively. The term which mainly contributes to the exponential growth by OTOC in large

βJ is the Schwarzian term FS , which is calculated by the path integral with the Schwarzian

action IS . Although FCFT also shows OTOC behavior, FS is larger than FCFT by the

factor βJ , so we focus on evaluating FS . We review the formula to calculate FS in the next

subsection. See [34] for the detailed derivation.

6.5.1 Soft mode contribution of four point function

The Schwarzian term of the connected four point function can be evaluated by the following

equation.

FS(τ1, τ2; τ3, τ4)
Gβc (τ1, τ2)G

β
c (τ3, τ4)

=
⟨δG∥

φ(τ1, τ2)δG
∥
φ(τ3, τ4)⟩S

Gβc (τ1, τ2)G
β
c (τ3, τ4)

=
π2

4

∫ τ1

τ2

dτ5
2π

∫ τ3

τ4

dτ6
2π
⟨δO(τ5)δO(τ6)⟩S ·

s15s52
s12

s36s64
s34

(6.65)

Here, we defined sij ≡ 2 sin
(
τi−τj

2

)
and δO(τ) ≡ Sch

(
tan φ(τ)

2 , τ
)
− 1

2 . We repeat the

definition of the Schwarzian derivative: Sch(f(τ), τ) ≡ f ′′′
f ′ − 3

2

(
f ′′
f ′

)2
.

By the expansion of the Schwarzian derivative and omitting the boundary term and

O((φ(τ)− τ)3) terms, the two point function of δO can be evaluated as follows.

⟨δO(τ5)δO(τ6)⟩S =
1

2πC

βJ

N
[1− 2πδ(τ56)− 2πδ′′(τ56)] (6.66)

Here, τ56 ≡ τ5 − τ6. C is the coefficient which appears in the Schwarzian action. In the case

of τ2 < τ3, the integral in (6.65) overlaps whereas in the case of τ2 ≥ τ3 there is no overlap.

We should divide in cases to an OPE case and an OTO case for the evaluation of (6.65).

Here OPE is a time ordering case, so we call this a time ordered correlator (TOC), and OTO

stands for an out of time ordering and we call this out of time ordered correlator (OTOC):

TOC : 2π > τ1 > τ2 > τ3 > τ4 > 0 ,

OTOC : 2π > τ1 > τ3 > τ2 > τ4 > 0 .
(6.67)

In TOC case, the integrals over τ5 and τ6 decouples and the Schwarzian term is evaluated

as:
FS(τ1, τ2; τ3, τ4)

Gβc (τ1, τ2)G
β
c (τ3, τ4)

=
1

8πC

βJ

N

(
τ12

2 tan τ12
2

− 1

)(
τ34

2 tan τ34
2

− 1

)
. (6.68)

The concrete example of TOC case is τ1 = β
2 + it, τ2 = it, τ3 = 0, τ4 = −β

2 . If we extract the

– 68 –



contribution of the Schwarzian term of the four point function, TOC becomes

TOC(t) =
1

N2

N∑

i,j=1

tr
[
ψi(t)ρ

1
2ψi(t)ψj(0)ρ

1
2ψj(0)

]

= G̃

(
β

2

)
G̃

(
β

2

)
+ F

(
β

2
+ it, it; 0,−β

2

)

≈ G̃
(
β

2

)
G̃

(
β

2

)
+ FS

(
β

2
+ it, it; 0,−β

2

)

≈
√
π

2βJ
+
const

N

(6.69)

In the first line, we regularized the four point function by ρ = 1
Z e

−βH because the product of

simultaneous operators appears and it is necessary to smear them with some density matrix.

In TOC case, the correlator does not depend on t.

In OTOC case, the Schwarzian term becomes

FS(τ1, τ2; τ3, τ4)
Gβc (τ1, τ2)G

β
c (τ3, τ4)

=
1

8πC

βJ

N

[
− 3π

8

sin τ12;34

sin
(
τ12
2

)
sin
(
τ34
2

) + π

16

sin(τ12;34 − τ12)
sin
(
τ12
2

)
sin
(
τ34
2

) + π

16

sin(τ12;34 − τ34)
sin
(
τ12
2

)
sin
(
τ34
2

)

− π

8

2τ12;34 − τ12 − τ34
tan

(
τ12
2

)
tan

(
τ34
2

) + 3π

8

1

tan
(
τ12
2

) + 3π

8

1

tan
(
τ34
2

)

+

(
τ12

2 tan τ12
2

− 1

)(
τ34

2 tan τ34
2

− 1

)]

(6.70)

Here, we defined τij;kl ≡ τ1+τ2
2 − τ3+τ4

2 . The concrete example of OTOC case is τ1 =
β
4+it, τ2 =

−β
4 + it, τ3 = 0, τ4 = −β

2 . If we extract the contribution of the Schwarzian term of the four

point function, OTOC becomes

OTOC(t) =
1

N2

N∑

i,j=1

tr
[
ρ

1
4ψi(t)ρ

1
4ψj(0)ρ

1
4ψi(t)ρ

1
4ψj(0)

]

= G̃

(
β

2

)
G̃

(
β

2

)
+ F

(
β

4
+ it,−β

4
it; 0,−β

2

)

≈ G̃
(
β

2

)
G̃

(
β

2

)
+ FS

(
β

4
+ it,−β

4
it; 0,−β

2

)

≈
√
π

2βJ

[
1− ∆2

2C

βJ

N
e

2π
β
t
]

(6.71)

We can see FS exponentially grows in β ≪ t ≪ β log N
βJ . We call the time β log N

βJ ≈
β logN ≡ tscr as scrambling time, around which OTOC(t) becomes small.

The reason why we consider the decline of OTOC(t) [34] is that the correlator which
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measures the quantum chaos

C(t) = − tr
(
ρ

1
2 [V (t),W (0)]ρ

1
2 [V (t),W (0)]

)

= 2TOC(t)−OTOC

(
t− iβ

4

)
−OTOC

(
t+

iβ

4

) (6.72)

exponentially grows as C(t) ∼ 1
N e

κt when OTOC(t) rapidly decays around the scrambling

time tscr ∼ β logN . Here, N ≫ 1 counts degrees of freedom of the quantum system. We

defined TOC(t) and OTOC(t) of general quantum operators V (t) and W (0) =W as

TOC(t) ≡ tr
(
V (t)ρ

1
2V (t)Wρ

1
2W
)

OTOC(t) ≡ tr
(
ρ

1
4V (t)ρ

1
4Wρ

1
4V (t)ρ

1
4W
)
,

(6.73)

which are regularized by the density matrix ρ = 1
Z e

−βH . The form of C(t) = −⟨[V (t),W (0)]2⟩β
before the regularization comes from the generalization of

C(t) =
∑

n

∑

out

1

Z
e−βEn ⟨n| [qi(t), pj(0)]† |out⟩ ⟨out| [qi(t), pj(0)] |n⟩ = −⟨[qi(t), pj(0)]2⟩β ,

(6.74)

which is the appropriate average of Ain→out = ⟨out| [qi(t), pj(0)] |in⟩. This is quantum exten-

sion of the classical chaos. The classical chaos is the phenomenon that phase space trajectories

from the original small deviation exponentially grow after a time evolution as

∥δX(t)∥ ≤ ∥δX0∥eλmaxt (6.75)

where we consider an equation of motion Ẋ(t) = F i[Xi(t)] and defined δXi = Xi−Xi
0. Here,

λ = λmax is the biggest eigenvalue of
(
∂F i

∂Xj

)
δX=0

and does not depend on the initial point

X0 or the choice of the norm. If we choose ∥X∥ =∑i |Xi|, we get

∣∣∣∣
δXi(t)

δXj(0)

∣∣∣∣ ≈
∣∣∣∣
∂qi(t)

∂qj(0)

∣∣∣∣ = |{qi(t), pj(0)}PB| ∼ eλt (6.76)

where {·}PB is a Poisson bracket and it can be extended to a commutator in the quantum

physics: {qi(t), pj(0)}PB → − i
ℏ [q

i(t), pj(0)]. That is why we considered (6.74). We call λ as

the Lyapunov exponent. In the theory of the quantum chaos, the fast scrambling conjecture

claims that κ in C(t) ∼ 1
N e

κt and OTOC(t) ∼ ⟨V V ⟩β⟨V V ⟩β − A
N e

κt is bounded from above

as κ ≤ 2π
β . The upper bound is realized when considering the black hole dynamics. It implies

that black hole dynamics is most chaotic and it scrambles quantum information most rapidly

in the scrambling time tscr ∼ β logN .
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6.6 Motivation to consider the SYK model in our study

Here, we explain the motivation to consider the SYK model in our study to find the recovery

map for the black hole information loss problem. First, in the former half part of this paper,

we considered the black hole dynamics as a random unitary matrix and it is too abstract

and idealistic. It is more realistic and worth considering that we consider the spin system

made of Majorana fermions with random interaction. Second, in the Hayden-Preskill setup,

the black hole and the early radiation make an EPR pair and it is the infinite temperature

limit. The black hole and the radiation should make a TFD state which can be prepared by

the thermal path integral as the setup of the Hartle-Hawking state. Finally, we would like

to study the recovery map in QFT. By the holographic point of view, studying with QFT is

important. The SYK model is the holographic dual theory of JT gravity, which makes an

AdS2 black hole in the way similar to the original AdS/CFT correspondence but different in

its boundary condition. Both JT and SYK have the Schwarzian action in their perturbation

in coupling constants. The SYK exhibits scrambling in OTOC four point function and it is

thought of as exhibit fast scrambling in the context of the bound on chaos. Therefore, to

study the recovery map in the SYK is important. In the next section, we review the method

to evaluate a modular flowed correlator in the SYK, which is used in the study of the Petz

lite recovery map in section 8.
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7 Replica trick calculation of the SYK model

In this section, we introduce the application of the SYK model to the Hayden-Preskill setup.

This was precisely dicsussed in the paper of Chandrasekaran and Levine[14]. In this paper, in

the first setup, old black holeRmakes a thermo field double (TFD) state with the old radiation

L. We repeat the definition of the TFD here: |TFD⟩LR = 1√
Zβ

∑
n e

−βEn/2 |n⟩L |n⟩R ≡ |β⟩.
Zβ is a partition function: Zβ =

∑
n e

−βEn . Then quantum information made of Majorana

fermion operator ψR is inserted into the right black hole system on the time TR and the

right system is time evolved by the SYK random dynamics UR = exp(−itHSYK;R). After the

time evolution, the right system will be divided into the remaining black hole system r and

the new Hawking radiation K. As the Hayden-Preskill protocol, we consider how much new

radiation we need in order to recover the original quantum information. In order to identify

this quantity, the paper [14] defines the price of ψR in terms of |β⟩ as the number of qubit of

K which is necessary to reconstruct the information of ψR from radiation systems L,K after

tracing out r. This discussion appeared in the paper of Chandrasekaran, Faulkner and Levine

[37], in which gravitational calculation in the bulk side is carried out, and its application to

the SYK model is studied in [14]. The price is expressed in form of modular flowed correlator,

which is defined as an expectation value of fermion operators and a modular operator appeared

in the Tomita-Takesaki theory. Our study uses this modular flowed correlator, so we define

this and explain how to evaluate it. We summarize what we discuss in this section. First,

in 7.1, we define the price of an operator. Then in 7.2, we explain the relation between the

fidelity susceptibility and the price, and see the form of modular flowed correlator. In 7.3,

we explain the replica trick calculation of the SYK, whose method is essentially the same as

other QFT model. We write down the Schwinger-Dyson equation in 7.3 by the method of the

replica trick and then solve the Schwinger-Dyson equation in 7.4 in large βJ limit because we

are interested in the Schwarzian theory deformed a little by IR limit. Finally we explain the

result of the analytic continuation to the Euclidean time and the integer number of replicas

in 7.5.

7.1 Definition of price

First, we define a price of the QEC code. As we study in section 4, a physical Hilbert space

contains a code subspace: Hcode ⊂ Hphysical ≡ H. B(Hcode) is the set of operators which

act to vectors in Hcode, and it construct von Neumann algebra A. We assume that H can

be decomposed as H = HA ⊗ HĀ. HA is the Hilbert space on A. We write Hcode;A as the

restriction of the code subspace to A.

Definition 3 (reconstruction of von Neumann algebra). For all ρ ∈ B(Hcode), if there exists

ρA ∈ B(Hcode;A) such that ρ |ψ⟩ = ρA |ψ⟩ , ∀ |ψ⟩ ∈ Hcode, we say that the von Neumann
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Figure 22: Left: Chandrasekaran-Levine‘s SYK Hayden-Preskill setup. Right: The more

abstract picure

algebra A can be reconstructed on subspace A. It is known that when A can be reconstructed

to A, there exists a recovery map for erasure of Ā: ∃R s.t.R ◦ trĀ = 1.

Definition 4 (price of von Neumann algebra). Price p(A) of the von Neumann algebra A is

defined as a minimal number of qubits of A such that A can be reconstruced to A.

In short, the price of QEC code defines how many qubits is necessary to construct a

recovery map for the erasure channel of Ā. It can be interpreted as a restricted version of the

Knill-Laflamme condition to erasure channel. We also define price of a physical operator.

Definition 5 (price of physical operator). For all physical operator O in B(H), consider a

reference state |ϕ⟩ ∈ H such that ⟨ϕ|O |ϕ⟩ = 0. Then sub-algebra AϕO ⊂ B(H) which is

constructed by O |ϕ⟩ ⟨ϕ|+h.c. is isomorphic to the algebra of a single qubit. We define a price

of the physical operator O in terms of |ϕ⟩ as pϕ(O) ≡ p(AϕO).

Chandrasekaran and Levine studied the Hayden-Preskill setup in the SYK model by

considering the situation of inserting a Majorana operator ψR to the right system, time

evolving by the SYK dynamics and tracing out r. They evaluate the price pβ(ψR), the

minimal size of K necessary to reconstruct the sub-algebra AβψR by radiation systems LK.

This is just the Hayden-Preskill analog in the SYK model. See figure 22 for this situation.

7.2 Fidelity susceptibility and modular flowed correlator

In this subsection, we explain the condition to reconstruct the sub-algebra AβψR by LK from

viewpoint of bulk reconstruction. We consider light cone coordinate x+ = t+ x = eTR , x− =

t− x and make a excitation state with conformal primary ϕR of CFTd.

|ϕδ⟩ = Zδϕ(x
− = −e−iδ, x+ = eiδ) |Ω⟩ (7.1)

Here, |Ω⟩ is vacuum state of CFTd. We regularized with imaginary boost ∆
δ/2π
R = σ

δ/2π
R ⊗

σ
−δ/2π
L and normalized with Zδ = (2 sin δ)2∆ϕ. σR, σL are vacuum reduced density matrices:

σR = trL[|Ω⟩ ⟨Ω|], σL = trR[|Ω⟩ ⟨Ω|]. We assume a light particle ∆ϕ ≪ 1 with no backreaction.

Then we consider time evolution of |ϕδ⟩ and study how long it takes to be contained by
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entanglement wedge of LK, which is inside the quantum extremal surface (QES). We consider

a time evolution

|ϕδ⟩ → ∆
iTR/2π
R |ϕδ⟩ ≡ |ϕδ(TR)⟩ . (7.2)

We consider a code subspace as follows:

Hcode = span{|Ω⟩ , |ϕδ(TR)⟩}
= span{|Ω⟩ , Zδ∆δ

RϕR(TR) |Ω⟩} .
(7.3)

In the Hayden-Preskill setup in the SYK, |Ω⟩ becomes |β⟩ = Z
−1/2
β e−

β
4
(HL+HR) |0⟩ and the

code subspace is Hcode = span{|β⟩ , ϕ(TR) |β⟩}. We study the condition that Hcode can be

reconstructed on LK. We consider the following embedding map.

|ΨLKrE(TR)⟩ =
1√
2
(|0⟩E |Ω⟩LKr + |1⟩E |ϕδ(TR)⟩LKr) (7.4)

Here, E is a reference system used in the Hayden-Preskill setup. If the decoupling condition

I(E : r) ≈ 014 is satisfies, there exists a decoder VKL→KLẼẼ′ such that

VLK→LKẼẼ′ |ΨLKrE⟩ = |EPR⟩EẼ′ ⊗
∣∣ΨẼrKL

〉
. (7.6)

However, I(E : r) ≈ 0 is hard to calculate, so we consider the alternative condition that Pauli

X and Pauli Y made by |Ω⟩ , |ϕδ⟩ can be reconstructed on LK. We define

σX = |ϕδ⟩ ⟨Ω|+ |Ω⟩ ⟨ϕδ|
σY = i(|ϕδ⟩ ⟨Ω| − |Ω⟩ ⟨ϕδ|)

(7.7)

and define excited states with σX,Y as
∣∣∣ψX,Yλ

〉
= eiλσX,Y |Ω⟩. When the excitation with σX,Y

is reconstructable on LK, the fidelity between the vacuum on r and the excited state
∣∣∣ψX,Yλ

〉

becomes 1. By the Uhlmann’s theorem, the fidelity is expressed as

F
(
ψX,Yλ |Ω; r

)
= sup

ULK

|
〈
ψX,Yλ

∣∣∣ULK |Ω⟩ |2 . (7.8)

Here, ULK is unitary on LK. In λ≪ 1 limit, the fidelity can be expanded as

F
(
ψX,Yλ |Ω; r

)
= 1− λ2χ

(
ψX,Y ,Ω; r

)
+O(λ3) . (7.9)

14Mutual information of A and B is defined as

I(A : B) = S(A) + S(B)− S(A ∪B) . (7.5)
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We call χ
(
ψX,Y ,Ω; r

)
fidelity susceptibility and when χ ≪ 1 the information can be recon-

structed on LK. χ is evaluated in [37] as

χ
(
ψX ,Ω; r

)
= −Z

2
δ

2π
Im

∫
ds


⟨ϕR(TR − iδ)∆

is
2π
r ϕR(TR + iδ)⟩

sinh s+iϵ
2

+ i
⟨ϕR(TR − iδ)∆

is
2π
r JrϕR(TR + iδ)⟩

cosh s
2


 .

(7.10)

We call correlators in the form of ⟨ϕR(TR−iδ)∆
is
2π
r ϕR(TR+iδ)⟩, ”modular flowed correlator15”.

In [14], modular flowed correlator is evaluated concretely in the SYK setup as

⟨ψL(TL)∆is
LKψR(TR)⟩β ∼

1
(
cosh(π(TL + TR + s))− CQK

N sinh(πs)eπ(TL−TR)
)2∆ . (7.13)

Here, CQ is constant made by SYK parameter and ∆ is conformal dimension. We can use

this equation to calculate the fidelity susceptibility χ. Price is the number of qubit in K when

χ becomes zero. The result is obtained as

pβ(ψR(TR)) = N(1− cQe2πTR) . (7.14)

7.3 Replica trick and Schwinger-Dyson equation

From here, we introduce the concrete replica trick method to calculate the modular flowed

correlator in the SYK model, following the paper of Chandraselaran and Levine [14]. As

we explained in the previous subsection, we prepare the systems L,R which are thermally

entangled and make a TFD state. L represents the early radiation and R represents the

black hole system. After time evolution, R is divided to the late radiation system K and

the remaining fermion system r which corresponds to the remaining black hole in the bulk.

r consists of N − K fermions. We assume N ≫ 1 and K ≫ 1 are even, and K is small

compareed with N , i.e. K
N ≪ 1. The TFD state of LR is given by

|β⟩ = Z
− 1

2
β e−

β
4
(HL+HR) |0⟩ , (7.15)

15Modular flowed correlator takes form of the expectation value of particle operators, modular operator ∆

and modular conjugation operator J . They are defined in Tomita-Takesaki theory of operator algebra. Let

H Hilbert space on A ∪ Ā, and let AA algebra constructed by operators acting on the subregion A. Tomita

operator Sψ,A is defined as

Sψ,Aα |ψ⟩ = α† |ψ⟩ , ∀α ∈ AA (7.11)

for |ψ⟩ ∈ H. When we polar decompose Tomita operator as

Sψ,A = Jψ,A∆
1/2
ψ,A , (7.12)

∆ψ,A and Jψ,A are named as modular operator and modular conjugation operator, respectively. When Hilbert

space decomposes as H = HA ⊗ HĀ, the modular operator also factorize as ∆ψ,A = ρA ⊗ ρ−1
Ā

. When H is

finite dimensional, it is always satisfied.
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where HL, HR are the SYK Hamiltonians of L,R, respectively. Zβ is a partition function.

The vacuum state |0⟩ is defined as a maximally entangled state which satisfies

(ψjL + iψjR) |0⟩ = 0 , j = 1, · · · , N (7.16)

We consider that a particle operator ψR lives in r. We insert ψR to the TFD state and make

a regularized state ∣∣∣ψjδ
〉
= Z

− 1
2

δ ∆δ
Rψ

j
R |β⟩ . (7.17)

Here, ∆R = ρ−1
L ⊗ρR is the modular operator of TFD where ρL = e−βHL and ρR = e−βHR . If

we consider time evolution of the operator ψR, the operator becomes ψjR(TR) = ρ−iTRR ψjRρ
iTR
R .

We should study fidelity susceptibility and modular flowed correlator to identify when entan-

glement of TFD can be reconstructed on LK, whereas it is reconstructed on r at first. It is

hard to evaluate the original modular flowed correlator
〈
ψiδ
∣∣∆is

LK

∣∣ψiδ
〉
β
for some particular

i ∈ r. In large N theory, it is sufficient to consider the average of N −K fermions. Therefore,

we concentrate on the evaluation of the averaged modular flowed correlator

⟨∆is
LK⟩ψδ =

1

N −K
N−K∑

i=1

〈
ψiδ
∣∣∆is

LK

∣∣ψiδ
〉
β

=
Z−1
δ

N −K
N−K∑

i=1

⟨ψiL(TL)(ρpLK ⊗ ρn−1−p
r )ψiR(TR)⟩β .

(7.18)

Here, we should take care that the modular operator to consider is not ∆R = ρR ⊗ ρ−1
L but

∆LK = ρLK⊗ρ−1
r because we consider reconstruction on LK. We make the Scheinger-Dyson

(SD) equation and appropriate boundary conditions by replica trick of integer n. Then in

7.4, we solve SD equation in large βJ limit and in 7.5 we consider analytic continuation to

n→ 1 and p→ is.

We consider p = 2, n = 4 case in Euclidean signature: ⟨β|ψL(τ)(ρ2LK ⊗ρr)ψR(τ ′) |β⟩. We

draw diagram for replica trick. See from figure 23 to figure 26. First we prepare |β⟩ as figure
23. |β⟩ ⟨β| and ψR(τ

′) |β⟩ are prepared as figure 24. We can also prepare reduced density

matrices like ρLK and ρr as figure 25. Finally we can use the prepared operators to make

⟨β|ψL(τ)(ρ2LK ⊗ ρr)ψR(τ ′) |β⟩ as figure 26.

By figure 26, we can identify the boudary condition of the SYK Majorana fermions.

Fermions in K live in circles of length β. There are n circles of length β. On the other hand,

fermions in r live in circles of length nβ. There is one circle of length nβ. We derive SD

equation of n-replica theory using the above boundary condition. The Euclidean action is

I =

n−1∑

k=0




N∑

i=1

ψ
(k)
i ∂τψ

(k)
i +

∑

i1,··· ,iq

Ji1,··· ,iqψ
(k)
i1
· · ·ψ(k)

iq


 (7.19)
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β
4

β
4

Lr

LK

r

K
|β⟩ =

=

Lr

LK

r

K

β
2

β
2

Figure 23: TFD state of L,R, |β⟩. Arrows represents Euclidean path integral and red dots

represent the same Euclidean time.

|β⟩ ⟨β| =

L

r

K

β
2

β
2

L

r

K

β
2

β
2

ψR(τ
′) |β⟩ =

ψR(τ
′)

L

r

K

β
2

β
2

Figure 24: Left: The diagram which represents |β⟩ ⟨β|. Right: ψR(τ
′) |β⟩, where an particle

operator is inserted at the Euclidean time τ ′.

where superscript (k) is replica index. Then we define the averaged propagator G(τ, τ ′). Since

r and K has N −K and K fermions, respectively,

G(j,k)
r (τ, τ ′) =

1

N −K
N−K∑

i=1

ψ
(j)
i (τ)ψ

(k)
i (τ ′) (i ∈ r) , (7.20)

G
(j,k)
K (τ, τ ′) =

1

K

K∑

i=1

ψ
(j)
i (τ)ψ

(k)
i (τ ′) (i ∈ K) . (7.21)
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ρLK =

L

r

K

β
2

L

K

β
2

ρr =

β
2

β
2

β
2

β
2

Lr

LK

r r

K

Figure 25: Left: The diagram which represents ρLK = trr[|β⟩ ⟨β|]. Red lines represent the

same Euclidean time. Right: The diagram which represents ρr = trLK [|β⟩ ⟨β|].

ρLK ρLK

ρr

⟨β| |β⟩

ψL(τ)

ψR(τ
′)

β
2

β
2

β
2

β
2

β
2

β
2

β
2

β
2

β
2

β
2

Figure 26: The diagram which represents ⟨β|ψL(τ)(ρ2LK ⊗ ρr)ψR(τ ′) |β⟩.
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Assuming N,K,N −K ≫ 1, large N effective action becomes

I = −1

2
(λ tr log(∂τ1−ΣK) + (1− λ) tr log(∂τ1−Σr))

+
1

2

n−1∑

j,k=0

∫ β

0
dτdτ ′

(
(1− λ)

(j,k)∑

r

(τ, τ ′)G(j,k)
r (τ, τ ′) + λΣ

(j,k)
k (τ, τ ′)G

(j,k)
K (τ, τ ′)

− J2

2

(
λG

(j,k)
K (τ, τ ′) + (1− λ)G(j,k)

r (τ, τ ′)
)q )

(7.22)

where we defined Σj,k = Σ(j,k) and λ ≡ K
N ≪ 1. The number of replicas is n. SD equation

becomes (
1

∂τ1−ΣK

)

j,k

= G
(j,k)
K ,

(
1

∂τ1−Σr

)

j,k

= G(j,k)
r (7.23)

Σ
(j,k)
K = Σ(j,k)

r = J2
(
λG

(j,k)
K + (1− λ)G(j,k)

r

)q−1
. (7.24)

Fermions in K live in a circle of length β and those in r live in a circle of length nβ, so the

boundary condition becomes

G
(j,k)
K (β−, τ ′) = −G(j,k)

K (0+, τ ′)

G(j,k)
r (β−, τ ′) = G(j+1,k)

r (0+, τ ′) (0 ≤ j ≤ n− 2)

G(n−1,k)
r (β−, τ ′) = −G(0,k)

r (0+, τ ′) .

(7.25)

See also (6.18). From the anti-commutation of ψ
(i)
i (τ), the conditions

G(j,k)
r (τ, τ ′) = −G(k,j)

r (τ ′, τ)

G
(j,k)
K (τ, τ ′) = −G(k,j)

K (τ ′, τ)
(7.26)

are satisfied and when fermions exist simultaneously, for 0 ≤ j ≤ n− 1,

G(j,j)
r (τ+, τ−) = G

(j,j)
K (τ+, τ−) =

1

2
(7.27)

is satisfied.

7.4 Solution of SD equation

In this subsection, we solve the SD equation obtained in the last subsection in the large βJ

limit. In leading order, SD equation (7.3) becomes

∂τGK(τ, τ ′)− (ΣK ⋆GK)(τ, τ ′) = 1δ(τ − τ ′)
∂τGr(τ, τ

′)− (Σr ⋆Gr)(τ, τ
′) = 1δ(τ − τ ′)

Σ
(j,k)
K = Σ(j,k)

r = J2
(
G(j,k)
r

)q−1
+ J2λ(q − 1)

(
G

(j,k)
K −G(j,k)

r

)(
G(j,k)
r

)q−2
+O(λ2)

(7.28)
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where we defined the star product as the matrix product of continuous time indices and

replica number indices:

(M ⋆N)(j,k)(τ, τ ′) ≡
n−1∑

l=0

∫ β

0
dτM (j,l)(τ, τ ′′)N (l,k)(τ ′′, τ ′) . (7.29)

To solve SD equation, we set the ansatz

Gr = Gr,0 + λGr,1 +O(λ2)
GK = GK,0 + λGK,1 +O(λ2)

(7.30)

as the perturbative expansion of λ. Later we do not use bold face for matrices of time and

replica indices expect for 1. λ0 order of G
(j,k)
r (τ, τ ′) becomes

G
(j,k)
r,0 (τ, τ ′) = Gnβ(τ − τ ′ + jβ − kβ), . (7.31)

Here, Gnβ is the thermal two point function of temperature nβ, since fermions in r live in a

circle of length nβ. To find GK,0, we use reduced SD equation for GK,0

∂τGK,0 − Σ
(0)
K ⋆ GK,0 = 1δ(τ − τ ′) (7.32)

and the boundary condition that G
(j,k)
K (τ, τ ′) lives in a circle of lengh β.

Now we tackle λ order of Gr. The equation for Gr,1 becomes

−∂τ1 ⋆ Gr,1 +Σ ⋆ Gr,1 + (q − 1)J2Gq−2Gr,1 ⋆ G = −(q − 1)J2(GK −G)Gq−2 ⋆ G (7.33)

where we defined G ≡ Gnβ. We regard Gr,1 as the function of two time indices which both

live in a circle of length nβ:

G
(j,k)
r,1 (τ, τ ′) = Gr,1(τ + jβ, τ ′ + kβ) . (7.34)

Therefore, we consider the star product which carries out integral from 0 to nβ for Gr,1. By

acting G from the left on both sides of (7.33) and use the equation of motion for G, we get

(1−Kc) ⋆ Gr,1 = J2(q − 1)G ⋆ (GK −G)Gq−2 ⋆ G (7.35)

where we defined the ladder kernel

Kc(τ1, τ2; τ3, τ4) ≡ −J2(q − 1)G(τ13)G(τ24)G
q−2(τ34) . (7.36)

We write τij ≡ τi − τj . The connected four point function F , which is defined by

1

N2

N∑

i,j=1

⟨T ψi(τ1)ψi(τ2)ψj(τ3)ψj(τ4) = G(τ12)G(τ34) +
1

N
F(τ1, τ2; τ3, τ4) (7.37)
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can be expressed with the ladder kernel and the bare four point function F0 as

F =
1

1−Kc
⋆ F0

F0(τ1, τ2; τ3, τ4) = G(τ13)G(τ24)−G(τ14)G(τ32) .
(7.38)

We act 1
1−Kc to (7.35) and obtain

Gr,1 =
J2

2
(q − 2)

∫ nβ

0
dτ

∫ nβ

0
dτ ′F(τ1, τ2; τ, τ ′)

(
GK(τ, τ ′)−G(τ, τ ′)

)
Gq−2(τ, τ ′) . (7.39)

We need to solve GK,0. Writing the reduced SD equation (7.32) for GK,0 more explicitly,

it becomes

∂τG
(j,k)
K,0 (τ, τ ′)− J2

∑

l

(
G(j,l)

)q−1
⋆ G

(l,k)
K,0 = δjkδ(τ − τ ′) . (7.40)

It is convenient that τ, τ ′ in GK(τ, τ ′) are defined from 0 to nβ. However, GK lives in a circle

of length β. Thus we define GK(τ, τ ′) as

GK(τ, τ ′) ≡
∑

j,k

G
(j,k)
K (τ − j, τ ′ − k)1j(τ)1k(τ ′) (7.41)

where we defined 1j(τ) as

1j(τ) =

{
1 (j < τ < j + 1)

0 (otherwise)
. (7.42)

Hereafter, j < τ < j+1 means jβ < τ < (j+1)β. By differentiating GK,0(τ, τ
′) with respect

to τ , we obtain

∂τGK,0(τ, τ
′)− J2Gq−1 ⋆ GK,0 = δ(τ − τ ′) +

∑

j

δ(τ − j)discGK,0(j, τ ′) (7.43)

where we defined the discontinuity of GK from j− 1’th circle to j’th circle as discGK(j, τ ′) ≡
GK(j+, τ ′)−GK(j−, τ ′). Then we set an ansatz which satisfies (7.43) as

GK(τ, τ ′) = G(τ − τ ′) +
∑

lm

G(τ − l)clmG(m− τ ′) . (7.44)

We solve clm later. By the boundary condition that GK lives in a circle of length β:

GK(j+, τ ′) = −GK(j + 1−, τ ′), the ansatz becomes

∑

l

(G(j+, l) +G(j + 1−, l))clm = −(δj,m + δj+1,m) . (7.45)
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By plugging this back into (7.39), we can calculate as follows.

Gr,1(τ1, τ2) =
J2

2
(q − 1)

∫ nβ

0
dτ

∫ nβ

0
dτ ′
∑

lm

clmF(τ1, τ2; τ, τ ′)G(τ, l)G(m, τ ′)Gq−2(τ, τ ′)

=
1

2

∑

lm

clm

∫ nβ

0
dτ

∫ nβ

0
dτ ′Kc(l,m; τ, τ ′)F(τ1, τ2; τ, τ ′)

=
1

2

∑

lm

clm (F(τ1, τ2; l,m)−F0(τ1, τ2; l,m))

(7.46)

In the second line, we used the fact that the ladder kernel is

Kc(l,m; τ, τ ′) = J2(q − 1)G(τ, l)G(m, τ ′)Gq−2(τ, τ ′) . (7.47)

In the third line, we used that Kc ⋆ F can be calculated as

Kc ⋆ F = Kc ⋆
1

1−Kc
⋆ F0

= F(τ1, τ2; l,m)−F0(τ1, τ2; l,m)

(7.48)

and the symmetry relation F(τ1, τ2; τ3, τ4) = F(τ3, τ4; τ1, τ2).
From here, we assume only large N limit, so we can use the result in any parameter

region of βJ and q. Finally we solve clm for large βJ limit to use in the next section. In large

βJ limit, the thermal two point function is effective only when fermions are simultaneous

because G is proportional to
(

1
βJ

) 2
q
. We assume finite q. We can drop l ̸= j or j + 1 in

(7.45), so we get
1

2
(cj+1,m − cj,m) = δj+1,m + δj,m . (7.49)

By using cjj = 0, cjm is solved as

cjm = 2sgn(j −m) +O
((

1

βJ

) 2
q

)
. (7.50)

We can conclude that in large βJ limit, Gr,1 is given by

Gr,1(τ1, τ2) = 2

n−1∑

l>m

(F(τ1, τ2; l,m)−F0(τ1, τ2; l,m)) . (7.51)

7.5 Analytic continuation

In this section, we review the calculation result of modular flowed correlator. We consider

K ≪ N and take leading order in λ = K
N . In order to evaluate (7.18), we should analytically

continue

1

N −K
N−K∑

i=1

⟨ψiL(τ)
(
ρkLK ⊗ ρn−1−k

r

)
ψiR(τ

′)⟩β (7.52)
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from integer n and k ≤ n and take n → 1 and k → is. We must also analytically continue

τ → iTL and τ ′ → −iTR to get (7.18). We can realize this by taking the first fermions on k’s

replica and the second fermions on the first replica and considering

Gr(τ + k, τ ′) =
1

N −K
N−K∑

i=1

⟨ψiL(τ)(ρkLK ⊗ ρn−1−k
r )ψiR(τ

′)⟩β
tr
[
ρnLK

] . (7.53)

Since ψiL(τ) live in the left side, we should do path integral to carry the operator to the left

system and take 0 < τ ′ < 1
2 and 1

2 < τ < 1. We set β = 1 as the last subsection.

We consider large βJ limit in this subsection. By using (7.51), we obtain

Gr(τ, τ
′) = Gn(τ − τ ′) +

2K

N

∑

l>m

(F(τ, τ ′; l,m)−F0(τ, τ
′; l,m)) +O

((
K

N

)2
)
. (7.54)

Analytical continuation which we consider is τ → τ + k and then τ, τ ′ → 1
2 + iTL,−iTR. The

first term is thermal two point function so it becomes

Gn

(
τ + k +

1

2
− τ ′

)
→ G1

(
τ +

1

2
+ is− τ ′

)
= b

(
π

cosh(TL − TR + s+ iδ)

)2∆

. (7.55)

where b is defined with conformal dimension as

bqπ =

(
1
2 −∆

)
tanπ∆

(βJ)2
, ∆ =

1

q
. (7.56)

Since the bare four point function F0 is the product of thermal two point function and at most

polynomial growth. Exponential growth comes from OTOC parametor region of connected

four point function F . We can write this as the single sum and the double sum as

∑

l>m

F(τ + k, τ ′; l,m)

∣∣∣∣∣
OTOC

=

k∑

l=1

F(τ + k, τ ′; l, 0) +

n−1∑

l=k+1

k∑

m=1

F(τ + k, τ ′; l,m) . (7.57)

The single sum term
∑k

l=1F(τ + k, τ ′; l, 0) is calculated by contour integral in the paper of

Faulkner, whose result is

k∑

l=1

F(τ + k, τ ′; l, 0)→ iπ

2

∫ s

0
dt

∫ ∞

−∞
ds′
F(τ + is, τ ′;−is′ + is+ 1/2, 0)

cosh2(π(s′ − t)) . (7.58)

Exponentially growing part comes from OTOC parameter region τ1 > τ3 > τ2 > τ4 and it is

evaluated in [35] as

F(τ1, τ2; τ3, τ4) = −
βJFd
2αSq2π

sin
(
π(τ+12 − τ+34)

)

sin
(
πτ−12

)
sin
(
πτ−34

) , (7.59)
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where αS is coefficient which appears in Schwarzian action and Fd ≡ G(τ12)G(τ34). J is

defined by σ2 = (q−1)!J2

Nq−1 = 2q−1

q
(q−1)!J
Nq−1 , i.e. J ≡ √q J

2
q−1
2

. We defined τ±ij ≡ τi ± τj .

Eventually, the single sum term is analytically continued to

k∑

l=1

F(τ + k, τ ′; l, 0)→ C(βJ , q) eπ(TL−TR)

cosh1+2∆(π(TL + TR + s))

∫ ∞

−∞
ds′

f1(s
′, s)

cosh1+2∆(πs′)
(7.60)

where f0(s
′, s) and f1(s

′, s) are defined as

f1(s
′, s) = eπ(s

′+s)f0(s
′, s) , f0(s

′, s) = tanh
(
π(s+ s′)

)
− tanh

(
πs′
)
, (7.61)

and C(βJ , q) is defined with SYK parameters as

C(βJ , q) = b2π4∆βJ
8αSq2π

. (7.62)

The double sum term is also evaluated by contour integral and the result becomes

n−1∑

l=k+1

k∑

m=1

F(τ + k, τ ′; l,m)→ −C(βJ , q) eπ(TL−TR)

cosh1+2∆(π(TL + TR + s))

∫ ∞

−∞

1
2f2(s2, s)

cosh1+2∆(πs2)

(7.63)

where f2(s2, s) is defined as

f2(s2 − i/2, s) = π2
∫ s

0
dt1

∫ s

0
dt2

∫ ∞

−∞

eπ(−2s1−s2−s)

cosh2(π(s1 + t1)) cosh
2(π(s1 + s2 + t2 + iϵ))

. (7.64)

Combining the single and double sum parts, we obtain the modular flowed correlator in

appropriate index and Lorentzian time as

1

N −K
N−K∑

i=1

⟨ψL(TL)∆is
LK∆rψR(TR)⟩ = b

(
π

cosh(π(TL + TR))

)2∆

+
K

N

bπ2∆∆C∆(βJ , q)eπ(TL−TR)
cosh1+2∆(π(TL + TR))

(e2πs − 1)

≈ b
(

π

cosh(π(TL + TR))− K
2NC∆eπ(TL−TR)(e

2πs−1)

)2∆

.

(7.65)

In the second line, we write only leading order in K
N · C∆. Here, C∆ is defined as

C∆(βJ , q) =
Γ(∆)

bπ2∆+1/2Γ(3/2 + ∆)
C(βJ , q) . (7.66)

We see that the modular flowed correlator is written in the form of (7.13).
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8 Recovery map for the Hayden-Preskill channel in SYK

So far, we have given the evidence that the Petz-lite works as a recovery map under the Haar

random unitary, which is highly chaotic. In this section, we argue that this continues to hold

for a more realistic but tractable model of chaotic dynamics: the Sachdev-Ye-Kitaev (SYK)

model [31, 32, 38]. In this paper, we briefly explain the relevant calculations, leaving details

in the upcoming paper [16].

8.1 Setup of SYK Hayden-Preskill protocol

In this section, we explain the setup to study the Hayden-Preskill-like protocol (what we call

SYK HP channel) in the SYK model. This was first introduced in [14, 37].

The SYK model is a theory of N Majorana fermions ψi, and its Hamiltonian is given by

H = (i)q/2
∑

1≤i1<i2<···<iq≤N
ji1i2···iqψi1ψi2 · · ·ψiq , (8.1)

where q ∈ 2N (q > 2), ji1i2···iq is a random coefficient drawn from a Gaussian random distri-

bution with zero mean and the variance
〈
j2i1i2···iq

〉
= J2(q − 1)!/N q−1.

Following [14], we consider two copies of the Hilbert space of the SYK model, say left

SYK system L and right one R. Hereafter, we denote the Majorana fermions on the left

system by ψi,L and ψi,R for the right. For notational simplicity, we use the convention

{ψi, ψj} = 2δi,j , (8.2)

for the anti-commutation relation for the fermions on the same side. In this setup, the right

SYK system corresponds to early radiation degrees of freedom of the original Hayden-Preskill

setup, and the left SYK system corresponds to the rest; the union of the diary system and

the initial black hole before the action of the random unitary, or equivalently the remaining

black hole plus late radiation degrees of freedom after the unitary evolution. In particular,

the left system L is divided into two subsystems, say L̃ and K; the former corresponds to the

remaining black hole, and the latter to the late radiation part of the original HP setup.

On the union of the above SYK systems L and R, we consider the following thermo-field

double (TFD) state ;

|TFD⟩L,R = Z−1/2(β) e−β(HL+HR)/4 |0⟩L,R , (8.3)

where Z(β) is a normalization factor of the state, and |0⟩L,R is given by [39]

[ψj,L(0) + iψj,R(0) ] |0⟩L,R = 0 for ∀j. (8.4)
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Note that the thermo-field double state (8.3) satisfies the relation (HL − HR) |TFD⟩ = 0.

This TFD state corresponds to an entangled state between the initial black hole and the

early radiation.

The code subspace (a diary system) of our interest is two-dimensional, and let us denote

two basis vectors by |0⟩ and |1⟩. This code subspace is embedded into the physical Hilbert

space LR by an isometry. The image of the code subspace is spanned by the TFD state

|TFD⟩L,R and the excited state ψi,L(0) |TFD⟩L,R. Here, we assume that the Majorana fermion

ψi,L(0) acting on the TFD state lives in the subsystem L̃, i ∈ L̃. More explicitly, by the

isometry, the states in the code subspace |T ⟩ (T = 0, 1) are mapped to

(VT,L→L ⊗ IR)
(
|T ⟩T ⊗ |TFD⟩L,R

)
:=





|TFD⟩L,R for T = 0

1

(Zδ)
1
2

ψi,L(iδ) |TFD⟩L,R for T = 1,
(8.5)

where ψi,L(iδ) is the regulated Majorana fermion operator

ψi,L(iδ) = e−δHLψi,L(0)e
δHL , (8.6)

and δ is an infinitesimal cutoff parameter to normalize the state with the operator insertion

even in the conformal limit, where the SYK model has an effective description in terms of the

reparametrization modes [35]. Zδ is its normalization factor given by the two-point function

Zδ =
1

N −K
N−K∑

i=1

1

Z(β)
tr
[
e−βHLψi,L(−iδ)ψi,L(iδ)

]

=
1

N −K
N−K∑

i=1

1

Z(β)
tr
[
e−βHLe2δHLψi,L(0)e

−2δHLψi,L(0)
]
= Gβ(2δ).

(8.7)

This normalization factor is not for the specific Majorana fermion “i”, but averaged over the

region L̃ with N−K sites. We expect that the difference between the two only appears in sub-

leading terms with respect to K/N because of typicality. Therefore, we use this normalization

factor (8.7) for later convenience.

Using the above embedding, we can holographically prepare an initial entangled state

between the early radiation and an initial black hole containing a diary in the SYK model.

For this system, we consider a unitary time evolution on the left system L by the SYK

Hamiltonian HL,

UL(t) = exp (itHL) . (8.8)

By this time evolution, information in the diary gets scrambled and uniformly distributed

over the left SYK system after the scrambling time. The resulting state is

|ΨSYK HP⟩ = (IRef ⊗ UL(t)⊗ IR) (IRef ⊗ VT,L→L ⊗ IR)
(
|EPR⟩Ref,T ⊗ |TFD⟩L,R

)
, (8.9)
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which corresponds to the state (5.1). In figure 27, we give the circuit diagram corresponding

to the state (8.9).

We are interested in recovering the diary information from the early and late radiations

R and K by using the Petz-lite for the SYK HP protocol. As in (5.3), the SYK HP channel

<latexit sha1_base64="1Gt2Ssj/O4WkcVEG9eiFDbiYAtI="></latexit>

VT,L!L

UL(t)

SYKL SYKR

|TFDiL,R|EPRiRef,T

L

T L

RKL̃Ref

Figure 27: Circuit diagram corresponding to state (8.9).

N SYK
T→K,R representing error is obtained by tracing out the remaining black hole part L̃ in the

final state (8.9),

N SYK
T→K,R[ρT ] := trL̃

[
ULVT,L→L

(
ρT ⊗ |TFD⟩L,R⟨TFD|

)
V †
T,L→LU

†
L

]
. (8.10)

This channel maps a density matrix on the diary T to the one on the late and early radiation

system K,R. Also, the adjoint N SYK†
K,R→T of the SYK HP channel is given by

N SYK†
K,R→T [OKR] := trL,R

[
|TFD⟩L,R⟨TFD|

(
V †
L→T,LU

†
LOKR ULVL→T,L

)]

= L,R ⟨TFD|
(
V †
L→T,LU

†
LOKR ULVL→T,L

)
|TFD⟩L,R .

(8.11)

The above quantum channels are analogous to the original HP channel and its adjoint for

the Haar random unitary. However, we note that there is a difference between them in the

sense that the SYK HP channel and its adjoint include the embedding map V , which induces

(fermionic) excitations.

8.2 Some matrix elements of the Petz-lite and Rényi-two correlators

Now that we have prepared the SYK HP channel and its adjoint, we can construct the Petz-

lite map for this channel. As in the Petz-lite for the Haar random case (5.9), we consider the
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Petz-lite for the SYK case,

RLite,SYK
K,R→T [OKR] =

1

NSYK
N SYK†
K,R→T [OKR], (8.12)

where NSYK is the normalization factor, which is determined by the condition

trT

[
RLite,SYK
K,R→T

[
N SYK
T→K,R[σT ]

]]
= 1. (8.13)

Here, σT is some reference state in T for the normalization. We take it to be σT = |0⟩T ⟨0|.
For this choice, the normalization factor is given by

NSYK =
∑

T=0,1

⟨T |N SYK†
K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|T ⟩ . (8.14)

We note that due to this normalization, we can see that the Petz-lite (8.12) for the SYK HP

protocol has a similar overall constant with the Petz-lite for the original HP protocol (5.11).

To see the similarity, we first rewrite the Petz-lite (8.12) with the normalization factor (8.14)

as follows,

RLite,SYK
K,R→T [OKR] =

〈
d̂L̃

〉
β

1 +
〈
d̂L̃

〉
β
⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩
N SYK†
K,R→T [OKR], (8.15)

where
〈
d̂L̃

〉
β
is an effective dimension of subsystem L̃ defined by the purity trL̃

[(
ρL̃
)2]

of

the TFD state with respect to the subsystem16,

⟨0|N SYK†
K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|0⟩ = trKR

[
(ρKR)

2
]
= trL̃

[(
ρL̃
)2]

=:
1〈
d̂L̃

〉
β

. (8.16)

The effective dimension is analogous to the dimension of the remaining black hole in the

original HP setup. Indeed, in the infinite temperature limit β → 0, the effective dimension is

almost reduced to the actual dimension of subsystem L̃, dL̃ = 2
N−K

2 17. However, in general,

the effective dimension is smaller than the actual dimension due to the property of the purity

and thermal effects;

1 ≤
〈
d̂L̃

〉
β
≤ dL̃, (8.17)

16We note that in our setting, subsystem L̃ is smaller than the complement system KR.
17For Majorana fermions, a annihilation operator is constructed from two Majorana fermions, and the

corresponding creation operator is given by the Hermitian conjugation. In other words, two Majorana fermions

forms a single qubit. Thus, a Hilbert space constructed frommMajorana fermions becomes a 2m/2-dimensional

Hilbert space. See, e.g., [33] for the review.
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where this effective dimension becomes closed to 1 in β → ∞ and dL̃ in β → 0. With this

effective dimension, we can compare the Petz-lite (8.15) for the SYK model to that for the

original one (5.11) in the HP setup

RLite,HP
D,B→T [ODB] =

dC

1 +

(
dT
dD

)2 N
†
D,B→T [ODB] .

The similarities between the quantities in the HP and the SYK are summarized in the fol-

lowing identifications;

dC ←→
〈
d̂L̃

〉
β
,

(
dT
dD

)2

←→
〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩ .

(8.18)

Also, we have the unitarity constraint on the dimensions of the Hilbert spaces, dT dB = dC dD.

By using the relation, we can rewrite the dimension as

(
dT
dD

)2

=
dC dT
dB dD

, (8.19)

from which we have the following identification

⟨1|N SYK†
K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩ ←→ 1

dC
·
(
dT
dD

)2

=
dT

dB dD
=
dT
k
. (8.20)

This might be a good ratio to understand current physics; if we have a sufficiently large

amount of Hawking radiation compared with the diary, dT ≪ dB dD = k, the ratio becomes

almost 0. As we will soon see, the left quantity also becomes almost 0 around and after a

critical time.

With this discussion of the normalization factor in mind, we consider a matrix element

of RLite,SYK
K,R→T

[
N SYK
T→K,R[ρT ]

]
for a general density matrix ρT in the Hilbert space of the diary,

〈
T
∣∣RLite,SYK

K,R→T

[
N SYK
T→K,R[ρT ]

]∣∣T ′〉 . (8.21)

To check whether the Petz-lite works as the recovery map, it is sufficient to see whether the

following relation holds (approximately) or not,

〈
T
∣∣RLite,SYK

K,R→T

[
N SYK
T→K,R[ρT ]

]∣∣T ′〉 ?≈
〈
T
∣∣ρT
∣∣T ′〉 for ∀ρT . (8.22)

Checking the above relation is equivalent to focusing on the matrix elements

〈
T
∣∣RLite,SYK

K,R→T

[
N SYK
T→K,R

[∣∣∣T̃
〉
T

〈
T̃ ′
∣∣∣
]]∣∣T ′〉 ?≈

〈
T
∣∣∣T̃
〉〈

T̃ ′
∣∣∣T ′
〉
, ∀T, T ′, T̃ , T̃ ′. (8.23)
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Generally, we have 16 components of the above matrix, but half of them, including odd

Majorana fermions, are trivially vanishing due to the fermionic parity of the SYK model. In

other words, matrix elements which satisfy (T + T ′ + T̃ + T̃ ′) ≡ 1 mod 2 are vanishing.

Now, we focus on three non-zero matrix elements, and briefly explain how we can evaluate

them18. First, we consider the T, T ′, T̃ , T̃ ′ = 0 case. If (8.23) holds then since its right hand

side is 1, and therefore the following identity holds,

1
?≈ ⟨0|RLite,SYK

K,R→T

[
N SYK
T→K,R [|0⟩T ⟨0|]

]
|0⟩ =

(
1 +

〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩
)−1

.

(8.24)

The second one is for the T, T ′ = 1, T̃ , T̃ ′ = 0 case, where the matrix element is expected

to become 0. In this case, we can see that this matrix element has the same ratio as above,

0
?≈ ⟨1|RLite,SYK

K,R→T

[
N SYK
T→K,R [|0⟩T ⟨0|]

]
|1⟩ =

〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩

1 +
〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩
.

(8.25)

The final one is for T, T̃ = 0, T ′, T̃ ′ = 1, the matrix element (8.23), which is expected to

be 1, becomes

1
?≈ ⟨0|RLite,SYK

K,R→T

[
N SYK
T→K,R [|0⟩T ⟨1|]

]
|1⟩ =

〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨1|]

]
|1⟩

1 +
〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩
.

(8.26)

The rest of matrix elements

⟨0|RLite,SYK
K,R→T

[
N SYK
T→K,R [|1⟩T ⟨0|]

]
|1⟩ , ⟨1|RLite,SYK

K,R→T

[
N SYK
T→K,R [|1⟩T ⟨1|]

]
|1⟩ .

are difficult to evaluate directly, as we will mention in footnote 21. In the next section, we

evaluate these matrix elements indirectly from the results of this section.

Thus, to see the recovery (8.23), we need to study the behaviors of the matrix elements

of N †N which appear in the right hand side of (8.24), (8.25), and (8.26). In order for the

recovery to happen, these have to satisfy

〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩ ?≈ 0, (8.27)

〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨1|]

]
|1⟩ ?≈ 1. (8.28)

18The details of the calculation will be discussed in the upcoming paper [16].
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We study the behaviors of the left hand sides of (8.27) and (8.28) below. To this end,

it is convenient to rewrite the quantities as correlators. From the definitions of the channels

(5.3) and (8.11), we obtain the left-left correlators

〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩ = 1

Zδ
· ⟨TFD|ψi,L(t− iδ)

(
IL̃ ⊗ ρKR

)
ψi,L(t+ iδ)|TFD⟩

trKR

[
(ρKR)

2
] ,

(8.29)
〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨1|]

]
|1⟩ = 1

Zδ
· ⟨TFD|ψi,L(t− iδ)

(
ρL̃ ⊗ IKR

)
ψi,L(t+ iδ)|TFD⟩

trKR

[
(ρKR)

2
] ,

(8.30)

where the two fermions are put on the left system, and ρKR and ρL̃ are defined by

ρL̃ = trKR [|TFD⟩LR⟨TFD|] , ρKR = trL̃ [|TFD⟩LR⟨TFD|] . (8.31)

We give the derivation of the correlators in appendix F.

We also note that the numerators in the above correlators can be written as

⟨TFD|ψi,L(t− iδ)
(
IL̃ ⊗ ρKR

)
ψi,L(t+ iδ)|TFD⟩

= trKR

[
trL̃

[
ψi,L(t+ iδ) |TFD⟩L,R⟨TFD|ψi,L(t− iδ)†

]
ρKR

] (8.32)

and
⟨TFD|ψi,L(t− iδ)

(
ρL̃ ⊗ IKR

)
ψi,L(t+ iδ)|TFD⟩

= trL̃

[
trKR

[
ψi,L(t+ iδ) |TFD⟩L,R⟨TFD|ψi,L(t− iδ)†

]
ρL̃

]
.

(8.33)

These expressions are also useful to see that these quantities are related to “Renyi-2” quan-

tities, as explained below.

Below, we would like to evaluate these correlators analytically, but the expressions (8.29)

and (8.30) are not suitable for analytic treatment. This is because they are “specific site”

correlators; thus, we can not apply the large-N techniques to evaluate them. However, since

we are basically interested in typical behaviors under highly chaotic dynamics in our setup,

the specific choice of the embedding would not be essential. Therefore, below, we consider the

“typical” embedding of the code information into the whole L̃ system uniformly. Therefore,

we replace these correlators with their averages on L̃,

1

Zδ
· ⟨TFD|ψi,L(t− iδ)

(
IL̃ ⊗ ρKR

)
ψi,L(t+ iδ)|TFD⟩

trKR

[
(ρKR)

2
]

→ 1

N −K
N−K∑

i=1

1

Zδ
· ⟨TFD|ψi,L(t− iδ)

(
IL̃ ⊗ ρKR

)
ψi,L(t+ iδ)|TFD⟩

trKR

[
(ρKR)

2
]

(8.34)
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and

1

Zδ
· ⟨TFD|ψi,L(t− iδ)

(
ρL̃ ⊗ IKR

)
ψi,L(t+ iδ)|TFD⟩

trKR

[
(ρKR)

2
]

→ 1

N −K
N−K∑

i=1

1

Zδ
· ⟨TFD|ψi,L(t− iδ)

(
ρL̃ ⊗ IKR

)
ψi,L(t+ iδ)|TFD⟩

trKR

[
(ρKR)

2
] .

(8.35)

These replacements would change the correlators in sub-leading orders of N , but the essential

physics would not be changed, because of typicality.

These averaged two-point functions are special cases of the (right-left) modular-flowed

correlators of the form

1

N −K
N−K∑

i=1

⟨TFD|ψi,R(τ)
(
ρn−1−k
L̃

⊗ ρkKR
)
ψi,L(τ

′)|TFD⟩
tr
[
ρnKR

] , (8.36)

where one of the fermions is put on the left system, and the other one is on the right system.

In the Euclidean regime, they are computed by using the replica trick in [14] when K ≪ N .

We use the result to compute “Rényi-2” (left-left) modular-flowed correlators (8.34) and

(8.35) from the Euclidean (right-left) correlator (8.36), by taking the limits k → n − 1 (and

k → 0), and n → 2, then analytically continuing to the Lorentzian regime. We note that

there is a difference between the above correlator (8.36) computed in [14] and our correlators

(8.34) and (8.35), namely that in (8.36) two fermions are living on opposite sides but in our

correlators they live on the same side. In our setup, one can relate the correlator to the

following diagrams (figure 28).

We study the correlators in the large-βJ limit because their analytic expressions are

available in the limit. One can instead work in the large-q limit while keeping the value of

βJ finite. We will not do this here because it is the former limit where the generalization to

two-dimensional CFTs is straightforward [16]. The right hand side of (8.34) and (8.35) in the

Euclidean regime are evaluated in the large βJ and K ≪ N limit as

1

N −K
N−K∑

i=1

⟨TFD|ψi,L(τ)
(
IL̃ ⊗ ρKR

)
ψi,L(τ

′)|TFD⟩
trKR

[
(ρKR)

2
]

= G2β(τ + 2β − τ ′) + 2
K

N

(
F(τ + 2β, τ ′;β, 0)−F0(τ + 2β, τ ′;β, 0)

)
+O

((
K

N

)2
)
,

(8.37)

1

N −K
N−K∑

i=1

⟨TFD|ψi,L(τ)
(
ρL̃ ⊗ IKR

)
ψi,L(τ

′)|TFD⟩
trKR

[
(ρKR)

2
]

= G2β(τ + β − τ ′) + 2
K

N

(
F(τ + β, τ ′;β, 0)−F0(τ + β, τ ′;β, 0)

)
+O

((
K

N

)2
)
.

(8.38)
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Figure 28: Diagrams for the path integral calculation of the correla-

tor (8.29) with using the relation (8.32) (Top), and the other correla-

tor (8.30) with (8.33) (Bottom). The red regions in the figure corre-

spond to subsystem RK, and the blue regions correspond to subsystem

L̃. The semicircles correspond to the Euclidean segments that prepare the

TFD states. Orange dots represent the insertions of the SYK Majorana

fermion with the regularization, ψi,L(t + iδ). The combination of the up-

per two semicircles with the operator insertions corresponds to the density

matrix trL̃[ψi,L |TFD⟩L,R⟨TFD|ψ
†
i,L] (and trKR[ψi,L |TFD⟩L,R⟨TFD|ψ

†
i,L]),

and the remaining combination represents the other one ρKR (and ρL̃).

Solid green arrows in the figure correspond to β/2 Euclidean evolutions.

The two insertions are separated by Euclidean time 2β (Top) and β (Bot-

tom). These separations are directly related to τ +2β and τ +β appearing

in (8.37) and (8.38) respectively.
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Here, G2β(τ) is a Euclidean thermal SYK two-point function for subsystem L̃ with periodicity

2β, and F(τ1, τ2; τ3, τ4) is the connected SYK four-point function, which is related to the bare

one F0(τ1, τ2; τ3, τ4) by the so-called ladder kernel Kc(τ1, τ2; τ3, τ4),

F(τ1, τ2; τ3, τ4) =
∫
dτ

∫
dτ ′

1

1−Kc(τ1, τ2; τ, τ ′)
F0(τ, τ

′; τ3, τ4),

F0(τ1, τ2; τ3, τ4) = G2β(τ13)G2β(τ42)−G2β(τ14)G2β(τ32), τij = τi − τj ,
Kc(τ1, τ2; τ3, τ4) = −J2(q − 1)G2β(τ13)G2β(τ24) (G2β(τ34))

q−2 .

(8.39)

In the SYK model, these two-point and four-point functions are well-studied in many

papers, e.g., [35, 36, 40–43]. See also [33, 34] for the review and references therein.

The Euclidean times τ, τ ′ in (8.37) and (8.38) are continued to the Lorentzian time

with a regularization parameter 0 < δ ≪ 1; τ → −it − δ, τ ′ → −it + δ. In this way,

the correlator (8.37) is continued to Lorentzian time as an out-of-time ordering correlator

(OTOC), τ1 > τ3 > τ2 > τ4, under the condition 1 ≪ βJ ≪ N/K. This correlator with the

ordering is given by [34, 35],

F(τ1, τ2; τ3, τ4) = G2β(τ12)G2β(τ34)
2βJ

q2πC


1−

π

2

sin

(
π

β
τ12;34

)

sin

(
π

β
· τ12
2

)
sin

(
π

β
· τ34
2

)


 , (8.40)

where τ12;34 = (τ1 + τ2)/2− (τ3 + τ4)/2, and C is a constant related to an overall constant of

the Schwarzian action derived from the Schwinger-Dyson equation of the SYK model [34, 35].

Thus, we have the following continuation

F(τ + 2β, τ ′;β, 0)→F(−it− δ + 2β,−it+ δ;β, 0)

= 2G2β(2β − 2δ)G2β(β) ·
2βJ

q2πC


1− π

2

cosh
(
π
β t
)

sin
(
πδ
β

)




≈ −2G2β(2β − 2δ)G2β(β) ·
βJ

2q2C
·
exp

(
π

β
t

)

sin

(
πδ

β

) .

(8.41)

In particular, the correlator is exponentially growing in time. On the other hand, the other

correlator (8.38) is continued to Lorentzian time with the ordering τ3 > τ1 > τ2 > τ4 under

the condition 1 ≪ βJ ≪ N/K, therefore it is not OTOC. The correlator with the ordering
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τ3 > τ1 > τ2 > τ4 is given by

F(τ1, τ2; τ3, τ4)

= −G2β(τ12)G2β(τ34)
2βJ

q2πC







πτ12

2β tan

(
π

β
· τ12
2

) +
π

tan

(
π

β
· τ12
2

) − 1







πτ34

2β tan

(
π

β
· τ34
2

) − 1





 ,

(8.42)

and its analytic continuation is

F(τ + β, τ ′;β, 0)

→ F(−it− δ + β,−it+ δ;β, 0) = −2G2β(β − 2δ)G2β(β) ·
2βJ

q2πC

[
1−

(
π

2
− πδ

β

)
tan

(
πδ

β

)]
.

(8.43)

Clearly, this is time-independent, unlike the previous case.

We do not evaluate bare four-point functions F0(τ1, τ2; τ3, τ4) for (8.37) and (8.38), be-

cause they are particular combinations of the thermal SYK two-point functions with the

power low behavior with respect to time, therefore they do not give dominant contributions

to the correlators (8.37) and (8.38).

Combining the above results, we can obtain the analytic expressions of the quantities

(8.37) and (8.38),
〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩

≈ 1

Zδ


G2β(2β − 2δ)−G2β(2β − 2δ)G2β(β) ·

2βJ

q2C
· K
N

exp

(
π

β
t

)

sin

(
πδ

β

) + · · ·




≈ G2β(2β − 2δ)

Gβ(2δ)


1−

G2β(β)

sin

(
πδ

β

) · 2βJ
q2C

· K
N

exp

(
π

β
t

)

 ,

(8.44)

and
〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨1|]

]
|1⟩

≈ 1

Zδ

[
G2β(β − 2δ)−G2β(β − 2δ)G2β(β) ·

8βJ

q2πC
· K
N

[
1−

(
π

2
− πδ

β

)
tan

(
πδ

β

)]
+ · · ·

]

≈ G2β(β − 2δ)

Gβ(2δ)

[
1−G2β(β) ·

8βJ

q2πC
· K
N

[
1−

(
π

2
− πδ

β

)
tan

(
πδ

β

)]]
,

(8.45)

where · · · includes bare four-point functions F0(τ1, τ2; τ3, τ4), would-be sub-leading terms,

coming from the replacements (8.34) and (8.35) in (8.29) and (8.30), and the sub-sub-leading
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terms of the averaged correlators. In the final lines, we ignored them. These ignored terms

do not change the essential physics of the discussions below. Thus, for simplicity of the

discussions below, we do not consider their contributions explicitly, but we need to keep in

mind that these ignored terms include order-(K/N) contributions.

Let us consider the consequences of the above results. First, we focus on the ratios

G2β(2β−2δ)/Gβ(2δ) and G2β(β−2δ)/Gβ(2δ) appearing in the above results. Since the SYK

two-point function under the conformal limit βJ ≫ 1 is given by [35],

Gβ(τ) = b

[
π

β sin πτ
β

]2∆
, ∆ =

1

q
, J2bqπ =

(
1

2
−∆

)
tanπ∆, (8.46)

we can evaluate the ratios as follows

G2β(2β − 2δ)

Gβ(2δ)
= cos2∆

(
πδ

β

)
, (8.47)

and
G2β(β − 2δ)

Gβ(2δ)
= sin2∆

(
πδ

β

)
. (8.48)

Thus, these ratios can not be 1 simultaneously for general δ and β. However, since ∆ = 1/q

when q is large, these ratios are close to 1. We give plots of the above two functions for

several q in figure 29. As we can see from plots 29 or directly from (8.47) and (8.48), we need

to consider a (relatively) large-q regime, which implies that the SYK Majorana fermion has

a small conformal dimension, ∆ = 1/q ≪ 1, in order to achieve recovery.

One may wonder why here we take the large-q limit, because the (SYK)q is chaotic for all

q ≥ 4 thus the identities (8.27), (8.28) are expected to hold for any value of q in this range.

Nevertheless, here we have to take the large-q limit because we define the code subspace using

the SYK Majorana fermion operator ψi,L and the calculations of the relevant correlation

functions can be possible only in the large-βJ limit where the entanglement between L and

R is weak. Because of the weakness of the entanglement, the recovery is only possible when

the dimension of the operator that defines the code subspace is small, implying the necessity

of taking the large-q limit.

Next, we consider the two-point function G2β(β) appearing in the sub-leading terms. The

two-point function G2β(β) can be written as

G2β(β) = b

[
π

2β sin π
2

]2∆
=

[(
1

2
−∆

)
π tanπ∆

(2βJ)2

]∆
. (8.49)

The above expression includes (1/βJ)∆, thus in βJ →∞ limit, the SYK two-point function

G2β(β) vanishes. We also note the q-dependence of the SYK two-point function. Plots of the

above function and βJG2β(β) for several q = ∆−1 are given in figure 30 and 31 respectively.
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Figure 29: Plots of ratios (8.47) and (8.48) as a function of βJ for smaller

q (Top), and for larger q (Bottom). Here, we set δJ = 0.1. For large q

regions, all the ratios become close to 1.
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Figure 30: Plots of the SYK two-point function G2β(β), (8.49) as a function of βJ for several

q = ∆−1.
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Figure 31: Plots of βJG2β(β) as a function of βJ for several q = ∆−1. The dotted line is

just βJ , which is equivalent to βJG2β(β) under the q →∞ limit.

The plots show that as q increases, the two-point function G2β(β) and βJG2β(β) take larger

values.

Thus, from the above discussion, in the strict βJ → ∞ limit19, we have G2β(β) → 0,

hence the second terms including G2β(β) in (8.44) and (8.45) vanish if we keep the exponential

factor exp (πt/β) in (8.44) fixed. Therefore, in this strict βJ → ∞ limit, we can not have

contributions from the second terms including G2β(β) in (8.44) and (8.45). These terms are

of order K/N and crucial for the following discussion.

Finally, let us focus on the time dependence of the results (8.44) and (8.45). First, we

focus on the second case (8.45). This result is time-independent at least up to the K/N -order,

and the second term is always suppressed by the time-independent factor at the K/N -order,

thus the second term is very small compared with the first term. This implies that the

quantity (8.45) is almost given by the ratio G2β(β − 2δ)/Gβ(2δ), which becomes close to 1

when q is large.

Next, we focus on (8.44). Because of the exponential time-dependent factor, this corre-

lator has crucially different behavior as a function of time from (8.45). For early times t≪ 1,

the exponential in the second term can be approximated by 1, they are similar. However,

because of the exponentially growing factor, the perturbative expansion with respect to K/N

breaks down, similar to the fact that the perturbative calculations of OTOCs in 1/N become

19We note that to consider the perturbative expansion, we have assumed βJ ≪ N/K, and also implicitly

assumed q ≪ N/K for large q. Thus, we can not take the βJ → ∞ or q → ∞ limits, unless we take the

N/K → ∞ limit. However, the limit N/K → ∞ implies that there is almost no Hawking radiation compared

to the entire Hawking radiation K/N → 0. Intuitively, in such a situation, we would not be able to recover

the diary information from the Hawking radiation.
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invalid. The time scale of this breakdown can be estimated by equating the second term with

the first term in (8.44). From the condition, we can find a critical time t*
20,

K

N
exp

(
π

β
t∗

)
∼ 1 =⇒ t∗ =

β

π
log

(
N

K

)
= 2tScram, (8.50)

where we introduce the usual scrambling time tScram [44] given by

tScram =
β

2π
log

(
N

K

)
. (8.51)

Using this time scale, we can rewrite the correlator (8.44) as

〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩

≈ G2β(2β − 2δ)

Gβ(2δ)


1−

G2β(β)

sin

(
πδ

β

) · 2βJ
q2C

· exp
(
λL
2

(t− 2tScram)

)

 ,

(8.52)

where we introduce the Lyapunov exponent λL for a black hole with temperature β,

λL =
2π

β
. (8.53)

Thus, around the critical time, which is twice the scrambling time, we can see that the

overall coefficient of G2β(2β − 2δ)/G2β(2δ) becomes very small as usual OTOC correlators.

This reproduces the expected result (8.27) under the condition βJ ≫ 1.

From the discussion so far, we have confirmed that the matrix elements (8.24), (8.25)

and (8.26) do behave as we expect them to under the condition 1≪ βJ ≪ N/K.

8.3 Expected properties of the Petz-lite under the SYK dynamics

So far, we have confirmed that the matrix elements we computed (8.27) and (8.28) reproduce

our expected results under the conditions of relatively large-q interaction, after the critical

time t∗ = 2tScram. Additionally, of course, the following trivial matrix element is equal to 1

by the definition, 〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|0⟩ = 1. (8.54)

20In defining the critical time, we might have the ambiguity of which factors should be included in the

critical time (or correspondingly the scrambling time), e.g., βJ and also G2β(β). However, as we saw before,

the two-point function is typically order one G2β(β) = O(1), thus we might not need to include the factor to

the scrambling time. Another factor 1/ sin
(
πδ
β

)
can be set to be O(1) by setting the cutoff δ suitably. For

the other factor βJ , since we have the condition βJ ≪ N/K, the factor can not give a significant contribution

compared to the leading factor N/K; thus, including the factor would be redundant. Therefore, the critical

time here would be the simplest choice.
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Also, we can obtain the same consequences for two related matrix elements. Let us explain

them. First, the matrix element (8.27), which becomes close to 0, is directly related to

〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩ =

〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|1⟩T ⟨1|]

]
|0⟩ (8.55)

via the definition of the adjoint channel (5.7). Thus, this matrix element also becomes close

to 0 after the critical time, and the behavior is consistent with our expectation.

Next, for the matrix element (8.28), being almost equal to 1, we have the following

relation through the definition of the adjoint channel (5.7) again,

〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨1|]

]
|1⟩ =

〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|1⟩T ⟨0|]

]
|0⟩ . (8.56)

Thus, although we have eight non-trivial matrix elements (8.23) that should be checked,

we already know the behavior of the above five matrix elements, and there are still three

matrix elements. However, since two of them are related by complex conjugation, essentially

we need to investigate the following two matrix elements

〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|1⟩T ⟨0|]

]
|1⟩ , (8.57)

and 〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|1⟩T ⟨1|]

]
|1⟩ . (8.58)

Here, the first matrix element is related to the following one

(〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|1⟩T ⟨0|]

]
|1⟩
)∗

=
〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨1|]

]
|0⟩ .
(8.59)

In evaluating these matrix elements, we can not directly use the technique of [14], unlike

the cases for the matrix elements (8.29) and (8.30)21. In the upcoming paper [16], we will

report their results, but here we explain their expected behaviors from our obtained results.

To this end, it would be useful to introduce the Kraus representation of the quantum channel

(8.10),

N SYK
T→K,R[ρT ] =

dL̃∑

m=1

ESYK
m ρTE

SYK†
m (8.60)

21We briefly explain the reason why the evaluations of the matrix elements (8.58) and (8.59) are difficult.

The reason is that they do not have simple expressions like (8.32) and (8.33) naively. Of course, for matrix

element (8.58), we can consider a similar expression like (8.32) with replacing the TFD state with the excited

state ψi,L |TFD⟩L,R, but in that case, we can no longer use the techniques in [14], and we need to consider

the modular operator for the excited state. For the other matrix element (8.59), we naively need to introduce

transition matrices, not density matrices, to write it in terms of a correlator.
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where ESYK
m is the Kraus operator given by

ESYK
m = L̃⟨m|ULVT,L→L |TFD⟩L,R . (8.61)

We can obtain this Kraus representation by introducing an orthonormal basis of the subsystem

L̃ as
{
|m⟩L̃

}dL̃
m=1

. We also note that the adjoint channel (8.11) can be written as

N SYK†
K,R→T [OKR] =

dL̃∑

m=1

ESYK†
m OKRESYK

m . (8.62)

Using this Kraus representation, it is possible to extract the very important “typical”

relation from our results. Here, the “typical” means that the relation almost does not depend

on the detail of a specific state |m⟩L̃ in the subsystem L̃, corresponding to a black hole

microstate. First, the matrix elements (8.54) is equal to 1 and can be expressed as

〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|0⟩ =

〈
d̂L̃

〉
β

dL̃∑

m,n=1

T ⟨0|ESYK†
m ESYK

n |0⟩T ⟨0|ESYK
n ESYK†

m |0⟩T

=
〈
d̂L̃

〉
β

dL̃∑

m,n=1

∣∣∣ T ⟨0|ESYK†
m ESYK

n |0⟩T
∣∣∣
2
,

(8.63)

and we expect the typical relation

T ⟨0|ESYK†
m ESYK

n |0⟩T ∼
1√

dL̃ ·
〈
d̂L̃

〉
β

δmn. (8.64)

Next, we focus on the matrix element (8.28). This matrix element is also equal to 1, and

we can express the matrix element in terms of the Kraus operators,

〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨1|]

]
|1⟩ =

〈
d̂L̃

〉
β

dL̃∑

m,n=1

T ⟨0|ESYK†
m ESYK

n |0⟩T ⟨1|ESYK
n ESYK†

m |1⟩T .

(8.65)

By using the relation (8.64), we extract a similar relation,

T ⟨1|ESYK†
m ESYK

n |1⟩T ∼
1√

dL̃ ·
〈
d̂L̃

〉
β

δmn. (8.66)

Finally, the time-dependent matrix element (8.27), which almost vanishes around the
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critical time t∗, can be written as

〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩ =

〈
d̂L̃

〉
β

dL̃∑

m,n=1

T ⟨1|ESYK†
m ESYK

n |0⟩T ⟨0|ESYK
n ESYK†

m |1⟩T

=
〈
d̂L̃

〉
β

dL̃∑

m,n=1

∣∣∣ T ⟨1|ESYK†
m ESYK

n |0⟩T
∣∣∣
2
.

(8.67)

From this expression, we expect the following relation and its complex conjugation,

T ⟨1|ESYK†
m ESYK

n |0⟩T ∼ 0, (8.68)

around and after the critical time.

Combining the above expectations, we obtain the typically expected relation22

T

〈
T
∣∣ESYK†

m ESYK
n

∣∣T ′〉
T
∼ 1√

dL̃ ·
〈
d̂L̃

〉
β

δmnδTT ′ for t ≳ t∗, (8.69)

which corresponds to the Knill-Laflamme condition [20].

Using this relation, the remaining matrix elements (8.57) and (8.58) are expected to

behave as follows

〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|1⟩T ⟨0|]

]
|1⟩ =

〈
d̂L̃

〉
β

dL̃∑

m,n=1

T ⟨0|ESYK†
m ESYK

n |1⟩T ⟨0|ESYK
n ESYK†

m |1⟩T

∼ 0 for t ≳ t∗,

(8.70)

and

〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|1⟩T ⟨1|]

]
|1⟩ =

〈
d̂L̃

〉
β

dL̃∑

m,n=1

T ⟨1|ESYK†
m ESYK

n |1⟩T ⟨1|ESYK
n ESYK†

m |1⟩T

∼ 1.

(8.71)

These results are, of course, consistent with our original expectation (8.23), but the discussion

so far using the typical relation is indirect (8.69). Nevertheless, since this typicality is strong

enough for a highly chaotic theory, we expect that nearly identical results can be obtained

by direct calculations of the matrix elements (8.57) and (8.58).

22Here, we check the Knill-Laflamme condition from our obtained results. However, in principle, it would be

possible to investigate the Knill-Laflamme condition directly by introducing a basis [39]. It would be interesting

to investigate this topic.
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9 Conclusion and discussion

9.1 Conclusion

In this paper, we studied a recovery map for the Hayden-Preskill type scrambling channel

N . We showed that one can use a simplified recovery map, called Petz-lite, consisting of

the adjoint channel N † with a suitable normalization factor. We considered two examples,

the Hayden-Preskill setup and the SYK model, and showed that in both cases, the Petz-lite

indeed works as a recovery map. Also, we found that if the Petz-lite for the SYK case is

used to recover information of a given code subspace, it takes twice the scrambling time

for the recovery. However, in the SYK model case, we did not evaluate all of the matrix

elements necessary to show the recovery because of technical difficulties. Instead, we indirectly

evaluated them in section 8.3. In the upcoming paper [16], we will explain their results, and

also some generalizations of our results.

Let us discuss our results. First, we focus on the physical interpretation of the critical

time given by twice the scrambling time, t∗ = 2tScram, when the matrix elements give the

input information, R[N [ρ]] ∼ ρ. It was argued in [44] that information of a diary thrown into

a black hole appears after the scrambling time. This means that, after the scrambling time,

the HP scrambling channel N maps the diary information to Hawking radiation completely.

However, even if the diary information appears in the Hawking radiation, it is difficult to

get it directly since the information is uniformly embedded into the Hawking radiation. To

extract the information, we need a recovery operation given by the Petz-lite R ∼ N †. Since it

is the adjoint of the HP channel N , it again takes the scrambling time to apply the recovery

map. Thus, in total, we need to wait for twice the scrambling time for the identity (8.23) to

be satisfied.

Next, let us explain the bulk interpretation of our results23. The bulk interpretation

comes from the island prescription [1, 2]. First, the Hayden-Preskill setup concerns post-

Page time regimes. In these regimes, there is an island, which is a non-trivial entanglement

wedge of Hawking radiation in the black hole interior. Thus, if one throws a diary into a black

hole and waits for the scrambling time, then the diary enters the island region, implying that

the diary is encoded into the Hawking radiation in a very complicated way. The mechanism

that the thrown diary is encoded into the Hawking radiation corresponds to our quantum

channel N . To recover the diary information from the Hawking radiation, we need to consider

the recovery operation corresponding to the map R ∼ N †. The recovery map is given by the

23We note that since currently there is no clear understanding of a dual gravitational theory for a subset of

the SYK Majorana fermions (or Majorana spin chain), we can not check the interpretation using the gravity

side explicitly at least in the context of NAdS2/NCFT1 context. However, there are several proposals for such

a gravitational treatment, e.g., in [14]. One would be able to use them to check the bulk interpretation.
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adjoint channel of the quantum channel N . In the bulk side, the action of the adjoint channel

N † means that the “reverse” process of the original quantum channel N 24. More precisely,

the “reverse” process is given as follows: first, we start from the output state provided by the

action of the quantum channel N , implying the diary is located on the island at some time

slice Σ. The application of the adjoint channel N † is then interpreted as replacing the future

of this time slice Σ by a white hole. Because of the replacement, the diary on the island region

of the original black hole is coming out from the horizon of the white hole. Here, the reason

why the white hole appears is that the adjoint channel includes the Hermitian conjugation of

unitaries U (and U †) compared to the quantum channel N . Thus, the diary thrown into the

black hole reappears from the white hole induced byN †. This bulk interpretation is consistent

with the critical time. This is because, after throwing the diary, it takes the scrambling time

for the diary to enter the island region, and in the “reverse” process, it would also take the

scrambling time for the diary to go outside the island region and the horizon.

9.2 Discussion

Finally, we end with discussing some of our in-progress works and future directions:

Analysis in high temperature regime, βJ ≪ 1 In this paper, we have focused on the

large-βJ limit (low-temperature limit) in the SYK model to make the calculation analytic

and for the purpose of the generalization to a two-dimensional CFT case. In the limit, we

can use emergent conformal symmetry of the SYK model, and also we would be able to use

semi-classical intuition of the dual Jackiw-Teitelboim gravity, but we have a relatively weak

initial entangled state |TFD⟩L,R between the left and right SYK systems. Due to this weak

entangled state, we would require some conditions to consider a successful recovery protocol,

e.g., large-q regime. Thus, analysis without taking the large-βJ limit would be interesting.

In that case, we would need to consider numerical approaches.

Direct bulk analysis and relation to other protocols In this paper, we studied the

recovery protocol from the boundary CFT perspective. One would be able to consider corre-

sponding bulk computations. Also, it would be interesting to figure out the relation between

other proposed protocols, e.g., [45–48] and ours25.

Generalization to (Holographic) CFT2 and other systems While this paper focuses

on the SYK model, which is a 0+1-dimensional quantum system, it can also be interpreted as

24Here, we note that in these two processes, we need to use two different (remaining) black holes since,

in defining the quantum channel, (remaining) black holes are treated as internal degrees of freedom of the

quantum channel.
25For such protocols, one can characterize protocol by computing “price”, “distance”, etc. as in [14, 49, 50].

One would be able to find the relation between our results and such quantities.

– 104 –



a spin chain with q-body SYK interactions. Thus, we can interpret that the SYK model has a

spatial direction effectively. As a result, we expect that a similar analysis can be applied to a

two-dimensional CFT exhibiting chaos, e.g., two-dimensional holographic CFT. Indeed, one

of the Hayden-Preskill setups in a two-dimensional holographic CFT is introduced in [37].

Also, there are other possibilities for generalizations to other systems exhibiting chaos.

For example, studying the Petz-lite in a chaotic spin chain would be interesting.

Chaotic-Integrable transition In this paper, the chaotic nature is important for the

simplification of the Petz map to the Petz-lite. Thus, if a system does not exhibit a chaotic

nature, in other words, the system is integrable, then the Petz-lite (also the original Petz map)

is not expected to work correctly. This is because, in an integrable system, the decoupling

condition is not expected to hold. In the framework of the SYK model, we can prepare

integrable and non-integrable (chaotic) situations by adding two-body interaction [51]. Using

the setup, we would be able to study the Petz-lite.

Higher dimensional code sub-space? The SYK version of the HP setup studied in this

paper treats the two-dimensional code sub-space spanned by the vacuum and the excited

state. However, in a more realistic situation, one needs to deal with code sub-spaces with

dimensions greater than two. For example, the interior of a black hole, when it is viewed as a

code subspace embedded into the Hawking radiation, the dimension of its Hilbert space has to

be large enough to accommodate a part of the semi-classical QFT degrees of freedom to have a

geometric interpretation of the black hole interior26. To this end, one would need to consider a

more complicated embedding involving, for example, states like ψi,Lψj ̸=i,L |TFD⟩L,R. In that

case, we can evaluate corresponding matrix elements in principle, but it would be difficult to

evaluate them analytically since we encounter higher-point functions.

Another possibility for higher dimensional code sub-space is to consider a random em-

bedding and the double-scaling limit. For example, we might be able to use the state

κijψi,Lψj,L |TFD⟩L,R, where κij is random like observables in the double-scaled SYK model

[53]. In this case, by taking the double-scaling limit and using chord diagram techniques, we

might be able to evaluate the resulting matrix element analytically. Also, this might open up

an interesting connection between QEC in the SYK model and recent discussions of the von

Neumann algebra of quantum gravity, in particular, [54].

26Of course, the interior degrees of freedom may appear to be infinite, but almost all of them can not

contribute due to post-selection [52]. Even in that case, there can be degrees of freedom with Bekenstein-

Hawking entropy.
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A Uhlmann‘s monotonicity theorem

In this appendix, we review the derivation of the Uhlmann’s monotonicity theorem by follow-

ing the paper of Petz [21]. In subsection 4.2.2, we explained that if there exists a recovery

map R : B(K) → B(H) such that R[N [ρ]] = ρ for a quantum state ρ ∈ B(H) and a given

noise channel N : B(H)→ B(K), the sufficiency S(ρ||σ) = S(N [ρ]||N [σ]) is satisfied for any

ρ, σ ∈ B(H). Here, the relative entropy between two density matrices ρ, σ ∈ B(H) is defined
as

S(ρ||σ) = tr[ρ(log ρ− log σ)] . (A.1)

In section 4, we defined quantum noise channel N as a linear map which satisfies complete

positive (CP) and trace preserving (TP). However, in order to prove Uhlmann’s monotonicity

theorem, we can loosen the CP condition to 2-positive for N .

Definition 6 (course graining). Let ρ, σ, τ, υ any density matrices contained in B(H). A

linear map N : B(H) → B(K) is called course graining if N satisfies the following two

conditions:

1. tr[N [ρ]] = tr[ρ] (TP).

2. If

(
ρ σ

τ υ

)
is positive,

(
N [ρ] N [σ]

N [τ ] N [υ]

)
is also positive (2-positive).

Course graining N satisfies Schwarz inequality:

N [ρ†ρ] ≥ N [ρ]N [ρ]† ,∀ρ ∈ B(H) . (A.2)

Since course graining contains CPTP noise channel and essentially use Schwarz inequality for

the proof of Uhlmann’s monotonicity theorem, we can discuss N is noise channel which we

explained in section 4. Adjoint of course graining is also defined as explained in section 4:

adjointN † : B(K)→ B(H) is defined for ρ ∈ B(H) andO ∈ B(K) as tr[ON [ρ]] = tr
[
N †[O]ρ

]
.

N † is also a course graining and satisfies Schwarz inequality. We show the statement of

Uhlmann’s monotonicity theorem.

Theorem 5 (Uhlmann’s monotonicity theorem). For dencity matrices ρ, σ ∈ B(H) and

course graining N : B(H)→ B(K),

S(ρ||σ) ≥ S(N [ρ]||N [σ]) . (A.3)

Proof. We prove by relative modular operator method, which was developed by Araki for

modular theory of operator algebra. We assume ρ, σ ∈ B(H) invertible and define relative

modular operator ∆ as

∆τ ≡ στρ−1 τ ∈ B(H) . (A.4)
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∆ can be written as the product of positive operators L,K:

Lτ ≡ στ
Rτ ≡ τρ−1

∆ = LR = RL .

(A.5)

Since log∆ can be evaluated as

log∆ = logL+ logR

= log σ − log ρ ,
(A.6)

relative entropy between ρ and σ can be evaluated as

S(ρ||σ) = tr[ρ(log ρ− log σ)]

= ⟨ρ1/2, (log ρ− log σ)ρ1/2⟩
= −⟨ρ1/2, (log∆)ρ1/2⟩ .

(A.7)

We assume N [ρ] is also invertible and define ∆0 ∈ B(K) as

∆0O ≡ N [σ]ON [ρ]−1 , O ∈ B(K) . (A.8)

If we use log x =
∫∞
0 dt

(
(1 + t)−1 − (x+ t)−1

)
and tr[ρ] = ⟨ρ1/2, ρ1/2⟩ = 1, the relative

entropy can be written as

S(ρ||σ) = −⟨ρ1/2, (log∆)ρ1/2⟩

=

∫ ∞

0
dt
(
⟨ρ1/2, (∆ + t)−1ρ1/2⟩ − (1 + t)−1

) (A.9)

Similarly S(N [ρ]||N [σ]) becomes

S(N [ρ]||N [σ]) = −⟨N [ρ]1/2, (log∆)N [ρ]1/2⟩

=

∫ ∞

0
dt
(
⟨N [ρ]1/2, (∆ + t)−1N [ρ]1/2⟩ − (1 + t)−1

) (A.10)

Thus if we succeed to prove

⟨ρ1/2, (∆ + t)−1ρ1/2⟩ ≥ ⟨N [ρ]1/2, (∆ + t)−1N [ρ]1/2⟩ ∀t ∈ R , (A.11)

we can tell the theorem is true.

We define V : B(K)→ B(H) as follows:

VON [ρ]1/2 ≡ N †[O]ρ1/2 (A.12)
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Then we evaluate ∥N †[O]ρ1/2∥2 using Schwarz inequality as follows.

∥N †[O]ρ1/2∥2 = tr
[
ρN †[O]†N †[O]

]

≤ tr
[
ρN †[O†O]

]

= tr
[
N [ρ]O†O

]

= ∥ON [ρ]1/2∥2

(A.13)

In the second line, we used Schwarz inequality and in the third line, we used the definition of

adjoint map. Since ∥N †[O]ρ1/2∥2 ≤ ∥ON [ρ]1/2∥2, we find that V in (A.12) is a contraction.

By similar evaluation, we can said that V †∆V ≤ ∆0. Using this and the fact that f(y) =

(y + t)−1 decreases monotonically, we can show the inequality:

(∆0 + t)−1 ≤ (V †∆V + t)−1 ≤ V †(∆ + t)−1V . (A.14)

If we apply O = I to (A.12), we get VN [ρ]1/2 = ρ1/2. Using these relations, we can calculate

as
⟨ρ, (∆ + t)−1ρ⟩ = ⟨VN [ρ]1/2, (∆ + t)−1VN [ρ]1/2⟩

= ⟨N [ρ]1/2.V †(∆ + t)−1VN [ρ]1/2⟩
≥ ⟨N [ρ]1/2, (∆0 + t)−1N [ρ]1/2⟩

(A.15)

We succeeded to prove the inequality (A.11) and thus we proved Uhlmann’s monotonicity

theorem.

Next, we focus on the condition for equality. The necessary and sufficient condition of

the equality of the theorem S(ρ||σ) = S(N [ρ]||N [σ]) is

⟨N [ρ]1/2, V †(∆ + t)−1VN [ρ]1/2⟩ = ⟨N [ρ]1/2, (∆0 + t)−1N [ρ]1/2⟩ ∀t ∈ R . (A.16)

This comes from the equality of the second inequality of (A.14):

V †(∆ + t)−1V = (∆0 + t)−1 (A.17)

By acting N [ρ]1/2 to the right and using VN [ρ]1/2 = ρ1/2 which we showed above,

V †(∆ + t)−1ρ1/2 = (∆0 + t)−1N [ρ]1/2 , ∀t ∈ R . (A.18)

By differentiating this in terms of t,

V †(∆ + t)−2ρ1/2 = (∆0 + t)−2N [ρ]1/2 , ∀t ∈ R . (A.19)

– 109 –



By using these, we can evaluate as

∥V †(∆ + t)−1ρ1/2∥2 = ⟨(∆0 + t)−1N [ρ]1/2, (∆0 + t)−1N [ρ]1/2⟩
= ⟨(∆0 + t)−2N [ρ]1/2,N [ρ]1/2⟩
= ⟨V †(∆ + t)−2ρ1/2,N [ρ]1/2⟩
= ⟨(∆ + t)−1ρ1/2, (∆ + t)−1VN [ρ]1/2⟩
= ∥(∆ + t)−1ρ1/2∥2 .

(A.20)

If we write ξ = (∆ + t)−1ρ1/2, ξ†V V †ξ = ∥V †ξ∥2 = ∥ξ∥2 = ξ†ξ is satisfied, so V V †ξ = ξ.

Therefore, we get

V V † (∆ + t)−1ρ1/2 = (∆+ t)−1ρ1/2 . (A.21)

Applying this to (A.18), we obtain

V (∆0 + t)−1N [ρ]1/2 = V V †(∆ + t)−1ρ1/2

= (∆+ t)−1ρ1/2 .
(A.22)

By Stone-Weierstrass approximation, we can use V f(∆0)N [ρ]1/2 = f(∆)ρ1/2 for some func-

tion f . We use this for the function f(x) = xit and get

V∆it
0N [ρ]1/2 = ∆itρ1/2 . (A.23)

By using (A.12), the left side becomes

V∆it
0N [ρ]1/2 = N †[∆it

0 ]ρ
1/2 . (A.24)

Thus we get the relation

N †[∆it
0 ] = ∆it . (A.25)

Since ∆ = σρ−1 and ∆0 = N [σ]N [ρ]−1, we have derived the relation (4.64) explained in

section 4.2.2:

N † [N [σ]itN [ρ]−it
]
= σitρ−it . (A.26)

We can summarize the result as the following theorem.

Theorem 6 (The condition for equality of Uhlmann’s monotonicity theorem). Let N :

B(H)→ B(K) some course graining and let ρ, σ ∈ B(H) and N [ρ],N [σ] ∈ B(K) be invertible

density matrices. The necessary and sufficient condition to satisfy S(ρ||σ) = S(N [ρ]||N [σ])

is the following equivalent conditions:

1. N † [N [σ]itN [ρ]−it
]
= σitρ−it , ∀t ∈ R

2. N † (logN [ρ]− logN [σ]) = log ρ− log σ
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We can derive the second condition by differentiating in terms of t and setting t = 0. In

subsection 4.3.2, we constructed the Petz map by using this relation (A.26). Thus we can

tell that if sufficiency is satisfied, the recovery is possible by constructing the Petz map. We

showed that if recovery is possible sufficiency is satisfied in 4.2.2. We have succeeded to prove

the both directions, so here we end this appendix.
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B JT gravity and Schwarzian action

In this appendix, we explain Jackiw-Teitelboim (JT) gravity model briefly from introducing

the action to deriving thermal entropy with Schwarzian action, following the paper of Sárosi

[33]. It is two-dimensional dilaton gravity, which exhibits AdS2 geometry. Magnetically

charged Reisner-Nordström solution in four dimension:

ds2 = −(r − r+)(r − r−)
r2

dt2 +
r2

(r − r+)(r − r−)dr
2 + r2dΩ2

2 ,

F = Q sin θdϕ ∧ dθ ,

r± = QlP + El2P ±
√

2QElP + E2l4P

(B.1)

is the classical solution of Einstein-Maxwell action

SEinstein−Maxwell ∼
1

l2P

∫
d4x
√−g

(
Rg −

l2P
4
FµνF

µν

)
. (B.2)

Rg is Ricci scalar of the metric gµν and Fµν is the field strength of Maxwell field. dΩ2
2 is the

line element of the two-sphere. Q is the magnetic charge and lP =
√
GN is the Planck length

and E is the excitation energy:

E =M − Q

lP
. (B.3)

When this black hole is extremal, i.e. E = 0, if we consider near horizon limit, the metric ds2

becomes AdS2 × S2. To see this, we define the new coodinate

z =
Q2l2P
r − r+ (B.4)

and take the limit lP → 0 with z fixed in order to consider the near horizon limit r → r+. In

this limit, the metric becomes

ds2 ≈ l2PQ2

(−dt2 + dz2

z2
+ dΩ2

2

)
. (B.5)

AdS2 metric is written as

ds2 = l2AdS

−dt2 + dz2

z2
(Poincaré)

=
−4lAdSdu

+du−

sin2(u+ − u−) u± = arctan(t± z) (Global light cone)

= l2AdS

−dν2 + dσ2

sin2 σ
u± =

ν ± σ
2

(Global) .

(B.6)

lAdS is the curvature radius and it corresponds to lP as lAdS = lPQ. In Rindler coordinate

(ρ, τ), which corresponds to Poincaré coordinate (t, z) as

z ± t = (1± cosh ρ)eτ/2 − sinh ρ e−τ/2

(1± cosh ρ)eτ/2 + sinh ρ e−τ/2
, (B.7)
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we can write the metric as ds2 = l2AdS(dρ
2 − sinh2 ρ dτ2).

Static and spherically symmetric solution of SEinstein−Maxwell is obtained by imposing

the ansatz
ds2 = hijdx

idxj + e2ψ(r,t)dΩ2 i, j = 1, 2

F = Q sin θdϕ ∧ dθ
(B.8)

and restricting to two-dimensional (x1, x2) = (t, r) plane, SEinstein−Maxwell reduces to

SEinstein−Maxwell →
4π

l2P

∫
dtdr
√
−h
[
e2ψ

(
Rh + 2(∂ψ)2

)
+ 2− 1

2
e−2ψQ2l2P

]

=
4π

l2P

∫
dtdr
√
−h
[
Φ2Rh + 2(∂Φ)2 + 2− 1

2
Φ−2Q2l2P

]
,

(B.9)

where we set Φ = eψ. This is the special instance of general dilaton gravity model:

I =
1

16πGN

∫
d2x
√
−h
[
Φ2Rh + λ(∂Φ)2 − U

(
Φ2

d2

)]
(B.10)

where U is an arbitrary scalar potential and λ is dimensionless coefficient for kinetic term.

Φ2 is called a dilaton field. When the dilaton is constant, this action exhibits the solution

of AdS2. Setting the dilaton to constant Φ2 = ϕ0 and extremizing the action, we obtain the

relation between lAdS, d, ϕ0:
2

l2AdS

+
1

d2
U ′
(
ϕ0
d2

)
= 0 . (B.11)

d is the extremal length scale, which is d = lPQ for Reisner-Nordström example. It relates to

UV length scale of AdS2. We consider a small deformation for the dilaton to consider some

dynamics:

Φ2 = ϕ0 + ϕ (|ϕ| ≪ 1) (B.12)

and set cutoff on z = ϵ
ϕ(ϵ)

d2
≡ η ≪ 1 (B.13)

since in Poincaré coodinate the dilaton expected to diverge as ϕ ∼ 1
z (z → 0). We can expand

the potential U
(
Φ2

d2

)
around Φ2 = ϕ0:

I =
1

16πGN

[ ∫
d2x
√
−h
(
ϕ0Rh − U

(
ϕ0
d2

))

+

∫
d2x
√
−hϕ

(
Rh +

2

l2AdS

)

+

∫
d2x
√
−hλ

4

(∂ϕ)2

ϕ0 + ϕ

]
+O(η2) .

(B.14)

We used (B.11) in the second line. The first line is Einstein gravity in two dimensions. IR

divergent volume term
∫
d2x
√
−hU(ϕ0/d

2) can be removed by local counter term. Adding
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boundary term, this gives Euler character because of Gauss-Bonnet theorem and it becomes

topologically invariant. The second term is the action of JT gravity and gives dynamics. The

third term can be ignored since it is O(η2). ϕ ∼ (length)2 should be proportional to GN = l2P
and E, so ϕ is expected to be ϕ ∼ l2P l

2
AdSE
z . (∂ϕ)2

ϕ0+ϕ
is evaluated as

(∂ϕ)2

ϕ0 + ϕ
∼
gzz
(
l2P l

2
AdSE

z2

)

ϕ0 + ϕ
=

ϕ2

lAdS

1

ϕ0 + ϕ
(B.15)

where we used gzz = z2/l2AdS. If we set ϕ0 = d2 and use (B.11),

(∂ϕ)2

ϕ0 + ϕ
∼ |U

′(1)|
1 + ϕ

d2

(
ϕ

d2

)2

= |U ′(1)|η2(1 +O(η)) = O(η2) . (B.16)

After removing the volume term and setting l−2
AdS = 1, the action governing the dynamics

inside the cutoff surface is written as follows.

I =
ϕ0

16πGN

∫
d2x
√
−hRh +

1

16πGN

∫
d2x
√
−hϕ (Rh + 2) (B.17)

Next, we discuss Euclidean JT gravity to consider boundary theory. In Euclidean signa-

ture tLorentz = −itEuclidean, τLorentz = −iτEuclidean, AdS2 is the hyperbolic disk:

ds2 =
dt2 + dz2

z2
(Poincaré)

= dρ2 + sinh2 ρdτ2 (Rindler)

(B.18)

Euclidean action is

I = − ϕ0
16πGN

[∫

M
d2x
√
hRh + 2

∫

∂M
K

]

− 1

16πGN

[∫

M
d2x
√
hϕ(Rh + 2) + 2

∫

∂M
ϕbK

]
.

(B.19)

We added the Gibbons-Hawking-York term, which is necessary to impose Dirichlet boundary

condition on the boundary of the manifoldM. K is the extrinsic curvature K = −h(T,∇Tn)
h(T,T ) .

The boundary condition of ϕ is given by ϕb. The first line is topological Einstein-Hilbert term.

The second line is the dynamical part. We consider boundary time u and the boundary curve

u 7→ (t(u), z(u)). Unlike ordinary AdS/CFT, we impose dynamical UV cutoff to the induced

metric of the boundary curve:

g|bdy =
1

ϵ2
(ϵ≪ 1) . (B.20)

This condition implies the relation between parameters as

z = ϵ
√
(t′)2 + (z′)2 = ϵt′ +O(ϵ3) . (B.21)
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Variation in ϕ leads to R = −2, which tells that the metric is AdS2. Then we study the

boundary term since it breaks SL(2,R) symmetry of the reparametrization of the boundary

time. The boundary term is

Ibdy = − 1

8πGN

∫

∂M
ϕbK

= − 1

8πGN

∫
du

ϵ2
ϕr(u)K .

(B.22)

In the second line, we used (B.20) and set the boundary condition for the dilaton as

ϕb =
ϕr(u)

ϵ
(B.23)

where ϕr(u) behaves like the source for the operator in ordinary AdS/CFT. Calculating the

extrinsic curvature K by using T a = (t′, z′), na = z√
t′2+z′2

(−z′, t′),

K =
t′(t′2 + z′2 + z′z′′)− zz′t′′

(t′2 + z′2)3/2

= 1 + Sch[t(u), u]ϵ2 +O(ϵ4)
(B.24)

where we again met the Schwarzian derivative:

Sch[t(u), u] =
2t′t′′′ − 3t′′2

2t′2
. (B.25)

We obtain the Schwarzian action

ISch = − 1

8πGN

∫
duϕr(u) Sch[t(u), u] . (B.26)

We assume that the boundary value of the dilaton is constant: ϕr(u) = ϕ̄r. We want the

solution of this action. The equation of motion is

Sch[t, u]′

t′
= 0 . (B.27)

We should look for the non-constant function which makes the Schwarzian constant. Using

the relation Sch[f ◦g, t] = g′ 2Sch[f, g]+Sch[g, t] and setting the boundary limit of the relation

between Poincaré to Rindler (B.7) t(u) = tan τ(u)
2 , we obtain

Sch[t, u] = Sch[τ, u] +
1

2
τ ′ 2 . (B.28)

If τ(u) is linear, the Schwarzian is constant and that is the solution. Since Euclidean Rindler

τ has 2π periodicity, so we get the solution:

τ(u) =
2π

β
u . (B.29)
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Plugging this solution back into the Schwarzian action, we obtain

ISch = −2π2C 1

β
, C =

ϕ̄r
8πGN

. (B.30)

When GN → 0, boundary partition function is Z(β) = e−Igrav . Since topological Einstein-

Hilbelt term gives ground entropy −S0, total on-shell action becomes

Igrav = −S0 − 2π2C
1

β
. (B.31)

Thus we get the thermal entropy of near extremal black hole as

Sth = (1− β∂β) logZ(β) = S0 + 4π2
C

β
. (B.32)

We find that this is proportional to black hole temperature.
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C Derivation of the Petz lite using the Kraus representation

In this appendix, we derive the Petz-lite with a different normalization factor based on paper

[22]. See, e.g., §10.3 of [19] for related reviews.

We start with the Kraus representation of the HP channel (5.3). The Kraus representation

can be introduced by expressing the trace as

NT→D,B [ρT ] = trC

[
(UT,A→C,D ⊗ IB)(ρT ⊗ |EPR⟩A,B⟨EPR|)(U

†
T,A→C,D ⊗ IB)

]

=

dC∑

m=1

C ⟨m|(UT,A→C,D ⊗ IB) |EPR⟩A,B ρT A,B ⟨EPR| (U †
T,A→C,D ⊗ IB)|m⟩C

=

dC∑

m=1

EmρTE
†
m,

(C.1)

where |m⟩C is an orthonormal basis of subsystem C, and Em is the Kraus operator defined

by

Em = C ⟨m| (UT,A→C,D ⊗ IB) |EPR⟩A,B . (C.2)

Here, we note that since the state |m⟩C is a basis state of the remaining black hole C. We

also note that the adjoint HP channel is expressed in terms of the Kraus operators,

N [O] =
dC∑

m=1

E†
mOEm. (C.3)

Using this Kraus operator, let us investigate the Knill-Laflamme condition [20],

PcodeE
†
mEnPcode = αmnPcode

(
αmn = α∗

nm ∈ Cwith

dC∑

m=1

αmm = 1

)
, for ∀m,n = 1, · · · , dC .

(C.4)

where Pcode is a projection operator onto a code subspace in general, but in our setup, Pcode

is assumed to be just given by the identity operator Pcode = IT , since all input states should

be recoverable under the Hayden-Preskill setup. If this condition holds, we can construct a

recovery map27.

Under Haar random averaging, we can easily evaluate the Knill-Laflamme condition from

the expression (C.2) and Haar average (5.17),

E†
mEn =

1

dC
δmnIT . (C.5)

This result appears to imply that the Knill-Laflamme condition holds always under the aver-

aging, but this is not correct. This is because, even if the Knill-Laflamme condition is satisfied,

27See, e.g., §10.3, in particular, theorem 10.1, of [19] for the review.
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higher moments of the Knill-Laflamme condition, e.g.,
∣∣∣PcodeE†

mEnPcode

∣∣∣
2
, might not hold due

to contributions coming from Weingarten calculus. We can see their contributions by directly

evaluating the second moment28,

∣∣∣PcodeE†
mEnPcode

∣∣∣
2
≈ 1

(dC)2
· IT

[
δmn +

dT
dDdB

]
(C.6)

where we used the known result (5.20) with large-d approximation. Thus, when we do not

have enough Hawking radiation D,B compared to the diary T , that is, dDdB ≲ dT , we can

not ignore the second term, implying the breakdown of the Knill-Laflamme condition. On

the other hand, in the opposite limit dDdB ≫ dT , where we have enough Hawking radiation,

we can ignore the second term, and we get the Knill-Laflamme condition. We note that this

is consistent with the decoupling condition (5.2), since the unitarity means the relation

dT
dDdB

=
1

dC
·
(
dT
dD

)2

, (C.7)

and the factor (dT /dD)
2 gives an upper bound of the decoupling condition (5.2).

Next, we construct a recovery map for the HP quantum channel. With the Knill-

Laflamme condition in mind, we consider the following map, which is equal to the adjoint HP

channel up to the overall factor dC ,

R[O] := dC

dC∑

m=1

E†
mOEm = dCN † [O] . (C.8)

Under the Haar random average, this map gives

R[N [ρT ]] = dC

dC∑

m,n=1

E†
mEnρTE

†
nEm

≈ dC
dC∑

m,n=1

[
E†
mEnρTE

†
nEm + E†

mEnρTE
†
nEm

]

= dC

dC∑

m,n=1

1

(dC)2

[
δmn ρT +

tr [ρT ]

dDdB
IT

]

= ρT +

(
dT
dD

)2

· 1

dT
IT ,

(C.9)

where in the second line, we used the fact that in the large-Hilbert space dimension limit,

Weingarten calculus reduces to Wick calculus, and in the final line, we used tr ρT = 1 and

the relation dTdB = dCdD. In the third line, we encountered the Knill-Laflamme condition

28See also [55] for related discussions.
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for the first term (C.5), and the second term disturbs the Knill-Laflamme condition. These

two terms in the third line correspond to the first and second terms in (C.6). Thus, under

the situation dBdD ≫ dT where the Knill-Laflamme condition holds (approximately), we can

ignore the second term of the above result, implying that the map (C.8) works as a recovery

map. This is a quantum information theoretic derivation of the Petz-lite. However, we note

that the recovery map here is a little bit different from the one (5.11) up to the overall factor,

but the difference almost vanishes when the condition dBdD ≫ dT is satisfied.

Finally, we end this appendix by giving the connection between the Petz map and the

Petz-lite in terms of the Kraus operator and the Knill-Laflamme condition. Generally, since

the coefficients (αmn) is Hermitian, we can diagonalize the Knill-Laflamme condition by some

unitary (Umn) as follows [19],

PcodeF
†
mFnPcode = λmδmnPcode

(
λm ∈ R,with

dC∑

m=1

λm = 1, λm > 0

)
, for ∀m,n = 1, · · · , dC ,

(C.10)

where Fm =
∑

n UmnEn is the newly defined Kraus operator. Using this Kraus operator, one

can define the following map

R[O] :=
dC∑

m=1

1

λm
PcodeF

†
mOFmPcode. (C.11)

This map can also be expressed in terms of the original quantum channel by introducing some

full rank reference state σ as follows [22]

R[O] = σ1/2N †
[
(N [σ])−1/2O (N [σ])−1/2

]
σ1/2, (C.12)

and this is exactly the Petz map. In the recovery map (C.11), the factor λm prevents us

from directly giving the adjoint channel N †, and we need to introduce the curious factors

(N [σ])−1/2 and σ1/2. However, for the case where λm = 1/dC (m = 1, · · · , dC), one can

consider the map (C.8) instead of the above map. As we have seen, the Haar random case

with the Knill-Laflamme condition (C.5) is certainly this case.
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Figure 32: Diagrams representing left and right hand sides of the relation (5.54). Left: The

left hand side of the relation. Right: The right hand side of the relation. The left and right

diagrams are equivalent.

D Operator Transpose for the EPR state

In this appendix, we derive the relation (5.54) algebraically. We can show the relation directly

as follows;

UTC′,D′→B,T ′ |EPR⟩C,C′ ⊗ |EPR⟩D,D′

=
(
IC ⊗ ID ⊗ UTC′,D′→B,T ′

)
|EPR⟩C,C′ ⊗ |EPR⟩D,D′

=
1√
dCdD

dC∑

C̃=1

dD∑

D̃=1

∣∣∣C̃, D̃
〉
C,D
⊗
(
UTC′,D′→B,T ′

∣∣∣C̃, D̃
〉
C′,D′

)

=
1√
dCdD

dC∑

C̃=1

dD∑

D̃=1

dB∑

B̃=1

dT∑

T̃=1

∣∣∣C̃, D̃
〉
C,D
⊗
∣∣∣B̃, T̃

〉
B,T ′
·
B,T ′

〈
B̃, T̃

∣∣∣UTC′,D′→B,T ′

∣∣∣C̃, D̃
〉
C′,D′

=
1√
dCdD

dC∑

C̃=1

dD∑

D̃=1

dB∑

B̃=1

dT∑

T̃=1

∣∣∣C̃, D̃
〉
C,D
⊗
∣∣∣B̃, T̃

〉
B,T ′
·
C,D

〈
C̃, D̃

∣∣∣UA,T→C,D

∣∣∣B̃, T̃
〉
A,T

=
1√
dBdT

dB∑

B̃=1

dT∑

T̃=1

(
UA,T→C,D

∣∣∣B̃, T̃
〉
A,T

)
⊗
∣∣∣B̃, T̃

〉
B,T ′

= (UA,T→C,D ⊗ IB ⊗ IT ′) |EPR⟩A,B ⊗ |EPR⟩T,T ′

= UA,T→C,D |EPR⟩A,B ⊗ |EPR⟩T,T ′ ,

(D.1)

where in the fifth equality, we used the unitarity condition of the Hilbert space dimensions

dT dB = dC dD.

The above relation implies that the left and right diagrams in figure 32 are equivalent.
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E Convention in the SYK Hayden-Preskill protocol

In this appendix, we gather some important definitions and conventions that we use in section

8.

Majorana SYK fermions

• Anti-commutation relation

{ψi, ψj} = 2δij

• The unitary time evolution operator

Uα = Uα(t) = exp (itHα) (α = L,R)

• Positive direction of time evolutions in left and right SYK systems (in Lorentzian sig-

nature)

ψi,L(t) ≡ ULψi,L(0)U †
L = eitHLψi,L(0)e

−itHL ,

ψi,R(t) ≡ U †
Rψi,R(0)UR = e−itHRψi,R(0)e

itHR ,

which can be written as

ψi,α(t) = ∆
−i t

β

L ψi,α(0)∆
i t
β

L = ∆
i t
β

R ψi,α(0)∆
−i t

β

R (α = L,R), (E.1)

where ∆L = ∆−1
R is the modular operator defined by

∆L = ρL ⊗ ρ−1
R = e−KL ⊗ eKR = e−(KL−KR), Kα ≡ βHα (α = L,R). (E.2)

Here ρα (α = L,R) is defined by

ρL = trR

[
|TFD⟩L,R⟨TFD|

]
, ρR = trL

[
|TFD⟩L,R⟨TFD|

]
(E.3)

In the Euclidean signature, one can rewrite the above formal formula as

ψi,α(τ) = ∆
τ
β

Lψi,α(0)∆
− τ
β

L (α = L,R), (E.4)

and recover the Lorentzian operator by the analytic continuation τ → −it.

• Euclidean regularization parametrized by the cutoff δ

ψi,L(t+ iδ) ≡ ei(t+iδ)HLψi,L(0)e−i(t+iδ)HL = e(−δ+it)HLψi,L(0)e
(δ−it)HL (E.5)

This regularized operator is related to the Euclidean evolved operator (E.4) by contin-

uation τ → −it+ δ.
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SYK Hayden-Preskill channel

• SYK Hayden-Preskill channel (8.10)

N SYK
T→K,R[ρT ] := trL̃

[
ULVT,L→L

(
ρT ⊗ |TFD⟩L,R⟨TFD|

)
V †
T,L→LU

†
L

]

• Adjoint SYK Hayden-Preskill channel (8.11)

N SYK†
K,R→T [OKR] := trL,R

[
|TFD⟩L,R⟨TFD|

(
V †
L→T,LU

†
LOKR ULVL→T,L

)]

= L,R ⟨TFD|
(
V †
L→T,LU

†
LOKR ULVL→T,L

)
|TFD⟩L,R
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F Derivation of correlator from quantum channels

In this appendix, we give the derivation of the relations (8.29) and (8.30). We can derive the

relation graphically, but below, we give an algebraic derivation of the relation.

We start with the derivation of the relation (8.29), which can be obtained straightfor-

wardly from the definition of the quantum channels (8.10) and (8.11). We first note that,

from the definition of the quantum channel (8.10), the state |0⟩T ⟨0| is mapped to

N SYK
T→K,R[|0⟩T ⟨0|] = trL̃

[
UL |TFD⟩L,R⟨TFD|U

†
L

]

= UR ρKR U
†
R,

(F.1)

where we used the fact that (HL − HR) |TFD⟩L,R leading to UL |TFD⟩L,R = UR |TFD⟩L,R,
and ρKR is defined by (8.31). For this density matrix, we consider the action of the adjoint

channel (8.11), and take the following matrix element;

〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩ =

⟨1|N SYK†
K,R→T

[
UR ρKR U

†
R

]
|1⟩

tr
[
(ρKR)

2
] , (F.2)

where we used the definition (8.16). Using the definition (8.11), we can evaluate the denom-

inator as

⟨1|N SYK†
K,R→T

[
UR ρKR U

†
R

]
|1⟩

=
(
L,R ⟨TFD| ⊗ T ⟨1|

)(
V †
L→T,LU

†
L UR ρKR U

†
R ULVL→T,L

)(
|TFD⟩L,R ⊗ |1⟩T

)

=
1

Zδ
· L,R ⟨TFD|

(
ψ†
i,L(−iδ)U

†
L UR ρKR U

†
R UL ψi,L(iδ)

)
|TFD⟩L,R

=
1

Zδ
· L,R ⟨TFD|

(
URψ

†
i,L(−iδ)U

†
L ρKR UL ψi,L(iδ)U

†
R

)
|TFD⟩L,R

=
1

Zδ
· L,R ⟨TFD|

(
ULψ

†
i,L(−iδ)U

†
L ρKR UL ψi,L(iδ)U

†
R

)
|TFD⟩L,R

=
1

Zδ
· L,R ⟨TFD|

(
ψ†
i,L(t− iδ) ρKR ψi,L(t+ iδ)

)
|TFD⟩L,R ,

(F.3)

where in the 4-th equality, we used the relation UL |TFD⟩L,R = UR |TFD⟩L,R. Thus, by

combining the above expressions, we obtain the relation (8.29),

〈
d̂L̃

〉
β
· ⟨1|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨0|]

]
|1⟩ = 1

Zδ
· ⟨TFD|ψi,L(t− iδ)

(
IL̃ ⊗ ρKR

)
ψi,L(t+ iδ)|TFD⟩

trKR

[
(ρKR)

2
] .

Next, we derive the relation (8.30). Since
〈
d̂L̃

〉−1

β
= trKR

[
(ρKR)

2
]
by the definition

(8.16), we focus on the remaining factor ⟨0|N SYK†
K,R→T

[
N SYK
T→K,R[|0⟩T ⟨1|]]

]
|1⟩. To evaluate the
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factor, we use the definition of the adjoint channel (5.7),

⟨0|N SYK†
K,R→T

[
N SYK
T→K,R[|0⟩T ⟨1|]

]
|1⟩

= trK,R
[
N SYK
T→K,R[|0⟩T ⟨1|]N SYK

T→K,R[|1⟩T ⟨0|]
]

= trK,R

[
trL̃

[
UL |TFD⟩L,R⟨TFD|ψ

†
i,L(−iδ)U

†
L

]
trL̃

[
ULψi,L(iδ) |TFD⟩L,R⟨TFD|U

†
L

] ]

= trK,R
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trL̃

[
UR |TFD⟩L,R⟨TFD|ψ

†
i,L(−iδ)U

†
L

]
URU

†
R trL̃

[
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†
R

] ]

= trK,R

[
UR trL̃

[
|TFD⟩L,R⟨TFD|UR ψ

†
i,L(−iδ)U

†
L

]
trL̃

[
ULψi,L(iδ)U

†
R |TFD⟩L,R⟨TFD|

]
U †
R

]

= trK,R

[
trL̃

[
|TFD⟩L,R⟨TFD|UL ψ

†
i,L(−iδ)U
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]
trL̃

[
ULψi,L(iδ)U
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[
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i,L(t− iδ)

]
trL̃
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] ]
.

(F.4)

By explicitly introducing bases for the traces, we can rewrite the last expression as follows,

trK,R

[
trL̃

[
|TFD⟩L,R⟨TFD| ψ

†
i,L(t− iδ)

]
trL̃

[
ψi,L(t+ iδ) |TFD⟩L,R⟨TFD|
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=
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)
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KR
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(
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) (
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KR
⊗ |a⟩L̃
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)
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(
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KR
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(
trKR
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|TFD⟩L,R⟨TFD|
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ψi,L(t+ iδ) |TFD⟩L,R ,

(F.5)

where dK , dR, dL̃ are the Hilbert space dimensions of subsystems K, R, L̃ respectively.

Therefore, we get the relation (8.30),

〈
d̂L̃

〉
β
· ⟨0|N SYK†

K,R→T

[
N SYK
T→K,R[|0⟩T ⟨1|]

]
|1⟩ = 1

Zδ
· ⟨TFD|ψi,L(t− iδ)

(
ρL̃ ⊗ IKR

)
ψi,L(t+ iδ)|TFD⟩

trKR

[
(ρKR)

2
] .
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