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Abstract 

Obesity is a major risk factor for coronavirus disease 2019 (COVID-19) severity and 

cardiometabolic diseases, including coronary artery disease (CAD), stroke, and type 2 

diabetes. However, the underlying mechanisms through which obesity influences these 

diseases are not fully understood. By leveraging genomics and proteomics, this thesis 

investigates how circulating proteins mediate the effect of obesity on COVID-19 severity 

and cardiometabolic diseases. 

First, we evaluated the causal effect of obesity on COVID-19 severity using Mendelian 

randomization (MR), a causal inference method in genetic epidemiology. Given that 

body fat mass and fat-free mass are genetically interrelated, we used multivariable MR 

to discern their independent causal effects. Our findings showed that body fat mass is 

independently associated with an increased risk of COVID-19 severity. 

Second, considering that obesity strongly influences the plasma proteome, we sought to 

identify circulating proteins that mediate the effect of obesity on COVID-19 severity. We 

used proteome-wide MR to estimate the causal effect of BMI on circulating protein 

levels and identified proteins whose plasma levels are influenced by BMI, termed “BMI-

driven proteins”. Then, we evaluated the causal effects of the BMI-driven proteins on 

COVID-19 outcomes, again using MR with cis-acting protein quantitative trait loci (cis-

pQTLs). This two-step MR approach found that increased circulating nephronectin 

(NPNT) levels were associated with an increased risk of critically ill and COVID-19 

hospitalization. To ensure the robustness of our findings, we repeated the analyses 

using body fat percentage and cis-pQTLs from different cohorts, which consistently 

showed that NPNT partially mediates the effect of obesity on COVID-19 severity. In 

further follow-up analyses for NPNT, we showed that a specific NPNT isoform drives the 

effect. In single-cell RNA sequencing of the lung from individuals who died of COVID-

19, NPNT was significantly expressed in fibroblasts and alveolar cells. Finally, 

multivariable MR revealed that decreasing body fat mass and increasing fat-free mass 

can lower NPNT levels and thus may improve COVID-19 severity—underscoring 

NPNT’s potential clinical relevance and actionability. 
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Finally, we expanded this framework to other major complications of obesity: CAD, 

stroke, and type 2 diabetes. Using the two-step MR approach, followed by colocalization 

and mediation analysis, we identified seven plasma protein mediators with eight protein-

disease associations. Among them, circulating collagen type VI alpha-3 (COL6A3) was 

strongly increased by BMI and increased the risk of CAD. In follow-up analysis for 

COL6A3, we evaluated the causal effect of its C- and N-terminal effects on CAD. This 

domain-aware MR found that the C-terminal fragment of COL6A3, known as 

endotrophin, mediated the effect. In single-cell RNA sequencing of adipose tissues and 

coronary arteries, COL6A3 was highly expressed in cell types involved in metabolic 

dysfunction and fibrosis. Finally, multivariable MR revealed that body fat reduction can 

lower plasma levels of COL6A3-derived endotrophin and other protein mediators and 

reduce the risk of cardiometabolic diseases. 

In summary, this thesis provides clinically relevant insights into how circulating proteins 

mediate the effect of obesity on COVID-19 severity and cardiometabolic diseases. This 

integrative proteogenomics approach prioritizes potential therapeutic targets, including 

NPNT for COVID-19 and endotrophin for CAD.  
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Résumé 

L'obésité est un facteur de risque majeur pour la gravité de la maladie à coronavirus 

2019 (COVID-19) et les maladies cardiométaboliques, notamment les maladies 

coronariennes (CAD), les accidents vasculaires cérébraux et le diabète de type 2. 

Toutefois, les mécanismes sous-jacents par lesquels l'obésité influence ces maladies 

ne sont pas entièrement compris. En exploitant la génomique et la protéomique, cette 

thèse étudie comment les protéines circulantes médient l'effet de l'obésité sur la gravité 

de la COVID-19 et les maladies cardiométaboliques. 

 

D'abord, nous avons évalué l'effet causal de l'obésité sur la gravité de la COVID-19 en 

utilisant la randomisation mendélienne (RM), une méthode d'inférence causale en 

épidémiologie génétique. Étant donné que la masse grasse et la masse non grasse 

sont génétiquement liées, nous avons utilisé la RM multivariable pour discerner leurs 

effets causaux indépendants. Nos résultats montrent que la masse grasse est associée 

de manière indépendante à un risque accru de gravité de la COVID-19. 

 

Ensuite, considérant que l'obésité influence fortement le protéome plasmatique, nous 

avons cherché à identifier les protéines circulantes qui médient l'effet de l'obésité sur la 

gravité de la COVID-19. Nous avons utilisé la RM à l'échelle du protéome pour estimer 

l'effet causal de l'IMC sur les niveaux de protéines circulantes et avons identifié les 

protéines influencées par l'IMC. Puis, nous avons évalué les effets causaux de ces 

protéines influencées par l'IMC sur les issues de la COVID-19, à nouveau avec la RM. 

Nous avons constaté qu'une augmentation des niveaux circulants de néphronectine 

(NPNT) était associée à un risque accru de gravité de la COVID-19. Nous avons répété 

les analyses en utilisant le pourcentage de graisse corporelle et les cis-pQTLs de 

différentes cohortes, montrant de manière cohérente que la NPNT médiait partiellement 

l'effet de l'obésité sur la gravité de la COVID-19. Lors d'analyses de suivi pour la NPNT, 

nous avons montré qu'une isoforme spécifique de la NPNT était à l'origine de cette 

association. Dans le séquençage de l'ARN d'une seule cellule du poumon de personnes 

décédées de la COVID-19, la NPNT était exprimée de manière significative dans les 

fibroblastes et les cellules alvéolaires. Finalement, la RM multivariable a révélé que la 
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réduction de la masse grasse et l'augmentation de la masse non grasse peuvent 

abaisser les niveaux de NPNT et ainsi améliorer la gravité de la COVID-19, soulignant 

la pertinence clinique potentielle de la NPNT. 

 

Enfin, nous avons étendu ce cadre aux maladies cardiométaboliques. En utilisant 

l'approche RM en deux étapes, suivie d'une analyse de colocalisation et de médiation, 

nous avons identifié sept médiateurs protéiques plasmatiques avec huit associations 

protéine-maladie. Parmi eux, le collagène de type VI alpha-3 (COL6A3) était fortement 

augmenté par l'IMC et augmentait le risque de CAD. Dans l'analyse de suivi pour le 

COL6A3, nous avons évalué l'effet causal de ses effets C- et N-terminaux sur la CAD. 

Cette RM axée sur le domaine a montré que le fragment C-terminal de COL6A3, connu 

sous le nom d'endotrophine, médiait cet effet. Dans le séquençage de l'ARN d'une 

seule cellule des tissus adipeux et des artères coronaires, COL6A3 était fortement 

exprimé dans les types de cellules associés au dysfonctionnement métabolique et à la 

fibrose. Finalement, la RM multivariable a montré que la réduction de la masse grasse 

peut diminuer les niveaux plasmatiques d'endotrophine dérivée de COL6A3 et d'autres 

médiateurs protéiques et réduire le risque de maladies cardiométaboliques. 

 

En résumé, cette thèse offre des informations cliniquement pertinentes sur la manière 

dont les protéines circulantes médient l'effet de l'obésité sur la gravité de la COVID-19 

et les maladies cardiométaboliques. Cette approche protéogénomique intégrative 

priorise les cibles thérapeutiques potentielles, y compris la NPNT pour la COVID-19 et 

l'endotrophine pour la CAD.  
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Format of the Thesis 

This thesis adopts the manuscript-based format outlined in the Thesis Preparation 

Guidelines provided by the Department of Graduate and Postdoctoral Studies. It 

encompasses 6 chapters. Chapter 1 serves as an Introduction. Chapter 2 has been 

published in Frontiers in Endocrinology. Chapter 3 has been published in Nature 

Metabolism. Chapter 4 has been posted on medRxiv. Chapter 5 discusses the findings 

of Chapters 2–4. Chapter 6 summarizes the thesis work and discusses the future 

directions. The summary of the author’s significant contributions is provided in the 

Appendices. 
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Contribution to original knowledge 

This thesis employs an integrative proteogenomics approach to understand how 

circulating proteins mediate the impact of obesity on coronavirus disease 2019 (COVID-

19) severity and cardiometabolic diseases. By combining genetic epidemiology 

approaches such as Mendelian randomization (MR) and colocalization with large-scale 

genomics and proteomics data, we evaluate the clinical relevance of these protein 

mediators and prioritize potential therapeutic targets, showcasing the power of human 

genetics to support therapeutic target discovery. 

 

Chapter 2 is titled “Causal associations between body fat accumulation and COVID-19 

severity: A Mendelian randomization study”. Previous studies have reported 

associations between body mass index (BMI) and the severity of COVID-19. However, 

since BMI is solely a function of height and weight, it does not differentiate between 

body fat mass and lean mass. As a result, it remains uncertain whether body fat, fat-free 

mass, or both modulate the association between obesity and COVID-19 severity. Using 

MR, this chapter aims to dissect the independent causal associations of adipose tissue 

mass and lean mass with COVID-19 severity. Our analyses demonstrated that an 

increase in body fat is associated with an increased risk of severe COVID-19 outcomes. 

Given the genetic correlation between body fat and lean mass, we further refined our 

investigation using multivariable MR to delineate their independent causal effects. The 

results showed that body fat mass is independently associated with an increased risk of 

COVID-19 severity, suggesting that body fat accumulation is an independent risk factor. 

 

Chapter 3 is titled “Proteome-wide Mendelian randomization implicates nephronectin as 

an actionable mediator of the effect of obesity on COVID-19 severity”. There have been 

recent efforts to harness proteogenomics in combination with MR to illuminate the 

causal biology and identify potential therapeutic targets. However, the potential of these 

methods to discern circulating mediators in a proteome-wide manner remains largely 

unexplored. Given the strong influence of obesity on the plasma proteome, we aimed to 
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pinpoint circulating proteins that mediate obesity's impact on COVID-19 severity. 

Identifying these proteins is valuable, as circulating proteins are easily measurable and, 

in some instances, modifiable, offering potential therapeutic targets. In this chapter, we 

first conducted a comprehensive screening of 4,907 plasma proteins, utilizing MR to 

identify those affected by BMI. This process revealed 1,216 proteins whose plasma 

levels were influenced by BMI. We subsequently assessed their influence on COVID-19 

severity, again employing MR. Through this two-step MR methodology, we determined 

that a standard deviation increase in nephronectin (NPNT) was associated with an 

increased risk of COVID-19 severity outcomes. This effect was attributed to an NPNT 

splice isoform. Subsequent mediation analyses confirmed NPNT's role as a mediator. 

To ensure the robustness of the findings, we repeated the analysis using body fat 

percentage and cis-acting protein quantitative loci from different cohorts, further 

affirming NPNT's mediating role. Single-cell RNA sequencing revealed NPNT 

expression in the alveolar cells and lung fibroblasts of individuals who died of COVID-

19. Lastly, we showed that reducing body fat mass and increasing fat-free mass can 

decrease plasma NPNT levels. These findings shed light on the underlying mechanism 

by which obesity influences the risk of COVID-19 severity and prioritize NPNT as a 

therapeutic target, especially in individuals with obesity. 

 

Chapter 4 is titled “COL6A3-derived endotrophin mediates the effect of obesity on 

coronary artery disease: an integrative proteogenomics analysis”. This chapter explores 

whether the two-step MR approach can identify circulating protein mediators for other 

major complications of obesity, such as coronary artery disease, stroke, and type 2 

diabetes. Through an integrated analysis that combined a two-step MR screening of 

4,907 plasma proteins, colocalization, and mediation analyses, we identified seven 

plasma proteins linked with eight protein-disease associations. This includes collagen 

type VI α3 (COL6A3). The two-step MR approach revealed that an increase in BMI is 

associated with increased plasma levels of COL6A3, which, in turn, is associated with 

an elevated risk of CAD. Importantly, the C-terminus of COL6A3 is cleaved to produce 

endotrophin, which we identified as the mediating factor in CAD risk. Single-cell RNA 

sequencing of adipose tissues and coronary arteries indicated marked COL6A3 
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expression in cells linked with metabolic dysfunction and fibrosis. Additionally, our 

analysis suggested that reducing body fat can decrease plasma endotrophin levels 

derived from COL6A3. Overall, this chapter emphasizes the pivotal role of circulating 

proteins in the effects of obesity on cardiometabolic diseases and highlights the 

therapeutic potential of endotrophin. 

 

In conclusion, this thesis provides clinically relevant insights into the role of circulating 

proteins in mediating the effects of obesity on COVID-19 severity and cardiometabolic 

diseases. Through an integrative proteogenomics approach, we highlight potential 

therapeutic candidates such as NPNT for COVID-19 and endotrophin for coronary 

artery disease. This emphasizes the transformative potential of human genomics, 

proteomics, and genetic epidemiology in identifying therapeutic targets.  
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Chapter 1: Introduction 

1.1 Obesity and its complications 

Obesity affects more than 1.9 billion individuals worldwide and is now considered a 

global epidemic. There is mounting evidence that obesity is strongly linked to the risk of 

severe COVID-19 outcomes as well as various cardiometabolic diseases, including 

coronary artery disease (CAD), stroke, and type 2 diabetes1,2. Furthermore, obesity is 

associated with a decreased quality of life, reduced life expectancy, and elevated 

healthcare costs3. Thus, understanding the underlying mechanisms by which obesity 

increases the risk of these diseases and identifying potential therapeutic targets is 

urgently required to tackle the global obesity crisis. 

 

Obesity cannot be only attributed to an energy imbalance between calorie intake and 

expenditure; its pathophysiological roots are complex and multifactorial3. Several 

biological mechanisms, such as metabolic abnormalities, oxidative stress, mitochondrial 

dysfunction, immune disturbances, and chronic low-grade inflammation, are implicated 

in its pathogenesis3,4. Yet, many of these insights are derived from rodent studies or 

observational analyses; findings in rodent studies do not necessarily translate into 

human biology, and observational analyses are prone to confounding and reverse 

causation, making it challenging to distinguish causation from consequences. 

 

Human genetics is increasingly recognized as a valuable tool to uncover causal biology 

and support drug target discovery5-7. Since germline genetic variants are randomly 

allocated at conception, evidence derived from genetics is less susceptible to 

confounding and reverse causation8. The discovery of disease-causing variants has led 

to novel targets, such as PCSK9, whose loss-of-function variants were found to 

significantly lower LDL cholesterol9, leading to the development of PCSK9 inhibitors10,11. 

Furthermore, there have been extraordinary breakthroughs in high-throughput 
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sequencing and computational genomics methodologies, facilitating the elucidation of 

human diseases' molecular genetic basis. Meanwhile, proteomics offers another 

valuable perspective. Obesity markedly impacts plasma protein levels12,13, with these 

proteins playing a substantial role in the development and progression of diseases. 

Additionally, circulating proteins can be quantified and, in some cases, modulated14, 

making them attractive therapeutic targets. 

 

1.2 Obesity and COVID-19 

COVID-19 severity varies markedly among patients15. This underscores the importance 

of identifying and understanding the modifiable risk factors, which may enhance public 

health strategies, optimize resource allocation, and facilitate clinical decisions16. 

Notably, BMI has emerged as an independent risk factor for severe COVID-19 

outcomes, which consist of increased hospital admissions, the necessity for invasive 

mechanical ventilation, and higher mortality rates17. This has been corroborated in 

cohort studies from China, the US, and Europe, with a population-based observational 

study reporting a nearly two-fold increase in the risk of COVID-19-related death in 

individuals with a BMI of 40 kg/m2 or higher18. 

 

Multiple theories have been suggested to explain the increased risk of severe COVID-

19 in individuals with obesity19. Obesity has broad effects on pulmonary physiology, 

adipose tissue biology, metabolism, and immune system function16,20. Obesity has been 

associated with respiratory dysfunction, manifesting as altered respiratory mechanisms, 

increased airway resistance, decreased gas exchange efficiency, and reductions in lung 

volume and muscle strength. Such impairments elevate the risk of pneumonia in these 

individuals, a risk that is exacerbated by associated conditions like hypoventilation, 

pulmonary hypertension, and cardiac strain21. Beyond respiratory dysfunction, obesity is 

associated with metabolic derangements and immune dysfunction. Immuno-

metabolically abnormal adipose tissue may play a role in an exaggerated inflammatory 

response to SARS-CoV-2 infection, which could underlie the convergence of obesity, 
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severe systemic inflammation, and poor outcomes22. Experimental mouse models and 

clinical studies have shown immune cell infiltration in adipose tissues, and obesity 

converges with low-grade, systemic inflammation in increased susceptibility to SARS-

CoV-223. Furthermore, obesity is associated with an increased risk of comorbidities such 

as diabetes mellitus, cardiovascular diseases, and kidney complications. These 

conditions can jointly contribute to poor outcomes24. Given the intertwined nature of 

these biological systems and their effects, distinguishing between causation and 

correlation—while accounting for potential confounders—is challenging. 

 

1.3 Obesity and cardiometabolic diseases 

The incidence of obesity has consistently increased since the 1980s, and it is now 

recognized as an obesity epidemic1,16. The rise in obesity rates has directly led to an 

increased incidence of diseases linked to obesity. Notably, since the 1980s, over four 

million deaths worldwide were attributed to excessive body weight, and cardiovascular 

disease was the primary cause for most of these deaths25. A previous large-scale 

observational study found that every 5 kg/m2 increase in BMI over 25 kg/m2 increased 

the risk of mortality from any cause by 30%25. Interestingly, centenarians, especially 

those without cardiovascular diseases, rarely exhibited obesity throughout their 

lifetimes, further suggesting that obesity can reduce lifespan26. While obesity is 

connected to various distinct diseases, such as digestive, respiratory, and neurological 

disorders, cardiometabolic diseases have been the leading cause of BMI-related 

disease burdens27. Epidemiological studies showed that the risk of developing 

cardiometabolic diseases such as coronary heart disease, stroke, or type 2 diabetes is 

nearly five times higher with obesity and up to 15 times higher for more severe obesity 

classifications27.  

 

Several proposed mechanisms may connect obesity to cardiometabolic diseases. 

Among these are systemic inflammation and histopathological remodeling28,29. It has 

been suggested that there is an interaction between adipocytes and macrophages30,31; 

long-chain saturated fatty acids from adipocytes can stimulate macrophages to produce 
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inflammatory cytokines. This, in turn, prompts these macrophages to incite pro-

inflammatory reactions, causing an overarching stress response in the body. Another 

mechanism centers on the histopathological remodeling of adipose tissues and other 

related tissues32,33. As obesity progresses, adipocytes within the adipose tissues die 

due to metabolic stress. This type of adipocyte death is a distinctive feature of obesity 

and aligns with an increase in the size of fat cells observed in both mice and humans 

afflicted with obesity. Beyond the general adipose tissues, obesity also impacts other 

adipose tissues, such as the epicardial adipose tissues34,35. Although epicardial adipose 

tissue can offer cardioprotective benefits through its ability to handle free fatty acids, 

obesity can lead to its malfunctioning. Consequently, epicardial fat may release 

inflammatory substances that result in dysfunction and scarring of the nearby heart 

muscle. Additionally, the growth or inflammation of this tissue can further provoke 

issues in the surrounding heart muscle regions.  

 

In short, obesity is intricately linked to systemic inflammation and histopathological 

remodeling. However, it should be noted that many of these studies predominantly rely 

on rodent models, cellular models, or observational methods. Elucidating the causal 

mechanisms connecting obesity to cardiometabolic diseases remains challenging, 

largely due to the chronic and complex nature of obesity. Often, the onset of obesity-

induced cardiometabolic conditions spans years or even decades36. Consequently, 

executing interventional studies in humans to comprehensively understand these causal 

mechanisms is frequently impractical due to factors like high costs, logistical challenges, 

and ethical considerations.  

 

1.4 Obesity and confounding 

The relationship of obesity with COVID-19 and cardiometabolic diseases is confounded 

by numerous factors, including age, sex, smoking, alcohol consumption, and 

socioeconomic status37-40. A confounder is a variable that influences both the exposure 

(X) and the outcome (Y), potentially causing a spurious association and introducing bias 

into causal inference41. Formally, a confounder is defined by three criteria: (i) it is 
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associated with X; (ii) it is associated with Y, conditional on X; and (iii) it is not on the 

causal pathway between X and Y42. Traditional observational studies in epidemiology 

strive to account for confounders by adjusting for them. However, such adjustments are 

limited by the availability of data. While the majority of observational studies adjust for 

factors like age and sex, it is impractical to measure all potential confounders43. 

Moreover, some confounders, such as socioeconomic status, are particularly 

challenging to quantify and less often available44,45. Still, consistent evidence shows the 

influence of socioeconomic status on BMI and other obesity-related anthropometric 

traits. For example, in developing countries, a higher income correlates with an 

increased BMI. Conversely, in developed countries, BMI has shown an inverse 

relationship with median household income46. Furthermore, even after accounting for all 

known confounders, the risk of residual confounding persists43. Additionally, COVID-19 

and cardiometabolic diseases might influence BMI and other metrics employed as 

obesity proxies, leading to issues of reverse causation. In such cases of reverse 

causation, Y influences X rather than the other way around, providing another potential 

source of biased estimations of the relationship between X and Y47. Given these 

observational analysis limitations, genetic epidemiology aims to uncover insights into 

causal biology and potential therapeutic targets by harnessing the principle that 

germline genetic variants are randomly assigned at conception and remain unaltered by 

disease. As such, genetic-derived evidence is less prone to confounding and reverse 

causation48. 

 

1.5 Genomics and Proteomics 
Genome-wide association studies (GWAS) have significantly advanced our knowledge 

of obesity biology. The inaugural GWAS on obesity traits emerged in 2007, pinpointing 

a cluster of significant common variants within the intron of the FTO locus associated 

with BMI50,51. Since then, nearly 60 GWAS have revealed over 1,100 independent loci 

associated with obesity-related traits52,53. Yet, one key challenge is translating GWAS 

loci into candidate genes and shaping our understanding of biology and drug 

development. This process involves discerning the regulatory roles of non-coding 
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variants, identifying their potential effector transcripts, and determining where they 

function in the body. With the recent advent of cutting-edge genome-scale technologies 

that map regulatory elements, comprehensive multi-omics databases, sophisticated 

computational methods, and the latest genetic and molecular techniques, we are now 

better positioned to transform GWAS loci findings into actionable biological insights54. 

 

A viable approach to disentangle the intricacies of the relationship between obesity and 

its complications is to identify circulating proteins that act as mediators. Plasma proteins 

are involved in various biological functions, encompassing signaling, transportation, 

growth, repair, and protection against pathogens. Often, these proteins become 

dysregulated during diseases and serve as critical targets for medications. Thus, 

discerning the mechanisms that influence individual protein variations can provide 

valuable biological perspectives55. Furthermore, given that these proteins can be 

quantified and, in certain instances, modulated14, understanding these mediatory 

proteins can shed light on the mechanisms through which obesity increases the risk of 

obesity-related complications, including COVID-19 and cardiometabolic diseases. This 

approach may present potential avenues for therapeutic measures. Advancements in 

large-scale proteomics have enabled the identification of genetic variants that influence 

plasma protein levels across the entire proteome. These genetic variants, known as 

protein quantitative trait loci (pQTLs), have been employed to identify causal proteins 

linked to diseases, their underlying mechanisms, and potential drug targets55-57. 

 

1.6 Mendelian randomization (MR) 

Epidemiological studies often investigate the relationships between exposures and 

health outcomes. Yet, the associations found in these studies may not consistently 

provide accurate estimates of causal effects58. These discrepancies can arise due to 

confounding, wherein another variable influences both the outcome and the exposure. 

The gold standard method to evaluate such causation is randomized controlled trials 
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(RCTs), but they are not always possible due to cost, logistic, and ethical reasons. One 

of the effective ways to make causal inferences is through the use of Mendelian 

randomization (MR)58.  MR is an effective genetic epidemiology approach to identify the 

causal relationship between modifiable risk factors or exposures and outcomes. MR can 

be described as a natural experiment somewhat analogous to RCTs because MR relies 

upon the random allocation of genetic variants at conception, similar to the 

randomization process in RCTs. Moreover, reverse causation does not affect genetic 

variations because genotype is always assigned prior to the onset of disease, and the 

disease does not change germline genotypes59. 

 

Nevertheless, MR is based on several instrumental variable assumptions: (I) the genetic 

variants used as instrumental variables are associated with the exposure; (II) they are 

not associated with factors that confound the relationship between the exposure and the 

outcome and (III) they influence the outcome only through the exposure (also known as 

exclusion restriction). Violation of the exclusion restriction is termed horizontal 

pleiotropy, wherein the variant used as an instrumental variable affects the disease 

independently of its effect on the exposure. Although careful assessment of directional 

horizontal pleiotropy is required, with proper selection of instrumental variables and 

sensitivity analyses, MR can serve as a powerful tool to help understand causal 

mechanisms for diseases in humans. In the case of COVID-19 severity and 

cardiometabolic diseases, MR can be used to rapidly screen thousands of proteins that 

may help to explain this relationship and identify potential therapeutic targets60,61. 

 

1.7 MR with proteomics 

MR has been increasingly used in combination with proteomics, especially the plasma 

proteome, which facilitates the identification of circulating proteins that are causal for 

human diseases56,62-65. A straightforward way to classify protein-associated variants is 

by categorizing them into cis-acting pQTLs (cis-pQTLs) and trans-acting pQTLs (trans-

pQTLs): cis-pQTLs are variants located in close proximity to the encoding gene 

(typically defined as either ≤500kb or ≤1Mb from the sentinel pQTL of the assessed 
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protein), while trans-pQTLs are variants located beyond this boundary66. The cis-pQTLs 

are considered more likely to directly influence the transcription and translation of 

proteins than trans-pQTLs due to their proximity to the protein-coding gene, making 

them less likely to be susceptible to horizontal pleiotropy. In contrast, trans-acting 

pQTLs might function through indirect mechanisms and are, thus, more prone to 

pleiotropy. Therefore, in the context of MR, employing cis-pQTLs as exposures can be 

beneficial in minimizing the risk of bias due to horizontal pleiotropy. However, because 

not all proteins have associated cis-pQTLs, this restriction may reduce the number of 

proteins available for causal inference testing14,67. 

 

1.8 Drug target discovery 

There is increasing interest in using genomics and proteomics with genetic 

epidemiology methods to facilitate drug target discovery. Drug development is a 

lengthy, costly, and risky undertaking. The failure rate exceeds 96%68, and the 

anticipated expenditure for launching a single drug to market hovers at approximately 

$1.8 billion CAD ($1.3 billion USD)6. Therefore, finding a strategy to increase the 

success rate is of paramount importance. Incorporating genomics data has 

demonstrably improved these success rates. Specifically, targets backed by genetic 

evidence have a more than twofold increase in success rate during clinical 

development. Further studies indicate that such genetically backed targets exhibit 

higher likelihoods of success during phase II and III trials. Notably, around two-thirds of 

the drugs that received FDA approval in 2021 possessed corroborating human genetic 

evidence5.  

 

The advent of broad-capture proteomics presents another promising avenue to identify 

potential drug targets. Efforts are underway to harness both proteomics and genomics 

in a comprehensive exploration and assessment of genetic signals, particularly those 

linking protein function and abundance to various diseases. Within this framework, the 

pQTLs—genetic variants that modulate protein abundance—serve as valuable tools in 
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MR to ascertain the influence of circulating protein levels on disease outcomes. 

Leveraging this methodology, researchers have pinpointed promising therapeutic 

targets56,57,64,65,69-71. Nonetheless, the potential of pQTL MR in discerning mediators 

across the entire proteome remains largely unexplored. 

 

1.9 Rationale and structure of the thesis 

The primary aim of this thesis is to utilize genomics and proteomics to gain clinically 

relevant insights into the causal relationship between obesity and COVID-19 severity, 

thereby identifying potential therapeutic targets. In Chapter 2, given that a high BMI has 

emerged as a critical risk factor for COVID-19, we employed multivariable MR to dissect 

the causal association between body fat mass and fat-free mass with the severity of 

COVID-19. In Chapter 3, we identified the mediators underpinning the relationship 

between obesity and COVID-19 severity, employing a combination of large-scale 

genomics, proteomics, and genetic epidemiology methods. The intent was to conduct a 

rapid, hypothesis-free proteome-wide scan to identify causal proteins, shedding light on 

the causal biology and suggesting potential therapeutic targets. In Chapter 4, we 

examined whether this methodology, termed "two-step MR," can be used to discern 

circulating proteins that mediate the effects of obesity on cardiometabolic diseases. 

Identifying such mediators can facilitate drug development for these diseases, which are 

the leading causes of obesity-related deaths.  
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2.1 Abstract 

Previous studies reported associations between obesity measured by body mass index 

(BMI) and coronavirus disease 2019 (COVID-19). However, BMI is calculated only with 

height and weight and cannot distinguish between body fat mass and fat-free mass. Thus, 

it is not clear if one or both of these measures are mediating the relationship between 

obesity and COVID-19. Here, we used Mendelian randomization (MR) to compare the 

independent causal relationships of body fat mass and fat-free mass with COVID-19 

severity. We identified single nucleotide polymorphisms associated with body fat mass 

and fat-free mass in 454,137 and 454,850 individuals of European ancestry from the UK 

Biobank, respectively. We then performed two-sample MR to ascertain their effects on 

severe COVID-19 (cases: 4,792; controls: 1,054,664) from the COVID-19 Host Genetics 

Initiative. We found that an increase in body fat mass by one standard deviation was 

associated with severe COVID-19 (odds ratio (OR)body fat mass = 1.61, 95% confidence 

interval [CI]: 1.28–2.04, P = 5.51×10-5; ORbody fat-free mass = 1.31, 95% CI: 0.99–1.74, P 

= 5.77×10-2). Considering that body fat mass and fat-free mass were genetically 

correlated with each other (r = 0.64), we further evaluated independent causal effects of 

body fat mass and fat-free mass using multivariable MR and revealed that only body fat 

mass was independently associated with severe COVID-19 (ORbody fat mass = 2.91, 95%CI: 

1.71–4.96, P = 8.85×10-5 and ORbody fat-free mass = 1.02, 95%CI: 0.61–1.67, P = 0.945). In 

summary, this study demonstrates the causal effects of body fat accumulation on COVID-

19 severity and indicates that the biological pathways influencing the relationship between 

COVID-19 and obesity are likely mediated through body fat mass. 
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2.2 Introduction 

More than 500 million individuals have been infected by the coronavirus disease-19 

(COVID-19) with 6 millions of deaths worldwide to date (1). The severity of COVID-19 

varies considerably among individuals and identifying modifiable risk factors associated 

with COVID-19 severity is essential for optimizing public health policies, allocating 

resources, and assisting clinical decisions. 

 

A major risk factor for COVID-19 appears to be obesity. A community-based cohort study 

involving 6.9 million individuals in England showed a positive association between body 

mass index (BMI) and COVID-19 severity (2), which was replicated in other independent 

observational studies (3-5). However, the key limitation of BMI is that it is a crude proxy 

of obesity because it is calculated only with height and weight and does not consider body 

composition (i.e., body fat mass and body fat-free mass) (6). Therefore, direct measures 

of body composition assessed by dual-energy X-ray absorptiometry or bioelectrical 

impedance analysis might better elucidate the association of body fat accumulation with 

COVID-19 outcomes. In this regard, two recent studies utilized the direct measures of 

body composition to evaluate the effect of obesity on COVID-19 (7, 8). However, 

individuals with increased body fat mass are also more likely to have increased body fat-

free mass because there is a positive correlation between body fat mass and body fat-

free mass (9). Thus, we have to specifically study the independent effects of body fat 

mass and body fat-free mass to disentangle the causal effects of obesity on COVID-19. 

 

Regarding a means of exploring the associations between risk factors and outcomes of 

the interest, observational studies can evaluate correlations but not causations; in fact, 

interpreting the results of observational studies as a causal relationship relies on 

untestable and usually implausible assumptions, including the absence of unmeasured 

confounders and reverse causation (10). Given these limitations inherent to traditional 

observational epidemiology studies, Mendelian randomization (MR) has emerged as a 

way to mitigate against such shortcomings through its use of genetic variants as 

instrumental variables to infer a causal relationship between exposures and outcomes 

(11, 12). Using MR, we can estimate the causal effects of genetically predicted levels of 
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adiposity-related exposures on COVID-19 outcomes, in contrast to typical observational 

studies that evaluate only associations. Because genetic alleles are randomly assigned 

at conception, which is generally well before the onset of the disease, the risk of reverse 

causation is substantially decreased. Taking advantage of MR analysis, previous studies 

evaluated causal associations of anthropometric traits of obesity and some direct 

measures of body composition, such as body fat percentage (7, 13-15). However, none 

has taken into account the correlation of body fat and fat-free mass and evaluated the 

independent causal associations of body fat mass and body fat-free mass with COVID-

19 outcomes. 

 

In this study, we conducted a two-sample MR to assess independent causal associations 

of body fat mass and body fat-free mass with COVID-19 severity outcomes using data 

from the UK Biobank and the COVID-19 Host Genetics Initiative. 

 

2.3 Methods 

2.3.1 Instrumental Variables for Body Fat Mass, Body Fat-free Mass, Body Fat 
Percentage, and BMI 

Instrumental variables were defined as independent genome-wide significant single-

nucleotide polymorphisms (SNPs) (P < 5×10-8) for exposure traits. Independence of 

SNPs was defined as not in linkage disequilibrium with other SNPs (r2 < 0.001 within a 

10,000 kilobase [kb] window). The exposures used in this study were body fat mass, body 

fat-free mass, body fat percentage, and BMI. Body fat percentage and BMI were included 

as supplementary analyses. To select SNPs used as instrumental variables, we obtained 

the genome-wide association study (GWAS) results of body fat mass, body fat-free mass, 

body fat percentage, and BMI from individuals with European ancestry in the UK Biobank 

(Figure 1), using the OpenGWAS and MR-Base platform of the MRC Integrative 

Epidemiology Unit at the University of Bristol (16). Accession IDs were as follows: body 

fat mass (ukb-b-19393), body fat-free mass (ukb-b-13354), body fat percentage (ukb-b-

8909), and BMI (ukb-b-19953). A full description of the study design, participants and 
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quality control procedures were described in detail previously (17). Briefly, GWAS was 

performed using 12,370,749 SNPs on 463,005 individuals by BOLT-LMM (18) with the 

following quality control criteria: Imputation quality (INFO) score > 0.3 for SNPs with a 

MAF > 3%; INFO score > 0.6 for SNPs with a MAF between 1–3%; INFO score > 0.8 for 

SNPs with a MAF between 0.5–1%; INFO score > 0.9 for SNPs with a MAF between 0.1–

0.5%; SNPs with a MAF below 0.1% were excluded; individuals who were outliers in 

heterozygosity and missing rates, and individuals with sex-mismatch (i.e. different genetic 

sex and reported sex) or sex-chromosome aneuploidy were excluded. The fat mass and 

fat-free mass of the UK Biobank participants were evaluated by performing bioelectrical 

impedance analysis using the Tanita BC418MA body composition analyzer (Tanita, 

Tokyo, Japan). We restricted the analyses to individuals of European ancestry to 

maximize the statistical power, given that the majority of UK Biobank participants were of 

European ancestry. To select instrumental variables, SNPs were clumped using PLINK 

(v1.90) according to a linkage disequilibrium threshold of r2 < 0.001 with a clumping 

window of 10,000 kb using the 1000G European reference panel (16, 19) in order to select 

an independent SNP with the lowest P-value in each linkage disequilibrium block. When 

a selected SNP was not present in the results of the GWAS of COVID-19 severity 

outcomes, we instead used a proxy SNP that was in linkage disequilibrium with the 

selected SNP, with an r2 of ≥0.8 and minor allele frequency of ≤0.3 using 1000G European 

reference panel as described before (12). We calculated F-statistics for the exposure 

traits and a genetic correlation between body fat mass and body fat-free mass using 

LDAK (v5.1) (19). 
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Figure 1. Schematic representation of the Mendelian randomization study. 
SNPs, single nucleotide polymorphisms. 
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2.3.2 Severe COVID-19 and COVID-19 Hospitalization Outcomes 

For proxy outcomes of COVID-19 severity, we adopted the outcomes of the COVID-19 

Host Genetics Initiative, an international consortium working collaboratively to share data 

and ideas, recruit patients, and disseminate scientific findings. The outcomes were severe 

COVID-19 and COVID-19 hospitalization (20). For definitions of COVID-19 outcomes, the 

severe COVID-19 group was defined as individuals whose death was due to COVID-19, 

or those requiring hospitalization and respiratory support due to symptoms related to 

laboratory-confirmed SARS-CoV-2 infection. The COVID-19 hospitalization group was 

defined as individuals requiring hospitalization due to symptoms associated with 

laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

infection. For the definitions of controls in the GWAS data, ancestry-matched controls 

were sourced from participating population-based cohorts. Controls included individuals 

whose status of exposure to SARS-CoV-2 was either negative according to electronic 

health records/questionnaires or unknown (20). We used the largest GWAS summary 

statistics of the COVID-19 Host Genetics Initiative for severe COVID-19 and COVID-19 

hospitalization outcomes in individuals of European-ancestry, excluding those from the 

UK Biobank. The datasets corresponding to each outcome were as follows: severe 

COVID-19 (cases: 4,792; controls: 1,054,664; dataset ID: 

COVID19_HGI_A2_ALL_eur_leave_ukbb_23andme_20210107 from data release 5) and 

COVID-19 hospitalization (cases: 14,652; controls: 1,114,836; and dataset ID: 

COVID19_HGI_B2_ALL_eur_leave_ukbb_23andme_20210622 from data release 6). 

We note that the COVID-19 Host Genetics Initiative’s data release 6 did not include 

ancestry-specific GWAS for the severe COVID-19 outcome and also that the latest data 

release 7 did not include GWAS in European-ancestry individuals excluding those from 

the UK biobank. Hence, we used data release 5 for the severe COVID-19 outcome and 

data release 6 for the COVID-19 hospitalization outcome to minimize bias due to sample 

overlap or genetic confounding due to population stratification. 
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2.3.3 Mendelian Randomization 

We performed univariable MR using the inverse variance weighted method (hereinafter 

referred to as univariable MR) to evaluate the relationship of body fat mass, body fat-free 

mass, body fat percentage, and BMI with severe COVID-19 and COVID-19 hospitalization. 

Univariable MR is a weighted linear regression model in which the effect of genetic 

variants 𝑖 (𝑖 = 1…𝑛) on an outcome 𝛽'!! is regressed on the effect of the same genetic 

variant 𝑖  on the exposure 𝛽'"!  weighted by the inverse of the squared standard error 

(𝑠𝑒*𝛽'!!+
#$ ). The estimated total effect (𝜃 ) of the exposure on the outcome can be 

formulated as follows: 

  𝛽'!! = 	𝜃𝛽'"! +	𝜖%, 𝜖% 	~	𝒩 20, 𝑠𝑒*𝛽'!!+
#$
5  

The instrumental variable assumptions are as follows: (I) Relevance–genetic variant is 

associated with the exposure. (II) independence–genetic variant does not share the 

unmeasured cause or confounder with the outcome. (III) exclusion restriction–genetic 

variant does not influence the outcome except through the exposure (11, 12). These 

assumptions are illustrated by a canonical diagram in Figure 2. 
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Figure 2. Canonical diagram illustrating the instrumental variable assumptions 
made in the Mendelian randomization analyses. 
Genetic variant G is used as an instrumental variable for exposure X (body mass index, 

body fat percentage, body fat mass, or body fat-free mass) to evaluate the causal effect 

of X on the outcome Y (severe COVID-19 or COVID-19 hospitalization). Instrumental 

variable assumptions include the following: (I) Relevance–genetic variant G is 

associated with exposure X. (II) independence–genetic variant G does not share the 

unmeasured cause or the confounder with the outcome Y. (III) exclusion restriction–

genetic variant G does not influence the outcome Y except through the exposure X. 

Red solid arrows represent causal effects; gray solid arrows represent causal effects of 

the unmeasured cause or confounder that do not violate the instrumental variable 

assumptions; dashed arrows represent causal effects that are specifically prohibited by 

the instrumental variable assumptions. 
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Multivariable MR was performed using the inverse variance weighted method (hereinafter 

referred to as multivariable MR). This is an extension of univariable MR, in which the 

effects of genetic variant 𝑖 (𝑖 = 1…𝑛) on the outcome (𝛽'!!) are regressed on the effect of 

genetic variant 𝑖 on two exposures of X1 (fat mass) and X2 (fat-free mass). In multivariable 

MR, genetic variants used as instrumental variables are associated with one or both of 

the exposures (21). 

 

The causal associations were evaluated using odds ratios (ORs), which are expressed 

according to a standard deviation (SD) increase in genetically predicted body fat mass 

(kg), or body fat-free mass (kg), body fat percentage (%), and BMI (kg/m2). 

 

Results with a P < 0.0125 were considered statistically significant (P = 0.05/4; Bonferroni-

corrected significance threshold according to the number of exposures). We note that 

such a correction is likely overly conservative, given that the exposures are non-

independent. MR analyses were performed using TwoSampleMR (v0.5.6) in R (v4.02). 

This study was conducted in accordance with the STROBE-MR guideline (6, 7). 

STROBE-MR checklist is provided in Supplementary Material (22). 

 

2.3.4 Sensitivity Analysis 

We performed the MR-Egger intercept test, Cochran’s Q test, and the MR-PRESSO 

global test (23, 24) to detect horizontal pleiotropy, which occurs when instrumental 

variables influence outcomes through pathways independent of the exposure. MR-

Egger relaxes the exclusion restriction assumption and is valid under the Instrument 

Strength Independent of Direct Effect (InSIDE) assumption that associations of the 

genetic variants with the exposure trait are independent of direct effects of the genetic 

variants on the outcome. Deviation of the MR-Egger intercept from zero indicates 

horizontal pleiotropy. The results of Cochran’s Q test were used to evaluate the 

heterogeneity of genetic variants used as instrumental variables. Results of Cochran’s 

Q test were presented with I2 index, based on which the heterogeneity of genetic 

variants was defined categorically with I2 index as low (I2 index ≤ 25%), moderate (I2 
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index 26–50%), and high (I2 index > 50%). Additionally, we performed the MR-PRESSO 

global test, which can detect horizontally pleiotropic outlier SNPs. A significant result 

indicates the presence of pleiotropic outlier SNPs and this method then generates ORs 

after removing and correcting for these outliers (outlier-corrected ORs). MR-PRESSO 

can also be used to evaluate the distortion of the causal estimates before and after the 

removal of pleiotropic outlier SNPs following the MR-PRESSO distortion test. MR-

PRESSO requires at least 50% of the genetic variants to be valid instruments with no 

horizontal pleiotropy and also relies on the InSIDE assumption. We also performed 

leave-one-out analyses for all exposure-outcome associations, which repeated 

univariable weighted MR excluding each SNP to assess whether the overall estimate is 

driven by a single SNP. We also generated scatter plots and funnel plots to inspect for 

horizontal pleiotropy. 

 
Results with a P < 0.05 were considered to indicate the presence of horizontal pleiotropy 

for the MR-Egger intercept test, Cochran’s Q test, MR-PRESSO global test, and MR-

PRESSO distortion test. Sensitivity analyses were performed with TwoSampleMR 

(v.0.5.6) and MR-PRESSO (v1.0). 

 

2.3.5 Ethics Statements 

The UK Biobank and COVID-19 Host Genetics Initiatives obtained ethics approval from 

the relevant institutional ethics committees. We used publicly available summary statistics 

of GWAS results of UK Biobank and COVID-19 Host Genetics Initiative and did not use 

individual-level data. 

 

2.4 Results 

2.4.1 Instrumental Variables or Exposure Traits 

The characteristics of the exposure traits (body fat mass, body fat-free mass, body fat 

percentage, and BMI) are presented in Table 1. The mean ± SD of body fat mass was 
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24.9 ± 9.6 kg, body fat-free mass was 53.2 ± 11.5 kg, body fat percentage was 31.4 ± 

8.5%, and BMI was 27.4 ± 4.8 kg/m2 (Table 1). For body fat mass, body fat-free mass, 

body fat percentage, and BMI, 417, 530 377, and 439 independent genome-wide 

significant SNPs were identified as instrumental variables from the GWAS results of the 

UK Biobank, respectively. F-statistics for these exposure traits were 502.2, 607.4, 496.9, 

and 507.6, respectively. The SNPs used as instrumental variables are presented in 

Supplementary Table 1 (22). 
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Table 1. Dataset descriptions. 
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2.4.2 Severe COVID-19 Outcome 

For the severe COVID-19 outcome, univariable MR showed that the genetically predicted 

increase per SD in body fat mass, body fat percentage, and BMI was associated with an 

increased risk of severe COVID-19 (ORbody fat mass = 1.61, 95%CI 1.28–2.04, P = 5.51×10-

5; and ORbody fat-free mass =1.31, 95%CI: 0.99–1.74, P = 5.77×10-2; ORbody fat percentage = 1.94, 

95% confidence interval [CI]: 1.41–2.67; P = 5.07×10-5; ORBMI = 1.49, 95%CI: 1.19–

1.87, P = 5.57×10-4) (Figure 3). Further, as instrumental variables for body fat mass and 

body fat-free mass were not independent of each other (r = 0.64 for the genetic correlation 

of the two traits) (Figure 4), we performed multivariable MR to elucidate the independent 

causal effects of body fat mass and body fat-free mass on the severe COVID-19 outcome, 

which showed that only body fat mass was independently associated with the severe 

COVID 19 outcome (body fat mass: ORbody fat mass = 2.91, 95%CI: 1.71–4.96, P = 8.85×10-

5, and ORbody fat-free mass = 1.02, 95%CI: 0.61–1.67, P = 0.945) (Figure 5). 
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Figure 3. Univariable Mendelian randomization analysis for the severe COVID-19 
and COVID-19 hospitalization outcomes. 
MR, Mendelian randomization. 
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Figure 4. Heatmap for genetic correlation coefficients between the body fat-
related traits. 
Genetic correlations among the four exposures (body fat mass, body fat-free mass, 

body fat percentage, and body mass index) were analyzed with LDAK using the results 

of corresponding genome-wide association studies.  
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Figure 5. Multivariable Mendelian randomization analysis for the severe COVID-19 
and COVID-19 hospitalization outcomes. 
MR, Mendelian randomization. 
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2.4.3 COVID-19 Hospitalization Outcome 

For the COVID-19 hospitalization outcome, univariable MR showed that a genetically 

predicted increase per SD in body fat mass, body fat-free mass, body fat percentage, and 

BMI and was associated with an increased risk of COVID-19 hospitalization (ORbody fat mass 

= 1.32, 95%CI: 1.20–1.46, P = 2.52 × 10-8; ORbody fat-free mass = 1.27 95%CI: 1.13–1.42, P 

= 4.44 × 10-5; ORbody fat percentage = 1.44, 95%CI: 1.26–1.66, P = 1.22 × 10-7; ORBMI = 1.31, 

95%CI: 1.19–1.44, P = 3.46 × 10-8) (Figure 3). In multivariable MR, only body fat mass 

was independently associated with COVID-19 hospitalization (ORbody fat mass = 2.38, 

95%CI: 1.56–3.61, P = 5.29×10-5; ORbody fat-free mass = 0.82, 95%CI: 0.56–1.19, P = 0.293), 

consistent with the findings for severe COVID-19 (Figure 5). 

 

2.4.4 Sensitivity Analysis 

We performed MR-Egger, Cochran’s Q test and MR-PRESSO for sensitivity analysis 

(Table 2). In the MR-Egger, the 95%CI results of the MR-Egger intercept (Egger 

intercept) contained the null hypothesis value zero for all exposure-outcome relationships, 

suggesting no evidence of horizontal pleiotropy. Heterogeneity estimates of instrumental 

variables were low according to the I2 index (I2 index were ≤ 25% for all exposure traits). 

The leave-one-out analyses showed that causal estimates were robust to exclusion of 

single SNPs (Supplementary Table 2–5). Visual inspection of the scatter plots and 

funnel plots did not suggest biased estimates or pleiotropy (Figure 6 and Supplementary 
Figure 1). However, MR-PRESSO detected some pleiotropic outlier SNPs in instrumental 

variables body fat mass, body fat percentage, and BMI with the COVID-19 hospitalization 

outcome (P-value for global test < 0.05). Nevertheless, results with MR-PRESSO after 

removal and correction for these pleiotropic outlier SNPs were directionally consistent 

with those from univariable MR, supporting the robustness of the findings with univariable 

MR. In addition, the MR-PRESSO distortion test detected no significant distortion in the 

causal estimates before and after the removal of outlier pleiotropic SNPs (Table 2).  
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Figure 6. Scatter plots of the univariable weighted MR analyses for (a) body fat 
mass, (b) body fat-free mass, (c) body fat percentage, and (d) body fat mass. 
Each dot represents a genetic instrumental variable. Two lines represent causal 

estimate (βIV) by the inverse variance weighted method (light blue) and the MR-Egger 

method (blue). Error bars represent 95%CIs. 

 

MR, Mendelian randomization.  
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Table 2. Sensitivity analysis results. 
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2.5 Discussion 

In this study, we first used two-sample MR to disentangle the independent effects of body 

fat mass and body fat-free mass and showed that body fat mass, but not body fat-free 

mass, is independently associated with severe COVID-19 outcomes. First, we performed 

univariable weighted MR and found that increased body fat mass, along with BMI and 

body fat percentage, were associated with an increased risk of severe COVID-19 and 

COVID-19 hospitalization. We further used multivariable MR to disentangle the 

independent causal effects of body fat mass and body fat-free mass on these outcomes 

and revealed that only body fat mass was independently associated with the outcomes. 

 

During the COVID-19 pandemic, obesity has emerged as a major risk factor for COVID-

19 outcomes. Multiple observational and MR studies suggested that obese individuals 

present an increased risk of severe diseases, hospitalization, and death due to COVID-

19 (2-4, 25). However, observational studies are prone to confounding bias and reverse 

causation and do not estimate the causal effects of exposures on outcomes. To tackle 

this problem, recent studies have used MR to estimate the causal effect of obesity on the 

risk of COVID-19. For instance, the landmark paper from the COVID-19 Host Genetics 

Initiative showed that BMI was causally associated with an increased risk of COVID-19 

hospitalization (20). This was supported by multiple MR studies and our analysis, which 

included BMI as the supplementary exposure. Other studies also assessed multiple 

anthropometric traits, including waist circumference, hip circumference, waist-to-hip ratio, 

and trunk fat ratio as well as BMI to evaluate the effect of adiposity on the risk of COVID-

19 (7, 8, 13, 14, 26-32). These MR studies consistently estimated that increases in BMI, 

waist circumference, and hip circumference are causal for COVID-19 severity (7, 13, 14, 

27, 29). On the other hand, the waist-to-hip ratio was not associated with COVID-19 

severity (7, 29), contradicting observational studies. These discrepancies may be 

explained by confounding factors involved in observational studies but also by the limited 

ability of anthropometric traits to act as proxies for body composition (i.e., body fat mass 

and fat-free mass). It should also be noted that BMI is a function only of weight and height 

and an indirect measurement of obesity. Thus, it may not necessarily reflect body 

composition, which can be directly measured with bioelectrical impedance analysis or 
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dual-energy X-ray absorptiometry (DXA). For example, individuals with similar BMI may 

have very different body composition, if there are large changes in lean body mass. This 

highlights the importance of directly measuring adiposity. In this regard, two recent MR 

studies used GWAS of direct measurements of obesity (i.e., body fat mass, fat-free mass, 

and body fat percentage) and found that they influence the risk of COVID-19, which was 

replicated by our univariable MR analyses (7, 8). However, analyses using body 

composition measurements still have limitations such as the high correlation between 

body fat mass and body fat-free mass, which was highlighted by our genetic correlation 

analysis (r = 0.64). To the best of our knowledge, the present study is the first to 

disentangle the independent causal effects of body fat mass and body fat-free mass on 

COVID-19 severity. 

 

Our multivariable MR showed that one SD increase in body fat mass (9.6 kg) is causally 

associated with 2.91-fold and 2.38-fold increase in the risk of severe COVID-19 and 

COVID-19 hospitalization, respectively, highlighting the burden of body fat accumulation 

on COVID-19 severity. On the contrary, body fat-free mass was not independently 

associated with increased risk of severe COVID-19 or hospitalization. We used 

multivariable MR since most instrumental variables of adiposity affect both fat mass and 

fat-free mass, although some variants more strongly and proportionally influence fat mass, 

whereas others influence fat-free mass more strongly. Therefore, multivariable MR can 

test the differential causal effects of fat mass and fat-free mass. Using this approach, 

recent MR studies showed differential associations between body fat mass and body fat-

free mass with various disorders (9, 33-35). The present findings extend this knowledge 

to COVID-19. Results from multivariable MR showed that body fat mass but not body fat-

free mass was independently associated with severe COVID-19 and COVID-19 

hospitalization. The association between body fat mass and COVID-19 severity was 

strengthened in multivariable MR relative to findings using univariable MR, whereas the 

effects of body fat-free mass on COVID-19 severity was markedly attenuated in 

multivariable MR, thereby illustrating the independent causal effects of body fat mass on 

COVID-19 severity. 
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The underlying mechanism of these associations remains to be clarified. Obesity is a 

metabolic disease characterized by systemic changes in metabolism, including insulin 

resistance, glucose intolerance, dyslipidemia, changes in adipokines (e.g., increased 

leptin and decreased adiponectin levels), chronic inflammation, and altered immune 

response, all of which could collectively increase the risk of COVID-19 severity (36-38). 

In addition, recent studies suggests that adipose tissue is a potential organ for direct 

infection with SARS-CoV2 in obese individuals (39). The infection of adipose tissue can 

cause systemic metabolic dysregulation including hyperglycemia, which is known as 

another risk factor for COVID-19 severity (40). Moreover, obesity causes respiratory 

dysfunction, including impaired respiratory physiology, increased airway resistance, 

impaired gas exchange, low lung volume, and low muscle strength, which can also 

increase the risk of COVID-19 severity. Furthermore, the physical characteristics of obese 

individuals render intubation and laryngoscopy difficult, which could also aggravate 

outcomes (41). Further studies are needed to explore the pathways linking adiposity to 

increased risk of COVID-19 severity. 

 

This study has several strengths. We used an MR design, which minimized bias from 

reverse causation and confounders, thereby enabling us to test for causal effects, 

provided compliance with MR assumptions. In this MR study, we used the data from the 

UK Biobank for the exposure traits (F-statistics > 10 for all exposure traits) and COVID-

19 Host Genetics Initiative for the outcomes, both of which have large sample sizes, 

thus increasing the statistical power of the analysis. Furthermore, as proxy measures of 

body composition, we not only considered BMI, which is a common indirect measure, 

but also direct measures, including body fat percentage, body fat mass, and body fat-

free mass, and revealed associations of these traits with COVD-19 severity.  

 

Our study also has important limitations. First, MR analysis relies on several key 

assumptions, the violation of which compromises causal inference: relevance, 

independence, and exclusion restriction (Figure 2). To test for possible violations of 

these assumptions, we performed multiple sensitivity analyses. The MR-Egger intercept 

test did not detect horizontal pleiotropy. Although heterogeneity of effects was detected 



  

 58 

for certain SNPs when analyzing COVID-19 hospitalization, the removal of outlier SNPs 

via MR-PRESSO still showed results consistent with those from MR inverse variance 

weighted method. We believe that these sensitivity analyses demonstrate the 

robustness and validity of the present findings. However, we acknowledge that 

horizontal pleiotropy is difficult to exclude entirely. Second, regarding exposure traits, 

we used measures derived from the bioelectrical impedance analysis (i.e., body fat 

percentage, body fat mass, and body fat-free mass) instead of DXA-derived measures 

to maximize statistical power. Although the UK Biobank collected DXA-derived 

measures for body fat mass and body fat-free mass, the sample size was markedly 

smaller for these measurements (n = 5,170). Moreover, although DXA-derived 

measures are generally more accurate than impedance-derived measures, high 

correlations between the two were reported for fat mass (r = 0.96) and fat-free mass (r = 

0.86) in the UK Biobank dataset (9). Hence, we believe impedance-derived measures 

can serve as clinically relevant exposure traits in the present analysis. Third, we only 

used summary-level data and did not use individual-level data. Therefore, we could not 

evaluate the nonlinear relationship between exposures and outcomes. However, it 

should be noted that MR using summary statistics can still test for the presence of 

causal effects of exposures on outcomes, even if the exposure-outcome relationship is 

nonlinear (42). Additionally, a recent prospective cohort study of 6.9 million individuals 

in the UK suggested that BMI and COVID-19 severity have a linear relationship within a 

BMI range ≥23 kg/m2 (2). Notably, the BMI of a majority of the individuals in the UK 

Biobank population included in the present analysis fell within this range (≥23 kg/m2). 

Fourth, we restricted our analysis to individuals of European ancestry given that majority 

of participants in the UK Biobank were of European ancestry. Future studies are 

warranted to evaluate the generalizability of our findings to other populations. Lastly, we 

did not evaluate other clinically established risk factors such as diabetes, respiratory, 

heart, kidney, liver, autoimmune disorders, older age, smoking, and lower 

socioeconomic status (43). When considering risk factors for COVID-19 severity, we 

have to take into account phenotypic and genetic correlations. This was highlighted by a 

recent study showing that the causal effect of diabetes on COVID-19 severity is 

mediated by BMI (44). Another study also showed that the effect of BMI on severe 
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COVID-19 is partially mediated by socioeconomic status measured by household 

income (27). Furthermore, obesity is associated with other risk factors for severe 

COVID-19, including, but not limited to, chronic obstructive lung disease, heart failure, 

chronic kidney disease, liver cirrhosis and autoimmune disorders (37, 45, 46). The 

interconnected nature of these risk factors highlights the importance of disentangling the 

independent causal effect of each risk factor, which requires further investigation. 

 

In summary, the present MR study provides evidence that indicates a causal 

relationship between body fat accumulation and COVID-19 severity. Because excess fat 

can be reduced by following an appropriate diet and exercising, it might represent an 

important modifiable risk factor. Thus, body weight reduction considering direct 

measurements of body fat (i.e., body fat percentage and body fat mass) can be an 

effective strategy to reduce the risk of COVID-19 severity. 
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2.11 Supplementary Figure 

 

 
Supplementary Figure 1. Funnel plots of the univariable weighted MR for (a) body 
fat mass, (b) body fat-free mass, (c) body fat percentage, and (d) body fat mass. 
Each dot represents a genetic instrumental variable. Two lines represent causal 

estimate (βIV) by the inverse variance weighted method (light blue) and the MR-Egger 

method (blue). SEIV represents standard error for each genetic instrumental variable. 

Error bars represent 95%CIs.  

MR, Mendelian randomization; IV, genetic instrumental variable. 
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Transition from Chapter 2 to Chapter 3 

 
In Chapter 2, using various proxies for obesity and MR, we demonstrated that obesity is 

associated with an increased risk of COVID-19 severity. Additionally, considering the 

genetic interrelation between body fat mass and fat-free mass, we employed 

multivariable MR to distinguish their independent causal effects. Our findings showed 

that body fat mass is independently associated with an increased risk of COVID-19 

severity, underscoring the causal role of body fat accumulation. Yet, the specific 

mechanisms by which obesity affects COVID-19 severity remained elusive. 

 

In Chapter 3, we sought to gain insights into this underlying mechanism. Considering 

that obesity substantially influences the plasma proteome, we aimed to pinpoint 

circulating proteins that may serve as mediators between obesity and COVID-19 

severity. In this chapter, we integrated large-scale genomics and proteomics data with 

genetic epidemiology methods such as MR, colocalization, mediation analyses and 

single-cell RNA sequencing analysis. This integration enriched our understanding of the 

causal biology and aided in identifying potential therapeutic targets. Notably, during our 

analysis for Chapter 3, the COVID-19 Host Genetics Initiative released new sets of 

GWAS on COVID-19 severity. This updated GWAS more than doubled the sample size, 

allowing us to incorporate it into our Chapter 3 analyses, thereby enhancing our 

statistical power. 
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3.1 Abstract 
Obesity is a major risk factor for COVID-19 severity; however, the mechanisms 

underlying this relationship are not fully understood. Since obesity influences the 

plasma proteome, we sought to identify circulating proteins mediating the effects of 

obesity on COVID-19 severity in humans. Here, we screened 4,907 plasma proteins to 

identify proteins influenced by body mass index (BMI) using Mendelian randomization 

(MR). This yielded 1,216 proteins, whose effect on COVID-19 severity was assessed, 

again using MR. We found that a standard deviation increase in nephronectin (NPNT) 

was associated with increased odds of critically ill COVID-19 (OR = 1.71, P = 1.63 × 10-

10). The effect was driven by an NPNT splice isoform. Mediation analyses supported 

NPNT as a mediator. In single-cell RNA-sequencing, NPNT was expressed in alveolar 

cells and fibroblasts of the lung in individuals who died of COVID-19. Finally, decreasing 

body fat mass and increasing fat-free mass were found to lower NPNT levels. These 

findings provide actionable insights into how obesity influences COVID-19 severity. 
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3.2 Introduction  

Coronavirus disease (COVID-19) has claimed more than 6 million lives globally 

since the beginning of the pandemic1, and obesity increases the risk of severe COVID-

192,3. To date, multiple pathways have been explored as mechanisms linking obesity to 

COVID-19 severity, including metabolic abnormalities, systemic inflammation, and 

respiratory dysfunction (e.g., impaired gas exchange) 3-5. However, the underlying 

mediators whereby obesity influences COVID-19 outcomes are not fully understood. 

One strategy to disentangle this relationship is to identify circulating proteins mediating 

the effects of obesity on COVID-19 outcomes. Since circulating proteins can be 

measured and, in some cases modulated, the identification of mediator proteins may 

provide insights into the pathways whereby obesity increases the risk of severe COVID-

19 and offer potential targets for therapeutic interventions. 

 

A previous large cross-sectional study showed that body mass index (BMI) is 

significantly associated with changes in the plasma levels of 1,576 proteins6, and 

another study supported the considerable influence of obesity on the plasma proteome7. 

However, since proteins are intricately involved in complex biological processes, 

observational studies may be biased by unmeasured confounding factors and reverse 

causation. Considering that COVID-19 has been associated with substantial changes in 

the levels of circulating proteins8, the effects of circulating proteins on COVID-19 

severity are also subject to such biases. 

 

Mendelian randomization (MR) can help to protect against such biases. MR is a 

method that uses genetic variants as instrumental variables to evaluate the causal 

effects of exposures (risk factors) on outcomes. Since genetic variants are randomly 

allocated at conception, they are largely independent confounders, thereby decreasing 

the risk of confounding. Additionally, they are not subject to reverse causation since the 

allocation of genetic variants always precedes the onset of diseases9,10. 

 

From the beginning of the pandemic, MR has played a critical role in providing 

evidence of modifiable risk factors for COVID-192,11,12. For example, multiple MR 
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studies have identified potential therapeutic targets for COVID-19, including OAS1, 

ABO, IFNAR2, IL-6, ELF5, and FAS12-18. Indeed, some MR findings have been 

validated by randomized controlled trials, thereby demonstrating the utility of MR19-24. 

 

Nevertheless, MR is based on several instrumental variable assumptions: 9,10 (I) 

the genetic variants used as instrumental variables are associated with the exposure; 

(II) they are not associated with factors that confound the relationship between the 

exposure and the outcome and; (III) they influence the outcome only through exposure 

(also known as exclusion restriction). The most problematic of these assumptions is the 

last, since the violation of exclusion restriction can bias the causal estimate through 

directional horizontal pleiotropy; therefore, careful assessment of directional horizontal 

pleiotropy is required. However, with a proper selection of instrumental variables and 

sensitivity analyses, MR can serve as a powerful tool to help understand causal 

mechanisms for disease in humans9,10, and in the case of obesity and COVID-19, can 

be used to screen thousands of proteins that may help to explain this relationship.  

 

Here, we integrated proteome-wide MR using the large-scale aptamer-based 

plasma protein measurements, multiple sensitivity analyses, colocalization, fine-

mapping, single-cell RNA-sequencing analysis, and mediation analysis to identify 

plasma proteins mediating the effect of obesity on COVID-19 severity. 

 

3.3 Results 

3.3.1 Study overview and summary 

The study was conducted in the following manner (Figure 1):  

1) Step 1 MR 

First, we estimated the effect of BMI on circulating protein levels using two-

sample MR on a proteome-wide scale. Two-sample MR can estimate the causal 

effect of the exposure on the outcome using summary statistics of genome-wide 

association studies (GWAS). For this, we used a GWAS of BMI in 694,649 
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individuals from GIANT and UK Biobank by Yengo et al. 25, and plasma proteome 

GWAS from the deCODE study26 that measured plasma protein abundances 

using 4,907 aptamers in 35,559 individuals. Hereafter, “protein” is used when 

referring to an aptamer targeting a protein26. After two-sample MR and sensitivity 

analyses, 1,216 proteins were estimated to be influenced by BMI, including 

nephronectin (NPNT) and hydroxysteroid 17-beta dehydrogenase 14 

(HSD17B14). 

 

2) Step 2 MR 

Next, we performed two-sample MR to estimate the causal effects of the above-

identified proteins (BMI-driven proteins) on critically ill COVID-19 and COVID-19 

hospitalization outcomes (collectively referred to as COVID-19 severity 

outcomes). For this analysis, we used cis-acting protein quantitative loci (cis-

pQTLs) from the deCODE study26, thereby minimizing the risk of directional 

horizontal pleiotropy. For COVID-19 severity outcomes, we used GWAS data 

from the COVID-19 Host Genetics Initiative2. This step 2 MR identified NPNT and 

HSD17B14 as putatively causal proteins for the COVID-19 severity outcomes. 

 

3) Validation analyses for NPNT and HSD17B14 
We performed multiple validation analyses for step 1 and step 2 MR as follows: 

Step 1 MR validation 

To validate whether NPNT and HSD17B14 were influenced by obesity, we 

performed separate MR analyses using body fat percentage (another proxy 

measure for obesity) as the exposure and plasma protein levels as the 

outcomes. The MR analysis found that both NPNT and HSD17B14 were 

increased by body fat percentage, consistent with the step 1 MR using BMI.  
We also checked whether NPNT and HSD17B14 were observationally 

associated with BMI using a published observational association study from 

INTERVAL (n = 2,729) and found that NPNT, but not HSD17B14, was positively 

associated with BMI. 
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These validation analyses collectively supported the causal effect of 

obesity on NPNT, but not on HSD17B14. 

 
Step 2 MR validation 

To ensure that the findings in step 2 MR were not biased by linkage 

disequilibrium (LD), which can reintroduce confounding, we used colocalization 

analyses to evaluate whether the cis-pQTLs of the identified proteins and 

COVID-19 severity outcomes shared a single causal variant. We found that 

NPNT, but not HSD17B14, shared a single causal variant with COVID-19 

severity outcomes, indicating that the MR estimates for HSD17B14 in step 2 MR 

could have been biased by LD. 

In addition, we repeated MR using cis-pQTLs from two independent 

studies (the FENLAND study27 and the AGES Reykjavik study28), which showed 

that NPNT, but not HSD17B14, influenced the COVID-19 severity outcomes. 

Given the lack of colocalization and replication for HSD17B14, we excluded 

HSD17B14 from further analyses. 

For NPNT, we further investigated the consistency between MR findings 

and observational associations between NPNT and COVID-19 severity outcomes 

using the BQC19 cohort, which showed the same direction of effect as the MR 

analyses. 

Collectively, these findings showed a causal effect of plasma NPNT levels 

on COVID-19 severity outcomes. 

 

4) Follow-up analyses for NPNT 
Colocalization of NPNT’s cis-pQTL with eQTL and sQTL: 

The observed differences in aptamer-measured NPNT levels may be 

predominantly explained by a particular isoform, rather than total NPNT levels. 

Thus, we used colocalization to evaluate whether the cis-pQTL shared the same 

causal variant with either its expression QTL (eQTL; genetic variants that explain 

the total RNA expression levels of NPNT) or its splicing QTL (sQTL; genetic 

variants that explain a specific isoform level of NPNT). We found that the cis-
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pQTL shared the same causal variant with the sQTL but not with the eQTL. 

These findings demonstrate that an NPNT splice isoform is likely measured by 

the aptamer targeting NPNT. 

 

Single-cell RNA-sequencing data of SARS-CoV-2-infected lungs 

Next, to gain insights into the biological role of NPNT in SARS-CoV-2-infected 

lungs, we analyzed single-cell RNA-sequencing data of the lung autopsy 

samples from patients who died due to COVID-19. We found that NPNT is 

significantly expressed in in alveolar cells and fibroblasts of the lung, indicating 

its role in air exchange and fibrosis. 

 
Mediation analysis 
Further, we performed an MR mediation analysis to quantify the extent to which 

the total effect of obesity on COVID-19 severity outcomes was mediated by 

plasma NPNT levels. We found that NPNT partially mediated the total effect of 

BMI, and consistent results were found for body fat percentage. 

 
Multivariable MR analyses of body fat and fat-free mass 

Finally, we estimated the independent causal effect of body fat and fat-free mass 

on plasma NPNT levels and COVID-19 severity outcomes using multivariable 

MR. We found that body fat mass increased plasma NPNT levels and the risk of 

COVID-19 severity outcomes, whereas fat-free mass decreased plasma NPNT 

levels and the risk of COVID-19 severity outcomes. These findings demonstrate 

that decreasing body fat and increasing body fat mass (e.g., through actions 

such as appropriate exercise and diet) can decrease plasma NPNT levels, and 

thus, may reduce COVID-19 severity outcomes, thereby suggesting NPNT as an 

actionable target. 

 

Each of these steps is described in more detail below. 
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Figure 1. Study overview and summary.  
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We identified circulating proteins mediating the effect of obesity on COVID-19 severity 

using two-step MR approach: First, we estimated the effect of BMI on 4,907 plasma 

proteins using MR, which yielded 1,216 BMI-driven proteins (Step 1 MR). Second, we 

estimated the effect of the BMI-driven proteins on COVID-19 severity outcomes, again 

using MR (Step 2 MR). This was followed by multiple validity assessments and follow-

up analyses.  

MR: Mendelian randomization, BMI: body mass index, NPNT: nephronectin, 

HSD17B14: hydroxysteroid 17-beta dehydrogenase 14, cis-pQTL: cis-acting 

quantitative trait loci, e-QTL: expression quantitative trait loci, sQTL: splicing 

quantitative trait loci. 
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3.3.2 BMI to plasma proteins (Step 1 MR) 

To estimate the causal effect of BMI on plasma protein levels on a proteome-wide 

scale, we performed a two-sample MR using BMI as the exposure and 4,907 plasma 

protein levels as the outcomes. For two-sample MR, we used an inverse variance 

weighted method with a random-effects model (see Methods and Supplementary 
Table 1 for details). The F-statistic, which is a measure of the strength of the 

association between genetic variants and BMI, was 94.2 and thus did not indicate weak 

instrument bias (suspected when F-statistic < 10) 29 (Supplementary Tables 2). Out of 

the 4,907 proteins screened, 1,304 were estimated to be influenced by BMI, using a 

Bonferroni-adjusted threshold of P < 1.0 × 10-5 (0.05/4907), highlighting the substantial 

influence of BMI on plasma protein levels (Figure 2. Supplementary Table 3 and 4). 

In sensitivity analyses, we tested the robustness of the MR findings with a 

heterogeneity test, directional pleiotropy test, and reverse causation test (see Methods) 

to only retain the proteins that were robustly influenced by BMI. We did not find 

significant heterogeneity for 1,304 Bonferroni-significant proteins (I2 < 50% for all). Of 

1,304 proteins, 1,229 showed no apparent sign of directional horizontal pleiotropy with 

the MR Egger intercept test30 (PEgger intercept > 0.05). MR analyses with the weighted 

median, weighted mode, and MR-Egger slope methods also showed directionally 

consistent results with the inverse variance weighted method for NPNT and HSD17B14 

(Figure 2 and Supplementary Table 4). To assess potential reverse causation, 

whereby the proteins influenced BMI, we performed bidirectional MR that used protein 

levels as the exposures and BMI as the outcome (see Methods). Thirteen proteins 

exhibited bidirectional effects (Supplementary Table 5) and were excluded from further 

analyses.  

Hence, a total of 1,216 protein levels were identified as BMI-driven proteins, 

which were estimated to be influenced by BMI with no apparent heterogeneity, 

directional pleiotropy, or reverse causation. We proceeded to the second step of our 

study (step 2 MR) with these 1,216 proteins, including NPNT and HSD17B14.  
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Figure 2. MR analyses for the effect of body mass index on plasma protein levels. 
(a) Flow diagram of the Step 1 MR analyses. (b) Volcano plot illustrating the effect of 

BMI on each plasma protein from the MR analyses using inverse variance weighted 

method. Red and blue horizontal lines represent P = 1.0 × 10-5 (Bonferroni correction for 

4,907 proteins: 0.05/4,907) and 0.05, respectively. A proteins’ shape denotes whether 

the protein passed all sensitivity tests (i.e., heterogeneity, directional pleiotropy, and 

reverse causation assessment) (circle) or failed any of them (triangle). (c) MR scatter 

plot for the effect of BMI on plasma NPNT levels. (d) MR scatter plot for the effect of 
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BMI on plasma HSD17B14 levels. A genetically predicted increase in BMI by one 

standard deviation was associated with increased levels of NPNT (beta = 0.145, 95% 

CI: 0.084–0.206, P = 3.03 × 10-6) and HSD17B14 (beta = 0.144, 95% CI: 0.085–0.202, 

P = 1.71 × 10-6) using the inverse variance weighted method. MR-Egger, weighted 

median, and weighted mode methods yielded directionally consistent results with the 

inverse variant weighted method. 

MR: Mendelian randomization, BMI: body mass index, NPNT: nephronectin, 

HSD17B14: hydroxysteroid 17-beta dehydrogenase 14. 
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3.3.3 BMI-driven proteins to COVID-19 severity (Step 2 MR) 

Next, we evaluated the causal effects of the above-obtained BMI-driven proteins on 

COVID-19 outcomes, again using two-sample MR. We used cis-pQTLs for these 

proteins as instrumental variables and GWASs from the COVID-19 Host Genetics 

Initiative (release 7) 2 as outcomes (Supplementary Table 1). We used cis-pQTLs 

(pQTLs that reside within ± 1 Mb region around a transcription start site of a protein-

coding gene) as the exposures to protect against bias from directional horizontal 

pleiotropy. This is because cis-pQTLs reside near the transcription start site of the 

protein-coding gene and are more likely to directly influence the protein levels than the 

trans-pQTLs31,32. Since cis-pQTLs are likely to directly influence the transcription or 

translation of their associated gene, the risk of directional horizontal pleiotropy would be 

greatly reduced.  

We searched for the cis-pQTLs for 1,216 BMI-driven proteins using the deCODE 

study26. Following the cis-pQTL search and data harmonization, 358 and 352 proteins 

were tested in MR for their estimated causal effects on critically ill COVID-19 and 

COVID-19 hospitalization, respectively. The F-statistics for the tested proteins were all 

greater than 10, substantially reducing the risk of weak instrument bias29. F-statistics for 

NPNT and HSD17B14 were 252.5 and 66.3, respectively (Supplementary Table 2).  

COVID-19 and COVID-19 hospitalization outcomes are collectively referred to as 

COVID-19 severity outcomes. Throughout the study, we focused on these two 

outcomes from the COVID-19 Host Genetics Initiative and did not include COVID-19 

susceptibility outcome (reported COVID-19 infection). We did so because the 

determinants of COVID-19 susceptibility may reflect local testing strategy and resource 

allocation, which pose difficulties in the interpretation of genetic findings.  

 

Based on a Bonferroni-adjusted threshold of P < 1.40 × 10-4, MR revealed that a 

one standard deviation (SD) increase in genetically predicted NPNT levels was 

associated with increased odds of critically ill COVID-19 (OR = 1.71, 95% CI: 1.45–2.02, 

P = 1.63 × 10-10) and COVID-19 hospitalization (OR = 1.36, 95% CI: 1.22–1.53, P = 

4.52 × 10-8) (Figure 3 and Supplementary Table 6 and 7). Similarly, a one SD 
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increase in genetically predicted HSD17B14 levels was associated with increased odds 

of critically ill COVID-19 (OR = 1.92, 95% CI: 1.39–2.65, P = 6.85 × 10-5). 

  



  

 84 

 
Figure 3. MR analyses of BMI-driven proteins on COVID-19 outcomes. 
(a) Flow diagram of the Step 2 MR analyses. (b, c) Volcano plot illustrating the effect of 

BMI on critically ill COVID-19 and (b) COVID-19 hospitalization (c) from the MR 

analyses using the inverse variance weighted method or Wald ratio when only one SNP 

was available as an instrumental variable. Red and blue horizontal lines represent P = 

1.4 x 10-4 (Bonferroni correction for 358 proteins: 0.05/358) and 0.05, respectively. A 

proteins’ shape denotes whether the protein passed (circle) all sensitivity tests (i.e., 

heterogeneity, directional pleiotropy, and reverse causation assessment) or failed any of 

them (triangle). (d) Forest plot of the MR results for NPNT and HSD17B14, showing the 

odds ratio per one standard deviation increased in plasma levels of NPNT and 

HSD17B14 for critically ill COVID-19 and hospitalization outcomes. 

MR: Mendelian randomization, BMI: body mass index, NPNT: nephronectin, 

HSD17B14: hydroxysteroid 17-beta dehydrogenase 14, OR: odds ratio, 95% CI: 95% 

confidence intervals. 
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To verify the assumption of a lack of directional pleiotropy which can reintroduce 

confounding, we checked whether the cis-pQTLs for NPNT and HSD17B14 were 

associated with any traits or diseases using the PhenoScanner 

(http://www.phenoscanner.medschl.cam.ac.uk/)33 and Open Target Genetics 

(https://genetics.opentargets.org/) databases at the genome-wide significant threshold 

of P = 5 × 10-8. The lead cis-pQTL for NPNT (rs34712979) from the deCODE study was 

associated with lung-related traits (Supplementary Table 8). However, since NPNT 

has an established role as an extracellular matrix protein and fibrosis in the lungs34-36, it 

is possible that the NPNT cis-pQTL affects such traits by altering NPNT levels, and thus 

should not violate the assumption of no directional pleiotropy. Indeed, MR showed that 

NPNT levels were estimated to influence the FEV1/FVC ratio (a key lung function index 

used for the definition of chronic obstructive lung disease (COPD) 37) and asthma 

(Supplementary Table 9). This suggests that these findings may be a case of vertical 

pleiotropy, which does not bias MR interpretation38, 39, 40. Intriguingly, the NPNT-

increasing rs1662979-G allele, which increases the risk of COVID-19 severity, was 

found to improve lung function (i.e., higher FEV1/FVC ratio) and decrease the risk of 

COPD (Supplementary Table 8 and 9). A similar phenomenon has been reported for 

ELF5 and MUCB5: the COVID-19 severity risk-increasing alleles of ELF5 and MUCB5 

were observed to improve lung function and decrease the risk of idiopathic pulmonary 

fibrosis18. This suggests that COVID-19 has distinct underlying mechanisms that 

influence the severity risk. No other cis-pQTL for NPNT or HSD17B14 was associated 

with any trait or disease, thereby reducing the possibility of directional pleiotropy. Next, 

to assess potential bias from reverse causation, we performed the MR-Steiger test, 

which supported a causal direction of plasma NPNT and HSD17B14 levels influencing 

COVID-19 severity outcomes (Supplementary Table 10). 

 

http://www.phenoscanner.medschl.cam.ac.uk/
https://genetics.opentargets.org/
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3.3.4 Validation analyses for NPNT and HSD17B14 

3.3.4.1 Step 1 MR validation 

MR analyses using body fat percentage 

BMI is an easy-to-measure, widely used proxy for obesity, which can offer clinically 

relevant information. However, another proxy for obesity, body fat percentage, can more 

directly measures body fat accumulation. Thus, to evaluate whether circulating NPNT 

and HSD17B14 levels were influenced by body fat accumulation, we repeated step 1 

MR using body fat percentage as the exposure instead of BMI. We used the same 

4,907 plasma protein levels GWASs from the deCODE study26 as the outcomes. The F-

statistic for body fat percentage for these analyses was 61.1, which indicated no 

evidence of weak instrument bias.  

We found that one SD increase in body fat percentage was associated with 

increased levels of NPNT (beta = 0.14, 95% CI: 0.07–0.22, P = 1.23 × 10-4, and 

HSD17B14 (beta = 0.17, 95% CI: 0.10–0.24, P = 3.61 × 10-6), (see Methods and 

Supplementary Table 11), consistent with the step 1 MR findings with BMI. 

Comparison with observational studies from INTERVAL 

One way to assess potential biases is to test the same hypothesis using a different 

study design. Since each study design has its own inherent potential biases, similar 

results across designs can serve to strengthen causal inference through a triangulation 

of results41. Therefore, in supplementary analyses, we compared our MR findings for 

the effect of BMI on NPNT and HSD17B14 with published results from the INTERVAL 

study, which evaluated the associations between BMI and 3,622 plasma protein levels 

among 2,729 individuals6.  

In the INTERVAL study, a one SD increase in BMI was cross-sectionally 

associated with increased NPNT (beta = 0.13, 95% CI: 0.09–0.17, P = 4.52 × 10-10), 

which was directionally consistent with the MR findings. On the contrary, HSD17B14 

showed inconsistent results, wherein a one SD increase in BMI was not associated with 

HSD17B14 (beta = -0.02, 95% CI: -0.05–0.02, P = 0.415). 
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These validation analyses collectively supported the causal effect of obesity on NPNT, 

but not on HSD17B14. 

3.3.4.2 Step 2 MR validation 

Colocalization of cis-pQTLs with COVID-19 severity outcomes 

Considering that the MR analyses from Step 1 and Step 2 implicated NPNT and 

HSD17B14 as candidate proteins mediating the effect of BMI on COVID-19 severity, we 

performed colocalization to assess whether the cis-pQTLs for NPNT and HSD17B14 

shared the same single causal variant with critically ill COVID-19 and hospitalization. 

This can test whether MR analyses were biased by LD. 

The colocalization analyses revealed that NPNT had a high posterior probability 

of colocalization with critically ill COVID-19 and hospitalization (posterior probability 

(PPshared) > 99.9% for both) (Figure 4). We confirmed the robustness of the 

colocalization results using different priors (Methods and Supplementary Table 12), 

which consistently showed that the cis-pQTL for NPNT colocalized with COVID-19 

severity outcomes. Moreover, using Combined Annotation Dependent Depletion 

(CADD)-scores42 as priors for fine-mapping, we confirmed that rs34712979, the lead 

cis-pQTL for NPNT, was a causal variant for critically ill COVID-19 and hospitalization 

with a posterior inclusion probability of > 0.99 (Supplementary Table 13 and 14).  

On the contrary, cis-pQTLs for HSD17B14 did not colocalize with either of the COVID-

19 severity outcomes (Figure 4), indicating that the MR findings for HSD17B14 were 

likely to be biased by LD. 
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Figure 4. Colocalization analyses of cis-pQTL for NPNT or HSD17B14 with COVID 
outcomes in the 1-Mb region around rs34712979. 
We evaluated whether the cis-pQTL for NPNT (a) and HSD17B14 (b) shared the same 

causal variant with critically ill COVID-19 or COVID-19 hospitalization outcomes using 

colocalization. 

PPshared: Posterior probability that cis-pQTL for NPNT shares a single causal signal 

with the COVID-19 outcome. 
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MR analyses using cis-pQTLs from different studies  

To further test whether plasma levels of NPNT or HSD17B14 were causal for critically ill 

COVID-19, we performed additional sets of MR analyses using cis-pQTLs from different 

cohorts. The cis-pQTLs for NPNT and HSD17B14 were identified using data from the 

FENLAND study by Pietzner et al. (n = 10,708) 27 and the AGES Reykjavik study by 

Emilsson et al. (n = 3,200) 28. We assessed the PhenoScanner and Open Target 

Genetics databases for additional associations for these cis-pQTLs with other 

phenotypes and found none.  

MR analyses using these cis-pQTLs estimated a consistent causal effect of 

NPNT on critically ill COVID-19 (the FENLAND study: OR = 1.89, 95% CI: 1.56–2.29, P 

= 1.21 × 10-10; the AGES Reykjavik study: OR = 1.25, 95% CI: 1.06–1.48, P = 8.26 × 

10-3) and COVID-19 hospitalization (the FENLAND study, OR =1.45, 95% CI: 1.28–

1.66, P = 2.17× 10-8; the AGES Reykjavik study, OR = 1.17, 95% CI: 1.04–1.31, P = 

7.30 × 10-3).  

In contrast, the estimated causal effects of HSD17B14 on these COVID-19 

outcomes were not supported (Supplementary Table 15). Given the lack of 

colocalization and replication, we concluded that the initial finding indicating a causal 

effect of HSD17B14 on COVID-19 severity outcomes using a cis-pQTL from the 

deCODE study was likely biased by a difference in LD structure. Therefore, we 

excluded HSD17B14 from further evaluation. 

Comparing with observational associations using BQC19 

Considering that the MR analyses (Step 2 MR) used plasma protein levels in a non-

infectious state from the deCODE study as the exposures, in supplementary analyses, 

we observationally assessed whether the plasma levels of NPNT in a non-infectious 

state were associated with the risk of COVID-19 using logistic regression in 293 

individuals from the BQC19 cohort. We restricted the analyses to individuals who met 

our criteria of critically ill COVID-19, COVID-19 hospitalization, or COVID-19 negative 

controls (see Methods).  
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Logistic regression analysis adjusting for age, sex, and sample collection batch 

showed that increased non-infectious plasma levels of NPNT were associated with the 

increased risk of critically ill COVID-19 (OR = 1.47, 95% CI: 1.05–2.06, P = 2.60 × 10-2) 

and COVID-19 hospitalization (OR = 1.49, 95% CI: 1.11–2.02, P = 9.87 × 10-3), which 

were directionally consistent with the step 2 MR findings (Supplementary Table 16). 

 

3.3.5 Follow-up analyses for the putatively causal protein (NPNT) 

3.3.5.1 Colocalization of NPNT’s cis-pQTL with eQTL and sQTL  

The observed differences in NPNT levels measured by the SomaScan assay may be 

explained by levels of a particular isoform, rather than total NPNT levels. Thus, we 

performed colocalization analyses to evaluate whether the cis-pQTL share the same 

causal variant with either the total RNA expression level or a specific isoform level of 

NPNT. Given that the lung is a primary target organ in the context of COVID-19 

severity, NPNT is highly expressed in the lung, NPNT splice isoforms have previously 

been implicated as a risk factor for COPD and other lung outcomes43, 44,45, and SNPs 

influencing a specific isoform level would be sQTLs, we performed colocalization 

analysis of the cis-pQTL with eQTLs and sQTLs for NPNT in lung tissue from GTEx46. 

Colocalization analysis of NPNT pQTL and sQTL within a one-megabase (1-Mb) 

region (±500 kb) surrounding the lead cis-pQTL (rs34712979) revealed that there was a 

high probability of pQTL and sQTL sharing a single causal variant (posterior probability 

for a shared causal signal (PPshared) = 100.0%). However, this was not true for the eQTL 

(PPshared  

< 0.01%; Figure 5). We confirmed the robustness of the colocalization results using 

different priors (Methods and Supplementary Table 17). 
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Figure 5. Colocalization analyses of cis-pQTL with sQTL and eQTL for NPNT. 
PPshared: Posterior probability that the cis-pQTL for NPNT shared a single causal signal 

with its sQTLs or eQTLs in the lung. 
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Given that the thyroid, lung, and arteries are the top three NPNT-expressing 

tissues according to the GTEx46, we performed the same colocalization analyses in the 

thyroid and arteries (aorta, tibial, and coronary) and found that the pQTL of NPNT also 

colocalized with sQTL in these tissues (PPshared = 100.0% for all). Furthermore, it 

colocalized with the eQTL in the aorta and tibial artery (PPshared = 100.0% for both), but 

not in the thyroid or coronary artery (PPshared = 11.9% and 5.8%, respectively). 

Notably, the lead cis-pQTL from the deCODE study, i.e., rs34712979, was also 

identified by the FENLAND study27 and has been reported to create a cryptic splice 

acceptor site, which inserts a three-nucleotide sequence coding a serine residue at the 

5’-splice site of exon 2, resulting in perturbations of the alpha-helix motif43. Further, this 

lead cis-pQTL (rs34712979) and another cis-pQTL (rs78213340) from the AGES 

Reykjavik study—that was not in high LD with rs34712979 (r2 = 0.234)—were both 

associated with the same exon-skipping splicing in the lung in GTEx (Supplementary 
Table 18). Hence, two different cis-pQTLs of NPNT from three different studies—all 

using SomaScan—were associated with the same splicing pattern, suggesting that the 

SomaScan assay measures a specific isoform of the NPNT protein. 

Collectively, these findings indicate that the SomaScan NPNT-targeting aptamer 

measures specific isoform levels and the specific isoform of NPNT with a serine 

insertion at the N-terminus, influences the effect of NPNT on COVID-19 severity. 

3.3.5.2 Single-cell RNA-sequencing data of SARS-CoV-2-infected lungs 

To gain insights into the biological role of NPNT in SARS-CoV-2-infected lungs, we 

explored the lung cell types that significantly expressed the NPNT gene by analyzing 

single-cell RNA-sequencing data from lung autopsy samples (106,792 cells) of 16 

patients who died of COVID-1947 (Single Cell Portal of the Broad Institute (Accession 

ID: SCP1052)). 

We found that NPNT is widely expressed in lung cell types, including epithelial 

cells (type 1 and type 2 alveolar cells) and fibroblasts, highlighting its role in air 

exchange and fibrosis. Furthermore, we conducted a subgroup analysis of SARS-CoV-
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2-positive and -negative cells and found that NPNT was significantly expressed in 

SARS-CoV-2-positive alveolar cells and fibroblasts (permutation test P < 0.001, see 
Methods for details) (Figure 6). 
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Figure 6. NPNT expression levels in lung cell types from COVID-19 lung autopsy 
samples at single-cell resolution. 
(a) NPNT expression levels of each cell type at single-cell resolution in the 16 lung 

donors with COVID-19. (b) Twenty-eight annotated cell types of the lung. (c) NPNT 

expression status in 106,449 SARS-CoV-2 non-infected cells (viral infection −, top 

panel) or 343 SARS-CoV-2 infected cells (viral infection +, bottom panel) in 16 lung 

donors. NPNT expression levels of 28 cell types in the two groups are shown in a box 

plot. In each box, the horizontal line denotes a median value of the expression levels, 

and the asterisk inside each box denotes the mean value. Each box extends from the 

25th to the 75th percentile of each group. Whiskers extend 1.5 times the interquartile 

range from the top and bottom of the box. Log (TP10K+1) was calculated by 

normalizing original gene counts by total unique molecular identifiers (UMI) counts, 

multiplying by 10,000 (TP10K), and then taking the natural logarithm 
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3.3.5.3 Mediation analysis 

Since BMI has likely thousands of effects upon human physiology and creates an 

important perturbation of the proteome, we wanted to estimate the proportion of the 

effect of BMI that was mediated only through plasma NPNT levels. To do so, we 

performed a mediation analysis using network MR with the product of coefficients 

method to understand the extent to which plasma NPNT levels mediate the association 

between BMI and critically ill COVID-19 and COVID-19 hospitalization.  

For critically ill COVID-19, we estimated the effect of BMI on critically ill COVID-

19 mediated by plasma NPNT levels (Figure 7). We first estimated the effect of BMI on 

plasma NPNT levels and then multiplied this estimate by the effect of plasma NPNT 

levels on critically ill COVID-19 (see Methods for further details). The ratio of the effect 

mediated by NPNT was calculated by dividing the NPNT-mediated effect estimate by 

the total effect estimate of BMI on critically ill COVID-19. We repeated the same 

process for COVID-19 hospitalization.  
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Figure 7. MR mediation analysis illustrated by the directed acyclic graph. 
The dark blue arrow represents the total effect of BMI on critically ill COVID-19. The red 

arrow represents the effect of BMI on critically ill COVID-19 mediated by NPNT. For the 

effect of BMI on critically ill COVID-19 mediated by NPNT, the product of coefficients 

method calculates the proportion mediated by multiplying βBMI-to-NPNT and βNPNT-to-severity, 

where βBMI-to-NPNT is the effect of BMI on NPNT and βNPNT-to-severity is the effect of NPNT 

on critically ill COVID-19. We evaluated the proportion mediated for the effect of 

obesity-related exposures (i.e., BMI, body fat percentage, and body fat mass) on 

COVID-19 severity outcomes (i.e., critically ill COVID-19 and COVID-19 hospitalization). 

BMI: Body mass index; MR: Mendelian randomization; NPNT: nephronectin. 
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We found that plasma NPNT levels partially mediated the total effect of BMI on 

critically ill COVID-19 (proportion mediated = 13.9%, 95% CI: 6.1–21.6%, P = 4.52 × 10-

4) and COVID-19 hospitalization (proportion mediated = 10.6%, 95% CI: 4.4–16.7%, P = 

8.02 × 10-4) (Supplementary Table 19).  

In supplementary analyses, we evaluated whether NPNT mediates the total 

effect of body fat percentage on the COVID-19 severity outcomes. We found that 

plasma NPNT levels mediated the total effect of body fat percentage on critically ill 

COVID-19 (proportion mediated = 9.5%, 95% CI: 3.6–15.4%, P = 1.59 × 10-3) and 

COVID-19 hospitalization (proportion mediated = 7.7%, 95% CI: 2.7–12.7%, P = 2.57 x 

10-3). We also found consistent results for body fat mass; plasma NPNT levels mediated 

the total effect of body fat mass on critically ill COVID-19 (proportion mediated = 13.4%, 

95% CI: 6.1–20.6%, P = 2.85 × 10-4) and COVID-19 hospitalization (proportion 

mediated = 9.9%, 95% CI: 4.3–15.6%, P = 5.61 × 10-4) (Supplementary Table 19). All 

of these results consistently suggested that plasma NPNT levels partially mediated the 

effect of obesity, measured by BMI, body fat percentage, or body fat mass, on COVID-

19 severity outcomes.  

Throughout the above analyses, we did not adjust the exposure while estimating 

the effect of the mediator on the outcome (βNPNT-to-severity in Figure 7) to avoid weak 

instrument bias (see Methods). This approach was also used in previous studies48, 49, 

50. In supplementary mediation analyses, we found that adjusting for the exposure when 

estimating βNPNT-to-severity (i.e., Sobel test)  also support the role of NPNT as a mediator 

for the effect of obesity-related exposures (BMI, body fat percentage, and body fat 

mass) on COVID-19 severity outcomes; however, the estimated proportion mediated 

was modest, likely due to weak instrument bias (Supplementary Table 20). 

 

3.3.6 Multivariable MR analyses of body fat and fat-free mass 

Given the consistent evidence that BMI influenced NPNT levels, which in turn influence 

COVID-19 severity, we aimed to identify a way of modulating plasma NPNT levels by 

gaining a better understanding of how the estimated causal effect of BMI on plasma 

NPNT levels was influenced by fat or fat-free mass in humans. In the Step 1 MR, we 
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showed that increased BMI is estimated to increase plasma levels of NPNT. However, 

BMI is a function of height and weight and does not take into account body 

compositions, such as body fat and fat-free mass. Thus, we specifically assessed their 

independent effects on plasma NPNT levels. For this, we performed multivariable MR 

using body fat and fat-free mass as the exposures and plasma NPNT levels as the 

outcomes (see Methods). Conditional F-statistics for body fat mass and fat-free mass 

were 38.8 and 59.3, respectively, which did not indicate weak instrument bias (which is 

suspected when F-statistics is less than 10) (Supplementary Table 21) 51.  

Multivariable MR using inverse variance weighted method found that a one SD 

increase in body fat mass was associated with increased plasma levels of NPNT (beta = 

0.21, 95% CI: 0.14–0.28, P = 2.74 × 10-9), whereas a one SD increase in body fat-free 

mass was associated with decreased plasma levels of NPNT (beta = -0.13, 95% CI: -

0.22, -0.05, P = 2.98 × 10-3) (Figure 8). In sensitivity analyses, Q-statistics for 

instrumental validity did not suggest evidence of pleiotropy (Q-statistics = 940.8, PQ-

statistics = 0.09). Multivariable MR-Egger also showed directionally consistent results, and 

no evidence of directional pleiotropy was observed with the MR-Egger intercept test 

(Supplementary Table 21). 

Further, to test the influence of body fat and fat-free mass on COVID-19 severity 

outcomes, we conducted multivariable MR analyses using body fat mass and fat-free 

mass as the exposures and either critically ill COVID-19 or COVID-19 hospitalization as 

the outcome. We found that a one SD increase in body fat mass was associated with 

increased odds of critically ill COVID-19 (OR = 1.89, 95% CI: 1.65–2.16, P = 4.83 × 10-

20) and COVID-19 hospitalization (OR = 1.59, 95% CI: 1.45–1.75, P = 4.28 × 10-22), 

whereas a one SD increase in body fat-free mass was associated with a decreased risk 

of critically ill COVID-19 (OR = 0.77, 95% CI: 0.65–0.91, P = 1.94 × 10-3) and COVID-19 

hospitalization (OR = 0.87, 95% CI: 0.77–0.97, P = 1.57 × 10-2). Q-statistics for 

instrumental validity and the MR-Egger intercept test did not show evidence of 

pleiotropy (Supplementary Table 21). 

These findings suggest that decreasing body fat mass and increasing fat-free 

mass (e.g., through actions such as appropriate diet and exercise) can reduce plasma 
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NPNT levels, and thus reduce the risk of critically ill COVID-19, thereby indicating NPNT 

as an actionable target. 
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Figure 8. Multivariable MR analysis for evaluating independent effects of body fat 
and fat-free mass on plasma NPNT levels. 
We performed multivariable MR with the inverse variance weighted method using body 

fat and fat-free mass as the exposures and plasma NPNT levels as the outcome. 
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3.4 Discussion 

In the present study, we conducted MR analyses and found that NPNT likely mediates 

an important proportion of the effect of obesity on COVID-19 severity. Considering that 

BMI is a highly polygenic trait with more than 530 associated loci25 and influences more 

than 1,200 circulating proteins, as shown in the present and previous studies6,7, it is 

remarkable that a single protein explains a reasonably large proportion of the effect of 

BMI and other obesity-related traits on COVID-19 severity outcomes. Additionally, 

colocalization analyses provided evidence that the NPNT cis-pQTL is shared with the 

lung sQTL for NPNT, which leads to a splice isoform with a serine insertion at the N-

terminus of NPNT43. These results suggest that NPNT mediates a proportion of 

obesity’s effect on critically ill COVID-19 and that this effect may be conferred by 

alternative splicing of NPNT which introduces a serine residue at its N-terminus. 

 

NPNT, or nephronectin, is an extracellular matrix protein that controls integrin 

binding activity. It is known as a functional ligand of integrin α8/β-1 in kidney 

development and is also associated with the development, remodeling, and survival of 

various tissues through the binding of integrins52,53. NPNT has also been implicated in 

inflammation and autoimmunity54,55, which may align with the suggested role of obesity-

induced inflammation in COVID-19 severity56. In addition, NPNT is expressed in lung 

alveolar cells and fibroblasts57,58, and recent GWASs have identified the same NPNT 

splice variant, rs34712979, to be associated with lung function-related traits (e.g., forced 

expiratory volume (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio) and 

COPD44,45. Our single-cell RNA-sequencing analysis on COVID-19 lung autopsy 

samples also found that NPNT was expressed in SARS-CoV-2-infected alveolar cells 

and fibroblasts, suggesting its role in air exchange and fibrosis in SARS-CoV-2-affected 

lungs. These findings collectively suggest that NPNT alternative splicing, which results 

in an isoform with a serine insertion in the N-terminus of the protein, increases the risk 

of deterioration of lung function and lung diseases such as COPD and COVID-19. 

Future studies are required to investigate the functional properties of this alternative 

splice isoform. 
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Our findings may have important clinical implications. The multivariable MR 

approach showed that decreasing body fat mass and increasing body fat-free mass, 

which can be achieved through non-pharmacological interventions such as exercise and 

appropriate diet59, can reduce plasma NPNT levels and the risk of COVID-19 severity 

outcomes. Moreover, recent trials have shown GLP-1/GIP co-agonist tirzepatide60,61 

and GLP-1 receptor agonists including semaglutide62,63 and liraglutide64,65 can reduce 

body fat mass, while preserving body fat-free mass. We believe that these findings are 

important because they offer the possibility to potentially modulate plasma NPNT levels, 

using available therapies. Such hypotheses require further investigations in clinical 

trials. 

 

This study has both strengths and weaknesses. MR and colocalization analyses 

robustly implicated NPNT as a causal mediator of the relationship between BMI and 

COVID-19 severity. The robustness of the MR findings was enhanced by the large 

sample sizes used to derive the findings. To the best of our knowledge, this is the first 

study to identify a mediator of obesity on COVID-19 employing a two-step MR 

approach, although a previous study using a similar framework with limited statistical 

power earlier in the pandemic could not identify a strong protein signal66. Furthermore, 

our MR findings withstood multiple sensitivity analyses and were supported by 

colocalization, fine-mapping, replication MR, observational evaluation, and RNA-

sequencing studies in COVID-19 lung samples. Intriguingly, multivariable MR showed 

that plasma NPNT levels were increased by body fat mass but decreased by fat-free 

mass, indicating that the effect of BMI on plasma NPNT levels was driven by body fat 

mass and partially counteracted by fat-free mass. These findings suggest that NPNT 

could be a potential intervention target in individuals with obesity to prevent critically ill 

COVID-19 and highlight one of the possible mechanisms by which appropriate diet and 

exercise can confer risk reduction of COVID-19 severity through the reduction in plasma 

NPNT levels. 

 

This study also has important limitations. First, MR and colocalization analyses 

were restricted to individuals of European ancestry to avoid confounding by population 
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stratification and heterogeneity of genetic associations across different ancestries. 

Whether NPNT mediates the effect of BMI on COVID-19 severity in populations of non-

European ancestries requires further investigation. Second, we did not perform sex-

stratified analysis due to the unavailability of sex-specific datasets. Third, there were no 

genome-wide significant genetic instrumental variables for BMI in the 1-Mb region 

around the cis-region of NPNT (1-Mb around the transcription start site), we could not 

pinpoint a single genetic variant that directly links BMI to NPNT. Hence, the effect of 

BMI on NPNT is likely mediated by a combination of multiple trans-effects, which was 

also indicated by the scatter plot in the MR analysis for NPNT. However, this is not 

surprising considering that BMI is a highly polygenic, complex trait, and multiple 

pathways could confer the effect of BMI on other diseases67. Fourth, we do not know 

the molecular mechanism by which BMI influences the splice isoform. Previous studies 

have suggested that obesity is associated with alternative splicing68-70 and extracellular 

matrix protein remodeling71, which may align with our findings. However, further 

investigation is required to clarify the specific molecular mechanisms involved. Lastly, 

we do not rule out the possibility that total levels of NPNT (all isoforms) measured by 

the NPNT-targeting aptamer mediate the effect of obesity on COVID-19 severity. 

However, given the evidence provided by the MR, colocalization, fine-mapping, and a 

biological understanding of lead cis-pQTL (i.e., the variant causes alternative splicing 

resulting in perturbations of the alpha-helix motif in the lung), it is likely that the specific 

isoform measured by the aptamer is driving the effect. Nevertheless, isoform-specific 

measurements (e.g., mass spectrometry) will be required to confirm these findings. 

 

In conclusion, we integrated a two-step MR approach, sensitivity analyses, 

colocalization, fine-mapping, single-cell RNA-sequencing, and mediation analyses to 

identify NPNT as an important mediator of the effect of obesity on COVID-19 severity 

outcomes. We also showed that decreasing body fat mass and increasing fat-free mass 

(e.g., by actions such as exercise and appropriate diet) can lower NPNT levels, and 

thus may improve COVID-19 severity outcomes. These findings provide actionable 

insights into how obesity influences COVID-19 severity.  
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3.5 Methods  

3.5.1 Step 1: BMI to plasma proteins  

Two-sample MR 
BMI GWAS: We used the BMI GWAS meta-analysis with the largest sample size, 

comprising 693,529 European ancestry individuals from the GIANT consortium and UK 

Biobank25. The consortium details are provided in Supplementary Table 1, and post-

hoc power calculation is provided in Supplementary Table 22.  

 

Proteomic GWAS: For GWAS of plasma protein levels, we used the largest proteomic 

GWAS available26, which measured 4,907 proteins in 35,559 individuals of European 

ancestry using the SomaLogic SomaScan assay v4 (SOMAscan, SomaLogic, Boulder, 

Colorado, USA). 

 
Two-sample MR: The effect of BMI on plasma protein levels was assessed using the 

inverse variance weighted method with a random-effects model in TwoSampleMR 

v.0.5.672 (https://mrcieu.github.io/TwoSampleMR/). The instrumental variables for the 

exposure were defined as genome-wide significant and independent single nucleotide 

polymorphisms (SNPs) (P < 5 × 10-8; r2 < 0.001, with a clumping window of 10 Mb). 

SNPs in the human major histocompatibility complex (MHC) region at chromosome 6: 

28,477,797–33,448,354 (GRCh37) were excluded considering its complex LD structure. 

We used PLINK v1.973 (http://pngu.mgh.harvard.edu/purcell/plink/) to obtain 

instrumental variables by clumping SNPs using the 1000 Genomes Project European 

reference panel74 and applying an LD threshold of r2 < 0.001. The genome-wide 

significant independent SNPs with the lowest P-value were selected from each LD 

block. If instrumental variable SNPs were not present in an outcome GWAS, we used 

proxy SNPs (r2 > 0.8 with the original SNP). Proxy SNPs were identified using snappy 

v1.0 (https://gitlab.com/richards-lab/vince.forgetta/snappy) with 1000 Genomes Project’s 

European reference panel74. Data harmonization and MR analyses were conducted 

using TwoSampleMR v0.5.6. Specifically, data harmonization was performed with the 

“harmonise_data()” function using default settings, including the removal of palindromic 

https://mrcieu.github.io/TwoSampleMR/
http://pngu.mgh.harvard.edu/purcell/plink/
file:///Users/sy/Documents/Studies/04.Richards_lab/09.proMR/00.Manuscript_NatMetab/Manuscript/2.revision/(https:/gitlab.com/richards-lab/vince.forgetta/snappy)
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SNPs that have minor allele frequency above 0.42. MR was performed using the “mr() 

“ function. A Bonferroni correction was used to set a statistical significance threshold by 

dividing 0.05 by the number of proteins (P = 1.0 × 10-5 (0.05/4907)). We note that this 

correction is overly-conservative since many proteins are non-independent. We did so 

to safeguard against false positive findings. In a heterogeneity test, we calculated I2 

statistics using “Isq()” function and heterogeneity P-value with “mr_heterogeneity()” 

function; results with an I2 > 50% and heterogeneity P-value (Q_pval) < 0.05 were 

considered to be heterogeneous (substantial heterogeneity) 75. For evaluating 

directional pleiotropy, we used the MR-Egger intercept test, which was performed using 

the “mr_pleiotropy_test()” function; where directional pleiotropy was considered to be 

present when the MR-Egger intercept differed from the null (P < 0.05). We note that 

even in the presence of moderate heterogeneity, balanced horizontal pleiotropic effects 

would not violate the MR assumption of a lack of directional pleiotropy76,77. For NPNT 

and HSD17B14, we used MR-Egger, weighted median, and weighted mode methods as 

additional sensitivity analyses to evaluate the directional consistency of beta coefficients 

with the inverse variance weighted method. 

 

For reverse MR, whereby the effects of plasma protein levels on BMI were 

assessed, we used cis-pQTLs from the deCODE study as the exposures and BMI 

GWAS as the outcome, deploying the inverse variance weighted method or Wald ratio 

method when only one SNP was available as an instrumental variable. After the cis-

pQTL search, proxy, and data harmonization, 357 proteins were tested in MR for their 

estimated reverse effects. Results with P < 1.4 × 10-4 (0.05/357; Bonferroni correction) 

were considered statistically significant.  

We used BMI GWAS from the UK Biobank (not the meta-analysis GWAS) 

because multiple variants, including cis-pQTL for NPNT from the deCODE study 

(rs34712979), were dropped during the stringent quality control process of the meta-

analysis (e.g., rs34712979 was not present in the GIANT GWAS and thus dropped 

during the meta-analysis process). 

To assess statistical power, F-statistics were calculated as previously described78 

using the following formula: 𝐹 = &"((#$#))
(+#&"))

 where: R2 = proportion of variance in the 
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exposure trait and k = number of instrumental variables (Supplementary Table 2). We 

also performed post-hoc power calculations using an online power calculator for 

Mendelian randomization (https://sb452.shinyapps.io/power/) (Supplementary Table 
22). 

3.5.2 Step 2: BMI-driven proteins to COVID-19 severity outcomes 

Two-sample MR 
Cis-pQTL GWAS: We identified cis-pQTLs from the GWAS of 4,907 proteins in 35,559 

individuals of European ancestry from the deCODE study26. Cis-pQTLs were defined as 

pQTLs located within 1-Mb around a transcription start site of a protein-coding gene. 

Further details of the dataset are provided in Supplementary Table 1. Genetic 

coordinates of transcription start sites of each gene used to define cis-pQTLs are 

provided in Supplementary Table 2 of the deCODE study26. 
 
COVID-19 severity outcome GWAS: For COVID-19 outcomes, we used a GWAS 

meta-analysis from the COVID-19 Host Genetics Initiatives data release 7 

(https://www.covid19hg.org/). The outcomes included critically ill COVID-19 (13,769 

cases and 1,072,442 controls) and COVID-19 hospitalization (32,519 cases and 

2,062,805 controls). These two outcomes were collectively referred to as COVID-19 

severity outcomes. Critically ill COVID-19 was defined as a requirement for respiratory 

suport among hospitalized individuals with laboratory-confirmed SARS-CoV-2 infection 

or death due to COVID-19. COVID-19 hospitalization was defined as a laboratory-

confirmed SARS-CoV-2 infection that required hospitalization. 

 
Two-sample MR: Using the data above, we carried out two-sample MR for the effects 

of plasma protein levels on COVID-19 severity outcomes. We used the inverse variance 

weighted method for proteins with ≥2 instrumental variables and the Wald ratio method 

for proteins with a single instrumental variable. When an instrumental variable SNP was 

not found in an outcome GWAS, we searched and used a proxy SNP (r2 < 0.8 with the 

original SNP) using snappy v1.0 (https://gitlab.com/richards-lab/vince.forgetta/snappy) 

with 1000 Genomes Project European reference panel74. Results with a P < 1.4 × 10-4 

https://sb452.shinyapps.io/power/
https://www.covid19hg.org/
file:///Users/sy/Documents/Studies/04.Richards_lab/09.proMR/00.Manuscript_NatMetab/Manuscript/2.revision/(https:/gitlab.com/richards-lab/vince.forgetta/snappy)
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(0.05/358; Bonferroni correction with the number of proteins tested in the Step 2 MR) 

were considered statistically significant. We used the MR-Egger intercept test to assess 

lack of directional pleiotropy for proteins with three or more genetic instrumental 

variables. However, we could not use this test for NPNT because it had fewer than 

three genetic instrumental variables. Therefore, we used the PhenoScanner 

(http://www.phenoscanner.medschl.cam.ac.uk/) and Open Targets Genetics 

(https://genetics.opentargets.org/) databases to test whether variants had potential 

pleiotropic associations with other diseases or traits. Associations with P < 5 × 10-8 were 

considered statistically significant. We also assessed reverse causation, wherein the 

effect of COVID-19 severity may influence plasma protein levels with the MR-Steiger 

test using “directionality_test()” function from TwoSampleMR v.0.5.672.  

 

3.5.3 Validation analyses for proteins prioritized by step 1 and step 2 MR (NPNT 
and HSD17B14) 

3.5.3.1 Step 1 MR validation 

MR analysis using body fat percentage 

We repeated the step 1 MR (described above) for NPNT and HSD17B14 using body fat 

percentage as the exposure instead of BMI. For this, we used body fat percentage 

GWAS in 454,633 individuals of European ancestry from the UK Biobank, obtained from 

the IEU OpenGWAS project (https://gwas.mrcieu.ac.uk/). The accession ID was ukb-b-

8909. 

 

Comparison of the MR findings with the published observational association 
study from INTERVAL 

The INTERVAL study was a prospective cohort study conducted in England. The study 

recruited ~50,000 participants of primarily European ancestry without a self-reported 

history of any major disease. The recruitment took place between 2012 and 2014, 

http://www.phenoscanner.medschl.cam.ac.uk/
https://genetics.opentargets.org/
https://gwas.mrcieu.ac.uk/
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before the COVID-19 pandemic. The study measured 3,622 plasma protein levels in 

2,737 individuals using the SomaScan assay. The study performed a linear regression 

to evaluate associations between BMI and plasma protein levels, adjusting for age and 

sex6. The derived beta estimates represented normalized SD-unit difference in each 

protein level per one SD (4.8 kg/m2) increase in BMI. Further details of the study have 

been described in depth previously6. 

 

3.5.3.2 Step 2 MR validation 

Colocalization of cis-pQTLs with COVID-19 severity outcomes 

To identify potential bias caused by confounding owing to LD, we 

performed colocalization to evaluate whether cis-pQTLs shared a single causal variant 

between the three COVID-19 outcomes for the causal proteins and NPNT or 

HSD17B14. We used the coloc R package v5.1.079 

(https://chr1swallace.github.io/coloc/) to evaluate all SNPs within the 1-Mb region 

around the top cis-pQTL for the NPNT (defined as the cis-pQTL with the smallest P-

value). The posterior probability of hypothesis 4 (H4) or PPshared (two traits sharing a 

single causal variant) > 0.8 was considered to indicate strong evidence of 

colocalization. Colocalization analyses were conducted using the coloc R package 

v5.1.079, using default priors of 𝑝1 = 𝑝2 = 10−4 and 𝑝12 = 10−5, where 𝑝1 is a prior 

probability that only trait 1 has a genetic association in the region, 𝑝2 is a prior 

probability that only trait 2 has a genetic association in the region, and 𝑝12 is a prior 

probability that both trait 1 and trait 2 share the same genetic association in the region. 

To test the robustness of the results, we evaluated different combinations of priors: 𝑝1 = 

c(10−4, 10−5, 10−6), 𝑝2 = c(10−4, 10−5, 10−6), 𝑝12 = c(10−5, 5 × 10−6, 10−6), as performed 

previously18. 

 

https://chr1swallace.github.io/coloc/
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Fine-mapping of the NPNT region in the COVID-19 severity GWAS 

The COVID-19 Host Genetics Initiatives release 7 data for those of European ancestry 

with critically ill COVID-19 and hospitalization was inputted into FINEMAP v1.480 

(http://www.christianbenner.com/) using default options. We assumed a maximum of 

one causal SNP, given a single GWAS significant SNP in the NPNT region. Summary 

statistics were filtered for SNPs present in the European ancestry, as done by Huffman 

et al81. We set prior probabilities using scaled CADD-PHRED scores42 

(https://cadd.gs.washington.edu/). The scaled CADD-PHRED scores were normalized 

so that their sum equaled one. The variance of effect size was set such that the 

maximum odds ratio a variant can have with 95% probability is two, then scaled using 

the case-control ratio as described previously81. 

 

MR analyses using cis-pQTLs for NPNT and HSD17B14 from different cohorts  

We also obtained cis-pQTLs and their beta estimates for plasma protein levels of NPNT 

and HSD17B14 from the FENLAND study and AGES Reykjavik study (Supplementary 
Table 10). We repeated the two-sample MR using these cis-pQTLs as instrumental 

variables and the COVID-19 severity outcomes as described above. 

 

Comparing with observational associations using BQC19 

The BQC-19 cohort: BQC19 (Biobanque Québécoise de la COVID-19) is a province-

wide biobank that provides global access to important biological and clinical data from 

patients with COVID-19 and control subjects in Québec, Canada 

(https://www.bqc19.ca/). Blood samples were collected in acid citrate dextrose (ACD) 

tubes from 264 SARS-CoV-2 infectious and 463 non-infectious patients of European 

ancestry (see Supplementary Information for the definition of infectious or non-

infectious state). Detailed description of sample processing can be found in the 

Supplementary Information. Briefly, the samples underwent proteomic profiling on the 

SomaScan v4 assay, and 4,907 aptamers were used for analysis, consistent with the 

http://www.christianbenner.com/
https://cadd.gs.washington.edu/
https://www.bqc19.ca/
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deCODE study26. For quality control, protein levels were natural log-transformed and 

then batch-corrected using the ComBat function implemented in the sva R package 

v3.44.082. 

 

Logistic regression analysis in BQC19 

Given that the MR analyses used plasma protein levels in a non-infectious state as the 

exposures, we observationally assessed an association between plasma NPNT in a 

non-infectious state and the risk of COVID-19 severity outcomes in the BQC19 cohort. 

We defined the COVID-19 severity outcomes in accordance with those for the GWAS 

from COVID-19 Host Genetics Initiative (Supplementary Information).  

We performed logistic regression analysis using one of the COVID-19 outcomes 

as the dependent variable and standardized plasma NPNT levels as the independent 

variable while adjusting for sex, age, and batch number. We did not adjust for clinical 

risk factors such as smoking and socioeconomic status. 

 

3.5.4 Follow-up analyses for the putatively causal protein (NPNT) 

3.5.4.1 Colocalization of NPNT’s cis-pQTL with eQTL, and sQTL  

sQTL and eQTL GWAS: We used sQTL and eQTL GWASs derived from the lung and 

those of thyroid and arteries (i.e., the top three NPNT-expressing tissues) in the 

European-ancestry individuals from the GTEx Portal V8 dataset46 

(https://gtexportal.org/). 
Colocalization analyses: To evaluate whether cis-pQTL is more affected by sQTL, 

rather than total expression, we also carried out colocalization of the cis-pQTL with 

eQTLs and sQTLs of NPNT using the GTEx V8 dataset. Colocalization analyses were 

performed in the 1 Mb region around the cis-pQTL for NPNT (rs34712979) using 

“coloc.abf()” function from the coloc v5.1.079 with default priors of 𝑝1 = 𝑝2 = 10−4 and 

𝑝12 = 10−5 (the definitions of 𝑝1, 𝑝2, and 𝑝12 can be found above). PPshared > 0.8 was 

considered to indicate strong evidence of colocalization. To test the robustness of the 

https://gtexportal.org/
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results, we evaluated 27 different combinations of priors: 𝑝1 = c(10−4, 10−5, 10−6), 𝑝2 = 

c(10−4, 10−5, 10−6), 𝑝12 = c(10−5, 5 × 10−6, 10−6), as performed previously18. We also 

evaluated whether the lead cis-pQTL from the deCODE study (rs34712979), the 

FENLAND study (rs34712979), and the AGES Reykjavik study (rs78213340) were 

associated with the same splice pattern in the lung using GTEx. For eQTL and sQTL, 

we considered associations with P < 1 × 10-7 statistically significant, as did the deCODE 

study26. 

 

3.5.4.2 Single-cell RNA-sequencing data of SARS-CoV-2-infected lungs 

To understand the NPNT expression pattern in the lungs of SARS-CoV-2 infected 

individuals, we obtained single-cell transcriptomic data of SARS-CoV-2-infected lungs 

by Delorey et al47 from the Single Cell Portal of the Broad Institute 

(https://singlecell.broadinstitute.org/single_cell/) (Accession ID: SCP1052). The data 

contained 106,792 single cells from the lungs of 16 autopsy donors aged 30 to older 

than 89 years who died due to COVID-19. 

We reanalyzed the data focusing on NPNT expression status. We analyzed the 

gene expression matrix and the associated metadata using R v4.1.2 and Seurat R 

package v4.1.183 (https://satijalab.org/seurat/). For visualization, NPNT expression 

levels were represented on a log-transcript per 10 thousand + 1, i.e., log (TP10K+1) 

scale. To cluster the cells, we adopted the clustering annotation from the original 

study47. To test whether NPNT expression was enriched in a cell type, we calculated the 

proportion of NPNT-expression cells in this cell type. Subsequently, we permuted the 

cell type labels 1,000 times and obtained the frequency (permutation p-value) of the 

same cell type containing the same or a larger proportion of NPNT-expression cells. 

Additionally, we compared the NPNT expression level between a target cell type and 

the other cell types using Wilcoxon rank-sum test. This enrichment analysis was 

performed separately in SARS-CoV-2-infected and uninfected cells. 

 

https://singlecell.broadinstitute.org/single_cell/
https://satijalab.org/seurat/
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3.5.4.3 Mediation analysis 

We undertook mediation analysis to calculate the proportion of the effect of BMI on 

critically ill COVID-19 mediated by NPNT using network MR (Figure 7). We used the 

product of coefficient method to estimate the NPNT-mediated effect (i.e., the effect of 

BMI on critically ill COVID-19 that was accounted for by NPNT) and the same 

instrumental variables and outcome GWASs from step 1 and step 2 MR. 

First, we estimated the effect of BMI on NPNT, then multiplied this by the effect of 

NPNT on critically ill COVID-19. Subsequently, the proportion of the total effect of BMI 

on COVID-19 mediated by NPNT was estimated by dividing the NPNT-mediated effect 

(βNPNT-to-severity) by the total effect (βBMI-to-severity), as described previously49,84. Additionally, 

we evaluated whether NPNT mediated the effect of body fat percentage on COVID-19 

hospitalization and the effect of body fat mass on critically ill COVID-19 and COVID-19 

hospitalization. 

We used the product of coefficients method without adjusting for the exposure 

(BMI or body fat percentage) when estimating the effect of the mediator on the outcome 

(βNPNT-to-severity) to avoid weak instrument bias. This approach was also used in previous 

studies48, 49, 50. We did so because the above-mentioned exposure adjustment requires 

multivariable MR using NPNT and BMI (or body fat percentage; fat mass) as exposures; 

however, there are only two instrumental variables for NPNT (cis-pQTL), but hundreds 

of instrumental variables for BMI. Thus, when using multivariable MR, which includes 

instrumental variables from both exposures in the model, the association between 

plasma NPNT levels and instrumental variables would be substantially weakened (i.e., 

the large number of instrumental variables of BMI would decrease the strength of the 

association between plasma NPNT and the genetic variants). Nevertheless, in 

sensitivity analyses, we performed mediation analyses with adjustment for the exposure 

when estimating βNPNT-to-severity (i.e., Sobel test) (Supplementary Table 20). For 

multivariable MR, we performed data harmonization using the “mv_harmonise_data()” 

function from TwoSampleMR v.0.5.672, followed by multivariable MR causal estimation 

using the “mv_multiple()” function from MVMR v0.3 

(https://github.com/WSpiller/MVMR)51. We calculated conditional F-statistics and 

heterogeneity Q-statistics using the “strength_mvmr()” and “pleiotropy_mvmr()” 

https://github.com/WSpiller/MVMR
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functions, respectively, again from MVMR v0.3. To the best of our knowledge, the 

sample dataset of the exposure did not overlap (one was the plasma NPNT levels from 

the deCODE study, which is an Icelandic cohort, and another was from the obesity-

related traits from UK Biobank); thus, we set “gencov” to be zero when calculating these 

measures following the instruction by the package85, as performed previously86. We 

also quantified directional pleiotropy with the MR-Egger intercept test with the 

“mr_mvegger()” function from MendelianRandomization v0.6.085 

(https://github.com/cran/MendelianRandomization). 

 

3.5.5 Multivariable MR of body fat and fat-free mass 

Body fat and fat-free mass GWAS: We obtained GWAS of body fat and fat-free mass 

from UK Biobank using the IEU OpenGWAS project (https://gwas.mrcieu.ac.uk/). 

Accession ID for each GWAS was “ukb-b-19393” and “ukb-b-13354”, respectively. 

 

NPNT GWAS: For GWAS of plasma NPNT levels, we used the same GWAS from the 

deCODE study26 as the one used in Step 1 MR, which measured plasma NPNT levels 

in 35,559 individuals of European ancestry by using the SomaLogic SomaScan assay 

v4. 

 

COVID-19 severity outcomes: We used the same GWASs of critically ill COVID-19 

and COVID-19 hospitalization from the COVID-19 Host Genetics Initiatives data release 

7 (https://www.covid19hg.org/). 

 

Multivariable MR: Since body fat mass and fat-free mass are genetically correlated 

with each other (r = 0.64) 87, we performed multivariable MR to estimate the 

independent effect of body fat and fat-free mass on plasma NPNT levels or COVID-19 

severity outcomes. For instrumental variables, we identified genome-wide significant 

and independent SNPs for body fat and fat-free mass using the same criteria as in step 

1 MR (i.e., P < 5 × 10-8 for significance and r2 < 0.001 with a clumping window of 10 Mb 

for independence). 

https://github.com/cran/MendelianRandomization
https://gwas.mrcieu.ac.uk/
https://www.covid19hg.org/
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 SNPs in the MHC region were excluded. After data harmonization, we undertook 

multivariable MR with the inverse variance weighted method using a random-effects 

model. We used body fat and fat-free mass as the exposures and plasma NPNT levels 

as the outcome. Results with P < 0.025 (0.05/2; Bonferroni correction) were considered 

statistically significant. LD clumping was performed using PLINK v1.973. We performed 

data harmonization using the “mv_harmonise_data()” function from TwoSampleMR 

v.0.5.672, followed by multivariable MR causal estimation using the “mv_multiple()” 

function from MVMR v0.3 (https://github.com/WSpiller/MVMR)51. For sensitivity 

analyses, we first calculated genetic covariance matrix for exposures (i.e., body fat 

mass and fat-free mass) using the “phenocov_mvmr()” function, and then used 

“strength_mvmr()” and “pleiotropy_mvmr()” functions from MVMR v0.351 to calculate 

conditional F-statistics and Q-statistics, respectively. To calculate a phenotypic 

correlation matrix used in the “phenocov_mvmr()” function, we used metaCCA v1.22.0 

(https://github.com/acichonska/metaCCA)88, as previously performed by Vabistsevits et 

al86. Lastly, to perform multivariable MR-Egger analysis, we used the “mr_mvegger()” 

function from MendelianRandomization v0.6.085 

(https://github.com/cran/MendelianRandomization).  

 

3.6 Ethical approval  

For summary-level data, all contributing cohorts obtained ethical approval from their 

intuitional ethics review boards. The contributing cohorts include: UK Biobank, GIANT 

consortium, deCODE study, FENLAND study, AGES Reykjavik study, INTERVAL study, 

COVID-19 Host Genetics Initiative, and BQC19. For individual-level data in BQC19, 

BQC19 received ethical approval from the Jewish General Hospital research ethics 

board (2020-2137) and the Centre Hospitalier de l’Université de Montréal institutional 

ethics board (MP-02-2020-8929, 19.389). All participants provided informed consent. 

https://github.com/WSpiller/MVMR
https://github.com/acichonska/metaCCA
https://github.com/cran/MendelianRandomization
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3.7 Data availability 

· GWAS summary statistics for each trait are available as follows:  

BMI (https://portals.broadinstitute.org/collaboration/giant/), 

Plasma proteome from the deCODE study 

(https://www.decode.com/summarydata/),  

COVID-19 outcomes (https://www.covid19hg.org/results/r7/),  

GTEx Portal V8 (https://gtexportal.org/home/datasets/). 

Plasma proteome from BQC19 (https://www.mcgill.ca/genepi/mcg-covid-19-

biobank) Access to the data of BQC19 can be obtained upon approval of requests via 

bqc19.ca. 

· Cis-pQTLs of each study are available in the corresponding publications’ 

supplementary materials26-28 

· Body fat percentage, body fat mass, and fat-free mass GWASs are available at IEU 

OpenGWAS project with Accession ID of ukb-b-8909, ukb-b-19393, and ukb-b-13354, 

respectively (https://gwas.mrcieu.ac.uk/) 

· Single-cell RNA-sequencing data of COVID-19 lung autopsy samples are available at 

the Single Cell Portal under the Accession ID of SCP1052 

(https://singlecell.broadinstitute.org/single_cell/)  

· CADD-scores v.1.6 can be accessed at https://cadd.gs.washington.edu/score 

· Genotype data from 1000G genomes project is available at 

https://www.internationalgenome.org/data 

 

3.8 Code availability 

We used R v4.1.2 (https://www.r-project.org/), TwoSampleMR v.0.5.6 

(https://mrcieu.github.io/TwoSampleMR/), snappy v1.0 (https://gitlab.com/richards-

lab/vince.forgetta/snappy), coloc v5.1.0 (https://chr1swallace.github.io/coloc/), 

FINEMAP R package v1.4, Seurat v4.0.6 (https://satijalab.org/seurat/), PLINK v1.9 

(http://pngu.mgh.harvard.edu/purcell/plink/), and GCTA fastGWA v1.93.3 

https://portals.broadinstitute.org/collaboration/giant/
https://www.decode.com/summarydata/
https://www.covid19hg.org/results/r7/)
https://gtexportal.org/home/datasets
https://www.mcgill.ca/genepi/mcg-covid-19-biobank
https://www.mcgill.ca/genepi/mcg-covid-19-biobank
https://gwas.mrcieu.ac.uk/
https://singlecell.broadinstitute.org/single_cell/
https://cadd.gs.washington.edu/score
https://www.internationalgenome.org/data/
https://www.r-project.org/
https://mrcieu.github.io/TwoSampleMR/
https://gitlab.com/richards-lab/vince.forgetta/snappy
https://gitlab.com/richards-lab/vince.forgetta/snappy
https://chr1swallace.github.io/coloc/
https://satijalab.org/seurat/
http://pngu.mgh.harvard.edu/purcell/plink/
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(https://yanglab.westlake.edu.cn/software/gcta/). Custom codes are available on GitHub 

(https://github.com/satoshi-yoshiji/TwostepMR_obesity_COVID/). 
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3.13 Supplementary Information 

Sample processing in the BQC19 cohort The samples underwent proteomic profiling 

using the SomaScan v4 assay. Up to 5,284 aptamers were measured for these 

samples. After removing any aptamers that represented non-human proteins or 

controls, we retained 4,907 aptamers for analysis, consistent with the deCODE study26. 

SomaLogic performed normalization and calibration steps to remove systematic biases, 

which are detailed in their technical note 

(https://www.mcgill.ca/genepi/files/genepi/bqc19_jgh_prt_tech_note_0.pdf). Blood 

samples were sent to SomaLogic at two-time points during the pandemic, providing two 

batches of proteomic measurements. For quality control, the protein levels were natural 

log-transformed and subsequently batch-corrected using the ComBat function 

implemented in the sva R package v3.44.081, which uses an empirical Bayesian 

framework to perform batch effect removal.  Definition of SARS-CoV-2 infectious or 

non-infectious state in the BQC-19 cohort We defined infectious and non-infectious 

states as follows (all date ranges are inclusive): infectious samples were defined as 

blood samples collected from individuals who tested positive for SARS-CoV-2 test from 

7 days before and up to, and including 14 days after the first date of SARS-CoV-2-

associated symptoms. Non-infectious samples were defined as those meeting either of 

the following three criteria: (1) samples were collected from individuals who tested 

negative for SARS-CoV-2; (2) samples were collected within 31 days after, but 90 days 

before the first date of symptoms from patients whose positive SARS-CoV-2 test was 

confirmed within 7 days from the first symptom onset; (3) samples were collected at 

least 15 days before or 31 days after the positive SARS-CoV-2 test from patients whose 

positive SARS-CoV-2 test was confirmed at least 7 days before or after the first 

symptom onset. Further details can be found at 

https://github.com/richardslab/BQC19_phenotypeQC/blob/main/src/COVID-

19%20Omics.svg.  Definition of the COVID-19 severity outcomes in the BQC-19 cohort 

We defined the COVID-19 outcomes in accordance with those for the GWAS from 

COVID-19 Host Genetics Initiative. (I) Critically ill COVID-19: cases were defined as 

laboratory-confirmed SARS-CoV-2 infection by PCR or serology testing along with the 

requirement for respiratory support or death. (II) Hospitalization: cases were defined as 
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those who were hospitalized due to COVID-19-related symptoms. Controls were 

defined as individuals who tested negative for SARS-CoV-2. 
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3.14 Supplementary Tables 

All supplementary tables can be found at https://doi.org/10.1038/s42255-023-00742-w 
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Transition from Chapter 3 to Chapter 4 

In Chapter 3, we employed two-step proteome-wide MR, which consists of two sets of 

MR followed by mediation analysis and replication analysis to identify nephronectin as 

the circulating protein that mediates the effect of obesity on COVID-19 severity. This 

strategy enabled a deeper exploration into the causal biology and identified a potential 

therapeutic target while minimizing the risk of confounding and reverse causation. Our 

findings underscored the power of integrating MR with large-scale proteogenomics data, 

enabling causal inferences, dissecting complex biological systems, and supporting 

therapeutic target discovery.  

 

Chapter 4 broadens the scope of our investigation. While Chapter 3 elucidated the role 

of the circulating protein nephronectin in mediating the effects of obesity on COVID-19 

severity, the implications of obesity are multifaceted and extend beyond infectious 

diseases. Since the 1980s, obesity has been implicated in over 4 million deaths 

worldwide, with the leading cause of death being cardiovascular diseases. Moreover, 

obesity heightens the risk for conditions such as stroke and type 2 diabetes, significantly 

impacting global health. Thus, Chapter 4 employs the two-step MR methodology to 

explore the associations between obesity and a trio of cardiometabolic diseases: 

coronary artery disease, stroke, and type 2 diabetes. The overarching objective of 

Chapter 4 is to decipher the mechanistic pathways through which obesity amplifies the 

risk of these cardiometabolic diseases. By pinpointing key circulating proteins implicated 

in this relationship, we aim to spotlight potential therapeutic targets that could be 

prioritized for future drug development, as well as intervention and prevention 

strategies.  
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Chapter 4: COL6A3-derived endotrophin mediates the effect of obesity on 
coronary artery disease: an integrative proteogenomics analysis 
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4.1 Abstract 

Obesity strongly increases the risk of cardiometabolic diseases, yet the underlying 

mediators of this relationship are not fully understood. Given that obesity has broad 

effects on circulating protein levels, we investigated circulating proteins that mediate the 

effects of obesity on coronary artery disease (CAD), stroke, and type 2 diabetes—since 

doing so may prioritize targets for therapeutic intervention. By integrating proteome-wide 

Mendelian randomization (MR) screening 4,907 plasma proteins, colocalization, and 

mediation analyses, we identified seven plasma proteins, including collagen type VI α3 

(COL6A3). COL6A3 was strongly increased by body mass index (BMI) (β = 0.32, 95% 

CI: 0.26–0.38, P = 3.7 × 10-8 per s.d. increase in BMI) and increased the risk of CAD (OR 

= 1.47, 95% CI:1.26–1.70, P = 4.5 × 10-7 per s.d. increase in COL6A3). Notably, COL6A3 

is cleaved at its C-terminus to produce endotrophin, which was found to mediate this 

effect on CAD. In single-cell RNA sequencing of adipose tissues and coronary arteries, 

COL6A3 was highly expressed in cell types involved in metabolic dysfunction and fibrosis. 

Finally, we found that body fat reduction can reduce plasma levels of COL6A3-derived 

endotrophin, thereby highlighting a tractable way to modify endotrophin levels. In 

summary, we provide actionable insights into how circulating proteins mediate the effect 

of obesity on cardiometabolic diseases and prioritize endotrophin as a potential 

therapeutic target.  
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4.2 Background 

Over 1.9 billion people worldwide have obesity, which is strongly linked to the risk of many 

cardiometabolic diseases, including coronary artery disease (CAD), stroke, and type 2 

diabetes1,2. There are many biological mechanisms whereby obesity causes disease, 

including metabolic dysfunction, inflammation, and endothelial damage3. However, most 

of the factors mediating this relationship are not yet fully understood. Therefore, 

identifying modifiable mediators of this relationship could yield potential therapeutic 

targets, which may be targeted pharmaceutically or non-pharmaceutically, for example 

with lifestyle interventions. Circulating proteins are potential candidates because obesity 

strongly influences the level of plasma proteins4,5, and they play a critical role in disease 

development and progression. Moreover, circulating proteins can be measured and 

sometimes modulated6, and their levels can be used as a surrogate measure of target 

engagement in drug development programs. Therefore, understanding their role in 

disease could provide multiple avenues to lessen the impact of obesity on 

cardiometabolic disease. 

 

One way to understand the role of circulating proteins in disease has been through 

observational epidemiology studies. However, such studies are not ideal for identifying 

causal mediators of disease because they are prone to bias from unmeasured 

confounders and reverse causation7,8, wherein the disease itself influences the protein 

level. What is therefore needed is a method to understand mechanisms of disease, while 

reducing such biases. 

 

Mendelian randomization (MR) is a genetic epidemiology approach that can contribute to 

the understanding of the causal relationship between exposures and outcomes while 

minimizing the bias from confounding and avoiding reverse causation 6-12. MR can be 

described as a natural experiment somewhat analogous to randomized controlled trials 

(RCTs) 13 because both rely upon randomization to reduce bias from confounding. In MR 

studies randomization is achieved through the random allocation of alleles at conception. 

Moreover, reverse causation can be theoretically avoided because genotype is always 

assigned prior to the onset of disease. 
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Despite these advantages, MR relies on three key assumptions7,8: there exist genetic 

variants that: (I) are associated with the risk factor of interest; (II) are not correlated with 

confounders of the exposure-outcome relationship; (III) affect the outcome only through 

the exposure (also known as lack of horizontal pleiotropy). Of these, the third assumption 

is the most problematic and can be a source of potential bias in MR. Nevertheless, when 

these main assumptions are met, MR can be a powerful tool to describe causal 

relationships in humans—free of model systems. 

 

Advancements in large-scale proteomics have facilitated the discovery of genetic variants 

that influence plasma protein levels on a proteome-wide scale14-16. These genetic variants, 

referred to as protein quantitative trait loci (pQTLs), can be utilized in MR to estimate the 

causal effect of circulating protein levels on disease. Such methods have been 

successfully leveraged to prioritize therapeutic targets, including OAS1 for COVID-199,17 

and IL6R for both COVID-1918,19 and CAD20, and ANGPTL3 for CAD21. As drug discovery 

is costly and prone to failure22, proteo-genomics-based MR could play an important role 

since such studies could provide causal targets, which can be measured, thereby 

providing proximal read-out of drug target engagement, but also providing biomarkers for 

recruitment into clinical trials. Indeed, drugs with human genetics evidence are more likely 

to be successful in Phase II and III trials, and two-thirds of FDA-approved drugs in 2021 

were supported by human genetics evidence23,24. 

 

Furthermore, MR methods can be leveraged to understand mediators of the biological 

pathways connecting obesity with cardiometabolic disease when deployed in a two-step 

study design25,26. Step 1 begins by estimating the effect of BMI on protein mediators. Step 

2 estimates the effect of the identified mediators on the outcome of interest (in this case, 

cardiometabolic diseases). Previously, we have successfully used this approach to 

identify a circulating protein, nephronectin, that mediates the impact of obesity on COVID-

19 severity27.  
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In the present study, we conducted an integrative analysis of proteome-wide MR 

screening 4,907 proteins, statistical colocalization, and mediation analysis to identify 

circulating proteins that mediate the effects of obesity on CAD, ischemic stroke, 

cardioembolic stroke, and type 2 diabetes. We then focused on collagen type VI α3 

(COL6A3) as a potential target, performing multiple follow-up analyses, including 

replication and single-cell sequencing analysis. Additionally, we evaluated the 

actionability of COL6A3 by assessing the effect of reducing body fat on its circulating 

protein level in multivariable MR and also assessed the implication of reducing the 

identified proteins on a phenome-wide association study.  

 

4.3 Results 

The overall study design and a summary of the results are illustrated in Fig. 1.  

The study consisted of four main sections:  
1) Step 1 MR, which evaluated the causal effect of body mass index (BMI) on the levels 

of circulating plasma proteins. We also evaluated the consistency of MR findings when 

BMI and body fat percentage were used as the exposures. 

2) Step 2 MR, which assessed the causal effects of BMI-driven proteins on four 

cardiometabolic outcomes (CAD, ischemic stroke, cardioembolic stroke, and type 2 

diabetes). 

3) Follow-up analyses for COL6A3 and its cleavage product, known as endotrophin, 

which assessed its role in CAD. 

4) Assessment of clinical actionability for COL6A3-derived endotrophin and other protein 

mediators by reducing body fat mass.  

Each of these four steps and their results is described in detail below.  
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Figure 1. Study design. 
To identify proteins that mediates the effect of obesity on cardiometabolic diseases, we 

used a two-step approach. In Step 1 Mendelian randomization (MR), we assessed the 
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effect of body mass index (BMI) on 4,907 plasma proteins, which led to the identification 

of 2,714 proteins influenced by BMI (referred to as “BMI-driven proteins”) using two-

sample MR.  

In Step 2 MR, we assessed the effect of these BMI-driven proteins on cardiometabolic 

diseases, again using two-sample MR.  

In the subsequent sections, we conducted follow-up analyses of COL6A3 and evaluated 

the potential for actionability of this protein and other mediators we identified. 

BMI: body mass index, cis-pQTL: cis-acting quantitative trait loci.  
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4.3.1 Step 1 MR: Identification of the causal effect of BMI on plasma protein levels 

We evaluated the causal effect of BMI on 4,907 circulating proteins using the SomaScan 

v4 aptamer binding assay (SomaLogic, Boulder, CO). For clarity, we will refer to protein-

targeting aptamers as “proteins” unless otherwise specified. We performed causal 

inference using two-sample MR, to estimate the effect of an exposure on an outcome of 

interest using two separate genome-wide association studies (GWAS); one for the BMI 

and the second for circulating proteins 13 (Methods). Specifically, we used the GWAS of 

BMI from the GIANT and UK Biobank consortia28 (n = 681,275 individuals) and circulating 

protein levels from the deCODE study15 (n = 35,559 individuals). In both studies we 

included only participants of European genetic ancestry (Supplementary Table 1). We 

performed two-sample MR, using the inverse variance weighted method as the primary 

analysis and then filtered these results dependent upon sensitivity analyses, including 

tests for heterogeneity, directional horizontal pleiotropy, and reverse causation. We used 

false discovery rate (FDR) correction with 0.5% as a strigent threshold for significance, 

given that many protein levels are correlated with each other and therefore a Bonferroni 

correction would be overly conservative (see Methods). No evidence of weak 

instrumental variables (suspected when F-statistics < 10) were found (Supplementary 
Table 2). 

 

We found that BMI influenced 2,728 proteins, passing tests of significance,  heterogeneity, 

and directional pleiotropy (Supplementary Table 3). However, among them, 14 showed 

evidence of reverse causation, wherein the protein influenced BMI (Supplementary 
Table 4), and these 14 proteins were removed from further analyses. Thus, we identified 

a total of 2,714 plasma proteins that are influenced by BMI. Hereafter, these 2,714 

proteins are referred to as BMI-driven proteins (Fig. 2a, 2b, and 2c).  

 

Additionally, we performed MR to evaluate the effect of body fat percentage on the same 

4,907 plasma proteins (Methods). We did this because body fat percentage is considered 

to be a more direct proxy of obesity, whereas BMI is an easy-to-measure, clinically 

relevant proxy. 29 However, the sample size available to assess the genetic determinants 

of BMI is larger than that of body fat percentage, provide more precise estimates. We 
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found that body fat percentage influenced 94.7% of all BMI-driven proteins with the same 

direction of effect as BMI (Fig. 2d), illustrating a high concordance of results between the 

two different measures of obesity (r = 0.93; P < 2.2 × 10-16). Given the high concordance 

between MR results from BMI and body fat percentage, we proceed to Step 2 MR with 

BMI-driven protein results. 
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Figure 2. MR analyses for the effect of BMI on plasma protein levels. 
(a) Flow diagram outlines Step 1 Mendelian randomization (MR).  

(b) A volcano plot illustrates the effect of BMI on each plasma protein from MR analyses 

using the inverse variance weighted method. The x-axis represents beta estimates, and 

the y-axis represents -log10(P) values from MR results. Red dots represent proteins that 

passed all tests, including significance with a false discovery rate (FDR) < 0.5%, as well 

as tests for heterogeneity, directional pleiotropy, and reverse causation. Grey dots 

represent proteins that failed any of these tests. 
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(c) MR scatter plot shows the effect of BMI on plasma levels of COL6A3 using the inverse-

variance weighted method (primary analysis), weighted median, or MR-Egger slope 

methods.  

(d) Directional consistency between MR results for the effect of BMI on plasma proteins 

and MR results for the effect of body fat percentage on plasma protein levels using the 

inverse variance weighted method.  

The x-axis denotes beta estimates from MR results, and r denotes Pearson’s correlation. 
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4.3.2 Step 2 MR: Identification of the causal effect of BMI-driven proteins on 
cardiometabolic diseases 

Next, we estimated the causal effect of these BMI-driven proteins on CAD, ischemic 

stroke, cardioembolic stroke, and type 2 diabetes, again using two-sample MR (Fig. 3a). 

We used the BMI-driven protein levels identified in Step 1 MR as exposures. The 

outcomes were CAD, ischemic stroke, cardioembolic stroke, and type 2 diabetes (see 

Methods). To minimize the risk of bias from horizontal pleiotropy, we used cis-acting 

protein quantitative trait loci (cis-pQTLs) identified from 35,559 individuals from the 

deCODE study15 as instrumental variables. In this context, instrumental variables are 

genetic variants that influence the exposure (i.e., circulating protein levels). We have 

defined cis-pQTLs as pQTLs that reside within a ± 1 Mb region around a transcription 

start site of a protein-coding gene. Since such cis-pQTLs would be likely to directly 

influence the circulating protein level by influencing the transcription or translation of 

mRNA from the gene that encodes the protein, they are less prone to bias from horizontal 

pleiotropy. Horizontal pleiotropy produces bias from the genetic variant influences the 

outcome independently of the circulating protein level. 

 

To further reduce the risk of horizontal pleiotropy, we restricted instrumental variables to 

genetic variants that were cis-pQTLs to only one protein. To do so, we removed variants 

associated with more than two proteins in a cis-acting manner (Fig. 3a; see Methods). 

For the outcomes, we used the largest available GWAS for CAD30 (181,522 cases and 

1,165,690 controls), ischemic stroke, and cardioembolic stroke31 (34,217 ischemic stroke 

cases, 7,193 cardioembolic stroke cases, and up to 2,703,029 controls), and type 2 

diabetes32 (80,154 cases and 853,816 controls).  

 

Following MR with cis-pQTLs and sensitivity analyses (heterogeneity, pleiotropy, and 

reverse causation assessment), we performed colocalization to evaluate whether the 

pQTL of the protein of interest and the disease outcome shared a single causal variant 

around a 1-Mb (± 500 kb) region surrounding the lead cis-pQTL. As different linkage 

disequilibrium (LD) structures across different study populations may lead to bias in the 
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MR estimates, the presence of a shared single causal variant between the pQTL and the 

disease outcome can increase the robustness of MR findings (see Methods).  

 

After MR with cis-pQTLs, sensitivity analyses, and colocalization, we identified 21 protein-

disease associations that passed both step 1 and step 2 MR (Supplementary Table 5), 

including collagen type VI α3 (COL6A3) and PCSK9 for CAD, F11 for ischemic and 

cardioembolic stroke, and SF3B4 for type 2 diabetes. Among these proteins, COL6A3 

was associated with the highest odds of CAD per one standard deviation (s.d.) increase 

in the protein levels (odds ratio (OR) = 1.47, 95% CI: 1.26–1.70, P = 4.7 × 10-7). We note 

that the finding of PCSK9 serves as a “positive control” and illustrates the utility of this 

method as PCSK9 is a well-known drug target, and its inhibition has been shown to 

reduced cardiovascular outcomes in multiple clinical trials33-35. Full results for CAD, 

ischemic stroke, cardioembolic stroke, and type 2 diabetes are provided in 

Supplementary Table 6–9. 
 

As an additional filtering step, we performed mediation analyses for the identified protein-

disease associations. To do this, we used the product of coefficients method27,36-38 

(Methods). Given that BMI increases the risk of cardiometabolic diseases (βBMI-to-

cardiometabolic > 0 in Extended Fig. 1; Supplementary Table 10), we restricted the analysis 

to proteins that increased the risk of cardiometabolic diseases through their mediation 

pathway (βBMI-to-protein × βprotein-to-cardiometabolic> 0 in Extended Fig. 1; Supplementary Fig. 

10). Among the 21 protein-disease associations, 8 met this condition. Notably, all eight 

protein-disease associations were supported by mediation analyses, suggesting that the 

effect of BMI on the cardiometabolic outcome was mediated, at least partially, by the 

circulating proteins (Figure 3b; Supplementary Table 10). 
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Figure 3. MR analyses for the effect of BMI-driven proteins on cardiometabolic 
diseases. 
(a) Flow diagram of the Step 2 Mendelian randomization (MR) analyses.  

(b) Forest plots for the effect of body mass index (BMI)-driven proteins on four 

cardiometabolic diseases (coronary artery disease, ischemic stroke, cardioembolic stroke, 

type 2 diabetes). The MR analyses were conducted using the largest available GWAS of 

coronary artery disease30 (181,522 cases and 1,165,690 controls), ischemic stroke 

(34,217 cases and  2,703,029 controls), cardioembolic stroke31 (7,193 cases and 

2,703,029 controls), and type 2 diabetes32 (80,154 cases and 853,816 controls). 

PP.H4 = Posterior probability of having the shared causal variant (hypothesis H4 in 

colocalization). 
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4.3.3 Follow-up analyses of COL6A3 (collagen type VI α3) 

Circulating COL6A3 levels had the strongest effects on CAD across all the mediators of 

the relationship between BMI and this outcome. We therefore sought to further test the 

hypothesis that COL6A3 mediates the relationship between obesity and cardiometabolic 

disease using analyses from orthogonal resources.  

  

4.3.3.1 Replication MR using cis-pQTL from different cohorts 

We evaluated whether the causal relationship between COL6A3 and CAD could be 

replicated using different sources of cis-pQTLs from other cohorts. For this, we conducted 

two-sample MR using cis-pQTLs from three additional cohorts: UK Biobank39 (n = 35,571 

individuals), Fenland14 (n = 10,708 individuals), and ARIC16 (n = 7,213 individuals). MR 

in all cohorts supported the causal effect of COL6A3 levels on CAD, in the same direction 

(Supplementary Table 11). Specifically, each s.d. increase in COL6A3 was associated 

with increased odds of CAD in UK Biobank39 (OR = 1.30, 95% CI: 1.17–1.45, P = 2.4 × 

10-6), Fenland (OR = 1.23, 95%CI: 1.12–1.35, P = 8.9 × 10-6), and ARIC (OR = 1.09, 

95%CI: 1.05–1.13, P = 1.6 × 10-5). Notably, UK Biobank used Olink Explore 3072 assay39, 

whereas deCODE15, Fenland14, and ARIC16 used SomaScan v4 assay. Hence, 

concordant MR results using cis-pQTLs from the different studies from two different 

proteomic platforms further strengthened the evidence that COL6A3 partially mediates 

the relationship between obesity and CAD. 

 

4.3.3.2 Observational epidemiological evaluation in the EPIC-Norfolk cohort 

If testing a hypothesis using different designs yields similar results, it is less likely that the 

results are due to bias specific to one of the study designs. This is because different study 

designs have different bias architectures and concordant results across study designs 

strengthens causal inference because it is less likely that a single source of bias 

generated the results. Such testing has been referred to as a triangulation of evidence40. 

We therefore performed observational association analysis with a randomly selected sub-
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cohort of the EPIC-Norfolk study (n = 872), which included 207 prevalent or incident cases 

of CAD (see Methods). EPIC-Norfolk is a population-based cohort from the United 

Kingdom. We found that increased BMI was associated with increased plasma levels of 

COL6A3 (β = 0.06, 95% CI: 0.04–0.08, P = 8.5 × 10-12), and a s.d. increase in plasma 

COL6A3 levels was associated with increased odds of CAD (OR = 1.34, 95% CI: 1.12–

1.59, P = 1.1 × 10-3). The mediation analysis supported that plasma COL6A3 levels 

partially mediated the effect of BMI on CAD (Supplementary Table 12). 

 

Given the robustness of these findings, we then explored the potential mechanism 

whereby COL6A3 may influence CAD.  

 

4.3.3.3  Identification of the causal domain of COL6A3 

Cleavage of proteins can influence their biological mechanism41. Previous studies have 

shown that the C-terminal domain, also known the Kunitz domain, of COL6A3 is 

proteolytically cleaved to form a biologically active fragment known as “endotrophin”. 

Endotrophin is produced in multiple tissues, including adipose tissue41,42. Endotrophin 

strongly induces fibrosis and inflammation, and recent evidence suggests that it is 

involved in obesity-induced metabolic dysfunction41-46 (Fig 4a). Therefore, we evaluated 

whether this particular domain of COL6A3 is driving its effect on CAD. 

 

The SomaScan v4 assay measures target protein levels using aptamers, which are short, 

single-stranded DNA or RNA molecules that can selectively bind to the target protein47. 

SomaScan v4 assay has two separate aptamers targeting two domains of COL6A3, the 

N-terminal and C-terminal (Kunitz domain) (Methods). These two separate aptamers 

thus allowed us to disentangle the effects of the N-terminal and C-terminal containing 

fragments of COL6A3.  

 

Intriguingly, we found that the aptamer binding the C-terminal of COL6A3 (Fig. 4b) was 

associated with an increased risk of CAD (OR = 1.46 per s.d. increase in the protein level, 

95% CI: 1.37–1.93, P = 2.7 × 10-8), whereas the aptamer binding the N-terminal (i.e., the 
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non-cleaved portion of COL6A3) was not associated with the risk of CAD (OR = 1.06, 

95% CI: 0.96–1.18, P = 0.22) in domain-aware MR (Supplementary Table 13). These 

findings suggest that the C-terminal of COL6A3, which is cleaved into endotrophin, 

explains the effect of COL6A3 on CAD and the aptamer binding to the C-terminal of 

COL6A3 may be capturing the plasma levels of endotrophin or endotrophin-containing 

fragments. In the remainder of the manuscript, we refer to such fragments as endotrophin 

for clarity.  

 

To further test the hypothesis that endotrophin is responsible for COL6A3’s effect upon 

CAD, we tested whether cis-pQTLs from the Olink Explore 3072 assay39,48 for COL6A3 

were associated with CAD. The Olink Explore 3072 assay uses a polyclonal antibody to 

target the C-terminal (Kuniz domain) of COL6A3. The cis-pQTL (rs1050785) from UK-

Biobank, which uses the Olink platform, was in high linkage disequilibrium (R2 = 0.73) with 

cis-pQTL (rs11677932) of the C-terminal-targeting aptamer from the deCODE study but 

not in LD (R2 = 0.0) with the cis-pQTL of the N-terminal-targeting aptamer of COL6A3 

(rs2646260). We found that the cis-pQTL from the Olink platform was strongly associated 

with increased odds of CAD (OR = 1.32, 95%CI: 1.16–1.50, P = 1.75 × 10-5) 

(Supplementary Table 13), which was consistent with the finding using SomaScan v4 

assay’s aptamer binding the C-terminal of COL6A3. Taken together, these results provide 

evidence from orthogonal proteomic assays that circulating levels of C-terminus COL6A3-

derived endotrophin likely explain the effect of COL6A3 levels on CAD.  

 

Moreover, domain-aware MR analysis revealed that the aptamer targeting the C-terminal 

of COL6A3 (cleaved portion) was more strongly increased by an increase in BMI (β = 

0.32, 95% CI: 0.26–0.38, P = 3.7 × 10-24) than the aptamer targeting N-terminal 

(uncleaved portion) (β = 0.10, 95% CI: 0.04–0.16, P = 2.1 × 10-3), as shown by non-

overlapping confidence intervals. These findings indicate that an increase in BMI could 

increase both the expression of COL6A3 and its cleavage, but has a preferential effect 

on the cleavage of COL6A3 into endotrophin. 
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4.3.3.4 COL6A3 expression analyses 

We next explored the tissues in which COL6A3 is expressed using GTEx v8, which is a 

compendium of expression data from 49 tissues across 838 individuals49. In GTEx v8 

(https://gtexportal.org/), COL6A3 was significantly expressed in multiple tissues, including 

adipose tissue and coronary arteries when compared to the whole blood (P < 0.001) (Fig. 
4c). Therefore, it is possible that these tissues may locally produce COL6A3 and 

consequently its cleavage product, endotrophin. While tissue-level examination of 

expression is helpful, such methods do not permit resolution to the cellular level. 

Considering that the adipose tissue is reported to be the primary source of COL6A346 and 

that the coronary artery is the location of primary lesions in CAD50, to better understand 

the cell type of origin of COL6A3 we analyzed single-cell COL6A3 expression in human 

white adipose tissues51 (SCP1376 at https://singlecell.broadinstitute.org/) and coronary 

arteries in patients with CAD50 (GSE131780 at https://www.ncbi.nlm.nih.gov/geo/). 

  

https://gtexportal.org/
https://singlecell.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/geo/
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Figure 4. Follow-up analyses for collagen type VI α3 (COL6A3). 
(a) Schematic illustration of proposed relationship between obesity, COL6A3 (Collagen 

type VI α3 chain), endotrophin, and coronary artery disease. Obesity leads to increased 
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production of COL6A3, whose C-terminal is cleaved into an active form termed 

endotrophin, which increases the risk of coronary artery disease. 

(b) Schematic diagram of COL6A3 (UniProt ID: P12111). COLA3 consists of a short 

collagenous region flanked by multiple von Willebrand factor type A (vWF-A) modules 

(N1–N10 in the N-terminal and C1,2 in the C-terminal). There are three additional C-

terminal domains unique to COL6A3 (C3–C5), which are not present in other collagen 

type VI families. The most C-terminal domain (C5) is cleaved into a soluble protein termed 

endotrophin.  

The two amino acid sequences targeted by the aptamers are as follows: the N-terminal-

binding aptamer targets the amino acid sequence 26–1036 (uncleaved section), while the 

C-terminal aptamer targets the amino acid sequence 3108–3165 (cleaved section). The 

figure has been modified from ref52,53. 

(c) COL6A3 expression profile in human tissues in GTEx v849. COL6A3 expression levels 

were represented on a log transcript per 10 thousand plus one (TPM + 1) scale. 
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In single-cell sequencing, COL6A3 was significantly enriched in adipose progenitor/stem 

cells of adipose tissues when compared to other cell types in adipose tissues 

(permutation P < 0.001; see Methods) (Fig. 5a). Given that these cell populations play 

critical roles in maintaining adipose tissue and metabolic function54,55, the findings indicate 

that metabolic dysfunction may be an underlying biological mechanism whereby COL6A3 

influences CAD. Additionally, we found that COL6A3 was significantly expressed in 

fibroblasts, which plays a key role in the atherosclerosis of the coronary artery56, when 

compared to other cell types in the coronary artery (permutation P < 0.001; see Methods) 

(Fig. 5b). Taken together, these findings suggested that these cell types may be 

responsible for the local production of COL6A3 in these tissues. 
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Figure 5. Single-cell sequencing analyses of COL6A3. 
COL6A3 expression patterns in the adipose tissues (a) and coronary arteries (b). We 

obtained single-cell transcriptomic data of human adipose tissue from Emont et al. 51 

(SCP1376 at https://singlecell.broadinstitute.org/) and the data of coronary arteries from 

Wirka et al. 50 (GSE131780 at the Gene Expression Omnibus database 

https://www.ncbi.nlm.nih.gov/geo/). ASPC: adipose stem and progenitor cells, LEC: 

lymphatic endothelial cells, NK: natural killer cells, DC: dendritic cells. 

 

Fig. 5. Single-cell RNA sequencing of COL6A3.
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https://singlecell.broadinstitute.org/
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4.3.4 Assessment of clinical actionability  

While identifying mediators of the effect of obesity on cardio-metabolic disease is relevant, 

such targets could become clinically relevant if their modification through weight loss or 

other methods influenced disease outcomes. We therefore explored whether reducing fat 

mass and/or increasing lean mass could improve plasma COL6A3-derived endotrophin 

and other protein levels, thereby reducing the risk of cardiometabolic diseases. For this, 

we used multivariable MR to evaluate the independent effects of body fat and lean mass 

(i.e., body fat-free mass) on the protein mediators and cardiometabolic disease outcomes 

(Methods).  

 

We found that an s.d. increase in fat mass was independently associated with increased 

plasma levels of all protein mediators (COL6A3-derived endotrophin, F11, PCSK9, C1R, 

SPATA20, SF3B4, and ANGPTL4) (Fig. 6b and Supplementary Table 14) and 

increased odds of type 2 diabetes, CAD, and ischemic stroke. On the contrary, an s.d. 

increase in lean mass was independently associated with decreased plasma levels of 

some protein mediators including F11 and PCSK9 (Fig. 6b and Supplementary Table 
15). 
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Figure 6. Multivariable MR analysis for evaluating the independent effects of fat 
mass and lean mass on plasma protein levels (a) and cardiometabolic diseases 
(b). 
We performed multivariable Mendelian randomization (MR) using fat mass and lean mass 

as exposures and plasma protein levels of the seven protein mediators or cardiometabolic 

diseases as outcomes. 
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This has important clinical implications for actionability because interventions such as 

exercise, appropriate diet, or weight loss drugs such as the GLP-1 receptor agonist 

semaglutide and GLP-1/GIP co-agonist tirzepatide, which reduces body fat mass more 

than lean mass57,58, could be effective in improving these protein levels and subsequently 

decreasing the risk of cardiometabolic diseases. However, future clinical trials are needed 

to confirm this hypothesis. 
 

Lastly, we evaluated whether reducing COL6A3-derived endotrophin is associated with 

any adverse health outcomes using a phenome-wide association analysis in the UK 

Biobank, FinnGen, and the GWAS catalog. We did this because clinical trials for some 

drug candidates have been terminated due to unexpected adverse events in later stages 

of the trials22,59; thus, understanding the potential effects of perturbing the target on a 

phenome-wide level may to anticipate possible adverse events. Therefore, we assessed 

whether reducing COL6A3-derived endotrophin levels may have any implications on 

other traits. For this, we queried traits associated with the lead cis-pQTL of COL6A3 

(rs11677932) from the deCODE study (a proxy for the COL6A3’s C-terminal-derived 

endotrophin) in data from UK Biobank, FinnGen, and GWAS catalog using the Open 

Target Genetics (https://genetics.opentargets.org/) at P < 1.0 × 10-5. The phenome-wide 

association analysis revealed that decreased plasma levels of COL6A3-derived 

endotrophin (A-allele of rs11677932; β = -0.07, P = 1.5 × 10-14) was associated with 

decreased risk of coronary atherosclerosis (β = -0.05, P = 1.0 × 10-5), increased heel 

bone mineral density (β = 0.02, P = 2.9 × 10-12), and increased lung function (FEV1/FVC) 

(β = 0.02, P = 5.2 × 10-13) in addition to reduced risk of CAD (β = -0.03, P = 2.9 × 10-12) 

(Supplementary Table 16). This suggests that decreasing COL6A3-derived endotrophin 

may decrease the risk of multiple morbidities, including coronary atherosclerosis and CAD, 

and may also improve risk factors such as bone mineral density and lung function, offering 

COL6A3-derived endotrophin as an attractive therapeutic target. 

 

https://genetics.opentargets.org/
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4.4 Discussion 

Obesity is a major risk factor of multiple diseases, and therapies are required that reduce 

its clinical consequences. Here, we identified seven protein mediators (from eight protein-

disease associations) that partially mediate the effect of obesity on cardiometabolic 

diseases in humans. All of these protein levels, including COL6A3, could potentially be 

improved through body fat reduction, illustrating their possible clinical actionability. 

Furthermore, triangulation of evidence with multiple follow-up analyses indicated that 

endotrophin, which is derived from the cleavage of COL6A3, drives a part of the effect of 

obesity on CAD. These findings provide insights into how obesity causes cardiometabolic 

disease and provide circulating proteins that could be investigated as potential drug 

targets to lessen the public health burden of obesity. 

 
The major finding of this study is the mediating role of endotrophin in the effect of obesity 

on CAD in humans. Previous studies reported endotrophin as an important hormone that 

induces metabolic dysfunction, fibrosis, and inflammation in rodent models41-43,60, and 

cross-sectional studies in humans have found that increased circulating endotrophin level 

was observationally associated with cardiovascular events and all-cause mortality44-46,61. 

However, cross-sectional observational studies cannot disentangle cause and 

consequence. Therefore, our study, which utilized MR to make causal inferences, 

provides evidence that endotrophin acts as a causal mediator for the relationship between 

obesity and CAD in humans. Considering our findings that reducing COL6A3 and its 

cleaved product, endotrophin, can reduce the risk of CAD without apparent adverse 

health outcomes, directly targeting endotrophin can be an attractive therapeutic approach, 

and it may be particularly effective in individuals with obesity. 

 

Notably, we found that the aptamer targeting C-terminal of COL6A3 (also called the 

Kunitz domain, which is cleaved into endotrophin) was more strongly affected by an 

increase in BMI than the aptamer targeting the N-terminal. This indicates that obesity may 

increase both COL6A3 expression and the cleavage of COL6A3, but with a preferential 

influence on the cleavage of COL6A3 into endotrophin, leading to an increase in 

endotrophin levels. Several studies using mice models have shown that the 
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bone morphogenetic protein 1 (BMP1) 42, matrix metallopeptidase 14 (MMP14) 62, and 

other MMPs63 can release the C-terminal of COL6A3 as endotrophin after proteolytic 

cleavage. However, as these studies were conducted using rodent models, further 

research is needed to establish whether the same applies to humans. Despite this, 

inhibition of BMP1 reduces scar formation and supports the survival of cardiomyocytes64, 

which may be partly due to lower levels of endotrophin. Nevertheless, BMP1 also cleaves 

other procollagens into mature collagens, which introduces pleiotropy. Therefore, more 

research is necessary to determine how to selectively inhibit the cleavage of the C-

terminal of COL6A3 to reduce endotrophin levels. 

 

Our study also illuminated other proteins, such as ANGPTL4, which mediate the 

relationship between obesity and type 2 diabetes. Previous studies have shown that 

ANGPTL4 inhibits lipoprotein lipase65, thereby reducing triglyceride levels66. Additionally, 

ANGPTL4 has also been implicated as an important player in obesity-induced glucose 

intolerance65-69, consistent with our findings. Currently, an ANGPTL4 inhibitor, which is 

hepatocyte-targeting GalNAc-conjugated antisense oligonucleotides that downregulate 

ANGPTL4 levels in liver and adipose tissue, is in phase 1 clinical trial for 

hypertriglycedemia70. Our research indicates that this drug may be tested for the 

prevention of type 2 diabetes, and further clinical trials are required to evaluate the safety 

and efficacy of ANGPTL4 inhibition in humans. Another notable finding is F11 

(coagulation factor XI) as a mediator of the effect of obesity on cardiometabolic disease. 

F11 is a critical player in the coagulation pathway and has been identified as causal for 

stroke by multiple studies6,71. However, few studies highlighted its role as a mediator. 

Currently, the F11 inhibitor, abelacimab72, is in phase III clinical trial for venous 

thromboembolism (NCT05171049 at https://www.clinicaltrials.gov/). Our findings suggest 

that this drug may be effective for reducing the risk of ischemic stroke, especially for 

individuals with obesity. 

 

This study has important limitations. First, we focused on analyzing data solely from 

European-ancestry individuals to prevent confounding by population stratification. While 

the ARIC cohort reported cis-pQTL for individuals of African ancestry16, the sample size 

https://www.clinicaltrials.gov/
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(n = 1,871) is still limited when compared to data for those of European ancestry  

(deCODE study; n = 35,559). The same applies to CAD GWAS, with 181,522 CAD cases 

in European ancestry individuals73 compared to only 17,247 cases in African ancestry 

individuals74. This limited sample size in African ancestry individuals reduces the 

statistical power of MR analysis. Therefore, further efforts are needed to increase the 

sample size of non-European-ancestry data. Second, we did not perform sex-stratified 

analysis due to the unavailability of sex-specific datasets. Third, while the mediation 

analyses results with both MR and observational evaluation in EPIC-Norfolk provided 

additional evidence supporting COL6A3-derived endotrophin as a causal mediator, it 

should be noted that the mediation analyses are based on additional assumptions75. 

Therefore, we used them as one of several orthogonal validation methods. Fourth, we did 

not explore the molecular mechanism whereby these proteins mediated the effect. Finally, 

although we triangulated multiple lines of evidence to propose several promising 

therapeutic targets that mediate an important proportion of the effect of obesity on 

cardiometabolic diseases (e.g., COL6A-derived endotrophin and ANGPTL4), future 

clinical trials are required to explore the effect of pharmacologically influencing these 

protein levels. 

 

4.5 Conclusions 

Our integrative proteogenomics analysis provide actionable insights into how circulating 

proteins mediate the effect of obesity on cardiometabolic diseases. We highlight the 

importance of body fat reduction to reduce the risk of cardiometabolic diseases and offers 

potential therapeutic targets, including COL6A3-derived endotrophin, which may be 

prioritized for drug development.  
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4.6 Methods 

4.6.1 Step 1 MR 

MR to evaluate the effect of BMI on plasma protein levels 

We performed two-sample MR using BMI as exposure and circulating protein levels as 

outcomes. The BMI exposure data came from a meta-analysis GWAS of UK Biobank and 

GIANT involving 693,529 European-ancestry individuals28 (Supplementary Table 1). For 

the outcomes, we used a GWAS of protein levels from the deCODE study15, measuring 

4,907 proteins in 35,559 individuals of European ancestry using the SomaScan assay v4 

from SomaLogic (Boulder, Colorado, USA). 

 

 We performed two-sample MR using genome-wide significant and independent single 

nucleotide polymorphisms (SNPs) with P < 5 × 10-8 and r2 < 0.001 as instrumental 

variables. We excluded SNPs in the human major histocompatibility complex region 

because of their complex linkage disequilibrium structures. Clumping was performed 

using PLINK v1.9 (https://www.cog-genomics.org/plink/) with 10-Mb window. When the 

instrumental variable SNPs were not present in the outcome GWAS, we identified proxy 

SNPs with r2 ≥ 0.8 using snappy v1.0 (https://gitlab.com/richards-

lab/vince.forgetta/snappy/). To reduce the risk of weak instrument bias, we calculated F-

statistics and evaluated whether they were above ten76,77 (Supplementary Table 2). 
 

After harmonizing the exposure and outcome GWAS, we performed two-sample MR 

analysis using the inverse variance weighted method with a random-effects model as the 

primary analysis, implemented using TwoSampleMR v0.5.6. We set FDR < 0.005 (0.5%) 

as a stringent threshold for significance. We used FDR correction, given that many 

proteins are correlated with each other and that a Bonferroni correction can be overly 

conservative in such situations. However, we used a strict threshold of 0.5% instead of a 

conventional threshold of 5% to reduce false positive findings, as our intention was not to 

generate a complete list of potential associations, but rather to generate a smaller set of 

high-confidence findings. We used weighted median, weighted mode, and MR-Egger 

https://www.cog-genomics.org/plink/
https://gitlab.com/richards-lab/vince.forgetta/snappy/
https://gitlab.com/richards-lab/vince.forgetta/snappy/
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slope as supplementary analyses to evaluate the directional concordance of the effect. 

Heterogeneity was tested using the I2 statistic with results of I2 > 50% and heterogeneity 

P < 0.05 considered as substantial heterogeneity. Directional horizontal pleiotropy was 

tested using the MR-Egger intercept test, and results with P < 0.05 were considered to 

indicate the presence of directional horizontal pleiotropy.  

 

For reverse MR, wherein we examined the effect of plasma protein levels on BMI, we 

performed two-sample MR using cis-pQTLs variants from the deCODE study as 

exposures and BMI GWAS from UK Biobank as an outcome. We used the inverse 

variance weighted method or the Wald ratio method when only one SNP was available. 

We used FDR < 0.5% as a threshold for significance. For BMI GWAS, we used data from 

the UK Biobank instead of the meta-analysis GWAS of UK Biobank and GIANT because 

a number of cis-pQTL SNPs were not available in the latter due to the stringent quality 

control process of the meta-analysis. 

 

MR to evaluate the effect of body fat percentage on plasma protein levels 

While BMI is an easily measurable, clinically relevant proxy of obesity with the largest 

GWAS, body fat percentage is considered a more direct measurement of body fat 

accumulation. Thus, a high concordance between the BMI and body fat accumulation MR 

results may strengthen the inference from the findings of Step 1 MR for BMI.  

 

Therefore, we performed two-sample MR using body fat percentage as exposure and 

plasma protein levels as outcomes. We used GWAS of body fat percentage in 454,633 

European-ancestry individuals from UK Biobank (Accession ID: ukb-b-8909 at IEU 

OpenGWAS project) and the same protein levels for GWAS from the deCODE study as 

used in Step 1 MR. 
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4.6.2 Step 2 MR 

MR with cis-pQTL to evaluate the effect of BMI-driven proteins on disease 
outcomes 

Next, we performed two-sample MR using circulating protein levels as exposures and 

cardiometabolic diseases as outcomes, separately for each disease outcome. We used 

cis-pQTL variants from the deCODE study in 35,559 European-ancestry individuals15 as 

the instrumental variables. The cis-pQTL was defined as pQTL located within 1 Mb (± 

1Mb) from the transcription start site of the corresponding protein-coding gene. For the 

outcome, we used the largest available GWAS of CAD30 (181,522 CAD cases and 

1,165,690 controls), ischemic stroke, and cardioembolic stroke31 (34,217 ischemic stroke 

cases, 7,193 cardioembolic stroke cases, and up to 2,703,029 controls), and type 2 

diabetes32 (80,154 type 2 diabetes cases and 853,816 controls). After data harmonization, 

we estimated the effect of each of the BMI-driven proteins on these outcomes. Two-

sample MR was performed using TwoSampleMR v0.5.6 with an inverse variance 

weighted method and a random-effects model or Wald ratio when only one SNP was 

available as an instrumental variable. FDR < 0.5% was set as the threshold for 

significance. To minimize the risk of horizontal pleiotropy, we removed the variants 

associated with more than one protein in a cis-acting manner; therefore, we only retained 

the variants that were cis-pQTL for one protein (7008 out of 7572 variants are associated 

with only one protein in a cis-acting manner, and these 7008 variants are used as 

instrumental variables). To further test the absence of directional horizontal pleiotropy, 

we used the MR-Egger intercept test when applicable (i.e., if there are at least three 

instrumental variables). Additionally, we used the MR-Steiger test from TwoSampleMR 

v.0.5.6 to assess reverse causation, whereby cardiometabolic diseases influence plasma 

levels of proteins. 

 

Colocalization 

To ensure that the proteins and cardiometabolic diseases share the same causal genetic 

signal and avoid false-positive findings, We also performed colocalization using coloc R 
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package v5.1.078. We evaluated whether cis-pQTL of the protein shared the same causal 

variant with cardiometabolic diseases within 1 Mb (± 500 kb). We used default prior of p1 

= 10-4, p2 = 10-4, and p12 = 10-5 for coloc, where p1 is a prior probability of trait 1 having a 

genetic association in the region, p2 is a prior probability of trait 2 having a genetic 

association in the region, and p12 is a prior probability of the two traits having a shared 

genetic association. We considered the posterior probability of a shared causal variant 

(PPshared) > 0.8 as evidence of colocalization. 

 

Mediation analyses 

As a validation analysis, we performed mediation analyses using network MR with a 

product of coefficients method. We did not adjust for the exposure (BMI) when estimating 

the effect of the mediator on the outcome (βmediator-to-cardiometabolic) to avoid weak instrument 

bias. This approach has been adopted in multiple studies26, 36-38. 

Considering that the proportion mediated can be only estimated when the direction of 

effects is consistent between total causal effect and causal mediation effect, we restricted 

the analyses to proteins that meet the following criteria: βtotal × βmediated  >0 

where: βtotal denotes the total effect (i.e., the effect of BMI on cardiometabolic diseases), 

and βmediated denotes the causal mediation effect (i.e., the effect mediated by the 

circulating proteins).  

 

To estimate the causal mediation effects (βmediated), we estimated the effect of BMI on the 

plasma protein levels (βBMI-to-protein) and the effect of the plasma proteins on 

cardiometabolic diseases (βprotein-to-cardiometabolic), and then multiplied these values (βmediated 

= βBMI-to-protein × βprotein-to-cardiometabolic). For this, we performed MR using the same 

instrumental variables as in Steps 1 and 2 of MR. Subsequently, we divided βmediated by 

βtotal to estimate the proportion mediated and calculated the P-value under the null 

hypothesis that the protein of interest did not mediate the effect of BMI on the outcome of 

interest. We considered results with P < 0.05 to be significant. Since proteins can be 

correlated (e.g., in the same biological pathways), we did not apply Bonferroni correction. 
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4.6.3 Follow-up analyses 

4.6.3.1 Replication MR using cis-pQTL from different cohorts 

To replicate the causal estimates for the effect of COL6A3 on coronary artery disease, 

we conducted two-sample MR using cis-pQTLs from different cohorts: UK Biobank39 (n = 

35,571 individuals), Fenland14 (n = 10,708 individuals), and ARIC (n = 7,213 individuals), 

using the same method as described in Step 2 MR. 

  

4.6.3.2 Mediation analysis with individual-level data in the EPIC-Norfolk cohort 

The EPIC-Norfolk study, a component of the pan-European EPIC Study, is a cohort of 

25,639 middle-aged individuals from the general population of Norfolk, a county in 

Eastern England79, who attended the baseline assessment between 1993–1998. We 

performed mediation analysis in a randomly selected subcohort (n = 872) of the EPIC-

Norfolk study, in which proteomic profiling was performed using the SomaScan v4 assay. 

Death certificates and hospitalisation data were obtained using National Health Service 

numbers through linkage with the NHS digital database. Electronic health records were 

coded by trained nosologists according to the International Statistical Classification of 

Diseases and Related Health Problems, 9th (ICD-9) or 10th Revision (ICD-10). 

Participants were identified as CAD cases if the corresponding ICD-codes (ICD-9: 410-

414, ICD-10:I20-I25) were registered on the death certificate (as the underlying cause of 

death or as a contributing factor), or as the cause of hospitalization. The current study is 

based on follow-up to the 31st March 2018. The case definition included all individuals 

identified as prevalent (at the baseline study assessment) or incident CAD cases over the 

follow-up period of over 20-years.  

The plasma protein levels were normalized with rank-based inverse normal 

transformation using R package RNOmni v1.01. We used the product of coefficients 

methods to calculate the proportion mediated, as described above, using the R package 

mediation v4.5.0. We used linear regression adjusting for age and sex to estimate the 

effect of BMI on plasma COL6A3 levels and the effect of BMI, and logistic regression 

adjusting for age and sex to estimate the effect of BMI on the risk of CAD and the effect 
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of plasma COL6A3 levels on the risk of CAD. Significance of the indirect effect and the 

proportion mediated was estimated by computing unstandardized effects in 1000 

bootstrapped samples, and calculating the corresponding 95% confidence intervals.  

 

4.6.3.3 Identification of the causal domain of COL6A3 

Target region of the SomaScan v4 assay and the Olink Explore 3072 assay 

We used SomaScan Menu 7K (https://menu.somalogic.com/) to determine the target 

amino acid sequence of two aptamers for COL6A3 from on SomaScan v4 assay with 

additional support from SomaLogic (Boulder, Colorado, USA). We also obtained data on 

the target region of Olink Explore 3072 assay from Olink (Uppsala, Sweden). In 

SomaScan v4 assay, two aptamers target COL6A3: one for the C-terminal of COL6A3, 

also known as Kunitz domain (UniProt ID: P12111, target amino acid sequence: 3108-

3165) and another for the N-terminal (UniProt ID: P12111, target amino acid sequence: 

26-1036). In Olink Explore 3072 assay, the assay targets the C-terminal Kunitz domain 

of COL6A3 with polyclonal antibody (OID20292:v1). 

 

Linkage disequilibrium of COPL6A3’s cis-pQTL from the deCODE study and UK 
Biobank 

We used the LDmatrix tool available at LDlink (https://ldlink.nci.nih.gov) with the 1000 

genomes European samples as the reference panel80 to calculate R2 values between 

three SNPs: the cis-pQTL for COL6A3 from UK Biobank (rs1050785), the cis-pQTL of the 

C-terminal-targeting aptamer (rs11677932) from the deCODE study, and the cis-pQTL of 

the N-terminal-targeting aptamer of COL6A3 (rs2646260) from the deCODE study. 

 

4.6.3.4 COL6A3 expression analyses 

We downloaded bulk gene expression data in human tissues (GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_gene_tpm.gct.gz) from GTEx portal (https://gtexportal.org/). 

https://ldlink.nci.nih.gov/
https://gtexportal.org/
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We generated the violin plots of COL6A3 expression levels in each tissue using R v4.1.2. 

We used a two-sided Wilcoxon rank sum test to compare COL6A3 expression in each 

tissue with its expression in the whole blood.  

 

4.6.3.5 Single-cell RNA sequencing analysis 

To investigate COL6A3 expression at single-cell resolution in adipose tissues and 

coronary arteries, we reanalyzed the published expression matrix data from Emont et al. 

51 (SCP1376 at https://singlecell.broadinstitute.org/) and Wirka et al. 50 (GSE131780 at 

Gene Expression Omnibus database https://www.ncbi.nlm.nih.gov/geo/), focusing on 

COL6A3 expression. Following Wirka et al. 50, we removed low-quality cells that 

expressed < 500 genes or had a mitochondrial content > 7.5%, and genes expressed in 

< 5 cells. Cells expressing > 3,500 genes were also removed to avoid bias due to doublets. 

The retained gene expression profiles were normalized to library size. The top 2,000 most 

variable genes were selected after variance-stabilizing transformation using the 

FindVariableFeatures function in Seurat v4.0.6. Principal component analysis was 

performed based on these 2,000 most variable genes after scaling and centering. 

Nearest-neighbor graph construction was conducted based on the first 10 principal 

components using the FindNeighbors function in Seurat v4.0.6 with default settings. Cell 

clusters were identified using the FindClusters function in Seurat v4.0.6 with default 

settings. Uniform Manifold Approximation and Projection (UMAP) was also performed on 

the first 10 principal components. Two-dimensional visualization of the cell clusters was 

based on the first two UMAP dimensions. We used SingleR v2.0.0 to annotate the cell 

clusters with the Blueprint/ENCODE dataset as the reference using default settings. 

 

To assess whether certain cell types express COL6A3 more significantly than others, we 

performed 1,000 permutations of the cell type labels and calculated the frequency 

(permutation p-value) of the same cell type containing the same or a larger proportion of 

cells expressing COL6A3 compared to all cells. 

 

https://singlecell.broadinstitute.org/
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4.6.4 Follow-up analyses for the identified proteins  

Assessment of actionability 

To estimate the independent effects of fat mass and lean mass on plasma protein levels, 

we performed multivariable MR using fat mass and lean mass as exposures and protein 

levels as outcomes.  

 

GWAS of fat mass and lean mass 

We retrieved the GWAS data for fat mass and lean mass (i.e., fat-free mass) from UK 

Biobank through the OpenGWAS portal (https://gwas.mrcieu.ac.uk/). The data included 

454,137 individuals of European ancestry for fat mass and 454,850 individuals for lean 

mass. The accession codes for the datasets were ukb-b-19393 for fat mass and ukb-b-

13354 for lean mass. The fat mass and fat-free mass of the UK Biobank participants 

(second release, 2017) were evaluated by UK biobank with bioelectrical impedance 

analysis using the Tanita BC418MA body composition analyzer (Tanita, Tokyo, Japan). 

 

Multivariable MR to evaluate the independent effect of fat mass and lean mass on 
protein levels and cardiometabolic diseases 

To obtain instrumental variables, we applied the same selection criteria as in Steps 1 and 

2 of MR (P < 5 × 10-8 and r2 < 0.001), excluding those in the MHC region (GRCh37; chr6: 

28,477,797–33,448,354). We performed data harmonization in TwoSampleMR v0.56 and 

multivariable MR with the inverse variance weighted method and a random-effect model 

in MVMR v0.377. We calculated conditional F-statistics using MVMR v0.377 and evaluated 

whether they were above ten76,77 (Supplementary Table 14 and 15). The phenotypic 

correlation matrix was calculated using metaCCA v1.22.081. As additional sensitivity 

analyses, we performed multivariable MR-Egger analysis using MendelianRandomization 

v0.6.08582. 

 

https://gwas.mrcieu.ac.uk/
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Phenome-wide association study for rs11677932 

We queried traits associated with the lead cis-pQTL of COL6A3 (rs11677932) from the 

deCODE study in the UK Biobank, FinGen, and GWAS catalog using the Open Target 

Genetics (https://genetics.opentargets.org/) 

 

4.7 Ethical approval 

All contributing cohorts obtained ethical approval from their intuitional ethics review 

boards. The contributing cohorts include UK Biobank, GIANT consortium, deCODEstudy, 

Fenland study, AGES Reykjavik study, INTERVAL study, CARDIoGRAMplusC4D, 

GIGASTROKE, and MAGIC consortium. The study was approved by the Norfolk 

Research Ethics Committee (no. 05/ Q0101/191), and all participants gave their informed 

written consent. 

 
4.8 Data availability 

We used GWAS summary statistics from the following source: 

BMI GWAS from GIANT and UK Biobank 

(https://portals.broadinstitute.org/collaboration/giant/). 

Plasma proteome GWAS from the deCODEstudy 

(https://www.deCODE.com/summarydata/), UK Biobank 

(https://doi.org/10.1101/2022.06.17.496443), Fenland 

(https://omicscience.org/apps/pgwas/), and the AGES Reykjavik study 

(https://doi.org/.1126/science.aaq1327).  

We also used coronary artery disease GWAS from CARDIoGRAMplusC4D 

(http://www.cardiogramplusc4d.org/), stroke GWAS from GIGASTROKE 

(GCST90104534 and GCST90104535, at https://www.ebi.ac.uk/gwas/studies/), and type 

2 diabetes GWAS from Mahajan et al. (https://doi.org/10.1038/s41588-022-01058-3). 

https://genetics.opentargets.org/
https://doi.org/10.1038/s41588-022-01058-3
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For gene expression data, we used data from Nathan et al. (SCP498 at Single Cell Portal 

https://singlecell.broadinstitute.org/) and Wirka et al (GSE131780 at Gene Expression 

Omnibus database https://www.ncbi.nlm.nih.gov/geo/). 

 

4.9 Code availability 

We used R v4.1.2 (https://www.r-project.org/), TwoSampleMR v.0.5.6 

(https://mrcieu.github.io/TwoSampleMR/), snappy v1.0 (https://gitlab.com/richards-

lab/vince.forgetta/snappy), coloc v5.1.0 (https://chr1swallace.github.io/coloc/), PLINK 

v1.9 (http://pngu.mgh.harvard.edu/purcell/plink/), GCTA fastGWA v1.93.3 

(https://yanglab.westlake.edu.cn/software/gcta/), and Seurat v4.0.6 

(https://satijalab.org/seurat/). Custom codes will be made available on GitHub 

(https://github.com/satoshi-yoshiji/cm_proteogenomics/) upon publication of the 

manuscript. 
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4.13. Supplementary Figure. 

Extended Figure 1. Schematic illustration of the mediation analysis. 
The figure demonstrates the causal relationship between BMI, the protein mediator, and 

cardiometabolic diseases using directed acyclic graphs. The dark blue arrow represents 

the total effect of BMI on cardiometabolic diseases (βBMI-to-cardiometabolic), while the red arrow 

represents the effect of BMI on cardiometabolic diseases mediated by the protein 

mediator. To calculate the ratio mediated, we used the product of coefficients method. 

This involved multiplying the effect of BMI on the protein mediator (βBMI-to-protein) by the 

effect of the protein mediator on cardiometabolic diseases (βprotein-to-cardiometabolic) to 

estimate the effect mediated by the protein (βmediated = βBMI-to-protein × βprotein-to-cardiometabolic). 

Subsequently, we divided βmediated by βtotal to estimate the proportion mediated and 

calculated the P-value under the null hypothesis that the protein of interest did not mediate 

the effect of BMI on the outcome of interest. 

BMI: body mass index, MR: Mendelian randomization. 
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Extended Fig. 1. Schematic illustration of the mediation analysis.
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4.14 Supplementary tables 

All supplementary tables can be found at https://doi.org/10.1101/2023.04.19.23288706 
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Chapter 5. General discussions 

The primary objective of this thesis is to utilize genetic epidemiology techniques in 

combination with large-scale genomics and proteomics datasets to elucidate the causal 

biology underlying obesity and its associated complications, thereby proposing potential 

therapeutic targets. Employing an integrative methodology, we offered clinically relevant 

insights into the role of circulating proteins in mediating the effects of obesity on COVID-

19 severity and cardiometabolic diseases. Furthermore, we underscored potentially 

actionable therapeutic targets, including nephronectin for COVID-19 and endotrophin for 

CAD, highlighting the transformative potential of human genetics in therapeutic target 

identification.  

 
This thesis program was initiated in response to the emerging COVID-19 pandemic, 

which started in late 2019. It was of critical importance to correctly understand the risk 

factors of severe COVID-19 and how to address them. As elevated BMI has emerged 

as one of the key risk factors for COVID-19 severity, we utilized MR to better 

understand and dissect the association between BMI and COVID-19 severity, which 

was presented in Chapter 2. Then, we moved on to identify the underlying mediators of 

this relationship using MR and large-scale genomics and proteomics. The motivation 

was to perform rapid and hypothesis-free proteome-wide scans to identify causal 

proteins and inform the causal biology and potential therapeutic targets. After the 

successful identification of nephronectin as a causal mediator for the effect of obesity on 

COVID-19 severity, we explored whether this framework, which we call “two-step MR”, 

can be leveraged to identify circulating proteins that mediate the effect of obesity on 

cardiometabolic diseases—another set of critical complications of obesity—since doing 

so may support drug target discovery for these conditions, which are the leading cause 

of obesity-related death. Below, we discuss each chapter in these contexts. 

 

Chapter 2 assesses the causal relationship between body fat accumulation and COVID-

19 severity. Previous research predominantly used BMI to study associations between 
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obesity and COVID-19; this is because BMI is a clinically relevant yet simplified 

measure, chosen primarily for its ease of measurement compared to other indices of 

obesity, such as waist circumference, waist-hip ratio, body fat percentage, and body fat 

mass. However, BMI, being derived only from height and weight, cannot differentiate 

between body fat mass and fat-free mass. Therefore, this raises questions concerning 

which of these components mediates the relationship between obesity and COVID-19 

severity. 

 

In this chapter, we employed MR to discern the independent causal relationships 

between body fat mass and fat-free mass on COVID-19 severity. Initial univariable two-

sample MR analyses showed that an increase in body fat mass increased the risk of 

severe COVID-19. Interestingly, fat-free mass also appeared to be associated with a 

higher risk of COVID-19 severity, a finding that was somewhat unexpected given the 

general association of increased muscle mass with elevated metabolism.  

 

Considering that body fat mass and fat-free mass are genetically intercorrelated, we 

estimated their independent causal effects using multivariable MR. This analysis 

confirmed that body fat mass independently contributed to the severity of COVID-19. 

These findings substantiated the causal impact of body fat accumulation on COVID-19 

severity. Nonetheless, the specific biological mechanisms through which obesity 

increases the risk of severe COVID-19 remained to be elucidated. 

 

In Chapter 3, our focus shifted towards understanding the causal biology underlying 

obesity and COVID-19 severity. Given the previous reports of the strong influence of 

obesity on plasma protein levels, we postulated that circulating proteins might serve as 

mediators in the relationship between obesity and COVID-19 severity. Another guiding 

rationale was the feasibility of measuring and, in some instances, modulating circulating 

proteins. Identifying these causal protein mediators could streamline drug target 

discovery.  
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To this end, we analyzed 4,907 plasma proteins to determine which were influenced by 

BMI. We used BMI in the initial analysis to maximize the statistical power given it being 

the largest GWAS to date among any proxies of obesity. Out of these, 1,216 proteins 

were found to be influenced by BMI. Continuing with MR, we evaluated their potential 

roles in increasing the risk of COVID-19 severity. In this analysis, we utilized a new set 

of GWAS of COVID-19 severity (i.e., critically ill COVID-19 and COVID-19 

hospitalization) released by the COVID-19 Host Genetics Initiative. This GWAS doubled 

the sample size from the previous release, maximizing statistical power. Our MR 

analysis revealed that a standard deviation increase in nephronectin (NPNT) was 

associated with a heightened risk of severe COVID-19 outcomes (OR = 1.71, P = 1.63 × 

10-10). To ensure the robustness of the findings, we also performed analyses using body 

fat percentage. Even though body fat percentage has a smaller sample size than BMI, it 

is considered a more direct proxy of body fat accumulation. The analyses using body fat 

percentage supported NPNT as a causal mediator.  

 

As a further follow-up analysis for NPNT, we performed colocalization analyses of cis-

pQTL of NPNT with eQTL and sQTL of NPNT in the lung. This showed that a specific 

splice variant of NPNT drives the association between NPNT and COVID-19. 

Subsequent mediation analyses validated the role of NPNT as a mediator in this 

relationship. Moreover, single-cell RNA sequencing analysis indicated NPNT expression 

in alveolar cells and lung fibroblasts of individuals who died of COVID-19.  

 

Finally, using multivariable MR, we elucidated the independent causal effects of body 

fat mass and fat-free mass on COVID-19 severity. With the acquisition of a new set of 

GWAS of COVID-19 severity, we also repeated the multivariable MR, evaluating the 

causal effect of body fat mass and fat-free mass on COVID-19 severity, as performed in 

Chapter 2’s study. We found that increased body fat mass and decreased fat-free mass 

were associated with heightened plasma levels of NPNT and an increased risk of 
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COVID-19 severity. This suggests that reducing body fat mass and increasing fat-free 

mass, predominantly muscle, can decrease plasma NPNT levels, reducing the risk of 

COVID-19 severity—highlighting the clinical relevance of NPNT. 

 

In Chapter 4, we investigated whether the two-step approach, as employed in Chapter 

3, could identify circulating proteins that mediate the effects of obesity on 

cardiometabolic diseases, specifically CAD, stroke, and type 2 diabetes. We integrated 

a two-step MR screening of 4,907 plasma proteins with colocalization and mediation 

analyses. This approach identified seven plasma proteins, placing a particular emphasis 

on collagen type VI α3 (COL6A3) in relation to CAD. Notably, for step 1 MR, we used 

FDR correction instead of the Bonferroni correction. We chose this approach because 

the Bonferroni correction, which assumes independence between tests, can be overly 

stringent for plasma proteins that often correlate with each other in complex biological 

systems. Using an FDR threshold of 0.5%, we identified 2,714 proteins influenced by 

BMI. This finding aligns with prior research that consistently demonstrated the 

substantial impact of obesity on the plasma proteome. The MR analysis using body fat 

percentage showed that body fat percentage influenced 94.7% of all BMI-driven 

proteins, with its direction of effect mirroring that of BMI. The high congruence between 

these two obesity proxies was compelling.  

 

In step 2 MR, we found that COL6A3 was associated with an elevated risk of CAD (OR 

= 1.47, P = 4.5 × 10-7). Intriguingly, COL6A3 undergoes cleavage at its C-terminus, 

producing endotrophin. The domain-aware MR, which assessed the causal effects of 

both the N- and C-terminals of COL6A3 on CAD, indicated that only the C-terminal has 

a causal effect on CAD, while the N-terminal does not. We also observed that BMI 

preferentially elevates plasma levels of the C-terminal COL6A3 (cleaved site) compared 

to the N-terminal (non-cleaved site). This suggests that obesity increases plasma 

COL6A3 levels, leading to an increased cleavage of COL6A3, thereby elevating the risk 

of CAD.  
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To gain insights into the biological role of COL6A3, we conducted single-cell RNA 

sequencing analyses of adipose tissues and coronary arteries, revealing significant 

COL6A3 expression in cells associated with metabolic dysfunction and fibrosis. 

Furthermore, multivariable MR demonstrated that decreasing body fat mass can lower 

COL6A3 levels and reduce the risk of CAD. The phenome-wide association analysis for 

the proxy variant representing reduced plasma COL6A3 levels (cis-pQTL for COL6A3) 

indicated that reducing plasma COL6A3 levels was not associated with any adverse 

health outcomes. 

 

Overall, by using a genetic epidemiology approach combined with extensive genomics, 

proteomics, and other omics datasets, we determined that endotrophin acts as a 

mediator for the effect of obesity on CAD in humans, positioning it as an attractive 

therapeutic target. 
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 Chapter 6. Concluding remarks and future directions 

This thesis utilized genetic epidemiology methods, combined with extensive genomics, 

proteomics, and other omics datasets, to provide clinically relevant insights into the role 

of circulating proteins in mediating the effects of obesity on COVID-19 severity and 

cardiometabolic diseases. We highlighted potential therapeutic candidates, including 

nephronectin for COVID-19 and endotrophin for coronary artery disease. These findings 

emphasize the transformative potential of human genetics in guiding therapeutic target 

identification. 

 

However, there is much work to be done. First and foremost, not all proteins have 

pQTLs, and, therefore, cannot be evaluated in the pQTL MR setting. The size of the 

human proteome is a matter of debate, and numbers in the literature range from as few 

as 20,000 to several million72. Advancements in large-scale proteomics have facilitated 

the discovery of genetic variants that influence plasma protein levels on a proteome-

wide scale56,57,70. The new aptamer-based assay, SomaScan, can measure up to 

11,000 analytes, and the antibody-based assay, Olink, can measure up to 5,000 

analytes. These platforms enabled large-scale measurements of plasma proteins, which 

was difficult with conventional high-throughput proteomics platforms73-75. Nevertheless, 

they are still far from covering the entirety of human proteins.  

 

Just as importantly, measuring proteins in tissues other than plasma, such as adipose 

tissues and coronary arteries, has the potential to offer deeper insights into the biology 

with better resolution. As we are limited by what we can measure, further advancements 

in technology and the application of these methods to non-blood samples are essential 

to provide a more comprehensive understanding of the proteome and its role in the 

causal biology of human diseases. 
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Additionally, an increase in the statistical power of pQTLs is required. Currently, the 

largest pQTL study available is based on 54,306 individuals in the UK Biobank65 using 

Olink, followed by the deCODE study using SomaScan, based on 35,559 Icelanders56. 

A major limitation of the UK Biobank study is the number of proteins, which is limited to 

1,463 in the phase 1 release. Although it has been increased to 3,072 in the phase 2 

release, it still only captures a minority of the human plasma proteome. Considering this 

limitation, we are currently working on a pQTL meta-analysis project of SomaScan-

based studies, and the preliminary results look promising. We expect these pQTLs to be 

valuable resources for the community and facilitate a deeper understanding of the 

biology underpinned by human genomics, proteomics, and drug target discovery. 

 

Furthermore, more diversity in human genomics and proteomics research is required. A 

majority of studies in human genetics have focused on individuals of European 

ancestry. Although there is an increasing effort to diversify the population, particularly in 

the GWAS field, pQTL data is still based on predominantly European-ancestry 

individuals. There are a few relatively large-scale pQTL datasets in African-American 

individuals 70,76 and East Asian-ancestry individuals77, but these sample sizes are 

modest compared to those of European-ancestry.Genetic diversity is the largest in 

Africans78 which highlights the importance of developing pQTL datasets specifically for 

African populations. Such efforts will enhance our understanding of the genetic 

architecture of the plasma proteome in non-European ancestry individuals, which are 

imperative for ensuring equitable, inclusive, and adequate representation of 

underrepresented populations in precision medicine.  

 

Importantly, promoting the diversity of these datasets can benefit not only 

underrepresented populations but everyone. This is achieved by revealing novel 

mechanisms through which human genetics and proteomics influence disease risk and 

by highlighting potential therapeutic targets. A prime example of this is PCSK9. PCSK9 

was first identified in French families with gain-of-function mutations in the PCSK9 gene 

(S127R and F216L), both of which are associated with autosomal dominant 
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hypercholesterolemia79. Subsequently, a loss-of-function variant (Q152H) was 

discovered in a French-Canadian family in Québec80. This variant was found to be 

linked with a substantial decrease in LDL cholesterol level. Additionally, the discovery of 

two nonsense mutations (Y142X and C679X), common in African Americans (with a 

combined allele frequency of 2%) but rare in European Americans (<0.1%), greatly 

enhanced our understanding of PCSK9. These two nonsense variants were associated 

with approximately 40% reduction in plasma LDL cholesterol levels, underscoring 

PCSK9's pivotal role in LDL metabolism and pinpointing it as a potential therapeutic 

target9. Large differences in allele frequencies across populations can provide such 

insights. 

 

Another notable example is FinnGen, a large-scale biobank based in Finland. Their 

flagship paper demonstrated that many variants associated with common diseases in 

the Finnish population have an allele frequency of less than 5% in non-Finnish 

European individuals. This underscores the advantage of analyzing a well-phenotyped, 

isolated, and/or bottlenecked population81. In line with this, the author is engaged in 

creating a new biobank named BioPortal, a deeply phenotyped biobank with omics data 

from the Montreal population. This biobank aims to harness the cosmopolitan nature of 

Montreal82, where approximately 40% are visible minorities (non-white), as well as the 

uniquely isolated French Canadian population, known for its richness in unique genetic 

variants83-85. These characteristics present a valuable opportunity to gain insights into 

disease biology and to identify potential drug targets. 

 

In summary, this thesis provided novel insights into the mechanisms by which obesity 

influences the risk of COVID-19 and cardiometabolic diseases, underscoring the role of 

circulating proteins as mediators of the causal relationship of obesity with these 

diseases. By integrating genetic epidemiology methods with large-scale genomics and 

proteomics data, we have identified promising therapeutic targets, including 

nephronectin for COVID-19 and endotrophin for CAD. Additionally, we spotlight 

potential avenues for further exploration, harnessing the power of human genomics and 
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proteomics, such as the pQTL meta-analysis and the deeply phenotyped multi-omics 

biobank in the cosmopolitan city of Montreal. These strategies should be maximized to 

expedite drug discovery with the ultimate aim of transforming clinical care. 
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