Construction of a T7 phage random peptide library by combining seamless cloning with *in vitro* translation

(seamless cloning と *in vitro* translation の組み合わせによる T7 ファージランダム ペプチドライブラリーの構築)

東 克暁

1	Regular paper
2	Biotechnology
3	
4	Construction of a T7 phage random peptide library by combining seamless cloning with in
5	vitro translation
6	
7	Katsuaki Higashi, Sakiho Oda, Mai Fujii, Fumiya Nishida, Hayato Matsumoto, Jyoji Morise,
8	Shogo Oka and Motohiro Nonaka*
9	
10	Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine,
11	Kyoto University, 53 kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
12	
13	Running title
14	A new method for T7 phage library construction
15	
16	*Corresponding author.
17	Motohiro Nonaka, Ph.D.

- 18 Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine,
- 19 53 kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
- 20 TEL: +81-75-751-3954
- 21 E-mail address: nonaka.motohiro.4r@kyoto-u.ac.jp
- 22
- 23

24 Abstract

25T7 phage libraries displaying random peptides are powerful tools for screening peptide 26 sequences that bind to various target molecules. The T7 phage system has the advantage of less 27 biased peptide distribution compared to the M13 phage system. However, the construction of 28 T7 phage DNA is challenging due to its long 36 kb linear DNA. Furthermore, the diversity of 29 the libraries depends strongly on the efficiency of commercially available packaging extracts. 30 To address these issues, we examined the combination of seamless cloning with cell-free 31 translation systems. Seamless cloning technologies have been widely used to construct short 32 circular plasmid DNA, and several recent studies showed that cell-free translation can achieve 33 more diverse phage packaging. In this study, we combined these techniques to construct four 34 libraries (CX7C, CX9C, CX11C, and CX13C) with different random regions lengths. The 35 libraries thus obtained all showed diversity $> 10^9$ plaque forming units (pfu). Evaluating our 36 libraries with an anti-FLAG monoclonal antibody yielded the correct epitope sequence. The 37 results indicate that our libraries are useful for screening peptide epitopes against antibodies. 38 These findings suggest that our system can efficiently construct T7 phage libraries with greater 39 diversity than previous systems.

40

- 41 Keywords:
- 42 Phage library
- 43 Peptide screening
- 44 Diversity
- 45 Seamless cloning
- 46 *In vitro* translation

47 Introduction

48

62

49 T7 phage display technology has been used to screen peptide ligands for various target 50 molecules. The T7 phage grows at a high rate; plaques can usually be detected within 2–3 h, 51 which is faster than the growth and plaque formation process of the filamentous M13 phage 52 (8–12 h)(1). In addition, peptide libraries constructed on T7 phage scaffolds exhibit less amino 53 acid sequence bias than libraries based on the M13 phage(2). These technical differences arise 54 mainly from differences in the morphogenesis and process of the lifecycle of the two phages. 55 After assembly in the periplasm, constituents of the M13 phage must be secreted from the cell 56 membrane. Thus, only peptides compatible with this pathway are displayed on the phage, 57 resulting in a loss of library diversity. T7 phages, in contrast, are assembled in the bacterial 58 cytoplasm and released upon host cell lysis, which does not generally limit peptide expression. 59 Given these advantages, the T7 phage has been frequently selected to screen short random 60 peptides in vitro(3-5) and in vivo(6-8). 61 One drawback to T7 phage display technology is the difficulty of library construction. The

63 contrast to short circular plasmid DNA, the purification of T7 phage genomic DNA and

T7 phage's genomic DNA consists of 36 kb of long linear double-stranded DNA (dsDNA). In

64	subsequent preparation of vector arms is a complex process requiring multiple steps. To
65	compensate for these difficulties, a cloning kit is currently available from Novagen (Merck
66	Millipore)(9). This cloning system includes restriction enzyme digestion and ligation
67	reactions(6, 10). The insert DNA can be prepared by polymerase chain reaction (PCR) using
68	primers with restriction enzyme sites at both ends, after which cohesive ends are obtained using
69	restriction enzymes. The insertion of random oligonucleotides using a restriction enzyme and
70	ligase raises several concerns. In addition to the insertion of unwanted amino acid sequences
71	directly after the g10 protein sequence, restriction enzyme sites in random sequences can also
72	cause unintended digestion, resulting in a loss of diversity. The ligation step involves a three-
73	fragment reaction, in which the target DNA is inserted between the left and right arms of the
74	phage DNA. A previous report demonstrated that the efficiency of phage packaging with the
75	cloning kit is around 10^8 plaque forming units (pfu)/µg (the µg represents mass of phage
76	DNA)(6).
77	Seamless cloning is a powerful tool in molecular biology, as it leaves no unwanted

nucleotides between the insert and the vector. This technique is useful when multiple inserts
need to be cloned in a specific order or reading frames must be conserved. In recent years,
homology-based cloning technologies such as Gibson Assembly(11), In-Fusion cloning(12)

81	and NEBuilder HiFi DNA Assembly(13), which is an improved Gibson Assembly product,
82	have facilitated seamless cloning. The principle of Gibson Assembly and NEBuilder is based
83	on three enzymes: T5 exonuclease, Phusion DNA polymerase, and Taq DNA ligase. T5
84	exonuclease degrades DNA ends in the 5' to 3' direction, yielding single-stranded DNA
85	overhangs. After an annealing step between the insert and vector overhangs, Phusion DNA
86	polymerase fills in the complementary chain and then Taq DNA ligase seals the gap. Therefore,
87	seamless cloning is advantageous over conventional ligation methods in that target genes can
88	be cloned at any position, regardless of the presence of restriction enzyme sites. However, this
89	method has not been rarely applied to long linear DNA such as T7 phage genomic DNA, and
90	it has not been applied at all to phage libraries. For this application, the possibility of T5
91	exonuclease affecting the terminal DNA sequence of the T7 phage should be considered, but
92	no reports have yet verified it.
93	Another concern regarding the preparation of a T7 phage library is related to the phage
94	packaging step. To date, preparation of the T7 phage packaging extract remains a hurdle, and
95	this step generally depends on the kit from Novagen (Merck Millipore) described above(9).
96	Meanwhile, an <i>in vitro</i> translation system has reportedly enabled the packaging of more than
97	10^{10} monoclonal T7 phages(14–16) and the rebooting of newly designed phages(17, 18). In

98	this system, the T7 RNA polymerase encoded in the phage genomic DNA is first expressed in
99	the kit extract, which triggers the expression of a series of phage components. Interestingly,
100	this in vitro reaction allows for not only the biosynthesis and assembly of phage proteins but
101	also the packaging of phage genomic DNA into capsids. To our knowledge, the application of
102	this principle to library construction has not been reported, though previous studies have
103	applied it to prepare designed monoclonal phages. Our new technology provides a
104	breakthrough in the T7 phage system that overcomes the disadvantage of inefficiency in
105	conventional methods of constructing phage libraries.
106	In this study, we developed a simple three-step process to generate high-diversity T7 phage
107	libraries displaying short cyclic peptides (CX7C, CX9C, CX11C, and CX13C). First, using T7
108	phage genomic DNA as a template, PCR was performed for regions 20 kb upstream and 16 kb
109	downstream of the target. Next, the resulting two-segment PCR products were connected using
110	the NEBuilder HiFi DNA assembly system. Finally, phages were synthesized and packaged
111	using an <i>in vitro</i> translation system. Verification using the generated libraries confirmed the
112	presence of intact sequences at both ends of the T7 genomic DNA sequence. The performance
113	of library construction was validated by screening against an anti-FLAG M2 monoclonal
114	antibody. Our system provides a platform for facile construction of T7 phage libraries with

115	high diversity.
116	
117	Materials and methods
118	
119	Strains and culture conditions of the bacteria and bacteriophages
120	<i>Escherichia coli</i> strain BLT5403 [F ⁻ , <i>ompT</i> , <i>hsdS</i> _B (r _B ⁻ m _B ⁻), <i>gal</i> , <i>dcm</i> pAR5403 (<i>Amp</i> ^R)]
121	and bacteriophage T7Select 10-3b were obtained from Merck Millipore (Darmstadt, Germany).
122	BLT5403 cells were cultured in lysogeny broth (LB) medium (Nacalai Tesque, Inc., Kyoto,
123	Japan) containing 100 µg/ml of ampicillin sodium salt (LB-Amp; Nacalai Tesque, Inc.).
124	
125	Phage titration
126	Phage libraries or phage pools were diluted in LB medium or SM buffer (50 mM Tris-HCl,
127	pH 7.5, 100 mM NaCl, 10 mM MgSO ₄ , and 0.01% gelatin) at appropriate dilution rates.
128	BLT5403 cells in the exponential growth phase and diluted phages were added to 3-4 mL of
129	LB top agar (0.75%) and plated on Petri dishes. The plates were incubated at 37°C and the
130	plaques were counted.
131	

133	Plasmid pAR5403 was isolated from BLT5403 cells using a FastGene Plasmid Mini Kit
134	(Nippon Genetics Co., Ltd., Tokyo, Japan) according to the manufacturer's instructions.
135	T7Select 10-3b DNA (Merck Millipore) was digested with HindIII (New England Biolabs,
136	Beverly, MA, USA). The left phage arm was prepared through PCR using 10 ng of digested
137	phage genomic DNA as the template, 30 pmol of the forward primer 10-3b_1-34 (5'-
138	TCTCACAGTGTACGGACCTAAAGTTCCCCCATAG-3'), and 30 pmol of the reverse
139	primer 10-3b_20396-20421_Rv (5'-AGAATTCGGATCCCCGAGCATCACAC-3') in a final
140	volume of 100 μ l. The right phage arm was constructed using forward primers containing
141	random oligonucleotides CX7C-fw, CX9C-fw, CX11C-fw, and CX13C-fw (5'-
142	$TGTGATGCTCGGGGGATCCGAATTCTGGAAGCGGTTCTGGTTCATGT[NNK]_{n}TGCTA$
143	AGCTTGCGGCCGCACTCGAGTAAC-3', $n = 21, 27, 33, 39$, respectively, where K
144	represents equimolar amounts of T and G, and N is equimolar amounts of A, T, G, and C), and
145	the reverse primer 10-3b_36214-36249_Rv (5'-
146	AGGGACACAGAGAGACACTCAAGGTAACACCCAAAG-3'). These two reactions were
147	performed using KOD One PCR Master Mix (Toyobo Co., Ltd., Osaka, Japan) according to
148	the manufacturer's instructions. The PCR products were purified through phenol/chloroform

149	extraction and ethanol precipitation. Briefly, 3 M sodium acetate and distilled H_2O were added
150	to the reaction solutions to obtain 300 μ l of 0.3 M sodium acetate solution, and an equal volume
151	of phenol/chloroform/isoamyl alcohol (25:24:1) (Nacalai Tesque, Inc.) solution was added. The
152	PCR products were precipitated with the addition of 750 μ l ethanol and incubation for 2 h at
153	-30°C, followed by centrifugation for 30 min at 4°C and 16,200 \times g. The precipitates were
154	washed with 1 ml of 70% ethanol, air-dried, and dissolved in TE (10 mM Tris-HCl, pH 8.0,
155	and 1 mM ethylenediaminetetraacetic acid [EDTA]). The purified left and right arms (0.3 pmol
156	each) were assembled using NEBuilder HiFi DNA Assembly Master Mix (New England
157	Biolabs) in a total volume of 60 μ l according to the manufacturer's instructions. Then, 100 ng
158	of the assembled phage DNA and 36 ng of plasmid pAR5403 were added to 9 μl of LS70
159	Master Mix, a component of the myTXTL T7 Expression Kit (Daicel Arbor Biosciences, Ann
160	Arbor, MI, USA), to reach a final volume of 12 μ l and incubated at 29°C for 16 h. The titers
161	of the prepared phage libraries were counted as described above. The value of phage packaging
162	efficiency [pfu/ μ g] is calculated by dividing the number of total phage plaques (pfu) by the
163	amount of DNA used (μ g). The phages were then amplified through growth in 500 ml of liquid
164	medium with BLT5403 until lysis occurred. The amplified libraries were centrifuged at 4°C
165	and $12000 \times g$ for 30 min and then the supernatants were filtered using a cell culture filter unit

166	(polyethersulfone, 0.22 μ m) with a 500-ml capacity (Thermo Fisher Scientific, Waltham, MA,
167	USA). Polyethylene glycol (PEG) 8000 and NaCl were added to the filtrates at final
168	concentrations of 10% and 1 M, respectively, and the mixture was incubated on ice overnight
169	to precipitate phages. The PEG-precipitated solutions were centrifuged at 4°C and 12000 $\times g$
170	for 1 h and then the supernatants were discarded. The pellets were resuspended in 60 ml of SM
171	buffer and dispensed into 1.6-ml aliquots. The libraries were stored at -80°C.
172	
173	Biopanning using the anti-FLAG antibody M2 clone
174	The wells of an Immobilizer Amino F8 Module Clear Kit (Thermo Fisher Scientific) were
175	coated with 100 μ l of 1 μ g/ml of monoclonal anti-FLAG M2 antibody (Sigma-Aldrich, St.
176	Louis, MO, USA) diluted with coating buffer (30 mM Na ₂ CO ₃ and 70 mM NaHCO ₃ , pH 9.6)
177	at 4°C overnight. The wells were washed three times with phosphate-buffered saline (PBS) and
178	blocked with 10 mM ethanolamine diluted in coating buffer at room temperature for 1 h. After
179	the blocked wells were washed with PBST (PBS-containing 0.05% Tween20) three times, 200
180	μ l of phage library mixture containing 32.5 μ l from each of four phage libraries along with 3%
181	bovine serum albumin and 0.1% Tween20 were added. After 30 min of binding, the wells were
182	washed ten times with PBST (except for the 4th and 5th rounds, which used 0.25 M and 0.5 M

183	NaCl in PBST, respectively) and then the phages were eluted with 50 μl of 1% sodium dodecyl
184	sulfate (SDS) in PBS. The eluted phages were collected in 10 ml of LB-Amp medium, and the
185	titer was measured by taking a portion of eluted phages, diluting it appropriately, and then
186	plating it. The relative binding efficiency was calculated by dividing the number of phages
187	retrieved from the well after washing by the number of phages added to the well. The eluted
188	phages in LB medium were amplified through incubation with BLT5403 cells at 37°C until
189	lysis occurred. The subsequent rounds of panning were performed using the same methods as
190	in the 1st round.
191	
192	Sample preparation for next-generation sequencing (NGS)
193	For the preparation of NGS samples, the 1st and 2nd PCR steps were performed using
194	PrimeStar HS DNA Polymerase (Takara Bio Inc., Shiga, Japan). The 1st PCR was performed
195	using phage libraries and screened phage pools as templates. For primers, NGS_1st_F (5' -
196	TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTCAGGTGTGATGCTCGG-3')
197	and NGS_2nd_R (5' -
198	GTCTCGTGGGGCTCGGAGATGTGTATAAGAGACAGATCTGCGTTAGCGTCACCTT-
199	3') were used as the forward and reverse primers, respectively. The resulting 1st PCR products

200	were purified using a FastGene Gel/PCR Extraction Kit (Nippon Genetics Co., Ltd.) according
201	to the manufacturer's instructions. Next, the 2nd PCR was performed using the primer set from
202	the Nextera XT Index Kit (Illumina, San Diego, CA, USA) with the 1st PCR products as
203	templates. The 2nd PCR products were analyzed via gel electrophoresis using 1.5% agarose in
204	TAE (Tris, acetic acid, and EDTA) buffer, and the desired bands were extracted. The products
205	were purified using a FastGene Gel/PCR Extraction Kit (Nippon Genetics Co., Ltd.). The
206	sequences of the purified DNA products were analyzed with the Illumina iSeq 100 sequencing
207	system (Illumina).

208

209 NGS data analysis

The Fastq files generated by the iSeq 100 system were analyzed using Python 3.9.12 scripts. After translation of the sequence reads into amino acid sequences, the peptides displayed following the sequence of the g10 capsid protein were extracted. The number of reads per sequence was counted and normalized so that the total number of reads equaled 10^5 . Finally, cyclic sequences (e.g., sequences ending with cysteine residues) were extracted. To evaluate the diversity of each library, Shannon's diversity index was calculated as described previously(19, 20). Then, the diversity index *J*', known as Pielou's evenness index, was

217	calculated by dividing the logarithm of Shannon's diversity index values by the logarithm of
218	the number of samples(21). Pielou's evenness index ranges from 0 to 1 as diversity varies from
219	low to high. For WebLogo 3(22) analysis in the screening using the anti-FLAG M2 antibody,
220	the amino acid residues at positions of -1 , $+1$, $+2$, and $+3$ from the YK motif were extracted
221	and the top 100 reads were subjected to analysis. Graphs were drawn using GraphPad Prism
222	software.
223	
224	PCR of phage clones in the packed libraries for verification of DNA ends
225	Four amplified libraries were mixed and plated on petri dish at appropriate dilution rates
226	and plates were incubated at 37° C until plaques appeared. 8 clones were picked up and
227	amplified. PCR was performed using PrimeStar HS DNA Polymerase (Takara Bio Inc.) with
228	the following primers designed to amplify the ends of the phage genomic DNA; 1-15 (5' -
229	TCTCACAGTGTACGG -3'), 1-18 (5' - TCTCACAGTGTACGGACC -3'), 6-23 (5' -
230	CAGTGTACGGACCTAAAG -3'), 14-29 (5' - GGACCTAAAGTTCCCC -3'), 181-200_Rv
231	(5' - AGGTGACTTTAGGAGGATAC -3'), 185-200_Rv (5' – AGGTGACTTTAGGAGG -3'),
232	36001-36022 (5' - TATCAGTGTCACCTAAAGAGGG -3'), 36001-36018 (5' -
233	TATCAGTGTCACCTAAAG -3'), 36234-36249_Rv (5' - AGGGACACAGAGAGAC -3'),

234	36230-36249_Rv (5' - AGGGACACAGAGAGAGACACTC -3'), 36236-36245_Rv (5' -
235	ACACAGAGAGACACTCAAGG -3'), 36212-36231_Rv (5' -
236	TCAAGGTAACACCCCAAAGAC -3'). The reaction solutions were analyzed via gel
237	electrophoresis.
238	
239	Comparison of phage packaging efficiency of myTXTL and packaging extract
240	For myTXTL reaction, 100 ng of intact phage genomic DNA, 1 nM of pAR5403 and 2%
241	of PEG5000 were added to $9\mu l$ of myTXTL master mix with a final volume of 12 $\mu l.$ For
242	packaging extract, 100 ng of intact phage genomic DNA was added to 5 μ l of packaging extract
243	with a final volume of 6 μ l. The titers of phages were measured by taking a portion of the eluted
244	phages, diluting it appropriately, and then plating it. The packaging efficiencies were calculated
245	as described above.

248 **Results**

249

250 Construction of T7 phage libraries

251 One of the major difficulties in T7 phage library construction lies in the diversity of 252 libraries. First, we evaluated the efficiency of phage production per unit mass using phage 253 genomic DNA in the TXTL reaction and the packaging reaction with the packaging extract. 254 While previous report has indicated the production of up to approximately 10¹³ pfu of 255monoclonal phages with addition of dNTPs into the reaction solution to replicate phage 256 genomic DNA(16), our goal is to generate phage libraries with independent sequences. 257 Therefore, we conducted the reactions without adding dNTPs to the reaction mixture in order 258 to prevent DNA replication. Using 100 ng of phage DNA in both experiments, the TXTL reaction resulted in the production of 1.26×10^9 pfu (1.26×10^{10} pfu/µg), while 9.57×10^6 pfu 259 $(9.57 \times 10^7 \text{ pfu/}\mu\text{g})$ of phages were produced using the packaging extract, indicating a 132-260 261 fold increase in efficiency (Fig. 1A).

We next aimed to prepare four phage libraries (CX7C, CX9C, CX11C, and CX13C).
To achieve DNA assembly using two linear segments for four libraries, we conducted long
PCR of the T7 phage genome regions 20 kb upstream and 16 kb downstream of the target (Fig.

2651B). For each downstream PCR, the DNA sequence that overlaps the upstream 25 bases and a 266 sequence encoding random peptides were added to the 5' end of the primer. The image obtained 267 from agarose electrophoresis showed the PCR products of both fragments as single bands (Fig. 268 1C). Next, the two obtained fragments were assembled using the NEBuilder HiFi DNA 269 assembly kit. The reactant samples showed new bands above the upstream and downstream 270 fragments, indicating that assembly was achieved (Fig. 1C, arrowhead). We then performed in 271 vitro translation and the packaging reaction using the myTXTL system. The resulting diversities were 2.6 \times 10⁹ (CX7C), 2.6 \times 10⁹ (CX9C), 3.6 \times 10⁹ (CX11C), and 2.9 \times 10⁹ 272 273 (CX13C) (Fig. 1C).

274

275 Low sequence diversity bias in the T7 phage libraries

The practical diversity of phage libraries is determined by the bias of random sequences in the library and the efficiency of phage packaging. To evaluate the bias of the obtained libraries, we performed NGS analysis. A comparison of the counts per sequence for each library showed that out of hundreds of thousands of reads, a maximum of six duplicated clones was detected, and the majority of sequences had only one count, indicating that little duplication occurred in the amino acid sequences of our random peptide libraries (Fig. 2). Next, the evenness of the

282	clones in the prepared library was examined using Pielou's evenness index. This index has
283	been used to assess the T-cell receptor repertoire(21). Pielou's J' values, which are calculated
284	for each library by dividing the Shannon index H' by the maximum H' value (i.e., H_{max}), were
285	> 0.998 for all libraries. This result indicates that our short random peptide libraries were highly
286	unbiased.
287	
288	Verification of the DNA ends of the clones in the packaged libraries
289	In the NEBuilder reaction, the 5' ends of dsDNA are generally removed by T5 exonuclease.
290	As T7 phage genomic DNA is linear, the terminal DNA is likely to be included, which may
291	impair library performance. To assess the effect of exonuclease activity, the terminal DNA was
292	amplified through PCR using primers targeting each of the two ends (Fig. 3A). In this analysis,
293	if the terminal DNA is lost, product bands will not be observed. PCR using genomic DNA from
294	the three clones showed that all DNA removed from the library was intact (Fig. 3B). The
295	removed terminal DNA may have been repaired by an intrinsic mechanism in E. coli after the
296	NEBuilder and packaging reactions. These results indicate that the activity of T5 exonuclease
297	in the NEBuilder reaction solution does not affect the prepared libraries.
298	

300 To further test library performance, we screened the libraries against an anti-FLAG 301 monoclonal antibody, M2 clone. This clone was originally obtained by immunizing mice with 302 the FLAG peptide DYKDDDDK. The epitope of the resulting M2 antibody is DYKXXD(23). 303 An antibody-coated plate or control non-coated plate was incubated with a mixture of four 304 libraries and the bound phages were eluted and amplified in E. coli. We performed a total of 305 six rounds. The out/in ratio indicated a 715-fold increase from the 1st screen (2.39×10^{-5}) to 306 the 6th screen (1.71×10^{-2}) , demonstrating that the phage was well enriched (Fig. 4). The ratio 307 of phage titers in antibody-coated plates to non-coated plates increased by 10,683-fold during 308 the screening process, further indicating that the phage was sufficiently enriched. 309 310 NGS analysis of the screened phage pools 311 Next, the displayed peptide sequences of the phage pool were analyzed using NGS. Notably, 312 the top 20 peptide sequences in the 6th round all contained the consensus sequence YK and 313 most exhibited the correct epitope sequence DYKXXD (Fig. 5A), indicating that our screening 314 system and the random peptide libraries were valid. There was one sequence 315 "CAVRESIDCYKC" showing 10 amino acids between two cysteines. It is possible that the

316	three-base shifted sequence was coincidentally included in the oligo DNA synthesis process.
317	For quantitative analysis of the obtained sequences, the frequency of occurrence of amino acid
318	sequences was visualized using WebLogo 3. The top 100 sequences containing the YK motif
319	in each round were extracted, and the amino acids at positions -1 , $+1$, $+2$, and $+3$ from YK
320	were visualized. As a result, the DYKXXD sequence was clearly identified in the 2nd round
321	(Fig. 5B and C), indicating that two rounds of screening were sufficient to retrieve the FLAG
322	epitope sequence in our study. When the matching peptides were categorized by peptide length,
323	it was observed that 13-mer peptides showed a higher rate of matches, followed by 11-mer
324	peptides, in this screening process (Fig. 5D). This result suggests that the FLAG epitope was
325	originally a linear epitope and thus binds preferentially to peptides from longer libraries, which
326	have linear shapes.
327	
328	
329	Discussion
330	
331	Phage random peptide libraries have been applied to a variety of screening applications.
332	Traditionally, they have been used to screen for epitope sequences of antibodies and binding

333	motifs of target molecules. However, their application is not limited to such analyses. For
334	example, screening with anti-carbohydrate (Le ^a) antibodies led to the identification of a series
335	of epitope peptides that mimic the structure of carbohydrates(24, 25). D-peptides that bind to
336	natural target molecules can be obtained using the mirror-image screening technique(5, 26).
337	Furthermore, due to its robust structural stability, T7 phage can be screened <i>in vivo</i> (7, 8, 27).
338	Thus, the T7 system has the potential for future application to a wide variety of biological
339	investigations.
340	In general, the quality of a peptide library can be defined by high diversity and low bias in

341 the displayed sequences. As T7 phage lyses bacterial cells simultaneously with amplification, 342 the peptide sequences are not affected by the phage's life cycle, resulting in the production of 343 unbiased peptide libraries. However, the diversity of libraries has been limited to date due to 344 the reliance on complex genetic manipulation and packaging methods(6). In this study, we 345 established a novel approach to simplify the library construction process and to increase library 346 diversity. In the previous protocol, preparing the insert DNA involves 4-step experiments(28). 347 Firstly, randomized library DNA and reverse complementary strand extension primer are 348 annealed. The annealed duplex DNA is extended by Klenow fragment DNA polymerase I. Then, 349 the DNA is digested by two restriction enzymes. Finally, the prepared insert DNA is ligated

350	with double digested phage DNA by restriction enzymes (vector arm) for making the full length
351	of phage DNA. In contrast, the method described in this report simplifies the process to only
352	two steps. Researchers only need to perform PCR of the two fragments of the phage DNA and
353	then employ the NEBuilder reaction to connect the parts of the phage DNA. Moreover, the
354	TXTL system dramatically simplifies the library construction process, particularly when
355	considering per diversity size along with the increase of efficiency of reaction. This is because
356	of the high efficiency of producing phages by using TXTL system, which is over 100 times
357	compared to previous method of using packaging extract. With respect to amino acid bias, the
358	conventional method involving the use of two restriction enzymes for insert DNA digestion
359	leads to the loss of enzyme recognition sequences, introducing slight bias. However, our
360	method avoids such specific losses, resulting in lower bias compared to the previous approach.
361	Notably, no effect on the genomic DNA of the resulting library was observed from removal
362	of the terminal DNA by T5 exonuclease, as verified through PCR (Fig. 3). However, the repair
363	mechanism of the terminal DNA remains unclear. One possible mechanism is a T7 phage-
364	specific DNA replication system in the host E. coli(29). T7 phage DNA contains a 160-bp
365	terminal repeat sequence at both ends. During replication, intermediates containing overhangs
366	hybridize with each other to form head-to-tail concatemers. In the packaging step, the linked

367	DNA is cleaved by site-specific nucleases to release genomic monomers. In this study, the
368	reaction with NEBuilder may have removed approximately 50 bp of T7 phage DNA from both
369	termini, although hybridization could still occur with the remaining 60 bp of the repeat
370	sequence. In that case, the intact phage DNA would eventually be repaired. The performance
371	of the libraries was demonstrated through model screening using an anti-FLAG M2
372	monoclonal antibody, which has been tested in previous studies(23, 30, 31). In total, six rounds
373	of panning reactions were performed, and the epitope sequences were detected after the 2nd
374	round (Fig. 5B). Interestingly, the epitope sequence DYKXXD was most frequently detected
375	in peptides derived from CX13C libraries (Fig. 5D). Given that the FLAG epitope is a linear
376	epitope, longer peptides, which exhibit a greater degree of linearity than other cyclic peptides,
377	are more likely to provide matches. Overall, our system is useful for generating highly diverse
378	T7 phage libraries and can be applied to other visualization systems, including other antibodies
379	(e.g., Fab, Scfv, and VHH) and proteins, in the future.

380

381 Author contributions

Conceptualization, M.N.; Investigation, K.H., S.O., F.N., H.M., and M.F.; Software,
K.H. and M.N.; Supervision, J.M., S.O., and M.N.; Visualization, K.H.; Writing – original draft,

384	K.H. and M.N.; Writing – review and editing, J.M., S.O., and M.N.; Funding acquisition, M.N.
385	
386	Disclosure of potential conflicts of interest
387	The authors have no potential conflicts of interest related to this work.
388	
389	Declaration of competing interests
390	The authors declare that they have no competing interests.
391	
392	Acknowledgments
393	This work was supported by the JST FOREST Program (grant number JPMJFR2167).
394	
395	
396	
397	
398	References
399	
400	1. Green, M. R., and Sambrook, J. (2017) Plating bacteriophage M13. Cold Spring Harb.

- 401 *Protoc.* 2017, db.prot093427
- 402 2. Krumpe, L. R. H., Atkinson, A. J., Smythers, G. W., Kandel, A., Schumacher, K. M.,
- 403 McMahon, J. B., Makowski, L., and Mori, T. (2006) T7 lytic phage-displayed peptide
- 404 libraries exhibit less sequence bias than M13 filamentous phage-displayed peptide
- 405 libraries. *Proteomics*. 6, 4210–4222
- 406 3. Hatanaka, T., Ohzono, S., Park, M., Sakamoto, K., Tsukamoto, S., Sugita, R., Ishitobi, H.,
- 407 Mori, T., Ito, O., Sorajo, K., Sugimura, K., Ham, S., and Ito, Y. (2012) Human IgA-binding
- 408 peptides selected from random peptide libraries: affinity maturation and application in
 409 IgA purification. J. Biol. Chem. 287, 43126–43136
- 410 4. Yoneyama, T., Hatakeyama, S., Tobisawa, Y., Yamamoto, H., Imanishi, K., Okamoto, T.,
- 411 Tokui, N., Sugiyama, N., Suzuki, Y., Kudo, S., Yoneyama, T., Hashimoto, Y., Koie, T.,
- 412 Kamimura, N., Fukuda, M. N., and Ohyama, C. (2013) Blood group antigen-targeting
- 413 peptide suppresses anti-blood group antibody binding to antigen in renal glomerular
- 414 capillaries after ABO-incompatible blood reperfusion. *Transplantation*. 95, 418–425
- 415 5. Nonaka, M., Mabashi-Asazuma, H., Jarvis, D. L., Yamasaki, K., Akama, T. O., Nagaoka,
- 416 M., Sasai, T., Kimura-Takagi, I., Suwa, Y., Yaegashi, T., Huang, C.-T., Nishizawa-Harada,
- 417 C., and Fukuda, M. N. (2021) Development of an orally-administrable tumor vasculature-

418 targeting therapeutic using annexin A1-binding D-peptides. *PLoS One*. 16, e0241157

- 419 6. Fan, X., Venegas, R., Fey, R., van der Heyde, H., Bernard, M. A., Lazarides, E., and
- 420 Woods, C. M. (2007) An in vivo approach to structure activity relationship analysis of
- 421 peptide ligands. *Pharm. Res.* 24, 868–879
- 422 7. Sugihara, K., Kobayashi, Y., Suzuki, A., Tamura, N., Motamedchaboki, K., Huang, C.-T.,
- 423 Akama, T. O., Pecotte, J., Frost, P., Bauer, C., Jimenez, J. B., Jr, Nakayama, J., Aoki, D.,
- 424 and Fukuda, M. N. (2014) Development of pro-apoptotic peptides as potential therapy for
- 425 peritoneal endometriosis. Nat. Commun. 5, 4478
- 426 8. Pleiko, K., Põšnograjeva, K., Haugas, M., Paiste, P., Tobi, A., Kurm, K., Riekstina, U.,
- 427 and Teesalu, T. (2021) In vivo phage display: identification of organ-specific peptides
- 428 using deep sequencing and differential profiling across tissues. *Nucleic Acids Res.*
- 429 10.1093/nar/gkaa1279
- 430 9. Krumpe, L. R. H., and Mori, T. (2006) The use of phage-displayed peptide libraries to
- 431 develop tumor-targeting drugs. Int. J. Pept. Res. Ther. 12, 79–91
- 432 10. Fukunaga, K., and Taki, M. (2012) Practical tips for construction of custom Peptide
- 433 libraries and affinity selection by using commercially available phage display cloning
- 434 systems. J. Nucleic Acids. 2012, 295719

435	11.	Gibson, D. G., Young, L., Chuang, RY., Venter, J. C., Hutchison, C. A., 3rd, and Smith,
436		H. O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases.
437		Nat. Methods. 6, 343–345
438	12.	Irwin, C. R., Farmer, A., Willer, D. O., and Evans, D. H. (2012) In-fusion® cloning with
439		vaccinia virus DNA polymerase. Methods Mol. Biol. 890, 23-35
440	13.	Birla, B. S., and Chou, HH. (2015) Rational design of high-number dsDNA fragments
441		based on thermodynamics for the construction of full-length genes in a single reaction.
442		<i>PLoS One</i> . 10, e0145682
443	14.	Rustad, M., Eastlund, A., Marshall, R., Jardine, P., and Noireaux, V. (2017) Synthesis of
444		infectious bacteriophages in an E. coli-based cell-free expression system. J. Vis. Exp.
445		10.3791/56144
446	15.	Garamella, J., Marshall, R., Rustad, M., and Noireaux, V. (2016) The all E. coli TX-TL
447		toolbox 2.0: a platform for cell-free synthetic biology. ACS Synth. Biol. 5, 344–355
448	16.	Garenne, D., Thompson, S., Brisson, A., Khakimzhan, A., and Noireaux, V. (2021) The
449		all-E. coliTXTL toolbox 3.0: new capabilities of a cell-free synthetic biology platform.
450		Synth. Biol. 6, ysab017
451	17.	Mitsunaka, S., Yamazaki, K., Pramono, A. K., Ikeuchi, M., Kitao, T., Ohara, N., Kubori,

452		T., Nagai, H., and Ando, H. (2022) Synthetic engineering and biological containment of
453		bacteriophages. Proc. Natl. Acad. Sci. U. S. A. 119, e2206739119
454	18.	Pulkkinen, E. M., Hinkley, T. C., and Nugen, S. R. (2019) Utilizing in vitro DNA assembly
455		to engineer a synthetic T7 Nanoluc reporter phage for Escherichia coli detection. Integr.
456		<i>Biol.</i> 11, 63–68
457	19.	Stewart, J. J., Lee, C. Y., Ibrahim, S., Watts, P., Shlomchik, M., Weigert, M., and Litwin,
458		S. (1997) A Shannon entropy analysis of immunoglobulin and T cell receptor. Mol.
459		Immunol. 34, 1067–1082
460	20.	Held, H. A., and Sidhu, S. S. (2004) Comprehensive mutational analysis of the M13 major
461		coat protein: improved scaffolds for C-terminal phage display. J. Mol. Biol. 340, 587-597
462	21.	Maceiras, A. R., Almeida, S. C. P., Mariotti-Ferrandiz, E., Chaara, W., Jebbawi, F., Six,
463		A., Hori, S., Klatzmann, D., Faro, J., and Graca, L. (2017) T follicular helper and T
464		follicular regulatory cells have different TCR specificity. Nat. Commun. 8, 15067
465	22.	Crooks, G. E., Hon, G., Chandonia, JM., and Brenner, S. E. (2004) WebLogo: a sequence
466		logo generator. Genome Res. 14, 1188-1190
467	23.	Slootstra, J. W., Kuperus, D., Plückthun, A., and Meloen, R. H. (1997) Identification of
468		new tag sequences with differential and selective recognition properties for the anti-FLAG

469 monoclonal antibodies M1, M2 and M5. *Mol. Divers.* 2, 156–164

- 470 24. Hatakeyama, S., Sugihara, K., Shibata, T. K., Nakayama, J., Akama, T. O., Tamura, N.,
- 471 Wong, S.-M., Bobkov, A. A., Takano, Y., Ohyama, C., Fukuda, M., and Fukuda, M. N.
- 472 (2011) Targeted drug delivery to tumor vasculature by a carbohydrate mimetic peptide.
- 473 Proc. Natl. Acad. Sci. U. S. A. 108, 19587–19592
- 474 25. Fukuda, M. N., Ohyama, C., Lowitz, K., Matsuo, O., Pasqualini, R., Ruoslahti, E., and
- 475 Fukuda, M. (2000) A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent
- 476 lung colonization of tumor cells. *Cancer Res.* 60, 450–456
- 477 26. Funke, S. A., and Willbold, D. (2009) Mirror image phage display--a method to generate
- 478 D-peptide ligands for use in diagnostic or therapeutical applications. *Mol. Biosyst.* 5, 783–
 479 786
- 480 27. Mann, A. P., Scodeller, P., Hussain, S., Braun, G. B., Mölder, T., Toome, K., Ambasudhan,

481 R., Teesalu, T., Lipton, S. A., and Ruoslahti, E. (2017) Identification of a peptide

- 482 recognizing cerebrovascular changes in mouse models of Alzheimer's disease. Nat.
- 483 *Commun.* 8, 1403

484 28. Krumpe, L. R. H., and Mori, T. (2014) T7 lytic phage-displayed peptide libraries:

485 construction and diversity characterization in *Methods Mol. Biol.* (Nixon, A. E., ed.) Vol.

- 486 1088, pp. 51–66, Springer Science+Business Media, Berlin
- 487 29. Weigel, C., and Seitz, H. (2006) Bacteriophage replication modules. *FEMS Microbiol*.
- 488 *Rev.* 30, 321–381
- 489 30. Reyes, S. G., Kuruma, Y., Fujimi, M., Yamazaki, M., Eto, S., Nishikawa, S., Tamaki, S.,
- 490 Kobayashi, A., Mizuuchi, R., Rothschild, L., Ditzler, M., and Fujishima, K. (2021) PURE
- 491 mRNA display and cDNA display provide rapid detection of core epitope motif via high-
- 492 throughput sequencing. *Biotechnol. Bioeng.* 118, 1736–1749
- 493 31. Srila, W., and Yamabhai, M. (2013) Identification of amino acid residues responsible for
- the binding to anti-FLAGTM M2 antibody using a phage display combinatorial peptide
- 495 library. Appl. Biochem. Biotechnol. 171, 583–589
- 496
- 497 This is a pre-copyedited, author-produced version of an article accepted for publication in The
 498 Journal of Biochemistry following peer review. The version of record of Higashi, K., Oda, S.,
- 499 Fujii, M., Nishida, F., Matsumoto, H., Morise, J., Oka, S., Nonaka, M. (2023) Construction of a
- 500 T7 random peptide library by combining seamless cloning with in vitro translation. J. Biochem.
- 501 is available online at: <u>http://doi.org/10.1093/jb/mvad077</u>.
- 502

503 Figure legends

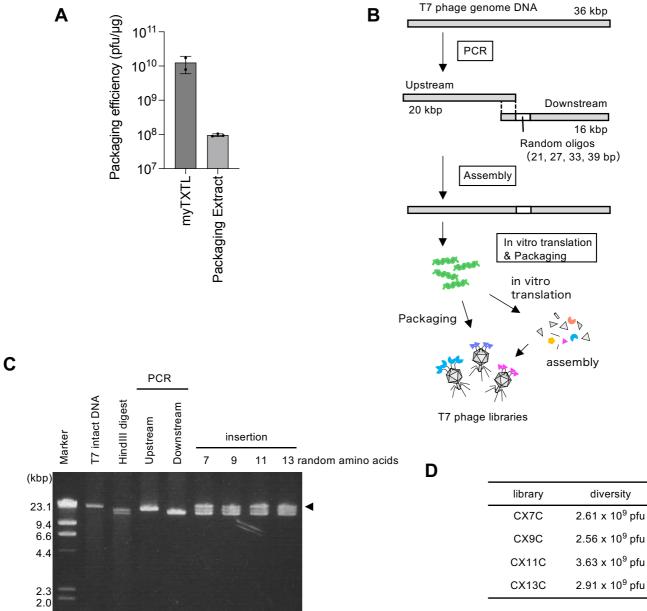
504

505 Fig. 1. Construction of short random peptide libraries using T7 phage. (A) Comparison of 506 phage packaging efficiency of myTXTL and packaging extract. (B) Overall schematic diagram 507 of library construction. (C) Agarose gel electrophoresis of DNA fragments after PCR and the 508 NEBuilder reaction. The *Hin*dIII digestion site is located in the multi-cloning site of T7 phage 509 10-3b DNA. For PCR products, representative upstream and downstream fragments of library 510 CX7C are shown. (**D**) Diversity of the resulting T7 phage libraries. pfu, plaque-forming units. 511 512 Fig. 2. Peptide sequence bias in each library. Sequence-by-sequence counts resulting from 513 NGS in the CX7C, CX9C, CXC11, and CX13C libraries. The total read counts and numbers 514 of clones in each library are shown. Shannon index H' and Pielou index J' values were 515 calculated as described in the Materials and methods section. 516

Fig. 3. Verification of DNA ends after library preparation. (A) Primer sets were adjusted for
length and designed to have equal melting temperatures. (B) The results of PCR verification.
T7 phage clones were selected from the prepared CX7C library and PCR was performed using

520 their DNA as the template. For each clone, validation was performed with four primer sets at

521 both DNA ends. The results presented are representative images of three clones.


522

523	Fig. 4. Model screening using the anti-FLAG monoclonal antibody, M2 clone, as the target
524	molecule. For the panning reaction, a mixture of the CX7C, CX9C, CX11C, and CX13C
525	libraries was used. Phage pools collected from antibody-coated wells (Ab[+]) were used in the
526	following round. Relative binding efficiencies were calculated as described in the Materials
527	and methods section.

528

529 Fig. 5. NGS analysis of model screening for anti-FLAG antibodies. (A) Sequencing results 530 sorted by NGS counts in the 6th round. DNA sequences in Fastq files were translated into 531 amino acids, and cyclic peptides with two cysteine residues at both ends were extracted and 532 ranked by count. (B) Sequence logo analysis. After extracting YK motif-containing amino 533 acids at positions -1 to +3, the top 100 sequences in terms of counts were extracted. The 534 sequences obtained in each round were analyzed using WebLogo3 and represented as bits (left) 535 and probability (right). (C) Number of YK sequences in the top 100 sequences. (D) Differences 536 in the occurrence of DYKXXD domains in the top 100 sequences of each of the four libraries.

京都大学

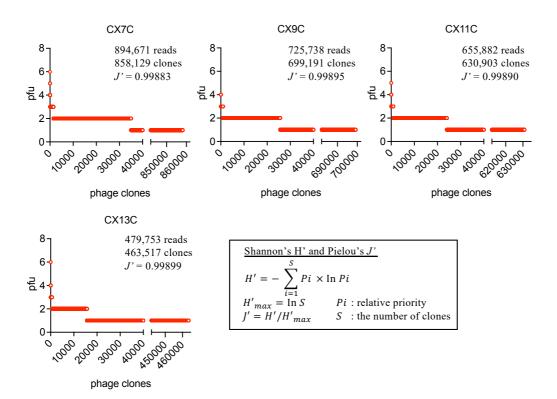
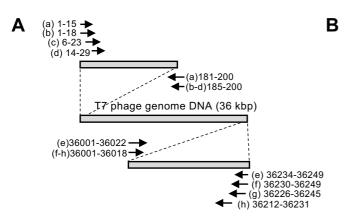



Fig. 3

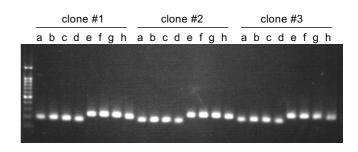
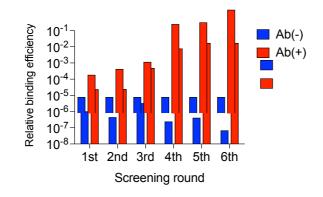
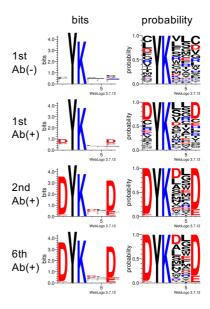



Fig. 4



京柳大学

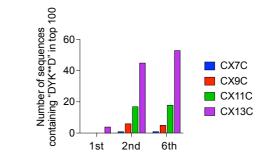
NGS count	Sequences	Number of random amino acids
6793	CLAVSRLL <mark>DYK</mark> DMDC	13
3398	CTRSPQGE <mark>DYK</mark> TY <mark>D</mark> C	13
2765	CAVRESIDC <mark>YK</mark> C	10
1977	CSGSVLDYKAVDC	11
1585	CFNVPAWLDYKGSDC	13
1409	CHRDYKLWDGLKC	11
1316	CGHTVWEYKDADC	11
1074	CTDGFMGDYKWTDGC	13
1057	CLLDYKMSESHLGRC	13
976	CAGCLADYKDEDGGC	13
939	CEDYKMGDRRGDNGC	13
855	CKWSRADDYKYLDKC	13
742	CAQDYKDRDWRCQAC	13
736	CAGFVGDRDYKASDC	13
726	CLCDYKWEESNGNSC	13
725	CPVSTSYVDYKSSDC	13
718	CRVSDNFF <mark>DYK</mark> VSDC	13
707	CADYKDCDERSYC	11
697	CTGDDYKNSDVGLWC	13
696	CSFSGRDYKAEDC	11

В

С

Number of sequences containing "YK" in top 100

100-


50-

01

1st-2nd-6th-

Screening round

