

Optimization of
Trusses and Frames using
Reinforcement Learning

Chi-tathon Kupwiwat

 i

Contents

List of Abbreviations xvii

1 Introduction and Background 1
 1.1 Overview of structural optimization 1
 1.2 Machine learning approach and reinforcement learning approaches for

structural optimization
4

 1.3 Why use the RL approach? 5
 1.4 How is RL utilized? 6
 1.5 Objectives and contributions 8
 1.6 Dissertation outline 10
 1.7 Published works included in the dissertation 11

2 Reinforcement learning approaches: A brief review 15
 2.1 Introduction 15
 2.2 Basic concepts of ML 15
 2.3 Basic concept of RL 17
 2.3.1 Policy gradient method 19
 2.3.2 Actor-Critic method 21
 2.3.3 Deep Deterministic Policy Gradient 21
 2.3.4 Multi-agent DDPG 23
 2.4 Graph data structure and representation 26
 2.5 Neural networks 28
 2.5.1 Activation functions 29
 2.5.2 Training neural networks 30
 2.5.3 Optimization methods of gradient descent 32
 Momentum 32
 RMSProp 32
 Adam 33
 2.5.4 Variants of the Neural Networks 33
 Multi-layer perceptron 34
 Graph Convolutional Networks 34
 Graph Attention Networks 35
 2.6 Graph and matrix operations 36
 2.6.1 Global sum pooling operation 36
 2.6.2 Stack operation 36
 2.7 Computational blocks 37
 2.8 Conclusion 39

 ii

3 Topology optimization and sizing optimization of lattice shells using

DDPG and GCN
41

 3.1 Introduction 41
 3.2 Formulation of optimization problems 42
 3.2.1 Topology optimization 42
 3.2.2 Sizing optimization 44
 3.3 Topology optimization of lattice shell using DDPG and GCN 45
 3.3.1 State 47
 3.3.2 Agent 50
 3.3.3 Action 52
 3.3.4 Reward 54
 3.3.5 Numerical examples 54
 3.3.5.1 Training phase 56
 3.3.5.2 Test phase 58
 3.3.5.3 Comparison of computation cost and performance with EM

and approximate GA
62

 3.4 Sizing optimization of lattice shell using DDPG and GCN 67
 3.4.1 State 69
 3.4.2 Agent 70
 3.4.3 Action 72
 3.4.4 Reward 72
 3.4.5 Numerical examples 72
 3.4.5.1 Training phase 74
 3.4.5.2 Test phase 77
 3.5 Conclusion 82

4 Simultaneous topology and sizing optimization of braced building frames

using RL
85

 4.1 Introduction 85
 4.2 Formulation of optimization problem 86
 4.2.1 Estimated seismic load using Ai-bunpu method 86
 4.2.2 Simultaneous topology and sizing optimization of the braced

building frame
88

 4.3 Simultaneous topology and sizing optimization of braced building
frame using DDPG and GCN

91

 4.3.1 State 93
 4.3.2 Agent 95
 4.3.3 Action 96
 4.3.4 Reward 97

 iii

 4.3.5 Numerical examples 98
 Training phase 101
 Test phase 105
 Comparison of computation cost and performance with GA 108
 4.4 Conclusion 114

5 Geometry optimization of lattice shells using DDPG and GAT with Bézier

surface
117

 5.1 Introduction 117
 5.2 Formulation of optimization problem 118
 5.2.1 Bézier surface 118
 5.2.2 Geometry optimization of lattice shells with Bézier surface 119
 5.3 Geometry optimization of lattice shells using DDPG and GAT with

Bézier surface
120

 5.3.1 State 124
 5.3.2 Agent 126
 5.3.3 Action 129
 5.3.4 Reward 129
 5.3.5 Numerical examples 129
 Training phase 131
 Test phase 133
 (1) Verifying ability of the agent for geometry optimization

compared to PSO and SA
133

 (2) Verifying the usefulness of the agent for geometry
optimization

137

 (3) Verifying ability of the agent when the type of design
variables and initial geometry are changed

140

 5.4 Conclusion 142

6 Multi-objective optimization of truss structure using MARL and graph
representation

145

 6.1 Introduction 145
 6.2 Formulation of optimization problems 146
 6.2.1 Multi-objective mathematical problem: Constr-Ex 146
 6.2.2 Multi-objective structural optimization problem: 10-bar truss 147
 6.2.3 Multi-objective optimization of truss with shape preferences:

trade-off design
148

 6.3 Multi-objective optimization using MARL 149
 6.3.1 Algorithm 149
 6.3.2 Graph representations 151

 iv

 6.3.3 Reward 156
 6.3.4 Numerical settings 158
 6.4 Multi-objective mathematical problem using MARL and graph

representation
158

 6.4.1 Observation 158
 6.4.2 Action 159
 6.4.3 Agents 159
 6.4.4 Training phase 161
 6.4.5 Test phase 163
 6.5 Multi-objective 10-bar truss problem using MARL and graph

representation
164

 6.5.1 Observation 164
 6.5.2 Action 165
 6.5.3 Agents 166
 6.5.4 Training phase 168
 6.5.5 Test phase 169
 6.6 Trade-off design problem using MARL and graph representation 170
 6.6.1 Observation 170
 6.6.2 Action 171
 6.6.3 Agents 172
 6.6.4 Numerical settings 174
 6.6.5 Training phase 175
 6.6.6 Test phase 177
 6.7 Conclusion 182

7 Conclusion and Future directions 185
 7.1 Summary 185
 7.1.1 Topology and sizing optimizations of lattice shells 186
 7.1.2 Simultaneous topology and sizing optimization of building frames 187
 7.1.3 Geometry optimization of lattice shells 187
 7.1.4 Multi-objective optimization of trusses 189
 7.2 Future directions 190

References

Publications

Acknowledgments

 v

 vi

 vii

List of Tables

3.1 Entries in node feature matrix (!) for bracing direction optimization of

lattice shells
49

3.2 Entries in adjacency and weighted adjacency matrices ("!, "", "#, #!,
and #") for bracing direction optimization of lattice shells

50

3.3 Policy and value functions of GCN-DDPG for bracing direction
optimization of lattice shells

51

3.4 Test results for bracing direction optimization of lattice shells 61
3.5 Total computational cost of structural analysis of each method for bracing

direction optimization of lattice shells
64

3.6 Comparison of results obtained by GCN-DDPG (test phase) and
benchmarks for bracing direction optimization of lattice shells

65

3.7 Entries in node feature matrix (!) for sizing optimization of lattice shells 69
3.8 Entries in adjacency and weighted adjacency matrices (", #$, #%, and #&)

for sizing optimization of lattice shells
70

3.9 Policy and value functions of GCN-DDPG for sizing optimization of
lattice shells

70

3.10 List of sections for sizing optimization of lattice shells 73
3.11 Structures for training for sizing optimization of lattice shells 75
3.12 Structures for test for sizing optimization of lattice shells 77
3.13 Test result (volume reduction (%)) for sizing optimization of lattice shells 80

4.1 Entries in node feature matrix (!) for simultaneous topology and sizing

optimization of braced building frames
94

4.2 Entries in adjacency matrix (") for simultaneous topology and sizing
optimization of braced building frames

95

4.3 Policy and value functions of GCN-DDPG for simultaneous topology and
sizing optimization of braced building frames

95

4.4 List of column sections for simultaneous topology and sizing optimization
of braced building frames

99

4.5 List of beam sections for simultaneous topology and sizing optimization
of braced building frames

99

4.6 List of brace sections for simultaneous topology and sizing optimization
of braced building frames

100

4.7 Structures for training for simultaneous topology and sizing optimization
of braced building frames

102

4.8 Structures for test for simultaneous topology and sizing optimization of
braced building frames

106

 viii

4.9 RL results in test phase (50 trials) for simultaneous topology and sizing
optimization of braced building frames

106

4.10 GA results (5 random seeds) for simultaneous topology and sizing
optimization of braced building frames

110

4.11 Comparing results obtained by RL and GA for simultaneous topology and
sizing optimization of braced building frames

110

5.1 Entries in node feature matrix (!) for geometry optimization of lattice

shells
125

5.2 Entries in adjacency and weighted adjacency matrices ("!, "", "#, #!,
and #") for geometry optimization of lattice shells

125

5.3 Entries in control net feature matrix (!') for geometry optimization of
lattice shells

125

5.4 Entries in the control net adjacency matrix ("') for geometry
optimization of lattice shells

126

5.5 Policy and value functions of GAT-DDPG for geometry optimization of
lattice shells

127

5.6 Total computational cost of each method for geometry optimization of
lattice shells

135

5.7 Strain energy of the best results obtained from RL, PSO, and SA for
geometry optimization of lattice shells

136

5.8 Strain energy of the best results obtained from RL, PSO, and SA for
geometry optimization of lattice shells

139

5.9 Results from initial irregular geometries for geometry optimization of
lattice shells

141

6.1 Values in node feature matrix of the non-dominated solutions !(for

multi-objective optimization
154

6.2 Values in adjacency matrix of the non-dominated solutions "(for multi-
objective optimization

154

6.3 Reward components of agent $ for multi-objective optimization 157
6.4 Values in the normalized feature vector of % (&) for multi-objective

mathematical optimization problem
159

6.5 Values in row ' of the node feature matrix of the non-dominated solutions
!(for multi-objective mathematical optimization problem

159

6.6 Policy and value functions of GCN-MADDPG ($! agent) for multi-
objective mathematical optimization problem

161

6.7 Values in row ' of the node feature matrix of truss node (!) for multi-
objective 10-bar truss optimization problem

164

 ix

6.8 Values in the adjacency and weighted adjacency matrices of truss
(",#), #*, #+) for multi-objective 10-bar truss optimization problem

165

6.9 Values in row ' of the node feature matrix of the non-dominated solutions
(!() for multi-objective 10-bar truss optimization problem

165

6.10 Policy and value functions of GCN-MADDPG ($! agent) for multi-
objective 10-bar truss optimization problem

167

6.11 Values in row ' of the node feature matrix of truss node (!) for trade-off
design problem

171

6.12 Values in row ' of the node feature matrix of the non-dominated solutions
(!() for trade-off design problem

171

6.13 Policy and value functions of GCN-MADDPG ($! agent) for trade-off
design problem

173

6.14 List of truss sections for trade-off design problem 174
6.15 Trusses for training MADDPG agents for trade-off design problem 175
6.16 Trusses for test for trade-off design problem 178
6.17 Pareto front indicators of test trusses obtained by MARL and NSGA-II for

trade-off design problem
179

 x

 xi

List of Figures

1.1 RL as a universal approximation function that improves structure;

(a) optimization algorithm, (b) RL

6

1.2 Relations and dependencies between chapters 11

2.1 Diagram of the MDP 18

2.2 Diagram of the MDP with the DDPG agent 23

2.3 Multi-agent deep deterministic gradient 24

2.4 Graph data and graph representation; (a) Graph data, (b) Graph

representation from the graph data

27

2.5 Neural Network; (a) Input layer, (b) Hidden layers, (c) Output layer 29

2.6 Symbols of computational blocks and functions; (a) MLP, (b) GCN layer,

(c) GCN layer with iteration, (d) GAT layer, (e) ReLU activation

function, (f) Sigmoid activation function, (g) Tanh activation function, (h)

GSP operation, (i) Stack operation

38

2.7 Example of an ML model represented as a group of computational blocks

and functions

38

3.1 Bracing directions in the grid cell 	" and corresponding values of #!,# and

#$,#: bracing direction optimization of lattice shells

43

3.2 Graph representation of the lattice shell for bracing direction optimization

of lattice shells

46

3.3 MDP of the bracing direction optimization of lattice shells 47

3.4 Actor and critic networks for bracing direction optimization of lattice

shells

52

3.5 Bracing directions and associate link predictions in a grid cell for bracing

direction optimization of lattice shells

53

3.6 Flowcharts of the algorithm for bracing direction optimization of lattice

shells; (a) Training phase, (b) Test phase

56

3.7 Structural models for bracing direction optimization during training

phase; (a) Support condition 1, (b) Support condition 2.

57

3.8 Variation of reward and its moving average in training phase for bracing

direction optimization of lattice shells

58

3.9 Structural models for test phase for bracing direction optimization of

lattice shells – support condition 1

59

3.10 Structural models for test phase for bracing direction optimization of

lattice shells – support condition 2

59

 xii

3.11 Structural models for test phase for bracing direction optimization of

lattice shells – support condition 3

60

3.12 Structural models for test phase for bracing direction optimization of

lattice shells – support condition 4

60

3.13 GCN-DDPG result of the 6´6-grid structure in the test phase for bracing

direction optimization of lattice shells; (a) Support condition 1, (b)

Support condition 2, (c) Support condition 3, (d) Support condition 4.

66

3.14 Graph representation of the lattice shell for sizing optimization of lattice

shells

68

3.15 Proposed MDP for sizing optimization of lattice shells 69

3.16 Actor and critic networks for sizing optimization of lattice shells 71

3.17 Flowcharts of the algorithm for sizing optimization of lattice shells; (a)

Training phase, (b) Test phase

74

3.18 Structures used for training the agent for sizing optimization of lattice

shells; (a) S 1, (b) S 2, (c) S 3, (d) S 4, (e) S 5, (f) S 6

75

3.19 Structure used for evaluating the improvement of the trained agent for

sizing optimization of lattice shells

76

3.20 Variation of reward and its moving average in training phase for sizing

optimization of lattice shells

76

3.21 Structural models for test phase for sizing optimization of lattice shells –

Structure A

77

3.22 Structural models for test phase for sizing optimization of lattice shells –

Structure B

78

3.23 Structural models for test phase for sizing optimization of lattice shells –

Structure C

78

3.24 Optimized test structure for sizing optimization of lattice shells –

Structure A

81

3.25 Optimized test structure for sizing optimization of lattice shells –

Structure B

81

3.26 Optimized test structure for sizing optimization of lattice shells –

Structure C

82

4.1 Internal forces in local coordinates for simultaneous topology and sizing

optimization of building frames

88

4.2 Five brace types including no brace for simultaneous topology and sizing

optimization of building frames

89

4.3 Graph representation of the braced building frame for simultaneous

topology and sizing optimization of braced building frames

92

4.4 MDP of the topology optimization of braced building frame for

simultaneous topology and sizing optimization of braced building frames

93

 xiii

4.5 Actor and critic networks for simultaneous topology and sizing

optimization of braced building frames

96

4.6 Flowcharts of the algorithm for simultaneous topology and sizing

optimization of braced building frames; (a) Training phase, (b) Test phase

101

4.7 Initial structural models during training phase for simultaneous topology

and sizing optimization of braced building frames; (a) S1, (b) S2, (c) S3

102

4.8 Initial structural model for measuring improvement of the agent during

training phase for simultaneous topology and sizing optimization of

braced building frames

103

4.9 Variation of reward and its moving average in training phase for

simultaneous topology and sizing optimization of braced building frames

104

4.10 Variation of cost and its moving average in training phase for

simultaneous topology and sizing optimization of braced building frames

104

4.11 Initial Structural models during test phase for simultaneous topology and

sizing optimization of braced building frames; (a) Structure A, (b)

Structure B, (c) Structure C, (d) Structure D, (e) Structure E, (f) Structure

F, (g) Structure G, (h) Structure H

107-108

4.12 RL best result for simultaneous topology and sizing optimization of

braced building frames – Structure A

112

4.13 RL best result for simultaneous topology and sizing optimization of

braced building frames – Structure B

112

4.14 GA best result for simultaneous topology and sizing optimization of

braced building frames – Structure A

113

4.15 GA best result for simultaneous topology and sizing optimization of

braced building frames – Structure B

113

5.1 Bézier surface of the lattice shell defined by Bézier control net 119

5.2 Graph representation of the lattice shell for geometry optimization of

lattice shells

122

5.3 Graph representation of the Bézier control points for geometry

optimization of lattice shells

123

5.4 MDP of the geometry optimization of lattice shells 124

5.5 Actor and critic networks for geometry optimization of lattice shells 128

5.6 Flowcharts of the algorithm for geometry optimization of lattice shells;

(a) Training phase, (b) Test phase

131

5.7 Structural models during training phase for geometry optimization of

lattice shells

132

5.8 Variation of reward and its moving average in training phase for geometry

optimization of lattice shells

133

 xiv

5.9 6´6-grid lattice shells (fully braced) with (#%, #&) = (4,4), (5,5), and

(6,6) for geometry optimization of lattice shells; (a) structural model 1,

(b) structural model 2, (c) structural model 3, (d) structural model 4, (e)

structural model 5, (f) structural model 6, (g) Bézier control nets

134

5.10 10´10-grid lattice shells (fully braced) with (#%, #&) = (4,4) for

geometry optimization of lattice shells; (a) structural model 1, (b)

structural model 2, (c) Bézier control net

135

5.11 10´10-grid shell for geometry optimization of lattice shells – Structural

model 1

137

5.12 10´10-grid shell for geometry optimization of lattice shells – Structural

model 2

137

5.13 20´20-grid lattice shell (fully braced) with (#%, #&) = (6,6) for geometry

optimization of lattice shells; (a) Structural model 1, (b) Bézier control net

138

5.14 20´20-grid shell for geometry optimization of lattice shells - Verifying

the usefulness of the agent for geometry optimization – Structural model 1

139

5.15 10´10-grid lattice shell with initial irregular geometry for geometry

optimization of lattice shells – Structural model 1

141

5.16 10´10-grid lattice shell with initial irregular geometry for geometry

optimization of lattice shells – Structural model 2

141

6.1 Multi-objective 10-bar truss optimization problem 147

6.2 The proposed MARL algorithm in each optimization step for multi-

objective optimization

150

6.3 Flowchart of the algorithm for multi-objective optimization 151

6.4 Graph representation of the non-dominated solutions for multi-objective

optimization

153

6.5 Graph representation of the truss solutions for multi-objective

optimization

155

6.6 Actor and critic networks for multi-objective mathematical optimization

problem

161

6.7 Variation of hypervolume and reward in training phase for multi-objective

mathematical optimization problem; (a) Hypervolume, (b) Reward

162

6.8 Solutions obtained by the untrained and trained agents compared to the

true Pareto front for multi-objective mathematical optimization problem;

(a) Untrained agents, (b) Trained agents

163

6.9 Actor and critic networks for multi-objective 10-bar truss optimization

problem

168

6.10 Variation of hypervolume and reward in training phase for multi-objective

10-bar truss optimization problem; (a) Hypervolume, (b) Reward

169

 xv

6.11 Pareto fronts obtained by MADDPG and NSGA-II for multi-objective 10-

bar truss optimization problem

170

6.12 Actor and critic networks for trade-off design problem 174

6.13 Trusses for training for trade-off design problem 176

6.14 Truss for evaluation (roof type) for trade-off design problem 176

6.15 Variation of hypervolume and reward in training phase for trade-off

design problem; (a) Hypervolume, (b) Reward

177

6.16 Pareto front obtained by MARL for trade-off design problem – truss A

(bridge type)

180

6.17 Pareto front obtained by MARL for trade-off design problem – truss B

(roof type)

180

6.18 Pareto front obtained by MARL for trade-off design problem – truss C

(bridge type)

181

6.19 Pareto front obtained by MARL for trade-off design problem – truss D

(roof type)

181

 xvi

 xvii

List of Abbreviations

DDPG Deep Deterministic Policy Gradient

DEAP Distributed Evolutionary Algorithms in Python

DoF Degrees of Freedom

EM Enumeration Method

GA Genetic Algorithm

GAT Graph Attention Network

GCN Graph Convolutional Network

GSP Global Sum Pooling

HV Hypervolume

MADDPG Multi-agent Deep Deterministic Policy Gradient

MARL Multi-agent Reinforcement Learning

MDP Markov Decision Process

ML Machine Learning

MLP Multi-layer Perceptron

MSE Mean Squared Error

NSGA-II Non-dominated Sorting Genetic Algorithm II

PSO Particle Swarm Optimization

RL Reinforcement Learning

SA Simulated Annealing

SGD Stochastic Gradient Descent

 1

Chapter 1

Introduction and Background

1.1 Overview of structural optimization

Structural design requires certain levels of optimization. From the perspective of

architects/designers, the objective is to obtain structures with high performance while engineers

pursue those that minimize the cost under constraints. The structural cost consists of those in design,

construction, and maintenance of the structure. Sometimes structural optimization aims to improve

both the structural cost and design preference, which can conflict with each other. This research

focuses on optimizing the structural performance, cost, and trade-off between cost and design

preference which are the main concerns of both architects and structural engineers in the

preliminary design phase of truss and frame structures. The reader is encouraged to consult the

work by Ohsaki [1] for technical aspects of optimization of these types of structures.

Structural optimization aims to obtain the best design variables that minimize/maximize an

objective function under specified constraints [2]. For discrete structures, such as trusses and

frames, typically, the design variables are nodal connectivity, cross-sectional properties, and/or

nodal locations [3]. The best nodal connectivity, cross-sectional properties, and nodal locations are

obtained by solving topology, sizing, and geometry optimization problems, respectively. Objective

functions of trusses and frames could be defined using compliance or strain energy (i.e., maximize

the stiffness against static loads) under constraints on structural weight, as shown in Refs. [4-6],

or the structural weight under constraints on structural response, as shown in Refs. [7-9]. The

general structural optimization is formulated as follows:

minimize												'())																																																																																						

subject	to											2!()) ≥ 0,																							6 = 1,2, … , ;; 																		(1.1)

ℎ"()) = 0,																						? = 1,2, … , @;																											

) ∈ [)#,)$]																																																																										

 2

where),)#, and)$ are the vector of design variables, the lower bound, and the upper bounds of

design variables, respectively. '()) is the objective function to evaluate the design variable).

2!()) and ℎ"()) denote inequality and equality constraint functions, respectively. ; and @ are the

numbers of inequality constraints and equality constraints, respectively.

A multi-objective optimization problem has multiple objective functions that can be

maximized or minimized, equality and/or inequality constraints, and design variable bounds. The

general multi-objective optimization problem, where D objective functions E()) =

(F%()), … , F&())) are to be minimized is formulated as

minimize												E())																																																																																						

subject	to											2!()) ≥ 0,																							6 = 1,2, … , ;; 																	(1.2)

ℎ"()) = 0,																						? = 1,2, … , @;																										

) ∈ [)#,)$]																																																																									

In a multi-objective optimization scenario, feasible solutions satisfying bounds and

constraints can be projected onto an D-dimensional objective function space, referred to as the

objective space. Here, a mapped solution) is represented as a vector E()) = (F%()), … , F&())) in

the objective space. It is important to note that in certain cases, objective functions cannot be

simultaneously minimized, leading to potential conflicts where improving one objective function

may come at the cost of worsening others.

To deal with this conflict, the concept of Pareto optimum [10] comes into play. Pareto

optimum is also known as the noninferior solution, non-dominated solution, or compromise

solution, and it represents optimal solutions of the multi-objective optimization problem. Given

feasible solutions)% and)' that satisfy all constraints, we consider)% to be dominated by)' if

F(()') ≤ F(()%) for all H ∈ {1, … ,D} and F(()') < F(()%) for at least one H ∈ {1, … ,D} . By

applying this definition, a solution)∗ is considered Pareto optimal (or Pareto solution) if no other

feasible solutions dominate it. In other words, there are no solutions that are better for all objectives.

It is essential to acknowledge that the objective space may contain multiple Pareto optimal

solutions, forming a set of non-dominated solutions known as the Pareto front. The Pareto front

bounds the feasible region in the objective space. If we specify a reference point in the objective

space, we can calculate a generalized volume that covers the Pareto front and the reference point

 3

in the D-dimensional space. This volume is known as the hypervolume and serves as a metric

representing the diversity of the Pareto solutions. Examples of multi-objective optimization of

trusses and frames can be found in Refs. [11-13]

Structural optimization approaches can be categorized into two main classes: optimality

criteria approaches and search approaches. The optimality criteria approaches focus on finding

solutions that meet specific criteria for optimality when the objective function is minimized under

the given constraints. Search approaches aim to numerically find solutions starting from an initial

design and use different approaches to explore the design variable space, finally minimizing the

objective function within the feasible region. A brief overview of common search approaches and

their applicability to solving structural optimization problems is as follows:

• Gradient-based approaches depend on local models constructed from the gradient

and/or Hessian of the objective and constraint function and the design variables to

iteratively improve a solution until a termination criterion is met. This class includes

various optimization algorithms, each based on different approaches for determining

the descent direction and step size using the local model. Gradient-based methods are

well-suited for continuous optimization problems, where evaluating the gradient

and/or Hessian matrices is possible. Some common algorithms in this category include

gradient descent [14], quasi-Newton [15], sequential quadratic programming [16], and

interior-point methods for constrained problems [17]. Examples of such approaches

for structural optimizations can be found in Refs. [18-21].

• Stochastic-based approaches rely on pseudo-random number generation during the

optimization process to explore the design variable space. Randomness is desirable

because it increases the likelihood of finding a global solution and effectively explores

the design space by assigning more weight to the regions likely to contain good

solutions based on past information. However, excessive randomness can be

counterproductive, as it hinders the use of the past information to guide the search.

Stochastic-based approaches can also enhance the performance of gradient-based

methods and locate approximate global minima for both continuous and discrete

mathematical programming problems a limited computational time. Common

stochastic search approaches include Stochastic Gradient Descent (SGD) [22] and

 4

Simulated Annealing (SA) [23]. Examples of these approaches for structural

optimizations are presented in Refs. [24-27].

• Population-based approaches utilize a population of candidate solutions to explore the

design variable space. After each iteration, these candidate solutions are diversified

through a stochastic process. By leveraging a large number of candidate solutions for

exploration, these methods can reduce the risk of premature termination or getting

trapped in a local minimum. Population-based methods are suitable for both continuous

and discrete optimization problems, where calculating the objective and constraint

functions does not entail significant computational costs. Genetic Algorithm (GA) [28],

and Particle Swarm Optimization algorithm (PSO) [29] for single-objective problems,

and non-dominated sorting genetic algorithm (NSGA-II) [30] for multi-objective

problems fall under these approaches. Refs. [31-34] show examples of these

approaches for structural optimizations.

1.2 Machine learning approach and reinforcement learning approaches for structural

optimization

In recent years, machine learning (ML) has emerged as a powerful tool in engineering problem-

solving. Machine learning is a branch of artificial intelligence (AI) that focuses on developing

algorithms and models capable of learning from data and making predictions based on that

acquired knowledge. Machine learning can be classified into three categories: supervised learning,

unsupervised learning, and reinforcement learning (RL). In supervised learning, the ML model is

trained using labeled data, where the inputs and corresponding outputs are provided during the

learning process. The model learns to generalize patterns and relationships within the data to make

accurate predictions on new, unseen inputs. Unsupervised learning, on the other hand, deals with

unlabeled data, aiming to discover inherent structures or patterns in the dataset without specific

guidance. Recent advances in ML have gained popularity for applications in engineering fields

[35-37], especially for the optimization of structures [38] as presented in the following examples.

Mirra and Pugnele [39] used a Variational Autoencoder (VAE) [40] to design spatial structures.

Samaniego et al. [41] utilized an ML method to approximate the mechanical response of plates

and shells. Zheng et al. [42] and Fuhrimann et al. [43] utilized ML to explore designs of spatial

 5

structures. Xie et al. [44] proposed a Bayesian network to obtain the deviation between designed

shapes and constructed shapes of the 3D-printed lattice structures. In research on braced frames,

Tamura et al. [45] combined ML with SA to optimize brace locations of building frames.

Sakaguchi et al. [46] offered methods for extracting important features and converting the features

of small frames to those of large frames.

In this research, our main focus lies on RL, a distinct and powerful branch of ML that draws

inspiration from optimal control and dynamic programming. In RL, an agent interacts with the

environment and learns to make decisions by taking actions to achieve specific goals. The agent

receives feedback in the form of rewards or penalties from the environment based on its actions,

which helps it to improve its decision-making policy over time. Through this iterative learning

process, RL allows the agent to explore various actions and learn how to make optimal decisions

to maximize rewards and achieve desirable outcomes in complex and dynamic environments.

In the context of structural optimization, RL holds the promise of revolutionizing the way

architects and engineers discover optimal solutions for structural engineering challenges. By

leveraging the ability of the agent to interact with the environment and receive feedback, RL can

efficiently explore the solution space and find innovative designs for complex engineering

structures. Its dynamic nature makes RL particularly well-suited for addressing real-world

optimization problems, where deterministic solutions are pursued, constrained by computational

time. This research seeks to harness the potential of RL to enhance and expedite the process of

finding efficient solutions in the realm of structural optimization.

1.3 Why use the RL approach?

Reinforcement learning can also be viewed as a universal approximation function that takes a

structure as input and returns a better structure (Figure 1.1). During the optimization process, the

structure is iteratively modified using the agent until the solution of the structural optimization

problem is found. A reinforcement learning approach is useful when the structural optimization

problem cannot be solved using a gradient-based approach (i.e., discrete optimization problem).

The trained RL agent is more deterministic in creating optimum solutions compared to stochastic-

based approaches, and also more computationally efficient compared to population-based

approaches because only one solution is evaluated at each optimization iteration.

 6

Figure 1.1: RL as a universal approximation function that improves structure;

(a) optimization algorithm, (b) RL

One argument about the inferiority of the ML approaches is the high computational cost

required for training. To address this problem, this dissertation shows that the RL approach for

structural optimization can be trained using some small structures and applied to much larger

structures. This fact results in considerable small computational cost during the training because

small structures require small computational time to evaluate structural responses using finite

element analysis. Since the RL approach is more efficient than to other approaches, it is suitable

for real-time structural optimization during the designing phase of buildings. The trained RL

agents can also optimize any given structural input. Therefore, the approach is more controllable

than stochastic- and population-based approaches, resulting in an approximate optimal solution

but close to the initial structure given by architects/structural engineers.

1.4 How is RL utilized?

The potential of RL in Section 1.3 motivates the author to investigate the applicability of RL in

structural optimization. Reinforcement learning utilizes state data to do actions (i.e., modifying the

structures). Therefore, it is also important to represent the structural data so that the RL agent gains

 7

a sufficient understanding of the overall structure. Kupwiwat and Yamamoto [47] applied various

RL algorithms to the geometry optimization of small lattice shells using a vector that represents

the local information of the structure. Lee et al. [48] and Hoyer et al. [49] also applied a matrix

representation for beams and building frames. However, these data representations cannot

effectively be utilized for integrating information about the whole structure (i.e., nodal locations,

properties of the elements, internal forces, etc.) and solving problems with different structural sizes

and configurations. The neural network agents that resort to the representation also struggle when

applied to larger structures where local information is not sufficient to represent the overall

structure. Hayashi and Ohsaki [50] proposed graph representation to represent the truss

information to an RL agent. By transforming the structure into graph data consisting of nodes

(vertices) and edges and implementing repetitive graph embedding operations to transmit signals

of adjacent nodes and edges for estimating accumulated rewards associated with each action, an

RL agent can observe the entire structure and capture the global information of the structural

responses and configurations. Note that RL approaches investigated in this literature should not

only be applicable to different structures and objective functions but also are robust when applied

to structures not utilized for the training.

This study extends the graph representation methods and combines them with RL

algorithms that not only can observe, but also modify the whole design variables for solving

structural optimization problems. Graph representation methods presented in this study are as

follows:

(a) Structural node-wise representation

In this graph representation, structural nodes and structural elements are represented as

graph nodes and graph edges, respectively.

(b) Structural element-wise representation

In this graph representation method, structural elements are represented as graph nodes.

Graph edges are the adjacency of the structural element.

(c) Control point-wise representation

In this representation, Bézier control points and Bézier grids are represented as graph nodes

and graph edges, respectively.

(d) Pareto-wise representation

 8

In this graph representation, non-dominated solutions in the objective space and the

proximities of each neighboring solutions pair are represented as graph nodes and graph

edges, respectively.

The field of structural design necessitates a deliberate pursuit of optimization. Architects

and designers strive for structures that seamlessly blend aesthetics with exceptional structural

performance, while structural engineers are focused on achieving cost-efficient solutions within

stringent structural constraints. This dissertation leverages RL as a potent computational tool to

address these intricate structural optimization challenges. Through RL, we aim to uncover optimal

solutions to a range of structural optimization problems, navigating the delicate balance between

architectural finesse and economic efficiency. This research explores the transformative potential

of RL in enhancing the practice of structural design and engineering in the following structural

optimization problems:

(1) Single-objective topology optimization of lattice shell to minimize the strain energy

(2) Single-objective sizing optimization of lattice shell to minimize the structural volume

under stress constraint

(3) Single-objective simultaneous topology and sizing optimization of building structure to

minimize the structural volume under multiple constraints

(4) Single-objective geometry optimization of lattice shell to minimize the strain energy

(5) Multi-objective sizing optimization of truss structure to minimize structural volume and

deformation under stress constraint

(6) Multi-objective simultaneous geometry and sizing optimization of truss structure to

minimize structural volume and geometry preference under stress and deformation

constraints

1.5 Objectives and contributions

This study aims at developing RL approaches for solving structural optimization problems of

trusses and frames. In each chapter, the detail of the optimization problem is formulated, and RL

approach is presented, followed by the verification of its performance against benchmark

 9

algorithms and its application to solving optimization problems of interest. In particular, we

address the following truss and frame structural optimization frameworks:

(1) Topology and sizing optimization problems of lattice shell using structural node-wise

representation in problems (1) and (2).

(2) A simultaneous topology and sizing optimization problem of building frame utilizing

structural element-wise representation, which is a unification of problems 1 and 2, i.e.,

problem (3).

(3) Geometry optimization problem of lattice shell using multi-information representations of

structural node-wise and control point-wise representations, i.e., problem (4).

(4) Multi-objective problem of truss with single discrete variables using multi-information

representations of structural node-wise and Pareto-wise representations in problem (5).

(5) Multi-objective problem of truss with mixed discrete-continuous variables utilizing multi-

information representations of structural node-wise and Pareto-wise representations in

problem (6).

The main contributions of this study to the structural engineering and optimization

communities are twofold:

(1) Effective RL frameworks for structural optimization

These frameworks can be extended for solving diverse structural optimization scenarios,

such as optimizing building designs, bridges, or other complex structures, each with

specific requirements and performance criteria. By adopting RL, engineers can transcend

the limitations of traditional optimization methods and effectively address discrete and

continuous optimization problems that may pose significant challenges to conventional

gradient-based approaches.

(2) Useful structural optimization algorithms that are efficient and reliable

The deterministic nature of RL, presented in this dissertation, empowers it to create optimal

solutions with confidence, outperforming stochastic-based methods in producing high-

quality outcomes. Furthermore, the computational efficiency of RL is evident when

compared to population-based approaches. The evaluation of a single solution in each

 10

optimization iteration significantly reduces computational costs, streamlining the

optimization process and enabling real-time applications during the designing phase of

buildings and other structures. This level of control and efficiency renders RL-based

structural optimization approaches more reliable, empowering architects and structural

engineers to converge on highly optimized designs while preserving key elements of the

original concepts.

1.6 Dissertation outline

The remaining chapters of this dissertation are outlined as follows:

Chapter 2 presents brief introductions to RL approaches. The basic concepts of ML and

data structures are also included in this chapter. Two RL algorithms including Deep Deterministic

Policy Gradient (DDPG) and Multi-Agent Deep Deterministic Policy Gradient (MADDPG) are

presented. The chapter also introduces the computational parts of RL including the neural networks,

Graph Convolutional Networks (GCN), and Graph Attention Networks (GAT), respectively.

Chapter 3 exhibits the applicability of the proposed RL frameworks for solving two single

objective optimization problems of lattice shells. The first problem is the topology optimization of

shell structures where the brace directions and strain energy are design variables and the objective

function, respectively. The second problem is the sizing optimization of lattice shells where the

sectional area of the structural element, structural volume, and internal stress ratio are design

variable, objective function, and constraint, respectively. Structural data is represented using the

node-wise method. This chapter utilizes the graph representation method (a) from Section 1.4, for

creating optimization framework (1) in Section 1.5.

Chapter 4 shows a case of RL frameworks for solving simultaneous topology and sizing

optimization of building frames under seismic loads. Unlike the representation in Chapter 3, the

structural data is modeled by an element-wise representation. In this chapter, graph representation

method (b) from Section 1.4 is utilized for creating optimization framework (2) in Section 1.5.

Chapter 5 initiates an RL framework for geometry optimization of lattice shells whose

nodal locations are determined by Bézier control points. The design variables and objective

function are the locations of the control points and strain energy, respectively. The framework in

this chapter unifies data from both information from the structures and Bézier control points. This

 11

chapter combines graph representation methods (a) and (c) from Section 1.4, for creating

optimization framework (3) in Section 1.5.

Chapter 6 presents a novel multi-agent reinforcement learning (MARL) framework for

solving multi-objective optimization of planar trusses. The proposed framework is verified

utilizing a mathematical multi-objective optimization problem and a discrete variable multi-

objective optimization of truss which has known and approximated Pareto solutions, respectively.

After the verifications, the proposed method is applied to a mixed discrete-continuous variable

multi-objective optimization of the trusses where Pareto solutions change depending on

predetermined settings. This chapter combines graph representation methods (a) and (d) from

Section 1.4, for creating optimization frameworks (5) and (6) in Section 1.5.

Chapter 7 summarizes all presented frameworks and discusses the future research direction.

Figure 1.2 illustrates the relations and dependencies between each chapter in this

dissertation. In this Figure, the arrows and dashed arrows indicate dependencies and weak

dependencies between the chapters, respectively.

Figure 1.2: Relations and dependencies between chapters

1.7 Published works included in the dissertation

This dissertation is a collection of several published papers by the author and co-authors. The

detailed information of these papers are organized in this dissertation are organized as follows:

 12

Chapter 3

Kupwiwat C, Hayashi K, Ohsaki M (2022) Deep deterministic policy gradient and graph

convolutional network for bracing direction optimization of grid shells. Frontiers in Built

Environment, Vol.8(899072), no pages.

Kupwiwat C, Hayashi K, Ohsaki M (2023) Sizing optimization of free-form lattice shells

using deep deterministic policy gradient and graph convolutional networks. In. Proceeding

of International Association for Shell and Spatial Structures 2023. pp. 1458–1468.

Chapter 4

Kupwiwat C, Iwagoe Y, Hayashi K, Ohsaki M (2023) Deep deterministic policy gradient

and graph convolutional network for topology optimization of braced steel frames. Journal

of Structural Engineering B. Architectural Institute of Japan. Vol.69B, pp. 129–139.

Chapter 5

Kupwiwat C, Hayashi K, Ohsaki M (2023) Deep deterministic policy gradient and graph

attention network for geometry optimization of latticed shells. Applied Intelligence. Vol.53,

pp. 19809–19826.

Chapter 6

Kupwiwat C, Hayashi K, Ohsaki M (2024) Multi-objective optimization of truss structure

using multi-agent reinforcement learning and graph representation. Engineering

Applications of Artificial Intelligence. Vol.129(107594), no pages.

 13

 14

 15

Chapter 2

Reinforcement learning approaches: A brief review

2.1 Introduction

This chapter briefly reviews the basic concepts of ML and RL together with their applications in

structural engineering domains. The dissertation utilizes two RL algorithms including DDPG and

MADDPG. Both of which utilize value function approximation, policy gradient method, and actor-

critic method. All key concepts and the computational aspects of these methods and algorithms

are reviewed in this chapter. Variables in structural problems are represented by vector and graph

data which are also introduced in this chapter. RL agents observe these representations to find

optimal solutions. At the end of this chapter, the approximation functions or neural networks

utilized for making agents in this research are explained.

2.2 Basic concepts of ML

Machine learning is a collection of algorithms that have the ability to learn to do tasks, such as

classification and regression, from data [51]. In the classification task, the computational part,

denoted as a model, learns to classify input data ! into a class utilizing the vector of outputs or

labels. In the regression task, the model learns to approximate the output value " from input data

!, given that there is a relationship #!(!) = ". Let #!(!) be a parameterized machine learning

model that takes input data !. The output of the model or the prediction "' is as follows:

#!(!) = "'																																																													(2.1)

Suppose there is a vector of optimum parameterized weights ,∗ that minimizes a

difference measuring value between " and "' denoted as loss or error ℒ(", "'). The aim of machine

learning algorithms is to minimize this loss, and this task is formulated as

minℒ(", #!(!))|(!, ")																																															(2.2)

 16

where (!, ") in Eq. (2.2) is the dataset or training data that is utilized for training the model.

Structural optimization in structural engineering is a critical endeavor aimed at designing

efficient structures capable of withstanding various loads while minimizing material usage and

costs. Traditional approaches to structural optimization often involve intricate mathematical

models and iterations, which can be time-consuming and limited in their ability to explore the

extensive design space. However, the advent of ML techniques has ushered in a new era, offering

efficient and innovative avenues for optimizing truss and frame structures.

One of the notable applications of ML in structural optimization is the development of

surrogate models, which can be based on various ML algorithms, and trained using existing

structural data to approximate the complex relationships between design parameters, external loads,

and performance metrics. By utilizing these surrogate models, engineers can significantly expedite

the optimization process. These models enable predictions of the performance of numerous design

configurations, allowing for rapid exploration of the design space and the identification of optimal

solutions as shown in the research by Mai [52] which utilizes surrogate models for optimizing truss

structures. This approach can also be combined with other optimization approaches and enables

broad spectrums of the design method, as shown in the works by Li [53] and Luo [54] which

combines the surrogate models with the bi-directional evolutionary structure optimization method

and heuristic optimization method, respectively.

Another promising application of ML in structural optimization is generative design.

Generative design harnesses ML algorithms such as Variational Autoencoder [40] or

Convolutional Autoencoder [55] to explore diverse design possibilities. Engineers can specify

design constraints and objectives, and generative design tools can automatically generate

numerous design proposals. These proposals can then undergo further refinement and optimization

based on engineering preferences and project-specific requirements. Examples of ML in the

generative design of structure can be found in recent works by Palmeri et al. [56], Mirra et al. [39],

Zheng et al. [42], and Fuhrimann et al. [43] which explores design option utilizing ML, studies

AI-generative design in the shell structures, investigates the relationship between form and force

in shells using ML, and utilized ML for form-finding tasks, respectively.

Additionally, ML can be employed for structure health monitoring and damage detection

in structural engineering. The ML model can be formulated to predict the conditions of structures,

 17

detect anomalies, and forecast potential failures before they occur. This capability holds particular

significance for critical infrastructure like bridges and buildings, where early detection of structural

issues can prevent catastrophic failures, ensuring both safety and cost savings. Examples of

applications of ML in the area being researched by Cheung et al. [57], Ng et al. [58], Hwang et al.

[59], and Tibaduiza et al. [60] which utilize autoregressive ML models [61] for the structure health

monitoring of bridge structures, Bayesian ML approach [62] for the structure health monitoring of

aluminium beams, ML model approach for damage detection (i.e., pattern recognition) of building

structures, and Principal Component Analysis ML model [63,64] for damage detection of aircraft

shell structure, respectively.

In conclusion, ML offers promising applications in civil and mechanical engineering. It

enables the creation of surrogate models, and design exploration, and contributes to predictive

maintenance for structural health monitoring. As ML techniques continue to advance, structural

optimization stands to benefit from faster, more efficient approaches to designing cost-effective

and resilient structures.

2.3 Basic concepts of RL

Reinforcement learning is a type of ML that trains a model or an agent to perform actions in an

environment using reward signals. The core of RL is learning what to do in given situations or to

map situations to actions using functions (i.e., classification of an action among " sets of action

given a situation observed as !). This learning is guided by numerical reward signal and the

objective of the agents is to maximize this reward. Unlike other machine learning algorithms, RL

has no initial training dataset. Thus, the algorithm has to collect the dataset for optimizing its

models during the training.

An RL algorithm consists of three main elements: a policy that determines the behavior of

the agent, a reward signal that defines how good/bad the behavior is, according to the policy, and

a value function that predicts how the agent performs based on the policy [65]. The interaction of

an agent and the environment is formulated using a Markov Decision Process (MDP) [66,67] as

follows:

 18

In a discrete time step 3:

The agent receives a representation of the environment’s state S# (situations).

The agent performs actions A#.

The agent receives quantitative reward R#$% and next state S#$% from the environment.

The diagram of the MDP can be represented as shown in Figure 2.1. This cycle keeps on until a

terminal state is reached.

Figure 2.1: Diagram of the MDP

Considering an MDP where the agent obtains a reward R#$% in a step 3, the agent aims to

maximize the accumulated rewards G# computed as

G# = R#$% + 9R#$& + 9&R#$' +⋯ =;9(R#$)$%

*

(+,

																							(2.3)

where 0 ≤ 9 ≤ 1 is the discount rate, normally set as 0.99.

Given that a policy q- is a mapping function from S# to an action A#, we can quantitatively

represent how good it is for an agent to do A# in a given state S# in a form of action-value function

using state-action pairs (@, A) under parameter B. This function aims at computing the expected

reward (i.e., return), defined as

q-(@, A) ≐ D-[G#|S# = @, A# = A] = D- G;9(R#$)$%|S# = @, A# = A

*

(+,

H														(2.4)

where D.[∙] is the expected value.

 19

Reinforcement learning algorithms aim to find a policy that yields the highest expected

reward. In theory, there is at least a policy with parameter B∗ that is as good as or better than any

other policies. These optimal policies have the same optimal action-value function denoted as q∗

and defined as

q∗(@, A) ≐ max	(q-(@, A))																																																			(2.5)

Thus, the policy that yields the highest expected return of an optimal action-value function can

also be defined in a Bellman optimality equation for q∗ [68,69] as

q∗(@, A) ≐ D[R#$% + 9max	(q∗(S#$%, A#$%))|S# = @, A# = A]													(2.6)

Note that there are various methods for the RL algorithm to utilize the optimal action-value

function. For example, Q-learning [70] utilizes the optimal action-value function to evaluate all

actions in a given state @ . From this evaluation, the agent selects the action that yields the

maximum expected reward (i.e., greedy policy). In policy gradient method [71], the optimal

action-value function aims to approximate the expected reward from the given state @ and actions

from another parameterized policy function as explained in the next section.

2.3.1 Policy gradient method

Policy gradient methods learn to modify a parametrized policy that chooses actions in a given state

to maximize the return. The parametrized policy B/ has a policy parameter O# in a timestep 3. The

parametrized policy is optimized to maximize a scalar performance measurement J(O). Policy

parameters can be updated to maximize the scalar performance measure by

O#$% = O# + α∇J(O#)																																																			(2.6)

where α is the learning rate.

According to the policy gradient theorem [71], the scalar performance J(θ) of a policy B/

can be obtained from summarizing the evaluation of the policy, parameterized by policy

 20

parameter θ, that do action A in the given state @ (B/(A|@)) using the value function q(@, A)

defined as

J(θ) ≐ v-!(@) 	=;B/(A|@) q(@, A)																														(2.7)

where v0"(@) is the value of the state computed using a policy function B1(A|@) and action-

value function q(@, A). The gradient of v0"(@) can be defined as

∇1v-"(@) 	= ∇1 V;B/(A|@) q(@, A)W																												(2.8)

Utilizing Eqs. (2.7) and (2.8), the gradient of J(θ) can be defined as

∇1J(θ) = ∇1v-"(@) 	= ∇1 V;B1(A|@) q(@, A)W																												(2.9)

or, in the policy gradient theorem, as

∇1J(θ) = D[∇1logB1(A|@)q(@, A)]																																								(2.10)

Eq. (2.10) can be extended to a deterministic policy [72] which uses policy distribution

over states B1(@) = ∑B1(A|@) defined as

∇1J(θ) = D[∇1q(@, B1(@))]																																								(2.11)

or, using the chain rule, as

∇1J(θ) = D^∇1B1(@)∇2q(@, A)|2+-"(4)_																																								(2.12)

Note that B1(@) can be represented using approximation functions such as neural networks.

 21

2.3.2 Actor-Critic method

Actor-Critic [73] is a variance of the policy gradient method. In Actor-Critic, a neural network is

utilized for representing a policy B1(@) with weights and bias as policy parameter θ. This neural

network is called an actor. Another important part is the critic, a neural network that predicts the

return from @ and actions from B1(@). In general, the approximation function has parameterized

weight ` and also needs to be trained to predict the return. Let q6(@, A) be the critic. Eq. (2.12)

becomes

∇1J(θ) = D^∇1B1(@)∇2q6(@, A)|2+-"(4)_																																								(2.13)

2.3.3 Deep Deterministic Policy Gradient

Deep Deterministic Policy Gradient [72] is a type of actor-critic algorithm, characterized by the

ability of the agent to do multiple actions in an MDP which can reduce the number of optimization

steps and computational cost in structural optimization. The DDPG agent utilizes a policy function

B1#(actor network) and a value function Q1$ (critic network) parametrized by trainable parameters

θ% and θ&, respectively, and defined as

B1#(S#) = 	P(A#
7 |S#)																																																									(2.14)

Q1$ cS# , B1#(S#)d = 	; γ89%R#$8
*

8+%
																																																(2.15)

The objective of the policy function is to obtain high rewards by determining the

probability P(A#
7 |S#) of taking an action f in a state S#. The agent interacts with the environment

during the training phase to gather training data {S# , A# , R#$%, S#$%} and store them in a replay

buffer. These training data are necessary for training both policy and value functions, respectively,

to improve the behavior of the agent, in order to obtain high reward, and increase the accuracy of

accumulated reward prediction. However, simultaneously collecting training data and training

functions makes learning unstable because the functions could become diverged [72]. To stabilize

the training process, a tau updating technique was developed by Haarnoja et al. [74]. This

 22

technique trains B′1:# and Q′1:$ as surrogate policy function and value function, respectively, in

place of B1# and Q1$. Trainable parameters of these surrogate functions are gradually updated into

those of policy and value functions that interact with the environment to collect the training data,

named as online policy and value functions (i.e., B1#and Q1$). The trainable parameters are also

updated at a constant interval utilizing a small amount of updating weight determined by j(≪ 1)

to stabilize the learning process. The details of the DDPG algorithm are explained as follows:

DDPG algorithm:

1. Sample nbatch data {S# , A# , R#$%, S#$%} from the replay buffer and turn them into training
dataset {l# , m# , n#$%, l#$%}.

2. Make the following parameter updates:

 B1:#(l#) = 	mo#
 B1#(l#$%) = 	mo#$%

 Q′1:$(l# , m#) = 	po#

 Q1$ql#$%, mo#$%r = 	p#$%

 ∇Q′1:$ = ∇1:$Q′1:$(l# , m#)∇;<% 	ℒqn#$% + p#$%, p
o#r; gradient descent

 ∇J′1:# = −DV∇1:#B′1:#(l#)∇=<%Q′1:$ql# , mo#r|=<%+-:"&#(>%)W; gradient ascent
 By utilizing ∇Q′1:$, update O′& in Q′1:$

 By utilizing ∇J′1:#, update O′% in B′1:#

 Upon reaching the tau update interval:
 O% = (1 − j)O% + jO′%
 O& = (1 − j)O& + jO′&

Among a number of optimization algorithms for surrogate functions such as SGD [75,76]

and Adam [77], Adam is utilized for the parameter updating of O′% and O′& . By directly

introducing Ornstein-Uhlenbeck noise [78] into the output value of the policy function, the

exploration of the agent is triggered [72]. Figure 2.2 illustrates the MDP which has a DDPG agent

interacting with the environment to collect training data in the replay buffer, which are utilized in

the training and updating process of the functions of DDPG described in this section.

 23

Figure 2.2: Diagram of the MDP with the DDPG agent

When applied to single objective structural optimization problems, the RL agent can be

trained to modify the design variables of the structure to obtain a desirable structural configuration

measured by the objective function. After training, the agent can also be deployed to solve similar

problems as presented by Gambardella et al. [79] and Huynh et al. [80].

2.3.4 Multi-agent DDPG

MARL is an extension of RL. Unlike RL, MARL formulates interactions of multiple agents in an

environment using Markov games [81], instead of the MDP. A Markov game that has t agents is

formulated by a set of states u indicating the possible configuration of the environment by all

agents, a set of actions A%, … , A? , and a set of observations of the environment O%, … , O? . Note

that for a discrete time step 3 the state transition is a product of the current state S# and all actions

in that time step, i.e., S# × A#% × …× A#
? → S#$% . Each agent z receives its observation, does

actions, and obtains its reward as u × A#
@ → R#$%

@ . Similar to a standard RL, all agents in MARL

aim to maximize their rewards. However, since the actions of other agents hinder the agent from

learning effectively, some MARL algorithms, proposed by Tesauro [82] and Foerster et al. [83],

address the formulation so that agents can observe the actions of other agents as well. Unlike a

 24

conventional RL, MARL for structural optimization is still a frontier research field. A few

examples of MARL for optimization are investigated by Nasir et al. [84] and Yu et al. [85].

Multi-agent Deep Deterministic Policy Gradient (MADDPG) [86] is a type of MARL

algorithm that has multiple agents, each of which has a parametrized policy function B@	(actor

network) and a parametrized value function Q@ (critic network). MADDPG utilizes the multi-

agent decentralized actor and centralized critic approach [83]. In this approach, each agent

executes an action independently, but their value functions are trained collectively using actions

from all agents, as illustrated in Figure 2.3. Let z be an index of the agent while {@(A#
@|O#

@) is the

probability of making action A#
@ using observation O#

@, the policy and value functions of agent z

are given as follows:

B@(O#
@) = 	{@(A#

@|O#
@)																																																												(2.16)

Q@ cO#%, . . . , O#
? , B%(O#%), . . . , B?qO#

?rd = 	; γ89%R#$8
@

*

8+%
																					(2.17)

Figure 2.3: Multi-agent deep deterministic gradient

Similar to DDPG, no training data is available at the beginning of the MARL, all agents

interact with the environment during the training phase to collect training data

{O#
@, A#

@, R#$%
@ , O#$%

@ ; z ∈ {1, … ,t}} and store them in the replay buffer. Each agent utilizes this

training data to improve its behavior to obtain high rewards and to predict the rewards more

accurately. This research utilizes a tau updating similar to the DDPG algorithm.

During training, the policy and value functions process dataset {~#
@, m#

@, n#$%
@ , ~#$%

@ } from

the replay buffer to predict action mo#
@ and expected reward po#

@ , respectively. po#
@ is utilized for

computing a loss function for training the value function. The trainable parameters of the value

function are modified (i.e., trained) using gradients of the loss function and the parameters, denoted

 25

as ∇Q′@ , utilizing the chain rule. Note that the trainable parameters of the value function are

adjusted to minimize the loss function, using a gradient descent algorithm. In each agent, the policy

function is trained using the gradient of po#
@ with respect to its trainable parameters to maximize

the expected reward using gradient ascent, denoted as ∇J′@ . The MADDPG algorithm is

summarized as follows:

MADDPG algorithm

1. Sample nbatch sets of data {O#
@, A#

@, R#$%
@ , O#$%

@ } from the replay buffer and change them into
training dataset {~#

@, m#
@, n#$%

@ , ~#$%
@ } where z ∈ {1,… ,t}.

2. Train policy and value functions of the agents, where z ∈ {1,… ,t}
 B′@(~#

@) = 		mo#
@

 B@(~#$%
@) = 		mo#$%

@

 Q′@q~#%, … , ~#
? , mo#%, . . . , mo#

?r = 	po#
@

 Q@q~#$%
% , … , ~#$%

? , mo#$%
% , . . . , mo#$%

? r = 	p#$%
@

 ∇Q′@ = ∇Q′@q~#%, … , ~#
? , mo#%, . . . , mo#

?r∇;<%' 	ℒqn#$%
@ + p#$%

@ , po#
@r ; gradient descent

 ∇J′@ = −D^∇B′@(~#
@)∇=<%'Q′

@q~#%, … , ~#
? , mo#%, . . . , mo#

?r|=<%'+-:'(A%')_ ; gradient ascent
 Update trainable parameters in Q′@ using ∇Q′@
 Update trainable parameters in B′@ using ∇J′@
 If reach the tau update interval:
 O%

@ = (1 − j)O%
@ + jO′%

@
 O&

@ = (1 − j)O&
@ + jO′&

@

Similar to DDPG, Adam is utilized for the parameter updating of O′% and O′&. Explorations

of all agents are activated by adding small Ornstein-Uhlenbeck noise to the outputs of all policy

functions when collecting training data.

The application of RL to the structural optimization of trusses and frames represents a new

approach in engineering. Reinforcement learning techniques offer the potential to enhance the

efficiency and adaptability of these structures, optimizing their design in response to varying

conditions. Examples of applications of RL in this area are work by Huynh et al. [87], Hayashi et

al. [88], Sahachaisaree et al. [89], and Kupwiwat et al. [90] which combines Q-learning and

evolutionary algorithm for the optimization of truss, proposes combined RL-SA and RL-PSO

methods for plane frames optimization, proposes truss design method using RL, and investigates

the applicability of MADDPG for the geometry optimization of lattice shell, respectively.

 26

2.4 Graph data structure and representation

The success of ML requires properly representing the data to train the model effectively. There are

multiple methods to represent data depending on their types such as a vector and a two-dimensional

matrix for tabular and image data, respectively. In applications of ML to structural optimization

problems, there are multiple approaches to represent data of building structures. Hayashi and

Ohsaki [50] showed that it is effective to represent a truss structure as a graph and then process the

graph data using fixed-size matrices. This method allows the RL agent to capture the properties of

the whole structure and modify the topology of trusses with different connectivity.

A graph is a type of data structure that has nodes connected by edges. Note that nodes

contain data indicated as features and edges contain data about the connectivity, weights of the

connectivity, or relationship between nodes. This connectivity can be either directed or undirected

indicating the directions or no direction of these edges, respectively. A graph, having � nodes and

Ä features in each node, can be represented using a node feature matrix	Å ∈ ℝB×D. An adjacency

matrix É ∈ ℝB×B , a weighted adjacency matrix { ∈ ℝB×B , and a degree matrix Ñ ∈ ℝB×B

represent the data of nodal connections, weights of nodal connections, and the number of

connections at each node, respectively. Figure 2.4 illustrates undirected graph data (a) and its

representation (b). Note that all research in this dissertation utilizes only undirected graph data

which does not indicate the directions of the edge connections, because all edge information in

this dissertation are internal forces and structural properties such as sectional areas which have no

direction.

 27

Figure 2.4: Graph data and graph representation; (a) Graph data, (b) Graph representation from

the graph data

In the context of engineering and structural analysis, graph data provides an effective

means of representing and understanding the interconnections between different elements within

a structure, such as nodal heights and internal forces. At its core, a graph consists of nodes that

represent entities or elements, and edges that signify the relationships or connections between these

entities.

In structural engineering, nodes often correspond to key points within a physical structure,

such as joints or connections where beams, trusses, or columns meet. These nodes are crucial as

they define the structural geometry which determines an overall structural performance. By

representing nodal positions as attributes associated with each node in the graph, we can effectively

capture the structural configuration, and how elements are positioned relative to one another,

aiding in tasks like load distribution, deflection calculations, and assessing the strain energy with

design specifications, and optimize the structure. Examples of the graph representation for the

structural nodes are shown in Refs. [91-93].

Internal forces within a structure, such as axial forces, shear forces, and bending moments,

are fundamental indicators of structural behavior and integrity. These forces are transmitted

through the various elements of a structure, affecting its stability and safety. Graph data can also

be employed to depict these internal forces by incorporating attributes associated with the edges

of the graph. Each edge can be encoded with attributes representing the magnitude and direction

of internal forces experienced by the structural components it connects. As a result, engineers can

 28

create a comprehensive representation of how forces flow through a structure, facilitating the

assessment of load-bearing capacity, structural stresses, the identification of potential failure points,

and optimization of the structure. Examples of the graph representation for the internal forces are

shown in Refs. [94-96].

It is important to note that, in practical structural design optimization, there can also be

non-structural components that are related to the structures such as functionality of each area in

the structures, parametric lines/surfaces, and solutions in the objective space in the case of multi-

objective optimization. Graph representation also offers several approaches to represent these

components and combines to foster a more complete representation of the structural designs.

Examples of these representations can be seen in the research in building information modeling

(BIM) which utilized graph representation for each element in the architecture and structural

models, as shown in Refs. [97] and [98].

2.5 Neural networks

Neural networks as shown in Figure 2.5, also known as artificial neural networks [99, 100], are a

subset of ML and are at the basis of deep learning algorithms. Neural networks comprise node

layers, containing an input layer, one or more hidden layers, and an output layer. Each node, or

artificial neuron, having an associated weight and bias, can compute the output signal from the

input it receives. Multiple nodes can be connected, which means some nodes take outputs from

other nodes as their inputs. In general, the output signal is transformed by an activation function

which acts as a signal threshold. If the output of the node is larger than the threshold value, that

signal is activated and sent to the next connected node. Otherwise, no data is passed through.

Typically, layers in a neural network can be divided into 3 parts consisting of an input layer, hidden

layers, and an output layer. Neural networks are capable of handling multi-dimensional input. Thus,

in recent research and real-world applications, they are widely used as nonlinear approximation

models. Neural networks depend on training data to learn and improve their accuracy. Once these

networks are fine-tuned for accuracy, they become powerful predicting machines that excel in

various domains.

 29

Figure 2.5: Neural Network;

(a) Input layer, (b) Hidden layers, (c) Output layer

A node or neuron in the neural networks has weight (`), bias (Ö), and activation function

qÜ()r. In each of these neurons, an input (á) will be passed to each specified neuron. These

neurons will calculate their outputs (à′) and pass them to specified neurons in the next layer. Note

that these ` and Ö are randomly initialized and will be fine-tuned while the activation function is

pre-determined and will be the same during the training process. This operation of a neuron can

be mathematically written as

à: = 	Ü(â) = 	Ü(`á + Ö)																																								(2.18)

2.5.1 Activation functions

Activation functions are non-linear functions that transform the output of each neuron in neural

networks. By incorporating the non-linear functions into neural networks with more than two

layers, the networks become a universal function approximator [101]. It should also be noted that

these functions have computable gradients of the output with respect to the internal parameters,

enabling the gradient-based optimization method to be performed during the training. Some

activation functions used in this research are as follows:

 30

Sigmoid activation function [102]

äfÄãåfç(â) =
1

1 + é9E
																																		(2.19)

Rectified Linear Unit (ReLU) [103]

èéêë(â) = max	(0, â)																																		(2.20)

Leaky Rectified Linear Unit (LeakyReLU) [104]

êéAíàèéêë(â) = max(ìâ, â): 0 < ì < 1																							(2.21)

Tanh activation function [105]

3A�ℎ(â) =
éE − é9E

éE + é9E
																																											(2.22)

2.5.2 Training neural networks

In practical implementation, the process of training a neural network involves precise tuning of the

weights ` and biases Ö within each neuron of the network according to the corresponding gradient

components of the error function, adapting to the discrepancies detected by the network. Given a

collection of � pairs of real input and output data (á7 , à7), the adjustment of ` and Ö in each

neuron is methodically carried out. The neural network, defined as #6,G(!) = "', computes the

predicted output àó7 from input á7 and then evaluates the disparity between à7 and àó7. Subsequently,

the parameters ` and Ö within each neuron are optimized to minimize the disparity between à7

and àó7 , a quantity referred to as the Loss (ℒ(à7 , àó7)). This loss is determined through various

methods, one of which is the employment of a regression loss function like the Mean Squared

Error (MSE) in RL contexts, where à7 and àó7 represented expected reward (i.e., Q-value) and the

real obtained accumulated reward. The MSE loss function, applied to � data pairs (á7 , à7), is

mathematically expressed as:

 31

ℒ(à7 , àó7) = òäô =
∑ (àó7 − à7)&
B
7+%

�
																																	(2.23)

Note that we are interested in adjusting ` and Ö in the neural network to reduce the loss defined

in Eq. (2.23). The magnitudes of these adjustments are the gradients of the loss function with

respect to ` and Ö which can be calculated, using the chain rule of calculus defined in Eqs. (2.24)

and (2.25), respectively, as

öℒ(à7 , àó7)
ö#6(á7)

ö#6(á7)
ö`

=
öℒ(à7 , àó7)

ö`
																																	(2.24)

öℒ(à7 , àó7)
ö#G(á7)

ö#G(á7)
öÖ

=
öℒ(à7 , àó7)

öÖ
																																	(2.25)

Let ì be a learning rate parameter. The adjustments of ` and Ö are as follows:

` ← ` − ì
öℒ(à7 , àó7)

ö`
																																	(2.26)

Ö ← Ö − ì
öℒ(à7 , àó7)

öÖ
																																	(2.27)

Note that the process that propagates input information á7 along the neural network to

obtain the final product àó7 is called forward propagation [51]. After that the Loss is computed from

àó7, and the information from this loss flows backward through the neural network to obtain the

gradients. This information is called the Backpropagation algorithm [106], and (á7 , à7) is

commonly called training set or training data. If the amount of training set is large, the

computational time is also large. In modern neural network training, this training time can be

optimized by sampling a small amount from the whole training set, i.e., Batch gradient descent, or

by sampling only one sample from the whole training set, i.e., SGD. Training a neural network

using Batch gradient descent or SGD can be further improved using optimization methods in the

following section.

 32

2.5.3 Optimization methods of gradient descent

The original SGD requires enormous optimization steps to tune up the parameters of the

approximation function. Therefore, variants of the SGD algorithm have been developed to increase

the speed of optimization. This research utilizes the Adam algorithm to optimize the weights in

the approximation function in RL. The Adam algorithm is based on two algorithms; Momentum

[107] and RMSProp [108], all of which are explained as follows:

Momentum

Since, in some cases, SGD oscillates around the local optima of each time step of SGD, utilizing

momentum can help to move SGD toward the local optima faster using the weighted average. The

parameter θ is not being updated using its gradient ∇1f(θ)	 directly, but using the weighted

average ù# of its gradient in the past time steps computed as

ù# = 9ù#9% − ì∇1f(θ)																																(2.28)

θ = θ + ù#																																																					(2.29)

where 9 and ì are the parameters for momentum and learning rate. ù# is initialized as ù, = 0.

RMSProp

RMSProp (Root Mean Square Propagation) is a type of adaptive learning rate algorithm that scales

gradient update ∆θ of each parameter θ inversely to the square root of the exponentially weighted

moving average of the accumulated squared value of the gradient. Gradient update ∆θ is defined

as

ü# = †ü#9% + (1 − †)∇1f(θ)⨀∇1f(θ)																																	(2.30)

∆θ = −
1

¢£ + ü#
⨀∇1f(θ)																																									(2.31)

 33

where † and £ are the decay rate and the small constant to stabilize the algorithm. ü# is initialized

as ü, = 0. ⨀ is an element-wise product (Hamadard product). The parameter θ is updated with

learning rate ì by

θ = θ + ì∆θ																																																												(2.32)

Adam

Adam (Adaptive Moments Estimation) is a type of adaptive learning rate algorithm that combines

RMSProp and Momentum algorithms. Adam algorithm calculates gradient update ∆θ using both

scaled gradient and momentum of the gradient with bias corrections in both terms. The gradient

update ∆θ is defined as follows:

@# = †%@#9% + (1 − †%)∇1f(θ)																																(2.33)

ü# = †&ü#9% + (1 − †&)∇1f(θ)⨀∇1f(θ)																(2.34)

@̂ =
@#

1 − †%
# 																																																																		(2.35)

ü̂ =
ü#

1 − †&
# 																																																																	(2.36)

∆θ = −
@̂

√£ + ü̂
																																																												(2.37)

where †%, †&, @̂, and ü̂ are a decay rate for momentum, a decay rate for RMSProp, a correct bias

for momentum, and a correct bias for RMSProp. The parameter θ is updated with learning rate ì

by

θ = θ + ì∆θ																																																													(2.38)

2.5.4 Variants of the Neural Networks

Note that suitable ML models depend on the data type to be processed; for example, the neural

networks are applicable to the tabular data while the convolutional neural networks [109] are

suitable for processing image data. This research utilizes multiple variants of neural networks for

 34

making the RL agent. The basic idea of choosing these variants depends on the type of input data

and the desirable output data. In general, if the input data are the graph representation, then graph

neural networks will be utilized, whereas if the input data are a vector or the output should be a

scalar, then the multi-layer perceptron (MLP) will be utilized instead. Note that the same actor or

critic model can be made of both graph neural networks and MLP. Graph neural networks utilized

in this research include Graph Convolutional Networks (GCNs) [110] and Graph Attention

Networks (GATs) [111]. The detailed explanation of MLP, GCN, and GAT are as follows:

Multi-layer perceptron

A multi-layer perceptron is a name for a neural network that consists of fully connected neurons

with nonlinear activation functions. The illustration of the MLP is similar to Figure 2.5. This

research utilizes the MLPs for making the critics in DDPG and MADDPG agents because the

critics aim to compute the expected rewards which are scalar values. Note some examples in this

research also utilize MLPs when the input data are vectors.

Graph Convolutional Networks

Graph convolutional network is a type of neural network that can process graph representations.

Integrated within the RL framework, GCNs are utilized for making policy and value functions.

Utilizing GCNs, the policy function can compute action on the graph (i.e., embedded node signal)

from a given observation through graph representations. The value function made of GCNs can

predict rewards from the embedded node signal and graph representations of the observation. Let

¶ ∈ ℝB×B and Ñ9%/& be the identity matrix and the inverse of the matrix Ñ%/& satisfying

Ñ%/&Ñ%/& = Ñ, respectively. A GCN computing unit is referred to as a layer that takes Å and either

a normalized adjacency matrix É denoted as Éß = Ñ(#/$[É + ¶]Ñ(#/$ or weighted adjacency

matrix { as inputs to compute embedded node signal Å′ as follows:

Å: = σqÉßÅ,r		or		Å: = σ({Å,)																															(2.39)

where σ(∙) denotes a nonlinear activation function. , ∈ ℝD×I is an internal weight in the GCN

layer with ℎ filters or feature maps [110]. Note that multiple GCN layers can be stacked and the

 35

next layer can take the embedded node signal Å′ from the previous layer as one of the inputs

instead of the original Å.

Graph convolutional network is applicable in various graph problems including node

classification [112], link prediction [113], and graph classification [114]. This research utilizes the

GCNs for making the actors and critics in DDPG and MADDPG agents when the input data are

graph representations in Chapters 3, 4, and 6.

Graph Attention Networks

Graph attention network utilizes a parameterized weight , and attention weight (i.e., attention

coefficient) ™ to indicate the importance of node features and neighboring nodes connected to the

interested node, respectively. Graph attention network computes embedded node signal Å′ by

taking the node feature matrix Å and either the adjacency matrix É or weighted adjacency matrix

{ as inputs as follows:

Å′ = σ(™ÉÅ,)		or		Å: = σ(™{Å,)																																														(2.40)

where σ(∙) is a non-linear activation function. A layer can be considered as a GAT computing unit,

and layers can be stacked to construct a computation model. When stacked, the next layer can take

the embedded node signal Å′ of the previous layer as one of the inputs.

The attention coefficient of node f that has t7 adjacent nodes and its neighboring node

´ ∈ t7 	can be computed as follows:

ì7J =
exp cLeakyReLUq≤K^,ℎ7 ∥ ,ℎJ_rd

∑ expqLeakyReLU(≤K[,ℎ7 ∥ ,ℎ(])r(∈?*
																																	(2.41)

where ≤ and ℎ7 are the trainable attention weight and the features of node f, respectively. exp	(á)

and ∥ denote the exponential function of á and concatenation which horizontally joins two or more

matrices to make a new matrix, respectively. The subscript f´ indicates the (f, ´) component of a

matrix.

 36

Similar to GCN, GAT is also applicable in various domains including node classification

[115], link prediction [116], and graph classification [117]. This research also utilizes the GATs

for making the DDPG agent in Chapter 5.

2.6 Graph and matrix operations

In order to train RL agents, it is important to represent adequate state information for the agent so

that it can learn about the relationship between the state and its decisions on doing action. One

innovation in this dissertation is to utilize graph representation in Section 2.4 on multiple types of

information (i.e., domain) such as the architectural structure, parametric control points for the

structural geometry, and non-dominated solution in the objective space in the bi-objective

optimization case. To combine information from different domains, this research utilizes two

operations to transform a matrix into a vector and to transform a vector into a matrix as follows:

2.6.1 Global sum pooling operation

Global sum pooling operation (GSP) [118] transforms the matrix into a vector by summing up all

entries in each column of the output matrix. Let ¥ ∈ ℝB×D be a matrix, the GSP operation to

transform ¥ into a vector can be represented as

GSP(¥) = G;v7,%

B

7+%

⋯ ;v7,D

B

7+%

H ∈ ℝ%×D																													(2.42)

2.6.2 Stack operation

This operation transforms a row vector into a matrix with desirable number of rows and the same

number of columns. The stack operation that transforms a vector ≤ ∈ ℝ%×D into a matrix m ∈

ℝB×D, is represented as

 37

StackB(≤) = ∑
≤
⋮
≤
π}�	times = m ∈ ℝB×D																					(2.43)

2.7 Computational blocks

This dissertation utilizes variants of the neural networks in Section 2.5.4, and operations in Section

2.6 for making policy and value functions for the RL agents. These neural networks and operations

are defined as computational blocks and connected to become the functions. Figure 2.6 illustrates

the symbols of computational blocks and functions of the MLPs, GCNs, GATs, GSP, and stack

operation utilized throughout this dissertation. Figure 2.7 illustrates an example of an ML model

represented as a group of computational blocks and functions. In this Figure, (a) illustrates the

MLP that takes Input and returns Output, denoted as fMM(). Figure 2.6 (b) shows the GCN layer

that takes Å and Éß or { as inputs, denoted as µqÅ,Éßr or µ(Å, {). Figure 2.6 (c) illustrates the

GCN layer that takes Å and Éß or { as inputs, and, after obtaining the output, utilizes its own

output as Å to compute the output again for 3 times, denoted as iter#^µqÅ , Éß r_	or iter#[µ(Å , {)].

Figure 2.6 (d) shows the GAT layer that takes Å and Éß or { as inputs, denoted as µqÅ,Éßr or

µ(Å, {). Note that the µ, in Figures 2.6 (a)-(d), denotes the activation functions that are selected

from activation functions in Figures 2.6 (e), (f), (g), indicating ReLU, Sigmoid, and Tanh,

respectively. Figures 2.6 (h) and (i) represent the GSP operation and Stack operation, respectively.

 38

Figure 2.6: Symbols of computational blocks and functions; (a) MLP, (b) GCN layer, (c) GCN

layer with iteration, (d) GAT layer, (e) ReLU activation function, (f) Sigmoid activation

function, (g) Tanh activation function, (h) GSP operation, (i) Stack operation

Figure 2.7: Example of an ML model represented as a group of computational blocks and

functions

 39

Neural networks, including specialized variants like MLPs, GCNs, and GATs, can be

applied to architectural and engineering problems by utilizing them as ML models. With sufficient

training methods and training data, these computational models can be leveraged to enhance

diverse tasks such as predictive or surrogate models [119-121], pattern recognitions in structural

engineering [122-124], and designs and optimizations [49,125,126].

2.8 Conclusion

This chapter has presented a brief review of machine learning, especially reinforcement learning,

together with their applications in structural engineering. It covers the DDPG and MADDPG

algorithms and computational ingredients including MLP, GCN, and GAT that are utilized for

constructing the RL agents proposed in the subsequent chapters.

 40

 41

Chapter 3

Topology optimization and sizing optimization of
lattice shells using DDPG and GCN

3.1 Introduction

Optimization of lattice and grid shell structures presents an important task in the field of structural

engineering, with topology and sizing of structural elements being the primary considerations for

achieving optimal designs. These optimization problems are inherently categorized as discrete

combinatorial optimization, characterized by the need to select the most suitable arrangement and

dimensions of structural elements within the lattice shell. The discrete nature of these problems

renders them to be solved using gradient-based optimization techniques, requiring alternative

approaches for their resolution.

In practice, the solutions to topology and sizing optimization problems are often sought

through stochastic- or population-based algorithms such as SA and GA. These methods, while

effective in some cases, come with certain drawbacks. Notably, they tend to require a significant

computational burden due to their iterative nature. Moreover, the heuristic elements inherent in

these algorithms can lead to diverse outcomes across multiple trials, introducing uncertainty and

requiring additional computational resources for statistical evaluation. Consequently, there exists

a compelling need for innovative techniques that can address these challenges by reducing

computational costs and stabilizing optimization outcomes.

This chapter is dedicated to exploring the application of RL as a potential solution to

address these problems in the context of topology and sizing optimizations for lattice shell

structures. Section 3.1 sets the stage by explaining the fundamental topology and sizing

optimization problems encountered in lattice shell design. These problems are framed as discrete

combinatorial optimization problems, where the objective is to obtain the optimal configuration

and dimensions of structural elements within the lattice shell. The chapter then proceeds to

introduce an approach in Section 3.2, employing a specific RL framework known as DDPG

together with a graph-based structural representation. This approach enhances an RL agent,

 42

constructed using GCNs, to learn and optimize the bracing direction within the lattice shell

structure with the goal of minimizing the total strain energy. The utilization of graph

representations enables the agent to navigate the intricate and discrete optimization landscape

inherent to topology optimization.

The extension of the RL methodology to sizing optimization is detailed in Section 3.3,

where the capabilities of the agent are broadened to optimize structural element dimensions. Sizing

optimization is a complex multi-dimensional problem, and the RL agent is equipped to navigate

this discrete parameter space while respecting design constraints. The reward function for this task

is constructed based on changes in structural volume, aligning with the objective of sizing

optimization. Finally, Section 3.4 synthesizes and presents the key findings of this chapter,

highlighting the potential of RL, specifically the DDPG framework, to solve the problems of lattice

shell engineering design by reducing computational cost and enhancing the stability of

optimization outcomes.

3.2 Formulation of optimization problems

3.2.1 Topology optimization

The topology optimization problem aims to minimize the total strain energy of lattice shells

subjected to static loads. The lattice shells consist of main grid elements and bracing elements

which are modeled as 3-dimensional beam elements with 12 degrees of freedom (DoFs) and 3-

dimensional truss elements with 6-DoFs, respectively. The stiffness matrices, in the local

coordinate system, of the beam element and bracing element are defined as !! ∈ ℝ"#×"# and !% ∈

ℝ&×&, respectively. The global stiffness matrix	% ∈ ℝ'!×'! 	is assembled from these local stiffness

matrices with respect to the global coordinate system, with &(as the number of DoFs of the shell

after assigning the boundary conditions. Nodes and elements in the shell are subjected to a point

load and self-weight per unit length, respectively. These loads and weights are aggregated into the

load vector ' ∈ ℝ'!, with respect to the global coordinates. The nodal displacement vector (∈

ℝ'! is obtained by solving the equilibrium equations defined as

%(= '																																																																					(3.1)

 43

The total strain energy / is computed from

/ =
1

2
()%((3.2)

In this problem, given a lattice shell with &* by &+ square grids (Figure 3.1(a)) and

diagonal bracing in each grid cell 1 ∈ 21,… , &*&+5 , there can be two possible directions for

bracing indicated by 6",- , 6#,- ∈ {0,1} which correspond to absence and presence of the brace in

each direction (Figure 3.1(b)).

Figure 3.1: Bracing directions in the grid cell 	1 and corresponding values of 6",- and 6#,-:

bracing direction optimization of lattice shells

From Figure 3.1, only one brace should exist in the grid cell 1, and the summation 6",- +

6#,- is always 1. Let ;" ∈ ℝ'"'# and ;# ∈ ℝ
'"'# be vectors consisting of 6",- and 6#,- for all

bracing elements. The global stiffness matrix of the structure is formulated as a function of ;" and

;# denoted as %(;", ;#). The topology optimization problem to minimize the strain energy, by

defining bracing directions, is formulated as follows:

minimize					/(;", ;#) =
1

2
()%(;", ;#)(

subject	to					6",- 	, 6#,- ∈ {0,1}, (1 = 1, 2, … , &.&/)																							(3.3)

6",- +	6#,- = 1,												(1 = 1, 2, … , &.&/)																																	

 44

where (is an implicit function of ;" and ;# obtained by solving Eq. (3.1).

3.2.2 Sizing optimization

In this problem, the structural volume of the lattice shell, subjected to external load under stress

constraints, is the objective function to be minimized. Let & be the number of lattice beam elements

in the structure. Predetermined indices of cross-sectional properties and lengths of element H are

denoted as 60 ∈ {0,1, … , &1} and I0 , respectively. The structural volume J of a lattice shell is

obtained from sectional areas K(60) when defining the cross-sectional indices 60 and lengths I0, as

follows

J(;) =LK(60) ∙ I0

'

02"

																																																						(3.4)

In this sizing optimization problem, all the structural elements are three-dimensional beam

elements with 12 DoFs. The internal stress in the structural element is derived from local

displacements of each element after solving the stiffness equation similar to Eq. (3.1). The ratio

of internal stress to the allowable stress O0	of an element H is computed similar to Largaros et al.

[127], expressed as follows:

O0	 = P

|5$|
56$
+

|5%|
56%
+

|5&|
56&

: if	
|5$|
56$
≤ 0.15

|($|
).+×(-$

7
|(%|
(-%

7
|(&|
(-&

: if	
|5$|
56$
> 0.15

																																										(3.5)

where O", O#, and O8 denote the axial stress, maximum stress due to the bending moment in the

local V-axis, and in the local W-axis, respectively, and OX", OX#, and OX8 are their upper bounds.

The sizing optimization problem of the lattice shell to minimize the structural volume under

stress constraints is defined using Eq.	(3.4) as follows:

 45

minimize					J(;)																																																																														

subject	to				O9:.	 ≤ 1																																																											(3.6)

60 ∈ {0,1, … , &1}																																																								

where O9:.	 denotes the maximum absolute value of the stresses in the structure.

3.3 Topology optimization of lattice shell using DDPG and GCN

This section introduces the RL method for solving problems in Section 3.1.1. The optimization

problem is formulated into an MDP where the state is the current structural configuration and

response, the action is the modification of bracing directions, and the reward is computed from the

improvement of the objective function. The agent is the DDPG agent that takes state data as inputs

to compute the output (i.e., action).

In order to provide information on the structural configurations and response to the agent,

this research utilizes the graph representation as explained in Section 2.4 in Chapter 2, illustrated

in Figure 3.2. In this problem, the lattice shell (Figure 3.2(a)) is represented as a graph where the

graph nodes and edges represent structural nodes and elements, respectively (Figure 3.2(b)).

Information of the structural nodes including coordinates and boundary conditions are stored in

the graph node and represented using a node feature matrix. Information on the structural elements

such as the existence/non- existence of the element and internal forces are represented through

adjacency and weighted adjacency matrices (Figure 3.2(c)). The RL agent utilizes these matrices

as state data to compute the actions in each optimization step.

 46

Figure 3.2: Graph representation of the lattice shell for bracing direction optimization of lattice

shells

 47

Figure 3.3 shows the MDP of the topology optimization of the lattice shell, formulated as

explained in Section 2.3 in Chapter 2. At a timestep Z, the agent observes the state S; which is the

graph representation of the current structural configuration shown in Figure 3.3(a). The agent does

the action A; which determines the bracing direction in each grid, illustrated in Figure 3.3(b). The

structure is modified and the objective function is computed. The agent obtains a reward R;7"

based on the modified structure shown in Figure 3.3(c) and the new step of MDP begins. The

optimization ends when Z reaches a maximum Z9:..

Figure 3.3: MDP of the bracing direction optimization of lattice shells

3.3.1 State

In this problem, information of the structural nodes is represented through the node feature matrix

^ ∈ ℝ'×< . The H th row of ^ , representing information of node H , is _0 =

`a0 max
=
a=d V0 max

=
V=d W0 W9:.⁄ 1!>%%

0 1!?.
0
f where a0 , 	V0 , and 	W0 are the coordinates of

node H, W9:. is the pre-determined upper-bound value of W0. max
=
a= and max

=
V= are the maximum

a and V coordinate values, respectively, and the minimum coordinate values are 0 in all

coordinates. 1!>%%0 and 1!?.0 are defined based on the boundary conditions (i.e., supports) as

 48

g1!>%%
0 , 1!?.

0 h = (0, 1) if node H is a fixed support, and g1!>%%0 , 1!?.
0 h = (1, 0) if node H is not

supported.

Information about the existence of lattice beam elements is represented using the adjacency

matrix for beam elements i" ∈ ℝ'×' . In this matrix, j"./ , indicating the (H, k) component of

matrix i", denotes the existence of a beam element l connecting nodes H and k. Note that j"0@
=

j"@0
= 1A%:9

B , and 1A%:9B indicates the existence and non-existence of a 12-DoF beam element l

that connects nodes H and k by 1A%:9B = 1 and 0, respectively. Similar to i", the adjacency matrix

for truss elements i# ∈ ℝ'×' represents the existence of a truss element l connecting nodes H and

k as j#0@
= j#@0

= 1C>DEE
B , which indicates the existence and non-existence of a 6-DoF truss

element l that connects nodes H and k by 1C>DEEB = 1 and 0, respectively.

To evaluate efficiency of the structural configuration, this research introduces weighted

adjacency matrices representing the internal forces. Information of the internal force in beam

elements is represented through weighted adjacency matrix m" ∈ ℝ'×' whose entries are the ratio

between the bending moment and the axial force in the elements. Let beam element l connect

nodes H and k. The entry n"0@ in m" is expressed as follows:

n"0@ = 1A%:9
B o′B0 (q′B + 1)⁄ 																																																										(3.7)

o′B0 = F|G0.|HG1234
I FG125"

HG1234
IJ 																																																				(3.8)

q′B = K|L0|HL1234M KL125"HL1234MJ 																																																							(3.9)

where oB0 is the bending moment around the horizontal axis on the section at node H, and qB is the

axial force of beam element l. o!
9:. and o!

9?N are the maximum and minimum absolute values

of bending moments at the element ends of all beam elements. q!9:. and q!9?N are the maximum

and minimum absolute axial forces of beam elements.

Information of the internal force in the truss elements is represented by m# ∈ ℝ'×' whose

entries are normalized forms of the axial forces. The entry n#0@ in m# corresponding to element l

connecting nodes H and k is defined as

n#0@ = 1C>DEE
B q′B 																																																																																		(3.10)

 49

q′B = K|L0|HL6234M KL625"HL6234MJ 																																																					(3.11)

where qB is the axial force in the truss element l . qO9:. and qO9?N are the maximum and

minimum absolute values of axial forces for truss elements, respectively.

Note that all values in the node adjacency matrix and weighted adjacency matrices are in

the range of [0,1], which helps avoid numerical instability during training.

Values in adjacency matrices are normalized using the degree matrices. Degrees of

connectivity of each structural node to other nodes, through beam and truss elements, are

represented using degree matrices for beam, truss, and combined beam and truss elements, denoted

by w" ∈ ℝ'×' , w# ∈ ℝ'×' , and w8 ∈ ℝ'×' , respectively. Entries in these matrices wP (x =

1, 2, 3) are computed using their associated adjacency matrix iP (x = 1, 2, 3) as yP0@ =

z0@ ∑ jP0@

'
02" , where z0@ is the Kronecker delta which is 0 if H ≠ k and 1 if H = k. The normalized

adjacency matrices of beam, truss, and combined beam and truss elements denoted as i}" ∈ ℝ'×',

i} # ∈ ℝ'×', and i} 8 ∈ ℝ'×' are computed as

i} = w7$/%[i + ~]w7$/%																																																						(3.12)

where ~ ∈ ℝ'×' is the identity matrix, and wH"/# is the inverse of the matrix w"/# satisfying

w"/#w"/# = w.

Table 3.1 summarizes entries in the node feature matrix ^, and Table 3.2 shows entries in

the adjacency matrix of beam elements i" , the adjacency matrix of truss elements i# , the

adjacency matrix of combined beam and truss elements i8, the weighted adjacency matrix of

beam m", and the weighted adjacency matrix of truss m#.

Table 3.1: Entries in node feature matrix (^) for bracing direction optimization of lattice shells

&0," a-coordinate of node H: a0 max
=
a=d

&0,# V-coordinate of node H: V0 max
=
V=d

&0,8 W-coordinate of node H: W0 W9:.⁄
&0,R 1 if the node has fixed support, else 0: 1!?.0
&0,< 1 if the node has no support, else 0: 1!>%%0

 50

Table 3.2: Entries in adjacency and weighted adjacency matrices (i", i#, i8, m", and m#) for

bracing direction optimization of lattice shells

j"0,S
 1 if there is a beam element connecting nodes H and k (1A%:9B = 1), else 0

j#0,S
 1 if there is a truss element connecting nodes H and k (1C>DEEB = 1), else 0

j80,S
 j"0,S

+j#0,S

n"0,@
a ratio between the bending moment and the axial force of an element if there is a
beam element connecting nodes H and k, else 0
where n"0,@ = (1A%:9

B o′B0 (q′B + 1)⁄ 	

n#0,@
an axial force of an element if there is a truss element connecting nodes H and k, else
0 where n#0,@ = 1C>DEE

B q′B

3.3.2 Agent

In this optimization problem, policy and value functions (i.e., actor and critic networks of a DDPG

agent) are made of GCN layers, explained in Chapter 2. In some GCN layers, weighted adjacency

matrices representing internal forces replace normalized adjacency matrices. The output of a GCN

layer is transformed by activation functions. In general, the ReLU activation function is applied to

all layers of both policy and value functions except the last layer of the policy function, where the

Sigmoid activation function is used to scale the output to be within [0,1] for predicting probability-

based output (i.e., probability of taking action A;0 in a state S;).

The policy function � takes state data (^, i} ", i} #, i} 8, m", m#), explained in Section 3.2.1,

as input to compute the output � ∈ ℝ'×"TT. This output, having the same number of rows as those

of the node feature matrix 	^ ∈ ℝ'×<, is interpreted as the modifications of bracing directions.

Note that the number of columns (i.e., embedded node signal) in � should be sufficient to represent

the probability of brace direction modification in the lattice shell. In this research, this number is

100.

 Value function Q computes an estimation of the accumulated reward (i.e., Q-value) using

state data and the output from the policy function (�) as input. To compute the Q-value, another

matrix denoted as iU ∈ ℝ'×' is computed from the output of the policy function � ∈ ℝ'×"TT,

multiplied element-wise with i# to exclude non-bracing elements, and normalized within the

range [0,1] through dividing by 100 as iU = (� ∙ �))⨀i#/100, where ⨀ is the element-wise

product. The value function output should be a scalar representing the estimation of accumulated

 51

reward but outputs of GCN layers are matrices. Therefore, the GSP operation and MLP are utilized

for transforming the output matrix of the last GCN layer of the value function into a scalar value

and estimating the accumulated reward (i.e., Q-value ∈ ℝ"×"), respectively.

Table 3.3 summarizes the computation processes of the policy and value functions of the

GCN-DDPG agent for bracing direction optimization. In each column, the first row indicates

whether the computation belongs to the policy or the value function. The second row denotes the

input data used for the computation. The third row indicates the computation process using GCN

layers, GSP operation, and MLP, as explained in Section 2.5 in Chapter 2. The last row denotes

the output of the function. Figure 3.4 illustrates actor and critic networks in this optimization

process, utilizing symbols in Figure 2.6 in Chapter 2.

Table 3.3: Policy and value functions of GCN-DDPG for bracing direction optimization of

lattice shells

policy function � value function Q
input: ^, i} ", i} #, i} 8, m", m# input: ^, i} ", i} #, i} 8, m", m#, i#, �
computation:
step 1: ^"." = µgµ(^, m"),i} "h

	^#." = iter#[µ(^".", m")]	

step 2: ^".# = µgµ(^, m#),i} #h
		^#.# = iter#[µ(^".#, m#)]	

step 3: ^8 = ^#." + ^#.#
 � = σg^8, i} 8h

computation:
step 1: ^"." = µgµ(^, m"),i} "h

	^#." = iter#[µ(^".", m")]	

step 2: ^".# = µgµ(^, m#),i} #h

	^#.# = iter#[µ(^".#, m#)]	
step 3: iU = (� ∙ �))⨀i#/100

step 4: ^".8 = µgµ(�,iU),i} #h

 ^#.8 = iter#[µgµ(^".8, iU),i} #h]

step 5: ^8 = ^#." + ^#.# + ^#.8
 ^R = µg^8, i} 8h

step 6: Ü< = GSP(^R)
step 7: Q = 	 fWW(Ü<)

output: � ∈ ℝ'×"TT output: Q ∈ ℝ"×"

 52

Figure 3.4: Actor and critic networks for bracing direction optimization of lattice shells

3.3.3 Action

Agent optimizes the lattice shell by determining the bracing direction in each grid cell. Similar to

the link prediction using GCN for predicting a connection between two nodes in the graph, the

direction of the brace is determined from a dot product of each row of the policy function output

�. Since the structural nodes are already represented as graph nodes, the prediction of a link or

connection between two structural nodes is equivalent to a truss element (bracing element) that

connects those nodes.

Figure 3.5 illustrates a 4-node structure in a grid cell with two possible diagonal braces that

connect node H to node k and node & to node j, respectively (Figure 3.5(a)). The values of â0@ and

 53

â'X are dot products of the pairs of rows (H, k) and rows (&,j) of the policy function output,

respectively. Note that â0@ = â@0 and â'X = âX' as shown in Figure 3.5(b). Since the optimization

problem in Eq. (3.3) allows only one brace in each grid cell, â0@ and â'X are compared to

determine the bracing direction in the grid cell.

Figure 3.5: Bracing directions and associate link predictions in a grid cell for bracing direction

optimization of lattice shells

From the output of the policy function � ∈ ℝ'×"TT, the brace in grid cell 1 is determined as

A;
- = ä

(6",- , 6#,-) = (1, 0) : if	â0@ > âX'
(6",- , 6#,-) = (0, 1) : if	â0@ < âX'

																											(3.13)

â0@ 	= 			 â@0 =L å0,Yå@,Y
"TT

Y2"

																																											(3.14)

âX' = â'X =L å',YåX,Y
"TT

Y2"

																																								(3.15)

At each step, the agent can change any number of brace directions.

 54

3.3.4 Reward

The reward is calculated from the difference of the strain energies measured before and after the

agent does the action in each optimization step to motivate the agent to do actions that improve

the objective function (i.e., reducing the strain energy). At step Z, the reward signal R;7", which

the agent receives after doing action A; in a state S;, is computed from the change of the total strain

energy as

R;7" = (/; − /;7") /T⁄ 																																																		(3.16)

where /; and /T are the value of total strain energy of the structure at step Z and the initial structure,

respectively.

3.3.5 Numerical examples

The agent is first trained to optimize the structure in the training phase to assess the ability to

improve its performance, utilizing small structures. In the test phase, the agent performance is

evaluated on larger structural configurations than those used in training. In the test phase, results

obtained by the proposed method are compared with those obtained by the enumeration method

(EM) and GA; EM is utilized for benchmarking problems when computing all possible solutions

is feasible, and GA is utilized for the benchmark when it is not feasible to compute all possible

solutions because of the large search space. The number of feature maps ℎ	in all GCN layers,

explained in Section 2.5 in Chapter 2, is 200. MLP has two hidden layers, each consisting of 200

neurons.

The 12-DoF frame element has a hollow cylindrical section with an external and internal

diameter of 100 mm and 90 mm, respectively. The 6-DoF truss element has a solid circular section

with a diameter of 43.6 mm. Both elements have Young’s modulus of 205 kN/mm2 and a same

weight of 12 kg/m. All structural nodes are subjected to a vertical downward point load of 10 kN.

The program is implemented using Python 3.6 environment. A PC with CPU Intel Core i5-6600

(3.3 GHz, 4 cores) and GPU AMD Radeon R9 M395 2 GB is utilized for computation.

 55

Figure 3.6 illustrates the algorithm flowcharts for the training and test phases. During the

optimization process, each MDP is denoted as a step. The loop of MDPs, defined as a game or an

episode, is terminated when the specified number of steps is reached.

The algorithm in the training phase (Figure 3.6(a)) is as follows; (0) The finite element

model of the lattice shell is initialized with random bracing direction in each grid. (1) Information

of the structure is represented using graph representation. (2) Graph representation becomes state

data. (3) The agent takes graph representation as input and computes the action. (4) Bracing

directions in the lattice shell are modified according to the action. The finite element analysis is

performed to obtain the objective function value and structural responses. The reward is computed

from the change of the objective function value. (5) The agent is trained by collected state-action-

reward data and the parameters in the agent are updated. (6) If the final step is not reached go to

step (1), if the final step is reached end and save data.

Once the agent has undergone training for a certain number of episodes, it is then applied

to optimize a lattice shell using the algorithm during the test phase, as shown in Figure 3.6(b). The

process can be described as follows; (0) After initialization, the finite element model of the lattice

shell is set up with random bracing directions at each grid. (1) The structural information is

represented as a graph. (2) This graph representation is then converted into the state data. (3) The

agent, using this state data as input, proceeds to calculate an action. (4) Subsequently, based on the

action, adjustments are made to the bracing directions in the grid cells of the lattice shell. The finite

element analysis is performed. If the objective function is improved, then the structure is modified;

otherwise, the lattice shell is reverted to the configuration before the action. (5) If the final step is

reached, the process concludes, and the data is saved; If not, it loops back to (1).

 56

Figure 3.6: Flowcharts of the algorithm for bracing direction optimization of lattice shells;

(a) Training phase, (b) Test phase

3.3.5.1 Training phase

Training is carried out on lattice shell structures with 4´4 grids and diagonal truss braces. Each

grid cell has dimensions of 1.0 m by 1.0 m. In each game of training, a model is initialized for each

game with supports assigned to either of the two pre-determined dome-shaped structures indicated

in Figure 3.7. The maximum nodal height is 1 m and the minimum is 0. The brace directions are

randomly initialized at every game.

 57

Figure 3.7: Structural models for bracing direction optimization during training phase;

(a) Support condition 1, (b) Support condition 2.

The number of steps in each game is 200. The agent surrogate functions, as explained in

Section 2.3.3 in Chapter 2, are adjusted using the Adam optimizer, as explained in Section 2.5.3

in Chapter 2. The mini-batch size is set to 32 and the learning rates are 10-7 and 10-6 for policy and

value functions, respectively. Note that learning rates are reduced by a factor of è=0.1 every 200

games (20000 steps) to stabilize the training process. Note that the details of the training process

are explained in Section 2.5.2 in Chapter 2. Weights and biases of the surrogate functions are

synchronized with those of the online functions every 100 steps using ê=0.05, as explained in

Section 2.3.3 in Chapter 2. The agent is trained for 1000 games. In the value function, the MSE is

the loss function.

Figure 3.8 shows the cumulative reward obtained during the training phase, which indicates

the ability of the agent to improve its performance. In this figure, the vertical and horizontal axes

represent the cumulative reward obtained during training, and the game number, respectively.

Since support and bracing directions are changed at every training game, there are fluctuations in

the obtained rewards. However, the moving average with a window size set to 50 of these rewards,

indicated as the thick red line, increases during the first 200 games and then remains stable around

a certain value. This indicates that the agent has the learning capability to optimize structural

configurations of braces in different topology and support conditions. The number of structural

analyses carried out with GCN-DDPG in the training phase is equal to the number of training

games multiplied by the number of steps in each training game, which is 100000.

 58

Figure 3.8: Variation of reward and its moving average in training phase for bracing direction

optimization of lattice shells

3.3.5.2 Test phase

To investigate the capability of the agent on structures that have not been included in the training

phase, the trained agent is applied to topology optimization using four lattice shells with pre-

determined geometries and support conditions denoted as 1, 2, 3, and 4 (Figures 3.9-3.12). Each

of these support conditions also has eight sizes of lattice shells including 4´4, 4´6, 6´6, 4´10,

10´6, 10´10, and 20´20-grids, and the bracing directions are initialized randomly. The agent

optimizes each structural model 10 times and the number of optimization steps for the test phase

is 100.

 59

Figure 3.9: Structural models for test phase for bracing direction optimization of lattice shells –

support condition 1

Figure 3.10: Structural models for test phase for bracing direction optimization of lattice shells –

support condition 2

 60

Figure 3.11: Structural models for test phase for bracing direction optimization of lattice shells –

support condition 3

Figure 3.12: Structural models for test phase for bracing direction optimization of lattice shells –

support condition 4

The minimum (min.), mean, and standard deviation (std.) of the strain energy, and mean

energy reduction rate (reduction) of each structural model are shown in Table 3.4. Note that the

reduction rate is (/T − /∗)//T		where /∗ is the final strain energy of the lattice shells. From this

 61

table, the trained agent improves lattice shells by reducing the strain energy by 5-25%, depending

on the structure size and support conditions. In all ten trials of test structures, the standard

deviations are low compared with the mean, indicating a good convergence property.

Table 3.4: Test results for bracing direction optimization of lattice shells

support
conditions grid size min. (N⋅m) mean (N⋅m) std. (N⋅m)

reduction
(%)

1

4´4 4.38 4.53 0.19 16.83
4´6 15.71 16.01 0.38 13.21
6´6 63.15 67.40 2.56 18.10
4´8 72.49 73.72 0.69 5.55
10´6 450.47 459.92 7.89 12.89
10´10 2242.26 2288.05 40.79 19.80
20´20 213715.82 217120.90 1742.84 10.08

2

4´4 77.88 89.35 10.02 19.94
4´6 284.81 290.09 3.98 20.21
6´6 818.14 896.06 46.93 19.71
4´10 2124.56 2142.64 17.10 20.76
10´6 4642.28 4713.70 37.63 19.79
10´10 17683.39 17966.80 181.50 24.36
20´20 1275569.06 1312975.69 42317.86 19.66

3

4´4 32.11 32.78 0.53 6.43
4´6 70.09 72.40 1.44 5.29
6´6 345.73 356.54 6.92 12.59
4´10 193.91 198.18 2.84 6.69
10´6 2841.17 2869.52 18.50 10.95
10´10 8219.87 8333.38 101.09 12.28
20´20 589997.91 596066.09 4460.72 9.38

4

4´4 40.81 41.34 0.46 17.71
4´6 156.09 161.09 3.61 22.68
6´6 527.56 535.43 5.95 17.30
4´10 1192.81 1213.16 11.94 21.76
10´6 3466.03 3542.59 47.95 11.63
10´10 12629.96 12762.32 109.98 16.49
20´20 920936.67 931040.36 8426.17 16.35

 62

3.3.5.3 Comparison of computation cost and performance with EM and approximate GA

Results obtained by the RL agent are compared to benchmarks. For 4´4-grid structures, global

optimal solutions are obtained using EM by generating 2- combinations of bracing directions for

1 grid cells. For structures with a greater number of grids, EM is not feasible and GA is utilized to

obtain approximate optimal solutions. GA is a population-based method mimicking the process of

natural evolution which can be utilized for solving combinatorial optimization problems. The

important operations in GA are selection to transfer superior solutions from one generation to the

next generation, crossover to generate new diverse solutions, and mutation to modify solutions

with a certain probability in order to avoid convergence to local minima. In this topology

optimization problem, bracing directions in grid cells are represented as binary strings. The GA

algorithm in the Python library named DEAP (Distributed Evolutionary Algorithms in Python)

[128] is used. The number of population and generation of GA are determined based on the

feasibility of computational cost. In the following examples, the numbers of population and

generations are 50 and 100, respectively. Note that a comparison is made to benchmark both the

performance and computational efficiency of GCN-DDPG and GA for the preliminary design

process of lattice shells where several configurations are to be evaluated. Table 3.5 shows the

computational cost of GCN-DDPG (test phase), EM, and GA for each problem and the size of the

global stiffness matrix.

In Table 3.6, the ratio of the difference between the minimum strain energy solution

obtained by RL and that obtained by GA (or EM) is shown in the column labeled as ‘diff’,

computed as

diff = (min(Result[\) − Result]^) Result]^⁄
diff = (min(Result[\) − Result_`) Result_`⁄

																														(3.17)

From Tables 3.5 and 3.6, the solution quality and the efficiency of the GCN-DDPG agent

can be assessed. In most cases, results obtained by the GCN-DDPG agent are comparable to those

obtained by EM and GA with less than 10% difference using less computational cost. In this

problem, the proposed method may not be ideal for finding the most optimal structure, however,

once the trained agent is obtained, the method is useful in the preliminary design process, which

 63

typically requires testing several structures, and efficiency in computational cost is desired. Note

that the structure with a large size of global stiffness matrix requires a long computing time for

solving the linear analysis problem. Therefore, the GCN-DDPG is significantly more efficient than

GA when applied to the bracing direction optimization of large structures.

Figure 3.13 illustrates the initial brace topology, final brace topology, and the change of

strain energy of GCN-DDPG best results for 6´6-grid structural models. Although the structural

configurations differ considerably from those used in the training phase in terms of the support

conditions and the size, the agent is capable of minimizing the strain energy by adjusting the

bracing directions. From Figures 3.13(a) and 3.13(c), where the support locations are symmetric,

the agent obtains solutions with symmetric layouts, despite the fact that the symmetry condition

feature is not explicitly imposed.

 64

Table 3.5: Total computational cost of structural analysis of each method for bracing direction

optimization of lattice shells

support
conditions grid size

size of the global
stiffness matrix

&(× &(

number of structural analyses (times)
GCN-DDPG
(test phase)

benchmarks
EM GA

1

4´4 54´54 1000 65536 5000
4´6 90´90 1000 - 5000
6´6 150´150 1000 - 5000
4´10 198´198 1000 - 5000
10´6 270´270 1000 - 5000
10´10 486´486 1000 - 5000
20´20 2166´2166 1000 - 5000

2

4´4 126´126 1000 65536 5000
4´6 186´186 1000 - 5000
6´6 270´270 1000 - 5000
4´10 306´306 1000 - 5000
10´6 438´438 1000 5000
10´10 702´702 1000 - 5000
20´20 2622´2622 1000 - 5000

3

4´4 90´90 1000 65536 5000
4´6 138´138 1000 - 5000
6´6 210´210 1000 - 5000
4´10 234´234 1000 - 5000
10´6 378´378 1000 - 5000
10´10 594´594 1000 - 5000
20´20 2394´2394 1000 - 5000

4

4´4 102´102 1000 65536 5000
4´6 150´150 1000 - 5000
6´6 234´234 1000 - 5000
4´10 246´246 1000 - 5000
10´6 402´402 1000 - 5000
10´10 642´642 1000 - 5000
20´20 2502´2502 1000 - 5000

 65

Table 3.6: Comparison of results obtained by GCN-DDPG (test phase) and benchmarks for

bracing direction optimization of lattice shells

support conditions grid size min (N⋅m) method benchmarks (N⋅m) diff

1

4´4 4.38 EM / GA 4.38 / 4.38 0.00
4´6 15.71

GA

15.66 0.00
6´6 63.15 61.55 0.03
4´10 72.49 71.88 0.01
6´10 450.47 422.35 0.07
10´10 2242.26 2135.28 0.05
20´20 213715.82 202566.99 0.06

2

4´4 77.88 EM / GA 77.88 / 77.88 0.00
4´6 284.81

GA

279.67 0.02
6´6 818.14 777.99 0.05
4´10 2124.56 2046.13 0.04
6´10 4642.28 4342.47 0.07
10´10 17683.39 16294.39 0.09
20´20 1275569.06 1170860.54 0.09

3

4´4 32.11 EM / GA 31.59 / 31.59 0.02
4´6 70.09

GA

66.69 0.05
6´6 345.73 342.38 0.01
4´10 193.91 182.56 0.06
6´10 2841.17 2725.89 0.04
10´10 8219.87 7697.87 0.07
20´20 589997.91 553614.84 0.07

4

4´4 40.81 EM / GA 40.77 / 40.77 0.00
4´6 156.09

GA

150.95 0.03
6´6 527.56 485.53 0.09
4´10 1192.81 1140.11 0.05
6´10 3466.03 3150.67 0.10
10´10 12629.96 11462.31 0.10
20´20 920936.67 850282.94 0.08

 66

Figure 3.13: GCN-DDPG result of the 6´6-grid structure in the test phase for bracing direction

optimization of lattice shells; (a) Support condition 1, (b) Support condition 2, (c) Support

condition 3, (d) Support condition 4.

 67

3.4 Sizing optimization of lattice shell using DDPG and GCN

This section introduces the RL method for solving problems in Section 3.1.2. The method is

modified from those in Section 3.2. The optimization problem is also formulated into MDPs where

the reward is computed from the improvement of the objective function. The structure is

represented using graph representation, with slight modification from Section 3.2, as illustrated in

Figure 3.14.

These graph representations serve as state data for the RL agent to compute the actions in

each optimization step. Figure 3.15 illustrates the MDP in this example. In a discrete timestep Z,

the agent observes the state S; which is the graph representation of the structural configuration

(Figure 3.15(a)). The agent determines the action A; which is reducing the cross-sectional indices

of elements (Figure 3.15(b)). The structure is modified and structural responses are computed. The

agent obtains a reward R;7" based on the changed structure (Figure 3.15(c)) and the new step of

MDP begins.

 68

Figure 3.14: Graph representation of the lattice shell for sizing optimization of lattice shells

 69

Figure 3.15: Proposed MDP for sizing optimization of lattice shells

3.4.1 State

In this example, the state is the graph representation of the structure consisting of node feature

matrix ^ , adjacency matrix i , weighted adjacency matrix of sectional area m: , weighted

adjacency matrix of stress ratio ma, and weighted adjacency matrix of internal forces m!. Tables

3.7 and 3.8 show entries in the node feature matrix, and entries in adjacency and weighted

adjacency matrices, respectively. Note that all values in these Tables are normalized using the min-

max normalization method.

Table 3.7: Entries in node feature matrix (^) for sizing optimization of lattice shells

&0," a-coordinate of node H
&0,# V-coordinate of node H
&0,8 W-coordinate of node H
&0,R 1 if the node has fixed support; else 0
&0,< 1 if the node has no support; else 0

 70

Table 3.8: Entries in adjacency and weighted adjacency matrices (i, m:, ma, and m!) for sizing

optimization of lattice shells

j0,S 1 if there is an element connecting nodes H and k; else 0
n:0,@ sectional area of an element if there is an element connecting nodes H and k; else 0

na0,@
a ratio of internal stress to the yield stress of an element if there is an element
connecting nodes H and k; else 0

n!0,@
a ratio of the summation of internal bending forces in the local V and W axes (f#, f8)
to the local axial force (f") of an element if there is an element connecting nodes H
and k; else 0 where n!0,@ = (|f#| + |f8|)/(1 + |f"|)	

3.4.2 Agent

In this optimization problem, actor and critic networks of a DDPG agent are made of GCN

layers. The policy function � takes state data (^, i} , m:, ma, m!), explained in Section 3.3.1, as

input to compute the output � ∈ ℝ'×"TT. This output is interpreted to determine which element to

be reduced in size. In order to sufficiently represent the probability of modifying the sectional area

in each element of the lattice shell, the number of columns (i.e., embedded node signal) in	� is set

to 100. Value function Q computes Q-value utilizing state data and	� as input. Table 3.9 shows the

inputs, computations, and outputs of the policy function (left column) and the value function (right

column). Figure 3.16 shows actor and critic networks in this optimization process.

Table 3.9: Policy and value functions of GCN-DDPG for sizing optimization of lattice shells

policy function value function
input: ^, i} , m:, ma, m! input: ^, i} , m:, ma, m!, �
computation:
step 1: ^"." = ReLU(ReLU(^, m:), m:)
 ^".# = ReLU(ReLU(^, ma), ma)
 ^".8 = ReLU(ReLU(^, m!), m!)
step 2: ^# = ^"." + ^ + ^".8
step 3: � = SigmoidgReLU(^#, ma),i}h

computation:
step 1: ^"." = ReLU(ReLU(^, m:), m:)
 ^".# = ReLU(ReLU(^, ma), ma)
 ^".8 = ReLU(ReLU(^, m!), m!)
step 2: i∗ = (� ∙ �))⨀i}/100
 ^# = ReLU(ReLU(�,i∗),i∗)
step 3: ^8 = ^"." + ^".# + ^".8 + ^#
step 4: ^R = ReLUg^8, i} h
step 5: Q = fWWgGSP(^R)h

output: � ∈ ℝ'×"TT output: Q ∈ ℝ"×"

 71

Figure 3.16: Actor and critic networks for sizing optimization of lattice shells

 72

3.4.3 Action

The agent can make decision to reduce the sectional size of multiple elements simultaneously by

interpreting the normalized output of the policy function � → �/100. In this interpretation, each

sectional size 60 of an element H that connects nodes n and ö is determined as

60 =

⎩
⎨

⎧
	
min	(0, 60 − 1) : if	L 		å=,P	åb,P

"TT

P2"

> Zℎûlüℎ†ây"

60 : if	L 	å=,P	åb,P
"TT

P2"

≤ Zℎûlüℎ†ây"

							(3.18)

where Zℎûlüℎ†ây" = 0.3.

3.4.4 Reward

The agent obtains a reward R;7" after modifying the structure by the action A; in a state S; in an

optimization step Z. R;7" is obtained from the change of the structural volume as follows:

R;7" = ä	
(J; − J;7")/JT	 : if	 O0	9:.	 ≤ 1

−1 : if	 O0	9:.	 > 1	or	Z = Z9:.
																											(3.19)

where J; and JT are the structural volume at step Z and the initial step, respectively.

3.4.5 Numerical examples

In each optimization step, the DDPG agent observes the graph representation of the structure,

chooses elements to reduce their section sizes, and obtains the reward. The optimization ends when

at least one of the structural elements violates the stress constraint or the number of optimization

steps reaches a predetermined value. Similar to the optimization process in Section 3.2, the agent

is trained to optimize the structure in the training phase to measure its ability to improve

performance, utilizing small structures, and the agent performance is evaluated on large structures

in the test phase.

 73

In this problem, the lattice shells consist of 12-DoF frame elements having circular hollow

sections chosen from Table 3.10. Young’s modulus is 205 kN/mm2. OX", OX#, and OX8 are 235/1.5

N/mm2, 0.66×235/1.5 N/mm2, and 0.66×235/1.5 N/mm2, respectively. The number of feature

maps ℎ	in all GCN layers, explained in Section 2.5 in Chapter 2, is set to 300 and each layer in

MLP has 300 cells.

Table 3.10: List of sections for sizing optimization of lattice shells

section No. diameter (mm) thickness (mm) area (cm2) moment of inertia (cm4)
0 21.7 2.0 1.238 0.607
1 34.0 2.3 2.291 2.890
2 42.7 3.2 3.971 7.800
3 48.6 3.2 4.564 11.80
4 60.5 4.0 7.100 28.50
5 76.3 4.0 9.085 59.50

This research trains the agent to optimize the structure to obtain high rewards in the training

phase and apply it to other structures in the test phase. In the test phase, the agent cannot modify

the element that has a ratio of internal stress to the yield stress larger than Zℎûlüℎ†ây#. To stabilize

the algorithm, if the structure violates the stress constraint, all elements with an internal stress ratio

larger than threshold2 will have the section number increased by one. Figure 3.17 illustrates

flowcharts of proposed algorithms in the training (a) and test (b) phases.

 74

 (a) (b)

Figure 3.17: Flowcharts of the algorithm for sizing optimization of lattice shells; (a) Training

phase, (b) Test phase

3.4.5.1 Training phase

In this phase, the agent is trained to optimize six different lattice shells illustrated in Figure 3.18(a)-

(f). Table 3.11 shows details of these structures subjected to different nodal loads applied to all

nodes. Note that these loads are selected to guarantee that the structures with the largest element

sections do not violate the constraint while those with the smallest ones violate the constraint.

Since it is difficult to measure the improvement of the agent using different structures, the ability

of the agent to improve its policy is evaluated every 10 times (episodes) of training, using the same

6×6-grid lattice shells subjected to a downward nodal load of 1 kN applied to all nodes, as shown

in Figure 3.19. Z9:. of the episode for training and episode for evaluation are set to 50 and 100,

respectively. Adam optimizer using the mini-batch size of 32, as explained in Section 2.5.3 in

Chapter 2, adjusts the trainable parameters in surrogate policy and value functions, as explained

 75

in Section 2.3.3 in Chapter 2, with learning rates of 10-6 and 10-5, respectively. ê is set to 0.05 to

update weights in surrogate functions to the online function every 100 steps, as explained in

Section 2.3.3 in Chapter 2.

Table 3.11: Structures for training for sizing optimization of lattice shells

 S 1 S 2 S 3 S 4 S 5 S 6
grid size 4×4 4×4 4×4 4×4 4×4 4×4

grid span (m) 1 1 1 1 1 1
downward load (kN) 25 5 10 0.5 0.2 15

Figure 3.18: Structures used for training the agent for sizing optimization of lattice shells;

(a) S 1, (b) S 2, (c) S 3, (d) S 4, (e) S 5, (f) S 6

 76

Figure 3.19: Structure used for evaluating the improvement of the trained agent for sizing

optimization of lattice shells

Figure 3.20 shows variation of the cumulative reward (vertical axis) obtained during the

training phase, which indicates the ability of the agent to improve its performance in each

evaluation episode (horizontal axis). The thick red line, indicating the moving average of the

reward every 20 episodes of evaluation, increases during the first 2000 episodes and becomes

stable, which indicates that the agent can improve its policy function to obtain a high reward by

minimizing the structural volume. The total number of structural analyses in this phase is 25849.

Figure 3.20: Variation of reward and its moving average in training phase for sizing

optimization of lattice shells

 77

3.4.5.2 Test phase

The trained agent with the weights saved at episode 5000 of the training phase is applied to larger

lattice shell problems as shown in Table 3.12. In this phase, Zℎûlüℎ†ây# is set to 0.6 and the agent

is applied to each structure ten times. Figures 3.21-3.23 illustrate the structures in the test phase:

Structure A has fixed supports at the corners, Structure B has fixed supports at the corners with an

irregular shape, and Structure C has fixed supports at the perimeter nodes.

Table 3.12: Structures for test for sizing optimization of lattice shells

 Structure A Structure B Structure C
grid size 10×10 20×20 20×20

grid span (m) 1 1 1
downward load (N) 200 5 300
number of elements 420 1640 1184

Z9:. 100 200 200

Figure 3.21: Structural models for test phase for sizing optimization of lattice shells – Structure

A

 78

Figure 3.22: Structural models for test phase for sizing optimization of lattice shells – Structure

B

Figure 3.23: Structural models for test phase for sizing optimization of lattice shells – Structure

C

Solutions obtained from the RL agent are compared to the results obtained by GA and SA,

using Python libraries DEAP [128] and SciPy [129], respectively. In the GA case, each gene is

represented as an integer in the range {0,1,2,3,4,5} to indicate the sectional index of each element.

 79

The numbers of the population and generation of GA are set as 100 and 10, respectively. In SA,

the design parameters are the sectional indices of elements indicated as integer values in

{0,1,2,3,4,5}. The maximum number of structural analyses of SA is set as 1000 times. Similar to

RL, both SA and GA, performing ten trials using different random seeds, aim to minimize the cost

function ϕ(;) computed as

ϕ(;) 	=
J(;)

JT
+L¢1(max[0, |O0| − 1])#

'

02"

																															(3.20)

where J(;) and JT are the total structural volume of the design ; and the initial volume,

respectively. & is the number of elements in the structure. ¢1 is the weight for the constraint set as

50.

The performance of RL, GA, and SA are indicated using the volume reduction computed

as

volume	reduction	 = (JT − J∗)/JT																																													(3.21)

where J∗ is the final volume of the lattice shells.

Table 3.13 shows the minimum (min.), the mean, the maximum (max.), and the standard

deviation (std.) of the volume reductions obtained by the RL, GA, and SA, together with the

number of structural analyses. The RL agent can obtain superior solutions (i.e., better volume

reductions) than those of GA and SA in every structure. Note that the standard deviations of results

of RL are also lower compared to those of GA and SA indicating stabile performance of the

proposed RL method.

 80

Table 3.13: Test result (volume reduction (%)) for sizing optimization of lattice shells

 structure min. mean max. std. No. of analyses

RL
A 82.06 82.36 82.53 0.15 2000
B 86.00 86.07 86.12 0.03 4000
C 84.57 84.69 84.75 0.05 4000

GA
A 0.00 22.86 39.35 19.69 10000
B 82.25 82.74 83.20 0.37 10000
C 73.29 73.97 74.67 0.49 10000

SA
A 0.00 34.46 70.34 36.33 10000
B 68.08 68.34 68.60 0.19 10000
C 0.00 60.97 68.08 21.42 10000

Figures 3.24-3.26 illustrate the best results of each structure obtained by RL in the test

phase. In these figures, the graph on the left indicates the structural volume (vertical axis) in each

optimization step (horizontal axis). The isometric images of the initial and final structures are also

illustrated over the graph. In this image, the thickness of the line is proportional to the value of

sectional indices. Four images on the right illustrate the plan and elevations of the final structure

together with the initial stress ratio.

From these figures, obtained solutions by RL generally have elements with large sections

in the region where the initial stress ratio is large. In Figure 3.24, where the structure is symmetry,

the agent obtained a symmetric configuration of the element sizes despite the symmetrical

characteristic of the structure is not explicitly assigned for the agent. The RL agent also obtained

reasonable element sizes of large structures in Figures 3.25 and 3.26 even though it is trained using

much smaller lattice shells in the training phase.

 81

Figure 3.24: Optimized test structure for sizing optimization of lattice shells - Structure A

Figure 3.25: Optimized test structure for sizing optimization of lattice shells - Structure B

 82

Figure 3.26: Optimized test structure for sizing optimization of lattice shells - Structure C

3.5 Conclusion

In this chapter, we introduced a GCN-DDPG agent and explored its application in the context of

topology and sizing optimization for lattice shell structures. The primary objective of the proposed

method is to train an RL agent to iteratively enhance the structural performance by modifying the

structural configuration, which is represented as a graph. In this representation, structural nodes

correspond to nodes within the graph, while structural elements are mapped to graph edges. The

salient findings of this chapter are summarized as follows:

(1) The GCN-DDPG agent exhibits a capability to learn and improve the topology of lattice

shell structures. It achieves this by employing a reward function derived from the reduction

in the strain energy, showcasing its ability for structural optimization.

(2) The trained GCN-DDPG agent demonstrates its effectiveness in optimizing the topology

of various lattice shell structures with the objective of minimizing the total strain energy.

Furthermore, its performance is shown to be competitive when compared to the GA, a

widely used population-based optimization technique.

 83

(3) One of the distinctive advantages of the RL agent lies in its capacity to be trained using

smaller lattice shell structures, which entail lower computational costs. This trained agent

can subsequently be applied to larger structural configurations, illustrating its scalability.

(4) The GCN-DDPG agent can also be adapted to optimize the sizes of structural elements

within lattice shell structures. This is achieved through the formulation of a reward function

that captures variations in structural volumes.

(5) In addressing challenges in sizing optimization for different lattice shell structures, the

trained RL agent exhibits superior performance in comparison to other optimization

algorithms including GA and SA.

(6) Notably, the proposed GCN-DDPG agent showcases a more stable and consistent

performance when compared with stochastic- and population-based optimization methods.

This enhanced stability translates into a reduced number of trials required to converge to a

good approximate optimal solution.

(7) Finally, the methodologies presented in this chapter hold promise for practical applications

in the architectural and engineering domains, especially in the initial design phases where

computational time for each design decision is a critical factor. Architects and engineers

can leverage these techniques to efficiently explore and refine lattice shell structures,

contributing to more efficient and resource-conscious design processes. It should be noted

that loads in the optimizations in this chapter are only vertical loads, which directly affect

the optimal topology of the lattice shells and sizes of the lattice members.

In conclusion, this chapter proposed RL-based optimization methods for topology and

sizing optimization problems of lattice shells utilizing the strain energy and the structural volume

as objective functions in the first and second problems, respectively. The results show that the

proposed methods are applicable to the problem of topology and sizing optimizations for structural

engineering. It should be noted that the problems in this chapter consider only vertical loads to

simplify the problem formulations. Future research should aim to verify the proposed method in

other loading and collapse scenarios of lattice shells, such as horizontal load and shell buckling.

 84

 85

Chapter 4

Simultaneous topology and sizing optimization of
braced building frames using RL

4.1 Introduction

In regions prone to seismic activity, such as Japan, ensuring the seismic resistance of building

frames is important for structural integrity and public safety. Achieving seismic resistance involves

a careful selection of structural member sizes and bracing configurations that can effectively

withstand external loads while minimizing structural costs. This complex optimization task,

encompassing both topology (arrangement of structural elements) and sizing (dimension of

structural members) considerations, presents a formidable task in structural engineering. It is

fundamentally a discrete combinatorial optimization problem, where design variables include the

size of structural elements and the configuration of bracing systems. The intricacies and non-

linearity of the problem render it unsuitable for conventional gradient-based optimization methods.

To address these challenges, conventional practice often resorts to population-based algorithms

such as GA, which, while effective, come with significant computational demands.

The primary focus of this chapter is on advancing the methodology for topology and sizing

optimization of building frames subjected to seismic loads by harnessing RL. This novel approach

seeks to reduce computational costs represented by structural material volume and enhance

optimization efficiency while delivering structures that meet seismic resistance requirements.

Section 4.1 sets the stage by introducing the seismic analysis and the optimization problem

intrinsic to building frames. The chapter proceeds to unveil a novel methodology in Section 4.2,

wherein a DDPG agent, complemented by a unique graph representation of the structure,

undertakes the task of optimizing building frame configurations. In this graph representation,

structural elements are represented as graph nodes, fostering a more intuitive and effective way to

encode the structural information.

The DDPG agent, constructed using GCNs, is trained to iteratively refine an initial

structural configuration until it attains seismic-resistant performance while minimizing structural

 86

volume. This is achieved by formulating the training process in a way that induces the agent to

seek structural improvements while taking into account the associated structural volume.

Consequently, the training objectives encompass the dual aims of minimizing structural volume

and ensuring stiffness to satisfy seismic constraints. Numerical results show that the RL-based

optimization offers the promise of efficiently solving simultaneous topology and sizing

optimization of braced building frames subjected to seismic loads.

4.2 Formulation of optimization problem

4.2.1 Estimated seismic load using Ai-bunpu method

In the Japanese Ai distribution (ai-bunpu) method, the horizontal seismic force on each floor is

estimated by distributing all shear forces applied to the building. The horizontal load !! on the "th

floor of the building frame is computed and utilized as the design load of the building frame. Let

#!, $!, %!, &, and '! be the shear force applying on the "th story between the ("-1)th and "th floors,

shear coefficient of the "th story, the weight of the "th floor, a value representing soil category and

vibration characteristics of the building, and the shear distribution coefficient of the "th floor,

respectively. The computation of !! is as follows:

!! = *
#! 								 ∶ if	" = /"	

										#!#$%#! 				 ∶ if	" = 1,… ,/" − 1
																													(4.1)

#! = $!7 %&
'!

&(!
																																																																							(4.2)

$! = 9)&$)'! 																																																																													(4.3)

& =

⎩
⎪
⎨

⎪
⎧ 1																																 ∶ if	? < ?*								

1 − 0.2 B+
+"
− 1C

,
							 ∶ if	?- ≤ ? < 2?-

1.6+
+#
																										 ∶ if	2?* ≤ ?					

																					(4.4)

? = 0.03ℎ																																																																																			(4.5)

'! = 1 + I $

./$
− J!K

,+
$#0+

																																																									(4.6)

 87

J! =
∑ %&
'!
&(!

∑ %1
'!
1($

																																																																													(4.7)

%! = N!J! 																																																																																			(4.8)

where $) , ? , N! , and J! are the base shear coefficient, the fundamental natural period of the

building, the unit load of the "th floor, and the area of the "th floor, respectively. ℎ, ?-, 9), and /"

are the total height of the building, the specific period assigned according to the soil type under

the building, the regional seismic coefficient, and the number of floors excluding the base,

respectively.

These estimated horizontal forces are denoted as short-term loading and are applied in both

left and right directions to evaluate the largest response of the building frame. The structural

responses, consisting of internal forces and displacements, are computed using linear elastic

analysis. Note that the responses obtained under dead and live loads denoted as long-term loading

are also computed. The building frames consist of beams, columns, and bracing elements. The

beams and columns are modeled using 2-dimensional beam elements with 6-DoFs, whereas the

bracing elements are 2-dimensional truss elements with 4-DoFs. The stiffness matrices of the beam

or column element and the brace element are denoted, in the local coordinate system, as P" ∈ ℝ2×2

and P4 ∈ ℝ5×5, respectively. These matrices are transformed into the global coordinate system

and assembled into the global stiffness matrix S ∈ ℝ6%×6%, where T7 is the number of DoFs of

the building frame after assigning the boundary conditions.

Three load cases of long-term loading, long-term loading with left direction (negative)

short-term loading, and long-term loading with right direction (positive) short-term loading are

given by the load vectors denoted as U8 ∈ ℝ6% , U9& ∈ ℝ6% , and U9' ∈ ℝ6% , respectively.

Corresponding nodal displacement vectors of these load cases are V8 ∈ ℝ6% , V9& ∈ ℝ6% , and

V9' ∈ ℝ6% obtained by solving the following stiffness equation:

SV = U																																																																							(4.9)

where V ∈ {V8, V9& , V9'} and U ∈ {U8, U9& , U9'}.

Figure 4.1 illustrates the internal forces Z! = [\:$, \:,, \:; , \<$, \<,, \<;] of a beam or column

element " obtained from ^ and _ end displacements of the element " in the local coordinate system

 88

and its corresponding stiffness matrix. Internal forces Z! = [\:$, \:,, \<$, \<,] of a brace element can

be obtained similarly. Let `! and 9! denote the cross-sectional area and the section modulus of

element ", respectively. Internal stress a! of a structural element " can be computed as follows:

a! =
b\:$b
`!

+
max	(b\:;b, b\<;b)

9!
																																																	(4.10)

where the second term does not exist for a truss element. Note that this research assumes the floor

to be rigid. The in-plane stiffness of the slab is incorporated by multiplying the axial stiffness of

the beam element by 10.

Figure 4.1: Internal forces in local coordinates for simultaneous topology and sizing

optimization of building frames

4.2.2 Simultaneous topology and sizing optimization of the braced building frame

In the topology and sizing optimization of the building frame, the building frame without brace is

initialized with the smallest section index in the list. During the optimization, braces of various

types, including diagonal braces, K-type, and V-type as shown in Figure 4.2, are placed into the

building frame together with adjustment of sizes of beams, columns, and braces until the building

frame can satisfy all constraints on the structural responses.

 89

Figure 4.2: Five brace types including no brace for simultaneous topology and sizing

optimization of building frames

The optimal section sizes of beams, columns, and braces as well as brace placements of

steel frames are to be obtained for minimizing the objective function, which represents the material

and construction costs of steel building frames to be optimized to obtain optimal section sizes of

beams, columns, and braces as well as brace placements. Let f! ∈ {0,1, … , T*}, g! ∈ {0,1, … , T=} ,

and gh! ∈ {0,1, … , T=>} be the indices of the cross-sectional properties of columns, beams, and

braces, respectively. A vector representing the element properties of the building frame with /?

spans and /" stories, which has f" columns and g" beams is defined as

i = Bf$, … , f-! , g$, … , g@!	, gh$, … , gh'(')	C																							(4.11)

Also, a vector, representing the type of brace in each domain of a building frame is defined as

j = Bh$, … , h'(')C,				h! ∈ {0,1,2,3,4}																															(4.12)

where 0, 1, …, 4 correspond to the brace types (a), (b), …, (e) in Figure 4.2, respectively.

From Eqs. (4.11) and (4.12), a design variable vector for a building frame can be

represented as a combination of i and j, defined as

 90

k = {i, j}																																																													(4.13)

 The cost l(k) is represented by the total structural volume, which is the objective function

to be minimized. Note that the cost of braces is multiplied by the cost coefficient B to avoid placing

too many braces. Let aBCD8 , aBCD9 , and mBCD denote the maximum absolute values of stresses at the

element ends among all members due to long-term loading, the largest maximum absolute value

of stresses at the element ends among all members due to short-term loading in both directions,

and the maximum absolute value of inter-story drift angles among all stories, respectively. The

optimization problem of brace placements (i.e., topology) and member sizes (i.e., sizing) of the

steel frame is formulated as

minimize					l(k)																																																																		

subject	to				aBCD8 ≤ ax8																																																							

aBCD9 ≤ ax9																																											(4.14)

mBCD ≤ my																																																									

zBCD ≤ 1																																																								

{BCD ≤ 1																																																								

where ax8 , ax9 , and my denote upper bounds of aBCD8 , aBCD9 , and mBCD , respectively. Note that

constraints on base beams are also measured because they are necessary for adding V-type braces.

zBCD is the maximum value of deflection ratio z!= at the centers of all beams defined as follows:

z!
= = max	 I

0))EF$
*E

G$
* , 1K																																														(4.15)

where |!= and }!= are the deflection at the center of beam " in the local ~ coordinate, and the length

of beam ", respectively. {BCD is the maximum value of buckling stress ratios {! of all braces,

defined as

{! = �
a!
9

π,Å!Ç!/(`!}!
,)

: if	\:H > 0

0 : if	\:H ≤ 0
																										(4.16)

 91

where a!9 is the maximum absolute value of axial stress in the brace " due to short-term loading

in both directions.

4.3 Simultaneous topology and sizing optimization of braced building frame using DDPG

and GCN

This section introduces the RL and graph representation method for solving the problem in Section

4.1.2. The optimization problem is formulated into an MDP and reward is computed using the cost

of improving the structure. The DDPG agent observes the state from the graph representation of

the structure. Figure 4.3 shows the graph representation in this problem where graph nodes and

edges represent structural elements and connectivity of each element, respectively. The building

frames have main elements (i.e., columns and beams) represented as solid red lines and possible

bracing represented as dotted red lines (Figure 4.3(a)). Note that in each structural gird, there can

be only one type of bracing. The main elements and all possible bracing, illustrated in red dots, are

represented as graph nodes, illustrated in black dots (Figure 4.3(b)). Information of the structural

elements is stored in the graph node, represented using a node feature matrix while the connectivity

of the structural elements is represented through an adjacency matrix (Figure 4.3(c)). Note that

there is no need for weighted adjacency matrices to represent internal forces because these forces

are already incorporated into the node feature matrix. The GCN-DDPG agent utilizes these

matrices as state data to compute the actions at each optimization step.

 92

Figure 4.3: Graph representation of the braced building frame for simultaneous topology and

sizing optimization of braced building frames

Figure 4.4 illustrates the MDP of the topology and sizing optimization of the braced

building frame. At a step Ü, the agent observes the state SI which is the graph representation of the

current structural configuration shown in Figure 4.4(a). The agent does the action AI which is

 93

either increasing the sectional area of an existing structural element or adding bracing in an

unoccupied structural grid as shown in Figure 4.4(b). The structure is modified and structural

analysis for three load cases is computed to obtain the objective function value. The agent obtains

a reward RI#$ based on the cost of improving the building frame Figure 4.4(c) and the new step

of MDP begins. This MDP loop keeps on until all constraints are satisfied.

Figure 4.4: MDP of the topology optimization of braced building frame for simultaneous

topology and sizing optimization of braced building frames

4.3.1 State

In this example, the state is a graph representation of the structure consisting of node feature matrix

ä and adjacency matrix ã. Tables 4.1 and 4.2 show entries in the node feature matrix and the

adjacency matrix, respectively. All values in these Tables are normalized using the min-max

normalization method.

 94

Table 4.1: Entries in node feature matrix (ä) for simultaneous topology and sizing optimization

of braced building frames

T!,$ 1 if " is in the structure; else 0
T!,, 0 if sectional area of element " is equal to the largest area for "; else 1
T!,0 1 if element " violates stress constraint under p9&; else 0
T!,5 1 if element " violates stress constraint under p9'; else 0
T!,K 1 if element " violates stress constraint under p8; else 0
T!,2 1 if the ^ end of element " is a fixed support; else 0
T!,L 0 if the ^ end of element " is a fixed support; else 1
T!,M magnitude of load acting on the ^ end of element " in x direction
T!,N magnitude of load acting on the ^ end of element " in y direction
T!,$) x-directional displacement of the ^ end of element " under p9&
T!,$$ x-directional displacement of the ^ end of element " under p9'
T!,$, y-directional displacement of the ^ end of element " under p9&
T!,$0 y-directional displacement of the ^ end of element " under p9'
T!,$5 ^ end’s x coordinate of element "
T!,$K ^ end’s y coordinate of element "
T!,$2 1 if the _ end of element " is a fixed support; else 0
T!,$L 0 if the _ end of element " is a fixed support; else 1
T!,$M magnitude of load acting on the _ end of element " in x direction
T!,$N magnitude of load acting on the _ end of element " in y direction
T!,,) x-directional displacement of the _ end of element " under p9&
T!,,$ x-directional displacement of the _ end of element " under p9'
T!,,, y-directional displacement of the _ end of element " under p9&
T!,,0 y-directional displacement of the _ end of element " under p9'
T!,,5 _ end’s in x coordinate of element "
T!,,K _ end’s in y coordinate of element "
T!,,2 length of element "
T!,,L cross-sectional area of element "
T!,,M second moment area of element "
T!,,N internal stress in element " under p9&
T!,0) internal stress in element " under p9'
T!,0$ internal stress in element " under p8

 95

Table 4.2: Entries in adjacency matrix (ã) for simultaneous topology and sizing optimization of

braced building frames

ç!,O 1 if there is element " connecting to element é; else 0

4.3.2 Agent

This research utilizes GCN for making the policy and value functions (i.e., actor and critic

networks) of a DDPG agent. The policy function è takes state data (ä, ãê) as input to compute the

output è ∈ ℝ6×$. This output is interpreted to determine the element to be increased in size or

added (for a brace). Value function Q computes Q-value utilizing state data and	è as inputs. Table

4.3 shows the inputs, computations, and outputs of the policy function (left column) and the value

function (right column). Figure 4.5 shows the neural network architectures of actor and critic

networks in this chapter.

Table 4.3: Policy and value functions of GCN-DDPG for simultaneous topology and sizing

optimization of braced building frames

policy function è value function Q
input: ä, ãê input: ä, ãê , è
computation:
step 1: ä$ = µ[ä,ãê]
step 2: ä, = iter,îµ[ä$, ãê]ï
step 3: è = σ[ä,, ãê]

computation:
step 1: ä$.$ = µ[ä,ãê]

	ä$., = iter,îµ[ä$.$, ãê]ï	
step 2: ä,.$ = µ[è,ãê]

	ä,., = iter,îµ[ä,.$, ãê]ï	
step 3: ä, = ä$., + ä,.,
step 4: ä0 = µ[ä,, ãê]
step 5: ó5 = GSP(ä0)
step 6: Q = 	 fQQ(ó5)

output: è ∈ ℝ6×$ output: Q ∈ ℝ$×$

 96

Figure 4.5: Actor and critic networks for simultaneous topology and sizing optimization of

braced building frames

4.3.3 Action

In this research, the agent does one of the actions including (1) increasing the index (i.e., sectional

area) of the existing element and (2) adding a brace into an unoccupied structural grid. To unify

the representation, indices of all braces are initialized as 0, representing no braces in the structure.

Since the output of the agent è ∈ ℝ6×$ represents a value for each structural element, the element

to be modified (i.e., enlarged or added) can be determined from the one with the largest value

among the entries of è. To enhance the optimization process by restricting the agent to modify

irrelevant elements including the elements with the largest index and the brace elements that cannot

be added because the gird is already occupied, the vector that represents feasible action	ö ∈ ℝ6×$	

is introduced. In this vector, the entry õ! is 1 if it is possible to increase the index (i.e., increasing

a section of an existing element or adding a brace) of the element " and is 0 otherwise, making the

probability to select an infeasible action becomes 0. The element " to be modified is determined

from the index " that has the largest value of the product of an element of the policy function è!

and ö! as follows:

 97

" = argmax
&

ö&è& 																																																(4.17)

Note that no brace exists in the initial frame and the number of grids with braces on each

story can be only half of the total number of domains on that story. Once the braces are added,

their domain or type cannot be modified. Note that if one of the braces that make up K-Type or V-

Type is selected, the other member will also be changed to the same index.

From Eq. (4.17), the section index of element i is increased by 1, and its section properties

are changed accordingly. The following rules are also applied to simplify the structural design

problem:

1. Beams on the same floor have the same index. Once the section index of a beam is

increased, those of other beams on the same floor will also be increased.

2. The upper columns have a smaller cross-sectional area than its lower columns. If a

column has a larger section index than its lower columns, the section index of the

lower columns will also be increased.

4.3.4 Reward

Let ∆V be an increment of the structural volume due to the agent action. To guide the agent to

adjust the structure to satisfy all the constraints in Eq. (4.14), the reward signal at step Ü is

formulated based on the cost of improving the existing structure, computed as

RI#$ = −∆l[4 − (∆aBCD8 + ∆aBCD9 + ∆mBCD + ∆zBCD)]											(4.18)

where ∆aBCD8 , ∆aBCD9 , ∆mBCD, and ∆zBCD are reward components associated with internal stresses

from long-term loading, internal stresses from long and short-term loadings, inter-story drift angle,

and beam center deflection, respectively. In the brace element, the ratio to buckling stress is

employed as the constraint value if the element is in compressional state.

Maximum stress usually depends on the section sizes of multiple members and reducing

the maximum stress may lead to an increase of the second maximum one. To incorporate the effect

 98

of section sizes of several members with large stresses, the p-norm [‖∙‖:], formulated as ‖£‖: =

§∑ |¶!|:6
!($

+ , is utilized for computing reward components associated with stress constraints.

However, the p-norm is not utilized for computing reward components associated with the

maximum values of inter-story drift angle and beam center deflection because these constraints

mainly depend on the sizes of the specific members, and the constraints can be satisfied by simply

reducing the maximum values. Reward components associated with each constraint are formulated

as

∆aBCD8 = �
‖ß8‖:I − ‖ß8‖:I#$

‖ß8‖:I#$
∶ if	aBCD

8,I > ax8

0																						 ∶ else							
																													(4.19)

∆aBCD9 = ©
™ß9™

:

I
− ™ß9™

:

I#$

‖ß9‖:I#$
			 ∶ if	aBCD

9,I > ax9	or	{BCDI > 1	

0 																																							: else

							(4.20)

∆mBCD = �
mBCDI − mBCDI#$

mBCDI#$ ∶ if	mBCDI > my

0																							 ∶ else
																																											(4.21)

∆zBCD = �
zBCDI − zBCDI#$

zBCDI#$ ∶ if	zBCDI > 1

0																							 ∶ else
																																											(4.22)

4.3.5 Numerical examples

As an RL algorithm, the agent is trained in the training phase to measure the improvement of the

reward, and the applicability of the agent is measured in the test phase. To verify that the trained

agent can be applied to diverse structures, in this research, the training and test phases utilize small

structures and larger ones, respectively. Also, results obtained by RL in the test phase are compared

to those obtained by the GA which is a benchmark algorithm in this chapter.

Young’s modulus, short-term, and long-term stress limits of the structural elements are 200

kN/mm2, 235 N/mm2, and 235/1.5 = 156.7 N/mm2, respectively. my is set to 1/200. Tables 4.4, 4.5,

and 4.6 are lists of section properties for columns, beams, and braces, respectively. In these Tables,

 99

I and Z denote the moment of inertia and section modulus, respectively. MLP has two hidden

layers, each consisting of 200 neurons and the dimensions of ℎ in all GCN layers is 200.

The long-term loading consists of the floor weight of 6700 N/m2 applied on each beam

using the floor depth of 6 m. The short-term loadings in both directions are computed as described

in Section 4.1.1 using a floor weight of 5700 N/m2. The base shear coefficient $), the specific

period ?- , and the seismic area coefficient 9) are 0.2, 0.6, and 1.0, respectively. The cost

coefficient B for braces is set as 1.5 since they increase the complexity of construction. The

parameter p for the p-norm is 10. The program is made using Python 3.6 environment. A PC with

a CPU of Intel Core i9-11900 (2.5 GHz, 8 cores) and a GPU of Nvidia GeForce RTX3060 12GB

is used for computation.

Table 4.4: List of column sections for simultaneous topology and sizing optimization of braced

building frames

index box section area (cm2) I (cm4) Z (cm3)
0 200×200×9 66 3920 392
1 300×300×12 133 18100 1200
2 400×400×16 237 57100 2850
3 500×500×22 404 150000 6010
4 600×600×32 727 392000 13100
5 700×700×35 855 637000 18210
6 800×800×40 1216 1173000 29360

Table 4.5: List of beam sections for simultaneous topology and sizing optimization of braced

building frames

index H-B-t1-t2: (t1<t2) area (cm2) I (cm4) Z (cm3)
0 300×200×8×12 71 11100 756
1 400×300×10×16 133 37900 1940
2 500×300×11×18 159 68900 2820
3 600×300×12×20 187 114000 3890
4 700×300×13×24 232 197000 5640
5 800×300×14×22 234 248000 6270
6 900×300×18×34 360 491000 10800

 100

Table 4.6: List of brace sections for simultaneous topology and sizing optimization of braced

building frames

index diameter
(mm)

thickness
(mm) area (cm2) I (cm4) Z (cm3)

0 no brace
1

267.4

6.6 54.08 4.60×103 344
2 8.0 65.19 5.49×103 411
3 9.3 75.41 6.29×103 470
4 12.7 101.6 8.26×103 618
5 15.1 119.7 9.56×103 715

Figure 4.6 illustrates algorithm flowcharts for the training and test phases. During the

optimization, each step of MDP is denoted as a step. The loop of MDPs, defined as a game or an

episode, is terminated when all constraints are satisfied.

The algorithm in the training phase (Figure 4.6(a)) can be summarized as follows; (0) The

finite element model of the unbraced building frame with smallest column and beam indices is

initialized. (1) Information of structure is represented using graph representation. (2) Graph

representation becomes state data. (3) The agent takes graph representation as input and computes

the action. (4) The output from the agent is interpreted into the modification of the building frame.

Finite element analysis is performed to evaluate the objective functions, constraints, and structural

responses. The reward is computed. (5) The agent is trained by collected state-action-reward, data

and the parameters in the agent are updated. (6) All the constraints are checked. If at least one of

the constraints is not satisfied, go to step (1); otherwise, terminate the process and save data of the

training results.

After the agent has undergone training for a certain number of episodes, it is then applied

to optimize other building frames using the algorithm during the testing phase, as shown in Figure

4.6(b). The process can be described as follows; the finite element model of the unbraced building

frame with the smallest column and beam indices is initialized. (1) Structural information is

encoded through a graph representation. (2) This graph representation is translated into state data.

(3) The agent takes this graph-based representation as input and computes an action. (4) To

enhance the performance of the agent, a rule is applied to modify the action. (5) The output from

the agent is translated into modifications made to the building frame. Subsequently, finite element

analysis is conducted to evaluate objective functions, constraints, and structural responses. The

 101

reward is then computed. (6) The optimization process includes a validation step wherein all

constraints are assessed. If at least one constraint remains violated, the final step is not reached,

and the process returns to step (1). However, if all constraints are met, the optimization process

concludes, and the data, including the training results and the structural model, is saved.

 (a) (b)

Figure 4.6: Flowcharts of the algorithm for simultaneous topology and sizing optimization of

braced building frames; (a) Training phase, (b) Test phase

Training phase

In each episode of the training phase, the agent is trained to optimize 3-span 3-story steel frames

having three predetermined span lengths and story heights, indicated as S1, S2, and S3 in Table

4.7 and Figure 4.7. To measure the performance of the agent, a 4-span 4-story frame with span

 102

lengths of {4.0, 6.0, 6.0, 4.0} (m) and story heights of {4.0, 3.0, 3.0, 3.0} (m) (Figure 4.8), is used

for measuring improvement of the reward every 10 episodes during the training. The surrogate, as

explained in Section 2.3.3 in Chapter 2, policy and value functions are adjusted by the Adam

optimizer using the mini-batch size of 32 and the learning rates of 10-3 and 10-4 for the policy and

value functions, respectively, as explained in Section 2.5.3 in Chapter 2. Parameters of the

surrogate functions are updated to the real policy and value functions every 100 steps with ¨ =

0.05, as explained in Section 2.3.3 in Chapter 2. The agent is trained for 3000 episodes. The total

number of structural analyses in this phase is 134995.

Table 4.7: Structures for training for simultaneous topology and sizing optimization of braced

building frames

structural name S1 S2 S3
number of spans 3 3 3

span length {4,4,4} (m) {8,8,8} (m) {6,6,6} (m)
number of floors 3 3 3

floor height {4,4,4} (m) {3,3,3} (m) {4,4,4} (m)

Figure 4.7: Initial structural models during training phase for simultaneous topology and sizing

optimization of braced building frames; (a) S1, (b) S2, (c) S3

 103

Figure 4.8: Initial structural model for measuring improvement of the agent during training

phase for simultaneous topology and sizing optimization of braced building frames

Figures 4.9 and 4.10 show the reward and the final cost of the structure obtained by the

agent, respectively, where the horizontal axis is the number of episodes for measuring the agent’s

improvement and the thick red line in each figure is the moving average of 20 episodes. According

to these figures, the agent can increase the obtained reward, reduce the cost of the structure, and

maintain its performance throughout the training, indicating the learning ability of the agent. Note

that since the structural types S1, S2, and S3 are used for training and the performance is measured

using a 4-span 4-story frame and this RL utilizes a policy gradient approach, the agent could not

keep on improving the obtained reward using this structure resulting in the fluctuation of the

reward and cost.

 104

Figure 4.9: Variation of reward and its moving average in training phase for simultaneous

topology and sizing optimization of braced building frames

Figure 4.10: Variation of cost and its moving average in training phase for simultaneous

topology and sizing optimization of braced building frames

 105

Test phase

In the test phase, an output modification vector ≠ ∈ ℝ6×$ is introduced for the agent to prevent

from choosing unnecessary actions. This vector represents the beam or column that satisfies all

constraints, including long-term loading stress, long-term and short-term loading stress, inter-

story drift, and deflection constraints. The entry ℎ! is 0 if the element " is a column or beam that

already satisfies every constraint, or a base beam, to prevent the agent from choosing the element

that is stiff enough. The element " to be modified is determined from the index " that has the largest

value of the Hadamard product of policy function, ö, and ≠ as follows:

" = argmax
&

ö&≠&è& 																																																		(4.23)

To verify the versatility of the agent, the agent saved from the training phase is applied to

the frames in Table 4.8 and Figure 4.11 50 times for each structure, where the section lists and

material properties are the same as those in the training phase. Table 4.9 shows the minimum

(min.), mean, and standard deviation (std.) of the objective function and the total number of

structural analyses of each structure.

 106

Table 4.8: Structures for test for simultaneous topology and sizing optimization of braced

building frames

name number
of spans span length (m) number

of floors floor height (m)

Structure A 8 {5.0, 7.5, 5.0, 5.0,
5.0, 5.0, 7.5, 5.0} 3 {4.0, 4.0, 4.0}

Structure B 3 {5.0, 5.0, 5.0} 7 {4.0, 4.0, 3.5, 3.5,
3.5, 3.5, 3.5}

Structure C 7 {5.0, 5.0, 7.5, 5.0,
7.5, 5.0, 5.0} 3 {4.0, 3.0, 3.0}

Structure D 3 {5.0, 5.0, 5.0} 4 {4.0, 3.0, 3.0, 3.0}

Structure E 6 {5.0, 7.5, 5.0,
5.0, 7.5, 5.0} 3 {4.0, 3.0, 3.0}

Structure F 3 {5.0, 5.0, 5.0} 5 {4.0, 4.0, 3.0, 3.0, 3.0}

Structure G 5 {5.0, 5.0, 7.5, 5.0, 5.0} 3
 {3.0, 3.0, 3.0}

Structure H 4 {5.0, 5.0, 5.0, 5.0} 6 {4.0, 3.0, 3.0,
3.0, 3.0, 3.0}

Table 4.9: RL results in test phase (50 trials) for simultaneous topology and sizing optimization

of braced building frames

name min. mean std.
number of
structural
analyses

Structure A 5.61 6.22 0.27 3191
Structure B 5.35 5.98 0.26 3812
Structure C 5.00 5.50 0.20 3237
Structure D 2.51 2.70 0.09 2000
Structure E 4.25 4.67 0.18 2684
Structure F 3.32 3.63 0.14 2515
Structure G 3.35 3.58 0.13 2368
Structure H 5.49 5.85 0.18 3625

 107

(a) (b)

(b)

 (c) (d)

 (e) (f)

 108

 (g) (h)

Figure 4.11: Initial Structural models during test phase for simultaneous topology and sizing

optimization of braced building frames; (a) Structure A, (b) Structure B, (c) Structure C,

(d) Structure D, (e) Structure E, (f) Structure F, (g) Structure G, (h) Structure H

Comparison of computation cost and performance with GA

In this research, all genes representing columns, beams, and braces can be crossover. Therefore,

all genes should have the same value range. Each gene of GA has an integer value of {0,..,9} so

that they can be randomly mixed and mutated. To represent columns, the indices {Æ$, 	Æ,, … , Æ'!} of

columns on each floor on the same vertical line are defined by /" genes {Ø$, 	Ø,, … , Ø'!}. Ø$

represents the index of the first-floor column. If Ø$ is larger than the largest column index (6 in

Table 4.4), Æ$ is replaced with the largest index. Since the upper column cannot have a larger index

than the lower ones, Æ!∈{,,…,'!} is equal to Æ!%$ if 	Ø!%$ < 	Ø! and 	Ø! ∈ {0, . . ,4}, whereas Æ!%$ =

Æ! − 1 if	Ø!%$ < 	Ø! and 	Ø! ∈ {5,… ,9}.

Since beams on the same floor have the same sections, beam sections on each floor are

represented by a single gene which represents the index of the beam section in Table 4.5. Note that

if the gene has a larger value than the largest beam index, the largest beam index is assigned to the

corresponding beam.

The brace type and brace section in each brace domain are represented by two genes. The

first gene has the value of {0,1}, {2,3}, {4,5}, {6,7}, and {8,9} representing no brace, right

diagonal brace, left diagonal brace, K-type, and V-type, respectively. The second gene has the

 109

value of {0,1}, {2,3}, {4,5}, {6,7}, and {8,9} representing indices 1, 2, 3, 4, 5, of the brace section

in Table 4.6, respectively. Similar to the proposed RL method, the number of domains with braces

in each story can be only half of the number of brace domains in that story, which is equal to the

number of spans for a regular frame in GA.

To compute the fitness function of GA, binary value indicators c9 , c8 , cV , and cW are

introduced for the constraints on maximum short-term, long-term stress, beam deflection, and

inter-story drift, respectively. These indicators are equal to 1 if the corresponding constraints are

violated, and 0 if satisfied. GA maximizes the objective function defined as follows:

Ø(k) = −l(k) − N) ∞c9
N$aBCD9

ax9
+ c8

aBCD8

ax8
+ cV

mBCD
my

+ cWzBCD±				(4.24)

where N) = 5 and N$ = 3 are the weights of the penalty, which prevent the GA from generating

solutions that violate the constraints. These values are decided after some trials and errors.

 The GA program is implemented utilizing a Python library DEAP [94]. The total number

of analyses of GA is assigned similar to the total number of analyses used in RL. Note that the

solution of GA depends on the random seed. Therefore, five GA experiments with different

random seeds are conducted on structures in Table 4.8. Table 4.10 summarizes the minimum

(min.), mean, and standard deviation (std.) of the objective function, population, generation, and

the number of structural analyses of each structure.

 110

Table 4.10: GA results (5 random seeds) for simultaneous topology and sizing optimization of

braced building frames

name min. mean std. number of
populations

number of
generations

number of
structural
analyses

Structure A 6.90 7.28 0.46 50 80 4000×5
Structure B 7.34 8.05 0.58 100 50 5000×5
Structure C 7.18 7.36 0.21 50 80 4000×5
Structure D 2.88 3.33 0.42 40 50 2000×5
Structure E 6.39 6.64 0.18 40 80 3200×5
Structure F 4.35 5.09 0.51 60 50 3000×5
Structure G 3.83 4.62 0.48 40 80 3200×5
Structure H 6.41 6.93 0.37 80 50 4000×5

Table 4.11 compares results obtained by RL and GA. The results in Table 4.11 show that

the RL agent outperforms GA in obtaining more optimal results for all test structures, as evidenced

by the minimum values of the objective function. The results, obtained by the RL agent, from

different trials exhibit a consistent value of the objective function, as depicted by the standard

deviation value. From a computational standpoint, the trained RL agent requires fewer structural

analyses compared to GA, highlighting its efficiency and effectiveness in solving the given

problem.

Table 4.11: Comparing results obtained by RL and GA for simultaneous topology and sizing

optimization of braced building frames

name
RL GA

min. mean std. min. mean std.
Structure A 5.61 6.22 0.27 6.90 7.28 0.46
Structure B 5.35 5.98 0.26 7.34 8.05 0.58
Structure C 5.00 5.50 0.20 7.18 7.36 0.21
Structure D 2.51 2.70 0.09 2.88 3.33 0.42
Structure E 4.25 4.67 0.18 6.39 6.64 0.18
Structure F 3.32 3.63 0.14 4.35 5.09 0.51
Structure G 3.35 3.58 0.13 3.83 4.62 0.48
Structure H 5.49 5.85 0.18 6.41 6.93 0.37

 111

Figures 4.12 and 4.13 respectively illustrate the best solutions of Structures A and B

obtained in the test phase by RL agent. The thickness of line is proportional to the index of the

section, where numbers on the lines are section size of column (black), beam (grey), and brace

(red), and ▲ indicates rigid support. The best solutions of Structures A and B from GA are shown

in Figures 4.14 and 4.15, respectively. These figures illustrate the differences between results

obtained by RL and GA. In the results obtained by the RL agent, beams and columns exhibit

smaller cross-sectional sizes compared to those by GA, whereas both results from RL include more

braces than those of GA. Because the cross-sectional areas of braces are smaller than those of

beams and columns. Hence, increasing the sections of beams or columns may result in the

enlargement of other beams on the same floor or columns on the lower floor, finally leading to a

higher value of the objective function. From the perspective of the agent, placing braces could

yield a higher reward (lower cost), computed from the objective function value, in each

optimization step (i.e., placing braces, increasing sections), compared to merely increasing the

sections of beams or columns. Consequently, the RL agent demonstrates a strategy of placing

braces rather than enlarging the sections of beams and columns.

In both structures, the most critical constraints in this experiment are the short-term and

long-term stress constraints. Figures 4.12-4.15 reveal that the results obtained by the RL agent

exhibit higher constraint ratios for the maximum short-term stress, maximum long-term stress

constraint, maximum deformation, and maximum inter-story drift constraints, compared to GA,

except for the maximum long-term stress constraint in Structure A. These findings indicate that

the trained RL agent produces more efficient solutions located near the boundary of the feasible

region.

 112

 Final cost:

5.61

 Maximum short-term stress constraint: 1.00
 Maximum long-term stress constraint: 0.85
 Maximum deformation constraint: 0.10
 Maximum inter-story drift constraint: 0.13

Figure 4.12: RL best result for simultaneous topology and sizing optimization of braced building

frames – Structure A

 Final cost: 5.35
 Maximum short-term stress constraint: 0.97
 Maximum long-term stress constraint: 0.82
 Maximum deformation constraint: 0.15
 Maximum inter-story drift constraint: 0.19

Figure 4.13: RL best result for simultaneous topology and sizing optimization of braced building

frames – Structure B

 113

 Final cost:

6.90

 Maximum short-term stress constraint: 0.98
 Maximum long-term stress constraint: 0.89
 Maximum deformation constraint: 0.09
 Maximum inter-story drift constraint: 0.11

Figure 4.14: GA best result for simultaneous topology and sizing optimization of braced

building frames – Structure A

 Final Cost: 7.34
 Maximum Short-term stress constraint: 0.94
 Maximum Long-term stress constraint: 0.59
 Maximum Deformation constraint: 0.08
 Maximum Inter-story drift constraint: 0.19

Figure 4.15: GA best result for simultaneous topology and sizing optimization of braced

building frames – Structure B

 114

4.4 Conclusion

This chapter contributes to the field of structural engineering, particularly in the context of seismic-

resistant building frame design. The central objective revolves around the introduction and

application of a GCN-DDPG agent to tackle the intricate problem of topology and sizing

optimization for braced building frames exposed to seismic loads while concurrently minimizing

structural costs. The optimization problem is to achieve an optimal balance between structural

efficiency and economy by minimizing the structural cost while considering constraints inherent

to seismic design. The findings of this chapter are encapsulated as follows:

(1) A novel graph representation of structural elements is introduced which is different from

the method proposed by Hayashi et al. [50], representing the structural nodes as the graph

node. The proposed representation in this chapter allows for direct manipulation of

structural topology and size, with the GCN-DDPG agent serving as the engineer of these

modifications. This modification enables a more intuitive and efficient representation of

the structure in this optimization problem.

(2) The RL agent demonstrates its ability to learn and optimize the topology and size of braced

building frames. Operating within the framework of minimizing structural costs,

represented by the structural volume and the cost coefficient for the braces, under a

complex set of constraints, the agent relies on a reward function that quantifies changes in

structural cost and constraint satisfaction.

(3) One of the standout advantages of the proposed method is its scalability. The GCN-DDPG

agent can be effectively trained using small-scale building frames and subsequently applied

to larger structures. This scalability feature not only enhances the applicability of the

method but also minimizes the computational overhead during the training phase,

rendering it an efficient and cost-effective solution. Another noteworthy benefit of the

trained RL agent is its ability to achieve optimization results with a reduced computational

cost. This feature is particularly advantageous in scenarios where multiple schematic

designs of structures are required, allowing for rapid and cost-effective exploration of

design alternatives.

 115

(4) The trained RL agent consistently demonstrates its superior performance when compared

to conventional optimization techniques such as GA. Another compelling aspect of the

proposed RL method is its stability in performance. Numerical results in this chapter show

that the agent consistently delivers reliable and efficient optimization outcomes, reducing

the need for extensive trial and error iterations that are often encountered in traditional

optimization methods.

In conclusion, this chapter proposed optimization methods utilizing RL, for simultaneous

topology and sizing optimization problems of building frames utilizing structural cost as the

objective function. Different from Chapter 3, this chapter simplifies the graph representation by

denoting structural elements as graph nodes and incorporating the internal forces of the element

directly in the node feature matrix which also simplifies the DDPG agents. Numerical results

indicate the superiority of the proposed RL methods compared to GA.

 116

 117

Chapter 5

Geometry optimization of lattice shells using DDPG
and GAT with Bézier surface

5.1 Introduction

The previous chapters of this dissertation have presented a comprehensive exploration of RL as a

potent approach for addressing topology and sizing optimization in structural engineering. To

complete the overarching optimization framework for truss and frame structures, including

topology, sizing, and geometry, this chapter focuses on geometry optimization for lattice shells. In

the context of structural design, geometry optimization refers to the process of determining the

optimal shape or form of a structure. Specifically, this chapter focuses on lattice shell structures,

where the geometry or shape of the shell is determined through the manipulation of the heights of

Bézier control points. The primary objective in this context is to minimize strain energy. It is

noteworthy that geometry optimization is often characterized as a continuous optimization

problem, typically solvable through gradient-based optimization methods albeit at a substantial

computational cost. However, the importance of this research lies in the integration of structural

information and Bézier control net data into the learning process of the RL agent.

In this geometry optimization problem, the range of permissible heights for Bézier control

points is discretized to mitigate computational expenses. Benchmarking against stochastic and

population-based methods, namely SA and PSO, the RL method is evaluated in terms of its

capacity to generate optimal solutions. The results show the ability of the RL method to outperform

SA and PSO, offering a more efficient and effective approach to geometry optimization.

Importantly, the RL method maintains the versatility to address lattice shells of varying sizes,

configurations, and Bézier control nets. This chapter of the RL-based geometry optimization

approach is organized as follows: Section 5.1 provides the foundational understanding by

introducing Bézier control nets and outlining the geometry optimization problem employed in this

chapter. Section 5.2 explains the RL method formulated for geometry optimization in conjunction

with Bézier surfaces, and presents the numerical results that validate its superiority over

 118

benchmark methods. Finally, Section 5.3 summarizes the key findings of this research, affirming

the potential of the proposed method to solve geometry optimization problems in lattice shell

structures.

5.2 Formulation of optimization problem

5.2.1 Bézier surface

Bézier control net and Bernstein basis functions are a type of parametric surface that defines the

geometry of the lattice shell, as shown in Figure 5.1. Let !! be the order of the Bernstein basis

function which is defined as

""
#!($) = '!!() *

"(1 − *)#!$" , (i = 0,1, … , !!)																											(5.1)

where '!!() = 4
#!!

"!(#!$")!
for	0 ≤ (≤ !!

0 for	(< 0	or	(> !!
																														(5.2)

where *	 ∈ [0,1] is the parameter, and 0(= 0! = 1.

From Eq. (5.1), the tensor product of the Bernstein basis functions ""
)!(*) and "*

)"(@)

with respect to the parameters *, @	 ∈ [0,1] is the Bézier surface computed as

A+
)!,)"(*, @) =BBC",*

)"

*-(
""
)!(*)"*

)"(@)
)!

"-(
																																				(5.3)

where C",*((= 1, . . , E!; G = 1, . . , E.) are the coordinates of the vertices of the control net (i.e., the

coordinates of control points). E! and E. are the orders of basis functions in the * and @ directions,

respectively. Note that the values of * and @ are scaled nodal coordinates on the horizontal axes

in the range [0,1] and the nodal heights are defined by the control points as A+
)!,)"(*" , @") using

Eq. (5.3) where (*" , @") are the parameter values of node (.

 119

Figure 5.1: Bézier surface of the lattice shell (black lines) defined by Bézier control net (blue

lines)

5.2.2 Geometry optimization of lattice shells with Bézier surface

Parametric surfaces are effective for representing the nodal height of the structure to obtain a

smooth geometry of lattice shells. Utilizing these surfaces can also reduce the number of design

variables in the optimization problem [130] and structural analysis [131]. A type of parametric

surface that has most attracted researchers is the Bézier surface which defines the geometry

through the tensor product of the Bernstein polynomials [132] and their control points. Pioneering

research on geometry optimization of shells using Bézier surface can be found in Ref. [133] and

is further refined in later years [134-136].

In this research, the Bézier control net determines the nodal heights of the lattice shell

which consists of beam elements with 12 DoFs in the main axes of the grid and truss elements

with 6 DoFs for bracing (i.e., diagonal elements in the grid). The numbers of grids in the Bézier

control net and those of the lattice structure are independent of each other and can be determined

separately based on designers’ and engineers’ preferences. This chapter focuses on the problem of

minimizing the strain energy of lattice shells stiffened by diagonal braces subjected to static loads

where the boundary conditions are predetermined for each structural node.

The total strain energy is computed using linear structural analysis. Let H/ ∈ ℝ01×01 and

H3 ∈ ℝ4×4 denote stiffness matrices of the frame element and the brace element in the local

coordinate system, respectively. The global stiffness matrix J ∈ ℝ!#×!# is the assembly of H/ and

H3 into the global coordinate system, where K5 is the total number of DoFs, after specifying the

boundary conditions. Let L ∈ ℝ!# be the nodal load vector in the global coordinate system

considering point loads and weights applied on every node and element, respectively. M ∈ ℝ!# is

the nodal displacement vector computed by solving the stiffness equation as

 120

JM = L																																																														(5.4)

The total strain energy O is obtained from

O =
1
2M

6JM																																																										(5.5)

To optimize the total strain energy using Bézier control points as design variables, the

geometry of a lattice shell with K/733	 nodes and K+/733	 control points is optimized by modifying

the heights of control points. The vector of nodal heights and the vector of movable heights of

Bézier control points are denoted as P = (Q0, Q1, … , Q!$%&&) and P+ = (Q0# , Q1# , … , Q!($%&&	
), and the

heights of supports are fixed. The vector of nodal heights is derived from the heights of control

points as PRP+S when the values of parameters (*, @) are assigned to each node. Let Q9:;, Q9<=,

Q9<=+ , and Q9:;+ denote the upper bound of nodal height, the lower bound of nodal height, the

predetermined upper bound value of the heights of Bézier control points, and the predetermined

lower bound value of the heights of Bézier control points, respectively.

The global stiffness matrix of the structure and global displacement vector are functions of

P+ , denoted as J(P+) and M(P+) , respectively, and the geometry optimization problem to

minimize the total strain energy (i.e., to maximize the stiffness of the structure), is defined as

follows:

minimize					O(P+) =
1
2M(P

+)6J(P+)M(P+)																																												

subject	to					Q9<= ≤ Q"(P+) ≤ Q9:;			R(= 1, 2, … , K/733	S											(5.6)

Q9<=+ ≤ Q*+ ≤ Q9:;+ RG = 1, 2, … , K+/733	S																															

5.3 Geometry optimization of lattice shells using DDPG and GAT with Bézier surface

This section introduces the RL method for solving problems in Section 5.1.2. The RL agent in this

problem is designed to process both data from the structure and the control nets. Since the

 121

modification of the geometry is done by modifying the control points, the output of the RL agent,

made of GATs, is the embedded signal in the Bézier domain. Therefore, two graph representations

of the structure and Bézier control net are presented. Figure 5.2 illustrates the graph representation

of the lattice shell structure, whose geometry is defined by the Bézier control net (Figure 5.2(a)).

The structure is represented by a graph (Figure 5.2(b)) similar to the method utilized in Section

3.2. Node feature matrices, adjacency matrices, and weighted adjacency matrices are utilized to

represent structural configurations and internal forces (Figure 5.2(c)).

Figure 5.3 shows the graph representation of the Bézier control net. The configuration of

the control net is represented as a graph where the graph nodes and edges represent Bézier control

points and nets, respectively (Figure 5.3(b)). Information of the Bézier control points including

coordinates and boundary conditions is stored in the graph node and represented using a node

feature matrix. Information of the control net is represented using the adjacency matrix (Figure 5.3

(c)).

 122

Figure 5.2: Graph representation of the lattice shell for geometry optimization of lattice shells

 123

Figure 5.3: Graph representation of the Bézier control points for geometry optimization of lattice

shells

 124

The MDP of the geometry optimization of the lattice shells using the Bézier surface is

illustrated in Figure 5.4. At time step $, the agent observes the state S> which is the graph

representation of the current structural configuration and Bézier surface illustrated in Figure 5.4(a).

The agent does the action A> which determines the vertical adjustment of the Bézier control points

shown in Figure 5.4(b). The new structural geometry is defined from the modified Bézier surface

(i.e., environment) and the objective function is evaluated. The agent obtains a reward R>?0 based

on the change of the strain energy as shown in Figure 5.4(c) and the new step of MDP begins.

Figure 5.4: MDP of the geometry optimization of lattice shells

5.3.1 State

In this study, each graph node, derived from the structure, has five features, similar to those in

Section 3.2.1, and is represented as the node feature matrix b ∈ ℝ!×@. Adjacency matrices and

weighted adjacency matrices represent structural elements and their internal forces, respectively

(c0, c1, cA, d0, and d1). In addition to the structural nodes and elements, the attributes of Bézier

control points are represented as a graph of the Bézier control net. The control net feature matrix

and the control net adjacency matrix are represented as b+ ∈ ℝ!(×@ and c+ ∈ ℝ!(×!(,

respectively.

Note that all values in these matrices of graph representations are in the range of [0,1],

which mitigates the risk of numerical instability during the training of GAT models. Unlike GCN,

no degree matrix is utilized for normalizing the adjacency matrices for the GAT models.

 125

Table 5.1 summarizes entries in the node feature matrix b, and Table 5.2 shows entries in

the adjacency matrix of beam elements c0 , the adjacency matrix of truss elements c1 , the

adjacency matrix of beam and truss elements cA, the weighted adjacency matrix of beam d0, and

the weighted adjacency matrix of truss d1. Tables 5.3 and 5.4 indicate entries in the node feature

matrix of Bézier control points b+ and the control net adjacency matrix c+, respectively.

Table 5.1: Entries in node feature matrix (b) for geometry optimization of lattice shells

K",0 e-coordinate of node (
K",1 f-coordinate of node (
K",A Q-coordinate of node (
K",B 1 if the node has fixed support; else 0
K",@ 1 if the node has no support; else 0

Table 5.2: Entries in adjacency and weighted adjacency matrices (c0, c1, cA, d0, and d1) for

geometry optimization of lattice shells

g0",C 1 if there is a beam element connecting nodes (and G; else 0
g1",C 1 if there is a truss element connecting nodes (and G; else 0
gA",C g0",C +g1",C

i0",*
ratio between the bending moment (!′) and the axial force (k′) of an element if there
is a beam element connecting nodes (and G; else 0,
where i0",* = (g0",C |!′| (|k′| + 1)⁄ 	

i1",*
axial force (k′) of an element if there is a truss element connecting nodes (and G;
else 0, where i1",* = g1",C|k′|

Table 5.3: Entries in control net feature matrix (b+) for geometry optimization of lattice shells

K",0 e-coordinate of control point (
K",1 f-coordinate of control point (
K",A Q-coordinate of control point (
K",B 1 if the control point (has fixed support; else 0
K",@ 1 if the control point (has no support; else 0

 126

Table 5.4: Entries in the control net adjacency matrix (c+) for geometry optimization of lattice

shells

g+"* 1 if there is a control net connecting control points (and G; else 0

5.3.2 Agent

The agent is the DDPG having policy and value functions made of GAT layers. The output of a

GAT layer is transformed by activation functions. In general, the ReLU activation function is

applied to all layers of both policy and value functions except the last layer of the policy function

which is transformed by the Sigmoid activation function, scaling the output to be within [0,1]. This

output represents the probability of taking action A>" in a state S>.

The policy function n takes state data (b,c0 , c1 , cA , d0 , d1 , c+ , b+), explained in

Section 5.2.1, as input to compute the output n ∈ ℝ!(×A. This output has the same number of rows

as those of the control net feature matrix b+ ∈ ℝ!(×@, as shown in Table 5.3, and is interpreted as

the modification of the control point heights. Note that the number of columns (i.e., embedded

node signal) in n is set to 3 each of which indicates the probability of adjusting the control point

heights in different ways as further explained in Section 5.3.3.

Two operations are introduced in this research to combine multiple graph signals with

different dimensions (i.e., from K-node graph signals to K+-node graph signals). The first operation

is the GSP operation, as explained in Section 2.6.1 in Chapter 2, and the second operation is the

stack operation which copies row vectors, made by GSP, into a matrix with K+ rows, as explained

in Section 2.6.2 in Chapter 2.

Value function Q computes an estimation of the accumulated reward (i.e., Q-value) using

state data and the output from the policy function as input. Similar to Chapters 3 and 4, GSP and

an MLP are utilized for transforming the output matrix of the last GAT layers of the value function

into a scalar value, and computing the estimation of accumulated reward, respectively.

Table 5.5 summarizes the computation processes of the policy and value functions of the

GAT-DDPG agent for geometry optimization. Figure 5.5 illustrates actor and critic networks in

this research. Note that all equations and symbols in the computation processes are explained in

Section 2.6 and Figure 2.6 in Chapter 2.

 127

Table 5.5: Policy and value functions of GAT-DDPG for geometry optimization of lattice shells

policy function n value function Q
input: b, c0, c1, cA, d0, d1, c+, b+ input: b, c0, c1, cA, d0, d1, c+, b+, n
computation:
step 1: b0.0 = µ(µ(b, d0),c0)
 b0.1 = µ(µ(b, d1),c1)
 b0.A = µ(b0.0 + b0.1, cA)
step 2: b0.B = Stack!(RGSP(b0.A)S
 b0 = µ(b0.B, c+)
step 3: b1 = µ(µ(b+, c+),c+)
step 4: n = σ(b0 + b1, c+)

computation:
step 1: b0.0 = µ(µ(b, d0),c0)
 b0.1 = µ(µ(b, d1),c1)
 v0 = GSPRµ(b0.0 + b0.1, cA)S
step 2: b1.0 = µ(µ(b, d0),c0)
 b1.1 = µ(µ(b, d1),c1)	
 b1.A = µ(b1.0 + b1.1, cA)
 b1.B = Stack!(RGSP(b1.A)S
 b1.@ = µ(µ(b+, c+),c+)
 v1 = GSP(b1.B + b1.@)
step 3: vA = GSPRµ(µ(n,c+),c+)S
step 4: vB = [v0 ∥ v1 ∥ vA]
step 5: Q = fEE(vB)

output: n ∈ ℝ!(×A output: Q ∈ ℝ0×0

 128

Figure 5.5: Actor and critic networks for geometry optimization of lattice shells

 129

5.3.3 Action

After obtaining the output of the policy function n that has K+ rows and three columns, all K+

Bézier control points are adjusted based on their associate entries in n. The adjustment of a Bézier

control point (includes moving the control point upward, moving it downward, or keeping it at

the same height, all of which is the action at step $, interpreted as follows:

A>" = x
Q"+ ← Q"+ + ∆Q+ : if	 maxRn",0, n",1, n",AS = n",0
Q"+ ← Q"+ − ∆Q+ : if	 maxRn",0, n",1, n",AS = n",1

Q"+ ← Q"+ : if	 maxRn",0, n",1, n",AS = n",A

																				(5.7)

5.3.4 Reward

This chapter utilizes a reward function similar to those in Section 3.2.4. Let O(and O> denote the

initial strain energy and the strain energy at step $ of the structure, respectively. Reward signal

R>?0	is computed from the variation of the strain energy as

R>?0 = (O> − O>?0) O(⁄ 																																																		(5.8)

5.3.5 Numerical examples

Similar to RLs in other chapters, the agent is trained using small structures in the training phase

and its performance is evaluated using larger structures in the test phase. In the test phase, the

agent performance is benchmarked with PSO and SA methods. In the RL agent, the number of

feature maps ℎ	in all GCN layers, explained in Section 2.5 in Chapter 2, is 200. MLP has two

hidden layers, each consisting of 200 neurons.

The lattice shells in this problem have a 1.0 m by 1.0 m grid, consisting of 12-DoF frame

elements and 6-DoF truss elements for main grids and braces, respectively. The frame element has

a hollow cylindrical section with an external diameter of 34 mm, a thickness of 2.3 mm, and a

weight of 1.8 kg/m. The truss element has a solid circular section with a diameter of 12 mm and a

 130

weight of 0.9 kg/m. Young’s modulus of both elements is 200 kN/mm2. A vertical point load of 1

kN is applied to each node in the structure.

The program is developed using Python 3.6 environment. The computation is done on a

PC with a CPU of Intel Core i5-6600 (3.3 GHz, four cores) and a GPU of AMD Radeon R9 M395

2 GB. Figure 5.6 shows the flowcharts of the algorithms for training (a) and test (b) phases. The

optimization process, denoted as a game (i.e., episode), ends when the number of steps reaches the

predetermined limit, and the data of the structural configurations including nodal coordinates,

connections, properties of the elements, and loads are saved as an output.

The algorithm in the training phase (Figure 5.6(a)) is as follows; (0) The flat lattice shell is

initialized with random bracing direction in each grid. (1) Information on the structure and Bézier

control point are represented as graph data. (2) Graph representation becomes state data. (3) The

agent takes graph representation as input to compute the action. (4) The heights of Bézier control

points are modified according to the action. Geometry of the structure is also modified and the

finite element analysis is performed to obtain the objective functions and structural responses. The

reward is computed from the change of the objective function. (5) The agent is trained by collected

state-action-reward data, and the parameters in the agent are optimized. (6) If the final step is not

reached go to step (1); otherwise, terminate the process and save data.

Once the agent has undergone training for a certain number of games, it is then applied to

optimize the geometry of other lattice shells utilizing the algorithm during the testing phase (Figure

5.6(b)). The process is explained as follows; (0) The lattice shell is initialized as the flat shape. (1)

Structure and Bézier control point are translated into graph representations. (2) This graph

representation is transformed into state data. (3) The agent, utilizing the state data as input,

computes an action. (4) Geometry of the structure is modified according to the modification of the

Bézier control points from the action. If the objective function is improved, then the structure is

modified; otherwise, the lattice shell and Bézier control points are reverted to those before the

modification. (5) If the final step is not reached return to step (1); otherwise, terminate the process,

and save the data.

 131

Figure 5.6: Flowcharts of the algorithm for geometry optimization of lattice shells; (a) Training

phase, (b) Test phase

Training phase

A 4´4-grid lattice shell structural model is initialized randomly in each training game. These

training models are chosen from the structural models shown in Figure 5.7. The bracing direction

in each grid is also randomly initialized and every node in the structure is initialized on a plane

(i.e., height of 0). The heights of supports are fixed at 0.

 132

Figure 5.7: Structural models during training phase for geometry optimization of lattice shells

In this training phase, each game has a maximum number of steps of 20, and the heights of

Bézier control points are adjusted at each step according to the actions of the agent with ∆Q+ =

0.1 m so that the agent can thoroughly explore all possible configurations of the heights of control

points. The values of Q9<=, Q9:;, Q9<=+ , and Q9:;+ are 0, 1 m, 0, and 2 m, respectively. The replay

buffer for training surrogate functions, as explained in Section 2.3.3 in Chapter 2, has a mini-batch

size of 32. Adam optimizer, as explained in Section 2.5.3 in Chapter 2, modifies trainable

parameters of the surrogate policy and value functions with the learning rates of 10-6 and 10-5,

respectively. Trainable parameters of surrogate functions are updated to online functions with Ä =

0.05, as explained in Section 2.3.3 in Chapter 2. The agent has been trained through 1000 games.

In the value function, MSE, as explained in Eq. (2.23) in Chapter 2, is used as the loss function.

Figure 5.8 represents the accumulated reward obtained in the game and the game number

using the vertical and horizontal axes, respectively. The thick red line indicates the moving average

of the accumulated reward with a window size set to 50. From this figure, the moving average of

the reward has increased with a fluctuation period during the first 400 games of training, then

maintained relatively high values afterward. Note that the structural models are changed every

training game. Hence, the history of maintaining high rewards implies that the trained agent is

capable of optimizing the geometry of structures with different structural models and different

bracing directions. This capability is further investigated in the test phase. The number of structural

analyses of GAT-DDPG in the training phase is 20000.

 133

Figure 5.8: Variation of reward and its moving average in training phase for geometry

optimization of lattice shells

Test phase

In this phase, the trained agent is applied to large and diverse structures to verify its applicability

for geometry optimization problems. Three experiments are conducted to verify the ability of the

agent compared to other algorithms, the usefulness of the proposed method for geometry

optimization, and the ability of the agent when the type of design variables and initial geometry

are changed.

(1) Verifying ability of the agent for geometry optimization compared to PSO and SA

In this experiment, the trained agent is applied to six fully braced 6´6-grid lattice shells with three

cases of E! and E. of Bernstein basis functions as shown in Figure 5.9, and two fully braced

10´10-grid lattice shells with one case of E! and E., as shown in Figure 5.10. The number of steps

for the optimization is 500 and 1000 for 6´6-grid and 10´10-grid shells, respectively. Q9<= and

Q9<=+ are 0 for every structure. In 6´6-grid shells, Q9:; and Q9:;+ are 1 m and 2 m, respectively. In

10´10-grid shells, Q9:; and Q9:;+ are 2 m and 4 m, respectively. ∆Q+ is set to 0.1 m for both 6´6

and 10´10-grid shells.

Optimization is carried out for each structure by RL ten times, and the results are compared

to those obtained from PSO and SA. Numbers of populations and generations of PSO are set based

 134

on the number of structural analyses of GAT-DDPG. In this study, the number of particles in PSO

is 20, and the algorithm is terminated after 10 and 20 steps of optimization for 6´6-grid and 10´10-

grid structures, respectively. The PSO algorithm is made from DEAP Python library which

implements the original PSO algorithm proposed by Poli et al. [29]. Five schemes of weight

coefficients for PSO, (Å0, Å1) = (0.5,0.5), (0.4,0.6), (0.6,0.4), (0.2,0.8), and (0.8,0.2) are utilized.

The SA algorithm is the dual annealing from the Python library named SciPy. SA is terminated at

the specified maximum number of iterations that is also set so that its computational cost is

equivalent to that of GAT-DDPG which are 1000 and 2000 iterations for 6´6-grid and 10´10-grid

structures, respectively. Table 5.6 shows the computational costs of RL (10 times), PSO (5

schemes) with 5 trials using different random seeds, and SA with 5 trials using different random

seeds for each grid size.

Figure 5.9: 6´6-grid lattice shells (fully braced) with (E!, E.) = (4,4), (5,5), and (6,6) for

geometry optimization of lattice shells; (a) structural model 1, (b) structural model 2, (c)

structural model 3, (d) structural model 4, (e) structural model 5, (f) structural model 6, (g)

Bézier control nets

 135

Figure 5.10: 10´10-grid lattice shells (fully braced) with (E!, E.) = (4,4) for geometry

optimization of lattice shells; (a) structural model 1, (b) structural model 2, (c) Bézier control net

Table 5.6: Total computational cost of each method for geometry optimization of lattice shells

grid size RL (10 tests) PSO (5 schemes, 5 trials) SA (5 trials)
6´6 5000 5000 5000

10´10 10000 10000 10000

Table 5.7 indicates the best results of RL, PSO, and SA in each structural model and case

of Bernstein basis functions. The obtained results from RL are competitive compared to those from

PSO and SA. The experiment verifies the quality of the solutions of the GAT-DDPG agent. It is

worth noting that the RL method can obtain good results even though the structural grid size and

Bézier grid size differ from those in the training phase.

 136

Table 5.7: Strain energy of the best results obtained from RL, PSO, and SA for geometry

optimization of lattice shells

structural model grid size (E!, E.) RL (N⋅m) PSO (N⋅m) SA (N⋅m)

1
6´6

(4,4) 3.41 3.43 3.40
(5,5) 2.77 2.94 2.87
(6,6) 2.73 3.03 2.77

10´10 (4,4) 21.92 22.08 21.92

2
6´6

(4,4) 65.21 80.96 70.88
(5,5) 60.14 135.38 53.49
(6,6) 75.79 97.33 54.20

10´10 (4,4) 424.97 1017.94 437.22

3 6´6
(4,4) 7.30 7.82 7.28
(5,5) 6.73 6.89 6.95
(6,6) 7.07 9.65 7.59

4 6´6
(4,4) 259.41 492.97 274.85
(5,5) 280.22 715.01 281.22
(6,6) 372.72 732.34 278.29

5 6´6
(4,4) 195.15 206.85 200.07
(5,5) 196.86 271.62 192.23
(6,6) 182.71 260.00 194.73

6 6´6
(4,4) 9.32 14.14 10.62
(5,5) 9.47 11.39 10.78
(6,6) 10.91 16.02 12.23

The best results of RL in 10´10-grid shells with structural models 1 and 2 using (E!, E.) =

(4,4) are illustrated in Figures 5.11 and 5.12, respectively. From these figures, the trained RL

agent can minimize the strain energy by adjusting structural geometry through Bézier control

points and obtain smooth geometries despite different structural configurations from those used in

the training phase are considered, confirming that the agent can be trained using small structural

models and deployed into larger ones. The figures also show that strain energy reduction in the

early steps is large since the initial geometry is flat while the strain energy reduction is small in

the later steps of optimization (Figures 5.11(e) and 5.12(e)).

 137

Figure 5.11: 10´10-grid shell for geometry optimization of lattice shells – Structural model 1

Figure 5.12: 10´10-grid shell for geometry optimization of lattice shells – Structural model 2

(2) Verifying the usefulness of the agent for geometry optimization

This experiment aims to confirm the usefulness of the agent for the geometry optimization of

lattice shells focusing on the computational cost. The trained agent is applied to a 20´20-grid

lattice shell using the structural model 1 with one case of Bernstein basis functions where

(E!, E.) = (6,6), as illustrated in Figure 5.13. The number of steps, Q9<=, Q9:;, Q9<=+ , Q9:;+ , and

∆Q+ are set as 400, 0, 4 m, 0, 8 m, and 0.1 m, respectively.

 138

Figure 5.13: 20´20-grid lattice shell (fully braced) with (E!, E.) = (6,6) for geometry

optimization of lattice shells; (a) Structural model 1, (b) Bézier control net

Results of RL obtained from 10 tests are compared with those of PSO and SA utilizing

similar parameters, schemes, and trials as in the test phase. The number of particles and

optimization steps in PSO are 20 and 40, respectively. The maximum number of SA iterations is

4000. The total number of structural analyses of the RL method is 4000 while those of PSO and

SA are 20000 and 20000, respectively. Note that the computational costs of PSO and SA are larger

than those of RL to confirm the usefulness of the RL for geometry optimization using small

computational costs.

The comparison between the best result of RL and the best results obtained by PSO and

SA among different random seeds is shown in Table 5.8. The RL-based approach yields a better

result than PSO and SA. It is worth noting that the RL method utilizes smaller computational costs

and can be effective when there are multiple structures to be optimized; e.g., in the preliminary

design process. The final geometry and the history of strain energy of the best result obtained by

RL is illustrated in Figure 5.14.

 139

Table 5.8: Strain energy of the best results obtained from RL, PSO, and SA for geometry

optimization of lattice shells

structural model grid size (E!, E.) RL (N⋅m) PSO (N⋅m) SA (N⋅m)
1 20´20 (6,6) 284.94 294.49 291.94

Figure 5.14: 20´20-grid shell for geometry optimization of lattice shells - Verifying the

usefulness of the agent for geometry optimization – Structural model 1

 140

(3) Verifying ability of the agent when the type of design variables and initial geometry are

changed

This experiment presents the applicability of the already trained RL agent for solving geometry

optimization of fully braced structures that have initial irregular geometries using different types

of design variables. The structural models are 10´10-grid lattice shells with structural models 1

and 2 and E! = E. = 3 for the Bernstein basis functions, similar to Figure 5.10. The number of

steps, Q9<=, Q9:;, Q9<=+ , and Q9:;+ are 200 steps, 0, 2 m, 0, and 4 m respectively. Results of ten

trials are presented for each structural model.

In this experiment, the Bézier control points are randomly initialized in the range [0,2] m.

The action is also modified so that the agent at step $ adjusts the Bézier control point (using the

value directly derived from the output of the policy function n, computed as

A>" = x
Q"+ ← Q"+ + RÉ",0∆Q+S : if	 maxRÉ",0, É",1, É",AS = É",0
Q"+ ← Q"+ − RÉ",1∆Q+S : if	 maxRÉ",0, É",1, É",AS = É",1

Q"+ ← Q"+ : if	 maxRÉ",0, É",1, É",AS = É",A

																				(5.9)

where ∆Q+ is 0.1 m. Note that the design variables in this section are continuous whereas those

of the training phase and other test phases are discrete.

Table 5.9 shows the minimum (min.), mean, and standard deviation (std.) of the strain

energy for each structural model. In structural model 1, the best result has strain energy similar to

those in Table 5.7 using the same structural model of training and test phase. In structural model

2, the best result has strain energy larger than those in Table 5.7 by around 10%. However, the

computational cost of this section is 20% of those in Table 5.7 because the number of steps is

smaller in this Section. Figures 5.15 and 5.16 illustrate the initial geometry, the final geometry,

and the history of strain energy of the best results of 10´10-grid lattice shells with structural models

1 and 2, respectively. These figures emphasize that the RL method yields reasonably optimized

geometries despite using different initial geometries and types of design variables.

 141

Table 5.9: Results from initial irregular geometries for geometry optimization of lattice shells

structural model grid size (E!, E.) min. (N⋅m) mean (N⋅m) std. (N⋅m)
1 10´10 (4,4) 21.90 21.92 0.02
2 10´10 (4,4) 468.23 621.06 70.19

Figure 5.15: 10´10-grid lattice shell with initial irregular geometry for geometry optimization of

lattice shells – Structural model 1

Figure 5.16: 10´10-grid lattice shell with initial irregular geometry for geometry optimization of

lattice shells – Structural model 2

 142

5.4 Conclusion

In this chapter, a novel approach to geometry optimization of lattice shells using a GAT-DDPG

agent is introduced. The objective of this optimization is to generate the Bézier surface of the

lattice shell in a way that minimizes the strain energy. The concept of representing both the

structural information and the configuration of the Bézier control net as graph data is proposed.

These parallel data representations are effectively processed by the RL agent, which makes

informed decisions to modify the Bézier surface, finally optimizing the geometry of the lattice

shell for improved structural performance. The key findings of this chapter are summarized as

follows:

(1) An innovation lies in the introduction of new graph representations for both the lattice shell

structure and the Bézier control net. These representations enable the GAT-DDPG agent

to comprehensively observe and analyze both the structural configurations and responses

together with the configurations of the Bézier control net. This dual-domain representation

enriches the agent to understand the intricate interplay between the Bézier control net, the

structural geometry, and structural performance.

(2) The RL agent exhibits the capability to directly manipulate the Bézier control net,

leveraging specially designed neural network architectures. This capability empowers the

agent to guide the Bézier surface towards configurations that minimize strain energy.

(3) The GAT-DDPG agent is able to learn how to solve the geometry optimization problem

for lattice shells. It accomplishes this by minimizing the strain energy through a reward

function derived from the changes in strain energy resulting from the actions.

(4) The flexibility and transferability of the trained RL agent are shown as it can be trained

using small-scale lattice shells with modestly sized Bézier control nets and then applied to

lattice shells of different sizes, distinct Bézier surface configurations, and various

optimization problem settings, all without the need for retraining. This adaptability further

enhances the practical applicability of the RL-based approach.

(5) A significant result in this chapter is the demonstrated superiority of the trained RL agent

in obtaining optimal solutions when compared to conventional optimization methods such

as SA and PSO. This finding highlights the potential of RL in enhancing the efficiency and

 143

effectiveness of geometry optimization for lattice shells, with promising implications for

structural engineering design practices.

In conclusion, this chapter proposed an optimization method of geometry optimization for

lattice shells, utilizing the novel integration of the RL method and multi-domain graph

representation. In this method, the strain energy, which briefly indicates the structural performance

of the lattice shells, is utilized as an objective function. The result also reaffirms the adaptability

and transferability of RL agents in engineering applications, offering an optimization method for

the problem of geometry optimization. Note that this research considers only vertical loads, which

affect the optimal geometry of the lattice shells. However, it is important to consider other loads

and failure scenarios in actual lattice shell design. Future research should endeavor the application

of the proposed method in these scenarios.

 144

 145

Chapter 6

Multi-objective optimization of truss structure using
MARL and graph representation

6.1 Introduction

This chapter introduces a novel approach to multi-objective optimization of trusses, leveraging

MARL and graph representation techniques. In the context of structural engineering, multi-

objective optimization entails the simultaneous consideration of multiple conflicting objectives,

such as minimizing material usage and cost and maximizing structural performance. To address

these intricate optimization problems, MADDPG agents are collaboratively trained. These agents

work in accordance to obtain Pareto optimal solutions, which represent the trade-offs between

competing objectives. Crucially, both structural information and solutions within the objective

space are represented as graphs, enabling a more comprehensive and intuitive approach to multi-

objective optimization. The MADDPG agents utilize these graph representations to modify the

structures aiming to expand the non-dominated solutions. All agents obtained rewards based on

the improvement of the non-dominated solutions according to their actions. Similar to RL

algorithms in previous chapters, agents are trained in the training phase and applied to different

structures in the test phase.

The proposed algorithm is evaluated across three distinct problems, showcasing its

versatility and effectiveness. These problems encompass a multi-objective mathematical problem,

a multi-objective 10-bar truss problem, and, notably, a multi-objective optimization of truss design.

The findings presented in the context of truss design highlight the superiority of the trained

MADDPG agents, particularly when applied to truss configurations that were previously untrained.

This chapter is structured to provide a holistic view of the MARL-based multi-objective

optimization approach. Section 6.1 introduces the optimization problems tackled in this chapter.

Section 6.2 provides a detailed explanation of the MARL method, encompassing the algorithmic

framework, the graph-based representation of solutions within the objective space, the formulation

of reward functions, and general numerical settings. Sections 6.3 to 6.5 comprehensively present

 146

the results achieved by the algorithm when applied to the multi-objective mathematical problem,

the 10-bar truss problem, and the truss design optimization problem, respectively. Each of these

sections provides observation formulations, action interpretations, agent architectures, and the

outcomes of the training and testing phases. Finally, Section 6.6 summarizes the key findings and

contributions of this research, underlining the potential of MARL to solve multi-objective

optimization in structural engineering.

6.2 Formulation of optimization problems

This research utilizes three multi-objective optimization problems to verify the effectiveness of

the proposed MARL algorithm. The first and second problems are mathematical and structural

problems, respectively. Note that these problems have known Pareto fronts. Therefore, the

proposed MARL algorithm can obtain exact solutions. The third problem is a multi-objective

optimization problem of truss trade-off design, having the structural volume and geometry

deviation from the preference as the objective functions. Note that the Pareto fronts of this problem

vary depending on the preference of geometry, resulting in different Pareto fronts.

6.2.1 Multi-objective mathematical problem: Constr-Ex

Consider the Constr-Ex problem [137] as the mathematical problem to be solved. The problem is

defined as follows:

minimize				'!()) = 	,!																																																					

					'"()) = (1 + ,")/,!																											(6.1)

subject	to				9,! + ," ≥ 6																																																

9,! − ," ≥ 1																																																

where 	0.1 ≤ ,! ≤ 1, 0 ≤ ," ≤ 5, and) = (,!, ,").

 147

6.2.2 Multi-objective structural optimization problem: 10-bar truss

Let @# ∈ {0,1, … , D$} and F denote predetermined indices of the cross-sectional properties and a

vector that represents all indices of cross-sectional properties in the structure, respectively. The

length of structural element G is H#. The structural volume I of a truss, having D% elements and D&

nodes, is obtained from the cross-sectional areas J(@#) and the lengths H# as follows:

I(F) =KJ(@#)H#

'!

#(!

																																																						(6.2)

The problem of a 10-bar truss is shown in Figure 6.1, and aims to minimize the structural

volume and the displacement of node 5 under stress constraint. This multi-objective optimization

problem is formulated as follows:

minimize					I(F)																																																																												

M)(F)																																																																		(6.3)

subject	to				O*+,	 ≤ OP																																																																				

where O*+,	, OP, and M)	 are the maximum absolute value of stress, the upper bound stress, and the

absolute value of y-directional displacement of node 5, respectively.

Figure 6.1: Multi-objective 10-bar truss optimization problem

 148

6.2.3 Multi-objective optimization of truss with shape preferences: trade-off design

This optimization problem aims to minimize the shape deviation from the predetermined geometry,

denoted as target geometry, and structural volume. Let the height and target height of node G be Q#

and QR#, respectively. The shape deviation is measured as a linear difference S computed as

S(T) =K|Q# − QR#|

'"

#(!

																																																																	(6.4)

where T and D& are the vector of nodal heights and the number of nodes in the truss, respectively.

Another objective function to be minimized is the structural volume. Let @. ∈ {0,1, … , D$}

and W. be the indices of cross-sectional properties and lengths of truss elements X, respectively.

Structural volume I of a truss is obtained from cross-sectional areas JY@.Z when specifying the

cross-sectional indices @., and lengths. Note that, in this problem, I is also a function of nodal

coordinate vector T because it determines the lengths of elements. Let the number of truss elements

be D%. I is computed as

I(F, T) =KJY@.Z ∙ W.

'!

.(!

																																														(6.5)

Let O*+,	, M*+,	, OP, and M̅	 be the maximum absolute value of stress, the maximum absolute

value of displacement, the upper limit stress, and the upper limit displacement, respectively. The

multi-objective optimization problem of truss to minimize the structural volume and the shape

deviation is formulated as

minimize				I(F, T)																																																																							

	S(T)																																																																		(6.6)

subject	to				O*+,	 ≤ OP																																																																			

M*+,	 ≤ M̅																																																																			

 149

6.3 Multi-objective optimization using MARL

This section explains a general method for solving multi-objective optimization problems using

MARL. In MARL, the agents, observations, actions, and rewards must be specified. However, the

structure of MARL depends on types of multi-objective optimization problems consisting of

variables, that are observed and modified by the agents. Therefore, only the parts of the proposed

method, that can be generalized are explained in this section. These parts include the algorithm,

observation of the objective space, and the reward, which are explained in Sections 6.2.1, 6.2.2,

and 6.2.3, respectively.

6.3.1 Algorithm

Suppose objective function whose values are normalized to be in the range of [0,1]. At the

beginning of the optimization algorithm, a feasible initial solution is initialized. The objective

functions of this initial solution are computed, normalized, and mapped to the objective space. Let

the solution pool denote all the solutions at an optimization step. Hence, the initial solution has

only one solution in the solution pool with one solution.

At each optimization step, each solution in the solution pool is selected to be modified

(Figure 6.2(a)). The selected solution and current non-dominated solutions are represented as

observation data for the MADDPG agents (Figure 6.2(b)). Each agent observes this data and

modifies the design variables to create a neighborhood solution (Figure 6.2(c)). Created

neighborhood solutions are evaluated for their objective functions and constraints, and the feasible

neighborhood solutions are mapped into the objective space (Figure 6.2(d)) and kept for computing

the new solution pool. Each agent obtains a reward based on the improvements in the solution pool

(Figure 6.2(e)). The observation, action, and reward of all agents are stored in the replay buffer

(Figure 6.2(f)), which will be used for training the agents (Figure 6.2(g)). Note that this research

utilizes three differently parameterized MADDPG agents. Since all agents have diverse initialized

parameters and receive different rewards, they learn to make three neighborhood solutions from

each solution to generate diverse solutions.

After iterating through all solutions in the solution pool, a new solution pool is derived

from the non-dominated solutions of the current solution pool and the created neighborhood

 150

solutions. To avoid a large computational cost, the maximum number of non-dominated solutions

in the new solution pool in each step is set as D*+,. If the number exceeds this value, outer-edge

solutions, which are non-dominated solutions that lie at both rims of the front, are selected first,

and the other solutions are randomly chosen from the new solution pool (Figure 6.2(h)). Figure

6.3 illustrates the flowchart of the optimization algorithm.

Figure 6.2: The proposed MARL algorithm in each optimization step for multi-objective

optimization

 151

Figure 6.3: Flowchart of the algorithm for multi-objective optimization

6.3.2 Graph representations

This research proposes a method that lets the agents observe the solution pool in the objective

space through the graph representation. In each optimization step, each non-dominated solution in

the objective space (Figure 6.4(a)) is represented as graph nodes, as illustrated in Figure 6.4(b).

 152

The boundary of the region for computing current hypervolume, obtained from the non-dominated

solutions, consists of lines connecting neighboring non-dominated solutions. These lines are the

edges of the graph of the solution pool (Figure 6.4(b)). The graph of the solution pool is represented

utilizing a node feature matrix of the solution pool]/ and an adjacency matrix of the solution pool

^/, as shown in Figure 6.4(c). This graph of the solution pool is updated in each optimization step

according to the non-dominated solutions in the solution pool. Tables 6.1 and 6.2 show entries in

]/ and ^/, respectively. Note that this graph representation can be utilized in all multi-objective

optimization problems throughout this chapter.

 153

Figure 6.4: Graph representation of the non-dominated solutions for multi-objective

optimization

 154

Table 6.1: Values in node feature matrix of the non-dominated solutions]/ for multi-objective

optimization

D/#,! _!: value of objective function 1 of the solution G

D/#," _": value of objective function 2 of the solution G

D/#,1 current number of the non-dominated solutions/ D*+,

D/#,2 1 if agents are adjusting this solution; else 0

Table 6.2: Values in adjacency matrix of the non-dominated solutions ^/ for multi-objective

optimization

`/#,.
 1 if X = G + 1 or G = X + 1; else 0

In the multi-objective optimization problems of 10-bar truss and trade-off design, the

structure (Figure 6.5(a)) is represented as a graph where structural nodes and elements are graph

nodes and edges (Figure 6.5(b)), respectively. The information of structural nodes and the

existence of the structural element between the nodes are represented using the node feature matrix

of truss] and the adjacency matrix of truss ^, respectively. The sectional area and internal forces

in the truss elements are represented utilizing weighted adjacency matrices b (Figure 6.5(c)).

 155

Figure 6.5: Graph representation of the truss solutions for multi-objective optimization

 156

6.3.3 Reward

The MARL agents, in the proposed method, are trained to work together to improve the non-

dominated solutions in the objective space. Unlike single agent RL, it is difficult to assign rewards

based on the improvement of the solutions in MARL because each agent contributes to the

improvement of the solutions differently. In order to address this contribution by each agent, this

chapter utilizes the difference reward method [138] that measures the contribution of each agent.

The effectiveness of this method in the applications in MARL is shown by Refs. [139-141].

Let c34!5 (S3 , A3
5) be the difference reward agent f obtained when it does action A35 in a

state S3 . g(S3 , h3) and g(S3 , h3 − A3
5) are the utility indicators, considering actions from all

agents in S3 and actions from all agents except A35 in S3 , respectively. The difference reward

method states that c34!5 (S3 , A3
5) is computed by removing the contribution of agent f from the

system defined as follows:

c34!
5 (S3 , A3

5) = g(S3 , h3) − g(S3 , h3 − A3
5)																																			(6.7)

Note that once the agents obtain non-dominated solutions that are close to the Pareto front,

the improvement of the obtained non-dominated solutions becomes small. Hence, the hypervolume,

distribution, and spread of the current non-dominated solutions should be integrated into the

reward. This research proposes a reward function considering all these indicators that can guide

the MARL agents to keep improving the non-dominated solutions. To manipulate different agents

to improve the same solution differently, agents also obtain rewards based on the improvement of

the objective functions by assigning different weights for the reward, associated with objective

functions, to different agents. Let f ∈ {f!, f", f1}	be agents in the MARL system and j5 =

(k!, k", k1, k2, k)) be a vector of all reward components. All agents receive their reward components

after all agents modify a solution) in the solution pool. Table 6.3 explains all reward components

of agent f in detail. Note again that the difference reward method is utilized only for obtaining k!

which is associated with the improvement of the size of the hypervolume.

 157

Table 6.3: Reward components of agent f for multi-objective optimization

k!

Improvement of the hypervolume contributed by the action of agent f ∈ {f!, f", f1}
computed as follows:

 ∆HV678 − ∆HV9:#$|678
where ∆HV678	and ∆HV9:#$|678 are the improvement of the hypervolume considering
actions from all agents and those that consider actions from all agents except agent f,
respectively. ko' denotes the reference point for computing the hypervolume, having the
coordinate (1,1) in the objective space.

k"

Improvement of the objective functions by the action of agent f computed as follows:
p5qmaxY0, _!

< − _!
<$Zt + (1 − p5)qmaxY0, _"

< − _"
<$Zt

where _!<, _"<, _!
<$, and _"

<$ are the first and second objective functions before and after
adjustment by the agent f, respectively. Note that these values of objective functions are
normalized by dividing by the maximum possible values of the objective functions and
are 0 if constraints are not satisfied. p5	is a weight assigned to the agent f.

k1 Hypervolume of the current non-dominated solutions.

k2
Distribution of the current non-dominated solutions measured by the standard deviation
of crowd distance of the non-dominated solutions [137]

k) Spread (i.e., length) of the current non-dominated solutions measured using the
accumulated Euclidean distances of the non-dominated solutions [142]

It is important to note that each reward component also depends on the stage of the

optimization. During the early optimization stage when the hypervolume is small, the agents

should focus on improving k! and k". However, after obtaining a relatively large hypervolume,

the agents should maintain that large hypervolume and acquire a high k1 value. The value k) ,

representing the spread, should also be relative to the hypervolume and have the largest possible

value as 2√HV for a bi-objective problem. From these assumptions, this research also proposes a

weight vector v for the reward components which enlarges k! and k" when the size of the

hypervolume is small, enlarges k1 when the hypervolume is large, and normalizes k) using its

largest values. The proposed weight vector v is shown in Eq. (6.8), where constants in this

equation are obtained from trial and error, to enhance the learning ability of the agents to obtain

larger rewards and hypervolume.

v = w
0.25

max(0.25, HV)
,

0.25
max(0.25, HV)

, 10, −0.05,
0.05

2 × ymax(0.25, HV)
	z																			(6.8)

 158

Let D= be the number of solutions in the solution pool of the current optimization step. By utilizing

all reward components and the weights, R34!5 for agent f is computed as follows:

R34!
5 = j5v>/D=																																																								(6.9)

6.3.4 Numerical settings

This research utilizes three multi-objective optimization problems to validate the effectiveness of

the proposed MARL algorithm. In each problems, three different agents denoted as f ∈

{f!, f", f1}	 are trained together, utilizing p5%, p5&, and p5' of j5 as 1, 0.5, and 0, respectively.

Numerical examples of a multi-objective mathematical problem, and a multi-objective 10-bar truss

problem are performed on a PC with a CPU of Intel Core i5-6600 (3.3 GHz, four cores) and a GPU

of AMD Radeon R9 M395 2 GB. An example of multi-objective optimization of truss design is

presented using a PC with a CPU of Intel Core i9-11900 (2.5 GHz, 8 cores) and a GPU of Nvidia

GeForce RTX3060 12GB. All programs are implemented in the Python 3.6 environment.

6.4 Multi-objective mathematical problem using MARL and graph representation

6.4.1 Observation

In the Constr-Ex problem in Eq. (6.1), the agents observe the solution pool and the) values of the

solution to be modified. Table 6.4 shows the observation data of the solution and the solution pool

for the agents in this problem. In Table 6.5, row G in the node feature matrix of the non-dominated

solutions contains entries utilizing a proposed graph representation in Section 6.2.2, similar to

Table 6.1. These entries are the position of the solution G, denoted as)#, in the objective space and

the current objective space, the current number of the non-dominated solutions, and a value to

indicate that the solution is being modified, respectively. Note again that this research normalizes

the values of the objective functions. Hence, the value of '"()#) is divided by 10 in Table 6.5. The

observation data of ^/ is similar to Table 6.2 explained in Section 6.2.2.

 159

Table 6.4: Values in the normalized feature vector of) (}) for multi-objective mathematical

optimization problem

D! ,!
D" ,"/5

Table 6.5: Values in row G of the node feature matrix of the non-dominated solutions]/ for

multi-objective mathematical optimization problem

D/#,! '!()#)

D/#," '"()#)/10

D/#,1 current number of the non-dominated solutions/ D*+,

D/#,2 1 if agents are adjusting this solution; else 0

6.4.2 Action

In this multi-objective optimization problem, each agent f modifies the values of ,! and ,"

utilizing its output ~#∈{!,"}5 . The outputs are obtained from the hyperbolic tangent activation

function tanh(Ä) = (oB − o9B) /(oB + oB) where −1 ≤ tanh(Ä) ≤ 1 is satisfied. The

modification of ,! and ," using ~#∈{!,"}5 is defined as follows:

,! ← max(0.1,min(1, ,! + 0.2~!
5))																																

," ← max(0,min(5, ," + 0.2~"
5))																																				

(6.10)

6.4.3 Agents

Let {f!, f", f1}	be a set of MARL agents that consists of similar policy and value functions that

are made of MLPs and GCNs. The policy function of agent f! takes },]/, and Ç̂ / as inputs to

compute output ~5%, defined as

~5% = ~5%Y},]/, Ç̂ /Z																																																							(6.11)

 160

The value function of agent f! computes the expected reward (i.e., the Q-value), which is

denoted as Q5%, by taking },]/, Ç̂ /, ~5% and outputs of all other policy functions ~5& and ~5' as

inputs as

Q5% = Q5%Y},]/, Ç̂ /, ~5% , ~5& , ~5'Z																																											(6.12)

In this research, every agent takes the same observation data as input. Therefore, a simple

neural network architecture of the value function can be made compared to the original MADDPG

which takes different observations in each agent [86].

Table 6.6 summarizes the computation processes of the policy and value functions of the

GCN-MADDPG f! agent for the Constr-Ex problem. The neural network architecture of the

policy and value functions (i.e., actor and critic networks) of each agent are shown in Figures

6.6(a) and 6.6(b), respectively. Inputs, shown on the left, are sent into the actor and critic networks,

which compute ~5% and Q5%, respectively, as shown on the right side of the networks. In these

neural networks, the GCNs with ReLU activation function returns]C ∈ ℝ'×E with ℎ =100 (i.e.,

the number of feature maps, explained in Section 2.5 in Chapter 2), and the MLPs have 2 layers

with 100 neurons in each layer. Note that all equations and symbols in the computation processes

are explained in Section 2.6 and Figure 2.6 in Chapter 2.

 161

Table 6.6: Policy and value functions of GCN-MADDPG (f! agent) for multi-objective

mathematical optimization problem

policy function ~5% value function Q5%
input: },]/, Ç̂ / input: },]/, Ç̂ /, ~5% , ~5& , ~5'
computation:
step 1: }!.! = µYfGG(})Z
step 2:]!." = µY]/, Ç̂ /Z
 }!.1 = GSP(]!.")
step 3: }" = [}!.! ∥ }!.1]
step 4: ~5% = tanhYfGG(}")Z

computation:
step 1: }!.! = µYfGG(})Z
step 2:]!." = µY]/, Ç̂ /Z
 }!.1 = GSP(]!.")
step 3: }!.2 = µYfGG(~5%)Z
step 4: }!.) = µYfGG(~5&)Z
step 5: }!.H = µYfGG(~5')Z
step 6: }" = [}!.! ∥ }!.1 ∥ }!.2 ∥ }!.) ∥ }!.H]
step 7: Q5% = fGG(}")

output: ~5% ∈ ℝ"×! output: Q5% ∈ ℝ!×!

Figure 6.6: Actor and critic networks for multi-objective mathematical optimization problem

6.4.4 Training phase

Agents are trained for 701 episodes and each episode terminates after 10 steps to obtain non-

dominated solutions to the problem in Eq. (6.1)	using D*+, = 20 to prevent the algorithm from

 162

creating too many solutions. The initial solution is) = (0.75, 0.25) and the values in) are

rounded to the second decimal. During the training, two edge solutions, which might not be the

non-dominated solutions but lie at the rim of the objective space, are added to the solution pool to

improve the exploration of the agents. This research evaluates the improvements of the agent

performances using the same function every 10 training episodes. The agent surrogate functions,

as explained in Section 2.3.3 in Chapter 2, are adjusted using the Adam optimizer, as explained in

Section 2.5.3. The mini-batch size is set to 32 and the learning rates are 10-6 and 10-5 for policy

and value functions, respectively. Note that the details of the training process are explained in

Section 2.5.2. Weights and biases of the surrogate functions are synchronized with those of the

online functions every 300 steps using ç=0.05, as explained in Section 2.3.3.

Figure 6.7 shows the variation of the final hypervolume (a) and the obtained rewards (b)

in each evaluation episode, represented as the vertical axis, and the evaluation episode represented

as the horizontal axis. It is seen from Figure 6.7(a), MADDPG agents cannot obtain large

hypervolume in the early 200 episodes. Their ability to obtain a large hypervolume is shown

around the first 250 episodes. However, their performances drops but increases afterward. This

spike in performance is also visible in the rewards obtained by each agent in Figure 6.7(b). Note

that the spikes could happen during the training because the trainable parameters of agents were

modified. After 700 episodes, MADDPG agents obtains larger hypervolume sizes and higher

rewards than those around 250th episode.

Figure 6.7: Variation of hypervolume and reward in training phase for multi-objective

mathematical optimization problem; (a) Hypervolume, (b) Reward

 163

6.4.5 Test phase

The trained MADDPG agents with the weights saved at the 700th episode in the training phase are

utilized for optimizing the Constr-Ex problem ten times in the test phase. In this phase, each

episode is terminated after 20 steps, D*+, is set to 50,) = (0.75, 0.25) is the initial solution, and

ten edge solutions are added to the solution pool in each optimization step. The obtained Pareto

fronts by the untrained and trained MADDPG agents are compared to the true Pareto front to verify

the effectiveness of the algorithm, as illustrated in Figure 6.8. From this figure, the trained

MADDPG agents using the proposed algorithm can obtain solutions close to the Pareto front

except those with large '" values. Hence, the effectiveness of the proposed method to obtain the

Pareto front is verified. The obtained Pareto fronts by the trained agents are clearly better than

those of the untrained agents. Therefore, the effectiveness of the training algorithm is also validated.

Figure 6.8: Solutions obtained by the untrained and trained agents compared to the true Pareto

front for multi-objective mathematical optimization problem;

(a) Untrained agents, (b) Trained agents

 164

6.5 Multi-objective 10-bar truss problem using MARL and graph representation

6.5.1 Observation

In this example, the observation data are the solution to be adjusted and the set of non-dominated

solutions. These data are the graph representation of the truss (], Ç̂ , b&, bI, b$) and the graph

representations of the solution on the Pareto front (]/, Ç̂ /) explained in Section 6.2.2. Note that

the information of the solution to be adjusted is represented utilizing the node feature matrix of the

truss node], the adjacency matrix of the truss node ^, the weighted adjacency matrix of the cross-

sectional areas b&, the weighted adjacency matrix of the internal tensile stress tension bI, and the

weighted adjacency matrix of the internal compressive stress b$. Tables 6.7 and 6.8 show the

entries in row G in the node feature matrix], and the values in the adjacency and weighted

adjacency matrices (^,b&, bI, b$), respectively.

Similar to the previous example, the entries in row G of the node feature matrix of the non-

dominated solutions]/ are the position of solution G in the objective space and information on

current non-dominated solutions, as shown in Table 6.9. In this table, I# and M)# 	are the structural

volume and the absolute y-directional displacement of node 5 of the solution G, respectively where

I*+, and M)*+, are the maximum possible values of the structural volume and the absolute y-

directional displacement of node 5, respectively. ^/ is formulated as explained in Section 6.2.2.

Table 6.7: Values in row G of the node feature matrix of truss node (]) for multi-objective 10-bar

truss optimization problem

D#,! x-coordinate
D#," y-coordinate
D#,1 1 if there is a support in the x-axis of structural node G; else 0
D#,2 1 if there is a support in the y-axis of structural node G; else 0
D#,) load in the y-direction
D#,H displacement in the y-direction

 165

Table 6.8: Values in the adjacency and weighted adjacency matrices of truss (^,b&, bI, b$) for

multi-objective 10-bar truss optimization problem

`#,. 1 if there is an element that connects structural nodes G and X; else 0

é&#,.
J/J*+,		 if there is an element that connects structural nodes G and X; else 0
J and J*+, denote the area and maximum area of the structural element

éI#,.
1 if an element that connects structural nodes G and X violates the stress constraint in
tension; else 0.5OI	/OP
OI	 denotes the tensile internal stress of the element

é$#,.
1 if an element that connects structural nodes G and X violates the stress constraint in
compression; else 0.5O$	/OP
O$	 denotes the compressive internal stress of the element

Table 6.9: Values in row G of the node feature matrix of the non-dominated solutions (]/) for

multi-objective 10-bar truss optimization problem

D/#,! I#/I*+,
D/#," M)#/M)*+,
D/#,1 current number of the non-dominated solutions/ D*+,
D/#,2 1 if agents are adjusting this solution; else 0

6.5.2 Action

In this problem, each MADDPG agent creates neighborhood solutions by modifying the cross-

sectional areas of multiple truss elements simultaneously. Let ' be the number of truss elements.

In this research, the connectivity matrix è ∈ ℝ'!×'", indicating elements and their end nodes, is

utilized for transforming the structural node feature matrix into the structural element feature

matrix. The output of each policy function ~5 ∈ ℝ'"×1 is premultiplied by è and each cross-

sectional size @# of element G is interpreted from the product of two matrices è~5. This product is

ê5 ∈ ℝ'!×1 and is utilized for determining the modification of the elements as follows:

@# =

⎩
⎪
⎨

⎪
⎧
min(32, @# + 1) : if	 argmax

.
(ê5

#,.∈{!,",1}) = 1

@# : if	 argmax
.

(ê5
#,.∈{!,",1}) = 2

max(1, @# − 1) : if	 argmax
.

(ê5
#,.∈{!,",1}) = 3

																																		(6.13)

 166

6.5.3 Agents

Let f!, f", and f1	be the agents. The policy function of agent f! that takes], Ç̂ , b&, bI, b$,]/,

and Ç̂ / as inputs to computed ~5 is defined as

~5% = ~5%Y], Ç̂ , b&, bI, b$,]/, Ç̂ /Z																																								(6.14)

The value function of agent f! takes the observation data, outputs of ~5%, and outputs of all other

policy functions to compute Q5% as

Q5% = Q5%Y], Ç̂ , b&, bI, b$,]/, Ç̂ /, ~5% , ~5& , ~5'Z																											(6.15)

Table 6.10 shows the computation processes of the policy and value functions of the GCN-

MADDPG f! agent in this 10-bar truss problem. The network architectures of the actor and critic

networks in each agent are also shown in Figures 6.9(a) and 6.9(b), respectively. Note that GCNs

can take the embedded node signal of the previous GCN layer as input instead of the node feature

matrix, and can take a weight adjacency matrix instead of a normalized adjacency matrix as input,

in this experiment. This example utilizes GCNs with the ReLU activation function that returns

]C ∈ ℝ'×E with ℎ = 200 (i.e., the number of feature maps, explained in Section 2.5 in Chapter 2)

and the MLPs that have 2 layers with 200 neurons in each layer. The example also utilizes GSP

and stack operations for combining data observed from the specific truss and the set of non-

dominated solutions. All equations and symbols in the computation processes are explained in

Section 2.6 and Figure 2.6 in Chapter 2.

 167

Table 6.10: Policy and value functions of GCN-MADDPG (f! agent) for multi-objective 10-bar

truss optimization problem

policy function ~5% value function Q5%
input:], Ç̂ , b&, bI, b$, b/, Ç̂ / input:], Ç̂ , b&, bI, b$, b/, Ç̂ /, ~5% , ~5& , ~5'
computation:
step 1:]!.! = µYµY], Ç̂ Z, Ç̂ Z
step 2:]!." = µYµY], Ç̂ Z, b&Z
step 3:]!.1 = µYµY], Ç̂ Z, bIZ
step 4:]!.2 = µYµY], Ç̂ Z, b$Z
step 5:]!.) = µY]/, Ç̂ /Z
]!.H = Stack'YGSP(]!.))Z
]!.J = µY]!.H, Ç̂ Z
step 6: !!.# = !#.# + !#.! + !#.$ + !#.% + !#.&
]"." = µY]".!, Ç̂ Z
step 7: ~5% = σY]".", Ç̂ Z

computation:
step 1: }!.! = GSP öµYµY], Ç̂ Z, Ç̂ Zõ

step 2: }!." = GSP öµYµY], Ç̂ Z, b&Zõ

step 3: }!.1 = GSP öµYµY], Ç̂ Z, bIZõ

step 4: }!.2 = GSP öµYµY], Ç̂ Z, b$Zõ

step 5:]!.) = µY]/, Ç̂ /Z
]!.H = Stack'YGSP(]!.))Z

 }!.J = GSP öµY]!.H, Ç̂ Zõ

step 6: }!.K = GSP öµYµY~5% , Ç̂ Z, Ç̂ Zõ

step 7: }!.L = GSP öµYµY~5& , Ç̂ Z, Ç̂ Zõ

step 8: }!.!M = GSP öµYµY~5' , Ç̂ Z, Ç̂ Zõ

step 9: }" = [}!.! ∥ }!." ∥ }!.1 ∥ }!.2 ∥
 }!.J ∥ }!.K ∥ }!.L ∥ }!.!M]
step 10: Q5% = fGG(}")

output: ~5% ∈ ℝ'"×1 output: Q5% ∈ ℝ!×!

 168

Figure 6.9: Actor and critic networks for multi-objective 10-bar truss optimization problem

6.5.4 Training phase

In this training phase, all elements in the initial structure in Figure 6.1 have cross-sectional indices

of #20, indicating the cross-sectional area of 7.42×10-3 m2, D*+,, as explained in Section 6.3.1, is

20, and two edge solutions are added to the solution pool in each optimization step. The MADDPG

agents are trained for 701 episodes and each episode terminates after 50 steps. We evaluate the

ability of agents to improve their policies every 10 episodes. Adam optimizer with the mini-batch

size set to 32, as explained in Section 2.5.3 in Chapter 2, adjusted the weights of the agent surrogate

functions, as explained in Section 2.3.3. The learning rates are 10-8 and 10-7 for policy and value

functions, respectively. Details of the training process are explained in Section 2.5.2. Weights and

biases of the surrogate functions are synchronized with those of the online functions every 300

steps using τ=0.005, as explained in Section 2.3.3.

 Figure 6.10 illustrates the size of hypervolume (a) and the rewards (b) in the vertical axis,

where the horizontal axis represents the episodes that we evaluate. From this figure, MADDPG

agents gradually increases the hypervolume during the training (Figure 6.10(a)) and also improves

their obtained rewards (Figure 6.10(b)). Note again that the agents are adjusting their trainable

parameters in both policy and value functions while considering the policies of other agents as

 169

well, during this training phase. Hence, some oscillations of the obtained hypervolume and rewards

appear in these figures.

Figure 6.10: Variation of hypervolume and reward in training phase for multi-objective 10-bar

truss optimization problem; (a) Hypervolume, (b) Reward

6.5.5 Test phase

In this test phase, the trained MADDPG agents having the weights saved at episode 700 of the

training phase are used for optimizing the truss ten times without further training. In this phase,

the initial structure also has cross-sectional indices of #20, each episode is terminated after 200

steps, and ten edge solutions are added to the solution pool in each optimization step. D*+, is set

to 50 which is larger than those of the training phase because the test phase has fewer trials and a

smaller computational cost

The obtained results by the proposed MARL algorithm are compared to those obtained by

NSGA-II using a Python library named DEAP. NSGA-II yields a similar Pareto front obtained by

Kumar et al. [143] who used the multi-objective modified heat transfer search method. Figure 6.11

illustrates the obtained Pareto front by MADDPG and NSGA-II utilizing 290253 and 300000

(1500 populations, 20 generations, and 10 trials) times of structural analyses, respectively. It is

observed from this figure that the proposed MADDPG agents obtained competitive solutions with

NSGA-II which is regarded to generate an accurate Pareto front. This result confirms the

effectiveness of the proposed MARL algorithm for the multi-objective optimization of truss

structures.

 170

Figure 6.11: Pareto fronts obtained by MADDPG and NSGA-II for multi-objective 10-bar truss

optimization problem

6.6 Trade-off design problem using MARL and graph representation

6.6.1 Observation

Observation data in this experiment are formulated similarly to those in Section 6.4.1 with some

additional information about the structural node G of the truss in the node feature matrix of truss

node (]), as shown in Table 6.11. All entries in the adjacency and weighted adjacency matrices

(^,b&, bI, b$) are similar to those in Table 6.8 in Section 6.4.1. Entries in the node feature matrix

of the non-dominated solutions (]/) are shown in Table 6.12, where I# and S# indicate the

structural volume and the shape deviation of solution G from the target shape, respectively. Also

in this table, I*+, and S*+, are the maximum possible values of the structural volume and the

shape deviation, respectively. ^/ is the same as explained in Section 6.2.2.

 171

Table 6.11: Values in row G of the node feature matrix of truss node (]) for trade-off design

problem

D#,! x-coordinate
D#," y-coordinate
D#,1 1 if there is a support in the x-axis of structural node G; else 0
D#,2 1 if there is a support in the y-axis of structural node G; else 0
D#,) load in the y-direction
D#,H 1 if structural node G is the upper node; else 0
D#,J 1 if structural node G is the lower node; else 0
D#,K maximum adjustable height of structural node G in positive y-direction
D#,L maximum adjustable height of structural node G in negative y-direction
D#,!M D#,HQR#/Q#
D#,!! displacement in the y-direction
D#,!" 1 if structural node G violates displacement constraint; else 0
D#,!1 1 if structural node G violates displacement constraint; else 0.5D#,!!/M̅		

Table 6.12: Values in row G of the node feature matrix of the non-dominated solutions (]/) for

trade-off design problem

D/#,! I#/I*+,

D/#," S#/S*+,

D/#,1 the current number of the non-dominated solutions/ D*+,

D/#,2 1 if agents are adjusting this solution, else 0

6.6.2 Action

There are two design variables in this multi-objective optimization problem, including the nodal

heights and the cross-sectional areas of the truss. Therefore, each agent	f	computes two outputs

{~5,N, ~5,>}, associated with each design variable, to create neighborhood solutions. The agent

modifies the nodal height of node G utilizing the output ~5,N ∈ ℝ'"×", interpreted as follows:

Q# = ú
Q# + D#,Kù~#,!

5,N : if	 argmax
.

Y~#,.∈{!,"}
5,N Z = 1

Q# − D#,Lù~#,"
5,N : if	 argmax

.
Y~#,.∈{!,"}

5,N Z = 2
											(6.16)

 172

where 0 < ù ≤ 1 is a coefficient to scale the adjustments.

The agents modify the cross-sectional area of multiple elements similarly to the example

in Section 6.4 where each cross-sectional index @. of an element X is derived from the product of

~5,> ∈ ℝ'"×1 and the connectivity matrix è ∈ ℝ'!×'" , which is denoted as ê5 ∈ ℝ'!×1 , and

determines how the cross-sectional area of element X is modified as follows:

@. =

⎩
⎪
⎨

⎪
⎧min(D$, @. + 1) : if	 argmax

O
Yê5

.,O({!,",1}Z = 1

@. : if	 argmax
O

Yê5
.,O({!,",1}Z = 2

max(0, @. − 1) : if	 argmax
O

Yê5
.,O({!,",1}Z = 3

																											(6.17)

6.6.3 Agents

Let f!, f", and f1	be the agents. Similar to the example in Section 6.4.3, the policy function of the

agent f! takes], Ç̂ , b&, bI, b$,]/, and Ç̂ / as observation data and computes the modifications

of geometry and member sizes of the truss interpreted utilizing Eqs. (6.16) and (6.17) as follows:

{~5%,N, ~5%,>} = ~5%Y], Ç̂ , b&, bI, b$,]/, Ç̂ /Z																																		(6.18)

The value function of agent f! computes the Q5% utilizing the observation data, outputs of ~5%,

and outputs of all the other policy functions as inputs, respectively, as

Q5% = Q5%Y], Ç̂ , b&, bI, b$,]/, Ç̂ /, ~5%,N, ~5%,>, ~5&,N, ~5&,>, ~5',N, ~5',>Z							(6.19)

Table 6.13 summarizes the computation processes of the policy and value functions of the

GCN-MADDPG f! agent for this trade-off design problem. The architectures of actor and critic

networks are illustrated in Figures 6.12(a) and 6.12(b), respectively. The GCNs with ReLU

activation function return]C ∈ ℝ'×E with ℎ as 200 (i.e., the number of feature maps, explained in

Section 2.5), and MLPs have 2 layers with 200 neurons in each layer. Note that all equations and

symbols in the computation processes are explained in Section 2.6 and Figure 2.6 in Chapter 2.

 173

Table 6.13: Policy and value functions of GCN-MADDPG (f! agent) for trade-off design

problem

policy function ~5% value function Q5%
input:], Ç̂ , b&, bI, b$,]/, Ç̂ / input:], Ç̂ , b&, bI, b$,]/, Ç̂ /, ~5%,N, ~5%,>,

 ~5&,N, ~5&,>, ~5',N, ~5',>
computation:
step 1:]!.! = µYµY], Ç̂ Z, Ç̂ Z
step 2:]!." = µYµY], Ç̂ Z, b&Z
step 3:]!.1 = µYµY], Ç̂ Z, bIZ
step 4:]!.2 = µYµY], Ç̂ Z, b$Z
step 5:]!.) = µY]/, Ç̂ /Z
]!.H = Stack'YGSP(]!.))Z
]!.J = µY]!.H, Ç̂ Z
step 6: !!.# = !#.# + !#.! + !#.$ + !#.% + !#.&
]"." = µY]".!, Ç̂ Z
step 7: !$.# = !#.# + !#.! + !#.$ + !#.% + !#.&
]1." = µY]".!, Ç̂ Z
step 7: ~5%,N = σY]".", Ç̂ Z
 ~5%,> = σY]1.", Ç̂ Z

computation:
step 1: }!.! = GSP öµYµY], Ç̂ Z, Ç̂ Zõ

step 2: }!." = GSP öµYµY], Ç̂ Z, b&Zõ

step 3: }!.1 = GSP öµYµY], Ç̂ Z, bIZõ

step 4: }!.2 = GSP öµYµY], Ç̂ Z, b$Zõ

step 5:]!.) = µY]/, Ç̂ /Z
]!.H = Stack'YGSP(]!.))Z

 }!.J = GSP öµY]!.H, Ç̂ Zõ

step 6: }!.K = GSP öµYµY~5%,N, Ç̂ Z, Ç̂ Zõ

step 7: }!.L = GSP öµYµY~5%,>, Ç̂ Z, Ç̂ Zõ

step 8: }!.!M = GSP öµYµY~5&,N, Ç̂ Z, Ç̂ Zõ

step 9: }!.!! = GSP öµYµY~5&,>, Ç̂ Z, Ç̂ Zõ

step 10: }!.!" = GSP öµYµY~5',N, Ç̂ Z, Ç̂ Zõ

step 11: }!.!1 = GSP öµYµY~5',>, Ç̂ Z, Ç̂ Zõ

step 12: }" = [}!.! ∥ }!." ∥ }!.1 ∥ }!.2 ∥
 }!.J ∥ }!.K ∥ }!.L ∥ }!.!M ∥
 }!.!! ∥ }!.!" ∥ }!.!1]

step 13: Q5% = fGG(}")

output: ~5%,N ∈ ℝ'"×1, ~5%,> ∈ ℝ'"×1 output: Q5% ∈ ℝ!×!

 174

Figure 6.12: Actor and critic networks for trade-off design problem

6.6.4 Numerical settings

In this example, truss elements have Young’s modulus and allowable stress for both tension and

compression of 200 kN/mm2 and 235/1.5 N/mm2, respectively, with a list of sections shown in

Table 6.14. The allowable nodal deformation is 0.001×length of the total truss span (m). The

agents modify the nodal heights using ù = 0.25 in Eq. (6.16). Note that target heights QR# in Eq.

(6.4) are assigned only to the upper nodes of the truss structures.

Table 6.14: List of truss sections for trade-off design problem

section no. diameter (mm) thickness (mm) area (cm2) I (cm4) Z (cm3)
1 76.3 4.0 9.085 5.95×101 15.6
2 114.3 6.0 20.41 3.00×102 52.5
3 139.8 9.5 38.89 8.30×102 119
4 216.3 12.7 81.23 4.23×103 391
5 318.5 17.4 164.6 1.87×104 1180

 175

6.6.5 Training phase

The agents are trained to optimize five different trusses shown in Table 12. In this table, QPQPI, Q*+,,

{ü#∈{!,…,)}}, {QR#∈{!,…,H}}, and ∆ denote the initial upper nodal heights, the maximum nodal heights,

span lengths, target nodal heights, and the minimum depth value, respectively. Two types of

loading conditions are referred to as bridge and roof types as shown in Figures 6.13(a) and 6.13(b),

respectively. In bridge type, the truss is subjected to a downward nodal load of 100kN at each free

lower node and all lower nodal heights are fixed. In roof type, the truss is subjected to a downward

nodal load of 100kN at all upper nodes. Note that heights of all lower nodes are initialized as 0,

and ∆ is set so that the upper and lower nodes are not coalescent, and the minimum nodal height

is 0. The nodal heights with the support are set to 0 and cannot be modified. A roof type truss,

shown in Figure 6.14, is utilized to evaluate the abilities of agents to improve their policies, every

10 training episodes.

The agent surrogate functions, as explained in Section 2.3.3 in Chapter 2, are adjusted using

the Adam optimizer, as explained in Section 2.5.3. The mini-batch size is set to 32 and the learning

rates are 10-8 and 10-7 for policy and value functions, respectively. Note that the details of the

training process are explained in Section 2.5.2. Weights and biases of the surrogate functions are

synchronized with those of the online functions every 300 steps using ç=0.005, as explained in

Section 2.3.3.

Table 6.15: Trusses for training MADDPG agents for trade-off design problem

 truss 1 truss 2 truss 3 truss 4 truss 5
!()(* (m) 5 5 5 5 5
!+,- (m) 5 5 5 5 5

{".∈{1,…,4}} (m) {4,3,5,3,5} {4,3,5,3,5} {4,3,5,3,5} {4,3,5,3,5} {4,3,5,3,5}

{!#.∈{1,…,6}} (m) {1,1.5,2,2,1.5
,1}

{1,3,3,2,1.5,1
}

{1,1.5,2,3,3,1
} {1,3,2,2,3,1} {3,2,1,1,2,3}

∆ (m) 0.2 0.2 0.2 0.2 0.2

 176

Figure 6.13: Trusses for training for trade-off design problem

Figure 6.14: Truss for evaluation (roof type) for trade-off design problem

In this training phase, the MADDPG agents are trained for 2001 episodes, each episode

terminates after 50 steps, and two edge solutions are added to the solution pool at each optimization

step. Figure 6.15 illustrates the history of the performance indicators, including the obtained

hypervolume (a) and the reward (b), of the agents in each evaluation episode where horizontal and

vertical axes represent episodes and indicators, respectively. It is seen from this figure that both

the obtained hypervolume and rewards of all agents increase during the training, verifying the

effectiveness of the training. It is worth noting that, in this experiment, the truss in evaluation is

larger than those utilized for the training. Hence, larger oscillations compared to those in Section

6.4 are observed in both hypervolume and rewards.

 177

Figure 6.15: Variation of hypervolume and reward in training phase for trade-off design

problem; (a) Hypervolume, (b) Reward

6.6.6 Test phase

Trained MADDPG agents are utilized for optimizing the trusses shown in Table 6.16 ten times

without further training. In this table, trusses A and B have the same QPQPI, Q*+,, number of spans,

{ü#∈{!,…,J}}, target shape {QR#∈{!,…,K}}, and ∆ whereas the values of trusses C and D are the same.

Similar to those in the training phase, all the lower nodal heights are fixed, and a downward nodal

load is applied at each free lower node of the bridge type trusses while a downward nodal load is

applied at each upper node for the roof type trusses. In both types, the minimum nodal height is

set to 0. The heights of supports cannot be modified.

 178

Table 6.16: Trusses for test for trade-off design problem

 truss A truss B truss C truss D
QPQPI (m) 8 6
Q*+, (m) 8 6
number of

spans 7 15

{ü#} (m) {5,5,5,5,5,5,5} {5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}

{QR#} (m) {4, 3, 2.5, 2, 2, 2.5, 3, 4} {3, 2.75, 2.5, 2.25, 2.25, 2, 2, 2, 2, 2, 2, 2.25, 2.25,
2.5, 2.75, 3}

∆ (m) 0.3 0.3
nodal load

(kN) 75 120 7.5 8.0

type bridge roof bridge roof

In this test phase, the trained MADDPG agents have the weights saved at episode 2000th

from the training phase. Each test episode is terminated after 500 steps, D*+, is set to 50, and ten

edge solutions are added to the solution pool at each optimization step. Note that D*+, is larger

than those of the training phase because the test phase aims for the performance to obtain Pareto

solutions. A larger number of edge solutions added in this phase are also from this rationale. Unlike

those in the training phase, the symmetry conditions are assigned to the modification of the trusses

in this test phase. The symmetrically located nodes and elements have the same height and section,

which are modified using the action output ~5,N selected randomly from one of the pairs. Sectional

indices of members in each symmetric pair are chosen from the smaller index in the pair.

The obtained results from MADDPG agents are compared to those of NSGA-II using

DEAP with the same computational cost. In this problem, the nodal heights and the section indices

of the elements are represented as the genes of NSGA-II. Note that symmetry nodes and elements

are also set in NSGA-II similar to MARL. The NSGA-II algorithm is applied 10 times with

different random seeds. The number of generations is set to 20.

Table 6.17 shows the minimum (min.), the mean, the maximum (max.), and the standard

deviation (std.) of the size of hypervolume, the average spreads (i.e., lengths of the Pareto front)

(Lavg), the coefficient of variation of the crowd distances of the Pareto front (CDavg), and the

numbers of structural analyses utilized by the MADDPG agents and NSGA-II. In NSGA-II cases,

the number of populations is provided in the last column for NSGA-II. Results from this Table

indicate that MADDPG agents obtained larger hypervolumes in all the cases with low standard

 179

deviation, showing the stability of the MARL. The proposed method also obtained larger spreads

and lower differences in crowd distances (i.e., better distribution).

Table 6.17: Pareto front indicators of test trusses obtained by MARL and NSGA-II for trade-off

design problem

truss method min. mean max. std. Lavg CDavg analyses population

A
MARL 0.823 0.853 0.886 0.020 0.307 0.807 174831 -

NSGA-II 0.747 0.785 0.831 0.028 0.339 1.104 180000 900

B
MARL 0.794 0.830 0.868 0.027 0.332 0.853 126564 -

NSGA-II 0.559 0.625 0.709 0.046 0.230 1.050 128000 640

C
MARL 0.715 0.763 0.811 0.030 0.333 0.678 119340 -

NSGA-II 0.455 0.557 0.633 0.056 0.176 0.975 120000 600

D
MARL 0.706 0.808 0.850 0.044 0.471 0.779 238539 -

NSGA-II 0.301 0.443 0.640 0.093 0.163 0.668 240000 12000

Figures 6.16-6.19 illustrate the results obtained by MARL for each truss in the test phase.

In these figures, subfigures (a) are Pareto fronts in the objective space obtained by MARL (color

× marks) and NSGA-II (grey ▼marks). These subfigures indicate that MARL generally

outperforms NSGA-II in obtaining large hypervolumes measured by the Pareto fronts and their

proximity to the point (0,0) in the objective spaces. Subfigures (b) illustrate the solutions obtained

by MARL, where Roman numbers indicate their positions on the objective space in subfigures (a),

the width of each element is proportional to the cross-sectional area, and the transparent red dots

represent the target heights.

It is confirmed from these subfigures, the obtained Pareto solutions by MARL consist of

the solution that has a small structural volume (Roman number i), the one with a small shape

deviation (Roman number vii in Figures 6.16 and 6.17, and number ix in Figures 6.18 and 6.19),

and other non-dominated solutions in between. It is worth noting that the target shapes are specified

so that they are not optimal geometries for minimizing the structural volume under stress and

displacement constraints. Hence, there are trade-off relations between minimizing the volumes and

shape deviations. The solutions obtained by MARL show that trusses with small volumes have

arch-like shapes, which are near-optimal geometries, but have large shape deviations, whereas

solutions with small shape deviations have large internal stresses, that require large sectional areas

of the elements and large structural volumes.

 180

Figure 6.16: Pareto front obtained by MARL for trade-off design problem – truss A

(bridge type)

Figure 6.17: Pareto front obtained by MARL for trade-off design problem – truss B (roof type)

 181

Figure 6.18: Pareto front obtained by MARL for trade-off design problem – truss C

(bridge type)

Figure 6.19: Pareto front obtained by MARL for trade-off design problem – truss D (roof type)

 182

6.7 Conclusion

This chapter introduced an innovative approach to address the complex challenges of multi-

objective optimization in truss structures by leveraging MARL. The methodology employs

MADDPG agents which iteratively improve solutions in the solution pool to obtain the Pareto

front. In each optimization step, the agents observe the non-dominated solutions in the objective

space utilizing the proposed graph representation. The optimization problem is formulated as a

Markov game where multiple agents learn to work together to obtain Pareto fronts. The objective

is to collaboratively refine solutions within the objective space, ultimately yielding Pareto optimal

solutions for three distinct multi-objective optimization problems.

(1) A novel graph representation is introduced to encapsulate the current set of non-dominated

solutions. This representation allows the MADDPG agents to concurrently observe both

the present state of the objective space and the modified truss structures. These agents are

made from GCNs and MLPs, providing them with the versatility to process various forms

of state data.

(2) A comprehensive reward function is formulated, taking into account multiple facets of

optimization improvement. It considers enhancements in the hypervolume, objective

functions, hypervolume size, front spread, and distribution. This reward function captures

the essence of multi-objective optimization, enabling the agents not only to seek Pareto

optimality but also to consider the distribution and diversity of solutions. Numerical

examples in this chapter show that, utilizing this reward formulation, the agent can improve

their obtained rewards and the size s of the hypervolume.

(3) The adaptability and utility of the MADDPG agents are demonstrated across various

problems, including mathematical and 10-bar truss multi-objective optimization problems.

In these domains, the agents are successfully trained to obtain both true and approximate

Pareto solutions, showcasing their versatility and applicability across diverse optimization

scenarios. This adaptability underscores the broad range of problems that can benefit from

the proposed MARL-based approach.

(4) In the context of the multi-objective optimization problem involving the trade-off design

of trusses, the trained MADDPG agents exhibit their capacity to enhance the obtained

 183

hypervolume and reward. This practical application highlights the efficacy of the proposed

method in addressing real-world engineering optimization challenges, particularly in

scenarios where trade-off relations among multiple objectives are essential.

(5) The most significant finding is the consistent outperformance of the trained MADDPG

agents compared to the well-established NSGA-II method across all structural problems in

the test phase in the trade-off design of trusses. This robust performance underscores the

potential of the proposed MARL-based approach as an effective optimization tool for

solving multi-objective optimization problems in the field of practical structural

engineering. Notably, the RL approach not only delivers superior results but also

demonstrates its stability in obtaining large hypervolume shown in the standard deviations

which can be observed in all chapters in this dissertation.

In summary, this chapter represents an advancement in the domain of multi-objective

optimization for truss structures. The innovative combination of MARL techniques, including

MADDPG agents, with novel graph representations and comprehensive reward functions, offers a

powerful approach to tackling complex optimization challenges. The adaptability and applicability

of the approach across various optimization contexts highlight its potential in structural

engineering, where optimizing multiple and often conflicting objectives is a common challenge.

The consistent outperformance of the MADDPG agents compared to NSGA-II reaffirms the

potential of the proposed approach to solve multi-objective optimization problems, offering

efficient and effective solutions for complex structural engineering problems. Note that this

chapter considers only vertical loads applied to the structure, which has a direct effect on the

optimal geometry and size of the trusses.

 184

185

Chapter 7

Conclusion and Future directions

7.1 Summary

This dissertation represents a comprehensive investigation into the application of RL approaches

to address a spectrum of optimization problems in truss and frame structures. These endeavors

span topology, size, and geometry optimizations, all within the context of diverse objective

functions and constraints. The research objective is to mitigate the computational costs inherently

associated with iterative finite element simulations throughout the optimization process. This

becomes particularly important as structural complexity escalates, resulting in larger structures or

highly discretized finite element models. Additionally, the dissertation seeks to contribute to the

field by introducing RL optimization methods capable of seamlessly accommodating both discrete

and continuous design variables within structural optimization, regardless of the presence or

absence of a gradient between the objective functions and design variables. The proposed methods

in this research relies on two important foundations including the RL and the graph representation.

The first foundation allows the creation of learnable model that can be utilized for solving

structural optimization problems while the second foundation has a main influence from Hayashi

et al. [50] which represents structure as a graph data. This research has also influenced by different

graph represents for architectural and building engineering data such as Langenhean et al. [144],

Abualdenien and Borrmann [97], and Vestartas [145] which represent room types, patterns of

building elements, and structural elements and joints using graph data, respectively.

In Chapter 1, the research background is presented, laying the groundwork for the

subsequent investigations. This chapter illuminates the pressing need for computational efficiency

in structural optimization, especially in the face of increasingly intricate and expansive structures.

Chapter 2 serves as an educational cornerstone, offering a discerning review of fundamental

concepts in ML and RL. This review serves the dual purpose of acquainting readers unfamiliar

with these methodologies with the requisite knowledge and providing an academic foundation

upon which the ensuing chapters build. Chapters 3 through 6 embody the essence of the research,

wherein innovative RL-based methodologies are introduced and elucidated, addressing topology,

186

size, and geometry optimization problems in truss and frame structures. These chapters represent

the core of the dissertation, encompassing the development, analysis, and evaluation of novel

methodologies. The findings and contributions of this dissertation are summarized as follows.

7.1.1 Topology and sizing optimizations of lattice shells

In Chapter 3, Topology and sizing optimization problems are formulated to minimize the strain

energy and structural volume, respectively. The graph representation of lattice shells is utilized for

making state data for the DDPG agent. In this representation, structural nodes and elements

become graph nodes and edges, respectively. Structural nodes, elements, and internal forces are

represented using the node feature matrix, adjacency matrix, and weight adjacency matrix,

respectively. The RL agents in both problems are made of GCNs and MLPs enabling the agent to

process graph representations of the structures and modify all graph nodes, which subsequently

modify all structural elements simultaneously. The optimization starts by having a lattice shell

with random brace directions and a lattice shell with large lattice elements in the topology and

sizing problems, respectively.

In each problem, the agent observes the graph representation data as the state, by taking it

as inputs, to compute the actions that are choosing bracing directions and reducing the sectional

indices in the topology and sizing problems, respectively. After the lattice shell is modified, the

agents in the topology and sizing problems receive a quantitative reward computed from the

change of the strain energy and structural volume, respectively. The agents in both problems keep

on modifying the structure until a predetermined optimization step is reached.

In both problems, the agent is trained to optimize the small multiple structures in the

training phase. The obtained rewards are tracked to confirm the improvement of the agents to

optimize the structure. After the training, the agent is applied to optimize large multiple structures

whose topology, geometry, and number of DoFs differ from those utilized during the training in

the test phase. In both problems, the results obtained by the RL agent in this phase are compared

to stochastic- and population-based optimization approaches. The comparative results show that

the RL agent provides better results by utilizing fewer computational costs. Note that the limitation

of the proposed method on the topology optimization of lattice shells is that it might yield inferior

results compared to GA if large GA computation is allowed.

187

7.1.2 Simultaneous topology and sizing optimization of building frames

A simultaneous topology and sizing optimization method for building frames utilizing RL is

presented in Chapter 4. This problem aims to minimize the structural cost of steel building frames

subjected to seismic loads under multiple constraints. The graph representation of building frames

is also utilized for making state data for the DDPG agent. However, different from those in Chapter

3, structural elements and their connectivity become graph nodes and edges, respectively. Utilizing

this graph representation, the structural elements and their internal forces are represented through

a node feature matrix and an adjacency matrix. The RL agent is made from GCNs and MLPs. The

agent can modify the sizes of the structural elements directly.

At the beginning of the optimization problem, a brace-less building frame with small

columns and beams is initialized. Note that this initial structure cannot resist the design and seismic

loads and all constraints are violated. The DDPG agent observes the building frame and decides

to add a brace or increase the size of an existing structural element. After this process, the finite

element simulations are made to obtain the objective functions and constraints. The agent receives

a reward computed from the change of the structural volume and improvements of the constraints.

The optimization ends when all constraints are satisfied.

The agent is trained to optimize small multiple building frames and verified the

improvement of its performance to solve this problem in the training phase. After this phase, the

trained agent is applied to diverse large building frames and its results are compared to those

obtained by a population-based optimization method. The results confirm the superior ability of

the proposed method to simultaneous topology and sizing optimize building frames over the

population-based method. The limitations the RL agent in this chapter is that it still cannot be

applied to 3-dimensional building frame which has larger number of elements (i.e., graph nodes).

Note that this large number of structural elements might hinder the agent to obtain good solution

because there are too many actions to choose in each MDP.

7.1.3 Geometry optimization of lattice shells

The RL method for geometry optimization of lattice shells is presented in Chapter 5, to verify that

this method can solve all main optimization problems of truss and frame, including topology,

188

sizing, and geometry optimizations. In this optimization problem, the geometry of lattice shells is

defined utilizing Bézier control points that are design variables while the objective function is to

minimize the strain energy of the lattice shells. To represent and combine information from the

structure and control points, novel graph representations and neural network architectures are

introduced in this research. The structure is represented through a node feature matrix, adjacency

matrices, and weight adjacency matrices, similar to those in Chapter 3. The Bézier control net is

represented utilizing a node feature matrix of the Bézier control points and an adjacency matrix of

the Bézier control net. The DDPG agent is made of GATs and MLPs together with GSP operations

that combine graph representation data of the structure and control net. The architecture also

enables the agent to determine the heights of all Bézier control points simultaneously. The

optimization starts with a flat lattice shell which is observed by the agent. The agent takes the

observation data as inputs and modifies the heights of all control points (i.e., does the action). After

the action, the structure is changed and structural analysis is performed to obtain the structural

response. The agent receives a reward based on the improvement of the structure measured

utilizing the strain energy. The optimization keeps on until a predetermined optimization step is

reached.

Similarly, to previous chapters, the DDPG agent is trained to optimize small multiple lattice

shells whose geometries are defined using one discretization of the Bézier control net. The

improvement of the ability of the agent to optimize structures is tracked and measured through the

rewards obtained in this phase which indicate the positive improvement. After the training, the

agent is applied to diverse structures having different numbers of DoFs, Bézier control nets, upper

bounds of design constraints, and types of design variables, in the test phase. The results in this

phase are compared to stochastic- and population-based optimization approaches. The results

confirm that the proposed RL method outperforms the stochastic- and population-based

approaches in both performance and computational cost. The limitations of the proposed method

in this chapter are that the RL agent needs to be trained. Therefore, it might not be applicable to

geometry optimization with different configurations of control points, such as triangular mesh.

Another notable limitation is that the geometry optimization problem is generally has continuous

design variables which can be solved to obtain exact optimal solution utilizing gradient-based

search approaches which may yield better results than RL approaches when large computational

cost is allowed.

189

7.1.4 Multi-objective optimization of trusses

Chapter 6 presents a novel framework for solving multi-objective optimization problems utilizing

the MARL approach. The multi-objective optimization aims to obtain a large Pareto front,

measured using the hypervolume. In this proposed framework, multiple MADDPG agents are

trained to iteratively modify solutions in each optimization step. Once all the solutions are

modified, the new solution pool is made from non-dominated solutions of the modified solutions

and the current solution pool. The optimization ends when a predetermined number of the

optimization steps is reached. The proposed framework is applied to a mathematical multi-

objective optimization problem, a 10-bar truss multi-objective optimization problem, and a multi-

objective optimization problem of trade-off truss design, respectively.

The MADDPG agents are made from GCNs and MLPs. They observe the state data

including the data of the being modified solution and the data representing the objective space.

The being modified solution is represented as a vector in the mathematical problem and as a graph

in both truss problems. In the truss problems, structural nodes and elements become graph nodes

and edges. A node feature matrix, an adjacency matrix, and weight adjacency matrices are utilized

to represent data in the structural nodes, nodal connectivity, and internal forces and sectional area,

respectively. A novel graph representation of the non-dominate solution is also introduced in this

research, the representation provides information on the current non-dominated solutions on the

objective space to the MADDPG agents. A general reward function that is applicable to all multi-

objective optimization problems is also proposed. This reward is derived from the increment of

the hypervolume size, the improvements of each objective, the current hypervolume size, the

spread (i.e., length), and distribution (i.e., crowded distance) of the front. The agents receive this

reward after all of them modify a solution.

 The proposed framework is applied to the mathematical multi-objective optimization

problem to verify its ability to obtain a true Pareto front. In this problem, the results from the

training and test phases indicate the ability of the agents to improve their obtained reward and to

obtain a true Pareto front. In the 10-bar truss multi-objective optimization problem where the

structural volume and nodal deformation are to be minimized, the MADDPG agent can also

improve their rewards and obtain a competitive Pareto front compared to other optimization

methods from other literature. In the multi-objective optimization problem of trade-off truss design,

190

the problem aims to minimize the structural volume and shape deviation under stress and

deformation constraints. Results show that the agents can improve their performance in the training

phase, reflected through the increment of the rewards and the hypervolume sizes. Once trained,

the MADDPG agents are applied to multiple larger trusses than those utilized during the training.

The results from MADDPG are compared to those obtained by NSGA-II utilizing similar

computational costs. The comparative study shows that the proposed framework yields better

solutions for the multi-objective optimization measured by the size of the hypervolume and the

spread and distribution of the front. The results from the MADDPG agents in different trials are

more similar compared to NSGA-II, reflected in the standard deviation of the sizes of HVs.

 An important limitation of this chapter is that the current method is still applicable to only

bi-objective optimization problems because the reward formulation is currently based on the

values measured in the bi-objective space.

7.2 Future directions

Aside from the proposed RL approaches, this dissertation initiates problems related to the

applications of these approaches to practical optimization problems that require further research.

 In Chapter 3, it is desirable for the agent to optimize lattice shells with different patterns,

such as triangle or hexagonal, since these patterns are more suitable to the freeform lattice shells

compared to rectangle forms. The proposed method should also be able to optimize the topology

and sizing simultaneously and be able to utilize structural sections that differ from those used

during the training. All we need is a training framework to consider all these extensions. Once the

agent is able to optimize topology and sizing simultaneously in different sectional lists and lattice

patterns, it is applicable to practical optimization.

 The agent in Chapter 4 should be able to optimize 3-dimensional building frames. Note

that the size of the graph becomes larger along with the number of possible structural elements in

a 3-dimensional structure. Therefore, it might be difficult for the RL agent to learn the task because

there are many actions to be chosen from. One possible solution is to utilize a hierarchical

embedding method that can reduce the size of the graph. However, there will also be a trade-off

between the graph size and the loss of graph information. Apart from the application in a 3-

dimensional building frame, the method should also be applicable to sectional indices not utilized

during the training.

191

 Similar to the future directions for Chapter 3, the future research for the RL agent in

Chapter 5 should focus on training the agent utilizing different lattice and Bézier patterns. The

extension of this chapter should also incorporate the topology and sizing, making the optimization

become the layout optimization. It is also desirable if the agent can be utilized in widely used

software packages such as Rhinoceros [146] or Revit [147].

 In Chapter 6, future research should mainly focus on expanding the proposed method to

the problem with more than two objectives. This improvement could be made by modifying a

component of the reward related to the Euclidean distance into the area measurement in the n-

dimensional space. Another possible research direction is to improve the efficiency of creating

neighborhood solutions. This improvement could be made by allowing the agents to drastically

modify the solutions. However, there will be a trade-off between this efficiency and stability and

learning performance because the state and the next state could become very different, hindering

the agents from learning effectively.

References

[1] Ohsaki M (2010) Optimization of finite dimensional structures (1st ed). CRC Press.

[2] Christensen P W, Klarbring A (2009) An introduction to structural optimization, Solid

mechanics and its applications, Vol.153, Springer, Dordrecht.

[3] Ohsaki M, Swan C C (2002) Topology and geometry optimization of trusses and

frames. In: Recent Advances in Optimal Structural Design. American Society of Civil

Engineers. pp.97–123.

[4] Topping B H (1983) Shape optimization of skeletal structures: a review. Journal of

Structural Engineering. Vol.109(8), pp.1933–1951.

[5] Wang D, Zhang W H, Jiang J S (2002) Truss shape optimization with multiple

displacement constraints. Computer Methods in Applied Mechanics and Engineering.

Vol.191, pp.3597–361.

[6] Kociecki M, Adeli H (2015) Shape optimization of free-form steel space-frame roof

structures with complex geometries using evolutionary computing. Engineering

Applications of Artificial Intelligence. Vol.38, pp.168–182.

[7] Ohsaki M (1997) Optimization of building structural systems using parametric

multidisciplinary optimization method. J. Struct. Engng. pp.79–88.

[8] Ohsaki M, Katoh N (2005) Topology optimization of trusses with stress and local

constraints on nodal stability and member intersection. Structural and Multidisciplinary

Optimization. Vol.29, pp.190–197.

[9] Ohsaki M, Watada R (2008) Linear mixed integer programming for topology

optimization of trusses and plates. In: Proceedings of the 6th Int. Conf. on Computation

of Shell and Spatial Structures, IASS-IACM, Ithaca, NY.

[10] Pareto V (1906) Manual of political economy. Macmillan.

[11] Moradi A, Mirzakhani Nafchi A, Ghanbarzadeh A (2015) Multi-objective optimization

of truss structures using Bees Algorithm. Scientia Iranica. Vol.22(5), pp.1789–1800.

[12] Ohsaki M, Yamakawa M, Imazeki S (2018) Multi-objective optimization of a tower-

type truss using order statics. In: Japan-China Workshop on Analysis and Optimization

of Large-scale Structures. pp.32–36.

[13] Do B, Ohsaki M (2022) Sequential sampling approach to energy‐based multi‐objective

design optimization of steel frames with correlated random parameters. Earthquake

Engineering & Structural Dynamics. Vol.51(3), pp.588–611.

[14] Cauchy A (1847) Méthode générale pour la résolution des systemes d’équations

simultanées. C. R. Acad. Sci. Paris. Vol.25, pp.536–538.

[15] Davidon W C (1959) Variable Metric Method for Minimization. Technical Report

ANLC5990 (Revised), Argonne National Laboratory, Argonne.

[16] Boggs P T, Tolle J W (1995) Sequential quadratic programming. Acta numerica. Vol.4,

pp.1–51.

[17] Dikin I I (1967) Iterative solution of problems of linear and quadratic programming. In:

Doklady Akademii Nauk. Russian Academy of Sciences. Vol.174(4), pp.747–748.

[18] Choi K K, Kim N H (2005) In: Structural sensitivity analysis and optimization 1: linear

systems. Springer, New York, pp.119–170.

[19] Adelman H, Haftka R (1986) Sensitivity analysis of discrete structural systems.

American Institute of Aeronautics and Astronautics Journal. Vol.24, pp.823–832.

[20] Kirsch U (1994) Efficient sensitivity analysis for structural optimization. Computer

Methods in Applied Mechanics and Engineering. Vol.117, pp.143–156.

[21] Putresza J, Kolakowski P (1998) Sensitivity analysis of frame structures (virtual

distortion method approach). International Journal for Numerical Methods in

Engineering. Vol.43, pp.1085–1108.

[22] Robbins H, Monro S (1951) A stochastic approximation method. The Annals of

Mathematical Statistics. Vol.22(3), pp.400–407.

[23] Kirkpatrick S, Gelatt Jr C D, Vecchi M P (1983) Optimization by simulated annealing.

science. Vol.220(4598), pp.671–680.

[24] Bennage W A, Dhingra A K (1995) Single and multiobjective structural optimization in

discrete‐continuous variables using simulated annealing. International Journal for

Numerical Methods in Engineering. Vol.38(16), pp.2753–2773.

[25] Leite J P B, Topping B H V (1999) Parallel simulated annealing for structural

optimization. Computers & Structures. Vol.73(1-5), pp.545–564.

[26] Hasancebi O, Erbatur F (2002) On efficient use of simulated annealing in complex

structural optimization problems. Acta mechanical. Vol.157(1-4), pp.27–50.

[27] De S, Hampton J, Maute K, Doostan A (2020) Topology optimization under

uncertainty using a stochastic gradient-based approach. Structural and Multidisciplinary

Optimization. Vol.62, pp.2255–2278.

[28] Holland J H (1992) Genetic Algorithms. Scientific American. Vol.267, pp.66–72.

[29] Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview.

Swarm Intelligence Vol.1, pp.33–57.

[30] Deb K, Agrawal S, Pratap A, Meyarivan T (2002) A fast and elitist multiobjective

genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. Vol.6, pp.182–197.

[31] Jenkins W M (1991) Towards structural optimization via the genetic algorithm.

Computers & Structures. Vol.40(5), pp.1321–1327.

[32] Ohsaki M (1995) Genetic algorithm for topology optimization of trusses. Computers &

Structures. Vol.57(2), pp.219–225.

[33] Kaveh A, Zolghadr A (2014) Democratic PSO for truss layout and size optimization

with frequency constraints. Computers & Structures. Vol.130, pp.10–21.

[34] Sakai Y, Ohsaki M (2021) Optimization method for shape design of Auxetic Bending-

Active Gridshells using discrete differential geometry. Structures. Vol.34, pp.1589–

1602

[35] Vanluchene R D, Sun R (1990) Neural networks in structural engineering. Computer-

Aided Civil Infrastructure Eng. Vol.5, pp.207–215.

[36] Sun H, Burton H V, Huang H (2021) Machine learning applications for building

structural design and performance assessment: State-of-the-art review. Journal of

Building Engineering, Vol.33(101816).

[37] Xie Y, Li S, Wu C T, Lyu D, Wang C, Zeng D (2022) A generalized Bayesian

regularization network approach on characterization of geometric defects in lattice

structures for topology optimization in preliminary design of 3D printing.

Computational Mechanics. Vol.69, pp.1191–1212.

[38] Christian M C (2022) Machine learning in structural design: an opinionated review.

Frontiers in Built Environment. Vol.8, pp.815717.

[39] Mirra G, Pugnale A (2021) Comparison between human-defined and ai-generated

design spaces for the optimisation of shell structures. Structures. Vol.34, pp.2950–

2961.

[40] Kingma P D, Welling M (2019) An introduction to variational autoencoders.

Foundations and Trends in Machine Learning. Vol.12(4), pp.307–392.

[41] Samaniego E P, Anitescu C, Goswami S, Nguyen-Thanh V M, Guo H, Hamdia K M,

Rabczuk T, Zhuang X (2020) An energy approach to the solution of partial differential

equations in computational mechanics via machine learning: concepts, implementation

and applications. Computer Methods in Applied Mechanics and Engineering.

Vol.362(112790).

[42] Zheng H, Moosavi V, Akbarzadeh M (2020) Machine learning assisted evaluations in

structural design and construction. Automation in Construction. Vol.119(103346).

[43] Fuhrimann L, Moosavi V, Ohlbrock P O, D’acunto P (2018) Data-driven design:

exploring new structural forms using machine learning and graphic statics. In:

Proceedings of the International Association for Shell and Spatial Structures. pp.1–8.

[44] Xie Y, Li S, Wu C T, Lyu D, Wang C, Zeng D (2022) A generalized Bayesian

regularization network approach on characterization of geometric defects in lattice

structures for topology optimization in preliminary design of 3D printing.

Computational Mechanics. Vol.69, pp.1191–1212.

[45] Tamura T, Ohsaki M, Takagi J (2018) Machine learning for combinatorial optimization

of brace placement of steel frames, Jpn. Architect. Rev., Vol.1, pp.419–430.

[46] Sakaguchi K, Ohsaki M, Kimura T (2021) Machine learning for extracting features of

approximate optimal brace locations for steel frames, Frontiers in Built Environment.

Vol.6(616455).

[47] Kupwiwat C, Yamamoto K (2020) Fundamental study on morphogenesis of shell

structure using reinforcement. Journal of Structural Engineering B. Architectural

Institute of Japan. Vol.67B, pp.211–218.

[48] Lee S, Kim H, Lieu Q X, Lee J (2020) CNN-based image recognition for topology

optimization. Knowledge-Based Systems. Vol.198(105887).

[49] Hoyer S, Sohl-Dickstein J, Greydanus S (2019) Neural reparameterization improves

structural optimization. In: NeurIPS 2019. Workshop on Solving Inverse Problems

with Deep Networks.

[50] Hayashi K, Ohsaki M (2021) Reinforcement learning and graph embedding for binary

truss topology optimization under stress and displacement constraints. Frontiers in Built

Environment. Vol.6(59).

[51] Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. The MIT Press.

[52] Mai H T, Kang J, Lee J (2021) A machine learning-based surrogate model for

optimization of truss structures with geometrically nonlinear behavior. Finite Elements

in Analysis and Design. Vol.196(103572).

[53] Li K, Yu Y, He J, Zhao D, Lin Y (2018) Structural optimization of Hatch cover based

on bi-directional evolutionary structure optimization and surrogate model method.

Journal of Shanghai Jiaotong University (Science). Vol.23, pp.538–549.

[54] Luo D, Huang J, Su G, Tao H (2023) A dynamic Gaussian process surrogate model-

assisted particle swarm optimisation algorithm for expensive structural optimisation

problems. European Journal of Environmental and Civil Engineering. Vol.27(1),

pp.416–436.

[55] Chen M, Shi X, Zhang Y, Wu D, Guizani M (2017) Deep feature learning for medical

image analysis with convolutional autoencoder neural network. IEEE Transactions on

Big Data. Vol.7(4), pp.750–758.

[56] Palmeri M, Málaga-Chuquitaype C, Kampas G, Memarzadeh M (2021) AI-based

Optimization of Off-Earth Habitat Structures. In: Tech. rep., “Tehcnical Report 21/03”,

Emerging Structural Technologies. London, United Kingdom: Imperial College

London.

[57] Cheung A, Cabrera C, Sarabandi P, Nair K K, Kiremidjian A, Wenzel H (2008) The

application of statistical pattern recognition methods for damage detection to field data.

Smart materials and structures. Vol.17(6).

[58] Ng C T (2014) On the selection of advanced signal processing techniques for guided

wave damage identification using a statistical approach. Engineering Structures.

Vol.67, pp.50–60.

[59] Hwang J H, Joo B C, Yoo Y J, Park K T, Lee C H (2013) Damage detection of a

prototype building structure under shaking table testing using outlier analysis. In:

Health Monitoring of Structural and Biological Systems 2013. Vol.8695, pp.952–957.

[60] Tibaduiza D A, Mujica L E, Rodellar J, Güemes A (2016) Structural damage detection

using principal component analysis and damage indices. Journal of Intelligent Material

Systems and Structures. Vol.27(2), pp.233–248.

[61] Box G E, Jenkins G M, Reinsel G C, Ljung G M (2015) Time series analysis:

forecasting and control. John Wiley & Sons.

[62] Barber D (2011) Bayesian Reasoning and Machine Learning. Cambridge University

Press.

[63] Pearson K (1901) On lines and planes of closest fit to systems of points in space. The

London, Edinburgh, and Dublin philosophical magazine and journal of science,

Vol.2(11), pp.559–572.

[64] Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometrics and

intelligent laboratory systems. Vol.2(1-3), pp.37–52.

[65] Sutton R S, Barto A G (2018) Reinforcement learning, an introduction. 2nd ed The

MIT Press, Cambridge MA.

[66] Bellman R (1956) A problem in the sequential design of experiments. Sankhya. Vol.16,

pp.221–229.

[67] Bellman R, Dreyfus S E (1959) Functional approximations and dynamic programming.

Mathematical Tables and Other Aids to Computation. Vol.13, pp.247–251.

[68] Bellman R (1954) The theory of dynamic programming. Bulletin of the American

Mathematical Society. Vol.60(6), pp.503–515.

[69] Bellman R (1957) A Markovian decision process. Journal of Mathematics and

Mechanics. pp.679–684.

[70] Watkins C J C H, Dayan P (1992) Q-learning. Machine Learning. Vol.8, pp.279–292.

[71] Richard S, David M, Satinder S, Yishay M (1999) Policy Gradient Methods for

Reinforcement Learning with Function Approximation. Vol.12, pp.1057–1063.

[72] Lillicrap T P, Hunt J J, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D

(2016) Continuous control with deep reinforcement learning. In: Proceedings of the

International Conference on Learning Representations (Poster).

[73] Konda V, Tsitsiklis J (1999) Actor-critic algorithms. Advances in neural information

processing systems. Vol.12, pp.1008-1014.

[74] Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic: off policy maximum

entropy deep reinforcement learning with a stochastic actor. In: Proceedings of the 35th

International Conference on Machine Learning, pp.1861–1870.

[75] Kiefer J, Wolfowitz J (1952) Stochastic estimation of the maximum of a regression

function. The Annals of Mathematical Statistics. Vol.23(3), pp.462–466.

[76] Sebastian R (2016) An overview of gradient descent optimization algorithms.

arXiv:1609.04747.

[77] Kingma D, Ba J (2015) Adam: a method for stochastic optimization. In: Proceedings of

the 3rd International Conference on Learning Representations, pp.1–15

[78] Uhlenbeck G E, Ornstein L S (1930) On the theory of the brownian motion. Physical

Review. Vol.36(5), pp.823–841.

[79] Gambardella L M, Dorigo M (1995) Ant-Q: A reinforcement learning approach to the

traveling salesman problem. In: Machine Learning Proceedings 1995. pp.252–260.

[80] Huynh T N, Do D T, Lee J (2021) Q-Learning-based parameter control in differential

evolution for structural optimization. Applied Soft Computing. Vol.107(107464).

[81] Littman M L (1994) Markov Games as a Framework for Multi-Agent Reinforcement

Learning. International Conference on Machine Learning. Vol.157, pp.157-163.

[82] Tesauro G (2004) Extending q-learning to general adaptive multi-agent systems. In:

Advances in Neural Information Processing Systems, pp.871–878.

[83] Foerster J, Farquhar G, Afouras T, Nardelli N, Whiteson S (2018) Counterfactual

multi-agent policy gradients. In: Proceedings of the AAAI Conference on Artificial

Intelligence. Vol.32(1).

[84] Nasir Y S, Guo D (2019) Multi-agent deep reinforcement learning for dynamic power

allocation in wireless networks. IEEE Journal on Selected Areas in Communications.

Vol.37(10), pp.2239–2250.

[85] Yu L, Sun Y, Xu Z, Shen C, Yue D, Jiang T, Guan X (2020) Multi-agent deep

reinforcement learning for HVAC control in commercial buildings. IEEE Transactions

on Smart Grid. Vol.12(1), pp.407–419.

[86] Lowe R, Wu Y I, Tamar A, Harb J, Pieter Abbeel O, Mordatch I (2017) Multi-agent

actor-critic for mixed cooperative-competitive environments. Advances in neural

information processing systems. Vol.30.

[87] Huynh T N, Do D T, Lee J (2021) Q-Learning-based parameter control in differential

evolution for structural optimization. Applied Soft Computing. Vol.107(107464).

[88] Hayashi K, Ohsaki M (2021) Reinforcement learning for optimum design of a plane

frame under static loads. Engineering with Computers. Vol.37(3), pp.1999–2011.

[89] Sahachaisaree S, Sae-Ma P, Nanakorn P (2020) Two-dimensional truss topology design

by reinforcement learning. In: Proceedings of the International Conference on

Sustainable Civil Engineering and Architecture (ICSCEA 2019). pp.1237–1245.

[90] Kupwiwat C, Yamamoto K (2020) マルチエージェント強化学習を用いた構造形

態創生に関する基礎的研. In: コロキウム構造形態の解析と創生 2020 講演論文

集. pp.65–70. (in Japanese)

[91] Shea K (1997) Essays of discrete structures: purposeful design of grammatical

structures by directed stochastic search. Carnegie Mellon University.

[92] Kaveh A, Koohestani K (2008) Graph products for configuration processing of space

structures. Computers & structures. Vol.86(11–12), pp.1219–1231.

[93] Hooshmand A, Campbell M I (2016) Truss layout design and optimization using a

generative synthesis approach. Computers & Structures. Vol.163, pp.1–28.

[94] Van Mele T, Block P (2014) Algebraic graph statics. Computer-Aided Design. Vol.53,

pp.104–116.

[95] D'acunto P, Jasienski J P, Ohlbrock P O, Fivet C, Schwartz J, Zastavni D (2019)

Vector-based 3D graphic statics: A framework for the design of spatial structures based

on the relation between form and forces. International Journal of Solids and Structures.

Vol.167, pp.58–70.

[96] Zanni G, Pennock G R (2009) A unified graphical approach to the static analysis of

axially loaded structures. Mechanism and machine theory. Vol.44(12), pp.2187–2203.

[97] Abualdenien J, Borrmann A (2021) PBG: A parametric building graph capturing and

transferring detailing patterns of building models. In: Proceedings of the CIB W78

Conference 2021.

[98] Lipp M, Wonka P, Wimmer M (2008) Interactive visual editing of grammars for

procedural architecture. In: Proceedings of the ACM SIGGRAPH 2008. pp.1–10.

[99] Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and

organization in the brain. Psycological review. Vol.65(6), pp.386–408.

[100] Ivakhnenko A G (1968) The group method of data handling – a rival of the of

stochastic approximation, Soviet Automatic Control, Vol.13(3), pp.43–55.

[101] Cybenko G (1989) Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals, and Systems. Vol.2(4), pp.303–314.

[102] Verhulst P F (1845) Mathematical researches into the law of population growth

increase. Nouveaux Mémoires de l’Académie Royale des Sciences et Belles-Lettres de

Bruxelles. Vol.18, pp.1–42.

[103] Nair V, Hinton G E (2010) Rectified linear units improve restricted boltzmann

machines. In: Proceedings of the International Conference on Machine Learning,

pp.807–814

[104] Maas A L, Hannun A Y, Ng A Y (2013) Rectifier nonlinearities improve neural

network acoustic models. In: Proceedings of the International Conference on Machine

Learning. Vol.30(1).

[105] Osborn G (1902) Mnemonic for hyperbolic formulae. The Mathematical Gazette.

Vol.2(34), pp.189–189.

[106] Durbin R, Rumelhart D E (1989) Product units: A computationally powerful and

biologically plausible extension to backpropagation networks. Neural computation.

Vol.1(1), pp.133–142.

[107] Polyak B T (1964) Some methods of speeding up the convergence of iteration methods,

USSR Computational Mathematics and Mathematical Physics. Vol.4(5), pp.1–17.

[108] Hinton G (2012) Neural networks for machine learning. Coursera, video lectures.

[109] LeCun Y, et al. (1995) Comparison of learning algorithms for handwritten digit

recognition. In: Proceedings of the International Conference on Artificial Neural

Networks. Vol.10(1).

[110] Kipf T N, Welling M (2017) Semi-supervised classification with graph convolutional

networks. In: Proceedings of the International Conference on Learning

Representations. pp.1–14.

[111] Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph

Attention Networks. In: Proceedings of the International Conference on Learning

Representations. pp.1–12.

[112] Hu F, Zhu Y, Wu S, Wang L, Tan T (2019) Hierarchical graph convolutional networks

for semi-supervised node classification. In: Proceedings of the 28th International Joint

Conference on Artificial Intelligence. pp.4532–4539.

[113] Li Z, Liu Z, Huang J, Tang G, Duan Y, Zhang Z, Yang Y (2019) MV-GCN: multi-view

graph convolutional networks for link prediction. IEEE Access. Vol.7, pp.176317–

176328.

[114] Xie Y, Yao C, Gong M, Chen C, Qin A K (2020) Graph convolutional networks with

multi-level coarsening for graph classification. Knowledge-Based Systems.

Vol.194(105578).

[115] Yu Z, Wang H, Liu Y, Böhm C, Shao J (2020) Community attention network for semi-

supervised node classification. In: Proceedings of the IEEE International Conference

on Data Mining. Vol.17(20), pp.1382–1387.

[116] Huang J, Shen H, Hou L, Cheng X (2019) Signed Graph Attention Networks. In:

Proceedings of the International Conference on Artificial Neural Network. Vol.28,

pp.566–577.

[117] Gao J, Gao J, Ying X, Lu M, Wang J (2021) Higher-order interaction goes neural: a

substructure assembling graph attention network for graph classification. IEEE

transactions on knowledge and data engineering. Vol.35(2), pp.1594–1608

[118] Aich S, Stavness I (2019) Global sum pooling: a generalization trick for object

counting with small datasets of large images. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition Workshops, pp.73–82

[119] Kao C Y, Loh C H (2013) Monitoring of long‐term static deformation data of Fei‐Tsui

arch dam using artificial neural network‐based approaches. Structural Control and

Health Monitoring. Vol.20(3), pp.282–303.

[120] Karina C N, Chun P J, Okubo K (2017) Tensile strength prediction of corroded steel

plates by using machine learning approach. Steel Compos. Struct. Vol.24(5), pp.635–

641.

[121] Lee S, Lee C (2014) Prediction of shear strength of FRP-reinforced concrete flexural

members without stirrups using artificial neural networks. Engineering structures.

Vol.61, pp.99–112.

[122] Chatterjee S, Sarkar S, Hore S, Dey N, Ashour A S, Shi F, Le D N (2017) Structural

failure classification for reinforced concrete buildings using trained neural network

based multi-objective genetic algorithm. Structural Engineering and Mechanics.

Vol.63(4), pp.429–438.

[123] Li Z, Burgueño R (2010) Using soft computing to analyze inspection results for bridge

evaluation and management. Journal of Bridge Engineering. Vol.15(4), pp.430–438.

[124] Radhika S, Tamura Y, Matsui M (2015) Cyclone damage detection on building

structures from pre-and post-satellite images using wavelet based pattern recognition.

Journal of Wind Engineering and Industrial Aerodynamics. Vol.136, pp.23–33.

[125] García-Segura T, Yepes V, Frangopol D M (2017) Multi-objective design of post-

tensioned concrete road bridges using artificial neural networks. Structural and

Multidisciplinary Optimization. Vol.56, pp.139–150.

[126] Papadrakakis M, Lagaros N D (2002) Reliability-based structural optimization using

neural networks and Monte Carlo simulation. Computer methods in applied mechanics

and engineering. Vol.191(32), pp.3491–3507.

[127] Lagaros N D, Papadrakakis M, Plevris V (2005) Multiobjective optimization of space

structures under static and seismic loading conditions. In: Evolutionary Multiobjective

Optimization: Theoretical Advances and Applications. London: Springer London.

pp.273–300.

[128] Fortin F A, De Rainville F M, Gardner M A, Parizeau M, Gagné C (2012) DEAP:

Evolutionary algorithms made easy. Journal of Machine Learning Research. Vol.13(1),

pp.2171–2175.

[129] Virtanen P, Gommers R, Oliphant T E, et al. (2020) SciPy 1.0: fundamental algorithms

for scientific computing in Python. Nature Methods. Vol.17, pp.261–272.

[130] Kimura T, Ohmori H (2008) Computational morphogenesis of free form shells. Journal

of the International Association for Shell and Spatial Structures. Vol.49(3), pp.175–

180.

[131] Vu-Bac N, Duong T X, Lahmer T, Zhuang X, Sauer R A, Parke H S, Rabczuk T (2018)

A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin

shell structures. Computer Methods in Applied Mechanics and Engineering. Vol.331,

pp.427–455.

[132] Bernstein S (1912) Démonstration du théorème de weierstrass fondée sur le calcul des

probabilités. Comm Soc Math Kharkow. Vol.13, pp.1–2.

[133] Ramm E, Bletzinger K U, Reitinger R (1993) Shape optimization of shell structures.

Revue Européenne des Éléments Finis. Vol.2(3), pp.377–398.

[134] Roulier J A, Rondo T (1994) Measures of fairness for curves and surfaces. In: N S

Spadis (Ed) Designing fair curves and surfaces. SIAM, pp.75–122.

[135] Ohsaki M, Nakamura T, Kohiyama M (1997) Shape optimization of a double-layer

space truss described by a parametric surface. International Journal of Space Structures.

Vol.12, pp.109–119.

[136] Ohsaki M, Hayashi M (2000) Fairness metrics for shape optimization of ribbed shells.

Journal of the International Association for Shell and Spatial Structures. Vol.41(1),

pp.31–39.

[137] Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley-

Interscience series in systems and optimization.

[138] Wolpert D H, Wheeler K R, Tumer K (2000) Collective intelligence for control of

distributed dynamical systems. Europhysics Letters. Vol.49(6), pp.708.

[139] Mannion P, Devlin S, Duggan J, Howley E (2016) Avoiding the tragedy of the

commons using reward shaping. In: Proceedings of the Adaptive and Learning Agents

Workshop (at AAMAS 2016).

[140] Tumer K, Agogino A (2007) Distributed agent-based air traffic flow management. In:

Proceedings of the 6th International Joint Conference on Autonomous Agents and

Multiagent Systems. pp.1–8.

[141] Wolpert D H, Tumer K (2002) Collective intelligence, data routing and Braess'

paradox. Journal of Artificial Intelligence Research. Vol.16, pp.359–387.

[142] Zitzler E, Deb K, Thiele L (2000) Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results. Evolutionary Computation. Vol.8, pp.173–195.

[143] Kumar S, Tejani G G, Pholdee N, et al. (2021) Multi-objective modified heat transfer

search for truss optimization. Engineering with Computers. Vol.37, pp.3439–3454.

[144] Langenhan C, Weber M, Liwicki M, Petzold F, Dengel A (2013) Graph-based retrieval

of building information models for supporting the early design stages. Advanced

Engineering Informatics. Vol.27(4), pp.413–426.

[145] Vestartas P (2021) Design-to-fabrication workflow for raw-sawn-timber using joinery

solver. Lausanne Switzerland: EPFL. Doctoral dissertation, Ph. D. thesis. doi:

10.5075/EPFLTHESIS-8928.

[146] McNeel R, et al. (2010) Rhinoceros 3D (Version 6.0). Available at:

https://www.rhino3d.com (Accessed: November 29, 2023)

[147] Autodesk (2020) Autodesk Revit. Available at: https://www.autodesk.com (Accessed:

November 29, 2023)

Publications

Peer-reviewed articles associated with this
dissertation

[1] Kupwiwat C, Hayashi K, Ohsaki M (2022) Deep deterministic policy gradient and

graph convolutional network for bracing direction optimization of grid shells. Frontiers

in Built Environment, Vol.8(899072).

[2] Kupwiwat C, Iwagoe Y, Hayashi K, Ohsaki M (2023) Deep deterministic policy

gradient and graph convolutional network for topology optimization of braced steel

frames. Journal of Structural Engineering B. Architectural Institute of Japan. Vol.69B,

pp.129–139.

[3] Kupwiwat C, Hayashi K, Ohsaki M (2023) Deep deterministic policy gradient and

graph attention network for geometry optimization of latticed shells. Applied

Intelligence. Vol.53, pp.19809–19826.

[4] Kupwiwat C, Hayashi K, Ohsaki M (2024) Multi-objective optimization of truss

structure using multi-agent reinforcement learning and graph representation.

Engineering Applications of Artificial Intelligence. Vol.129(107594), no pages.

Oral presentations associated with this dissertation
[1] Kupwiwat C, Hayashi K, Ohsaki M (2023) A multi-agent reinforcement learning

framework for bi-objective optimization. In. the 33th Design and Systems Conference

(D&S2023), The Japan Society of Mechanical Engineers. No.C000074.

[2] Kupwiwat C, Hayashi K, Ohsaki M (2023) Multi-objective optimization of 10-bar truss

using multi-agent reinforcement learning. In. Annual Convention of Architectural

Institute of Japan (AIJ), Architectural Institute of Japan. No.20134.

[3] Kupwiwat C, Hayashi K, Ohsaki M (2023) Sizing optimization of free-form lattice

shells using deep deterministic policy gradient and graph convolutional networks. In.

Proceeding of International Association for Shell and Spatial Structures 2023. pp.

1458–1468.

[4] Kupwiwat C, Hayashi K, Ohsaki M (2022) Geometry optimization of lattice shells

using GAT-DDPG with Bézier surface. In. Annual Convention of Architectural

Institute of Japan (AIJ), Architectural Institute of Japan. No.20412.

[5] Kupwiwat C, Hayashi K, Ohsaki M (2022) Deep deterministic policy gradient and

graph convolutional network for geometry and topology optimization of braced latticed

shells. In. Annual Convention of Architectural Institute of Japan (AIJ) Kinki Branch,

Architectural Institute of Japan (AIJ). No.10096.

[6] Kupwiwat C, Hayashi K, Ohsaki M (2022) Topology optimization of braced latticed

shells using deep deterministic policy gradient and graph convolutional network. In.

Asian Congress of Structural and Multidisciplinary Optimization (ACSMO), Asian

Society for Structural and Multidisciplinary Optimization (ASSMO). No.acsmo2022-

p0005.

Acknowledgments

This dissertation was done when I was a doctoral student at Ohsaki & Zhang Laboratory, the
Department of Architecture and Architectural Engineering, Kyoto University. I gratefully
acknowledge the financial support over the years from the Japanese Ministry of Education,
Culture, Sports, Science and Technology (MEXT) for the Monbukagakusho Scholarship (文
部科学省奨学金).

Above all, I would like to express my deepest gratitude to my academic advisor, Professor
Makoto Ohsaki, for his guidance, support, and encouragement. His expertise in structural
optimization and support encourages me to endeavor knowledge to shape my understanding
and give me academic freedom to find my inclinations. I also would like to express my
gratitude to Assistant Professor Kazuki Hayashi, for his guidance. His expertise in machine
learning gives me many inspirations for solving problems. Both of them also taught me how
to carefully prepare for an academic career, starting by constructing a solid foundation of
knowledge.

I would like to thank the committee members, Professor Minehiro Nishiyama and Associate
Professor Kohei Fujita, for spending their precious time reading, discussing, and providing
constructive feedback on the contents of my dissertation and my presentation.

I would like to thank Associate Professor Jingyao Zhang and Assistant Professor Kentaro
Hayakawa for their discussions on essential aspects of structural optimization. I am grateful
to my Master’s advisor, Professor Yamamoto Kenji at Tokai University, for guiding me
through the very first steps of how to conduct a research project properly.

I also want to thank the former and current members of the Ohsaki & Zhang Laboratory,
especially Yuichi Iwagoe for providing valuable research material in Chapter 4, Dr. Yusuke
Sakai, Dr. Wei Shen, and Dr. Shaojun Zhu for their discussion and feedback about the
approaches I proposed in this dissertation, to Dr.Do Kim Bach for his suggestion about the
dissertation submission process. I thank Safumi Saiki for her administrative assistance, which
has helped me to focus on my research over the years.

Three years of my life in Kyoto are full of great experiences and enjoyable dinners, thanks to
Chitipat Sornsukolrat, Satanan Phattanaprayoonvong, Anan Nilrattanakhun, Soulida
Louangphachaleun, Jakkraphan Phetharn, and Chanya Wisalrakij.

Finally, my heartfelt thanks go to my parents, my younger sisters, my grandma, and my dear
girlfriend Ngamnij Prakasitanonda for their supportive love, understanding, and calls over the
years. I dedicate this dissertation to them.

	Chapter 0_0_0_cover
	Chapter 0_0_content
	Chapter 0_1_list_of_table
	Chapter 0_2_list_of_figure
	Chapter 0_3_acronyms
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8_references
	Chapter 9_publications
	Chapter 10_acknowledgements

