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Chapter 1

Introduction

1.1 Background

Fractal is a general term for complex spatial and temporal features that do not take

simple shapes regardless of how much they are magnified. This fractal nature can be

observed in various things in nature. Spatial fractality is observed in branching trees,

complexly shaped coastlines, and anatomical structures such as dendritic structures

in human arteries and veins. Temporal fractality is observed in signals emitted from

living organisms, such as human heart rate. Both spatial and temporal fractals are

observed during bipedal walking. Usually, studies have focused on stability, speed,

and energy efficiency as the characteristics of walking, but fractality has not been

sufficiently studied. However, fractality has been suggested to play an important

role in the characterization of gait because it is related to gait stability and the degree

of functional disability in human gait. In this study, we investigated the roles of body

and neural control systems in the fractal nature of bipedal gait using a model.

1.2 Related works

1.2.1 Fractal

Spatial fractal

The term “fractal” was coined by B. Mandelbrot, a mathematician at IBM, in the

1960s. It is generally accepted that fractals exhibit the following three properties:

complex structures at multiple length scales, repetition of structures at different

length scales (self-similarity), and “fractal dimension” which is not an integer. To

satisfy these requirements, a fractal object is composed of units, whose structure re-

sembles that of an entire object, and subunits, whose structure resembles that of each

unit.

We consider the Cantor set an example of a fractal geometric structure. The Can-

tor set is defined as follows. Starting from the closed interval S0 = [0, 1], the middle

third is removed. The two resulting intervals are S1 = [0, 1/3] ∪ [2/3, 1], and the

central third of each interval is removed to obtain S2, which consists of four inter-

vals. This is repeated and S∞ is obtained as the limit is the Cantor set. This Cantor
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set is fractal because of its complexity over a wide range of spatial scales and self-

similarity, as described above.

When an object has a fractal structure, its dimension (fractal dimension) is not

integer. Generally, dimension is the minimum number of coordinates required to

specify a point in the object. For example, a smooth curve has one dimension,

and a smooth surface has two dimensions. However, the Cantor set is not one-

dimensional because its entire length is limn→∞(
2
3 )

n = 0. The Cantor set is also not

zero-dimensional, because it is a set of countless points. Therefore, the dimensions

of the Cantor set are less than 1 and larger than 0. The non-integer dimension repre-

senting a fractal object obtained from this concept is called the fractal dimension.

There are several ways to obtain fractal dimensions. For example, one defini-

tion of a fractal is that it has complex structures at multiple length scales. Based on

this property, the number of boxes required to cover a fractal figure with equally

spaced boxes is investigated. A fractal dimension is quantified by examining how

the number of boxes to cover changed as the size of the box decreased. Any two-

dimensional rectangle in R2 can be covered by C(1/ϵ)2 squares of side ϵ, where C

is a constant that depends on object size. Similarly, a d-dimensional (d is an integer)

region requires C(1/ϵ)d boxes with size ϵ. That is, the number of boxes of size ϵ is

scaled by (1/ϵ)d. Extending this idea to more complex objects such as fractals, we

consider using this “scaling rule” to define the dimension d (d may not be an inte-

ger) of an object whose dimension is not known in advance. What is defined by this

idea is called the box-counting dimension, which is one of the several definitions of

the fractal dimension. In the case of the Cantor set described above, d = log 2/ log 3

because the number of necessary boxes doubles every time ϵ is multiplied by 1/3.

Other definitions of the fractal dimension include the similarity dimension based

on the self-similarity of fractals, the correlation dimension, which is obtained from

the density of points on a chaotic attractor, and the Hausdorff dimension, which

measures the number of elements using a box of variable sizes instead of constant

sizes [28]. All seek a dimension that is “the smallest element necessary to define

the object,” but it is difficult to characterize whatever fractal dimension means by a

single dimension.

Temporal fractal

The concept of a fractal can be applied not only to geometric forms with complex

shapes over a wide range of scales, where repeated structures appear at different

spatial scales, but also to complex time series processes over a wide range of scales,

where repeated structures appear at different time scales [79, 101, 104, 132]. Fractal

time series processes generate irregular fluctuations across multiple timescales. This

is analogous to a spatial feature that is composed of units that resemble the structure

of an entire object. We focus on fluctuations at different temporal resolution scales to
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understand the self-similarity of time series processes with fractality. When examin-

ing fractal time series at different temporal resolutions, the irregularities at different

scales are indistinguishable and have statistical self-similarity [78, 123].

As with the fractal dimension in geometry, there are several ways to quantify

the fractal time series. For example, if a time series Y is fractal, a small window of

the time series has the same standard deviation as a larger window because they

are statistically self-similar. In this case, Y(Lt) ≡ LHY(t), where H is the Hurst

exponent (L refers to the ratio of window sizes of the time series of interest, and Y(t)

is the standard deviation in that window). The Hurst exponent is a measure of the

self-similarity of a time series.

Other methods include power spectrum analysis, which determines self-

similarity based on the relationship between amplitude and frequency [29]. In par-

ticular, when considering the fractal nature of biological signals, because both sta-

tionary and non-stationary time series exist, Detrended Fluctuation Analysis (DFA),

which does not assume stationarity, and the scaling index α obtained from DFA are

often used to quantify self-similarity [39]. In this case, when α = 0.5, the time series

is white noise, whereas it is statistically persistent when 0.5 < α < 1 and statistically

anti-pertinent when 0 < α < 0.5. Statistical pertinence is present when the fluctua-

tions of the time series are statistically more likely to fluctuate in the same direction,

whereas statistical anti-pertinence is present when the fluctuations are more likely

to fluctuate in the opposite direction.

1.2.2 Spatial fractal in passive dynamic walking

Passive dynamic walking

Passive dynamic walking is a robot or a model that walks down a shallow slope

without any actuators, sensors, or controls but only through the interaction between

the walking machine and the environment. Because passive dynamic walking does

not consume energy, controllers designed based on passive dynamic walking would

be energy efficient and the dynamics is similar to that of human walking [85]. It is

widely used to explore the mechanical principles of gait (gait dynamics) [9,12,15,17,

18, 23, 58, 60, 70–73, 130, 131].

In an experiment on a real machine, McGeer realized a passive walker with

knees [86, 87]. McGeer’s passive dynamic walker has four identical legs, with two

pairs of inner and outer legs that move synchronously. This condition constrains

the walking motion in a two-dimensional sagittal plane. This walker also has knee

stoppers that prevent the knees from bending backward and circular feet.

Limit cycle

McGeer [85–87] showed from numerical simulations that passive walking has two

limit cycles: one stable and the other unstable. Walking continues for as long as the



4 Chapter 1. Introduction

state is in the limit cycle. Furthermore, when the limit cycle is stable, the state is

pulled back into the limit cycle even if it leaves the limit cycle. When the trajectory

is on a limit cycle, the periodic gait can be regarded as an equilibrium point in the

Poincaré section. From this equilibrium point, the generation of the limit cycle and

its stability can be analyzed.

McGeer analyzed not only a passive walker with knees but also rimless wheel

locomotion, a compass-type model, and a model with an upper body. The basic

framework for the analysis of passive dynamic walking was largely developed by

McGeer in the early 1990s.

Bifurcation

After McGeer’s studies, Goswami et al. [40] performed a detailed numerical simula-

tion analysis of passive dynamic walking using a compass-type model. They found

that the period-doubling bifurcation repeats as the slope angle increases. Specif-

ically, as the slope angle increases, the period of the walking cycle changes from

period-1 to period-2, from period-2 to period-4, and so on. The new gait doubled the

period and eventually led to chaos. This period-doubling bifurcation occurs when

the limit cycle changes from stable to unstable and the state transitions to another

limit cycle.

At about the same time as Goswami et al., Garcia et al. [36] proposed the sim-

plest walking model, which simplifies the compass-type model. They numerically

confirmed that this model also exhibits the stable limit cycle and period-doubling bi-

furcation. They also showed the existence of multiple limit cycles and their stability

by the perturbation method. The simplest walking model is used in various studies

because it is useful for understanding the essence of the phenomenon [6,72,112,131].

Spatial fractal in basin of attraction

Schwab & Wisse [112] computed the basin of attraction using the simplest walking

model and demonstrated that it exhibits a small and thin shape with fractal charac-

teristics. Akashi et al. [2] numerically showed that the basin of attraction has frac-

tality in a more general passive dynamic walking model. They also suggested that

this fractality emerges at a different slope angle from the slope angle associated with

chaotic attractors resulting from period-doubling bifurcations.

Because it is difficult to identify the basin of attraction in complex models and

robotic systems, previous research has predominantly focused on simple models for

researching the basin of attraction. However, it has been suggested that this frac-

tality is generated by the saddle characteristics inherent in the inverted pendulum,

which are common characteristics in bipedal walking [94]. Therefore, it would be a

universal characteristic of bipedal locomotion. Because the fractality of the basin of
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attraction directly influences a key measure of robustness known as final-state sensi-

tivity [41], understanding the spatial fractality of the basin of attraction is important

in elucidating the fundamental principles governing stable bipedal walking.

1.2.3 Central pattern generators

A neural circuit in the mammalian spinal cord generates a basic motor rhythm and

produces alternating flexor and extensor motoneuron activities, which are the basis

of locomotion. This circuit is called the central pattern generator (CPG), which can

operate without sensory feedback [44, 98, 106, 107]. The role of afferent feedback in

adjusting motor patterns to the motor task, environment, and biomechanical char-

acteristics of limbs and body is crucial [100, 107]. For example, continuous electrical

stimulation of the midbrain locomotor region of a fixed decerebrate cat produces

“fictive locomotion,” in which the flexor and extensor motoneurons are rhythmi-

cally alternately activated, similar to what occurs during normal movement in intact

animals [106]. To investigate the effects of afferent inputs on the movement patterns

generated by CPGs, experiments were conducted to reproduce fictive locomotion

by stimulating sensory afferents in the flexor and extensor [50, 82, 105, 116]. These

studies have revealed that, in many cases, afferent stimulation accelerates or delays

the phase transition in an ongoing step cycle [83, 109]. Although these findings are

based on animal studies, it has been suggested that CPGs are present in the human

spinal cord [61, 88].

Although the anatomical structure of CPG circuits remains unclear, mathemat-

ical models have been used to study the general effects of afferent stimulation on

CPG behavior. Recent neurophysiological findings suggest that CPGs are com-

posed of a hierarchical network, including rhythm generator (RG) and pattern for-

mation (PF) networks, and mathematical models have been devised based on this

idea [13, 75, 108, 109]. In the RG, rhythm generation was simply modeled by a van

der Pol oscillator [24, 127], Matsuoka oscillator [52, 69, 81, 95, 120, 121], or a phase os-

cillator [3–5, 26, 31, 99, 122, 133]. In PF, the generation of electromyography in each

muscle was modeled [3, 4] from the basic patterns [65, 66] via α-motoneurons based

on the muscle synergy hypothesis proposed by Ivanenko et al. [63, 64].

1.2.4 Temporal fractal in human gait

In human gait, fluctuations in the gait cycle exhibit temporal fractality [54]. Al-

though the fluctuations in gait appeared to be random, the analysis using the DFA

described above confirmed that the fluctuations in gait were statistically persistent.

This statistical persistence indicates that fluctuations in gait are statistically more

likely to be in the same direction, which is also called 1/f fluctuation. It has been

shown that the persistence changes to uncorrelated by age and neural disease [39].

Because the fluctuation characteristics change with neural disease, it is believed that
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the fluctuation characteristics of gait are derived from CPGs, and various CPG mod-

els have been proposed to reproduce this phenomenon [10, 54, 127]. However, even

in simulations using bipedal models without CPGs, it has been confirmed that fluc-

tuations in gait rhythm can have fractal characteristics [1,38], and the mechanism of

generation and change in the fractality of bipedal walking has not yet been clarified.

It is known that not only aging and diseases but also external factors such as external

input by a metronome and changes in walking speed using a treadmill can change

fractality [55]. Therefore, sensory feedback may influence fractality.

1.3 Purpose of this thesis

Based on the above discussion, this study focuses on the importance of the gener-

ation and change of spatial and temporal fractality produced by bipedal walking,

and aims to reproduce these fractalities with simple models to elucidate their mech-

anisms.

Regarding spatial fractality, because passive dynamic walking has already been

shown to generate fractality in the basin of attraction, we confirmed the fractality

using the simplest walking model [36] and clarified its generation mechanism based

on the dynamical systems theory. Next, to quantitatively evaluate the fractality of

passive dynamic walking, we investigated fractal dimension. The mechanism how

the fractal dimension changes was also clarified based on dynamical systems theory.

Regarding temporal fractality, we propose a model that combines a simple CPG

model with a simple biomechanical model to confirm the fractality. In particular,

we conducted simulations assuming that the sensory feedback of the CPG changes

fractality, confirmed that fractality changes depending on the presence or absence of

feedback, and discussed the mechanism based on phase response characteristics [34,

122].

1.4 Outline of this thesis

Chapter 1 described the background and purpose of this study based on previous

studies.

In Chapter 2, we analyze the spatial fractality of the basin of attraction in passive

dynamic walking based on the dynamical systems theory. In this chapter, we use the

simplest walking model [36] to analyze the characteristics of the basin of attraction

depending on the slope angle. As a result, it is shown that the basin boundary is

fractal at a certain slope angle. The fractal generation mechanism is elucidated by

focusing on the basin formation process.

In Chapter 3, we investigate the change of fractal characteristics of basin of at-

traction of passive dynamic walking by slope angle. In this chapter, the fractal di-

mension and size of the basin of attraction are quantitatively evaluated using the
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simplest walking model, as used in Chapter 2. Consequently, we confirmed that

both the fractal dimension and size of the basin changed sharply at several slope

angles. This sharp change in the basin was elucidated by improving the analytical

method that focuses on the formation process in Chapter 2.

In Chapter 4, we propose a model that combines a simple CPG model and a

simple biomechanical model based on the assumption that temporal fractality ap-

pears because of the interaction between the neural control system and the body

dynamical system. In particular, we confirmed that fractality changes depending on

the presence or absence of sensory feedback, and showed that the changes corre-

spond to those in the gait of healthy subjects and those of aging or diseased patients.

Furthermore, we showed that the fractality change was caused by phase response

characteristics.

In Chapter 5, we conclude this thesis and present our future work.
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Chapter 2

Mechanism of generation of spatial
fractal in basin of attraction in
passive dynamic walking

2.1 Introduction

Passive dynamic walking is a model that walks down a shallow slope without any

control or input [85], which is useful for investigating the mechanism of generating

stable walking from a dynamic viewpoint. This has been widely used to examine

how humans walk with low energy consumption [12, 15, 23, 71–73] and to provide

design principles for energy-efficient biped robots [9,17,18,58,60,70,130,131]. How-

ever, the basin of attraction is very small and thin and has a fractal-like complicated

shape [2, 93, 112], which makes it difficult to produce stable walking. Furthermore,

chaos appears in the walking behavior through a period-doubling cascade by in-

creasing the slope angle [40], which makes producing stable walking even more

difficult. Meanwhile, the basin of attraction shows a fractal-like shape, even without

period doubling. In other words, the fractal-like basin of attraction appears even for

a single attractor. Although this indicates that a different mechanism from the period

doubling of the attractor induces a fractal-like basin of attraction, the mechanism is

unclear.

In our previous study [94], we used the simplest walking model [36] for the anal-

ysis of passive dynamic walking and clarified the formation mechanism for the basin

of attraction based on dynamical systems theory by focusing on the hybrid dynam-

ics of the model composed of the continuous dynamics generated by the equations

of motion during the swing phase with saddle hyperbolicity and the discontinuous

dynamics generated by the impact upon foot contact. Specifically, we found that the

fractal-like basin of attraction is generated through iterative stretching and bending

deformations by sequential inverse images of the Poincaré map for the collection

of initial conditions from which the model can walk at least one step, which corre-

sponds to the domain of the Poincaré map. However, whether the fractal-like basin

of attraction is actually fractal, i.e., whether infinitely many self-similar patterns are

embedded in the basin of attraction, is dependent on the model parameters, such
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FIGURE 2.1: Passive dynamic walking. A. Compass-type model.
B. Phase diagram [θ θ̇]. Equilibrium point [θ θ̇] = [γ 0] is a saddle
point. Stable walking (indicated by the two arrows below the equilib-
rium point) is obtained by the continuous dynamics during the swing

phase and the discontinuous dynamics upon foot contact.

as the slope angle [2, 112]. The mechanism that determines whether the basin of

attraction is fractal remains unclear.

In the present study, we improved our previous analysis in order to clarify the

mechanism. In particular, we newly focused on the range of the Poincaré map,

which corresponds to the collection of states after the model walked one step start-

ing from the domain, and specified the regions that are stretched and bent by the

sequential inverse image of the Poincaré map. Through analysis of the specified re-

gions, we clarified the condition and mechanism required for the basin of attraction

to be fractal.

2.2 Method

2.2.1 Model

In the present study, we used a compass-type model (Fig. 2.1A) for the analysis of

passive dynamic walking. This model has two legs (rigid links), the lengths of which

are both l, connected by a frictionless hip joint. Here, θ is the angle of the stance leg

with respect to the slope normal, and φ is the relative angle between the stance and

swing legs. The mass is located only at the hip and the leg. The hip mass is M,

and the leg mass is m. The leg mass is located at a distance b from the hip joint. In

addition, g is the acceleration due to gravity. This model walks on a slope of angle γ

without any control or input.

2.2.2 Structure of phase space by hybrid dynamics

In the present study, we focused on the simplest walking model, where m/M →
0 and b/l → 1 [36], because the dynamical characteristics remain almost un-

changed [94]. This model is governed by hybrid dynamics composed of the con-

tinuous dynamics generated by the equations of motion during the swing phase
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and the discontinuous dynamics generated by the impact upon foot contact.

The equations of motion are given by

θ̈ − sin(θ − γ) = 0 (2.1)

(cos φ − 1)θ̈ + φ̈ − θ̇2 sin φ + sin(φ − θ + γ) = 0 (2.2)

These equations are nondimensionalized by the time scale
√

l/g and have an equi-

librium point [θ θ̇ φ φ̇] = [γ 0 0 0], which describes the situation where both legs are

upright. The eigenvalues of the linearized equations of motion at the equilibrium

point are ±1 and ±i, and the equilibrium point is a saddle center with one stable

direction, one unstable direction, and two neutral directions. Specifically, θ is de-

termined only by (2.1) and is not affected by φ. This equation for θ has a saddle

equilibrium point at [θ θ̇] = [γ 0], as shown in Fig. 2.1B. In the phase diagram of

[θ θ̇] the trajectories going into and out of the equilibrium point are the stable man-

ifold Ws and the unstable manifold Wu, respectively. In the phase space of four

variables [θ θ̇ φ φ̇], Ws × R2 and Wu × R2 are the center-stable manifold and the

center-unstable manifold, respectively, and we denote them by Wcs and Wcu.

Foot contact occurs when the following conditions are satisfied:

2θ − φ = 0 (2.3)

− π/2 < θ < 0 (2.4)

2θ̇ − φ̇ < 0 (2.5)

The impact upon foot contact yields the following relationship:
θ+

θ̇+

φ+

φ̇+

 =


−θ−

θ̇− cos 2θ−

−2θ−

cos 2θ−(1 − cos 2θ−)θ̇−

 (2.6)

where ∗− and ∗+ are the state ∗ just before and after the foot contact, respectively.

The important property of this relationship is that the state just after foot contact

[θ+ θ̇+ φ+ φ̇+] depends only on [θ− θ̇−] and is independent of [φ− φ̇−]. This means

that the state just after foot contact forms a two-dimensional surface in the four-

dimensional phase space [θ− θ̇− φ− φ̇−] and satisfies the following two conditions:

2θ+ = φ+ (2.7)

φ̇+ = θ̇+(1 − cos 2θ+) (2.8)

In addition, from (2.4), the state just after foot contact also satisfies

0 < θ+ < π/2 (2.9)
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FIGURE 2.2: Schematic diagram of the structure of the phase space.
A. Hybrid dynamics composed of the section H, jump T, and map U.

B. Relationship among Dn, S(Dn), and R on T(H).

However, note that since the state just after foot contact is independent of φ̇−, (2.5)

generates no condition.

This hybrid dynamic system determines the structure of the phase space, as

shown in Fig. 2.2A. Here, H is the section defined by the foot contact conditions

(2.3)–(2.5) and forms a three-dimensional space in the four-dimensional phase space,

and T is the jump in the phase space from the state just before foot contact to the state

just after foot contact, as defined by (2.6). Therefore, the image of T, T(H), is the re-

gion representing all states just after foot contact, and a new step starts from T(H).

Moreover, U is the map from the start of a step to the next instance of foot contact.

In other words, U is the map from T(H) to H, as defined by the equations of motion

(2.1) and (2.2). The Poincaré map S is defined on the Poincaré section T(H) by

S = T ◦ U : T(H) → T(H) (2.10)

This Poincaré map S represents one step, and an attractor of S represents stable

walking. The basin of attraction of S is the main topic of the present paper. Here, S

is parameterized by one parameter γ. In particular, S has an attracting fixed point

at 0 < γ < 0.015, and there is a period-doubling cascade to chaos for 0.015 < γ <

0.019 [36].
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2.2.3 Domain of Poincaré map and basin of attraction

We define Dn (n = 1, 2, ...) as the collection of initial conditions on T(H) from which

the model walks at least n steps. This satisfies Dn+1 ⊆ Dn (Fig. 2.2B), which means

that when the initial condition is in Dn but out of Dn+1, the model will fall down at

the n + 1-th step. Since the Poincaré map S represents walking one step, S(Dn) indi-

cates the state on T(H) after the model walked one step starting from Dn. Since the

model can walk at least n − 1 steps from S(Dn), the following condition is satisfied:

S(Dn) ⊆ Dn−1 (2.11)

Since the domain D of S on T(H) represents the collection of initial conditions on

T(H) from which the model walks at least one step, D is identical to D1.

Using the inverse image of S, we can write Dn = S−1(Dn−1). However, S−1 acts

only on a part of Dn−1, as shown in Fig. 2.2B, as clarified in the following section.

First, the range R of S on T(H) is given by R = S(D1) because D1 is the domain of

S, which corresponds to the collection of states after the model successfully walked

one step starting from all states on T(H). This means that the state after each step

must be in R unless the model falls down. The following equation is satisfied:

S(Dn) = Dn−1 ∩ R (2.12)

We prove this below. First, since Dn ⊆ D1, S(Dn) ⊆ R. Based on this consideration

and (2.11), S(Dn) ⊆ Dn−1 ∩ R. Second, we assume that d ̸⊆ S(Dn) for ∃d ⊆ Dn−1 ∩
R. Since d is in R, S−1 is applicable to d, and, since d is in Dn−1, S−1(d) ⊆ Dn. This

contradicts d ̸⊆ S(Dn). Therefore, this assumption is not satisfied. Since any state

in Dn−1 ∩ R is in S(Dn), we obtain (2.12). Therefore, instead of Dn = S−1(Dn−1), we

use

Dn = S−1(Dn−1 ∩ R) (2.13)

In the same manner, instead of Dn = S−n+1(D1), we use

Dn = S−1(S−1(· · · (S−1(D1 ∩ R) ∩ R) · · · ∩ R) ∩ R) (2.14)

Since the model walks at least n steps from Dn, Dn approximates the basin of at-

traction as n increases. We confirmed the convergence by comparing D100 and D200

using 104 × 104 initial states.

2.3 Results

2.3.1 Dn and basin of attraction

Figs. 2.3A and 2.3C show D1, D2, D3, and the basin of attraction for γ = 0.001 and

0.013, respectively. In order to clarify these geometric characteristics, we used θ + θ̇
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and θ − θ̇ for the axes for γ = 0.001 and 0.013 in Figs. 2.3B and 2.3D, respectively,

as in our previous study [94]. Here, D2 and D3 are V-shaped, and D3 has a thin slit

(note that a V-shaped region indicates that the basin has one large slit). The basins of

attraction have multiple slits and are complicated. In particular, while the basin of

attraction has only a few slits for γ = 0.001, the basin has a number of slits, and self-

similar patterns are embedded for γ = 0.013. In order to quantitatively clarify these

properties, we examined how many gaps D1, D2, D3, and the basin of attraction

have on the line θ − θ̇ = 0.5. As a result, there are zero, one, two, and four gaps

in D1, D2, D3, and the basin of attraction, respectively, for γ = 0.001. In contrast,

there are zero, one, two, and infinitely many gaps in D1, D2, D3, and the basin of

attraction, respectively, for γ = 0.013. We further investigated the number of slits

in D1, D2, D3, and the basin of attraction for γ based on the gaps on θ − θ̇ = 0.5 in

Fig. 2.3E. The number of slits in Dn increases as n increases, and that in the basin

of attraction increases exponentially as γ increases. Fractal structures appear in the

basin of attraction over γ ≈ 0.0075.

2.3.2 D1 ∩ R

Since Dn = S−1(S−1(· · · (S−1(D1 ∩ R) ∩ R) · · · ∩ R) ∩ R) approximates the basin of

attraction as n → ∞, we begin with D1 ∩ R to investigate the formation mechanism

of the basin of attraction. As shown in Fig. 2.3E, the numbers of slits in D1, D2, and

D3 remain unchanged for γ. Therefore, we assume that the mechanism is common

for γ when n is small. We used γ = 0.013 to show the results below.

Since R = S(D1) = T(U(D1)), we first examine U(D1). In particular, the bound-

aries of U(D1) are θ = 0, θ = −π/2, and 2θ̇ = φ̇ from the foot contact conditions

(2.4) and (2.5), as shown in Fig. 2.4A. In addition, since D1 does not intersect with

Wcu, D1 and U(D1) are on the same side with respect to Wcu, and U(D1) also has

a boundary near Wcu (strictly speaking, D1 intersects with Wcu in a small range

of 0 < θ < γ, but has no influence in the formation of D1 ∩ R and so is ignored).

Fig. 2.4B shows the result for U(D1) projected onto the θ-θ̇ plane (Fig. 2.4C uses

θ + θ̇ and θ − θ̇ for the axes in order to clarify the geometric characteristics).

Since T is a one-to-one mapping for [θ θ̇], the boundaries of U(D1) on the θ-θ̇

plane become the boundaries of R by T, as shown in Fig. 2.4A. Fig. 2.4D shows the

result of R obtained from (2.6) (Fig. 2.4E uses θ + θ̇ and θ − θ̇ for the axes to clarify

the geometric characteristics). The boundaries a1b1 and c1d1 of D1 ∩ R are obtained

by applying T to the boundaries near Wcu and 2θ̇ = φ̇, respectively, of U(D1).
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respectively. Parts of the basin of attraction are enlarged. E. The num-

ber of gaps on θ − θ̇ = 0.5 depending on γ.

2.3.3 Characteristics of S−1

Next, we investigate D2 = S−1(D1 ∩ R). Since S−1(D1 ∩ R) = U−1(T−1(D1 ∩ R)),

we first examine T−1(D1 ∩ R). From (2.6), T−1(D1 ∩ R) is described by{
[−θ+ − 2θ+ θ̇+ sec 2θ+ φ̇−]

∣∣ [θ+ φ+ θ̇+ φ̇+] ∈ D1 ∩ R, φ̇− ∈ R
}

(2.15)

[θ φ θ̇] in T−1(D1 ∩ R) is uniquely determined using D1 ∩ R in Fig. 2.4D. Fig. 2.5A

shows the result of T−1(D1 ∩R) in the θ-θ̇ plane. (Fig. 2.5B uses θ + θ̇ and θ − θ̇ for the

axes to clarify the geometric characteristics.) The boundary â1b̂1ĉ1d̂1 of T−1(D1 ∩ R)

is obtained by applying T−1 to the boundary a1b1c1d1 of D1 ∩ R in Fig. 2.4D. Note
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that ∗1 and ∗̂1 (except for D1), such as a1 and â1, are used for D1 ∩ R and T−1(D1 ∩R),

respectively. Since T−1(D1 ∩ R) is thin, as shown in Fig. 2.5A, we extract a line seg-

ment P̂1Q̂1 from T−1(D1 ∩ R). However, since φ̇ in T−1(D1 ∩ R) is not uniquely

determined, we consider T−1(D1 ∩ R) as a quadrangular prism, the height of which

is in the φ̇ direction, as shown in Fig. 2.5C. Then, line segment P̂1Q̂1 is considered to

be a plane, which we call plane Z. We apply U−1 to the plane Z. Since U−1 is the map

from H to T(H) and T(H) is a two-dimensional surface that has two constraint con-

ditions (2.7) and (2.8) in the four-dimensional phase space, U−1 is applicable only to

points in the plane Z that simultaneously satisfy the two conditions when the points

are moved in the phase space in the time reverse direction using the equations of mo-

tion (2.1) and (2.2), as shown in Fig. 2.5C. These points determine φ̇ in T−1(D1 ∩ R).
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Fig. 2.5D shows the result for the collection of the points in the plane Z indicated by

the curve ê1f̂1ĝ1 to which U−1 is applicable. We obtained the curve e2f2g2 by apply-

ing U−1 to this curve ê1f̂1ĝ1, as shown in Fig. 2.5E. (Fig. 2.5F uses θ + θ̇ and θ − θ̇ for

the axes to clarify the geometric characteristics.) Note that ∗2 (except for D2), such

as e2, is used for D2. In order to obtain the curves e2f2g2 and ê1f̂1ĝ1 in Figs. 2.5D

through 2.5F, we linearized the equations of motion (2.1) and (2.2) for θ and φ be-

cause the walking behavior appears around the saddle [γ 0 0 0]. Therefore, there are

differences from the exact solution, as the approximately obtained curve e2f2g2 is

not inside D2 (Figs. 2.5E and 2.5F, see the appendix for details). The curve e2f2g2,

specifically the curve e2f2 is bent to be V-shaped, as shown in Fig. 2.5E. (Fig. 2.5F
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uses θ + θ̇ and θ − θ̇ for the axes to clarify the geometric characteristics.)

In order to examine where in D1 ∩ R the curve e2f2g2 is moved from by S−1(=

U−1 ◦ T−1), we investigate where in D1 ∩ R the curve ê1f̂1ĝ1 is moved from by T−1.

Since the curve ê1f̂1ĝ1 is in T−1(D1 ∩ R), the curve moves in D1 ∩ R by T. Figs. 2.4D

and 2.4E show the result indicated by the curve P1Q1. This shows that when S−1

is applied to the curve P1Q1 in D1 ∩ R, two curves f2e2 and f2g2 are obtained in

T(H). Since D1 ∩ R is thin, as shown in Fig. 2.4D, the curve P1Q1 approximates

D1 ∩ R. Therefore, the process to obtain the V-shaped curve e2f2g2 from the curve

P1Q1 explains the process by which D1 ∩ R is transferred to D2.

Figs. 2.6A through 2.6D show a schematic diagram of the summary by which

to obtain D2 from D1. Specifically, D1 ∩ R is extracted from D1 (Fig. 2.6B), and two

regions are generated by S−1, one of which is stretched and bent (Fig. 2.6C left), and

the other of which is only stretched (Fig. 2.6C right). These regions are connected at

the boundaries a′1b′
1 to form D2 (Fig. 2.6D).

Next, we move to D3 = S−1(D2 ∩ R). Since D2 ⊆ D1, the deformation from D2

to D3 (Figs. 2.6D through 2.6G) is the same as that from D1 to D2 (Figs. 2.6A through

2.6D). Since D2 is V-shaped (Fig. 2.6D), the extracted D2 ∩ R is also V-shaped and has
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FIGURE 2.7: Unchanged number of slits. When (A) the generated slit
in Dn does not reach R, (B) the number of slits remains unchanged in

Dn+1.

a large slit at the boundary c2d2 (Fig. 2.6E). The large slit becomes slits at the bound-

ary c′2d′
2 in D3 by the deformation (Figs. 2.6F and 2.6G). Although Fig. 2.6F(right)

has a slit, it is far from R and so is ignored (Fig. 2.6G).

When the slit generated in Dn reaches, but does not penetrate, R, one slit is added

in Dn+1, as observed in the process from D2 to D3. In contrast, when the generated

slit in Dn does not reach R, the number of slits in Dn+1 remains unchanged, as shown

in Fig. 2.7. Moreover, since Dn+1 ⊆ Dn, it is possible that the slit becomes deeper

as n increases to reach R and create a new slit. Therefore, when the generated slit

in Dn does not penetrate R, the number of slits of Dn+1 increases by one or remains

unchanged.

2.3.4 Appearance of a fractal

We consider the cases in which the generated slit in Dn penetrates R for the first time

at n = N, as shown in Fig. 2.8A. (There may be multiple slits that do not penetrate

DN ∩ R to the left and right of the generated slit, but because they do not affect

the explanation below, they are not shown in Fig. 2.8.) By applying S−1 to DN in

the same manner as in Fig. 2.6, a penetrating slit appears close to the outer edge

of the V-shaped DN+1, as shown in Fig. 2.8D. In addition, since Dn+1 ⊆ Dn once

a slit penetrates R, the slit penetrates R for n > N. Furthermore, the penetrating

slit close to the outer edge of DN+1 generates a slit that penetrates R near the right

edge of DN+1 ∩ R, as shown in Fig. 2.8E. As a result, a penetrating slit also appears

close to the inner edge of the V-shaped DN+2, as shown in Fig. 2.8G. Furthermore,

the penetrating slit produces another penetrating slit in DN+3 near the slit generated

by the large slit of DN+2 due to the V-shape, as shown in Fig. 2.8J. This slit also

penetrates R. These penetrating slits produce new penetrating slits near the edge,

and the number of slits increases at an accelerated rate as n increases. As a result, a

fractal basin of attraction appears.

Figs. 2.9A through 2.9E show D4 to D8 for γ = 0.013. At N = 5, the generated

slit penetrated R for the first time (Fig. 2.9B). After that, the penetrating slits were
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to the outer edge in DN+1 in D. A penetrating slit is generated close
to the inner edge in DN+2 in G. A penetrating slit is generated close

to the generated slit in DN+3 in J.

generated close to the outer edge at n = 6 (Fig. 2.9C), near the inner edge at n = 7

(Fig. 2.9D), and close to the generated slit at n = 8 (Fig. 2.9E) in that order. There-

fore, infinitely many slits are generated and the fractal basin of attraction appears,

as shown in Figs. 2.3C and 2.3D.

2.3.5 No fractal appears

Next, we consider the cases in which no slits in Dn penetrate R, even when S−1 is

applied several times. In particular, suppose that n is so large that Dn converges and

also suppose that Dn has a slit that does not reach R. In this case, since the number
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generated close to the generated slit of D8.

of slits does not change even when S−1 is applied, the basin of attraction does not

have a fractal structure and has a finite number of slits.

Figs. 2.10A and 2.10B show D50 and D51, respectively, for γ = 0.001. Here, D50

has four slits, and the leftmost slit does not reach R. As a result, D51 has four slits as

in D50. In addition, D50 and D51 have no difference and are identical to the basin of

attraction (Fig. 2.3B), which we confirmed by comparing the regions using 104 × 104

initial states, and so converge. Therefore, the basin of attraction does not have a

fractal structure.
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2.4 Discussion

2.4.1 Stability and basin of attraction

Bipedal walking has intrinsic instability due to saddle dynamics, and clarifying the

mechanism by which walking can be stabilized is important. Passive dynamic walk-

ing is a useful model to examine the mechanism from a dynamic viewpoint. In order

to clarify the stabilization mechanism, investigating both the stability and basin of

attraction is crucial. However, while previous studies have focused on the stability

by the eigenvalue analysis of the linearized Poincaré map around the fixed point

on the Poincaré section [16, 36, 40, 49, 58, 118, 130, 131], the basin of attraction has

not been well studied. This is partly because while eigenvalue analysis allows us

to easily investigate the stability, no general analytical method has been provided

for investigating the basin of attraction. We used an analytical approach based on

dynamical systems theory to clarify a specific property embedded in the basin of

attraction, which is useful to further investigate the characteristics of the basin of at-

traction in walking. While passive dynamic walking has no control or input, the use

of control and input changes the dynamic characteristics of walking and also varies

the stability and the basin of attraction [7, 8, 94, 96, 114]. We would like to improve

and clarify our analysis in the future.

2.4.2 Initial-value sensitivity and convergence to attractor

The Poincaré map S represents walking one step, and slits are generated by apply-

ing the inverse image S−1 many times to the region from which the model walks

at least one step. These slits come from the large slit of the V-shaped D2 (Fig. 2.6).
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When there are only a finite number of slits in the basin of attraction, the gener-

ated slit in Dn does not reach R and is not used in Dn+1 (Fig. 2.7). Therefore, these

slits are not stretched much. In contrast, once the generated slit in Dn penetrates

R, the generated slits for n ≥ N are stretched greatly and create stripe patterns by

producing penetrating slits, especially close to the basin boundary (Fig. 2.8). These

penetrating slits become thinner as n increases. Since slits indicate a region in which

the model will fall down, whether the model continues to walk or not becomes very

sensitive around the basin boundary. Furthermore, since penetrating slits become

thinner, two states located at different sides of the large slit of D2 become closer as

S−1 is applied to the two states many times. This means that two states located at

different sides of a thin slit in the basin of attraction move away from each other as

S is applied many times and the two states come to reach different sides of the large

slit of D2.

When the basin of attraction is fractal, there are infinitely many penetrating slits

close to the basin boundary. Therefore, when the model walks from an initial state

near the boundary on the basin of attraction, there are numerous penetrating slits

between the initial state and the attractor, and the model must traverse the slits for

the state to approach the attractor. The model must walk at least the steps that are

required to generate the penetrating slits by applying S−1. Therefore, the model

takes a long time to approach the attractor, depending on the initial state.

2.4.3 Limitations of our analysis

In the present study, we clarified that the fractal basin of attraction appears when the

generated slit in Dn penetrates R and that fractal basin of attraction does not appear

when the generated slit in Dn does not reach R for an n so large that Dn converges.

However, it is possible that the generated slit in Dn reaches, but does not penetrate,

R for so large n that Dn converges. In this case, although it is not at an accelerated

rate, the number of slits increases as n increases. While infinitely many slits appear

in the basin of attraction, no penetrating slits are generated. Although our analysis

does not exclude this possibility, our simulation results did not show such a case for

any γ.

We used the simplest walking model for the analysis of passive dynamic walk-

ing, i.e., we assumed the extreme case m/M → 0 and b/l → 1 for the compass-type

model [36]. Therefore, we did not explain the mechanism of the basin of attrac-

tion for general models of passive dynamic walking. However, the period-doubling

cascade to chaos appears and the fractal basin of attraction is observed without the

period doubling even when the extreme case is not assumed [2]. This suggests that

similar mechanisms to those observed herein are embedded in general models of

passive dynamic walking.
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2.4.4 Biological relevance

The fractal appears in human walking, especially in the gait rhythm [39, 53–55].

However, unlike passive dynamic walking, human walking is generated through

the control. The basin of attraction of compass-type models used in passive dynamic

walking is enlarged by the control and the number of slit changes [93,96,114]. How-

ever, the stance leg during human walking is almost straight and rotates around the

foot contact point like an inverted pendulum [90]. In addition, the stance and swing

legs are switched by the foot contact and lift off. Therefore, saddle instability and hy-

brid properties are inevitable in the gait dynamics, as in passive dynamic walking,

and the stretching and bending deformation remains crucial for the formation mech-

anism of basin of attraction. In fact, our previous study [93, 96] showed that even

when a controller inspired by spinal central pattern generators [98] is incorporated

in a compass-type model, the basin of attraction has slits due to the deformation.

Human walking is generated through the central nervous system and the body

mechanical system. Fractal properties are reduced by aging and pathological dis-

orders such as Parkinson’s and Huntington’s diseases [39, 53]. A simple neurome-

chanical model demonstrated that fractal properties are reduced by changing the

motor control model to emulate the pathological disorder [31]. These properties

suggest that the neural system contributes to the fractal in human walking. In con-

trast, the body mechanical system also has potential to contribute to the fractal in

human walking. Passive dynamic walking exhibits a chaos attractor depending on

the model parameter [36,40] and shows a fractal basin of attraction even for the sin-

gle attractor as shown in the present study. The steady state of a dynamical system

with a single attractor never shows a fractal, but instead shows regular behavior,

unless the system is disturbed. However, when the dynamical system is specific and

has a fractal basin of attraction, fractal behavior can be induced by a disturbance or

noise without fractal properties. In fact, the fractal appears in walking of compass-

type models with a controller and noise without fractal properties [1, 38]. Even for

passive dynamic walking, the mechanisms for fractal and non-fractal basins of at-

traction clarified in the present study will provide useful insights for understanding

human walking. The analysis of measured human data has limitations for elucidat-

ing the underlying mechanism in human walking, and physical models are useful

to overcome the limitations.
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Chapter 3

Mechanism of changes in spatial
fractal in basin of attraction in
passive dynamic walking

3.1 Introduction

A passive dynamic walker is a mechanical system that walks down a slope with-

out any control [85], and gives useful insights into the dynamic mechanism of stable

walking. This system has been used extensively for the study of human walking

with low energy consumption [12,15,23,60,71–73,91,110,119] and has been the basis

for the design of energy-efficient bipedal robots [8,9,17,18,58,70,89,130,131]. Because

the walking speed for this system changes with slope angle, it is important to clarify

its influence on walking. In particular, this system shows specific characteristics due

to nonlinear dynamics depending on the slope angle. For example, a chaotic attrac-

tor appears through a period-doubling cascade when the slope angle increases [40],

and it abruptly disappears at a critical slope angle [47,94]. Furthermore, fractal basin

boundaries appear even without period-doubling [2,94,112]. To understand the dy-

namics that generate walking, it is important to elucidate the mechanism for these

characteristics.

The change in the attractor by the slope angle and its mechanism have been clar-

ified in previous studies [35, 36, 40, 47–49], whereas the change in the basin of at-

traction and its mechanism remain largely unclear. In our previous studies [94, 97],

we showed that the basin of attraction is produced through iterative stretching and

bending deformation by the inverse image of the Poincaré map. As a result, the basin

boundaries become fractal when the slope angle exceeds a critical value. However,

other characteristics of the basin of attraction remain unclear.

In this study, we focused on the size, fractality, and disappearance of the basin of

attraction. Because the basin of attraction is the set of initial states that converge to an

attractor, the basin size indicates the robustness of walking and is thus an important

feature for walking. The fractal basin boundary has a final state sensitivity [41, 84].

This means that even when the system is deterministic, unpredictability exists for

the attractor or final state when the initial condition contains uncertainties. Although
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the unpredictability of chaotic attractors has been investigated based on the initial-

state sensitivity [36, 40], the final state sensitivity in fractal basin boundaries has

not been investigated thoroughly. The final state sensitivity makes the prediction

of walking easily affected by inevitable noise and is thus also an important feature

for walking. The disappearance of the chaotic attractor and its basin of attraction

indicates that the system cannot produce stable walking and falls down regardless

of the initial state. While the disappearance of the chaotic attractor can be explained

by a boundary crisis [47, 94], the mechanism for the disappearance of the basin of

attraction remains unclear.

The stretching-bending deformation revealed in our previous study [97] creates

horseshoes [115] that cause complex phenomena, such as chaos and fractals, and is

an important property in nonlinear dynamics. It is expected to play an important

role in determining the size, fractality, and disappearance of the basin of attraction

in passive dynamic walking. In the present study, we first calculated the size and

fractality of the basin of attraction for passive dynamic walking depending on the

slope angle using the simplest walking model, which is useful for the analysis of

passive dynamic walking, and found sharp changes in these parameters at specific

slope angles. We then clarified the mechanism for the sharp changes and disappear-

ance of the basin of attraction based on stretching-bending deformation in the basin

of attraction by improving our previous analysis [97].

3.2 Passive dynamic walking

3.2.1 Model

In this study, we analyzed passive dynamic walking using the simplest walking

model [36] (Fig. 3.1). This model has two legs, swing and stance legs, connected by a

frictionless hip joint and walks down a slope of angle γ without any control. The leg

length is l. The tip of the stance leg is fixed on the slope, and the stance leg rotates

around the leg tip without friction. The angles between the stance leg and slope

normal and between the stance and swing legs are denoted by θ and φ, respectively.

The hip mass and leg tip mass are M and m, respectively. We assumed m/M → 0 as

in [36]. The gravitational acceleration is g.

3.2.2 Governing equations

This model is governed by hybrid dynamics that consist of continuous dynamics

generated by the equations of motion when the swing leg is in motion and discon-

tinuous dynamics generated by the impact when the foot makes contact with the

ground.
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FIGURE 3.1: Simplest walking model for analysis of passive dynamic
walking.

The equations of motion are given by

θ̈ − sin(θ − γ) = 0 (3.1)

(cos φ − 1)θ̈ + φ̈ − θ̇2 sin φ + sin(φ − θ + γ) = 0. (3.2)

The equations are made dimensionless by the timescale
√

l/g. The swing leg tip

touches the slope (touchdown) when the following conditions are satisfied:

2θ − φ = 0 (3.3)

θ < 0 (3.4)

2θ̇ − φ̇ < 0. (3.5)

We utilized the condition (3.4) to ensure that touchdown takes place exclusively in

front of the model to move forward, and condition (3.5) to disregard the scuffing

of the leg tip on the slope when the swing leg moves forward. We considered the

touchdown as a completely inelastic collision, where no slip or bounce occurs, and

assumed that the stance leg lifts off without interaction just after touchdown. Be-

cause the roles of the swing and stance legs are reversed just after touchdown, we

obtain 
θ+

θ̇+

φ+

φ̇+

 =


−θ−

θ̇− cos 2θ−

−2θ−

cos 2θ− (1 − cos 2θ−) θ̇−

 (3.6)

where the notations ∗− and ∗+ indicate the state of ∗ just before and after touch-

down, respectively. The key aspect of this relationship is that the state just after

touchdown, denoted by (θ+, θ̇+, φ+, φ̇+), depends solely on (θ−, θ̇−) and is not in-

fluenced by (φ−, φ̇−).

3.2.3 Structure of phase space by hybrid dynamics

The structure of the phase space is determined by the hybrid dynamic system, as

shown in Fig. 3.2A. The section H is defined by the touchdown conditions (3.3)–

(3.5) and forms a three-dimensional space in four-dimensional phase space. The
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FIGURE 3.2: Schematic diagram of the structure of phase space. (A)
Hybrid dynamics composed of the section H, jump T, map U, and
Poincaré map S. (B) Relationship among the regions Dn and S(Dn),

and the range R of S on T(H).

jump T in the phase space from the state just before touchdown to the state just

after touchdown is defined by (3.6). Therefore, the image of T, T(H), represents

all states just after touchdown, and a new step starts from T(H). The map U is

defined by the equations of motion (3.1) and (3.2) from the start of a step to the next

touchdown instance, i.e., from T(H) to H. The Poincaré section is defined as T(H)

and the Poincaré map S is defined by S = T ◦ U : T(H) → T(H), which represents

one step. T(H) is two-dimensional in the simplest walking model as shown in (3.6),

which is useful for analyzing S. S is parameterized only by the slope angle γ and an

attractor of S represents stable walking. In particular, S has an attracting fixed point

at 0 < γ < 0.015, and there is a period-doubling cascade to chaos for 0.015 < γ <

0.019 [36]. While the basin of attraction of S has smooth boundaries for γ < 0.0075,

it has fractal boundaries for γ > 0.0075 [97].

3.3 Characteristics of basin of attraction

3.3.1 Basin size

Because the basin of attraction is the collection of initial conditions on T(H) from

which the model keeps walking, we computed the basin using the governing equa-

tions (3.1)–(3.6). Specifically, we used 1560 bins for 0.1 < θ ≤ π/2 with increments

of 0.001 and 1500 bins for −1.5 < θ̇ ≤ 0 with increments of 0.001 for the initial con-

ditions on T(H); that is, we used 2.34 × 106 initial conditions in total. This range of

θ and θ̇ was sufficient to contain the basin of attraction irrespective of γ. We approx-

imated the basin of attraction by the set of initial states from which the model can

walk at least 50 steps, and determined the size of the basin of attraction by counting

the number of initial conditions within it.

Figure 3.3A shows the basins of attraction for γ = 0.01, 0.012, and 0.016, where

θ + θ̇ and θ − θ̇ are used for the axes to clarify the geometric characteristics as in [93,
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FIGURE 3.3: Basin of attraction for γ. (A) Basin of attraction for
γ = 0.01, 0.012, and 0.016. Blue and orange lines show the bound-
aries of the basin of attractions and the lower edge of range R, respec-
tively. Black lines show the regions used to calculate the uncertainty
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versus γ. (C) Proportion of uncertainty box fε versus ε for vari-
ous γ values. Dotted lines represent corresponding linear regression
lines. (D) Uncertainty exponent α versus γ. (E) Number of non-R-

penetrating slits versus γ.

94, 97]. Because γ > 0.0075 in these figures, the basins have an infinite number of

slits and fractal boundaries [97]. The size of the basin decreases as γ increases, as

shown in Fig. 3.3B. In particular, it abruptly decreases around γ = 0.0103, 0.0135,

and 0.019.

3.3.2 Fractality of basin boundary

We evaluated the fractality of the basin boundary based on the uncertainty expo-

nent [41, 84], which is defined as follows:

α = dim(B)− dim(∂B) (3.7)

where α is the uncertainty exponent, B is the basin of attraction, ∂B is the basin

boundary, and dim(ξ) is the dimension of set ξ. If 0 < α < 1, the basin boundary
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has a non-integer dimension and is fractal.

We calculated the uncertainty exponent α using a previously reported

method [41, 84]. First, we placed many squares with a length ε, which is sufficiently

larger than the bin size in the initial conditions, randomly on a limited range of the

Poincaré section. We calculated the proportion fε of the squares that touch the basin

boundary. When the square is coarse-grained as a single point, it is “uncertain”

whether the point is inside or outside the basin. Therefore, α describes not only the

fractality but also the final state sensitivity. The following relationship between α

and ε holds:

fε ∝ εα. (3.8)

Therefore, we can obtain α by calculating the slope of the linear regression line for fε

versus ε using a log-log plot.

We placed 30, 000 squares randomly in a limited region to calculate α, as shown

in Fig. 3.3A. Because the basin of attraction moves depending on γ, the limited re-

gion moves in the same way as the basin of attraction. However, the area of the

limited region is identical for all γ. Figure 3.3C shows fε versus ε for γ = 0.01, 0.012,

0.016, and 0.01925, and linear regression lines using a log-log graph. We obtained the

uncertainty exponent α from the coefficient for this regression. Figure 3.3D shows a

plot of α versus γ. When γ < 0.008, the basin boundary is not fractal because α ≈ 1.

When γ > 0.008, the basin boundary becomes fractal because 0 < α < 1. We can

find dramatic changes in α at certain values of γ, which include γ ≈ 0.0103, 0.0135,

and 0.019, where the basin size shows remarkable changes in Fig. 3.3C.

3.4 Mechanism for sharp changes in the basin of attraction

3.4.1 Formation of basin of attraction through stretch-bending deforma-
tion by S−1

We introduce the notation Dn (n = 1, 2, . . .) to denote the set of initial conditions

on the Poincaré section T(H) from which the model walks at least n steps. As n

increases to infinity, Dn approximates the basin of attraction. Furthermore, this set

satisfies Dn+1 ⊆ Dn (Fig. 3.2B), which means that if the initial condition is in Dn but

not in Dn+1, the model will fall down at the (n+ 1)th step. In our previous study [97],

we showed that S(Dn) represents the state on T(H) after the model walked one step

starting from Dn, which is in Dn−1 (Fig. 3.2B) because the Poincaré map S represents

walking one step. Moreover, S(Dn) is also in the range R of S, which is given by

R = S(D1) because D1 is the domain of S. Therefore, the following condition is

satisfied: S(Dn) = Dn−1 ∩ R, which gives

Dn = S−1(S−1(· · · (S−1(D1 ∩ R) ∩ R) · · · ∩ R) ∩ R). (3.9)
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This indicates that the basin of attraction is obtained by iterative processes to ex-

tract the intersection with R of S and to apply the inverse image S−1 starting from

D1. Because saddle instability due to the inverted pendulum induces a stretching-

bending effect in S−1 [94, 97], D1 is stretched and bent many times to create many

slits (Fig. 3.4).

Suppose that a slit (red) in Dn penetrates the lower edge of R for the first time

at n = N, as shown in Fig. 3.5A. By applying S−1 to DN ∩ R (Fig. 3.5B) in the same

manner as in Fig. 3.4, the slit penetrates the U-shaped DN+1 along and near the

outer edge (Fig. 3.5C). When a slit penetrates Dn, we call it a Dn-penetrating slit.

When it does not, we call it a non-Dn-penetrating slit. The Dn-penetrating slit in

DN+1 corresponds to two slits near the left and right edges in DN+1 ∩ R (Fig. 3.5D).

The right slit penetrates DN+2 along and near the inner edge and surrounds the slit

(blue) generated by the inner edge (Fig. 3.5E). Because these slits do not penetrate

R, they remain in DN+2 ∩ R (Fig. 3.5F) and DN+3 (Fig. 3.5G). However, these two

slits in DN+3 penetrate R and one of them (red) corresponds to two slits in DN+3 ∩ R

(Fig. 3.5H). The number of slits increases at an accelerated rate as n increases, and

some slits are surrounded by many Dn-penetrating slits (Fig. 3.5I). Through these

procedures, the basin boundaries become fractal in γ > 0.0075.

3.4.2 Comparison of basin state before and after sharp changes in its char-
acteristics

Figures 3.6A and B show the basin of attraction at γ = 0.0134 (before the sharp

changes in the basin characteristics at γ ≈ 0.0135) and γ = 0.0136 (after the

sharp changes), respectively. In the specific region of each figure, we used at

least 1500 × 1500 initial conditions to obtain accurate boundaries, which was con-

firmed by investigating if the boundary remained unchanged even when we used

3000× 3000 initial conditions (we used the same conditions to calculate Dn in the fol-

lowing sections). As shown in the enlarged figures, a purple non-Dn-penetrating slit

is surrounded by Dn-penetrating slits. While these slits do not reach the lower edge

of the range R in Fig. 3.6A, many slits reach and penetrate the lower edge of R in

Fig. 3.6B. This difference could cause the sharp changes in the basin characteristics.

When the basin boundaries become fractal (γ > 0.0075), non-Dn-penetrating

slits are surrounded by Dn-penetrating slits through the formation process for the

basin of attraction, as shown in Figs. 3.5E and G. For large enough n, Dn has many

such Dn-penetrating slits and consists of an infinite number of regions separated

by the Dn-penetrating slits. We define Dn =
⋃∞

i=1 Di
n as shown in Fig. 3.7A, where

Di
n (i = 1, 2, . . . ) is the separated region and D1

n contains the attractor. If a non-

Dn-penetrating slit in D1
n reaches and penetrates the lower edge of R, we call it a

R-penetrating slit (Fig. 3.7B). If it does not penetrate the lower edge, we call it a

non-R-penetrating slit.



32 Chapter 3. Changes in spatial fractal in passive dynamic walking

Dn

A

E F

H

C

D  ∩Rn

B

D

R D1 D  ∩R1

D  ∩R2

S -1

S -1

G

S -1

S -1

D∞

D  ∩R3

R D2

R D4

...

R D3

FIGURE 3.4: Schematic diagram of process to deform D1 to D2, to
D3, · · · , to D∞ and generate slits. D1 ∩ R (B) is extracted from D1
(A) and stretched and bent by S−1 to form U-shaped D2 with one
slit (C). In the same way, D2 ∩ R is extracted (D) and stretched and
bent by S−1 to form D3 with two slits (E). D3 ∩ R is extracted (F) and
stretched and bent by S−1 to form D4 with three slits (G). D∞ has

many slits through this process (H).
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FIGURE 3.7: Regions and slits when basin boundaries become frac-
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n contains the attractor. (B) R-penetrating and non-R-
penetrating slits in D1

n. A R-penetrating slit reaches and penetrates
the lower edge of R and a non-R-penetrating slit does not.

In Fig. 3.3A, we can find three non-R-penetrating slits in D1
50(≈ D1

∞) for γ = 0.01,

two for γ = 0.012, and one for γ = 0.016, which means that the number of non-R-

penetrating slits decreases as they penetrate R through the increase of γ. Figure 3.3E

shows the number of non-R-penetrating slits versus γ and confirms that it decreases

as γ increases. There could be an infinite number of non-R-penetrating slits for

γ ≈ 0.0075, where fractal basin boundaries appear. By comparing Figs. 3.3C–E,

we can find that when the number of non-R-penetrating slits changes, the basin

characteristics sharply change.

3.4.3 Mechanism for sharp changes in basin characteristics based on the
number of non-R-penetrating slits

Because the basin of attraction is the set of initial states that asymptotically converge

to an attractor, any state in the basin of attraction moves toward the attractor by
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repeated application of S. That is, the basin of attraction is obtained by the iterative

application of the inverse image S−1 to the proximity of the attractor. Therefore,

the formation process for the basin of attraction can be explained by the iterative

application of S−1 not only to Dn as in Figs. 3.4 and 3.5, but also to D1
n that contains

the attractor.

We investigated the relationship between the sharp change in the basin charac-

teristics with γ and the change in the number of non-R-penetrating slits in D1
∞. First,

we examined how the number of slits increases in the formation process for the basin

of attraction by focusing on the deformation of D1
n with n when the basin boundary

is not fractal, when it is fractal with one non-R-penetrating slit, and when it is fractal

with two non-R-penetrating slits. Second, we investigated the mechanism for the

sharp changes in the basin characteristics when the number of non-R-penetrating

slits decreases from 2 to 1. Finally, we determined that this mechanism is applicable

when the number of non-R-penetrating slits decreases from k + 1 to k (k = 1, 2, . . . ).

Increase of number of slits in formation process for basin of attraction for n

First, we investigated how the number of slits increases in the formation process

for the basin of attraction when no slit reaches the lower edge of R and the basin

boundary is not fractal as in Fig. 3.4 (γ < 0.0075). Although a red slit in D2 in

Fig. 3.4C is stretched and bent by S−1, it never reaches the lower edge of R and there

is only one red slit in both D3 in Fig. 3.4E and D4 in Fig. 3.4G. No matter how many

times S−1 is applied, there is only one red slit in Dn (n ≥ 2).

Second, we investigated how the number of slits increases when the basin

boundary is fractal and there is one non-R-penetrating slit in D1
∞ (0.0135 < γ <

0.019). Because the formation process for the basin of attraction is explained by

D1
n, Fig. 3.5 explains the basin formation for one non-R-penetrating slit by replac-

ing DN by D1
N in Fig. 3.5A. We define D̂1

n (n ≥ N + 1) as the region obtained by

applying S−1 to D1
N . Fig. 3.5A shows one red R-penetrating slit and one yellow non-

R-penetrating slit in D1
N . The red R-penetrating slit generates red Dn-penetrating

slits in D̂1
N+1, D̂1

N+2, and D̂1
N+3 in Figs. 3.5C, E, and G, respectively. Because these

Dn-penetrating slits also reach and penetrate the lower edge of R, these slits are di-

vided into two slits in D̂1
N+1 ∩ R, D̂1

N+2 ∩ R, and D̂1
N+3 ∩ R in Figs. 3.5D, F, and H,

respectively. Therefore, the number of red Dn-penetrating slits increases one by one

in D̂1
N+1 → D̂1

N+2 → D̂1
N+3 (one red slit in D̂1

N+1, two red slits in D̂1
N+2, and three red

slits in D̂1
N+3). In addition, D̂1

N+3 has a red Dn-penetrating slit, which surrounds a

blue R-penetrating slit and penetrates the lower edge of R as shown in Fig. 3.5G. This

red slit is also divided into two slits in D̂1
N+3 ∩ R, as shown in Fig. 3.5H. Therefore,

while the number of red slits increases one by one in D̂1
N+1 → D̂1

N+2 → D̂1
N+3, it in-

creases by two in D̂1
N+3 → D̂1

N+4. In addition, the red slits divided in D̂1
N+3 ∩ R gen-

erate two Dn-penetrating slits in D̂1
N+4 (Fig. 3.5I), each of which is also divided into
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two slits in D̂1
N+4 ∩ R. These findings indicate that the number of red slits increases

at an accelerating rate by two effects: a Dn-penetrating slit at the left of D̂1
n is divided

into two slits in D̂1
n ∩ R and a Dn-penetrating slit surrounding a R-penetrating slit

is divided into two slits in D̂1
n ∩ R. Figure 3.8 shows the formation process for the

basin of attraction for γ = 0.018, where the basin boundary is fractal and there is

one non-R-penetrating slit. A non-Dn-penetrating slit penetrates the lower edge of

R in D4 (N = 4, D1
4 = D4). A Dn-penetrating slit surrounds the R-penetrating slit in

D7 (N + 3 = 7, D̂1
7 = D7), which penetrates the lower edge of R and is divided into

two slits in D7 ∩ R.

Finally, we investigated how the number of slits increases when the basin bound-

ary is fractal and there are two non-R-penetrating slits in D1
∞ (0.0103 < γ < 0.0135).

Figure 3.9 explains the basin formation process for two non-R-penetrating slits.

Fig. 3.9A shows one red R-penetrating slit and one blue and one purple non-R-

penetrating slits in D1
N . The red R-penetrating slit generates red Dn-penetrating slits

in D̂1
N+1, D̂1

N+2, D̂1
N+3, and D̂1

N+4 in Figs. 3.9C, E, G, and I, respectively. Because these

Dn-penetrating slits also reach and penetrate the lower edge of R, these slits are di-

vided into two slits in D̂1
N+1 ∩ R, D̂1

N+2 ∩ R, D̂1
N+3 ∩ R, and D̂1

N+4 ∩ R in Figs. 3.5D,

F, H, and J, respectively. Therefore, the number of red Dn-penetrating slits increases

one by one in D̂1
N+1 → D̂1

N+2 → D̂1
N+3 → D̂1

N+4 (one red slit in D̂1
N+1, two red slits

in D̂1
N+2, three red slits in D̂1

N+3, and four red slits in D̂1
N+4). In addition, D̂1

N+4 has a

red Dn-penetrating slit, which surrounds a yellow R-penetrating slit and penetrates

the lower edge of R, as shown in Fig. 3.9I. This red slit is divided into two slits in

D̂1
N+4 ∩ R, as shown in Fig. 3.9J. In addition, the red slits divided in D̂1

N+4 ∩ R gener-

ate two Dn-penetrating slits in D̂1
N+5, each of which is also divided into two slits in

D̂1
N+5 ∩ R. The number of red slits increases at an accelerating rate in the same way

as that when there is one non-R-penetrating slit in D1
∞. Figure 3.10 shows the for-

mation process for the basin of attraction for γ = 0.013, where the basin boundary

is fractal and there are two non-R-penetrating slits. A non-Dn-penetrating slit pene-

trates the lower edge of R in D5 (N = 5, D1
5 = D5). A Dn-penetrating slit surrounds

the R-penetrating slit in D9 (N + 4 = 9, D̂1
9 = D9), which penetrates the lower edge

of R and is divided into two slits in D9 ∩ R.

Mechanism for sharp changes in basin characteristics when number of non-R-
penetrating slits decreases from 2 to 1

In the comparison of the basin formation processes when one non-R-penetrating slit

exists in D1
∞ and when two exist, it is common that the number of slits in D1

n in-

creases at an accelerating rate to generate fractal basin boundaries. However, how

the number of slits increases in the basin formation processes is different. Specifi-

cally, it takes three applications of S−1 to surround the R-penetrating slit by a Dn-

penetrating slit and to be divided into two slits in D̂1
n ∩ R for one non-R-penetrating
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FIGURE 3.8: Formation process for basin of attraction from D3 to D7
(A–F) for γ = 0.018, where there is one non-R-penetrating slit in D1
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The red slits correspond to those for N = 4 in Fig. 3.5. A non-Dn-
penetrating slit penetrates the lower edge of the range of R in D4 and
a Dn-penetrating slit surrounding the R-penetrating slit penetrates R
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While it takes three applications of S−1 to surround the R-penetrating
slit by a Dn-penetrating slit for one non-R-penetrating slit (Fig. 3.5), it

takes four applications for two non-R-penetrating slits.
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slit. In contrast, it takes four applications for two non-R-penetrating slits. This im-

plies that one non-R-penetrating slit has a faster rate of increase than two non-R-

penetrating slits. This difference is due to the formation process for Dn-penetrating

slits. Specifically, D̂1
N+1 has a red Dn-penetrating slit near the outer edge, as shown

in Figs. 3.5C and 3.9C. D̂1
N+2 also has another red Dn-penetrating slit, which sur-

rounds the non-R-penetrating slit at the middle, as shown in Figs. 3.5E and 3.9E. For

two non-R-penetrating slits, D̂1
N+3 has another red Dn-penetrating slit, which sur-

rounds the non-R-penetrating slit left of the middle non-R-penetrating slit, as shown

in Fig. 3.9G. Finally, D̂1
N+3 for one non-R-penetrating slit and D̂1

N+4 for two non-R-

penetrating slits have a red Dn-penetrating slit, which surrounds a R-penetrating

slit, as shown in Figs. 3.5G and 3.9I. This means that the surrounding Dn-penetrating

slits appear one by one from D1
N+2 to D1

N+k+2, where k is the number of non-R-

penetrating slits. As a result, one non-R-penetrating slit forms a larger number

of slits and more complex boundaries in Dn for any n than two non-R-penetrating

slits, which leads to a smaller basin size and a lower uncertainty exponent for basin

boundaries. This mechanism induces the sharp changes in the basin characteristics

at γ ≈ 0.0135, where the number of non-R-penetrating slits decreases from 2 to 1.

Mechanism for sharp changes in basin characteristics when number of non-R-
penetrating slits decreases from k + 1 to k

The mechanism for the sharp change in the basin characteristics described in the

previous section is applicable when the number of non-R-penetrating slits decreases

from k + 1 to k (k = 1, 2, . . . ). Suppose that there are (k + 1) non-R-penetrating slits.

When D̂1
N has an R-penetrating slit, D̂1

N+1 has a Dn-penetrating slit near the outer

edge in the same way for one and two non-R-penetrating slits in Figs. 3.5C and

3.9C, respectively. D̂1
N+2 has a Dn-penetrating slit, which surrounds the center non-

R-penetrating slit. D̂1
N+n (3 ≤ n ≤ k + 2) has a Dn-penetrating slit, which surrounds

the non-R-penetrating slit at the (n − 2)th slit left from the center non-R-penetrating

slit. Finally, D̂1
N+k+3 has a Dn-penetrating slit that surrounds an R-penetrating slit.

This means that it takes k + 3 applications of S−1 to generate the Dn-penetrating

slit that surrounds the R-penetrating slit. Therefore, when the number of non-R-

penetrating slits decreases from k + 1 to k, the number of iterations changes from

k + 3 to k + 2. The rate of this change is k+2
k+3 , which is 3

4 for k = 1 for γ ≈ 0.0135 and
4
5 for k = 2 at γ ≈ 0.0105. It is almost 1 for k ≫ 1 for 0.0075 < γ < 0.01. Therefore,

the change in the basin of attraction is most remarkable for γ ≈ 0.0135 with k = 1,

and is less significant for smaller γ with larger k, as shown in Figs. 3.3C and D. In

particular, the changes for 0.0075 < γ < 0.01 are difficult to recognize.
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3.4.4 Mechanism for disappearance of basin of attraction

The mechanism for the sharp changes in the basin characteristics described in the

previous section is applicable when the number of non-R-penetrating slits decreases

from k + 1 to k for k = 1, 2, . . . . In this section, we investigate the formation process

for the basin of attraction when the number of non-R-penetrating slits decreases

from 1 to 0 and all non-Dn-penetrating slits penetrate the lower edge of R.

Figure 3.11 explains the basin formation process when all non-Dn-penetrating

slits penetrate the lower edge of R. Suppose that all non-Dn-penetrating slits pen-

etrate R at n = N in D1
N (Fig. 3.11A). Then, a Dn-penetrating slit is generated in

D̂1
N+1, which penetrates the lower edge of R (Fig. 3.11C) and is divided into two slits

in D̂1
N+1 ∩ R (Fig. 3.11D). Moreover, each divided slit also penetrates the lower edge

of R in D̂1
N+2 (Fig. 3.11E) and is divided into two slits in D̂1

N+2 ∩ R (Fig. 3.11F). Each

application of S−1 produces this penetration of R and subsequent division into two

slits. This formation process for the basin of attraction can be assumed as a one-

dimensional Cantor set [117]. Therefore, the area of D̂1
n decreases as n increases and

it finally disappears. That is, the basin of attraction disappears when the number of

non-R-penetrating slits decreases from 1 to 0. However, note that we cannot observe

that the number of non-R-penetrating slits is 0 as in Fig. 3.3E. This is because we

cannot calculate the number of non-R-penetrating slits when the basin of attraction

disappears. (Actually, D1
n does not exist when all non-Dn-penetrating slits penetrate

R because there is neither an attractor nor a basin of attraction. However, we used it

only in the basin formation process to simply explain the disappearance mechanism

for the basin of attraction.)

Figure 3.12 shows the disappearance process for the basin of attraction for γ =

0.021, where all non-Dn-penetrating slits penetrate the lower edge of R. A non-Dn-

penetrating slit penetrates R in D1
6 (N = 6) and non-R-penetrating slits disappear

in Fig. 3.12B. As a result, D7 has one red Dn-penetrating slit (Fig. 3.12C), as shown

in Fig. 3.11C. Furthermore, D8 and D9 have two and four red Dn-penetrating slits

(Figs. 3.12D and E), respectively. Dn becomes thinner as n increases. By repeating

these processes, the basin of attraction disappears.

3.5 Discussion

In this study, we showed that sharp changes in the size and fractality of the basin of

attraction for passive dynamic walking depends on the slope angle γ. In addition,

we clarified the mechanism for the sharp changes based on the formation process

by improving our previous analysis. We also proposed a mechanism for the disap-

pearance of the basin of attraction, which was previously explained by a boundary

crisis [47,94], based on the formation process for the basin of attraction. These mech-

anisms are commonly based on the stretching-bending deformation caused by the
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red slit (B). D̂1
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N+2 has two red Dn-
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red slits (D). D̂1
n ∩ R (n = N, N + 1, . . . ) can be assumed as a one-

dimensional Cantor set.
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inverse image of the Poincaré map. Specifically, abrupt alterations of the overlap

between region Dn and the range R of the Poincaré map in the formation process for

the basin of attraction induce these sharp changes in the basin of attraction.

We used a computational resolution that allowed us to identify sharp changes

in fractal dimension at γ = 0.0103, 0.0135, and 0.019. However, even at higher

resolution, two technical difficulties prevented us from finding sharp changes for

0.0075 < γ < 0.01. The first difficulty is the regional dependence of the fractal

dimension, since different parts of the basin of attraction have different fractal di-

mensions. In addition, the basin of attraction moves in phase space depending on

γ. Because we cannot necessarily calculate the fractal dimension in the same region

of the basin boundary for each γ, this region-dependent effect is a serious problem.

The second difficulty is the accuracy of the calculation for the basin of attraction. To

determine if an initial state is inside or outside the basin of attraction, we determined

whether or not the model fell within 50 steps, as described in Sect. 3.3.1. Near the

fractal basin boundary, it takes an extremely long time for the model to fall, which

affects the fractality of the basin boundary.

Our model is a hybrid system. The boundaries of the domain and the range

of the Poincaré map for our model are mainly obtained from touchdown conditions

(Eqs. (3.4) and (3.5), respectively), as previously described [94,97]. Because the basin

boundary is obtained from the inverse image of the Poincaré map of these bound-

aries, it can be considered to have the same properties as the boundaries for the

domain and the range. Therefore, the basin boundary in our model is dominated by

the touchdown conditions and does not correspond to a stable manifold as in con-

tinuous systems. In future studies, we intend to investigate the relationship between

manifolds and basin boundaries.

Sharp changes in the basin of attraction are also observed in the Hénon map,

which is a well-studied example of a nonlinear dynamical system exhibiting chaotic

attractors [42]. Because the inverse image of the Hénon map also induces a

stretching-bending effect, a common mechanism is expected for the sharp changes

in the basin of attraction between passive dynamic walking and the Hénon map.

However, sharp changes occur countless times during passive dynamic walking,

whereas they occur only twice in the Hénon map [42]. Furthermore, the Poincaré

map for passive dynamic walking is neither surjective nor injective because the sys-

tem is a hybrid system, whereas the Hénon map is bijective. Therefore, different

mechanisms are expected for the Hénon map. Clarifying common and specific fea-

tures of the basin of attraction for dynamical systems is a subject for future study.

To understand the stabilization mechanism for bipedal walking, not only the

simplest walking model used in this study, but also more general models with knees

and an upper body have been considered [18,21,35]. To carry out a stability analysis

of these models, a method for designing an explicit expression for the Poincaré map
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has been proposed [134–136]. The disappearance of attractors in these models is not

solely attributed to the boundary crisis, but also to other bifurcations, such as flip

bifurcation and saddle-node bifurcation [21, 45, 46]. However, the basin character-

istics for these models remain largely unclear. The principal dynamic characteristic

of bipedal walking is saddle instability due to the inverted pendulum, which in-

duces the stretching-bending effect in the inverse image of the Poincaré map [94].

Therefore, the formation process for the basin of attraction clarified in this study is

expected to be applicable to the formation mechanisms for the basin of attraction of

other models, and for clarifying their basin characteristics.
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Chapter 4

Mechanism of changes in temporal
fractal in stride intervals in simple
neuromechanical model

4.1 Introduction

Human walking is not perfectly periodic. The stride interval fluctuates from one

stride to the next, exhibiting statistical persistence [22, 54, 125, 126], which indicates

that deviations in a time series are statistically more likely to be followed by sub-

sequent deviations in the same direction. Although the stride interval fluctuations

change depending on the gait speed and during development from childhood to

adulthood, the statistical persistence remains unchanged [55, 56]. However, the

stride interval fluctuations for elderly subjects [53] and patients with Huntington’s

disease [53] or Parkinson’s disease [30] become uncorrelated. Experimental inter-

ventions for walking, such as the use of a metronome, also make the stride inter-

val fluctuations uncorrelated [55]. It is largely unclear why statistical persistence

appears in stride intervals in human walking and why this statistical property is

changed by aging, neural disorders, and experimental interventions.

It has been hypothesized that the central nervous system has an underlying per-

sistence and is responsible for the statistical persistence in stride intervals. This is

supported by the finding that statistical persistence remains in patients with sig-

nificant peripheral nerve degeneration [37]. Various neural system models have

been developed to reproduce the statistical persistence and investigate the associ-

ated mechanisms. [54] developed a model of the central pattern generators (CPGs)

in the spinal cord and introduced “memory” into the CPG model by allowing tran-

sitions from frequency to frequency. [10] extended this model by introducing a ran-

dom walk for the signal transmission of neural circuits. [127] developed a “Super

CPG” model that introduces external interventions via a forced van der Pol oscilla-

tor.

Human walking is a complex phenomenon generated through dynamic interac-

tions between the central nervous system and the biomechanical system. It has also

been hypothesized that the statistical persistence in stride intervals emerges through
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complex interactions during walking. [31] integrated a biomechanical model com-

posed of seven rigid links with a CPG model, which incorporated a phase resetting

mechanism as sensory feedback as well as feedforward, trajectory tracking, and in-

termittent feedback controllers, to reproduce statistical persistence. They showed

that a lack of phase resetting induces a loss of statistical persistence. However, it

is difficult to fully understand the essential mechanisms responsible for generating

and changing this statistical property because of the complexity of the neural and

biomechanical models.

In human walking, the stance leg, which is almost straight, rotates around the

foot contact point like an inverted pendulum. To investigate the essential mecha-

nisms responsible for generating human walking from a dynamic viewpoint, simple

compass-type mechanical models have been used [12, 23, 71, 73, 97]. [38] and [1]

reproduced the statistical persistence in stride intervals using simple compass-type

models with sensory feedback controllers. However, they did not investigate the

contribution of the feedback controllers to changes in the statistical persistence; thus,

the essential mechanisms remain unclear.

The aim of this study is to clarify the contribution of phase resetting to the gen-

eration and change in the statistical persistence using a simple model. Specifically,

we used a simplified neuromechanical model composed of a simple compass-type

biomechanical model and a simple CPG model that incorporates phase resetting and

a feedforward controller. Our model reproduced the statistical persistence in stride

intervals. A lack of phase resetting induced a loss of statistical persistence, as ob-

served in [31]. Furthermore, we clarified the mechanisms responsible for changes in

this statistical property caused by phase resetting based on the phase response char-

acteristics. Our findings provide important insights into the mechanisms underlying

the generation and change of the statistical persistence in the stride intervals in hu-

man walking.

4.2 Methods

4.2.1 Mechanical model

We used a simple compass-type model (Fig. 4.1). This model has two legs (swing

and stance legs), the lengths of which are both l, connected by a frictionless hip

joint. The masses are located at the hip and on the legs at a distance b from the hip

joint; M is the hip mass and m is the leg mass. θ1 is the angle of the stance leg with

respect to the vertical, and θ2 is the relative angle between the stance and swing legs.

The tip of the stance leg, which corresponds to the ankle, is fixed on the ground.

The stance leg rotates freely without friction. This model walks on level ground via

joint torques u1 (at the ankle) and u2 (at the hip). g is the acceleration due to gravity.
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FIGURE 4.1: Neuromechanical model of human walking composed
of CPG model with phase resetting and compass-type biomechanical

model.

We used the following model parameters based on [129]: M = 50 kg, m = 11 kg,

l = 1 m, b = 0.4 m, and g = 9.8 m/s2.

When the tip of the swing leg is in the air, the equations of motion for our model

are [
Ml2 + m{l2 + (l − b)2} − 2mlb cos θ2 + mb2 mlb cos θ2 − mb2

mlb cos θ2 − mb2 mb2

] [
θ̈1
θ̈2

]
+

[
−mlb(θ̇2 − 2θ̇1)θ̇2 sin θ2

−mlbθ̇2
1 sin θ2

]
+

[
−{gm(2l − b) + gMl} sin θ1 − gmb sin(θ2 − θ1)

gmb sin(θ2 − θ1)

]
=

[
u1
u2

]
(4.1)

The tip of the swing leg touches the ground (touchdown) when the following con-

ditions are satisfied:

2θ1 − θ2 = 0 (4.2)

θ1 < 0 (4.3)

2θ̇1 − θ̇2 < 0 (4.4)

We used condition (4.3) so that touchdown occurs only in front of the model to move

forward, and condition (4.4) to ignore the scuffing of the leg tip on the ground when

the swing leg is swung forward. We assumed that touchdown is a fully inelastic

collision (no slip, no bounce) and that the stance leg lifts off the ground just after

touchdown. Because the roles of the swing and stance legs are reversed just after
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touchdown, we obtain

θ+1 = −θ−1 (4.5)

θ+2 = −θ−2 (4.6)

where ∗− and ∗+ are the state ∗ just before and after touchdown, respectively. Due

to this collision, the angular velocities discontinuously change. We assumed that

when the stance leg leaves the ground, it does not interact with the ground and the

work of the joint torques can be neglected. These assumptions yield[
θ̇+1
θ̇+2

]
= {Q+(θ−1 )}−1Q−(θ−1 )

[
θ̇−1
θ̇−2

]
(4.7)

where

Q+(θ−1 ) =

[
−Ml2 − 2m(l − b)2 − 2mlb(1 − cos 2θ−1 ) mb(b − l cos 2θ−1 )

−ml(b − l cos 2θ−1 ) mlb

]
Q−(θ−1 ) =

[
2m(l − b)(b − l cos 2θ−1 )− Ml2 cos 2θ−1 −m(l − b)b

ml(l − b) 0

]

4.2.2 CPG model

The CPGs in the spinal cord are largely responsible for rhythmic leg movements,

such as during locomotion [43, 98, 113]. They can produce oscillatory behavior even

in the absence of rhythmic input and sensory feedback. However, sensory feedback

is crucial for producing adaptive locomotor behavior. To investigate the contribution

of CPGs to adaptive locomotion in humans, various oscillator models, such as the

van der Pol oscillator [24,127], Matsuoka oscillator [52,69,81,95,120,121], and phase

oscillator [3–5, 26, 31, 99, 122, 133], have been developed.

In this study, we used a phase oscillator, whose phase is ϕ (0 ≤ ϕ < 2π), to gen-

erate the motor commands for our model. The oscillator phase follows the dynamics

expressed by

ϕ̇ = ω (4.8)

where ω is the basic frequency. We determined the joint torques u1 and u2 as

u1 = A1 cos ϕ + σ1 (4.9)

u2 = A2 cos(ϕ + ∆) + σ2 (4.10)

where A1 and A2 are the amplitudes, σ1 and σ2 are noise terms, and ∆ is the phase

difference between u1 and u2.

It has been reported that locomotion rhythm and phase are regulated by the pro-

duction of a phase shift and rhythm resetting (phase resetting) for periodic motor

commands in response to sensory feedback [75, 108]. Cutaneous feedback has been

observed to contribute to phase shift and rhythm resetting behavior [25, 111]. Phase
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resetting has thus been modeled so that the oscillator phase is reset based on foot

contact information [3, 5, 31, 122, 133]. In this study, we used the following relation-

ship at touchdown:

ϕ+ = ϕ0 (4.11)

where ϕ0 is a constant. When phase resetting is not applied, ϕ is not regulated at

touchdown. However, because the roles of the swing and stance legs are reversed

just after touchdown so that θ+i = −θ−i (i = 1, 2), we used the following relationship

at touchdown:

ϕ+ = ϕ− − π (4.12)

so that u+
i = −u−

i (i = 1, 2) when the noise terms σ1 and σ2 are neglected. We des-

ignated ϕ0 as the value to which ϕ+ converged during steady walking (limit cycle)

for the model without phase resetting and noise. Therefore, steady walking is iden-

tical between the models with and without phase resetting in the absence of noise.

This allows us to clearly investigate the difference in the response to torque noise

between cases with and without phase resetting.

This CPG model has four parameters, namely ω, A1, A2, and ∆. We used ω = 4.8

rad/s based on [55]. Without noise (σ1 = σ2 = 0), we first investigated the depen-

dence of gait speed during steady walking on A1, A2, and ∆, and then calculated the

energy cost ε =
∫
(u2

1 + u2
2)dt for one step cycle for A1, A2, and ∆. We determined

the parameter set (A1, A2, ∆) required to minimize ε for each gait speed. When phase

resetting was used, we determined ϕ0 for each gait speed using the obtained param-

eter set.

4.2.3 Torque noise

To simulate the stochastic fluctuation of the gait, we used two independent series of

white Gaussian noise for torque noise terms σ1 and σ2 in (4.9) and (4.10), respectively,

as follows:

σi = ξUi i = 1, 2 (4.13)

where ξ is the amplitude of the noise, and U1 and U2 are independent white Gaus-

sian noise with standard deviation 1. This torque noise never induces consecutive

touchdowns at extremely short intervals because of discontinuous and large changes

in the state variables (4.5)–(4.7) at touchdown. We numerically solved the governing

equations using the Euler-Maruyama method [57] with a time step of 10−5 s.

To be consistent with previous experiments on humans [53–55], a stride was de-

fined as two consecutive steps. Stride intervals were calculated based on the time

difference between every other touchdown (strides did not overlap). Each simula-

tion trial required the model to walk 1300 steps (650 strides). The first 150 strides

were omitted from the analysis to remove transient behavior due to initial condi-

tions.
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4.2.4 Detrended fluctuation analysis

We used detrended fluctuation analysis (DFA) to determine the statistical persis-

tence in the time series of stride intervals for each trial of the computer simula-

tion. This method decreases the effect of noise and removes local trends, making

it less affected by non-stationarities. The details of the method can be found else-

where [51, 54, 62, 101–103]. Briefly, the feature amount F(n) constructed from seg-

ments of length n of the time series exhibits a power-law relationship, indicating the

presence of scaling as F(n) ∼ nα. We investigate the scaling exponent α to determine

the statistical persistence for the time series data.

In this study, we first formed the following accumulated sum using the sequence

of stride intervals x(i) for i = 1, 2, . . . , N, where N is the total number of strides

(N = 500):

y(i) =
i

∑
k=1

[x(k)− x̄] i = 1, 2, . . . , N (4.14)

where x̄ is the mean stride interval from x(1) to x(N). We then divided the inte-

grated series y(i) into segments of length n (n < N), yj(s) (j = 1, 2, . . . , N/n, s =

1, 2, . . . , n), so that each segment is equal in length and non-overlapping. We next

detrended each segment yj(s) by subtracting a least squares linear regression line

ŷj(s) fit to yj(s), and averaged the squares of the detrended data (i.e., the residuals).

We thus obtained the standard deviation F(n) as

F(n) =

√
1
n

n

∑
s=1

[
yj(s)− ŷj(s)

]2 (4.15)

We used a set of n distributed equally on a logarithmic scale between 4 and N/4 [68],

specifically, n = 4, 5, 6, ..., 87, 104, and 125 (sample size is 20).

In general, F(n) increases with increasing n and a graph of log F(n) versus log n

exhibits a power-law relationship, indicating the presence of scaling as F(n) ∼ nα.

We fit log F(n) versus log n plots with a linear function using a standard least squares

regression approach, and obtained the scaling exponent α from the slope of this line.

In particular, α = 0.5 indicates that the stride intervals are completely uncorrelated

(i.e., white noise). That is, DFA will still produce α = 0.5 even if the time series is

rearranged in any manner (through surrogate data analysis). In contrast, α < 0.5

indicates statistical anti-persistence in stride intervals and 0.5 < α ≤ 1.0 indicates

statistical persistence. When α > 1.0, the time series is brown noise (i.e., integrated

white noise) [54].
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4.3 Results

4.3.1 Determination of parameters for each gait speed

Without noise (ξ = 0), our model achieved stable walking with a gait speed v of

0.25 to 0.6 m/s depending on the parameters A1, A2, and ∆. Figure 4.2A shows the

contour of the evaluation criterion ε for A1, A2, and ∆, which generated v = 0.3,

0.4, and 0.5 m/s. Figure 4.2B shows the parameter sets (A1, A2, ∆), each of which

minimized ε for a given gait speed v. The use of phase resetting did not affect these

results. We use the parameter set A1 = A1(v), A2 = A2(v), and ∆ = ∆(v) in the

following sections.

4.3.2 Stride interval fluctuations

Figure 4.3 compares the simulation results between the models with and without

phase resetting at a walking speed of 0.4 m/s (A1 = 4.9, A2 = 10, ∆ = 0.47) using the

noise amplitude ξ = 1. Figures 4.3A and B show the angles θ1 and θ2 and the stride

intervals, respectively, during 500 strides. Although ξ is identical between the mod-

els, the model without phase resetting has larger stride interval fluctuations than

those for the model with phase resetting. Figure 4.3C shows a plot of log F(n) for

log n and the scaling exponent α obtained from the slope of the fitted line. The model

with phase resetting exhibits statistical persistence in stride intervals (0.5 < α ≤ 1.0),

which is consistent with observations of healthy adults [54]. Furthermore, the stan-

dard deviation of stride interval fluctuations of the model with phase resetting is

0.03, which is also consistent with observations of healthy adults [54]. In contrast,

the model without phase resetting exhibits statistical anti-persistence in stride inter-

vals (α < 0.5). Figure 4.4 shows the dependence of α on ξ. The models with and

without phase resetting, both of which kept walking when ξ ≤ 1, exhibited statisti-

cal persistence and anti-persistence, respectively, regardless of ξ.

Figure 4.5 compares the simulation results for the models with and without

phase resetting for various values of gait speed v using ξ = 10−2. Figures 4.5A

and B show the stride intervals and log F(n) plot, respectively, for v = 0.3 m/s

(A1 = 1.3, A2 = 6.1, ∆ = 0.57), 0.4 m/s (A1 = 4.9, A2 = 10, ∆ = 0.47), and 0.5 m/s

(A1 = 14, A2 = 15, ∆ = 0.37). Figure 4.5C shows the dependence of α on v. The

model with phase resetting exhibits statistical persistence regardless of v, which is

consistent with observations of healthy adults [55]. In contrast, the model without

phase resetting exhibits statistical anti-persistence regardless of v.
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4.4 Discussion

4.4.1 Mechanisms for statistical persistence and anti-persistence of stride
intervals

In this study, the model with phase resetting exhibited statistical persistence in stride

intervals (0.5 < α ≤ 1.0), whereas the model without phase resetting exhibited

statistical anti-persistence (α < 0.5) (Fig. 4.3), as observed in a previous modeling

study [31]. Statistical anti-persistence is characterized by the alternation of large

and small values. [31] performed a linearized stability analysis on a model without

phase resetting and noise, and showed that the dominant mode (least stable mode)

characterized by Floquet multipliers was a pair of complex conjugates whose am-

plitude was less than but close to unity and whose argument was greater than π/2.

This suggests that the fluctuation ξn of the stride number n can be approximately

written as ξn = (−r)nξ1, where r ∼ 1 (r < 1) and ξ1 is an initial deviation, corre-

sponding to a slowly damped period-2 oscillation. They explained that this period-2

oscillation induced the alternation of long and short stride intervals and statistical

anti-persistence. Although we performed the same stability analysis for our model,

the dominant mode of our model without phase resetting and noise was positive

real, whose amplitude is less than 1, indicating that the initial deviation monoton-

ically decreases. In addition, our model with phase resetting had almost the same

dominant mode as that for our model without phase resetting and it is difficult to

conclude that these stability characteristics explain the difference in the statistical

properties in stride intervals between the models with and without phase resetting.

Furthermore, the amplitude of our dominant mode was 0.65 and the damping was

relatively fast.

Next, we directly consider the difference in the response of the stride interval

to disturbances. Specifically, we focus on the phase response curve in phase reduc-

tion theory [74, 128], which explains how the phase of a limit cycle oscillator shifts
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by a perturbation at an arbitrary phase (Fig. 4.6). The model with phase resetting

shows a shift of the locomotion phase after the recovery due to phase resetting in

(4.11) at foot contact, whereas the model without phase resetting shows no phase

shift [122]. Furthermore, the phase shift for the model with phase resetting varies

depending on the timing of the disturbance. Therefore, the accumulated sum y of

stride intervals in (4.14) tends to move to the cumulative sum of the amount of phase

shifts induced by input noise in the model with phase resetting, which results in a

relatively smooth signal with large low-frequency components, as shown in Fig. 4.7.

In contrast, y tends to converge to 0 in the model without phase resetting, which

results in a rough signal with large high-frequency components. Because the scaling

exponent α increases with the degree of smoothness [27], this difference induces the

difference in the scaling exponent α and statistical properties between the models

with and without phase resetting.

4.4.2 Biological relevance of our findings

The scaling exponent α greatly decreases during walking to a metronome in hu-

mans [55], where the stride interval is constrained by an external cadence (i.e.,

metronome). This corresponds to the walking of the model without phase resetting,



4.4. Discussion 59

where the stride interval is constrained by the frequency ω in (4.8) of the phase oscil-

lator. Therefore, the locomotion phase remains almost unchanged during walking to

a metronome, and α decreases as in the model without phase resetting (Fig. 4.3), as

discussed in Section 4.4.1. It has been reported that α also greatly decreases for the

stride interval fluctuations of elderly subjects [53] and patients with Huntington’s

disease [53] or Parkinson’s disease [30]. Although the phase response characteris-

tics have been clarified during walking for healthy adults [34, 92, 133], those during

walking for elderly subjects and patients with neural disorders remain unclear. In-

vestigating them would help clarify the mechanisms responsible for changes in the

statistical persistence caused by aging and neural disorders.

Although stride interval fluctuations change depending on gait speed in hu-

mans, the statistical persistence remains unchanged [55]. Our model with phase

resetting also exhibited statistical persistence regardless of the gait speed (Fig. 4.5).

The constraint on gait rhythm seems more crucial for the statistical persistence than

the constraint on gait speed, as observed for walking to a metronome [55].

The standard deviation of stride interval fluctuations is about 0.04 s in human

walking, which is 3% of the mean stride interval [54]. It was difficult for previ-

ous studies [31, 38] using biomechanical models to reproduce a magnitude of stride

interval fluctuations similar to that for humans. Although [38] reproduced statis-

tical persistence in stride intervals (0.5 < α ≤ 1.0) using a simple biomechanical

model as in this study, their model was not robust and the noise amplitude was lim-

ited. Therefore, their stride interval fluctuations were much smaller than those in

humans. Furthermore, the scaling exponent α was sensitive to the noise amplitude,

and the fluctuations exhibited brown noise at high noise levels (α > 1.0). In contrast,

phase resetting made our model robust, which allowed a magnitude of stride inter-

val fluctuations similar to that for healthy adults (Fig. 4.3). Furthermore, α was 0.5

to 1.0, which is consistent with observations of healthy adults, and was not sensitive

to the noise amplitude (Fig. 4.4), but sensitive to the controller (i.e., whether phase

resetting was used).

Previous studies [3, 32, 122, 133] have shown that phase resetting contributes to

adaptive walking. In this study, we found that it also contributes to the statistical

persistence of gait. In addition to the fact that statistical persistence is impaired by

aging [53], central nervous system diseases, such as Parkinson’s disease [30] and

Huntington’s disease [53], and experimental intervention for walking [55], it has

been suggested that statistical persistence is linked to important characteristics of

gait. [11] suggested that fluctuation persistence leads to redundancies in gait and

helps predict and prevent fall risk. [1] and [31] showed that fluctuation persistence

appears in gait with low gait stability. [38] showed that a decrease in the ability to

perform finely controlled movements leads to an increase in motor output noise and

impairs the persistence of fluctuations.
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Many studies have reported long-range correlations in stride intervals in human

walking based on the results of DFA [10,53–55], which indicates that stride-to-stride

correlations decay in a scale-free (fractal-like) power-law fashion and suggests that

each stride depends explicitly on many previous strides. However, DFA is highly

sensitive to yielding false positive results [59, 80], and it is difficult to conclude the

presence of long-range correlations from DFA alone. Instead, DFA provides a valid

indicator of statistical persistence and anti-persistence in a time series [80]. In this

study, we used statistical persistence instead of long-range correlations to interpret

the results of DFA, as discussed in [22].

4.4.3 Limitations of our model and future work

Based on the hypothesis that the statistical persistence in stride intervals emerge

through dynamic interactions between the neural and biomechanical systems, we

integrated a simple neural model and a simple biomechanical model to reproduce

statistical persistence in stride intervals and change in this statistical property. How-

ever, our model is very simple and has limitations with regard to replicating many

aspects of human walking. In particular, because the feedforward torques (4.9) and

(4.10) were simply composed of a sinusoidal wave, the gait speeds of our model

were slower than those of healthy adults (Fig. 4.2). In addition, although statistical

persistence could be associated with low gait stability (low convergence speed to the

limit cycle) [1, 31], our model had higher stability than that of complicated models

due to its simplicity. The high stability of our model with phase resetting might have

caused the scaling exponent α to be ∼ 0.6, which is smaller than that (∼ 1) in healthy

adults [54]. Furthermore, stochastic noise is ubiquitous in the central nervous sys-

tem and peripheral sensory-motor systems [14, 67, 124]. However, our model used

only torque noise, which may result in the difference between the statistical anti-

persistence in the model without phase resetting and the white noise in walking to

a metronome in humans [11, 55].

Based on the findings in this study, it is important to verify the essential mecha-

nisms responsible for changes in the statistical persistence by using biologically de-

tailed neuromusculoskeletal models. In a previous study [122], we integrated a mus-

culoskeletal model composed of seven rigid links and 18 muscles with a CPG model

with a muscle synergy-based controller to investigate the contribution of phase re-

setting to the phase response characteristics during walking. In another previous

study [33], we used a half-center type CPG model composed of a rhythm generator

network, which was modeled using neuron populations of flexor and extensor cen-

ters based on [19, 20] and [108], to clarify the mechanisms responsible for the CPG

responses to afferent stimulation using dynamic systems theory based on nullclines.

We plan to incorporate these biologically detailed models to further investigate the

mechanisms responsible for changes in the statistical persistence.
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4.5 Conclusion

In this study, we clarified the contribution of phase resetting to the generation and

change of statistical persistence using a simple neuromechanical model. Specifi-

cally, our model reproduced the statistical persistence in stride intervals. A lack

of phase resetting induced a loss of statistical persistence. Furthermore, we clarified

the mechanisms responsible for changes in statistical persistence caused by phase re-

setting based on the phase response characteristics. Our findings provide important

insight into the mechanisms underlying the generation and change of the statistical

persistence in the stride intervals in human walking.
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Chapter 5

Conclusion

5.1 Summary

In this study, we focused on the importance of the generation and change of spatial

and temporal fractals generated by bipedal walking, and reproduced these fractals

using simple models to clarify these mechanisms. For spatial fractal, we investigated

the fractality of the basin of attraction using the simplest walking model. For tem-

poral fractal, we created a model that combines a simple neural system and a body

mechanical system, and reproduced fractal fluctuations in humans. In particular, we

discussed its mechanism by focusing on the fact that the sensory feedback changes

fractality.

In Chapter 2, we calculated the basin of attraction of passive dynamic walking

using the simplest walking model. We investigated the range of slope angle in which

the basin of attraction becomes fractal and confirmed that the basin of attraction be-

comes fractal when a certain slope angle is exceeded. Furthermore, the mechanism

of formation of the fractal basin of attraction was clarified by focusing on the forma-

tion process of the basin of attraction based on the stretching and bending properties

of the inverse image of the Poincaré map, which has been clarified in previous re-

search [94]. In particular, we newly focused on the range of the Poincaré map, which

corresponds to the collection of states after the model walked one step starting from

the domain, and specified the regions that are stretched and bent by the sequential

inverse image of the Poincaré map. The results showed that when the slit formed

in the process of forming the basin of attraction penetrated the range, the number

of slits increased at an accelerated rate owing to the stretching and bending effects

of the Poincaré map, and the basin of attraction became fractal. On the other hand,

when the slit did not penetrate the range, the formation of the slit stopped, and the

basin of attraction did not become fractal.

In Chapter 3, we used the model used in Chapter 2 to investigate the changes in

the basin of attraction depending on the slope angle. The results showed that the size

and fractality changed sharply at specific slope angles. The mechanism by which

these sharp changes occurred was elucidated by improving the analytical method

in Chapter 2. Specifically, when a new slit penetrates the range by increasing the

slope angle, the rate of increase in the number of slits in the formation process of
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the basin of attraction changes. As a result, it was shown that the fractality and size

of the basin of attraction changed drastically after the penetration. We also clarified

that the formation process for the basin of attraction can be assumed to be a one-

dimensional Cantor set when a specific slit penetrates at a certain slope angle and

the basin of attraction disappears.

In Chapter 4, we assumed that fractality appears through the interaction between

the neural system and the body mechanical system and reproduced the fractality

of fluctuation in walking by using a simple CPG model combined with a simple

biomechanical model. We confirmed that the model with sensory feedback showed

statistical persistence, whereas the model without sensory feedback showed anti-

persistence, and showed that this difference in persistence would correspond to the

different characteristics between healthy subjects and aging or neural disease pa-

tients. Furthermore, we suggested that this difference would be due to different

phase response characteristics. Specifically, based on the previous study [122] show-

ing that sensory feedback affects the phase response characteristics in gait, we clar-

ified that the phase response characteristics determine the fluctuation trend in the

gait cycle, and as a result, may influence fractality. This suggests that fractality in

other bipedal models and in actual humans could be explained based on phase re-

sponse characteristics.

5.2 Future work

As shown in Chapters 2 and 3, the spatial fractality of the basin of attraction in pas-

sive dynamic walking was analyzed based on the dynamical systems theory. Simi-

larly, the fractality of the basin of attraction has been reported in the Hénon map [41],

which is often studied in the field of nonlinear dynamics. The map generates many

periodic saddle orbits, whose manifolds cross each other. These crossings explain

the generation of and changes in fractality in the basin of attraction [42]. Because

many periodic saddle orbits could appear in the simplest walking model [76,77], we

would like to clarify if the crossing of these manifolds affects fractality in the basin

of attraction in the future.

As shown in Chapter 4, temporal fractality in gait would be related to the phase

response characteristics. However, it remains unclear how phase response character-

istics affect fractality. We would like to investigate temporal fractals using a more de-

tailed neuromusculoskeletal model [122], which investigated phase response char-

acteristics during walking. Furthermore, we would also like to clarify how phase

response characteristics affect temporal fractals based on stochastic process theory

in the future.

Future work should also be conducted on how spatial and temporal fractals in-

teract with each other in walking. Because temporal fractality is explained based
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on stochastic process theory, it is difficult to discuss the relation with spatial frac-

tality, which is generally discussed in deterministic dynamical systems. However,

as shown in Chapter 4, it has been shown that temporal fractality is related to the

phase response characteristics, and by extending this argument, temporal fractals

could arise from deterministic arguments. We would like to extend this discussion

in the future to clarify how spatial and temporal fractals are related to each other in

walking.
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Appendix A

Deformation of T−1(D1 ∩ R) by
U−1

Here, we approximately solve the deformation of T−1(D1 ∩ R) by U−1 based on the

analysis in our previous study [94]. We first denote the solution of equations of

motion (2.1) and (2.2) by Θ(t) = [θ(t) θ̇(t) φ(t) φ̇(t)]. From the definition of U, for a

point Θ(0) ∈ T−1(D1 ∩ R) ⊂ H, there exists ∆ > 0 such that

Θ(−∆) = U−1(Θ(0)) ∈ T(H) (A.1)

where −∆ is used as the negative time to analyze U−1 (Fig. 2.2A). Θ(0), Θ(−∆), and

−∆ correspond to the state just before foot contact, the state just after foot contact,

and the duration of a step, respectively. Θ(−∆) gives the deformation of T−1(D1 ∩
R) by U−1.

Since Θ(−∆) is in T(H), the following equations are satisfied from (2.7), (2.8),

and (2.9):

2θ(−∆) = φ(−∆) (A.2)

φ̇(−∆) = θ̇(−∆)(1 − cos 2θ(−∆)) (A.3)

θ(−∆) > 0 (A.4)

In addition, since Θ(−∆) is in H, the following equation is satisfied from (2.3):

2θ(0) = φ(0) (A.5)

In order to approximately solve (A.1), we linearize the equations of motion (2.1)

and (2.2) around [γ 0 0 0] by

θ̈ = θ − γ (A.6)

φ̈ = −(φ − θ + γ) (A.7)

The solution is obtained by

θ = γ + C1 exp(t) + C2 exp(−t) (A.8)

φ − θ − γ

2
= K cos(t + ϕ) (A.9)
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where C1, C2, K, and ϕ are the integration constants (0 ≤ ϕ < 2π). Here, φ̇ on plane

Z is obtained by

φ̇(0) =
C1 − C2

2
− K sin ϕ (A.10)

C1 and C2 are determined by the initial conditions of θ and θ̇, as follows:

C1 =
θ(0)− γ + θ̇(0)

2

C2 =
θ(0)− γ − θ̇(0)

2
(A.11)

In contrast, K and ϕ are determined by the initial conditions of θ, φ, θ̇, and φ̇.

From (A.2), (A.3), (A.5), (A.8), and (A.9), we have the following equations:

θ(−∆) = C1 exp(−∆) + C2 exp ∆ + γ (A.12)

θ̇(−∆) = C1 exp(−∆)− C2 exp ∆ (A.13)

K cos(−∆ + ϕ) =
3θ(−∆)

2
+

γ

2
(A.14)

K sin(−∆ + ϕ) = −θ̇(−∆)
{

1
2
− cos 2θ(−∆)

}
(A.15)

K cos ϕ =
3
2

(
C1 + C2 +

4γ

3

)
(A.16)

where ∆, ϕ, K, θ(−∆), and θ̇(−∆) are unknown variables (C1 and C2 are determined

in (A.11) from [θ(0) θ̇(0)]). We obtain Θ(−∆) from [θ(0) θ̇(0)] by solving (A.12)–

(A.16).

In order to show how U−1 deforms T−1(D1 ∩ R), we used the approximated so-

lution given above. In particular, we used the line segment P̂1Q̂1 within T−1(D1 ∩R),

as shown Fig. 2.5A (P̂1: [θ θ̇] = [−0.2311 − 0.2536], Q̂1: [θ, θ̇] = [−0.3085 − 0.3915]).

This segment was moved to two curves f2e2 and f2g2 by U−1, which approximate

U−1(T−1(D1 ∩ R)), as shown in Fig. 2.5E.



69

Bibliography

[1] J. Ahn and N. Hogan. Long-range correlations in stride intervals may emerge

from non-chaotic walking dynamics. PLoS One, 8(9):e73239, 2013.

[2] N. Akashi, K. Nakajima, and Y. Kuniyoshi. Unpredictable as dice: analyzing

riddled basin structures in a passive dynamic walker. In Proc. IEEE Int. Symp.

Micro-NanoMechatronics Hum. Sci., pages 1–6, 2019.

[3] S. Aoi, N. Ogihara, T. Funato, Y. Sugimoto, and K. Tsuchiya. Evaluating func-

tional roles of phase resetting in generation of adaptive human bipedal walk-

ing with a physiologically based model of the spinal pattern generator. Biol.

Cybern., 102(5):373–387, 2010.

[4] S. Aoi, T. Ohashi, R. Bamba, S. Fujiki, D. Tamura, T. Funato, K. Senda, Y. Iva-

nenko, and K. Tsuchiya. Neuromusculoskeletal model that walks and runs

across a speed range with a few motor control parameter changes based on

the muscle synergy hypothesis. Sci. Rep., 9(1):1–5, 2019.

[5] S. Aoi, T. Tanaka, S. Fujiki, T. Funato, K. Senda, and K. Tsuchiya. Advantage

of straight walk instability in turning maneuver of multilegged locomotion: a

robotics approach. Sci. Rep., 6(1):30199, 2016.

[6] S. Aoi and K. Tsuchiya. Stability analysis of a simple walking model driven by

a rhythmic signal. In IEEE/RSJ Int. Conf. Intell. Robot. Syst., number 2, pages

1365–1370. IEEE, 2004.

[7] S. Aoi and K. Tsuchiya. Stability analysis of a simple walking model driven

by an oscillator with a phase reset using sensory feedback. IEEE Trans. Robot.,

22(2):391–397, 2006.

[8] S. Aoi and K. Tsuchiya. Self-stability of a simple walking model driven by a

rhythmic signal. Nonlinear Dyn., 48:1–16, 2007.

[9] F. Asano, Z. W. Luo, and M. Yamakita. Biped gait generation and control

based on a unified property of passive dynamic walking. IEEE Trans. Robot.,

21(4):754–762, 2005.

[10] Y. Ashkenazy, J. M. Hausdorff, P. C. Ivanov, and H. E. Stanley. A stochastic

model of human gait dynamics. Phys. A, 316(1-4):662–670, 2002.

https://doi.org/10.1371/journal.pone.0073239
https://doi.org/10.1371/journal.pone.0073239
https://doi.org/10.1109/MHS48134.2019.9249329
https://doi.org/10.1109/MHS48134.2019.9249329
https://doi.org/10.1007/s00422-010-0373-y
https://doi.org/10.1007/s00422-010-0373-y
https://doi.org/10.1007/s00422-010-0373-y
https://doi.org/10.1038/s41598-018-37460-3
https://doi.org/10.1038/s41598-018-37460-3
https://doi.org/10.1038/s41598-018-37460-3
https://doi.org/10.1038/srep30199
https://doi.org/10.1038/srep30199
https://doi.org/10.1038/srep30199
https://doi.org/10.1109/IROS.2004.1389586
https://doi.org/10.1109/IROS.2004.1389586
https://doi.org/10.1109/TRO.2006.870671
https://doi.org/10.1109/TRO.2006.870671
https://doi.org/10.1007/s11071-006-9030-3
https://doi.org/10.1007/s11071-006-9030-3
https://doi.org/10.1109/TRO.2005.847610
https://doi.org/10.1109/TRO.2005.847610
https://doi.org/10.1016/S0378-4371(02)01453-X
https://doi.org/10.1016/S0378-4371(02)01453-X


70 BIBLIOGRAPHY

[11] N. K. Bohnsack-McLagan, J. P. Cusumano, and J. B. Dingwell. Adaptability of

stride-to-stride control of stepping movements in human walking. J. Biomech.,

49(2):229–237, 2016.

[12] S. M. Bruijn, D. J. Bregman, O. G. Meijer, P. J. Beek, and J. H. van Dieën. The

validity of stability measures: A modelling approach. J. Biomech., 44(13):2401–

2408, 2011.

[13] R. E. Burke, A. M. Degtyarenko, and E. S. Simon. Patterns of locomotor drive

to motoneurons and last-order interneurons: Clues to the structure of the CPG.

J. Neurophysiol., 86(1):447–462, 2001.

[14] M. M. Churchland, A. Afshar, and K. V. Shenoy. A central source of movement

variability. Neuron, 52(6):1085–1096, 2006.

[15] T. Chyou, G. Liddell, and M. Paulin. An upper-body can improve the stability

and efficiency of passive dynamic walking. J. Theor. Biol., 285(1):126–135, 2011.

[16] M. J. Coleman and A. Ruina. An uncontrolled walking toy that cannot stand

still. Phys. Rev. Lett., 80(16):3658–3661, 1998.

[17] S. Collins, A. Ruina, R. Tedrake, and M. Wisse. Efficient bipedal robots based

on passive-dynamic walkers. Science, 307(5712):1082–1085, 2005.

[18] S. H. Collins, M. Wisse, and A. Ruina. A three-dimensional passive-dynamic

walking robot with two legs and knees. Int. J. Robot. Res., 20(7):607–615, 2001.

[19] S. M. Danner, N. A. Shevtsova, A. Frigon, and I. A. Rybak. Computa-

tional modeling of spinal circuits controlling limb coordination and gaits in

quadrupeds. Elife, 6:1–25, 2017.

[20] S. M. Danner, S. D. Wilshin, N. A. Shevtsova, and I. A. Rybak. Central

control of interlimb coordination and speed-dependent gait expression in

quadrupeds. J. Physiol., 594(23):6947–6967, 2016.

[21] K. Deng, M. Zhao, and W. Xu. Level-ground walking for a bipedal robot with

a torso via hip series elastic actuators and its gait bifurcation control. Robot.

Auton. Syst., 79:58–71, 2016.

[22] J. B. Dingwell and J. P. Cusumano. Re-interpreting detrended fluctuation anal-

yses of stride-to-stride variability in human walking. Gait Posture, 32(3):348–

353, 2010.

[23] J. M. Donelan, R. Kram, and A. D. Kuo. Mechanical work for step-to-step

transitions is a major determinant of the metabolic cost of human walking. J.

Exp. Biol., 205(23):3717–3727, 2002.

https://doi.org/10.1016/j.jbiomech.2015.12.010
https://doi.org/10.1016/j.jbiomech.2015.12.010
https://doi.org/10.1016/j.jbiomech.2011.06.031
https://doi.org/10.1016/j.jbiomech.2011.06.031
https://doi.org/10.1152/jn.2001.86.1.447
https://doi.org/10.1152/jn.2001.86.1.447
https://doi.org/10.1016/j.neuron.2006.10.034
https://doi.org/10.1016/j.neuron.2006.10.034
https://doi.org/10.1016/j.jtbi.2011.06.032
https://doi.org/10.1016/j.jtbi.2011.06.032
https://doi.org/10.1103/PhysRevLett.80.3658
https://doi.org/10.1103/PhysRevLett.80.3658
https://doi.org/10.1126/science.1107799
https://doi.org/10.1126/science.1107799
https://doi.org/10.1177/02783640122067561
https://doi.org/10.1177/02783640122067561
https://doi.org/10.7554/eLife.31050
https://doi.org/10.7554/eLife.31050
https://doi.org/10.7554/eLife.31050
https://doi.org/10.1113/JP272787
https://doi.org/10.1113/JP272787
https://doi.org/10.1113/JP272787
https://doi.org/10.1016/j.robot.2016.01.013
https://doi.org/10.1016/j.robot.2016.01.013
https://doi.org/10.1016/j.gaitpost.2010.06.004
https://doi.org/10.1016/j.gaitpost.2010.06.004
https://doi.org/10.1242/jeb.205.23.3717
https://doi.org/10.1242/jeb.205.23.3717


BIBLIOGRAPHY 71

[24] M. S. Dutra, A. C. De Pina Filho, and V. F. Romano. Modeling of a bipedal

locomotor using coupled nonlinear oscillators of van der pol. Biol. Cybern.,

88(4):286–292, 2003.

[25] J. Duysens. Fluctuations in sensitivity to rhythm resetting effects during the

cat’s step cycle. Brain Res., 133(1):190–195, 1977.

[26] F. Dzeladini, J. van den Kieboom, and A. Ijspeert. The contribution of a central

pattern generator in a reflex-based neuromuscular model. Front. Hum. Neu-

rosci., 8:1–18, 2014.

[27] A. Eke, P. Hermán, J. Bassingthwaighte, G. Raymond, D. Percival, M. Cannon,

I. Balla, and C. Ikrényi. Physiological time series: distinguishing fractal noises

from motions. Pflügers Arch. Eur. J. Physiol., 439(4):403–415, 2000.

[28] K. Falconer. Fractal Geometry: Mathematical Foundations and Applications Fractal.

Wiley, 2003.

[29] P. F. Fougere. On the accuracy of spectrum analysis of red noise processes

using maximum entropy and periodogram methods: Simulation studies and

application to geophysical data. J. Geophys. Res., 90(A5):4355, 1985.

[30] S. Frenkel-Toledo, N. Giladi, C. Peretz, T. Herman, L. Gruendlinger, and J. M.

Hausdorff. Treadmill walking as an external pacemaker to improve gait

rhythm and stability in parkinson’s disease. Mov. Disord., 20(9):1109–1114,

2005.

[31] C. Fu, Y. Suzuki, P. Morasso, and T. Nomura. Phase resetting and intermittent

control at the edge of stability in a simple biped model generates 1/f-like gait

cycle variability. Biol. Cybern., 114(1):95–111, 2020.

[32] S. Fujiki, S. Aoi, T. Funato, Y. Sato, K. Tsuchiya, and D. Yanagihara. Adap-

tive hindlimb split-belt treadmill walking in rats by controlling basic muscle

activation patterns via phase resetting. Sci. Rep., 8(1):1–5, 2018.

[33] S. Fujiki, S. Aoi, K. Tsuchiya, S. M. Danner, I. A. Rybak, and D. Yanagihara.

Phase-dependent response to afferent stimulation during fictive locomotion:

A computational modeling study. Front. Neurosci., 13, 2019.

[34] T. Funato, Y. Yamamoto, S. Aoi, T. Imai, T. Aoyagi, N. Tomita, and K. Tsuchiya.

Evaluation of the phase-dependent rhythm control of human walking using

phase response curves. PLoS Comput. Biol., 12(5):1–23, 2016.

[35] M. Garcia, A. Chatterjee, and A. Ruina. Efficiency, speed, and scaling of two-

dimensional passive-dynamic walking. Dyn. Stab. Syst., 15(2):75–99, 2000.

https://doi.org/10.1007/s00422-002-0380-8
https://doi.org/10.1007/s00422-002-0380-8
https://doi.org/10.1016/0006-8993(77)90063-4
https://doi.org/10.1016/0006-8993(77)90063-4
https://doi.org/10.3389/fnhum.2014.00371
https://doi.org/10.3389/fnhum.2014.00371
https://doi.org/10.1007/s004240050957
https://doi.org/10.1007/s004240050957
https://doi.org/10.1002/0470013850
https://doi.org/10.1029/JA090iA05p04355
https://doi.org/10.1029/JA090iA05p04355
https://doi.org/10.1029/JA090iA05p04355
https://doi.org/10.1002/mds.20507
https://doi.org/10.1002/mds.20507
https://doi.org/10.1007/s00422-020-00816-y
https://doi.org/10.1007/s00422-020-00816-y
https://doi.org/10.1007/s00422-020-00816-y
https://doi.org/10.1038/s41598-018-35714-8
https://doi.org/10.1038/s41598-018-35714-8
https://doi.org/10.1038/s41598-018-35714-8
https://doi.org/10.3389/fnins.2019.01288
https://doi.org/10.3389/fnins.2019.01288
https://doi.org/10.1371/journal.pcbi.1004950
https://doi.org/10.1371/journal.pcbi.1004950
https://doi.org/10.1080/713603737
https://doi.org/10.1080/713603737


72 BIBLIOGRAPHY

[36] M. Garcia, A. Chatterjee, A. Ruina, and M. J. Coleman. The simplest walking

model: stability, complexity, and scaling. J. Biomech. Eng., 120(2):281–288, 1998.

[37] D. H. Gates and J. B. Dingwell. Peripheral neuropathy does not alter the fractal

dynamics of stride intervals of gait. J. Appl. Physiol., 102(3):965–971, 2007.

[38] D. H. Gates, J. L. Su, and J. B. Dingwell. Possible biomechanical origins of the

long-range correlations in stride intervals of walking. Phys. A, 380:259–270,

2007.

[39] A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. C. Ivanov, C.-K. Peng,

and H. E. Stanley. Fractal dynamics in physiology: Alterations with disease

and aging. Proc. Natl. Acad. Sci. U. S. A., 99:2466–2472, 2002.

[40] A. Goswami, B. Thuilot, and B. Espiau. A study of the passive gait of a

compass-like biped robot: symmetry and chaos. Int. J. Robot. Res., 17(12):1282–

1301, 1998.

[41] C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke. Final state sensitivity: an

obstruction to predictability. Phys. Lett. A, 99(9):415–418, 1983.

[42] C. Grebogi, E. Ott, and J. A. Yorke. Basin boundary metamorphoses: changes

in accessible boundary orbits. Nucl. Phys. B Proc. Suppl., 2(C):281–300, 1987.

[43] S. Grillner. Locomotion in vertebrates: central mechanisms and reflex interac-

tion. Physiol. Rev., 55(2):247–304, 1975.

[44] S. Grillner. Control of Locomotion in Bipeds, Tetrapods, and Fish. In Compr.

Physiol., pages 1179–1236. Wiley, 1981.

[45] H. Gritli and S. Belghith. Walking dynamics of the passive compass-gait model

under OGY-based control: emergence of bifurcations and chaos. Commun.

Nonlinear Sci. Numer. Simul., 47:308–327, 2017.

[46] H. Gritli and S. Belghith. Walking dynamics of the passive compass-gait model

under OGY-based state-feedback control: analysis of local bifurcations via the

hybrid Poincaré map. Chaos Solitons Fractals, 98:72–87, 2017.

[47] H. Gritli, S. Belghith, and N. Khraief. Cyclic-fold bifurcation and boundary

crisis in dynamic walking of biped robots. Int. J. Bifurc. Chaos, 22(10):1250257,

2012.

[48] H. Gritli, S. Belghith, and N. Khraief. Intermittency and interior crisis as

route to chaos in dynamic walking of two biped robots. Int. J. Bifurc. Chaos,

22(03):1250056, 2012.

https://doi.org/10.1115/1.2798313
https://doi.org/10.1115/1.2798313
https://doi.org/10.1152/japplphysiol.00413.2006
https://doi.org/10.1152/japplphysiol.00413.2006
https://doi.org/10.1016/j.physa.2007.02.061
https://doi.org/10.1016/j.physa.2007.02.061
https://doi.org/10.1073/pnas.012579499
https://doi.org/10.1073/pnas.012579499
https://doi.org/10.1177/027836499801701202
https://doi.org/10.1177/027836499801701202
https://doi.org/10.1016/0375-9601(83)90945-3
https://doi.org/10.1016/0375-9601(83)90945-3
https://doi.org/10.1016/0920-5632(87)90024-7
https://doi.org/10.1016/0920-5632(87)90024-7
https://doi.org/10.1152/physrev.1975.55.2.247
https://doi.org/10.1152/physrev.1975.55.2.247
https://doi.org/10.1002/cphy.cp010226
https://doi.org/10.1016/j.cnsns.2016.11.022
https://doi.org/10.1016/j.cnsns.2016.11.022
https://doi.org/10.1016/j.chaos.2017.03.004
https://doi.org/10.1016/j.chaos.2017.03.004
https://doi.org/10.1016/j.chaos.2017.03.004
https://doi.org/10.1142/S0218127412502574
https://doi.org/10.1142/S0218127412502574
https://doi.org/10.1142/S0218127412500563
https://doi.org/10.1142/S0218127412500563


BIBLIOGRAPHY 73

[49] H. Gritli, N. Khraief, and S. Belghith. Period-three route to chaos induced by

a cyclic-fold bifurcation in passive dynamic walking of a compass-gait biped

robot. Commun. Nonlinear Sci. Numer. Simul., 17(11):4356–4372, 2012.

[50] P. Guertin, M. J. Angel, M. C. Perreault, and D. A. McCrea. Ankle extensor

group i afferents excite extensors throughout the hindlimb during fictive loco-

motion in the cat. J. Physiol., 487(1):197–209, 1995.

[51] R. Hardstone, S.-S. Poil, G. Schiavone, R. Jansen, V. V. Nikulin, H. D.

Mansvelder, and K. Linkenkaer-Hansen. Detrended fluctuation analysis: A

scale-free view on neuronal oscillations. Front. Physiol., 3:1–13, 2012.

[52] K. Hase, K. Miyashita, S. Ok, and Y. Arakawa. Human gait simulation with

a neuromusculoskeletal model and evolutionary computation. J. Vis. Comput.

Animat., 14(2):73–92, 2003.

[53] J. M. Hausdorff, S. L. Mitchell, R. Firtion, C. K. Peng, M. E. Cudkowicz, J. Y.

Wei, and A. L. Goldberger. Altered fractal dynamics of gait: reduced stride-

interval correlations with aging and huntington’s disease. J. Appl. Physiol.,

82(1):262–269, 1997.

[54] J. M. Hausdorff, C. K. Peng, Z. Ladin, J. Y. Wei, and A. L. Goldberger. Is walk-

ing a random walk? Evidence for long-range correlations in stride interval of

human gait. J. Appl. Physiol., 78(1):349–358, 1995.

[55] J. M. Hausdorff, P. L. Purdon, C. K. Peng, Z. Ladin, J. Y. Wei, and A. L. Gold-

berger. Fractal dynamics of human gait: stability of long-range correlations in

stride interval fluctuations. J. Appl. Physiol., 80(5):1448–1457, 1996.

[56] J. M. Hausdorff, L. Zemany, C.-K. Peng, and A. L. Goldberger. Maturation

of gait dynamics: stride-to-stride variability and its temporal organization in

children. J. Appl. Physiol., 86(3):1040–1047, 1999.

[57] D. J. Higham. An algorithmic introduction to numerical simulation of stochas-

tic differential equations. SIAM Rev., 43(3):525–546, 2001.

[58] D. G. Hobbelen and M. Wisse. Swing-leg retraction for limit cycle walkers

improves disturbance rejection. IEEE Trans. Robot., 24(2):377–389, 2008.

[59] M. Höll and H. Kantz. The fluctuation function of the detrended fluctuation

analysis — investigation on the AR(1) process. Eur. Phys. J. B, 88(5):126, 2015.

[60] K. Hosoda, T. Takuma, A. Nakamoto, and S. Hayashi. Biped robot design pow-

ered by antagonistic pneumatic actuators for multi-modal locomotion. Robot.

Auton. Syst., 56(1):46–53, 2008.

https://doi.org/10.1016/j.cnsns.2012.02.034
https://doi.org/10.1016/j.cnsns.2012.02.034
https://doi.org/10.1016/j.cnsns.2012.02.034
https://doi.org/10.1113/jphysiol.1995.sp020871
https://doi.org/10.1113/jphysiol.1995.sp020871
https://doi.org/10.1113/jphysiol.1995.sp020871
https://doi.org/10.3389/fphys.2012.00450
https://doi.org/10.3389/fphys.2012.00450
https://doi.org/10.1002/vis.306
https://doi.org/10.1002/vis.306
https://doi.org/10.1152/jappl.1997.82.1.262
https://doi.org/10.1152/jappl.1997.82.1.262
https://doi.org/10.1152/jappl.1995.78.1.349
https://doi.org/10.1152/jappl.1995.78.1.349
https://doi.org/10.1152/jappl.1995.78.1.349
https://doi.org/10.1152/jappl.1996.80.5.1448
https://doi.org/10.1152/jappl.1996.80.5.1448
https://doi.org/10.1152/jappl.1999.86.3.1040
https://doi.org/10.1152/jappl.1999.86.3.1040
https://doi.org/10.1152/jappl.1999.86.3.1040
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1109/TRO.2008.917002
https://doi.org/10.1109/TRO.2008.917002
https://doi.org/10.1140/epjb/e2015-60143-1
https://doi.org/10.1140/epjb/e2015-60143-1
https://doi.org/10.1016/j.robot.2007.09.010
https://doi.org/10.1016/j.robot.2007.09.010


74 BIBLIOGRAPHY

[61] H. Hultborn and J. B. Nielsen. Spinal control of locomotion - from cat to man.

Acta Physiol., 189(2):111–121, 2007.

[62] E. A. F. Ihlen. Introduction to multifractal detrended fluctuation analysis in

matlab. Front. Physiol., 3:1–18, 2012.

[63] Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti. Five basic muscle activation

patterns account for muscle activity during human locomotion. J. Physiol.,

556(1):267–282, 2004.

[64] Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti. Motor control programs and

walking. Neurosci., 12(4):339–348, 2006.

[65] S. Jo. Hypothetical neural control of human bipedal walking with voluntary

modulation. Med. Biol. Eng. Comput., 46(2):179–193, 2008.

[66] S. Jo and S. G. Massaquoi. A model of cerebrocerebello-spinomuscular inter-

action in the sagittal control of human walking. Biol. Cybern., 96(3):279–307,

2007.

[67] K. E. Jones, A. F. C. Hamilton, and D. M. Wolpert. Sources of signal-dependent

noise during isometric force production. J. Neurophysiol., 88(3):1533–1544,

2002.

[68] K. Jordan, J. H. Challis, and K. M. Newell. Long range correlations in the stride

interval of running. Gait Posture, 24(1):120–125, 2006.

[69] Y. Kim, Y. Tagawa, G. Obinata, and K. Hase. Robust control of CPG-based 3D

neuromusculoskeletal walking model. Biol. Cybern., 105:269–282, 2011.

[70] T. Kinugasa, T. Ito, H. Kitamura, K. Ando, S. Fujimoto, K. Yoshida, and

M. Iribe. 3D dynamic biped walker with flat feet and ankle springs: passive

gait analysis and extension to active walking. J. Robot. Mechatron., 27(4):444–

452, 2015.

[71] A. D. Kuo. A simple model of bipedal walking predicts the preferred speed-

step length relationship. J. Biomech. Eng., 123(3):264–269, 2001.

[72] A. D. Kuo. Energetics of actively powered locomotion using the simplest walk-

ing model. J. Biomech. Eng., 124(1):113–120, 2002.

[73] A. D. Kuo, J. M. Donelan, and A. Ruina. Energetic consequences of walk-

ing like an inverted pendulum: step-to-step transitions. Exerc. Sport Sci. Rev.,

33(2):88–97, 2005.

[74] Y. Kuramoto. Chemical Oscillations, Waves, and Turbulence. Springer, Berlin,

1984.

https://doi.org/10.1111/j.1748-1716.2006.01651.x
https://doi.org/10.3389/fphys.2012.00141
https://doi.org/10.3389/fphys.2012.00141
https://doi.org/10.1113/jphysiol.2003.057174
https://doi.org/10.1113/jphysiol.2003.057174
https://doi.org/10.1177/1073858406287987
https://doi.org/10.1177/1073858406287987
https://doi.org/10.1007/s11517-007-0277-8
https://doi.org/10.1007/s11517-007-0277-8
https://doi.org/10.1007/s00422-006-0126-0
https://doi.org/10.1007/s00422-006-0126-0
https://doi.org/10.1152/jn.2002.88.3.1533
https://doi.org/10.1152/jn.2002.88.3.1533
https://doi.org/10.1016/j.gaitpost.2005.08.003
https://doi.org/10.1016/j.gaitpost.2005.08.003
https://doi.org/10.1007/s00422-011-0464-4
https://doi.org/10.1007/s00422-011-0464-4
https://doi.org/10.20965/jrm.2015.p0444
https://doi.org/10.20965/jrm.2015.p0444
https://doi.org/10.1115/1.1372322
https://doi.org/10.1115/1.1372322
https://doi.org/10.1115/1.1427703
https://doi.org/10.1115/1.1427703
https://doi.org/10.1097/00003677-200504000-00006
https://doi.org/10.1097/00003677-200504000-00006
https://doi.org/10.1007/978-3-642-69689-3


BIBLIOGRAPHY 75

[75] M. Lafreniere-Roula and D. A. McCrea. Deletions of rhythmic motoneuron ac-

tivity during fictive locomotion and scratch provide clues to the organization

of the mammalian central pattern generator. J. Neurophysiol., 94(2):1120–1132,

2005.

[76] Q. Li, S. Tang, and X. S. Yang. New bifurcations in the simplest passive walking

model. Chaos, 23(4), 2013.

[77] Q. Li and X. S. Yang. New walking dynamics in the simplest passive bipedal

walking model. Appl. Math. Model., 36(11):5262–5271, 2012.

[78] B. Mandelbrot. How long is the coast of Britain? Statistical self-similarity and

fractional dimension. Science, 156(3775):636–638, 1967.

[79] B. B. Mandelbrot. The fractal geometry of nature, volume 1. WH freeman New

York, 1982.

[80] D. Maraun, H. W. Rust, and J. Timmer. Tempting long-memory - on the inter-

pretation of dfa results. Nonlinear Process. Geophys., 11(4):495–503, 2004.

[81] K. Matsuoka. Mechanisms of frequency and pattern control in the neural

rhythm generators. Biol. Cybern., 56(6):345–353, 1987.

[82] D. A. McCrea. Spinal circuitry of sensorimotor control of locomotion. J. Phys-

iol., 533(1):41–50, 2001.

[83] D. A. McCrea and I. A. Rybak. Modeling the mammalian locomotor CPG:

insights from mistakes and perturbations. In Prog. Brain Res., volume 165,

pages 235–253. 2007.

[84] S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke. Fractal basin boundaries.

Phys. D, 17(2):125–153, 1985.

[85] T. McGeer. Passive dynamic walking. Int. J. Robot. Res., 9(2):62–82, 1990.

[86] T. McGeer. Passive walking with knees. In Proceedings., IEEE Int. Conf. Robot.

Autom., pages 1640–1645. IEEE Comput. Soc. Press, 1990.

[87] T. McGeer. Principles of Walking and Running. pages 113–139. 1992.

[88] K. Minassian, I. Persy, F. Rattay, M. Pinter, H. Kern, and M. Dimitrijevic. Hu-

man lumbar cord circuitries can be activated by extrinsic tonic input to gener-

ate locomotor-like activity. Hum. Mov. Sci., 26(2):275–295, 2007.

[89] S. Mochiyama and T. Hikihara. Impulsive torque control of biped gait with

power packets. Nonlinear Dyn., 102(2):951–963, 2020.

https://doi.org/10.1152/jn.00216.2005
https://doi.org/10.1152/jn.00216.2005
https://doi.org/10.1152/jn.00216.2005
https://doi.org/10.1063/1.4824975
https://doi.org/10.1063/1.4824975
https://doi.org/10.1016/j.apm.2011.12.049
https://doi.org/10.1016/j.apm.2011.12.049
https://doi.org/10.1126/science.156.3775.636
https://doi.org/10.1126/science.156.3775.636
https://doi.org/10.5194/npg-11-495-2004
https://doi.org/10.5194/npg-11-495-2004
https://doi.org/10.1007/BF00319514
https://doi.org/10.1007/BF00319514
https://doi.org/10.1111/j.1469-7793.2001.0041b.x
https://doi.org/10.1016/S0079-6123(06)65015-2
https://doi.org/10.1016/S0079-6123(06)65015-2
https://doi.org/10.1016/0167-2789(85)90001-6
https://doi.org/10.1177/027836499000900206
https://doi.org/10.1109/ROBOT.1990.126245
https://doi.org/10.1007/978-3-642-76693-0_4
https://doi.org/10.1016/j.humov.2007.01.005
https://doi.org/10.1016/j.humov.2007.01.005
https://doi.org/10.1016/j.humov.2007.01.005
https://doi.org/10.1007/s11071-020-05756-7
https://doi.org/10.1007/s11071-020-05756-7


76 BIBLIOGRAPHY

[90] S. Mochon and T. A. McMahon. Ballistic walking. J. Biomech., 13(1):49–57,

1980.

[91] S. Montazeri Moghadam, M. Sadeghi Talarposhti, A. Niaty, F. Towhidkhah,

and S. Jafari. The simple chaotic model of passive dynamic walking. Nonlinear

Dyn., 93(3):1183–1199, 2018.

[92] J. A. Nessler, T. Spargo, A. Craig-Jones, and J. G. Milton. Phase resetting be-

havior in human gait is influenced by treadmill walking speed. Gait Posture,

43:187–191, 2016.

[93] I. Obayashi, S. Aoi, K. Tsuchiya, and H. Kokubu. Common formation mecha-

nism of basin of attraction for bipedal walking models by saddle hyperbolicity

and hybrid dynamics. Jpn. J. Ind. Appl. Math., 32(2):315–332, 2015.

[94] I. Obayashi, S. Aoi, K. Tsuchiya, and H. Kokubu. Formation mechanism of a

basin of attraction for passive dynamic walking induced by intrinsic hyper-

bolicity. Proc. R. Soc. A, 472(2190):20160028, 2016.

[95] N. Ogihara and N. Yamazaki. Generation of human bipedal locomotion by a

bio-mimetic neuro-musculo-skeletal model. Biol. Cybern., 84(1):1–11, 2001.

[96] K. Okamoto, S. Aoi, I. Obayashi, H. Kokubu, K. Senda, and K. Tsuchiya. Inves-

tigating phase resetting effect on basin of attraction for walking using a simple

model. In Int. Symp. Adapt. Motion Anim. Mach., Lausanne, 2019.

[97] K. Okamoto, S. Aoi, I. Obayashi, H. Kokubu, K. Senda, and K. Tsuchiya. Frac-

tal mechanism of basin of attraction in passive dynamic walking. Bioinspir.

Biomim., 15(5):055002, 2020.

[98] G. Orlovsky, T. G. Deliagina, and S. Grillner. Neuronal Control of Locomotion-

From Mollusc to Man. Oxford University Press, 1999.

[99] D. Owaki, S. Y. Horikiri, J. Nishii, and A. Ishiguro. Tegotae-Based Control Pro-

duces Adaptive Inter- and Intra-limb Coordination in Bipedal Walking. Front.

Neurorobot., 15:1–16, 2021.

[100] K. G. Pearson. Generating the walking gait: role of sensory feedback. In Prog.

Brain Res., volume 143, pages 123–129. 2004.

[101] C.-K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin, M. Simons, and H. E.

Stanley. Finite-size effects on long-range correlations: Implications for analyz-

ing DNA sequences. Phys. Rev. E, 47(5):3730–3733, 1993.

[102] C.-K. Peng, S. V. Buldyrev, J. M. Hausdorff, S. Havlin, J. E. Mietus, M. Simons,

H. E. Stanley, and A. L. Goldberger. Non-equilibrium dynamics as an indis-

pensable characteristic of a healthy biological system. Integr. Physiol. Behav.

Sci., 29(3):283–293, 1994.

https://doi.org/10.1016/0021-9290(80)90007-X
https://doi.org/10.1007/s11071-018-4252-8
https://doi.org/10.1016/j.gaitpost.2015.09.021
https://doi.org/10.1016/j.gaitpost.2015.09.021
https://doi.org/10.1007/s13160-015-0181-9
https://doi.org/10.1007/s13160-015-0181-9
https://doi.org/10.1007/s13160-015-0181-9
https://doi.org/10.1098/rspa.2016.0028
https://doi.org/10.1098/rspa.2016.0028
https://doi.org/10.1098/rspa.2016.0028
https://doi.org/10.1007/PL00007977
https://doi.org/10.1007/PL00007977
https://doi.org/10.5075/epfl-BIOROB-AMAM2019-70
https://doi.org/10.5075/epfl-BIOROB-AMAM2019-70
https://doi.org/10.5075/epfl-BIOROB-AMAM2019-70
https://doi.org/10.1088/1748-3190/ab9283
https://doi.org/10.1088/1748-3190/ab9283
https://doi.org/10.1093/acprof:oso/9780198524052.001.0001
https://doi.org/10.1093/acprof:oso/9780198524052.001.0001
https://doi.org/10.3389/fnbot.2021.629595
https://doi.org/10.3389/fnbot.2021.629595
https://doi.org/10.1016/S0079-6123(03)43012-4
https://doi.org/10.1103/PhysRevE.47.3730
https://doi.org/10.1103/PhysRevE.47.3730
https://doi.org/10.1007/BF02691332
https://doi.org/10.1007/BF02691332


BIBLIOGRAPHY 77

[103] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Gold-

berger. Mosaic organization of DNA nucleotides. Phys. Rev. E, 49(2):1685–1689,

1994.

[104] C.-K. Peng, J. M. Hausdorff, and A. L. Goldberger. Fractal mechanisms in neu-

ronal control: human heartbeat and gait dynamics in health and disease, page 66–96.

Cambridge University Press, 2000.

[105] M. C. Perreault, M. J. Angel, P. Guertin, and D. A. McCrea. Effects of stimula-

tion of hindlimb flexor group II afferents during fictive locomotion in the cat.

J. Physiol., 487(1):211–220, 1995.

[106] S. Rossignol. Neural Control of Stereotypic Limb Movements. In Compr. Phys-

iol., pages 173–216. Wiley, 1996.

[107] S. Rossignol, R. Dubuc, and J. P. Gossard. Dynamic sensorimotor interactions

in locomotion. Physiol. Rev., 86(1):89–154, 2006.

[108] I. A. Rybak, N. A. Shevtsova, M. Lafreniere-Roula, and D. A. McCrea. Mod-

elling spinal circuitry involved in locomotor pattern generation: insights from

deletions during fictive locomotion. J. Physiol., 577(2):617–639, 2006.

[109] I. A. Rybak, K. Stecina, N. A. Shevtsova, and D. A. McCrea. Modelling spinal

circuitry involved in locomotor pattern generation: Insights from the effects of

afferent stimulation. J. Physiol., 577(2):641–658, 2006.

[110] M. Safartoobi, M. Dardel, and H. M. Daniali. Passive walking biped robot

model with flexible viscoelastic legs. Nonlinear Dyn., 109:2615–2636, 2022.

[111] E. D. Schomburg, N. Petersen, I. Barajon, and H. Hultborn. Flexor reflex affer-

ents reset the step cycle during fictive locomotion in the cat. Exp. Brain Res.,

122(3):339–350, 1998.

[112] A. L. Schwab and M. Wisse. Basin of attraction of the simplest walking model.

In Proc. ASME Int. Des. Eng. Tech. Conf., pages 531–539, 2001.

[113] M. L. Shik and G. N. Orlovsky. Neurophysiology of locomotor automatism.

Physiol. Rev., 56(3):465–501, 1976.

[114] E. Sidorov and M. Zacksenhouse. Lyapunov based estimation of the basin of

attraction of poincare maps with applications to limit cycle walking. Nonlinear

Anal. Hybrid Syst., 33:179–194, 2019.

[115] S. Smale. Differentiable dynamical systems. Bull. Am. Math. Soc., 73(6):747–

818, 1967.

https://doi.org/10.1103/PhysRevE.49.1685
https://doi.org/10.1017/CBO9780511535338.006
https://doi.org/10.1017/CBO9780511535338.006
https://doi.org/10.1113/jphysiol.1995.sp020872
https://doi.org/10.1113/jphysiol.1995.sp020872
https://doi.org/10.1002/cphy.cp120105
https://doi.org/10.1152/physrev.00028.2005
https://doi.org/10.1152/physrev.00028.2005
https://doi.org/10.1113/jphysiol.2006.118703
https://doi.org/10.1113/jphysiol.2006.118703
https://doi.org/10.1113/jphysiol.2006.118703
https://doi.org/10.1113/jphysiol.2006.118711
https://doi.org/10.1113/jphysiol.2006.118711
https://doi.org/10.1113/jphysiol.2006.118711
https://doi.org/10.1007/s11071-022-07600-6
https://doi.org/10.1007/s11071-022-07600-6
https://doi.org/10.1007/s002210050522
https://doi.org/10.1007/s002210050522
https://doi.org/10.1115/DETC2001/VIB-21363
https://doi.org/10.1152/physrev.1976.56.3.465
https://doi.org/10.1016/j.nahs.2019.03.002
https://doi.org/10.1016/j.nahs.2019.03.002
https://doi.org/10.1090/S0002-9904-1967-11798-1


78 BIBLIOGRAPHY

[116] K. Stecina, J. Quevedo, and D. A. McCrea. Parallel reflex pathways from flexor

muscle afferents evoking resetting and flexion enhancement during fictive lo-

comotion and scratch in the cat. J. Physiol., 569(1):275–290, 2005.

[117] S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biol-

ogy, Chemistry, and Engineering. CRC Press, New York, 1994.

[118] Y. Sugimoto and K. Osuka. Stability analysis of passive dynamic walking-

an approach via interpretation of poincare map’s structure. Trans. Inst. Syst.

Control Inf. Eng., 18(7):255–260, 2005.

[119] Y. Sugimoto and K. Osuka. Hierarchical implicit feedback structure in passive

dynamic walking. J. Robot. Mechatron., 20(4):559–566, 2008.

[120] G. Taga. A model of the neuro-musculo-skeletal system for human locomo-

tion. Biol. Cybern., 73(2):113–121, 1995.

[121] G. Taga, Y. Yamaguchi, and H. Shimizu. Self-organized control of bipedal

locomotion by neural oscillators in unpredictable environment. Biol. Cybern.,

65(3):147–159, 1991.

[122] D. Tamura, S. Aoi, T. Funato, S. Fujiki, K. Senda, and K. Tsuchiya. Contribu-

tion of phase resetting to adaptive rhythm control in human walking based on

the phase response curves of a neuromusculoskeletal model. Front. Neurosci.,

14:17, 2020.

[123] D. L. Turcotte. Fractals and Chaos in Geology and Geophysics. Cambridge Uni-

versity Press, 1997.

[124] R. J. Van Beers, P. Haggard, and D. M. Wolpert. The role of execution noise in

movement variability. J. Neurophysiol., 91(2):1050–1063, 2004.

[125] B. J. West and L. Griffin. Allometric control of human gait. Fractals, 6(2):101–

108, 1998.

[126] B. J. West and L. Griffin. Allometric control, inverse power laws and human

gait. Chaos Soliton. Fract., 10(9):1519–1527, 1999.

[127] B. J. West and N. Scafetta. Nonlinear dynamical model of human gait. Phys.

Rev. E, 67(5):051917, 2003.

[128] A. T. Winfree. The Geometry of Biological Time. Springer, New York, 1980.

[129] D. A. Winter. Biomechanics and Motor Control of Human Movement. John Wiley,

New York, 2004.

https://doi.org/10.1113/jphysiol.2005.095505
https://doi.org/10.1113/jphysiol.2005.095505
https://doi.org/10.1113/jphysiol.2005.095505
https://doi.org/10.1201/9780429492563
https://doi.org/10.1201/9780429492563
https://doi.org/10.5687/iscie.18.255
https://doi.org/10.5687/iscie.18.255
https://doi.org/10.20965/jrm.2008.p0559
https://doi.org/10.20965/jrm.2008.p0559
https://doi.org/10.1007/BF00204049
https://doi.org/10.1007/BF00204049
https://doi.org/10.1007/BF00198086
https://doi.org/10.1007/BF00198086
https://doi.org/10.3389/fnins.2020.00017
https://doi.org/10.3389/fnins.2020.00017
https://doi.org/10.3389/fnins.2020.00017
https://doi.org/10.1017/CBO9781139174695
https://doi.org/10.1152/jn.00652.2003
https://doi.org/10.1152/jn.00652.2003
https://doi.org/10.1142/S0218348X98000122
https://doi.org/10.1016/S0960-0779(98)00149-0
https://doi.org/10.1016/S0960-0779(98)00149-0
https://doi.org/10.1103/PhysRevE.67.051917
https://doi.org/10.1007/978-1-4757-3484-3
https://doi.org/10.1002/9780470549148


BIBLIOGRAPHY 79

[130] M. Wisse, D. G. E. Hobbelen, and A. L. Schwab. Adding an upper body to

passive dynamic walking robots by means of a bisecting hip mechanism. IEEE

Trans. Robot., 23(1):112–123, 2007.

[131] M. Wisse, A. Schwab, R. van der Linde, and F. van der Helm. How to keep

from falling forward: elementary swing leg action for passive dynamic walk-

ers. IEEE Trans. Robot., 21(3):393–401, 2005.

[132] Y. Yamamoto and R. L. Hughson. On the fractal nature of heart rate variability

in humans: effects of data length and beta-adrenergic blockade. American Jour-

nal of Physiology-Regulatory, Integrative and Comparative Physiology, 266(1):R40–

R49, 1994.

[133] T. Yamasaki, T. Nomura, and S. Sato. Possible functional roles of phase reset-

ting during walking. Biol. Cybern., 88(6):468–496, 2003.

[134] W. Znegui, H. Gritli, and S. Belghith. Design of an explicit expression of

the poincaré map for the passive dynamic walking of the compass-gait biped

model. Chaos Soliton. Fractals, 130:109436, 2020.

[135] W. Znegui, H. Gritli, and S. Belghith. Stabilization of the passive walking dy-

namics of the compass-gait biped robot by developing the analytical expres-

sion of the controlled poincaré map. Nonlinear Dyn., 101(2):1061–1091, 2020.

[136] W. Znegui, H. Gritli, and S. Belghith. A new poincaré map for investigating

the complex walking behavior of the compass-gait biped robot. Appl. Math.

Model., 94:534–557, 2021.

https://doi.org/10.1109/TRO.2006.886843
https://doi.org/10.1109/TRO.2006.886843
https://doi.org/10.1109/TRO.2004.838030
https://doi.org/10.1109/TRO.2004.838030
https://doi.org/10.1109/TRO.2004.838030
https://doi.org/10.1152/ajpregu.1994.266.1.R40
https://doi.org/10.1152/ajpregu.1994.266.1.R40
https://doi.org/10.1007/s00422-003-0402-1
https://doi.org/10.1007/s00422-003-0402-1
https://doi.org/10.1016/j.chaos.2019.109436
https://doi.org/10.1016/j.chaos.2019.109436
https://doi.org/10.1016/j.chaos.2019.109436
https://doi.org/10.1007/s11071-020-05851-9
https://doi.org/10.1007/s11071-020-05851-9
https://doi.org/10.1007/s11071-020-05851-9
https://doi.org/10.1016/j.apm.2021.01.036
https://doi.org/10.1016/j.apm.2021.01.036




81

Publication List

Journal Articles

[1] K. Okamoto, S. Aoi, I. Obayashi, H. Kokubu, K. Senda, and K. Tsuchiya. Frac-

tal mechanism of basin of attraction in passive dynamic walking. Bioinspir.

Biomim., 15(5):055002, 2020.

[2] K. Okamoto, I. Obayashi, H. Kokubu, K. Senda, K. Tsuchiya, and S. Aoi. Con-

tribution of phase resetting to statistical persistence in stride intervals: A mod-

eling study. Front. Neural Circuits, 16:836121, 2022.

[3] K. Okamoto, N. Akashi, I. Obayashi, K. Nakajima, H. Kokubu, K. Senda,

K. Tsuchiya, and S. Aoi. Sharp changes in fractal basin of attraction in pas-

sive dynamic walking. Nonlinear Dyn, 111:21941–21955, 2023.

Conference Proceedings

[1] K. Okamoto, S. Aoi, I. Obayashi, H. Kokubu, K. Senda, and K. Tsuchiya. Inves-

tigating phase resetting effect on basin of attraction for walking using a simple

model. In Int. Symp. Adapt. Motion Anim. Mach., Lausanne, 2019.

[2] K. Okamoto, S. Aoi, I. Obayashi, H. Kokubu, K. Senda, and K. Tsuchiya. Dis-

appearance of chaotic attractor of passive dynamic walking by stretch-bending

deformation in basin of attraction. In IEEE/RSJ Int. Conf. Intell. Robot. Syst.,

pages 3908–3913, Las Vegas, 2020.

[3] K. Okamoto, S. Aoi, I. Obayashi, H. Kokubu, K. Senda, and K. Tsuchiya.

Boundary crisis by heteroclinic tangency in passive dynamic walking. In Int.

Symp. Swarm Behav. Bio-Inspired Robot., pages 90–93, Kyoto, Japan, 2021.

[4] K. Okamoto, S. Aoi, I. Obayashi, H. Kokubu, K. Senda, and K. Tsuchiya. In-

vestigating contribution of phase resetting to long-range correlations in stride

intervals using a simple model. In Asian Control Conf., pages 1215–1216, Jeju

Island, Korea, 2022.

[5] K. Okamoto, N. Akashi, I. Obayashi, H. Kokubu, K. Nakajima, K. Senda,

K. Tsuchiya, and S. Aoi. Sudden change in fractality of basin boundary in

passive dynamic walking. In Int. Symp. Adapt. Motion Anim. Mach., Kobe,

Japan, 2023.

https://doi.org/10.1088/1748-3190/ab9283
https://doi.org/10.1088/1748-3190/ab9283
https://doi.org/10.3389/fncir.2022.836121
https://doi.org/10.3389/fncir.2022.836121
https://doi.org/10.3389/fncir.2022.836121
https://doi.org/10.1007/s11071-023-08913-w
https://doi.org/10.1007/s11071-023-08913-w

	Acknowledgements
	Introduction
	Background
	Related works
	Fractal
	Spatial fractal
	Temporal fractal

	Spatial fractal in passive dynamic walking
	Passive dynamic walking
	Limit cycle
	Bifurcation
	Spatial fractal in basin of attraction

	Central pattern generators
	Temporal fractal in human gait

	Purpose of this thesis
	Outline of this thesis

	Mechanism of generation of spatial fractal in basin of attraction in passive dynamic walking
	Introduction
	Method
	Model
	Structure of phase space by hybrid dynamics
	Domain of Poincaré map and basin of attraction

	Results
	Dn and basin of attraction
	D1R
	Characteristics of S-1
	Appearance of a fractal
	No fractal appears

	Discussion
	Stability and basin of attraction
	Initial-value sensitivity and convergence to attractor
	Limitations of our analysis
	Biological relevance


	Mechanism of changes in spatial fractal in basin of attraction in passive dynamic walking
	Introduction
	Passive dynamic walking
	Model
	Governing equations
	Structure of phase space by hybrid dynamics

	Characteristics of basin of attraction
	Basin size
	Fractality of basin boundary

	Mechanism for sharp changes in the basin of attraction
	Formation of basin of attraction through stretch-bending deformation by S-1
	Comparison of basin state before and after sharp changes in its characteristics
	Mechanism for sharp changes in basin characteristics based on the number of non-R-penetrating slits
	Increase of number of slits in formation process for basin of attraction for n
	Mechanism for sharp changes in basin characteristics when number of non-R-penetrating slits decreases from 2 to 1
	Mechanism for sharp changes in basin characteristics when number of non-R-penetrating slits decreases from k+1 to k

	Mechanism for disappearance of basin of attraction

	Discussion

	Mechanism of changes in temporal fractal in stride intervals in simple neuromechanical model
	Introduction
	Methods
	Mechanical model
	CPG model
	Torque noise
	Detrended fluctuation analysis

	Results
	Determination of parameters for each gait speed
	Stride interval fluctuations

	Discussion
	Mechanisms for statistical persistence and anti-persistence of stride intervals
	Biological relevance of our findings
	Limitations of our model and future work

	Conclusion

	Conclusion
	Summary
	Future work

	Deformation of T-1(D1R) by U-1

