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Abstract

Electric motors play a pivotal role in vehicle electrification and industrial automa-

tion. For the optimal control and design of rare-earth-free motors such as induction

motors (IMs) and variable reluctance (VR) stepper motors to be achieved, demand

for transient eddy-current analyses with higher accuracy and speed than the con-

ventionally widely-used finite element (FE) analysis is increasing. Moreover, motor

dynamics are significantly influenced by the nonlinear magnetic characteristics of

the iron core, which further increases the computational burden of the FE analysis.

To reduce the computation time of the nonlinear transient analysis, this thesis

employs the model order reduction (MOR) method, which reduces the number

of unknown variables without sacrificing accuracy. Leveraging the Cauer ladder

network (CLN) method, a MOR method introduced in 2017, this thesis develops

the parameterized CLN method to account for nonlinear magnetic characteristics,

including magnetic hysteresis characteristics.

First, this thesis develops the parameterized CLN method to model nonlinear

magnetic characteristics. The parameter variation is properly included in the

state equations either through additional terms or by considering magnetic flux as

a state variable.

Subsequently, the method is used to analyze an IM and stepper VR motor.

The state of magnetic flux is used as a parameter to achieve both fast and ac-

curate analysis for a wide range of operation points. The parameterized CLN

method is further extended to incorporate magnetic hysteresis for accurate iron

loss estimation.

This thesis also proposes the semi-implicit method to avoid convergence issues

and reduce computation time in hysteresis FE analysis, which is used to obtain

static loops for constructing the hysteresis model used in the CLN method.

v
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The parameterized CLN method can be used as a behavior model for exploring

the optimal control of IMs and VR stepper motors, facilitating an optimal control

of electric machines even when the eddy currents largely influence the machine

characteristics under high-frequency inputs.
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Chapter 1

General Introduction

1.1 Background

Electric motors play a central role in the electrification of automobiles as well as

robotization and automation in industry. Owing to the limited availability of nat-

ural resources, rare-earth-free motors, such as induction motors (IMs) and variable

reluctance (VR) stepper motors, can be in high demand in the coming decades.

Electromagnetic field simulations can be prominent tools for optimizing the design

and control of these motors; in particular, for automobiles and automation, the

entire control system, including the power converter, should be optimized. For

motor operations to be tested under various conditions, fast transient analyses

with high accuracy are required.

Furthermore, recent developments in semiconductor technologies have enabled

the switching frequency of power converters to be up to several hundred kilohertz.

The eddy currents generated by the high harmonic components can have a signif-

icant impact on motor characteristics.

A major challenge in the electromagnetic simulation of motors with such high

frequencies is an excessively long computation time, particularly for the transient

analysis in control applications. While the finite element method (FEM) is widely

used for motor analysis because of its high accuracy, its computational cost can be

exceedingly large because it requires a large number of unknown variables. More-

over, the analysis of high-frequency input demands a smaller timestep and finer

computational mesh, which further increases the computational cost. Executing

1



2 Chapter 1. General Introduction

the FEM for all operation conditions required for the optimization of variable-

speed control systems is unrealistically time-consuming.

Therefore, in recent years, model order reduction (MOR) methods have been

actively studied to reduce the computation time while maintaining computational

accuracy. MOR methods produce a reduced model, which ideally reproduces the

characteristics of the original full model but has significantly fewer unknown vari-

ables.

In addition, nonlinear MOR methods [2–5] have been vigorously investigated

because the nonlinear magnetic characteristics of the iron core significantly impact

motor dynamics. However, this has been a challenge because nonlinearity adds

complexity to the dynamics, and constructing a reduced model that can represent

all the possible states becomes extremely costly. For IMs and stepper VR motors,

in particular, simultaneously handling the nonlinearity of material characteristics

and the input containing high-frequency temporal components with MOR is dif-

ficult. Additionally, spatial harmonics caused by nonuniform motor structures

should be properly represented by the reduced model. Existing nonlinear MORs

cannot produce reliable results for transient operations with various input frequen-

cies, amplitudes, and slips of IMs or mechanical load angles of stepper motors.

This thesis aims to establish a nonlinear MOR for electric machines, partic-

ularly for IMs and VR stepper motors through the Cauer ladder network (CLN)

method. The CLN method has been extensively studied over the past few years

since it was first proposed in Ref. [6]. The following sections review the CLN

method and other MOR methods.

1.2 Review of Model Order Reduction Methods

Among several types of MORmethods, projection-based MORmethods are promis-

ing tools for significantly reducing the number of unknown variables; hence, they

are reviewed in the following. The CLN method can be considered a projection-

based MOR method. Equivalent magnetic and electric circuits are conventionally

widely used as surrogate models and are also summarized in Section 1.2.2. They

rely heavily on the physical interpretation, whereas the projection-based MOR

method is fundamentally a mathematical approach.
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1.2.1 Projection-based MOR Methods

Projection-based MOR methods reduce the number of unknown variables defined

in the finite element (FE) space by constructing a set of new basis vectors and using

only dominant basis vectors for computation so that significantly fewer variables

can represent the original model without losing much information. The follow-

ing explanation focuses on a posteriori MOR, where the basis vectors for order

reduction are prepared before executing transient calculations.

Fig. 1.1 depicts the concept of a projection-based MOR method. In the FE

analysis (left part of the figure), the field equations are solved by assigning field

variables to finite elements, such as nodes, edges, and facet elements. The resultant

discretized equation has N unknown variables, where N is the number of finite

elements. In the analysis of a complicated geometry such as an electric motor, N

can be more than ten thousand, and solving the linear equation multiple times

(for each time step and iteration for nonlinear solutions) can be time consuming.

Projection-based MOR methods reduce the number of unknown variables from N

to Nr through the following two steps:

Step 1: Construct a new set of basis vectors. Some methods execute spatial

and/or temporal mode decomposition on the state vectors of the characteristic

operations of the full model, and employ the resultant modes for the new basis

vectors.

Step 2: Select the first Nr dominant basis vectors and construct a reduced model

(right part of the figure) by projecting the state vectors onto the selected

bases. The equation in the reduced space involves only the coefficients of the

Nr bases.

For fast and accurate analysis, Nr should be much smaller than N but suffi-

ciently large to contain essential information of the full system.

Among numerous methods that have been studied, the proper orthogonal de-

composition (POD) method and dynamic mode decomposition (DMD) method

are considered promising candidates for the electromagnetic field analysis of mo-

tors. Moreover, the Pade via Lanczos (PVL) method has been extensively studied

mathematically. The applications and limitations of these methods are discussed

in the following.



4 Chapter 1. General Introduction

Figure 1.1: Concept of a projection-based MOR method; it reduces the number
of unknown variables from N to Nr through projection onto a new set of basis

vectors.

Proper Orthogonal Decomposition Method The POD method obtains

basis vectors by applying the singular value decomposition (SVD) to snapshots,

which consist of state variables of characteristic operations. Selecting appropriate

snapshots as input data is the key to successfully creating an effective reduced

model. The data is frequently obtained by executing the FE analysis for a limited

number of operation conditions. SVD is used as the mode decomposition technique

to construct the reduced model. Detailed explanations of the method are available

in Ref. [7].

Ref. [8] applied the POD method to models with moving parts, and a per-

manent magnet synchronous machine (PMSM) was analyzed with the assumption

of linear magnetic characteristics. The method involved constructing a basis from

snapshots of vector and scalar potentials obtained evenly across all ranges of the

mechanical angle. Ref. [9] further reduced the number of snapshots and unknown

variables without degrading accuracy by dividing the mechanical angle at fixed

intervals and constructing different bases for each division.

The application to IM analysis was reported in [10], which assumed linear

magnetic characteristics. The snapshot matrix was constructed by sampling the

states of the traditional no-load and locked tests. The starting motion was an-

alyzed with an acceptable error when the frequency was constant. The study

did not show whether the approach remains effective when the input frequency

dynamically changes.

A major limitation of the method is that the accuracy deteriorates when all

the possible states cannot be fully captured by the selected snapshots. Particularly,
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when the magnetic saturation in the iron core is significant, including all the

possible states in the basis generation is impossible. The POD method can exhibit

a relatively large error of approximately 10% [9].

The gappy–POD method and POD–discrete empirical interpolation method

(POD–DEIM) have been developed to include nonlinearity. These methods extract

a limited number of sampling points of unknown variables from the nonlinear terms

of the original system. They were used for the transient analysis of a single-phase

power transformer [5]. Furthermore, a PMSM was analyzed using the POD–DEIM

[11].

However, the use of the POD for the nonlinear simulation of eddy current

fields in IMs and VR stepper motors remains an open problem. Refs. [12] and [13]

performed a static magnetic field analysis of a switched reluctance machine and

a bearingless synchronous reluctance motor, respectively, considering magnetic

saturation. The limitation of both studies was that they neglected eddy currents,

which can have a significant impact on the operation of IMs and VR stepper

motors.

Dynamic Mode Decomposition Method The DMD method solves the time

evolution of a system by obtaining the eigenvalues and vectors of a linear operator,

which represents the temporal difference of snapshot vectors. The eigenvectors are

derived in a reduced space whose bases are dominant singular vectors of the linear

operator. The DMD method differs from the POD method in that not only the

spatial mode but also the temporal difference is considered. It was applied to the

magnetostatic field analysis of an interior permanent magnet synchronous motor

(IPMSM), where eddy currents were not considered [14].

The limitation of this method also results from using the snapshot matrix;

the error can increase when the states exhibit complex dynamics due to nonlinear

material characteristics, eddy currents, and highly transient operations.

Pade via Lanczos Method The PVL method reduces the computational

cost by applying the indirect moment matching to the transfer function matrix,

which represents the input–output relationship of a linear equation system, and

generating a lower-order transfer function matrix (Pade approximants) [15]. It was
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applied to produce reduced-order models of electromagnetic problems involving

multi-turn coils [16].

Although it is mathematically well established and has been extended to the

block Lanczos algorithm for multiple-input multiple-output system [17, 18], it lacks

physical interpretation such as an electric circuit representation. This hinders its

application to complex problems; motor analysis using the PVL method as a

principal method has not yet been reported.

1.2.2 Equivalent Circuit Methods

Electric-equivalent Lumped-parameter Method Simple electric-equivalent

circuit representations, such as the d–q machine model and T-type and L-type

equivalent circuits, have been widely used for the fast analysis of motors. In the

circuits, the resistors represent loss and power output, and the inductors represent

the coupling of magnetic flux between the stator and rotor and leaked flux.

Because the complex structure of the motor and the nonlinear characteris-

tics of the material cannot be fully represented by the electric-equivalent circuit,

computational accuracy cannot be satisfactory in the wide range of operations.

Equivalent Magnetic Network Method More elaborate equivalent circuit

methods have been developed for constructing equivalent circuits from the physical

phenomena and/or the material distribution. One of the most prevailing methods

is the equivalent magnetic network (EMN) method.

The EMN method models a complex magnetic system as a network of simpler

magnetic circuits. Several types of EMN have been developed, and the reluctance

network analysis (RNA) is particularly suitable for addressing the dynamic mod-

eling of flux distributions in the air gap for motors [19].

The EMN represents the flux paths of the cross-section of an electric machine

in the form of a magnetic circuit. The circuit generally consists of two types of

components: reluctance elements representing the spatial distribution of the mag-

netic reluctance of the material and power sources representing the magnetomotive

force. Transient analysis of the magnetic circuit substitutes the mesh-based FE

analysis.
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The EMN is also adaptable to nonlinear magnetic materials by using the

nonlinear permeances. Studies have also shown that the magnetic hysteresis char-

acteristics can be incorporated by determining a circuit component based on the

hysteresis modeling method. The method was applied to PMSM analysis [20].

The eddy-current loss was also represented by an additional circuit component.

The method can suffer from a trade-off between computation cost and accu-

racy. The number of circuit elements should be increased to accurately represent

the distribution of magnetic flux, but the computation time also increases sig-

nificantly, particularly when the nonlinear/hysteretic magnetic characteristics are

considered. The EMN further lacks a method for systematic construction, which

means that the constitution of the network is determined to reflect the experience

and expectations of the designer.

1.3 Review of the Cauer Ladder Network Method

The CLN method is a projection-based MOR technique, where basis vectors are

constructed by solving the CLN recurrence formula described in Section 2.4. The

CLN method reduces the distribution of the electromagnetic field inside the elec-

tric machines to the network elements of the CLN, as shown in Fig. 1.2. The

network elements are derived from the basis vectors of the reduced model. Un-

like MOR methods based on the conventional mode decomposition techniques,

the essential spatial modes of the eddy-current field can be efficiently extracted

through hierarchical basis construction; hence, the CLN method shows superior

convergence in high-frequency conditions [21].

The circuit expression provides a straightforward physical interpretation, which

is useful for extension to modeling motors and including hysteretic material char-

acteristics, as described in the following sections. Moreover, the network equations

can be solved using commercial circuit solvers in a negligible amount of time, which

offers easy implementation of analysis coupled with mechanical, heat, and control

systems.
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(a) (b)

Figure 1.2: (a) Single-port and (b) multi-port Cauer ladder networks.

1.3.1 Theoretical Development

Before the CLN method was invented, the Cauer ladder circuit was known to

be effective in modeling the iron losses of steel sheets [22–24]; the ladder circuit

represents the continued fraction expansion of the ratio of the surface magnetic

field to the average magnetic flux density. It was proved by Ref. [23] to be identical

to the homogenization method utilizing Legendre polynomials as basis functions

[25, 26], resulting in the clarification of its physical meaning [24].

Ref. [6] generalized the method for modeling electric machines without any

restrictions in shapes and material distributions, which was the beginning of the

CLN method. The CLN recurrence formula for generating the circuit elements was

derived from the eddy-current equations and Cauer network equations assuming

the continuous field. Joule losses and magnetic energies were equated with the

summation of the energies computed from the decomposed modes and circuit

elements.

A matrix formulation of the CLN method was derived in [21]. The circuit

equations and CLN recurrence formula were derived, and proof of orthogonality

of basis vectors based on energy norms was provided using variable vectors and

matrices discretized in the FE space. The study also showed that the transforma-

tion of the CLN recurrence formula provides three-term recurrence formulae, from

which two types of bi-Lanczos processes are obtained, whereas the PVL method

contains one bi-Lanczos process. The numerical result of the CLN method termi-

nated with a resistance agreed with that of the PVL method. Ref. [27] further

clarified the connection between the CLN method discretized in the FE space and

the PVL method; the discretized CLN algorithm can basically be considered to

be the Lanczos algorithm, on which the PVL method is based.



Chapter 1. General Introduction 9

1.3.2 Application to 3D Analysis

The scalar potential was introduced to the CLN recurrence formula in Ref. [5],

which laid the foundation for the CLN analysis of 3D models with general coil

connections including multiple conductors and stranded coils.

Ref. [28] presented the CLN formulation with magnetic vector potential A

and current vector potential T . Ref. [29] combined the A–T formulation with the

solution of scalar potentials, which can be solved using nodal elements and thus

contributes to speeding up the computation. The vector potentials are derived

from the scalar potentials through a fast projection technique [30].

1.3.3 Consideration of Nonlinear Magnetic Characteristics

Ref. [31] developed a single-port CLN that incorporates nonlinear material char-

acteristics. The magnetic saturation in the iron core was represented by changing

the circuit elements, which were prepared at several points in a range of a param-

eter, whose choice will be explained in detail in Chapter 3. The nonlinear CLN

satisfactorily reproduced the transient response of an iron-core inductor even when

the input voltage was sufficiently high for the core to exhibit nonlinearity.

1.3.4 Consideration of Hysteresis in the Standard Cauer

Circuit for Modelling Iron Sheets

The standard Cauer circuit has been studied for modeling iron sheets, which laid

the foundation for considering the magnetic hysteresis characteristics. Ref. [23]

assumed that the magnetic field and magnetic flux density were decomposed to

Legendre polynomials and their time-varying coefficients and proved that the

Cauer circuit representation is derived from the governing equation of the one-

dimensional quasi-static magnetic field along the thickness direction of a sheet.

The study clarified the physical meaning of the standard Cauer circuit; the

following successive relationships are represented by the ladder network. When

an external magnetic field is applied to an iron sheet, the main magnetic flux uni-

formly distributes along the thickness direction. It corresponds to the magnetic

flux induced in the first inductor of the ladder circuit. Consequently, according
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to Faraday’s induction law, the time variation of the main magnetic flux induces

an electromotive force that distributes linearly along the thickness direction. The

eddy current resulting from the electromotive force corresponds to the current

flowing through the first resistor of the ladder circuit. Furthermore, a counter

magnetic field generated by the eddy current exhibits a quadratic distribution ac-

cording to Ampere’s circuital law, which corresponds to the magnetic flux created

by the second inductor of the ladder circuit.

Exploiting the physical meaning, Ref. [23] further assumed that the nonlinear

and hysteretic magnetic characteristics dominantly appear in the DC magnetic

field and represented the hysteresis characteristics in the first inductor. This study

will be detailed in Chapter 6.

1.3.5 Multi-port Extension and Motor Application

The CLN method was extended from a single-port model (Fig.1.2(a)) to a multi-

port model (Fig.1.2(b)) for the application to multiple-input multiple-output sys-

tems. Ref. [32] showed that the matrix formulation of the single-port CLN can

be naturally extended to a multi-port CLN; the impedances are converted from

scalar values to M ×M matrices, and currents and voltages at the elements are

represented in vectors of size M , where M is the number of ports.

The multi-port CLN method was applied to analyze the motional electromo-

tive force of linear IMs [33]. Stator and mover parts represented by the multi-port

CLN were connected with the Fourier spatial harmonic components. The motional

electromotive force was effectively incorporated from the boundary condition of

the magnetic field on the interface between the stator and mover domains. It

should be emphasized that this approach enabled the identical CLN to be used

regardless of the position of the mover domain. The motor CLN effectively repro-

duced the generated force of the linear IM, which is significantly influenced by the

induced eddy currents in the moving conductors in the mover CLN.

The established motor CLN was applied to analyze rotating machines [34],

where only the dominant spatial harmonics were used for the calculation to reduce

the computation time. The scalar potential was included in the CLN recurrence

formula to satisfy the condition that the sum of eddy currents flowing through

rotor bars among one pole pair is zero. Ref. [35] further reported that a skewed
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rotor bar can also be analyzed by connecting the rotor CLN of a three-dimensional

sliced model.

1.4 Objective of This Thesis

The objective of this thesis is to theoretically develop a parameterized CLNmethod.

The developed theory is applied to the analysis of electric machines, particularly

IMs and VR stepper motors. The parameterized CLN method is further devel-

oped to incorporate the magnetic hysteresis characteristics, which also influence

the performance of electric machines.

The relation between previous research is summarized as follows:

• The theoretical basis of this thesis relies on the formulation of the

single-port and multi-port CLN method in the discretized form

[21, 32], as well as motor CLN formulated in Ref. [33].

• Ref. [31] developed the parameterized representation of the CLN

to incorporate the degree of magnetic saturation. The dynamical

behavior of the reduced bases, however, has not been rigorously

discussed with time-varying orthogonal basis functions. This the-

sis derives the exact state equations of reduced systems, including

the variation of the basis functions.

• The CLN method was extended to a multi-port model and applied

to the analysis of IMs (Section 1.3.5). However, only the linear

magnetic characteristics were considered in the previous studies.

This thesis investigates the parameterization of the multi-port

CLN to incorporate nonlinear magnetic characteristics.

• As indicated in Section 1.2, in the analysis of the IMs and VR

stepper motors, conventional nonlinear MOR methods have diffi-

culties in either analyzing eddy currents or simultaneously achiev-

ing low computational cost and high accuracy. This thesis aims to

establish a fast and accurate nonlinear MOR of the eddy-current

field.

• The reduced order model of magnetic materials has been studied

using the Cauer network, and magnetic saturation and hysteresis
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characteristics have been incorporated into the network, as men-

tioned in Section 1.3.4. This finding is exploited in this thesis to

adapt the parameterized CLN method to analyze the hysteretic

fields of electric machines.

• Sections 1.3.2 and 1.3.5 briefly mentioned that the preceding re-

search introduced the scalar potential to the CLN formula. This

thesis formulates the CLN recurrence formula for a 2D laminated

coil model, where the gradient of scalar potentials at each sheet

is designated as unknown variables.

This thesis addresses the following questions:

• How can the change in basis be incorporated into the state equa-

tions in the nonlinear CLN? (Chapter 3)

• Can the CLN method perform eddy current analysis of IMs and

VR stepper motors when the nonlinear magnetic characteristics

are considered? (Chapters 4 and 5)

• Can the CLNmethod model the hysteretic magnetic field? (Chap-

ter 6)

• How much can the CLN method reduce computation time?

1.5 Outline of This Thesis

The outline of this thesis is shown in Fig. 1.3. After the introduction of the fun-

damental equations in Chapter 2, the parameterized CLN method is theoretically

developed in Chapter 3. Thereafter, Chapters 4 and 5 apply the parameterized

CLN method to the analysis of IMs and VR stepper motors, respectively. The

incorporation of the magnetic hysteresis characteristics is described in Chapter 6.

The following summarizes each chapter:

• Chapter 2: The fundamentals of the single-port and multi-port

CLN methods are introduced.
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Figure 1.3: Outline of the thesis.

• Chapter 3: A theoretical study on the parameterized CLNmethod

is conducted before developing the motor MOR. A general formu-

lation for the parametrized CLN method is constructed with the

time-varying orthogonal basis functions. Nonlinearities owing to

the degree of magnetic saturation are specifically addressed.

• Chapter 4: The parameterized CLN method is applied to eddy-

current simulations of a rotating induction motor by introducing

the concept of parameterization to multi-port CLNs. The focus

is specifically on selecting appropriate parameters to achieve high

accuracy with a low computational cost.

• Chapter 5: The parameterized multi-port CLN constructed in

Chapter 4 is further applied, with some modifications, to the

eddy-current field analysis of a VR stepper motor. The dynami-

cal operations, such as stepwise rotation and step-out motion, are

simulated using the method.

• Chapter 6: Magnetic hysteresis characteristics are incorporated

into the single-port parameterized CLN method. The hysteresis

effect is represented by the first inductor of the CLN. Moreover,

a time-stepping scheme for hysteretic FE analysis is developed to

provide reliable static loops for constructing the hysteresis model

in a short computation time.

• Chapter 7: Conclusions and future perspectives are presented.
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Chapter 2

Numerical Modeling of

Electromagnetic Fields in Electric

Machines

This chapter introduces the fundamental equations of the eddy-current problems

derived from Maxwell’s equations, the space discretization method to solve the

equations, and the CLN method to reduce the number of unknown variables of

the discretized problem.

2.1 Governing Equations of Eddy Current Fields

This thesis considers problems in which the magnetoquasistatic approximation

is valid, i.e., the displacement current is negligible; the target frequency of the

analysis is below the MHz range, which hardly generates displacement current in

magnetic materials constituting electric machines.

Omitting a term of displacement current in Maxwell’s equations provides the

governing equations of the eddy current field:

∇×H = J , (2.1)

∇×E = −∂B

∂t
, (2.2)

∇ ·B = 0, (2.3)

∇ · J = 0, (2.4)

15
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where H , J , E, and B are variable vectors of the magnetic field, current density,

electric field, and magnetic flux density, respectively.

The constitutive relationships are

H = νB, (2.5)

J = σE + Js = Je + Js, (2.6)

where ν is the magnetic reluctivity, which is the inverse of the magnetic perme-

ability µ, and σ is the electrical conductivity. The first term Je = σE on the

right-hand side of (2.6) represents the eddy current density, and the second term

Js is the source current density.

In this thesis, eddy-current field equations are solved using A–ϕ formulation,

where A and ϕ are the magnetic vector and electric scalar potentials, respectively.

From (2.3), the existence of A that satisfies

∇×A = B (2.7)

is guaranteed. The vector potential form of the eddy-current field equations is

obtained by substituting (2.7), (2.5), and (2.6) into (2.1) and (2.2) as follows:

∇× ν∇×A = σE + Js, (2.8)

∇×E = − ∂

∂t
∇×A. (2.9)

Equation (2.9) implies the existence of the scalar potential ϕ that satisfies

E +
∂A

∂t
= −∇ϕ. (2.10)

From (2.4), (2.8), and (2.10), the A–ϕ formulation is obtained as

∇× ν∇×A+ σ

(
∂A

∂t
+∇ϕ

)
= Js, (2.11)

∇ · σ
(
∂A

∂t
+∇ϕ

)
= 0. (2.12)
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Figure 2.1: Definition of analysis domains and boundaries.

2.2 Boundary Conditions

The domain definition depicted in Fig. 2.1 is assumed hereafter. The entire do-

main Ω includes a conductive region Ωc, outside of which the conductivity is zero.

The boundary of Ωc is represented by Γc. The Dirichlet and Neumann boundary

conditions are imposed on the boundaries ΓD and ΓN, respectively.

For example, infinite boundaries within which the magnetic flux line is con-

fined, or geometrical symmetric boundaries to which magnetic flux flows parallel,

are handled as if the other side of the boundaries is the perfect electric conductor

(PEC), and

E × n = 0, (2.13)

B · n = 0, (2.14)

are imposed, where n is the unit vector normal on the boundary. Equation (2.14)

is rewritten as (∇×A) · n = 0, and its sufficient condition is

A× n = 0, (2.15)

which is implemented as the Dirichlet boundary condition. From (2.10), (2.13),

and (2.15), n×∇ϕ = 0 is obtained; hence, the scalar potential must be constant

on the boundary:

ϕ = const., (2.16)

which is also imposed as the Dirichlet boundary condition.
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When a symmetric boundary through which magnetic field lines cross per-

pendicularly is considered, the perfect magnetic conductor (PMC) conditions

H × n = 0, (2.17)

Je · n = 0, (2.18)

are imposed. Equation (2.17) indicates that

(∇×A)× n = 0, (2.19)

which is implemented as the Neumann boundary condition.

2.3 Space Discretization

If the target of the analysis has a simple geometry with uniform material charac-

teristics, (2.8) and (2.9) could be analytically solved. However, in most practical

engineering problems with complex shapes and material distribution, obtaining

analytical solutions is extremely difficult, if not impossible. Instead, numerical

analyses are often conducted by introducing the weighted residual method, which

will be described in the following.

2.3.1 Weighted Residual Method

Equations (2.11) and (2.12) are called the strong form, where the second-order

spatial differentiation of the variables must exist in the analysis region Ω. The

weighted residual method summarized in this section derives a formulation with

weaker restrictions, where only the existence of the first-order spatial differenti-

ation is required. It solves (2.11) and (2.12) by determining the solution to the

integrated form. The obtained equations are called the weak form. Because the

weak form has continuity conditions that are more suitable to the actual poten-

tial characteristics, it can be more easily handled using numerical analyses. The

derivation of the weak form is introduced in the following.



Chapter 2. Numerical Modeling of Electromagnetic Fields 19

First, the notations of volume and boundary integrations are introduced for

simplicity:

(u, v)Ω =

∫
Ω

uv dΩ, (u,v)Ω =

∫
Ω

u · v dΩ, (2.20)

⟨u, v⟩Γ =

∫
Γ

uv dΓ, ⟨u,v⟩Γ =

∫
Γ

u · v dΓ. (2.21)

From Gauss’ theorem and the vector calculus identities, the integrations satisfy

the following equations:

(u,∇v)Ω + (∇ · u, v)Ω = ⟨v,u · n⟩Γ, (2.22)

(∇× u,v)Ω − (u,∇× v)Ω = ⟨n,u× v⟩Γ. (2.23)

Hereafter, we assume that the conductivity in Ωc is σ. The multiplication of

a differentiable vector function w to (2.11) and integration over the entire region

Ω result in the following equation.

(w,∇× ν∇×A)Ω +

(
w, σ

∂A

∂t

)
Ωc

+ (w, σ∇ϕ)Ωc
= (w,Js)Ωc

(2.24)

The non-uniformity of material characteristics is naturally incorporated into anal-

yses through the discretization process.

Through a similar process, (2.25) is derived by multiplying a differential scalar

function w to (2.12) and integrating it into the conductive region Ωc.(
w,∇ · σ

(
∂A

∂t
+∇ϕ

))
Ωc

= 0 (2.25)

If (2.24) and (2.25) are satisfied for any w and w, (2.11) and (2.12) are also

satisfied. The functions w and w are generally called vector and scalar weighting

functions, respectively.

The first term of (2.24) can be transformed using (2.23) as

(w,∇× ν∇×A)Ω = (∇×w, ν∇×A)Ω + ⟨n, ν(∇×A)×w⟩Γ, (2.26)

where the second term of the right-hand side

⟨n, ν(∇×A)×w⟩Γ = ⟨w,n×H⟩Γ (2.27)
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is a boundary integration term, which represents the contribution from an exter-

nally provided magnetic field along the boundary. In the motor CLN, the unit

source of the tangential magnetic field along the boundary is expressed by the

boundary integration term, which is introduced in Chapter 4. When the PEC

condition (2.15) or PMC condition (2.19) is applicable, the boundary integration

term is omitted and (2.24) is transformed to

(∇×w, ν∇×A)Ω +

(
w, σ

∂A

∂t

)
Ωc

+ (w, σ∇ϕ)Ωc
= (w,Js)Ω . (2.28)

Similarly, the left-hand side of (2.25) is transformed using (2.22) as follows:(
w,∇ · σ

(
∂A

∂t
+∇ϕ

))
Ωc

= −
(
σ

(
∂A

∂t
+∇ϕ

)
,∇w

)
Ωc

+ ⟨Je · n, w⟩Γc (2.29)

where

Je = σE = −σ

(
∂A

∂t
+∇ϕ

)
. (2.30)

When the PEC condition (2.15) and (2.16) or PMC condition (2.18) is satisfied

on Γc, the second term of (2.29) is neglected; hence,(
σ

(
∂A

∂t
+∇ϕ

)
,∇w

)
Ωc

= 0 (2.31)

is obtained. Equations (2.28) and (2.31) comprise the weak form, which requires

only piecewise continuity.

2.3.2 Galerkin Method Using the Whitney Form

The Galerkin method is commonly employed to solve the weak form. It assigns

interpolation functions as the weight function at each element of the discretized

space. The electromagnetic field is represented by a linear combination of the

interpolation functions, whose coefficients become unknown variables.

The Whitney elements have compatibility with the differential form of elec-

tromagnetics [37, 38]; hence they are used as the interpolation functions in the

following explanation.
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Nodal Elements The scalar potential ϕ can be discretized as follows:

ϕ =
Nn∑
i=1

ϕiw
n
i , (2.32)

where wn
i is the Whitney nodal element, which is used as a scalar interpolation

function, of the i-th node; it is one at the i-th node and zero at other nodes. Nn

is the number of nodal elements in the analysis domain Ω, and ϕi is the value of

the scalar potential ϕ at the i-th node. A variable vector of the scalar potential

in the FE space is represented as

ϕ = [ϕ1, ϕ2, ..., ϕNn ]
T. (2.33)

Edge Elements The Whitney edge element we
i of the i-th edge directed from

the j-th to the k-th node is defined with the nodal elements wn
j and wn

k as

we
i = wn

j∇wn
k − wn

k∇wn
j . (2.34)

The variables A and E are discretized using we
i :

A =
Ne∑
i=1

aiw
e
i , E =

Ne∑
i=1

eiw
e
i , (2.35)

where Ne is the number of the edge elements in the analysis domain. Coefficients

ai and ei are the line integrals of A and E, respectively, along the i-th edge. They

construct vectors

a = [a1, a2, ..., aNe ]
T, e = [e1, e2, ..., eNe ]

T. (2.36)

Facet Elements The Whitney facet element wf
i of the i-th facet composed of

the j-th, k-th, and l-th nodes is represented as

wf
i = 2

(
wn

j∇wn
k ×∇wn

l + wn
l ∇wn

j ×∇wn
k + wn

k∇wn
l ×∇wn

j

)
. (2.37)
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The vector B is discretized in the finite element space as follows.

B =

Nf∑
i=1

biw
f
i , (2.38)

where Nf is the number of facet elements in the analysis domain. The coefficient

bj is the surface integral of B over the i-th face, and it comprises an FE vector

b = [b1, b2, ..., bNf
]T. (2.39)

Incidence Matrices Matrices connecting the nodal, edge, and facet functions

are called incidence matrices. The node-edge incidence matrix G = {Gij} ∈
RNe×Nn and edge-face incidence matrix C = {Cjk} ∈ RNf×Ne satisfy the relation-

ships

∇wn
i =

Ne∑
j=1

Gjiw
e
j , ∇×we

j =

Nf∑
k=1

Ckjw
f
k. (2.40)

From (2.7) and the discretized expressions (2.35)–(2.39) and (2.40), a relation

b = Ca is derived. This reveals that C corresponds to the discretized represen-

tation of the curl operation. Similarly, if E = −∇ϕ is satisfied as a special case

of (2.10), e = −Gϕ can be derived using (2.32)–(2.36) and (2.40). The matrix

G is the discretized representation of the gradient operation. The relationship

CG = 0, which corresponds to curl grad = 0, is satisfied.

2.3.3 Discretized Eddy-Current Field Equations

The weak form of the A–ϕ formulation (2.28) and (2.31) is discretized with the

variable vectors (2.33) and (2.36) and incidence matrix (2.40) as

CTνCa+ σ
da

dt
+ σGϕ = js, (2.41)

GTσ
da

dt
+GTσGϕ = 0, (2.42)

where js = [j1, j2, · · · , jNe ]
T is a variable vector of the source current density, whose

elements are obtained as ji =
∫
Ω
Js ·we

idΩ. The matrices ν and σ are reluctivity
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and conductivity matrices, respectively, which are constructed as follows:

ν = {νij} ∈ RNf×Nf , νij =
(
νwf

i ,w
f
j

)
Ω
, (2.43)

σ = {σij} ∈ RNe×Ne , σij =
(
σwe

i ,w
e
j

)
Ωc

. (2.44)

The constitutive representations are h = νb and je = σe, where h and je are the

discretized vectors of the magnetic field and eddy-current density, respectively.

Similarly, (2.8) and (2.9) are discretized in the FE space as

CTνCa = σe+ js, (2.45)

Ce = − d

dt
Ca. (2.46)

If Gϕ can be set to zero in the analysis domain, (2.41) and (2.42) can be

simplified into (
CTνC + σ

d

dt

)
a = js. (2.47)

Chapters 3–5 mostly focus on problems in which the gauge Gϕ = 0 can be used.

When eddy currents flow in unconnected multiple domains, the scalar potential

must be used as a variable, which is discussed in Chapter 6.

2.4 Cauer Ladder Network Method

The CLN method consists of three components: the governing equations of the

eddy-current field, the CLN recurrence formula, and the state equations of the

CLN (Fig. 2.2). One of them is deducible from the other two when the linear

material characteristics are assumed [6, 32]. The derivation of the state equations

assuming the nonlinear magnetic characteristics is discussed in Chapter 3.

In this section, the linear magnetic characteristics are assumed, and the single-

port CLN method (see Fig. 1.2(a)) is introduced. Subsequently, the multi-port

CLN method, whose circuit elements are represented by matrices (Fig. 1.2(b)), is

introduced as a natural extension of the single-port CLN.



24 Chapter 2. Numerical Modeling of Electromagnetic Fields

Figure 2.2: Overview of the structure of the CLN method.

2.4.1 Single-port Cauer Ladder Network Method

The CLN method provides an efficient decomposition

a(t,x) =
∑
k

I2k+1(t)a2k+1(x) (2.48)

≈
Ns−1∑
k=0

I2k+1(t)a2k+1(x), (2.49)

e(t,x) =
∑
k

V2k(t)e2k(x) (2.50)

≈
Ns−1∑
k=0

V2k(t)e2k(x), (2.51)

where I2k+1(t) and V2k(t) are the CLN current and voltage, respectively, at time

t; a2k+1(x) and e2k(x) ∈ R are the basis vectors as functions of space x; Ns is

the number of stages of the CLN. The notations (t,x), (t), and (x) are omitted

henceforward. The CLN method approximates the fields and constructs a reduced

model of its dimension Ns using the first Ns bases as shown in (2.49) and (2.51).

When the material characteristics are linear, the circuit equations obtained by

applying Kirchhoff’s voltage and current laws to the Ns-stage ladder network are

I2k+1 =
V2k

R2k

− V2k+2

R2k+2

, (k = 0, 1, · · · , Ns − 1) (2.52)

V2k = L2k−1
dI2k−1

dt
− L2k+1

dI2k+1

dt
, (k = 1, 2, · · · , Ns − 1) (2.53)

V0 = Vs − L1
dI1
dt

. (2.54)
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where Vs is the source voltage. Network elements L2n+1 and R2n (n = 0, 1, · · · , Ns−
1) of the CLN are derived from

L2n+1 = aT
2n+1Ka2n+1, 1/R2n = eT

2nσe2n, (2.55)

where K = CTνC is the stiffness matrix. Fig. 2.3 shows the relationship between

the basis vectors and network elements.

The CLN transient analysis is performed by solving the state equations (2.52)–

(2.54). The vector potential a and electric field e of the eddy-current field can be

reproduced from the obtained I2k+1 and V2k using (2.49) and (2.51).

The basis vectors are defined such that the instantaneous magnetic energy

Wm(t) and Joule loss We(t) of the electromagnetic field are equal to those of the

CLN:

2Wm(t) = aTKa =
∑
k

L2k+1I
2
2k+1 (2.56)

≈
Ns−1∑
k=0

L2k+1I
2
2k+1, (2.57)

We(t) = eTσe =
∑
k

V 2
2k/R2k (2.58)

≈
Ns−1∑
k=0

V 2
2k/R2k. (2.59)

The linear magnetic characteristics are assumed in (2.56) and (2.57). Equations

(2.56) and (2.58) demand the basis vectors to be orthogonal based on energy

norms:

aT
2i+1Ka2j+1 = δijL2i+1, eT

2iσe2j = δij/R2i, (2.60)

where δij is the Kronecker delta.

The CLN recurrence formula with a fixed reluctivity matrix ν is derived by

substituting (2.49), (2.51), (2.52)–(2.54) into (2.45) and (2.46) as follows [6]:

K(a2n+1 − a2n−1) = R2nσe2n, (2.61)

C (e2n+2 − e2n) = − 1

L2n+1

Ca2n+1. (2.62)
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Figure 2.3: Relationship between the basis vectors and network elements using
an iron-cored inductor model as an example.

When the gauge ϕ = 0 is employed, (2.62) is rewritten as

e2n+2 − e2n = − 1

L2n+1

a2n+1. (2.63)

When the CLN recurrence formula is solved, the unit source is used as its

initial condition. When an electric field es is supplied as a unit source, the initial

condition

a−1 = 0, e0 = es (2.64)

is used, whereas the condition

e0 = 0, Ka1 = js (2.65)

is employed when a unit current density js is supplied. By solving (2.61) and (2.63)

recursively with the initial condition (2.64) or (2.65), one can obtain basis vectors

e2n and a2n+1 and the network elements R2n and L2n+1. This derivation process

of the CLN elements corresponds to the model reduction of the eddy-current field

governed by (2.45) and (2.46).
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2.4.2 Multi-port Cauer Ladder Network Method

The multi-port CLN can be constructed using a straightforward extension of the

single-port CLN. The network equations of the multi-port CLN remain the same

as the single-port network, except that the basis and circuit elements are expressed

in matrix form.

Let M be the number of ports of the ladder network, and I2n−1,V2n ∈ RM

(n = 1, 2, · · · , Ns) be the state vectors of the current and voltage, respectively,

at the n-th stage. It is assumed that the decompositions of a and e and their

approximations are given as

a =
∑
n

a2n−1I2n−1 ≈
Ns∑
n=1

a2n−1I2n−1, (2.66)

e =
∑
n

e2nV2n ≈
Ns∑
n=1

e2nV2n, (2.67)

where unlike (2.48)–(2.51), a2n−1 and e2n ∈ RNe×M are not vectors but matrices

defined as

a2n−1 = [a1,2n−1,a2,2n−1, · · · ,aM,2n−1], e2n = [e1,2n, e2,2n, · · · , eM,2n]. (2.68)

Here, am,2n−1 and em,2n (m = 1, 2, · · · ,M) are the basis vectors of the magnetic

vector potential and electric field, respectively, when a unit input is provided only

to the m-th port [33].

The state equations of the Ns-stage ladder network are

V2n = L2n−1
dI2n−1

dt
−L2n+1

dI2n+1

dt
, (2.69)

I2n+1 = R−1
2nV2n −R−1

2n+2V2n+2, (2.70)

for n = 1, 2, · · · , Ns, where L2n−1 and R2n are the inductance and resistance

matrices of the CLN, respectively.
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With the assumption of the decompositions (2.66) and (2.67), the recurrence

formula is derived from (2.45), (2.46), (2.69), and (2.70) as

K(a2n+1 − a2n−1) = σe2nR2n, (2.71)

e2n+2 − e2n = −a2n+1L
−1
2n+1, (2.72)

where L2n−1 = aT
2n−1Ka2n−1 and R−1

2n = eT
2nσe2n. The initial conditions

e0 = 0, Ka1 = junit (2.73)

are used assuming that a unit source

junit = [j1, j2, · · · , jm, · · · , jM] ∈ RNe×M (2.74)

is provided. Here, jm is an input vector discretized in the FE space when a unit

input is given only to the m-th port. L2n−1 and R2n are systematically obtained

by solving (2.71) and (2.72) with the initial conditions.

2.4.3 Procedure of the CLN Method

The procedure for the execution of the CLN method is depicted in Fig. 2.4. The

simulation of electric machines using the CLN method consists of the following

steps:

Step 1: Network elements are derived by solving the CLN recurrence formula

under appropriate initial conditions.

Step 2: State equations of the ladder network are solved with the network ele-

ments prepared in Step 1.

In this thesis, Steps 1 and 2 are called the offline and online calculations, respec-

tively. When the offline calculation is completed in Step 1, the CLN can yield

any output under any transient input only by solving the state equations in Step

2. Field vectors a and e, having more than ten-thousand unknowns, are reduced

to the state vectors of the CLN, which have several hundred unknowns at most;

hence, each time step of the online calculation of the CLN consumes significantly

less time than that of the FEM.
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Figure 2.4: Procedure of the CLN method; first the network elements are pre-
pared in the offline calculation, and then the state equations are solved in the

online calculation.

Figure 2.5: Schematic illustration of the computation time; the CLN and FEM
are compared.

2.4.4 Computation Time of the CLN Method Compared

with FEM

The computation time for the FEM and parameterized CLN is dominated by the

solutions of the linear system in the FE space.

In the FEM, the computation time and number of time steps have a linear

relation, as shown in Fig. 2.5. In contrast, the CLN method requires the solutions

of the linear systems only in the offline computation, whose time consumption

is independent of the number of time steps. The solution of state equations in

the online computation consumes a negligible amount of time compared with the

FEM. Therefore, as shown in Fig. 2.5, the CLN becomes faster than the FEM

when the number of the time step is larger than a certain threshold Nt,th.

The CLN method is particularly effective in reducing the computation time

when (a) large time steps are required, for instance, pulse-width modulation

(PWM) input and transient input for a long duration, and (b) calculations are

conducted under various conditions.
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Chapter 3

Theoretical Development of the

Parameterized CLN Method

In this chapter, the effect of the parameter variation on reduced systems is nu-

merically studied, and a general formulation for the parametrized CLN method

with a dynamical transition is developed. Two parameterized CLN representa-

tions are developed for handling the nonlinear magnetic field: one parameterizes

reluctivity, and the other parameterizes differential reluctivity to reflect the degree

of saturation.

Specifically, in Sections 3.1.2 and 3.1.3, the state equation is derived from the

governing equations of the eddy current field and CLN recurrence formula in the

presence of magnetic saturation. Moreover, in Section 3.2, the circuit equations

are studied using the magnetic flux as state variables, as shown in the dashed box

in Fig. 2.2.

31
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Figure 3.1: CLN parametrized with α.

3.1 Parameterized CLN Method

3.1.1 Parameterization of Reluctivity and Differential Re-

luctivity

In this study, the reluctivity matrix ν is parameterized using the degree of mag-

netic saturation. Because ν depends on the magnetic flux density

b =
∑

I2n+1Ca2n+1 ≈
Ns−1∑
n=0

I2n+1Ca2n+1, (3.1)

it can be considered a function of α in the parameterized CLN, as follows:

ν = ν(α), α = (I1, I3, · · · , I2Ns−1). (3.2)

With the first-order (FO) approximation [31], which assumes that I1 has a

dominant impact on the saturation, it is approximated as a function of I1 by

selecting α = I1 as follows:

ν = ν(α), α = I1. (3.3)

Fig. 3.1 shows a general form of the parameterized CLN, wherein the circuit ele-

ments derived using ν(α) are functions of α.

The CLN method can also be formulated using the differential reluctivity

matrix νd defined by

νd =
{
νd
ij

}
, νd

ij =

(
∂H

∂B
wf

i ,w
f
j

)
Ω

, (3.4)
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where ∂H/∂B is a second-order tensor of the differential reluctivity. The reluc-

tivity matrix νd is also parameterized using the degree of saturation as follows.

νd = νd(α), α = I1 (3.5)

3.1.2 Parameterized CLN Method Based on Reluctivity

The exact derivation of the nonlinear state equations is introduced in this section.

State equations are derived by substituting the CLN recurrence formula (2.61) and

(2.63) to the eddy-current field equations (2.45) and (2.46) with the assumption

of basis expansion (2.49) and (2.51) and the orthogonality of the bases (2.60). In

previous studies, the linear state equations (2.52)–(2.54) were derived when the

reluctivity is constant, whereas those with the nonlinear reluctivity are derived in

the following.

Substituting (2.49) and (2.51) into (2.45) and (2.46) yields the following equa-

tions:

K
Ns−1∑
n=0

I2n+1a2n+1 = σ
Ns−1∑
n=0

V2ne2n, (3.6)

C
Ns−1∑
n=0

V2ne2n = C
Ns−1∑
n=0

V2ne2n −CVSe0

= − d

dt

Ns−1∑
n=0

I2n+1Ca2n+1, (3.7)

where the initial condition is given by e0, which satisfies Ce0 = 0, and VS is the

source voltage. Equation (3.7) yields

Ns−1∑
n=0

V2ne2n − VSe0 = − d

dt

Ns−1∑
n=0

I2n+1a2n+1. (3.8)

Multiplying a2k+1/L2k+1 to both sides of (3.6) and using (2.60) and (2.63), one

obtains

I2k+1 =
V2k

R2k

− V2k+2

R2k+2

. (k = 0, 1, · · · , Ns − 1) (3.9)
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Multiplying both sides of (3.8) by R2kσe2k and substituting (2.61) results in the

following equation:

(3.10)R2ke
T
2kσ(

Ns−1∑
n=0

V2ne2n − VSe0) = −(a2k+1 − a2k−1)
TK

d

dt

Ns−1∑
n=0

I2n+1a2n+1.

With (2.60) and (3.3), (3.10) is rewritten as

V2k = −(L2k+1
dI2k+1

dt
− L2k−1

dI2k−1

dt
)

− (a2k+1 − a2k−1)
TK

Ns−1∑
n=0

I2n+1
da2n+1

dα

dα

dt
, (k = 1, · · · , Ns − 1) (3.11)

V0 = VS − L1
dI1
dt

− aT
1K

Ns−1∑
n=0

I2n+1
da2n+1

dα

dα

dt
. (3.12)

The last terms in (3.11) and (3.12) concerning da2n+1/dα are called parameter

variation terms here. They appear owing to the variation in the system parameter

and are newly derived using an exact formulation of the parameterized CLN. When

the FO approximation is applied, i.e., α = I1, the term including da2n+1/dI1 can

be prepared in the offline calculation. The bases are obtained for each value of I1,

and the difference between them provides the term.

On the condition that the parameter variation terms are negligible, (3.11) and

(3.12) are approximated as

V2k = −(L2k+1
dI2k+1

dt
− L2k−1

dI2k−1

dt
), (k = 1, 2, · · · , Ns − 1) (3.13)

V0 = VS − L1
dI1
dt

. (3.14)

Equations (3.9), (3.13), and (3.14) correspond to the Cauer network equations

with a constant reluctivity [21].
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3.1.3 Parameterized CLN Method Based on Differential

Reluctivity

When the differential reluctivity is used instead of the reluctivity, (2.45) and (2.46)

are rewritten as

CTh = σe, (3.15)

Ce = −
(
νd
)−1 dh

dt
, (3.16)

where h is the variable vector of the magnetic field.

The CLN method is assumed to provide spatial basis vectors, which can pro-

vide the approximated decompositions of the variable vectors h and e as follows:

h =
∑
n

I2n+1ν
dCad

2n+1 ≈
Ns−1∑
n=0

I2n+1ν
dCad

2n+1, (3.17)

e =
∑
n

V2ne
d
2n ≈

Ns−1∑
n=0

V2ne
d
2n. (3.18)

The CLN procedure with the differential reluctivity matrix νd for a fixed α consists

of the following equations:

Kd(ad
2n+1 − ad

2n−1) = Rd
2nσe

d
2n, (3.19)

ed
2n+2 − ed

2n = − 1

Ld
2n+1

ad
2n+1, (3.20)

1/Rd
2n =

(
ed
2n

)T
σed

2n, Ld
2n+1 =

(
ad
2n+1

)T
Kdad

2n+1, (3.21)

where Kd = CTνdC. The basis vectors, network elements, and stiffness matrix

are denoted by superscript d because they differ from those with reluctivity ν.

Similar to the case with the reluctivity ν, the basis vectors satisfy orthogonal

relations based on the energy norms:

(
ed
2i

)T
σed

2j = δij/R
d
2i,

(
ad
2i+1

)T
Kdad

2j+1 = δijL
d
2i+1. (3.22)

A similar derivation of the nonlinear state equations can also be performed

based on the differential reluctivity as follows. Substituting (3.17) and (3.18) into
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(3.15) and (3.16) derives

Kd

Ns−1∑
n=0

I2n+1a
d
2n+1 = σ

Ns−1∑
n=0

V2ne
d
2n, (3.23)

Kd

Ns−1∑
n=0

V2ne
d
2n = − d

dt

(
Ns−1∑
n=0

I2n+1K
dad

2n+1

)
. (3.24)

From (3.20), (3.22), and (3.23), the following relation is obtained:

−I2k+1 =
V2k+2

Rd
2k+2

− V2k

Rd
2k

. (k = 0, 1, · · · , Ns − 1) (3.25)

Transforming (3.24) and considering the initial conditions yield the following equa-

tion:

Kd

(
Ns−1∑
n=0

V2ne
d
2n − VSe

d
0

)

= −Kd

Ns−1∑
n=0

ad
2n+1

dI2n+1

dt
−

Ns−1∑
n=0

I2n+1

d(Kdad
2n+1)

dt
. (3.26)

Multiplying both sides of equation (3.26) by
(
ad
2k+1 − ad

2k−1

)
and using (3.19) and

(3.22) lead to the following equations:

V2k = −(Ld
2k+1

dI2k+1

dt
− Ld

2k−1

dI2k−1

dt
)

− (ad
2k+1 − ad

2k−1)
T

Ns−1∑
n=0

I2n+1

d(Kdad
2n+1)

dα

dα

dt
, (k = 1, 2, · · · , Ns − 1) (3.27)

V0 = VS − Ld
1

dI1
dt

−
(
ad
1

)T Ns−1∑
n=0

I2n+1

d(Kdad
2n+1)

dα

dα

dt
. (3.28)

The last terms in (3.27) and (3.28) concerning d(Kdad
2n+1)/dα are the parameter

variation terms. They can be prepared in the offline calculation.

If the parameter variation terms are negligible, (3.27) and (3.28) are approx-

imated as

V2k = −(Ld
2k+1

dI2k+1

dt
− Ld

2k−1

dI2k−1

dt
), (k = 1, 2, · · · , Ns − 1) (3.29)

V0 = VS − Ld
1

dI1
dt

. (3.30)
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Equations (3.25), (3.29), and (3.30) correspond to the nonlinear Cauer network

equations examined by [31].

3.2 Network Equations Using the Magnetic Flux

as a Variable

The state equations derived in the previous subsections are not the circuit equa-

tions of the CLN because they include parameter variation terms. In contrast,

when the magnetic flux is used as a variable, the circuit equations of the CLN are

represented as

V2k =
dΦ2k−1

dt
− dΦ2k+1

dt
, (k = 1, · · · , Ns − 1) (3.31)

V0 = VS −
dΦ1

dt
, (3.32)

where Φ2k−1 is the magnetic flux that flows through the k-th inductor.

Equations (3.31) and (3.32) are transformed into

V2k =
d(L2k−1I2k−1)

dt
− d(L2k+1I2k+1)

dt
, (k = 1, · · · , Ns − 1) (3.33)

V0 = Vs −
d(L1I1)

dt
, (3.34)

where the inductance is defined as L2k−1 = Φ2k−1/I2k−1. Equations (3.33) and

(3.34) directly express the time variance of the nonlinear inductors and may have

the same effect as the parameter variation terms.

Equations (3.31) and (3.32) can also be transformed using the differential

inductance Ld
2k−1 = dΦ2k−1/dI2k−1 as

V2k =
dΦ2k−1

dI2k−1

dI2k−1

dt
− dΦ2k+1

dI2k+1

dI2k+1

dt
, (k = 1, · · · , Ns − 1)

= Ld
2k−1

dI2k−1

dt
− Ld

2k+1

dI2k+1

dt
, (k = 1, · · · , Ns − 1) (3.35)

V0 = Vs − Ld
1

dI1
dt

, (3.36)

which are identical to the state equations without the parameter variation terms

(3.29) and (3.30).
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Figure 3.2: Iron-cored inductor with dimensions in millimeters.

3.3 Numerical Results

A 2D iron-cored inductor, shown in Fig. 3.2, was analyzed. The bulk material was

assumed for the iron core. Only a quarter of the entire domain was calculated by

the utilization of its line symmetry. The magnetic characteristics of the iron core

are represented by the polynomial function

H = νi

[
h1

(
|B|
B0

)a

+ h2

]
B, (3.37)

where νi = (1/4π) × 103 m/H, h1 = 2, h2 = 1, B0 = 1 T, and a = 6. The

reluctivity ν(B) and differential reluctivity νd(B) are derived as follows:

ν(B) = νi

[
h1

(
|B|
B0

)a

+ h2

]
, (3.38)

νd(B) =
∂H

∂B
= νi

[
h1

(
|B|
B0

)a

+ h2

]
1+ νiah1

(
|B|
B0

)a−2
BBT

B2
0

, (3.39)

where 1 is a unit matrix.

The B–H characteristics of the iron core, represented by (3.37), are shown

in Fig. 3.3. The conductivity of the iron core was 1.0 × 106 S/m, whereas the

reluctivity and conductivity of the coil were (1/4π)× 107 m/H and 4.0× 106 S/m,

respectively.

3.3.1 Offline Calculation

Preparation of the Network Elements The network elements R, L, Rd,

and Ld were calculated along with several parameter variation terms in the offline

calculation. They were obtained for α = I1 = 0–200 A with intervals of 0.1 A.
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Figure 3.3: B–H characteristics of the iron core assumed in the simulation.

(a) (b)

Figure 3.4: Result of (a) R2n and (b) L2n+1 using ν.

Fig. 3.4 shows the variations in R2n and L2n+1 (n = 0, 1, 2) based on the

reluctivity ν for I1 = 0–50 A. The inductance L2n+1 decreased as I1 increased

owing to magnetic saturation. L1 was larger than L2n+1 (n > 0).

The variations in Rd
2n and Ld

2n+1 (n = 0, 1, 2) based on the differential reluc-

tivity νd are shown in Fig. 3.5 for I1 = 0–50 A. Tendencies similar to those of

R2n and L2n+1 were observed, except for the slope of Ld
2n+1 against I1, which was

steeper than that of L2n+1.

Preparation of the Parameter Variation Term A part of the parameter

variation terms was also prepared in the offline calculation. The da2n−1/dI1 part

in the parameter variation terms was obtained by calculating the central difference

of a2n−1 regarding I1. The results of aT
2k−1Kda2n−1/dI1 are shown in Fig. 3.6 for

(k, n) = (1, 1), (1, 3), (3, 1), and (3, 3). The dominance of component (k, n) =
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(a) (b)

Figure 3.5: Results of (a) Rd
2n and (b) Ld

2n+1 using νd.

Figure 3.6: Result of aT
2k−1Kda2n−1/dI1 using ν.

(1, 1) was observed. The components with k ̸= n were small. In particular,

(k, n) = (1, 3) remained almost zero for all I1 values.

When the differential reluctivity νd was used,
(
ad
2k−1

)T
d(Kdad

2n−1)/dI1 was

prepared using the central difference scheme regarding I1, as shown in Fig. 3.7 for

(k, n) = (1, 1), (1, 3), (3, 1), and (3, 3). Unlike the result based on the reluctivity

ν, the component (k, n) = (1, 1) was small, whereas the (k, n) = (1, 3) term was

dominant.

By combining the results in Figs. 3.4 and 3.6, L1 + I1a
T
1Kda1/dI1 was ob-

tained as plotted in the solid line in Fig. 3.8, and L1 is also shown in this figure

for comparison. As I1 increased, the solid line moved farther from the dashed line,

which indicates that the parameter variation terms have a significant influence on

the inductance.
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Figure 3.7: Result of
(
ad
2k−1

)T
d(Kdad

2n−1)/dI1 using νd.

Figure 3.8: Results of L1 and L1 + I1a
T
1 Kda1/dI1 using ν.

Figure 3.9: Results of Ld
1 and Ld

1 + I1
(
ad
1

)T
d(Kdad

1)/dI1.

The corresponding result based on differential reluctivity νd is shown in

Fig. 3.9. The term Ld
1 + I1

(
ad
1

)T
d(Kdad

1)/dI1 is plotted using the solid line,

which is almost identical to the dashed line showing Ld
1. The influence of the

parameter variation term was expected to be negligible.
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3.3.2 Online Calculation

The output current was derived by solving the state equations with the prepared

parameters in the online calculation. A sinusoidal electric field ES with an ampli-

tude of 0.3 V/m and frequency f = 5 Hz was applied to the coil. When B = 0 and

f = 5 Hz, the skin depth was
√
2νi/2πfσi ≈ 2.3 mm. The frequency at which the

skin depth was smaller than the thickness of the iron core (5 mm) was selected

to observe the effect of eddy-current generation. The CLN used in the simulation

consisted of five stages and was terminated with L9. A nonlinear transient analy-

sis using the ordinary FEM, which directly solves (2.47), was also performed for

comparison.

The resultant total current It (see Fig. 3.1) obtained with the reluctivity ν

are shown in Fig. 3.10. The dots show the result of the FEM, whereas the lines are

obtained by applying the CLN method. The dotted line (linear) is the result of the

linear CLN, which differed significantly from the FEM result, as well as the dashed

line (nonlinear 1) obtained using the nonlinear CLN neglecting the parameter

variation terms. Both were calculated by solving the approximated state equations

(3.9), (3.13), and (3.14), and the linear CLN used the circuit elements at I1 = 0.

In contrast, the solid line (nonlinear 2) obtained from the parameterized CLN,

including the parameter variation terms calculated using (3.9), (3.11), and (3.12),

was close to the FEM result.

Fig. 3.11 shows the results of the total current It when the differential reluc-

tivity νd was used. The solid line (nonlinear d), which was calculated from the

nonlinear CLN without the variation terms, reproduced the FEM result. This

result indicated that the parameter variation terms could be neglected.

Fig. 3.12 shows the current I2n+1(n = 0, 1, 2) flowing through each inductor

L2n+1 for (a) nonlinear 1 and (b) nonlinear 2 based on the reluctivity ν. The

current I1, which flowed through the first inductor L1, was the most dominant

component in nonlinear 2, and it yielded a result similar to that of the FEM.

Currents I3 and I5 appeared particularly when the total current was less than

approximately 50 A. The FO approximation was not fully satisfied when It < 50 A;

thus, the current did not agree very accurately with the FEM result for low current.

Note that the applied frequency was high for the bulk-type iron core, as mentioned

earlier; hence, the FO approximation was invalid owing to the generation of the

eddy-current field.



Chapter 3. Theoretical Development of Parameterized CLN Method 43

Figure 3.10: Transient waveform of the total current It obtained using the
FEM, linear CLN method, and nonlinear CLN method with and without the
parameter variation terms (nonlinear 1 and 2, respectively) when ν is used with

α = I1. The applied electric field ES is indicated as a blue solid line.

Figure 3.11: Transient waveform of the total current obtained using the FEM,
linear CLN method, and nonlinear CLN method when νd is used with α = I1.

The following modifications can be effective for improving the representation

accuracy in the low current range: (a) parameterizing not only with I1 but also

with I3, (b) using a total current It(= ΣnI2n+1) instead of I1 as the parameter α

when solving the state equations. The second method was observed to be effective

in Ref. [31].

Fig. 3.13 shows the current I2n+1 (n = 0, 1, 2) flowing through each inductor

Ld
2n+1 for nonlinear d when the differential reluctivity νd was used. The current I1

was dominant in the high current region, indicating the validity of using the FO

approximation.
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(a) (b)

Figure 3.12: Computational results of currents flowing through each stage of
the CLN when ν is used. The parameter variation terms are neglected in (a)

nonlinear 1, whereas they are included in (b) nonlinear 2.

Figure 3.13: Currents flowing through each stage of the CLN when νd is used
(nonlinear d).

3.3.3 Computation Time

As mentioned in 2.4.4, solving the linear systems in the FE space dominates the

computation time of the FEM as well as the parameterized CLN. The Newton–

Raphson (NR) method was used for the nonlinear solutions, and the analysis

presented in this chapter required approximately four iterations on average for

convergence in both the FE analysis and CLN method.

Accordingly, the number of linear solutions required for the time-dependent

nonlinear FE simulation was 4Nt, where Nt is the number of time steps.

In contrast, the offline calculation of the five-stage CLN required one non-

linear solution for the first stage to obtain L1, and four linear solutions for the
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(a) (b)

Figure 3.14: (a) Transient waveform of the total current obtained using the
FEM, linear CLN method, and nonlinear CLN method where the network equa-
tion is directly derived from the CLN. (b) Currents flowing through each stage.

remaining stages (L3 to L9) per parameter; therefore, approximately eight linear

solutions were performed per parameter. Let Nα be the number of parameter val-

ues; the number of linear solutions required in the offline computation in total was

approximately 8Nα. Assuming that the computational cost for the online compu-

tation was negligible, the CLN method was faster than the FEM when Nt > 2Nα

was satisfied (see Fig. 2.5).

The parameterized CLN significantly reduces the computation time when a

large number of time steps and/or conditions must be tested.

3.3.4 Solution of Network Equations Using Magnetic Flux

as a Variable

The solid line (nonlinear 3) shown in Fig. 3.14(a) is the total current computed

from the network equation (3.33), which employs the magnetic flux as a variable.

The resultant current agreed with that of FEM. This result demonstrated that the

equation can account for parameter variation by incorporating the time variation

of inductance, instead of using the parameter variation terms. The current flowing

through each inductor is shown in Fig. 3.14(b).
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3.4 Summary

A parameterized CLN method is formulated to include magnetic saturation, where

the dynamic behavior of an orthogonal basis is represented by the parameter vari-

ation terms. The terms are newly derived by an exact formulation of the param-

eterized CLN. The parameter variation terms play a significant role in the state

equations when the reluctivity ν is used, whereas they can be neglected when the

differential reluctivity νd is used. The computation time of nonlinear transient

analyses can be reduced significantly by applying the parameterized CLN when

the number of time steps is large.

Additionally, even when the reluctivity is used, the network equations using

the magnetic flux as a variable sufficiently consider the parameter variation of the

inductors. They are used in Chapter 6 to avoid the computation of parameter

variation terms.



Chapter 4

Analysis of Induction Motors

Using the Parameterized

Multi-port CLN

This chapter discusses the application of the multi-port CLN method to motor

analysis. Specifically, the multi-port CLN method is parameterized and applied

to the nonlinear analysis of IMs.

For application to an IM, the multi-port CLN is used for the rotor domain to

represent the eddy-current field in the rotor bars. As shown in Fig. 4.1, the stator

and rotor networks are constructed separately and connected on the interface.

Fig. 4.2 provides an overview of the IM analysis using the parameterized CLN

method. The circuit construction does not require frequency or slip information.

The coefficients of the Fourier decomposition of the electromagnetic field are

assigned as port variables between the stator and rotor, as stated in Section 4.1.1.

Therefore, the required number of ports can be more than a hundred depending

on the structure of the motor; using all port variables as the parameters is time-

consuming and unrealistic to implement. Appropriate parameters must be selected

to achieve both fast and accurate analysis. This point is described in detail in

Section 4.1.3.

In the CLN analysis, a rotor network and a lookup table of the stator matrix

and rotor are prepared beforehand in the offline calculation (the upper part of

47
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Figure 4.1: Network including the CLN for motor application.

Figure 4.2: Overview of the motor analysis using the parameterized CLN
method.

Fig. 4.2), and then the transient analysis is performed in the online calculation

(the lower part of Fig. 4.2).
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Figure 4.3: State variables on the interface I and Φ are defined such that
I · dΦ/dt represents the Poynting vector flowing through the interface.

4.1 Parameterized Motor CLN

4.1.1 Definition of State Vectors on the Interface

Vectors I and Φ of the motor CLN (see the circuit in Fig. 4.2) are defined by the

spatial harmonics of the circumferential magnetic field Hθ and the axial vector

potential Az on the interface. They represent the energy flow between the stator

and rotor. The detailed definition is given below.

Let us assume that the electromagnetic fields of the stator and rotor at time

t are represented as functions of (r, θ, z, t) and (r′, θ′, z′, t′), respectively, where r,

θ, and z are the radial, circumferential, and axial components, respectively, of the

cylindrical coordinate. For simplicity, it is assumed that the electromagnetic fields

are uniform along z. The relations between the stator and rotor coordinates are

r′ = r, θ′ = θ − ωRt, z′ = z, t′ = t, (4.1)

where ωR is the mechanical angular frequency, and the relationship between ωR

and synchronous angular frequency ωs is ωR = (1− s)ωs/p, where s and p are the

slip and number of pole pairs, respectively.

State variables are defined to represent the flow of the Poynting vector P on

the interface between the stator and rotor, as shown in Fig. 4.3. On the interface

at a radius r = rc, the partial differentiations satisfy the following relations:

∂

∂θ′
=

∂

∂θ
,

∂

∂t′
=

∂

∂t
+ ωR

∂

∂θ
. (4.2)
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The tangential field Hθ at the interface is given as the Neumann boundary

condition in the FE formulation. Applying the Fourier expansion to Hθ [33] leads

to

(4.3)Hθ(θ, t) =
√
2
∑
k

[Hck(t) cos(kpθ) +Hsk(t) sin(kpθ)] .

The coefficients comprise the vector I as

I = [Hc1, Hs1, Hc2, Hs2, · · · , HcK , HsK ]
T ∈ R2K . (4.4)

The subscripts ck and sk denote the cosine and sine components of the k-th har-

monics, respectively. The harmonic components are defined in the spatial period

Θc, and those higher than the K-th harmonics are truncated. The expansion of

the axial electric field Ez and vector potential Az in the same manner defines V

and Φ as

V = −rcΘcl[Ec1, Es1, Ec2, Es2, · · · , EcK , EsK ]
T,

Φ = rcΘcl[Ac1, As1, Ac2, As2, · · · , AcK , AsK ]
T, (4.5)

where V = dΦ/dt is satisfied. Here, l is the axial length of the analysis domain,

and rcΘcl corresponds to the area of the interface; it is multiplied such that I ·V
represents the total energy flowing through the interface in the analyzed domain.

A similar definition can be made on the rotor side interface. Coefficients

obtained using the Fourier expansion of the field H ′
θ, E

′
z and A′

z on the rotor side

interface comprise I ′, V ′ and Φ′ as follows.

I ′ = [H ′
c1, H

′
s1, H

′
c2, H

′
s2, · · · , H ′

cK , H
′
sK ]

T, (4.6)

V ′ = −rcΘcl[E
′
c1, E

′
s1, E

′
c2, E

′
s2, · · · , E ′

cK, E
′
sK]

T (4.7)

Φ′ = rcΘcl[A
′
c1, A

′
s1, A

′
c2, A

′
s2, · · · , A′

cK , A
′
sK ]

T. (4.8)

Boundary conditions H ′
θ(θ

′, t′) = Hθ(θ, t) and A′
z(θ

′, t′) = Az(θ, t) provide the

relations

I ′ = TI, Φ′ = TΦ, (4.9)
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where

T =


T1 O

T2

. . .

O TK

 (4.10)

is a rotation matrix with

Tk =

[
cos(kp

∫
ωRdt) sin(kp

∫
ωRdt)

− sin(kp
∫
ωRdt) cos(kp

∫
ωRdt)

]
, (4.11)

for k = 1, 2, ..., K. The electromotive force in the rotor, generated by the slip, can

be incorporated into the CLN using T .

The connection between V and V ′ is calculated as

V ′ =
dΦ′

dt
= T

dΦ

dt
+

dT

dt
Φ

= T (V + rcωRB) , (4.12)

where B is defined by the radial magnetic flux density Br = (1/rc)∂Az/∂θ on the

interface as

B = pΘcl[As1,−Ac1, 2As2,−2Ac2, · · · , KAsK ,−KAcK ]
T. (4.13)

The term rcωRTB in (4.12) corresponds to the motional electromotive force.

4.1.2 State Equations Solved in the Online Calculation

Stator The source current and magnetic flux with three-phase components are

represented by Is = [IU, IV, IW]T and Φs = [ΦU,ΦV,ΦW]T, respectively. The

source voltage Vs = [VU, VV, VW]T can be derived using Vs = dΦs/dt.

For simplicity, it is assumed that the stator-winding resistance is not included

in the CLN, and the iron-core conductivity is neglected. Accordingly, the stator-

side CLN is represented by a single stage with a single inductance matrix. The

stator equation is

Φ̃ = L̃Ĩ, (4.14)
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where

Φ̃ =

[
Φs

Φ

]
, Ĩ =

[
Is,

I

]
, L̃ =

[
L00 LT

10

L10 L11

]
. (4.15)

Rotor The rotor network employs the CLN for expressing the eddy currents in

the rotor bars. The state equations of the rotor CLN [33] are derived as follows:

d
(
L′

2n−1I
′
2n−1

)
dt′

−
d
(
L′

2n+1I
′
2n+1

)
dt′

= R′
2nI

′
2n,

I ′
2n = −I ′ − I ′

1 − · · · − I ′
2n−1, (4.16)

where I ′
2n−1 is the state vector of the current flowing through L′

2n−1 (see the rotor

network in Fig. 4.2). The magnetic flux at the interface Φ′ is equal to that through

the first-stage inductance L′
1; hence one obtains

Φ′ = L′
1I

′
1. (4.17)

Interface The substitution of (4.14) and (4.17) to the boundary condition (4.9)

results in the equation of the interface:

Φ = T−1L′
1I

′
1 = L10Is +L11I. (4.18)

Solution of the State Equations The variables Φs, I, and Φ at time t can

be derived by solving (4.14) and (4.16) with the boundary condition (4.18) and a

given source current Is. The total input power P1，air-gap power P2，and output

electric torque τ are calculated as follows [33]:

P1 = V T
s Is, P2 = −V TI, τ = rcI

TB. (4.19)

4.1.3 Parameterization of the Multi-port Network

By introducing the concept of parameterization to multi-port CLNs, this thesis

aims to conduct eddy-current simulations of a rotating induction motor reflecting

the magnetic saturation. A parameter vector α consisting of multiple parameters

is employed to represent the nonlinearity of multi-port CLN.
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Because the number of ports is large, using all the multiple-port variables as

parameters requires significant computational costs. An appropriate parameter set

must be selected to achieve fast and accurate analyses. The parameter selection

is described below.

Parameterization of the Stator Inductance For simplicity, only the stator

network is parameterized in the following, but the same procedure can be applied

to the rotor CLN. The stator inductance matrix is parameterized as

Φ̃ =

[
L00(α) LT

10(α)

L10(α) L11(α)

]
Ĩ = L̃(α)Ĩ, (4.20)

where the inductance matrix L̃ is a function of α.

Selection of Parameter Vectors for IM Analysis For the application of

rotating IMs, a balanced three-phase current

Is = Isrc

[
cos θsrc, cos(θsrc −

2

3
π), cos(θsrc −

4

3
π)

]T
(4.21)

is assumed, where Isrc and θsrc are the current magnitude and phase angle, respec-

tively. The simplest parameterization can be achieved using a parameter vector

α1 = [Isrc, θsrc].

In the offline calculation, first, the reluctivity matrix ν of the stator, which

is a function of the magnetic flux density, is determined by imposing the current

source (4.21) for various α1 values. For simplicity, when ν is determined, it is

assumed that I = 0, which corresponds to Hθ = 0 on the interface. Subsequently,

the stator inductance matrix is calculated using the determined ν (the derivation

is detailed in Section 4.1.4.) During the online calculation, the stator inductance

at α1 is obtained from a lookup table using spline interpolation.

However, when the rotor influence is significant (I ̸= 0), the source currents,

and therefore α1, do not directly represent the level of magnetic saturation. The

magnetic field distribution inside the stator is more strongly associated with the

magnetic fluxes at the source port or interface than the source currents. Hence,

other parameter vectors α2 = [Φcoil, θcoil] and α3 = [Φgap, θgap] are proposed here,

where [Φcoil, θcoil] and [Φgap, θgap] are the amplitude and phase angle of the coil flux
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and gap flux, respectively, calculated as follows:

Φcoil =

√
2

3
(Φ2

U + Φ2
V + Φ2

W), θcoil = tan−1

(
Φβ

Φα

)
, (4.22)

Φgap =
√

(Φ2
c1 + Φ2

s1), θgap = tan−1

(
Φs1

Φc1

)
. (4.23)

Here, [ΦU,ΦV,ΦW] are components of Φs, and [Φc1,Φs1] are the first two com-

ponents of Φ. The variables Φα and Φβ are amplitudes of magnetic flux of α

and β phase, respectively. They are obtained from ΦU, ΦV, and ΦW using Clarke

transformation:

[
Φα

Φβ

]
=

√
2

3

[
cos 0 cos 2

3
π cos 4

3
π

sin 0 sin 2
3
π sin 4

3
π

]
ΦU

ΦV

ΦW

 (4.24)

where ΦU + ΦV + ΦW = 0 is assumed.

In the offline calculation, a table containing the relation of α2 and α3 to α1

was created from (4.20), (4.22), and (4.23) under the condition that I = 0. During

the online calculation, the stator inductance was determined using the inductance

lookup table for α2 or α3, where I was not necessarily zero depending on the rotor

condition.

4.1.4 Offline Calculations

Preparation of the Stator Inductance For the computation of L̃(α1), first,

the nonlinear reluctivity matrix ν is determined by solving the magnetostatic

equation

CTν(Ca)Ca = js(α1). (4.25)

Here, ν is a function of the magnetic flux density Ca, and js(α1) ∈ RNe is the

current source density when Is(α1) is given to the coils. Subsequently, a1 is derived

with the determined ν by solving

CTνCa1 = junit = [jU, jV, jW, jc1, js1, jc2, js2, · · · , jcK , jsK ], (4.26)
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where junit ∈ RNe×(3+2K) represents a unit source as introduced in (2.74). Vectors

jU, jV, and jW represent current densities discretized in the FE space when a unit

current is provided to U, V, and W ports, respectively. The boundary integration

term (2.27) on the interface is represented by jck and jsk (k = 1, · · · , K), which

are the k-th harmonics of the circumferential magnetic field given as a unit source

along the interface. Finally, L̃(α1) = aT
1C

TνCa1 is obtained using a1 derived in

(4.26).

The relation of α2, α3, and α1 is also prepared in the offline calculation to

transform the parameters of L̃(α1), as explained in Section 4.1.3.

Preparation of the Rotor Network The rotor CLN consists of the induc-

tance and resistance matrices L′
1,R

′
2,L

′
3, · · ·, which are obtained by solving the

CLN recurrence formula (2.71) and (2.72) in the rotor domain of the FE space.

The boundary integration term (2.27) on the interface is represented by jck and

jsk (k = 1, · · · , K) comprising junit = [jc1, js1, jc2, js2, · · · , jcK , jsK ].

4.2 Numerical Results

The induction motor depicted in Fig. 4.4(a) was analyzed in the FE space. The

stator had 12 slots and 2 pole pairs. The rotor consisted of an iron core and 16

rotor bars. The mesh generated in the FE field is shown in Fig. 4.4(b). Because

the number of the rotor bars in half of the electrical cycle was an integer (4),

the antiperiodic boundary condition should be satisfied for one electrical period;

hence, the spatial period Θc = π/p was analyzed, and the even components,

which canceled out with the boundary condition, were neglected in (4.4)–(4.8).

The reluctivity of stator iron was given by (3.38) with the same coefficients used

in Section 3.3. The iron in the rotor was assumed to have a linear property with

reluctivity (1/4π)×104 m/H. The conductivity of the rotor bar was 4.0×107 S/m.

4.2.1 Offline Calculation of Stator Inductance

The lookup table of the stator inductance matrices was prepared for Isrc = 0–631

AT (20 divisions in log scale) and θsrc = 0–π (24 divisions). Because the induc-

tance did not change significantly in the saturated region, dividing the amplitude
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(a) (b)

Iron(Stator)
Coil Bar Air

Iron(Rotor)

Figure 4.4: (a) Induction motor model, (b) mesh generated in the finite element
space. The mesh for the stator and rotor domains is shown in different colors.

©2022 IEEE

(a) (b)

Figure 4.5: (a) U-phase diagonal component, and (b) three-phase diagonal com-
ponents (Isrc = 500 AT) of the inductance L00.

in the log scale reduced the number of parameter values without sacrificing the

accuracy. Fig. 4.5 shows the stator inductance matrix L00, wherein the U-phase

diagonal component with the source phase θsrc = 0 and π/2 is shown in (a). The

inductance decreased as the amplitude increased owing to the magnetic satura-

tion. The difference in inductances between the two phases also resulted from the

nonlinear magnetic characteristics; owing to the spatial distribution of the core

material, the degree of saturation depends on the source phase. Fig. 4.5(b) shows

the three-phase diagonal components with Isrc = 500 AT. The inductance was

minimal when the source phase corresponded to the center of the stator slots.

Fig. 4.6 depicts the relation between the state of the source current α1 and
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(a) (b)

Figure 4.6: (a) The coil flux Φcoil, and (b) the coil phase θcoil.

(a) (b)

Figure 4.7: (a) The gap flux Φgap, and (b) the gap phase θgap.

coil flux α2 obtained from (4.22). The coil flux in Fig. 4.6(a) clearly shows the

effect of magnetic saturation. The difference between the source and coil flux

phases in Fig. 4.6(b) is attributed to the stator structure.

Similar tendencies were observed with the gap flux α3. Fig. 4.7 shows the

gap flux and phase, which were computed using (4.23).

4.2.2 Online Computation

As shown in Fig. 4.8, the source-current amplitude Isrc increased from 0 to 500

AT in the first three cycles and remained constant for the last two cycles. The

frequency was changed from 10 to 100 Hz, and the slip was varied from 0 to 1.
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Figure 4.8: Amplitude of the input current Isrc.

Identical circuit parameters were used for all conditions because the CLN can

incorporate the change in rotation speed by modulating the matrix T in (4.10).

Fig. 4.9 shows transient waveforms of (a) V-phase magnetic flux ΦV, and (b)

torque τ . The black solid line shows the results of the full-order FE analysis,

whereas the dashed lines are those of the CLN. The results of the parameterized

CLN agreed with those of the FE analyses when α2 or α3 was used as the pa-

rameters, as predicted in Section 4.1.3. Fig. 4.10 compares the averaged torque

in the final cycle with various (a) slips and (b) frequencies. The nonlinear CLN

parameterized by α2 or α3 yielded results close to those of the FE analysis.

4.2.3 Computation Time

As mentioned in Section 2.4.4, the linear solutions in the FE domain dominated

the computation time in both FE and CLN analyses. The nonlinear equations were

solved by iterating linear solutions using the NR method. The average number of

iterations was 5.4 and 7.5 for the FE and CLN calculations, respectively. Hence,

the transient FE analyses with Nt time-steps required 5.4Nt linear solutions.

In contrast, the online calculation time of the CLN method was negligible

compared with that of the FEM (see Fig. 2.5). In the offline calculation, for each

stator-CLN parameter, a single nonlinear solution was conducted to determine

the reluctivity, and 35 linear solutions were executed to determine the inductance

matrix (3 phase + 32 harmonic components). The rotor CLN with two stages

required 32×2 linear solutions to derive R′ and L′ with 32 harmonic components.

Therefore, (7.5+35)Nα+64 linear solutions were required for the offline calculation.
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(a)

(b)

50 Hz, s = 0.3

50 Hz, s = 0.3

Figure 4.9: Transient waveforms of (a) V-phase magnetic flux, and (b) torque.
They were obtained using the FEM, linear CLN (L), nonlinear CLN parame-
terized by the source current (α1), coil flux (α2), and gap flux (α3). ©2022

IEEE

(b)(a)

Figure 4.10: Torque averaged in the final cycle with various (a) slips, and (b)
input frequencies. ©2022 IEEE

Because the degrees of freedom in the full FE analyses were more than that of

the stator or rotor model individually computed in the CLN method, the speed-up

ratio of the parameterized CLN to transient FE analyses was estimated to be more

than 5.4Nt/(42.5Nα+64), which was 4.1 for calculating 20 operating points shown

in Fig. 4.10. The number of parameter values and timesteps were Nα = 480 and



60 Chapter 4. Induction Motor Analysis Using the Parameterized CLN

Nt = 3114, respectively.

The speed-up ratio becomes particularly large for analyses with a large num-

ber of time steps, such as the evaluation of PWM input with high carrier frequen-

cies, the generation of an efficiency map with various frequencies and slips, and

coupled analyses with a control circuit.

4.3 Summary

The parameterized multi-port CLN method is developed and applied to an in-

duction motor with nonlinear magnetic characteristics. When the amplitude and

phase of either the coil or gap magnetic flux are used as the parameters, the de-

veloped method reproduces the transient waveforms obtained from full-order FE

analysis with various slips and frequencies. In the presented example, the CLN

method reduced the computation time by a factor of 4.1. The speed-up ratio

further improves as the number of time steps increases.



Chapter 5

Analysis of Variable Reluctance

Stepper Motors Using the

Parameterized Multi-port CLN

In this chapter, the parameterized multi-port CLN method is applied to the analy-

sis of a VR stepper motor. The reduced model represents the magnetic saturation

of the stator and the effect of eddy currents in the rotor core. This chapter further

shows that without any additional offline preparations, the CLN method can ana-

lyze the transient stepwise motion and step-out behavior, which should be studied

to evaluate the control methods of VR stepper motors.

5.1 Parameterized CLN for a Stepper Motor

For the stepper motor analysis, the parameterized CLN method is used in almost

the same manner as introduced in Chapter 4 (the overview is depicted in Fig. 4.2),

except for the following two points:

• A one-phase-on operation by switching three current inputs is as-

sumed instead of the three-phase balanced source. Consequently,

a switching sequence is employed, instead of the source phase, as

one of the parameters of the stator network.

• The equation of motion describing the load condition is simul-

taneously solved with the CLN during the online calculation to

61



62 Chapter 5. VR Stepper Motor Analysis Using the CLN Method

Figure 5.1: Stator network including the stator winding resistance Rs driven by
a voltage source Vsrc.

analyze dynamical behavior such as stepping motions; mechanical

analysis is coupled with the electromagnetic field analysis to sat-

isfactorily address the dynamical behavior of the stepper motor.

These two points are detailed below.

5.1.1 Definition of Source Current and Parameters

Generally, VR stepper motors are driven by a voltage source. However, a current-

source drive is assumed in the following description to simulate the motor behavior

separately from the power supply. A drive with voltage source Vsrc can also be

analyzed using the same parameterization method by adding the stator winding

resistance Rs to the stator network as shown in Fig. 5.1.

The induction motor analysis in Chapter 4 assumed the three-phase balanced

current source, whereas a one-phase-on operation by switching three current inputs

Is(α) =


[Isrc, 0, 0]

T (q = 1),

[0, Isrc, 0]
T (q = 2),

[0, 0, Isrc]
T (q = 3),

(5.1)

is assumed here, where α = (Isrc, q), Isrc is the amplitude of the current source,

and q is the input index. Although it is outside the scope of this study, a micro-

step operation with any phase number can be handled by assigning the index q to

the possible inputs.
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As in the case with the IM analysis, for simplicity, it is assumed that the stator

iron core is laminated, and its iron loss is negligible. Hence, the stator network

comprises a single-stage nonlinear inductance L̃(α), where α is the parameter

vector representing the nonlinear magnetic characteristics.

The result shown in Section 4.2.2 reveal that the preferred parameter to

achieve high accuracy is either the magnetic flux interlinking the coils or the flux

on the gap interface, but not the current source. Therefore, the parameter of L̃ is

transformed from α = (Isrc, q) to (Φcoil, q), where Φcoil is the amplitude of the coil

flux obtained using

Φcoil =

√
2

3
||Φs||2=

√
2

3
(Φ2

U + Φ2
V + Φ2

W). (5.2)

In the offline preparation of L00(α), the relation between Φs and Is is computed

using Φs = L00(α)Is, which is derived from (4.20) under the condition that I = 0.

5.1.2 Coupling with the Equation of Motion

The equation of motion of the rotor

J
d2θm
dt2

+D
dθm
dt

= τ − τL (5.3)

is solved at each timestep with the electromagnetic torque τ obtained in (4.19); τL

and θm are the load torque and mechanical angle, respectively; J and D are the

moment of inertia and friction coefficient, respectively, of the rotor and load.

5.2 Numerical Results

The concentrated-winding three-phase stepper motor, shown in Fig. 5.2, was ana-

lyzed. Although commercial VR stepper motors frequently have more than a few

dozen teeth, a simple model with eight rotor teeth and four stator poles was used

in this study. The current direction (+ or -) when the amplitude is positive and

the corresponding magnetic polarities (N and S) of the U, V, and W phases are

also indicated in Fig. 5.2.
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Figure 5.2: Configuration of the VR stepper motor model analyzed in this study.
©2022 IEEE

The same polynomial equation (3.38) was used to define the reluctivity of

the stator iron core. The effect of eddy current was one of the targets of the

study; hence, the rotor was assumed to be bulk iron with a constant reluctivity

and conductivity of (1/4π)× 104 m/H and 1.0× 106 S/m, respectively.

The inertia J and friction coefficient D were 1.0× 10−4 kgm2 and 5.0× 10−5

Nms, respectively. The initial rotor angle and speed were −π/36 rad and 0

rad/s, respectively. A fan-type load torque τL = bΩ3/|Ω| Nm was assumed, where

Ω = dθm/dt is the mechanical rotation speed.

The current inputs used in the simulation are shown in Fig. 5.3. From the con-

figuration shown in Fig. 5.2, a continuous rotation in the counterclockwise direction

was achieved by changing the index q in the sequence of q = 1, 3, 2, 1, 3, 2, · · ·.

5.2.1 Offline Computation

Static offline calculations were conducted before the transient analyses. The CLN

consisting of three stages was used for the rotor. Thirty-two harmonic components

constituted the state vectors I, I ′, Φ, and Φ′.

A lookup table of the stator inductance matrix L̃(α) was created for three

input indices (q = 1, 2, 3) and various amplitudes (Isrc =0–301 AT, 10 divisions

in the log scale for 4.77–301 AT). As in the case of the IM, the amplitude was

divided in a log scale to reduce the number of parameter values. Fig. 5.4(a)
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(a) (b)

Figure 5.3: (a) Trapezoidal and (b) rectangular current inputs. ©2022 IEEE

(a) (b)

Figure 5.4: (a) Self-inductances LUU, LVV, and LWW with q = 1. (b) Magnetic
flux interlinking the coils. ©2022 IEEE

shows the U, V, and W-phase self-inductances, LUU, LVV, and LWW, which are

the diagonal components of L00(α) in (4.20). The results are those with q = 1,

where only the U-phase current IU was supplied. The inductance LUU decreased

as IU increased owing to the magnetic saturation. Conversely, LVV and LWW were

almost constant; the effect of saturation was barely observed because of the salient

structure of the stator teeth. Fig. 5.4(b) shows the Φcoil derived from (5.2) when

q = 1. The same curve was obtained for q = 2 and 3 owing to the symmetric

structure of the stator.
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(a) (b)

Figure 5.5: Time evolution of (a) electromagnetic torque and (b) rotor angle
calculated using the parameterized CLNmethod (CLN), linear CLN (CLN Lin.),

and FE analysis (FE). ©2022 IEEE

5.2.2 Online Computation

The stator and rotor network equations were solved using the equation of mo-

tion. The stator inductance matrix L̃(Φcoil, q) was determined using cubic spline

interpolation.

Continuous Rotation First, continuous rotation was simulated with the cur-

rent input shown in Fig. 5.3(a) to demonstrate that the CLN method can handle

variable amplitudes. The coefficient of the load torque b was 1.0×10−3. Figs. 5.5(a)

and (b) show the electromagnetic torque τ and rotor angle θm, respectively, ob-

tained using the parameterized CLN method (CLN), linear CLN method (CLN

Lin.), and the FE analysis (FE). The results obtained using the parameterized

CLN agreed closely with the FE analysis, whereas those by the linear CLN were

inaccurate.

Stepwise Rotation and Step-out Motion Stepwise rotation, which is a

characteristic operation of stepper motors, was simulated with a longer switching

time. The current input with a constant switching time of 1 s and amplitude

Isrc = 20 AT (Fig. 5.3(b)) was assumed. A constant b = 5.0 × 10−4 was used for

the coefficient of the load torque.
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(a) (b)

Figure 5.6: (a) Torque and (b) rotor angle of stepwise rotation. The results of
the truncated network (Trunc.) are also shown. ©2022 IEEE

Fig. 5.6 shows the waveform of the torque and rotor angle. The figure also

includes the results obtained using the truncated network (Trunc.) Its rotor net-

work consisted of only L′
1, which represents the magnetostatic field, and the effect

of the eddy current was not included. In Fig. 5.6(a), a large instantaneous torque

was observed after the input was switched. As shown in Fig. 5.6(b), the stepwise

changes with oscillations were observed. The oscillation period of the CLN result

agreed with the FE analysis better than the truncated network, which indicated

that the CLN method can accurately simulate the effect of eddy current in the

rotor.

The step-out behavior was also analyzed. A smaller load torque with b =

2 × 10−5 and lower amplitude Isrc = 5 AT were employed for observing the step-

out motion. The results until 2 s are shown in Fig. 5.7. The torque computed using

the CLN and FE agreed well, as shown in Fig. 5.7(a). In Fig. 5.7(b), the stepwise

motion was observed for the first sequence (0–1 s), where the rotor rotated by 15◦.

However, when the current input was switched at 1 s, the oscillation was sufficiently

large to cause a step out, and the rotor angle transitioned in the negative direction.

The CLN showed good agreement with the FE analysis, whereas the truncated

network yielded an inaccurate result.

5.2.3 Evaluation of Computation Time

The time consumed in the online calculation of the CLN method was negligible

compared with the solutions of equations in the FE space (see Fig. 2.5). The
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(a) (b)

Figure 5.7: Time evolution of the (a) torque and (b) rotor angle when the load
torque was small. A step-out motion was observed at t = 1 s. ©2022 IEEE

computation time of the FE and CLN methods should be evaluated by comparing

the number of linear equations solved in the FE space.

The CLN method requires FE-space computations only for static offline cal-

culations, and 1269 linear equations were solved, including iterations for solv-

ing nonlinear equations by the NR method. The NR method was also used in

transient FE analyses, where the average number of iterations was 3.1 at each

timestep. Therefore, the speed-up ratio of the CLN method to the FE analysis

was 3.1Nt/1269 ≈ Nt/409, where Nt is the total number of timesteps. For the

FE analyses shown in Figs. 5.5–5.7, Nt was 8000; hence, the speed-up ratio was

19.5. The ratio increases with a larger Nt, which means that the CLN method can

be an effective tool for studying various operating conditions during the coupling

analysis with a control system.

5.3 Summary

A nonlinear MOR of the VR stepper motor is constructed using the parameterized

CLN method. The input index and amplitude of coil flux are used as the parame-

ters. The electromagnetic analysis using the CLN method is coupled with solving

the equation of motion. Its results agreed well with those of the FE analysis. The

parameterized CLN method is applicable to stepwise rotation and step-out motion

analyses without any additional offline preparations. The CLN method reduces

the computation time by a factor of 19.5.



Chapter 6

Hysteretic Magnetic Field as a

Nonlinear Problem

Empirical models of the magnetic hysteresis, such as Steinmetz’s equation, are

commonly employed for estimating the performance of electric machines. However,

they have difficulty in accurately evaluating the minor hysteresis loops when the

input waveform is distorted by PWM. Therefore, in FE analysis, the magnetic

characteristics of the iron core should be given at each FE step using a precise

hysteresis model; the problem with such analysis is that it can be extremely time-

consuming.

This chapter is dedicated to reducing the computation time of electric-machine

analysis considering the magnetic hysteresis characteristics. First, a semi-implicit

(SI) method for FE analysis is proposed to speed up the FE analysis. In this

chapter, the SI method is used to provide static hysteresis loops for modeling

the inductor of the hysteretic CLN, as well as reference results of eddy-current

analysis. Next, a hysteretic model order reduction method for electric machines

is established using the parameterized single-port CLN method. The hysteresis

effect is represented by the first inductor of CLN. The developed method is applied

to the analysis of an iron-core inductor.

69
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6.1 Semi-implicit Method for FE Analysis

The play model is selected for the modeling method of the magnetic hysteresis

characteristics in this thesis because of its superiority to other methods, which is

detailed in Appendix B. An implicit scheme is generally used to solve the hysteretic

field equations in FE analysis to achieve numerical stability. The NR method is a

widely employed iteration method; however, it can suffer from poor convergence

owing to the discontinuous derivative of the hysteretic curve, particularly when the

play model is used. Moreover, multiple iterations cost nonnegligible computation

time. Instead of the NR method, the SI method is introduced in the following to

update the magnetic field to avoid iterative computations in the FE analysis. The

formulations introduced in this chapter are expected to apply to both 2D and 3D

problems; 2D analysis results of an inductor are presented to validate the method.

6.1.1 SI Method for Transient Analysis

In the following, it is assumed that the analysis domain consists of multiple iron

sheets. Because the divergence of the eddy currents flowing in each sheet must be

zero, the scalar potential must be used as a variable. It is further assumed that

the model is uniform in z direction, and the source current or voltage is imposed

in the z direction; the 2D analysis in the x–y plane is discussed below because of

the uniformity of electromagnetic field in the z direction.

Let the number of iron sheets be NL, and ϕk (k = 1, 2, · · · , NL) be the scalar

potential at the k-th sheet. The gradient of the scalar potential ez,k(= ∂ϕk/∂z)

can be assumed to be constant at each sheet. The weak form of the eddy-current

equations (2.41) and (2.42) are represented as follows:

CTνCa+ σ
da

dt
+ Sez = js, (6.1)

STda

dt
+ Pez = 0, (6.2)

where ez = [ez,1, · · · , ez,NL
]T, and

S = {Sik} ∈ RNe×NL , Sik =

∫
Ωk

σwe
idΩ, (6.3)

P = diag (P11, P22, · · · , PNLNL
) ∈ RNL×NL , Pkk =

∫
Ωk

σdΩ. (6.4)
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The time evolution of (6.1) and (6.2) can be solved using the implicit Euler

time-stepping scheme:[
σ
∆t

S

ST ∆tP

]
ym+1 =

[
−CThm+1 +

σam

∆t
+ jm+1

STam

]
, (6.5)

where

ym =

[
am

ez,m

]
. (6.6)

A variable vector with the subscript m denotes a vector of the m-th time step. The

magnetic field vector hm+1 is determined from the magnetic flux density vector

bm+1 = Cam+1 based on the hysteretic magnetic characteristics of the material.

In this setting, the vector play model [39] is used to determine h at each finite

element. A brief introduction to the vector play model is presented in Appendix

B.3.

The NR method frequently exhibits poor convergence in FE analysis when

the differential reluctivity matrix νd
m = νd(bm) is discontinuous. To solve this

problem, a linear approximation of the magnetic field

hm+1 ≈ hm + νd
m (bm+1 − bm) (6.7)

is introduced here. By substituting (6.7) into (6.5), the following SI formulation

is obtained:[
σ
∆t

+Kd S

ST ∆tP

]
ym+1 =

[
−CThm +

(
Kd + σ

∆t

)
am + jm+1

STam

]
, (6.8)

which is a linear equation for ym+1.

6.1.2 Combination With the Predictor–Corrector Scheme

As (6.8) employs a linear approximation, its accuracy is expected to be insufficient;

the predictor–corrector (PC) scheme can be introduced to improve and evaluate

the accuracy. The PC scheme is a multi-step algorithm conventionally employed

for solving ordinary differential equations; first, an integration is executed to obtain
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Figure 6.1: Procedure of the SI method combined with the PC scheme.

a prediction, based on which a nonlinear function is updated, and then a more

accurate solution is obtained.

A three-step procedure is proposed here, as shown in Fig. 6.1, for combining

the PC scheme with the SI method. Detailed descriptions are provided below.

Step 1: The prediction of y at the (m + 1)-th time step is derived from (6.8) as

a predictor y∗ = [a∗T, e∗T
z ]T:[

σ
∆t

+Kd S

ST ∆tP

]
y∗ =

[
−CThm +

(
Kd + σ

∆t

)
am + jm+1

STam

]
, (6.9)

Step 2: νd is corrected based on the predictor as

νd∗ = 0.5× (νd
m + νd(b∗)), (6.10)

where b∗ = Ca∗.

Step 3: Equation (6.8) is solved again using the updated reluctivity νd∗ as[
σ
∆t

+Kd∗ S

ST ∆tP

]
ym+1 =

[
−CThm +

(
Kd∗ + σ

∆t

)
am + jm+1

STam

]
,(6.11)

where Kd∗ = CTν∗
dC. The solution to (6.11) is defined as the corrector.
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6.1.3 SI Method for Static Analysis

The SI method can also be applied to static problems; instead of (6.5), the following

magnetostatic equation is solved:[
O S

O P

]
ym+1 =

[
−CThm+1 + jm+1

0

]
, (6.12)

from which ez,m+1 = 0 is obtained. Equation (6.12) is further simplified to

Sam+1 = −CThm+1 + jm+1. (6.13)

The predictor and corrector of the static analysis are obtained as

Kda∗ = −CThm +Kdam + jm+1, (6.14)

Kd∗am+1 = −CThm +Kd∗am + jm+1, (6.15)

instead of (6.9) and (6.11), respectively.

6.1.4 Numerical Results

The 2D laminated iron-core inductor model used in the analysis is shown in

Fig. 6.2(a). Point A in the figure indicates the probe for obtaining data from

the local field. The iron core comprised ten layers with a thickness of each steel

sheet of 0.475 mm. The fill factor was 95 %. The created mesh shown in Fig. 6.2(b)

consisted of 10486 triangular elements. The linear triangular element was used for

the vector potential with its degree of freedom being 5337.

The vector hysteretic property h(b) of the iron core in the FE analyses was

calculated using the vector play model, which was identified by the measurement

data of the non-oriented silicon steel sheet JIS 50A470. The B–H loops computed

by the vector play model are shown in Fig. 6.3, in which the normal magnetization

curve is plotted as a blue line. The conductivities of the steel sheet and the coil

were 2.0× 106 and 6.0× 107 S/m, respectively.

A subtle but important point is that the analysis was implemented on the

free FE software FreeFEM++ [40]. To the author’s best knowledge, this is the

first implementation of FE analysis employing the play model on free software.
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(a) (b)

Figure 6.2: (a) Iron-core inductor used in the simulation. Point A indicates the
probe for obtaining data from the local field. The unit of the dimension is mm.

(b) Mesh created in (a). ©2023 IEEE

Figure 6.3: Symmetric B–H loop characteristics of the iron core given by the
vector play model.

To evaluate the error of the SI method, a problem with good convergence was

analyzed, and bNR = CaNR was used as the reference solution. Here, aNR denotes

the solution to (6.5), which was solved iteratively using the NR method. The

formulation for obtaining the variation in the NR method is shown in Appendix

A.
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Figure 6.4: Results of the SI method with the sinusoidal electric field input Es,
which is plotted in (a). (b) Magnetic flux density at the probe. (c) PC difference

dPC and errors, eP and eC. ©2023 IEEE

6.1.4.1 Transient Analysis

Sinusoidal input A cosine electric field input Es with an amplitude of 1.5

V/m and frequency of 50 Hz, as shown in Fig. 6.4(a), was applied to the coil. One

period (0–0.02 s) was analyzed, and the number of time steps was 120.

Fig 6.5(a) shows Hy–By locus at probe A (see Fig. 6.2(a)). The locus of the

SI method, which was the corrector obtained from (6.11), conformed with that of

the NR method. The magnetic flux density at the probe is plotted in Fig. 6.4(b),

which also shows good agreement.

Fig. 6.4(c) shows the differences among b∗, bm+1, and bNR, where b
∗ and bm+1

were obtained from (6.9) and (6.11), respectively. The dotted line indicates the

PC difference dPC, which is the difference between the predictor and corrector,

calculated as dPC = ave (|b∗ − bm+1|). The function ave was defined as ave(x) =

Σixi/Nf,iron, where Nf,iron and xi indicate the number of finite elements and value of

the i-th element in the iron core region, respectively. The black and red solid lines

correspond to the errors of the predictor ep = ave (|b∗ − bNR,m+1|) and corrector

eC = ave (|bm+1 − bNR,m+1|), respectively. The PC scheme effectively reduced the

error, as evidenced by the lower value of ec compared with ep.
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(a) (b)

Figure 6.5: Hy–By locus of the SI and NR method with (a) sinusoidal and (b)
PWM inputs. ©2023 IEEE

PWM input Subsequently, a PWM input, shown in Fig. 6.6(a), was applied to

the coil. The amplitude was 3 V/m, and the fundamental and carrier frequencies

were 50 Hz and 2.25 kHz, respectively.

Fig. 6.5(b) shows the Hy–By locus at the probe. The SI method accurately

reproduced the minor loops, which was also confirmed in the waveform of By,

shown in Fig. 6.6(b).

The error evaluation is presented in Fig. 6.6(c). When the input voltage was

switched, the differential reluctivity was discontinuous, resulting in an inaccurate

prediction and an increase in eP. However, in such instances, dPC increases and eC

decreases, which indicates that the modification provided by (6.10) is also effective

for discontinuous input.

6.1.4.2 Static Analysis

Magnetostatic analysis was conducted using a cosine electric field input Es with

an amplitude of 5.6× 10−2 V/m shown in Fig. 6.7(a). The phase of the input was

varied for 0–5π/2 divided into 120 steps.

Fig. 6.8(a) shows the Hy–By loop at probe A, and the magnetic flux density

at the probe is plotted in Fig. 6.7(b). The result of the SI method generally

agreed with that of the NR method. Although some discrepancies between the

two methods were observed in the B–H loop, the resultant I–Φ loops, shown in

Fig. 6.8(b), were almost identical, where I and Φ are the current flowing through
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Figure 6.6: Results of the SI method with the PWM input shown in (a). Mag-
nified figures are shown on the right. The plotted parameters in (b) and (c) are

the same as those in Fig. 6.4. ©2023 IEEE

the coil and magnetic flux generated in the core, respectively. This result validated

the use of the SI method for computing static loops, which are required for the

identification of the play model, as described in Section 6.2.2.

The differences among the predictor, corrector, and solution of the NR method

are shown in Fig. 6.7(c). When the change in input was large, the predictor error

eP increased owing to the significant change in the differential reluctivity. The PC

difference was generally similar to eP. The corrector error eC was lower than eP,

which indicated that the differential reluctivity was effectively corrected by the

PC scheme.

The NR method conducted about 4.2 solutions for iterative computation until

convergence at each step, whereas the SI method required two solutions. The

NR method also necessitated a line search at several steps, and the search was

conducted five times in total.

6.1.4.3 Comparison of the computation time

The computation was performed using the finite element software FreeFem++ [40]

on a computer with a 12th Gen Intel(R) Core(TM) i7-12700 2.10 GHz CPU. For

the PWM input with the same number of time steps, the computation times of
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Figure 6.7: Results of a static analysis using the SI method with the sinusoidal
input shown in (a). The plotted parameters in (b) and (c) are the same as those

in Fig. 6.4.

(a) (b)

Figure 6.8: Static (a) Hy–By and (b) I–Φ loops of the SI and NR method.

the SI and NR methods were 8880 and 20650 s, respectively. The speed-up ratio

of the proposed method was 2.33.

6.2 Hysteretic CLN Method

In this section, a method for incorporating hysteretic magnetic characteristics into

the parameterized single-port CLN method is discussed.
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Figure 6.9: (a) Cauer ladder network (CLN) without hysteresis, where the cir-
cuit elements are functions of flux Φ1. (b) CLN with hysteresis, constructed by
replacing the inductances of (a). The first stage inductance, representing the

DC magnetic field, incorporates magnetic hysteresis characteristics.

6.2.1 CLN Without Hysteresis

CLN Recurrence Formula for a Laminated Core First, the nonlinear

network elements of the CLN are generated without considering hysteresis, as

depicted in Fig. 6.9(a). The circuit elements R2k and L2k+1 are systematically ob-

tained by solving the recurrence formula as introduced in Section 2.4. Specifically,

in this chapter, the 2D analysis involving a laminated core region is conducted;

hence, the scalar potential must be introduced to impose the condition that the

eddy currents do not flow among the multiple domains. The recurrence formula

including the scalar potential [34, 35] is introduced in the following.

The CLN recurrence formulae (2.61) and (2.62) are reintroduced here:

K(a2n+1 − a2n−1) = R2nσe2n, (6.16)

C (e2n+2 − e2n) = − 1

L2n+1

Ca2n+1. (6.17)

Let ϕ2n+2 be a variable vector of the scalar potential discretized in the FE space

when e2n+2 is generated; (6.17) is rewritten as

e2n+2 − e2n = − 1

L2n+1

(a2n+1 +Gϕ2n+2) . (6.18)
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The term ϕ2n+2 merely adjusts the vector potential to satisfy specific conditions

depending on the setting of analyses. It does not appear in the circuit representa-

tion. The CLN recurrence formula (6.16) and (6.17) are still satisfied when a2n+1

is substituted to a new vector potential basis a′
2n+1 = a2n+1 +Gϕ2n+2; hence, the

bases produced from (6.16) and (6.18) retains orthogonality.

With the assumption of a laminated core with NL layers introduced in Section

6.1, the condition that the divergence of the eddy currents is zero in each domain

can be imposed by determining ez,2n+2 = Gϕ2n+2 from

STa2n+1 + Pez,2n+2 = 0. (6.19)

(6.19) is further transformed to

ez,2n+2 = −P−1STa2n+1. (6.20)

The circuit elements R2k and L2k+1 are obtained from the recursive solution of

(6.16), (6.18), and (6.20).

Parameterization Chapter 4 shows that the computational accuracy for motor

applications is improved by using the magnetic flux as a parameter. Hence, the

method here also employs ν = ν(Φ1), where Φ1 = L1I1 is the first-stage magnetic

flux. Consequently, R2k and L2k+1 are also functions of Φ1, as shown in Fig. 6.9(a).

State Equations Section 3.3.4 shows that the state equations (3.31) and (3.32)

directly derived from the magnetic flux can incorporate the parameter variation.

The same equations are employed for hysteretic model order reduction, and (2.52),

(3.31), and (3.32) are rewritten into the form of matrix calculation as

dΦ

dt
= v′

s −R′i, (6.21)

where

Φ = [Φ1, · · · ,Φ2Ns−1]
T , (6.22)

vs = [Vs, 0, · · · , 0]T , v′
s = UTvs, (6.23)

R = diag (R0, · · · , R2Ns−2) , R′ = UTRU , (6.24)

i = [I1, · · · , I2Ns−1]
T . (6.25)
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The matrix U is an upper triangular matrix with unity components.

6.2.2 Construction of the Hysteretic CLN

For inclusion of the hysteretic property, the first inductor L1 in Fig. 6.9(a) is

replaced with a hysteretic inductor, as shown in Fig. 6.9(b). Because the first

inductor provides magnetostatic property, its hysteretic property is given as de-

scribed below.

First, symmetric I–Φ loops are generated through 2D FE magnetostatic anal-

ysis by applying a DC voltage input to the machine. The hysteretic magnetic field

at each finite element is represented by the vector play model [39], whose input

and output are magnetic flux density B and magnetic field H , respectively.

Here, the SI method for static problem combined with the PC scheme (Section

6.1.3) is employed as an iterative solution method instead of the NR method to

obtain the static loops faster with better convergence. Next, the scalar play model

[41] is identified to obtain I1 from Φ1 using the obtained I–Φ loops as

I1 = P (Φ1) =

Np∑
n=1

fn(pζn (Φ1)), (6.26)

where fn(pζn) is a single-valued shape function representing the magnetic satu-

ration, and pζn is the play hysteron; Np is the number of play hysterons. The

hysteron is given by

pζn (Φ1) = max(min(p0ζn ,Φ1 + ζn),Φ1 − ζn), (6.27)

where p0ζn is the hysteron in the previous step, ζn = (n−1)Φs/Np is the half-width

of the hysteron, and Φs is the maximum magnetic flux at which hysteresis can be

represented. The shape functions are determined using the method described in

Ref. [41].

6.2.3 Online Calculation of Hysteretic CLN

An implicit time-stepping scheme is generally used to solve the time evolution of

state equations to achieve numerical stability. Equation (6.21) can be solved using
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the modified implicit Euler method:

Φm+1 −Φm

∆t
= v′

s,m+1 −R′ (Φm) im+1, (6.28)

where a state variable with the subscript m denotes the variable at the m-th time

step, ∆t indicates the time step, and im+1 = i (Φm+1). It is called the “modified”

implicit Euler method because R′ is determined by Φm instead of Φm+1. The

numerical result is empirically known to be stable even when the modified method

is used.

The NR method is a widely employed iteration method to solve nonlinear

equations such as (6.28); however, when a hysteretic element is included, it can

suffer from poor convergence. The SI method with the linear approximation in-

troduced in Section 6.1 can be used to avoid nonlinear iterative solutions:

i (Φm+1) ≈ i (Φm) +N (Φm) (Φm+1 −Φm) , (6.29)

where matrix N is

N =
∂i

∂Φ
= diag (N1, N3, ..., N2Ns−1) . (6.30)

Substituting (6.29) into (6.28) yields the following equation:

F (Φm+1)SI =
Φm+1 −Φm

∆t
− v′

s,m+1

−R′ (Φm) i
[
(Φm) +N (Φm)

(
Φm+1 −Φm

)]
= 0. (6.31)

This is a linear equation for Φm+1. Hence, iterations for nonlinear solutions are

not required.

The component N1 is determined from the hysteretic properties provided by

the scalar play model (see Fig. 6.9(b)), where N1 = dP (Φ1)/dΦ1 is derived using

(6.26).

There are several choices to represent N2k+1 (k = 1, 2, · · · , Ns − 1). Here, the

reversible component Prev(Φ1) = f1(Φ1) of the play model is employed based on

the results reported in Ref. [23]; the B–H curve obtained from the CLN showed

good agreement with the measurement and FE analysis results particularly when

the inductors L2k+1 (k = 1, 2, · · ·) are determined from the reversible component.
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This is because high-order modes contribute significantly to the rotation of mag-

netization but not significantly to the magnetic domain wall motion. The slope of

the reversible component is obtained by using only the first hysteron introduced

in Appendix B.2. To preserve the ratio of the inductances, N2k+1 is calculated as:

N2k+1 =
L1(Φ1)

L2k+1(Φ1)

dPrev(Φ1)

dΦ1

, (6.32)

where L1, L3, · · · are given by the non-hysteretic CLN introduced in Section 6.2.1.

6.2.4 Numerical Analysis

The model shown in Fig. 6.2 was analyzed, where the characteristics of the iron

core were modeled using the vector play model with the same measurement data

as the one introduced in Section 6.1.4. The conductivities of the steel sheet and

coil were 1.0× 106 and 4.0× 107 S/m, respectively.

6.2.4.1 Offline Calculation

Preparation of Network Elements The CLN elements L2k+1 and R2k ob-

tained using the non-hysteretic CLN recurrence formula including the scalar po-

tential (6.16), (6.18) and (6.20) are shown in Fig. 6.10 (a) and (b). Before the

recurrence formula was solved, the distribution of ν was determined as a function

of I1 through magnetostatic analysis. The normal magnetization curve was used

as the magnetic property. Fig. 6.10(c) and (d) show the resistance R2k and ratio

L2k+1/L1 in (6.32) as a function of Φ1, respectively.

Identification of the Scalar Play Model The I–Φ loops obtained using the

static FE analysis are shown in Fig. 6.11 (a). Fifty-two loops were generated (four

of them are plotted), the maximum flux Φs was 5.2× 10−3 Wb, the amplitude of

the r-th loop was Φr = 2rΦs/Np (r = 1, ..., Np/2), and the number of hysterons

was Np = 104.

The solid black lines in Fig. 6.11(b) show I–Φ loops generated using the iden-

tified scalar play model. The green line shows the characteristics of the reversible

component.
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(a) (b)

(c) (d)

Figure 6.10: (a) Inductance and (b) resistance of the CLN as functions of I1
without hysteresis characteristics. (c) CLN resistances as functions of the first
stage magnetic flux Φ1 = L1I1. (d) Ratio of the inductances L2k+1/L1 (k =

1, 2).

6.2.4.2 Online Calculation

A PWM input was applied to the coil. The amplitude was 1.5 V/m; the funda-

mental and carrier frequencies were 50 Hz and 10.25 kHz, respectively, and the

simulated time range was 0–1.9×10−2 s. The CLN constituted three stages. When

B was small, the skin depth at 10.25 kHz was 0.14 mm, which was sufficiently

thinner than the thickness of the iron sheet (0.5 mm); hence, the carrier wave was

expected to have a considerable influence on the eddy current.

Fig. 6.12 (a), (b), and (c) show the locus of the total current It and the first-

stage magnetic flux Φ1 obtained using the hysteretic and non-hysteretic transient

FE analysis (red and blue lines, respectively), proposed CLN method (solid black

line), and CLN truncated at R2 (dotted black line). The clear difference between
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(a) (b)

Figure 6.11: (a) Symmetric I–Φ loops obtained using FE static analysis. Four
loops are shown out of 52 generated loops. (b) Loops produced using the iden-

tified scalar play model.

the non-hysteretic and hysteretic FE analyses demonstrates the importance of

considering magnetic hysteresis. The proposed CLN method yielded a locus close

to the transient hysteretic FE analysis, which showed that the CLN method can

accurately simulate the hysteretic eddy-current field with only six circuit elements,

even when the input has high-frequency components. In contrast, the truncated

CLN failed to represent the curves of the minor loops, indicating that L3 and L5

played a key role in modeling the minor loops.

Fig. 6.12 (d) compares the computed iron losses. The result obtained using

the proposed CLN method was close to that obtained using the FE analysis.

6.2.4.3 Computation Time

The linear solutions in the FE space dominate the computational cost. Identical

finite elements were used for the FE space computations in the FE and CLN

analyses. Therefore, the following discussion compares the required number of

linear solutions between the transient FE analysis and CLN method, assuming

that the computation time of the CLN state equations is negligible and the vector

play model is prepared beforehand.

The transient FE analysis shown in Fig. 6.12 required 398325 linear solutions,

where the average number of Newton iterations was 2.0. The number of time steps

was 198960, which was large but necessary to ensure high accuracy.
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(a) (b)

(c) (d)

Figure 6.12: (a) Locus of the total current It and magnetic flux Φ1 obtained
using the non-hysteretic and hysteretic FE analyses (blue and red lines, respec-
tively), proposed CLN method (solid black line), and truncated CLN (dotted
black line). (b)(c) Magnified figures of (a). (d) Comparison of the iron loss.

In the CLN method, loop generation required 52 × 150 × 2 = 15600 linear

solutions, where 52 loops were computed with 150 phase divisions and two itera-

tions per phase. The generation of CLN elements required 27 × (4.8 + 3) = 210

linear solutions, where each parameter I1 = 0–50 A (27 divisions in the log scale)

required 4.8 iterations on average to determine the reluctivity matrix and three

linear solutions to solve the recurrence formula of the three-stage CLN. Thus, the



Chapter 6. Hysteretic Magnetic Field as a Nonlinear Problem 87

total number of linear solutions in the CLN method was 15810.

The speed-up ratio of the CLN to the FE analysis was 398325/15810≈25.2.

It increases for analyses with a larger number of time steps and simulation cases.

6.3 Summary

The transient analysis of the hysteretic magnetic field is studied as a nonlinear

problem. First, the SI method is introduced to speed up the analysis and solve the

problem of ill convergence, which frequently occurs in the hysteretic calculation.

An iterative procedure is avoided by using the linear approximation, and the

combination with the PC method improves the accuracy. In numerical analyses,

the B–H loci of the SI method conformed with those of the NR method both in

transient and static analyses, and the error was effectively reduced by the PC

scheme. The proposed SI method reduced the computation time by a factor of

2.33 compared with the NR method with the same number of timesteps.

Subsequently, a parameterized CLN method incorporating hysteresis charac-

teristics is developed and applied to the nonlinear transient analysis of an iron-core

inductor. The first-stage inductor is modeled using the scalar play model, which

is identified by the static loops obtained using the SI method. The I–Φ locus

obtained using the proposed method reproduces that obtained using the FE tran-

sient analysis. The linear solutions are reduced by 1/25 compared with the FE

transient analysis.
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Chapter 7

Concluding Remarks

This thesis has developed the parameterized CLN method to establish a MOR

method that considers nonlinear magnetic characteristics. First, the effect of the

parameter variation on the CLN method is numerically studied. Subsequently, the

parameterized CLN method is used to analyze an IM and a VR stepper motor.

It is also extended to transient analysis incorporating the magnetic hysteresis

characteristics.

The contributions and findings of this thesis are summarized as follows:

Chapter 3

• A parameterized CLN method is formulated to incorporate the

nonlinear magnetic characteristics. The parameter variation terms,

which represent the dynamic behavior of an orthogonal basis, are

derived through an exact formulation of the parameterized CLN.

• The parameter variation terms play a significant role in the state

equations when the reluctivity is used, whereas they are negligible

when the differential reluctivity is used.

• The circuit equations using the magnetic flux as state variables

yield an acceptable result without the parameter variation terms.

Chapter 4

• The parameterized multi-port CLN method is developed and ap-

plied to an induction motor analysis.

89
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• The choice of parameters is important to achieve fast and accurate

analysis. When the amplitude and phase of coil magnetic flux

or gap magnetic flux are used as the parameters, the developed

method is effective at various slips and frequencies.

Chapter 5

• The parameterized multi-port CLN method is applied to the anal-

ysis of a VR stepper motor. The amplitude of the coil magnetic

flux and step sequence are used for the parameters.

• The parameterized CLN method shows good agreement with the

FE method even for analyses of dynamical operations, such as

stepwise rotation and step-out motion, without any additional

offline preparations.

Chapter 6

• The magnetic hysteresis characteristics of the iron core are in-

corporated into the parameterized single-port CLN method. The

first-stage inductance is determined using the play model as a

modeling method of hysteresis.

• The SI method is proposed for the hysteretic FE analysis. It is

used to produce static loops, which are required to prepare the

play model, with less computation time than the NR method. It

is also effective in avoiding iterative calculations and reducing the

computation time of eddy-current analysis.

Chapters 3–6

• The computation time of nonlinear transient analyses can be sig-

nificantly reduced by applying the parameterized CLN when the

number of time steps is large. The threshold number of time steps

is derived from the comparison of the linear solutions required in

the FEM and CLN.

• All the presented analyses were conducted on FE analysis software

FreeFEM++, including the computation of magnetic hysteresis at

each element using the play model.
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The limitation of the CLN method is that the derivation of the circuit elements

is time-consuming, i.e., it requires nonnegligible time for offline computation. On

the other hand, the CLN method is suitable for analyzing the same geometry with

a large number of time steps and/or various conditions.

Expected future research points are as follows:

• The nonlinearlization of the rotor network in the multi-port CLN.

• Inclusion of the iron loss in the stator and rotor regions of the

parameterized multi-port CLN method. The iron loss in both

regions was incorporated into the CLN using the homogenization

method in [33], where the linear magnetic characteristics were

assumed. The same approach may be useful for the parameterized

CLN.

• Error evaluation of the parameterized CLN method for determin-

ing the required number of stages. The difference in the recon-

structed electromagnetic field is desirable for the definition of the

error. The error estimation methods established in the frequency

domain [42–44] might be extended to the time domain analysis.

• Application of the hysteretic CLN method to motor analysis.

• Using the parameterized CLN as a behavior model for exploring

optimal control of IMs and VR stepper motors. The eddy currents

under high-frequency input are expected to be considered in the

optimization.

Concerning the last point, the parameterized CLN method can facili-

tate the exploration of optimal control of electric machines, particularly

IMs and stepper motors, even when the eddy currents largely influence

the machine characteristics under high-frequency input. It may con-

tribute to achieving the required motor drive with less restriction from

the finite availability of energy and rare-earth materials.
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Appendix A

Newton–Raphson Method for

Hysteretic FE Analysis of

Laminated Cores

This chapter provides a formulation for an iterative solution of a nonlinear eddy-

current problem using the Newton–Raphson (NR) method, where the implicit

Euler method is employed as a time marching scheme. Here, it is assumed that

the hysteretic magnetic characteristics are computed using a model whose input

is the magnetic flux density and outputs are the magnetic field and differential

reluctivity. For convenience, (6.5) is rewritten as

Mym+1 = g, (A.1)

where

M =

[
σ
∆t

S

ST ∆tP

]
, ym+1 =

[
am+1

ez,m+1

]
,

g =

[
−CThm+1 +

σam

∆t
+ jm+1

STam

]
. (A.2)

When

F (ym+1) = Mym+1 − g = 0 (A.3)
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is solved using the NR method with the nonlinear magnetic characteristics, h in

the vector g is corrected at each NR iteration. The variation δym+1 for updating

the solution at each iteration is derived from

F (ym+1 + δym+1) ≈ F (ym+1) +
∂F

∂ym+1

δym+1 (A.4)

= F (ym+1) +M2δym+1 = 0, (A.5)

where

M2 = M − ∂g/∂ym+1. (A.6)

Let hk be the magnetic field at the k-th nonlinear iteration; M2 is calculated as

M2 =

[
σ
∆t

+ ∂(CThk)
∂a

S

ST ∆tP

]
(A.7)

=

[
σ
∆t

+CTνk
dC σS

ST ∆tP

]
, (A.8)

where νk
d is the differential reluctivity matrix at the k-th nonlinear iteration.
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Play Model

B.1 Macroscopic Models of Magnetic Hysteresis

The magnetic hysteretic characteristics of the ferromagnetic materials are the

dominant sources of loss in electric machines. In the analysis of electric ma-

chines, macroscopic modeling methods, such as Jiles–Atherton (J–A) model [45],

Preisach model, and play model, are commonly employed to represent the hys-

teretic magnetic characteristics of the iron core. These macroscopic hysteretic

modeling methods are constructed based on the measured magnetic properties of

the core materials.

The play model is mathematically equivalent to but more computationally

efficient than the Preisach model [46], which was shown to represent minor loops

more accurately than the J–A model [47]. The play model for representing hys-

teretic characteristics is introduced in the following.

B.2 Scalar Play Model

The play model is a phenomenological model that employs play hysterons with

various widths ζ (Fig. B.1) to represent the “play” that contributes to hysteresis

characteristics. Suppose X and Y are the scalar input and output of the model,

respectively. When the input X transitions from increasing to decreasing (or from

decreasing to increasing), the output Y does not begin to decrease (or increase) in-

stantly but exhibits a delay in response. This represents the adherence and energy
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dissipation around the impurities and lattice defects in ferromagnetic materials

when the magnetic domain wall moves.

Figure B.1: Play hysteron with its width ζ [1]. It responds with some delay
when the change in input X is inverted.

The play model represents hysteretic characteristics through the sum of play

hysterons as

Y = P (X) =

Np∑
n=1

fn(pζn (X)), (B.1)

where Np is the number of hysterons, and fn(pζn) = f(ζn, pζn) is a single-valued

function called a shape function representing the saturation. The n-th play hys-

teron pζn is represented as

pζn (X) = max(min(p0ζn , X + ζn), X − ζn). (B.2)

Here, p0ζn is the value of hysteron at the previous step, and ζn = (n− 1)Xs/Np is

the half-width of the hysteron. The output Y is assumed to become a single-valued

function when X > |Xs|.

Practically, the shape functions are prepared in the form of piecewise linear

functions. Let j denote the index for the value of hysteron p divided by an interval

∆p = 2XS/Np, and pn,j = j∆p−XS + ζn (j = 0, · · · , Np −n+1). The n-th shape

function within the range of pn,j−1 ≤ p ≤ pn,j is given by

fn(ζn, p) = fn,j−1 + µ′(n, j)(p− pn,j−1). (B.3)

Here, fn,j = f(ζn, pn,j), and µ′(n, j) = (fn,j − fn,j−1)/∆p provides the slope of the

shape function.
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Although using (X,Y ) = (H,B) is natural for the representation of the play

model, the magnetic field analysis often employs the magnetic vector potential

for the unknown variable, and (X,Y ) = (B,H) is suitable for determining the

material characteristics during the computation. It can be easily achieved by

swapping the input and output data of the loops for identification.

Several methods exist to determine shape functions fn; this thesis employs a

method that uses the Everett integral, which is generated from symmetric B–H

loops [1].

B.3 Vector Play Model

A vector hysteresis model is required to handle rotational magnetization or ma-

terial anisotropy. Two methods have been proposed for the vectorization of the

play model: one is superposing the scalar models, and the other is extending the

scalar model geometrically. The latter has been confirmed to have higher compu-

tational efficiency [48]; hence, the following explanation focuses on the geometrical

extension of the scalar play model.

When the vector input and output of the model are X and Y , respectively,

(B.1) is vectorized as

Y = P (X) =

Np∑
n=1

f(ζn,pζn (X)), (B.4)

where f is the vectorized shape function

f(ζ,p) = f(ζ, |p|) p

|p|
, (B.5)

and pζn is the vectorized n-th play hysteron

pζn(X) = X −
ζn(X − p0

ζn
)

max(ζn, |X − p0
ζn
|)
. (B.6)

Here, ζn is the radius of the vector play hysteron, and p0
ζn

is the value of the

hysteron at the previous step.
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Iterative solutions using the NR method require the differentiation of vector

hysteretic function. The original formulation (B.5) has difficulty in calculating

∂f/∂B, which contains inversed terms of |pζ |. To overcome the numerical prob-

lem, Ref. [39] proposed a mathematically equivalent representation of the shape

function:

f(ζ,p) = f0
(
ζ, |p|2

)
p, (B.7)

where f0(ζ, q) = f0(ζ, p
2) = f(ζ, p)/p, and q = p2. The detailed derivation of

differentials required for the NR method was introduced in [39].

Although the equations (B.4)–(B.6) satisfactory model the hysteresis loss of

alternating magnetic field, they cannot represent the decrease in rotational hys-

teresis loss in the magnetic saturation. When magnetic saturation causes the

magnetic domains to become single-domain, the magnetic domain walls do not

move under the rotating magnetic field. Therefore, hysteresis loss decreases with

an increase in magnetic flux density. The rotational hysteresis characteristics are

corrected as

P ∗(X) = P∥(X) + r(|X|)P⊥(X), (B.8)

where P∥ and P⊥ are the parallel and perpendicular components of P to X,

respectively. The ratio r(|X|) is defined as r(X) = Lmea/Lsim, where Lmea is

a measured rotational loss with an amplitude |X|, whereas Lsim is a simulated

rotational loss without the correction.
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