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Nuclear fusion is a prospective source of energy that is low environmental impact. Various 

approaches exist for controlled nuclear fusion, with magnetic fields emerging as the most viable 

means to confine the high-density and high-temperature plasma. This study aims to support 

the design verification of a magnetic confinement fusion reactor called the Force Free Helical 

Reactor (FFHR) by constructing a precise three-dimensional (3D) model of the plasma and 

utilizing 3D visualization techniques, improving the efficiency and accuracy of interference 

inspection between the internal components of the fusion reactor and the plasma shape. 

 

In chapter 1, the operational principles of the FFHR and the fundamental structure of the plasma 

within the FFHR are first explained. The chapter then emphasizes the significance of determining 

the shapes and positions of internal components, such as the blanket and diverter, in the design 

of the FFHR, considering their interference with the plasma formed inside the reactor. While 

conventional analysis of the interference between internal components and plasma shape were 

conducted on 2D cross-sections of the FFHR, the chapter emphasizes the need for an efficient 

approach to globally overview the 3D shape of the plasma for more accurate and efficient 

interference inspection. In order to generate a plasma shape 3D model, two closed curved 

surfaces are employed. One represents the Last Closed Flux Surface (LCFS) and the other 

represents the envelope of the stochastic area with divertor legs. These surfaces can provide a 

clear boundary for making it becomes simple to inspect the interference of the plasma and the 

internal components in the FFHR.  

 

In chapter 2, a basic method for modeling the plasma shape 3D model is explained. For 

modeling 3D plasma shape, magnetic field lines are obtained through numerical computation. 

Due to the complex helical magnetic field, magnetic field lines become intricately twisted and 

intertwined, making it challenging to find a parametric or implicit representation capable of 

completely describing the structure of all magnetic field lines. To capture the complex plasma 

shape from magnetic field lines, magnetic field line data is transformed into a scalar field. This 

involves calculating the distribution of a large number of magnetic field lines for numerous 

points within the reactor. The scalar value of the scalar field is computed using the distance 

between magnetic field lines and the points. The Marching Cubes (MC) algorithm is then 

employed to create isosurface based on these calculations. The modeling takes into account 

the helical motion of plasma around the magnetic field lines. The radius of this helical motion, 



known as Larmor radius, is represented by parallel lines encircling the magnetic field lines. The 

chapter also presents the evaluation results of the plasma shape 3D model obtained using the 

proposed method. The experimental results indicate that the quality of the 3D model remains 

to be improved. The roughness, gaps and margin appeared on the model are expected to be 

reduced. 

In chapter 3, a method to improve the plasma shape 3D model constructed using the basic 

method from the previous chapter is described. a point cloud data, obtained from the magnetic 

field lines, where points are labeled with features corresponding to the three plasma areas, the 

outermost area, the stochastic area and the closed area. This labeled data is used to train a 

fully-connected neural network (DNN) to predict labels for each point within the reactor. From 

points with predicted labels, a scalar field is derived under a computation approach different 

from the one shown in the chapter 2. Instead of calculating the distance from a point to the 

parallel lines, the relative position of the point to the center of the Larmor radius is considered. 

The scalar field is then utilized to extract the enveloping surface of the magnetic field lines as 

isosurface, by using MC method. The experiments demonstrate a significant reduction in the 

computational time for model construction and an improvement in the 3D model. 

 

Even for the model proposed in the chapter 3, there remain a problem arisen from the 

insufficient number of magnetic field lines consisting divertor leg parts of the stochastic area in 

the original data. In chapter 4, a method for predicting the starting points of magnetic field line 

tracing using feature analysis of magnetic field line data and convolutional neural network (CNN) 

is explained. The approach involves analyzing the magnetic field line data presented in the 

chapter 2 to identify suitable starting points for tracing magnetic field lines which belongs to 

the divertor leg parts in the fusion reactor. An approximation algorithm is presented which 

enables us to obtain the position of starting points. For now, the FFHR is still in the experimental 

design phase, and its specification undergo frequent revisions. It is time-consuming to find 

suitable starting points for tracing magnetic field lines every time when the specification of FFHR 

is changed. Main specification factors of FFHR include the magnitude of current passing through 

the coils inside it, altering the magnetic field intensity distribution. To overcome this problem, a 

prediction method based on CNN, specifically the Visual Geometry Group (VGG), is presented. 

The proposed CNN model takes an image representing the magnetic field intensity distribution 

for a given FFHR specification and outputs parameters for computing suitable starting points.  

Training data for the model has been collected using the proposed approximation algorithm. 

Experimental results indicate that the proposed method enables us to efficiently find the starting 

points for tracing magnetic field lines consisting divertor leg parts in a short time. 

 

In chapter 5, a method for visually checking the interference between the internal components 

of the fusion reactor and the plasma shape in 3D space is explained. Initially, the shortcomings 

of the interference check feature using conventional Computer-Aided Design (CAD) software 

are pointed out. Subsequently, the chapter introduces methods based either on texture 

mapping or volume rendering to visualize the state of interference. In texture mapping method, 

probability for the vertices in the FFHR model is computed by the method presented in the 



chapter 3. Texture mapping is then performed based on the probabilities. In volume rendering 

method, a conversion from mesh data to volume data is conducted on the FFHR model. The 

probability of the scalar field representing plasma shape and volume data of the FFHR model 

are summed, forming a new volume data for rendering. The effectiveness of interference checks 

using these visualization techniques is discussed through experiments. 

In chapter 6, a summary of the overall achievements of the paper is presented, and the future 

research directions are briefly outlined. 

 

This study contributes to the design verification of the FFHR. As far as being investigated, this 

study is the first to apply deep learning to the construction of plasma shape 3D models. It 

provides valuable experience for the application of deep learning in a segment of the fusion 

field. At the time of writing this dissertation, we observe an increasing trend in the application 

of deep learning techniques in fusion research. As future research directions, close relationships 

are to be established with other researchers involving deep learning techniques in the field of 

fusion reactor design. Moreover, there is a focus on refining a user interface for interference 

inspection under the feedback from the National Institute for Fusion Science, accelerating the 

practical applications of nuclear fusion in real-world scenarios. 


