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Abstract

Turbulent transport is a key challenge in realizing nuclear fusion energy, and re-

search based on gyrokinetic simulations is being conducted. In particular, the sim-

ulations employing the local flux-tube model have been extensively performed since

their computational costs are relatively small. While these simulations are capable of

evaluating turbulent transport for given background profiles, they cannot compute the

changes in the profiles caused by the transport.

In this study, we first focus on entropy and perform full-f simulations to investigate

the interaction between profile formation and turbulent transport. This study analyzes

the fluctuation entropy related to turbulent fluctuation, which has been investigated

in previous studies, and the thermodynamic entropy associated with profile formation,

which cannot be computed in local simulations. The equations of these entropies are

derived and the temporal evolution of each term is calculated. In addition to the result

consistent with previous research, which shows that the fluctuation entropy is primar-

ily changed by the entropy generation due to collisional dissipation D and the entropy

destruction due to turbulent transport −Γ , it is shown that the thermodynamic en-

tropy is mainly changed by Γ and the entropy destruction due to energy input/output.

This indicates that the fluctuation and thermodynamic entropies interact through the

entropy changes caused by the turbulent transport, signifying that the temperature

profile and turbulence interact via the heat flux. Γ reduces the fluctuation entropy

and increases the thermodynamic entropy, thereby not generating net entropy. The

entropy equations show that the net entropy is generated due to dissipation in velocity

space. Intuitively, it would seem that a larger flow would result in less randomness

and, consequently, smaller entropy generation. However, it is foud that a larger flow

increases D, leading to greater entropy production.

In applied research on the interaction between profiles and turbulence, we examine

the interaction between profile formation and a vortex mode in the presence of a mag-

netic island. The vortex mode is a mesoscale mode with the same mode numbers as

the magnetic island and previous studies have shown that it significantly impacts on

the turbulent transport. However, the influence of the vortex mode on the profiles and

the resulting changes in the dynamics of the vortex mode are not yet understood. To



self-consistently calculate the temporal evolution of the turbulence, vortex mode, and

background profiles, it is necessary to conduct full-f gyrokinetic simulations. However,

a standard computational method for flux-surface averaging in the presence of a mag-

netic island, necessary for solving the gyrokinetic Poisson equation, does not currently

exist. Therefore, this study develops a new algorithm called the labeling method, which

groups real-space grids based on the nearest magnetic field line. By implementing the

labeling method, the previous study result that the electrostatic potential with the

same mode numbers as the magnetic island and the (m,n) = (0, 0) electrostatic po-

tential oscillate together at the geodesic acoustic mode frequency is reproduced. The

ion temperature gradient (ITG) turbulence simulation in the presence of the magnetic

island reveal quasi-periodic transport reduction due to the interaction between the

temperature profile and vortex mode. During the transport reduction phase, both the

heat flux and thermal diffusivity decrease inside the island. If the heating power is

increased, the transport reduction could lead to the formation of a transport barrier

due to the magnetic island.

Many previous studies using global simulations have focused only on the dynamics

of bulk ions and electrons, therefore discussion on profile formation and turbulent

transport in the presence of impurities is insufficient. We analyze the profile formation

and turbulent transport for both positive and negative impurity density gradients.

When the impurity density gradient is positive, an impurity mode (IM) is theoretically

predicted to become unstable and experimentally observed. However, an evaluation

of the turbulent transport through global simulations is not conducted. Therefore,

the IM turbulence simulations are performed. The simulation results reveal that the

impurity particle flux due to the IM turbulence is an order of magnitude larger than

that caused by the ITG turbulence. Additionally, the IM turbulence generates the

inward ion heat flux, leading to an increase in the core bulk ion temperature. The

study also examines methods of controlling particle fluxes through heating in the case

of the negative impurity density gradient, not only to expel impurities but also to

simultaneously facilitate fuel supply. When only electrons are heated, the particle

fluxes are small, and the density profiles hardly change. When only ions are heated,

the ITG turbulence drives the inward bulk ion particle flux Γi and the outward impurity

particle flux ZΓz. These fluxes satisfy Γi + ZΓz ≃ 0 and the electron particle flux is

small. When both ions and electrons are heated, the bulk ion and electron pinches

are an order of magnitude greater than when only ions are heated. Simultaneously,

the large outward impurity transport relaxes the impurity density profile. This result

suggests that both fuel supply and impurity exhaust can be achieved by the ion and

electron heating.
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Chapter 1

Introduction

1.1 Nuclear fusion energy

Energy demand is increasing with the advancement of society and the growth of

population. On the other hand, thermal power generation, one of the main power

generation methods today, has problems. Power generation using fossil fuels releases

carbon dioxide, sulfur oxides, and nitrogen oxides, which contribute to global warming

and environmental pollution. The main fossil fuels are coal, petroleum, and natural

gas, each with specific advantages and disadvantages. Coal is a fossil of plant dating

from the Paleozoic to around the Cenozoic Era. It is inexpensive and the reserves are

less uneven, however, due to its solid state, coal mining and transportation present

challenges. Petroleum is formed by the decomposition of dead animals and plants

deposited during the Mesozoic Era by earth pressure and geothermal heat, and while it

is easy to handle because it is liquid, the distribution of the reserves is uneven. Natural

gas emits less carbon dioxide than coal or oil. However, storage and transportation of

it pose challenges. Fossil fuels could be depleted because the timescale for consuming

fossil fuels is very short compared to the timescale for making them. Power generation

by fission energy, a method of power generation that does not cause global warming or

air pollution, has also been put to practical use. Fission energy is the energy produced

by the nuclear fission. The binding energy per nucleon reaches a maximum at a mass

number of about 60, as shown in Fig. 1.1.

Figure 1.1 shows the binding energy per nucleon B(Z,N)/(Z+N) as a function of the

number of protons Z and neutrons N based on the semi-empirical mass formula

B(Z,N) = 15.753(Z+N)−17.804(Z+N)2/3−0.710
Z2

(Z +N)1/3
−23.69

(N − Z)2

(Z +N)
+δ(Z,N),

(1.1)

1
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Fig. 1.1: The binding energy per nucleon based on the semi-empirical mass formula

（MeV）.

where δ(Z,N) is given by

δ(Z,N) =



12

(Z +N)1/2
(for even Z,N)

− 12

(Z +N)1/2
(for odd Z,N)

0 (for odd Z +N)

.

Since nuclei with mass numbers greater than about 60 become more stable by splitting,

in a fission reaction, a nucleus with a large atomic number reacts with a neutron and

splits into two or more nuclei, and then releases neutrons. The released neutrons

react with other fissile materials, causing a chain reaction. In nuclear power plants,

electricity is generated by controlling the chain reaction. In addition to not emitting

carbon dioxide, nuclear power has the advantage of relatively low fuel costs. This is

because 1 gram of uranium can extract more energy than can be extracted from 3 tons

of coal. However, nuclear power generation also has the problem of radioactive waste

disposal and risks such as nuclear meltdown. Power generations by renewable energy

sources such as solar energy and wind energy, which emit as little greenhouse gases

as nuclear power generation, cannot play the role of baseload or middle power sources

that the thermal and nuclear power generation currently play. This is because they

cannot generate long-term and stable power.
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Is there a way to generate electricity that would solve all the environmental, resource

depletion, safety, and long-term supply problems? Fortunately, there is. It is fusion

power generation. Figure 1.1 suggests that nuclei with smaller mass numbers become

more stable by combining to become larger nuclei. This reaction is the nuclear fusion

reaction. The following fusion reactions could be used in fusion reactors,

2
1D + 2

1D −−→ 3
1T (1.01 MeV) + p (3.03 MeV), (1.2)

2
1D + 2

1D −−→ 3
2He (0.82 MeV) + n (2.45 MeV), (1.3)

2
1D + 3

1T −−→ 4
2He (3.52 MeV) + n (14.06 MeV). (1.4)

Here, D is a deuterium nucleus, T is a tritium nucleus, p is a proton, and n is a

neutron. These reaction equations indicate that no carbon dioxide is produced in

the fusion reaction. Since about 0.015% of the hydrogen in seawater is deuterium,

deuterium is an almost inexhaustible fuel. Tritium, on the other hand, is virtually

nonexistent in nature, so it is produced from lithium. If the technology to extract

lithium from seawater is established, all the fuel for fusion power generation can be

taken from seawater, and the amount of the fuel is unlimited. Tritium is produced by

the reactions,

6
3Li + n −−→ 4

2He + 3
1T, (1.5)

7
3Li + n −−→ 4

2He + n. (1.6)

All reactants in a fusion reaction are positively charged nuclei. This means that in order

for a fusion reaction to occur, the nuclei must be brought closer against the Coulomb

repulsion. In other words, the fuels must be hot enough to cross the Coulomb barrier.

The reaction cross section as a function of the center-of-mass kinetic energy shows that

the DT reaction Eq. (1.4) is the most suitable for use as a fusion reaction [1, 2]. When

the fusion reaction power of the DT reaction is Pf , the α−particle heating power Pα

is (1/5)Pf . Pf is approximated as Pf ∝ n2T 2, where n is the density and T is the

temperature. Therefore, the energy multiplication factor Q is

Q =
Pf

Ph

∝ n2T 2

nT/τE
= nTτE, (1.7)

where Ph is the external heating power and τE is the energy confinement time. At

Q = 1 (break even condition), the external heating power equals the fusion output

power. Q is an important indicator of the performance of a fusion device.
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1.2 Tokamaks

1.2.1 Confinement

For the fusion reaction, the fuels must be heated above 10 keV. Since no material

exists that can withstand such a high temperature, the fuels must be confined so that

it does not come in contact with the wall. We note here that at high temperatures,

deuterium and tritium atoms are ionized and split into positively charged nuclei and

negatively charged electrons. Charged particles are subject to the Lorentz force qs/cv×
B in the presence of a magnetic field B, where qs is the charge of the particle species

s and v is the velocity. From the equation of motion

ms
dv

dt
=
qs
c
v ×B, (1.8)

it is found that the charged particle rotates around the magnetic field at the frequency

Ωs = qsB/msc and radius ρ = v⊥/|Ωs| = msv⊥c/|qs|B, where ms is the mass of the

particle species s, c is the speed of light, B = |B|, v⊥ is the velocity perpendicular to

the magnetic field. Therefore, for example, when a torus vacuum vessel is prepared

and a magnetic field is generated by applying a current in the poloidal direction, it is

considered that the plasma may be confined without contacting the wall. In reality,

however, a toroidal magnetic field alone cannot confine the plasma for the following

reasons. Since the magnetic field is stronger inside the torus and weaker outside, the

plasma moves due to the magnetic drift

vds =
v2∥ + v2⊥/2

Ωs

B ×∇B
B2

, (1.9)

where v∥ is the velocity parallel to the magnetic field. The magnetic drift is in the op-

posite direction for ions and electrons, resulting in charge separation and the associated

electric field E. The E × B drift

vE =
cE ×B

B2
(1.10)

caused by the electric field causes the plasma to move outward and cannot be confined.

It is worth noting that the E ×B drift is independent of charge and therefore has the

same direction both for ions and for electrons. Here, a coil is placed in the center of

the torus container and a current is applied to generate a longitudinal magnetic field.

Then, an electric field in the toroidal direction is generated from the Faraday’s law of

induction. This electric field creates a plasma current. The plasma current creates a

poloidal magnetic field, which causes the magnetic field to twist. The helical magnetic

field does not cause charge separation due to the magnetic drift, so the plasma can be

confined. Such a magnetic confinement fusion device is called a tokamak. Figure 1.2

shows the coils and magnetic field of a tokamak magnetic confinement fusion device.
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Fig. 1.2: Tokamak [3]. (CC BY 4.0)

The safety factor q = rBφ/(RBθ) is a value that expresses how much the magnetic

field is twisted by the poloidal field. Here, R is the torus major radius, r is the

torus minor radius, Bφ is the toroidal magnetic field, and Bθ is the poloidal magnetic

field. The magnetic shear ŝ = (r/q)∂q/∂r is the spatial variation of the safety factor

and is an important physical quantity in the discussion of instabilities and waves.

When the safety factor is an irrational number, a flux surface is formed. Under static

equilibrium, the equation of motion for magnetohydrodynamics (MHD) is expressed

as ∇p = J ×B/c, where p is the pressure and J is current density. From B · ∇p =

J · ∇p = 0, we see that the pressure is constant on the flux surface and that the

current flows on the flux surface. Flute perturbations (k⊥/k∥ ≪ 1) tend to grow

on rational surfaces where the safety factor is a rational number where k⊥ and k∥

are the wavenumbers perpendicular and parallel to the magnetic field, respectively.

High wavenumber fluctuations in the direction parallel to the magnetic field are easily

dissipated because the plasma is free to move along the magnetic field lines. On the

other hand, in the direction perpendicular to the magnetic field, when high wavenumber

fluctuations occur, they cannot be canceled because the plasma is wrapped around the

magnetic field.

Tokamak plasmas are analyzed using the toroidal coordinate system (r, θ, φ), shown
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Fig. 1.3: Toroidal coordinate system.

in Fig. 1.3. θ and φ represent poloidal and toroidal angles, respectively. The toroidal

and Cartesian (x, y, z) coordinate systems satisfy the relations,
x = (R0 + r cos θ) sinφ = R sinφ

y = (R0 + r cos θ) cosφ = R cosφ

z = r sin θ

. (1.11)

The Jacobian J is rR. We put r = xex + yey + zez, from the definition of covariant

bases, the covariant bases of (r, θ, φ) are

er =
1

hr

∂r

∂r
= cos θ sinφ ex + cos θ cosφ ey + sin θ ez

eθ =
1

hθ

∂r

∂θ
= − sin θ sinφ ex − sin θ cosφ ey + cos θ ez

eφ =
1

hφ

∂r

∂φ
= cosφ ex − sinφ ey

, (1.12)

where hr, hθ, and hφ are the scale factors in each direction of the toroidal coordinate

system. The outer product of the basis vectors is
er × eθ = eφ

eθ × eφ = er

eφ × er = eθ

, (1.13)
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which means that the toroidal coordinate system is a right-handed system. From Eq.

(1.12), the first fundamental form I is

I = r2dθ2 +R2dφ2. (1.14)

Since the differentials of Eq. (1.12) are

eθθ =
∂2r

∂θ∂θ
= −r cos θ sinφ ex − cos θ cosφ ey − r sin θ ez

eφφ =
∂2r

∂φ∂φ
= −R sinφ ex −R cosφ ey

eθφ =
∂2r

∂θ∂φ
= −r sin θ cosφ ex + r sin θ sinφ ey

, (1.15)

the second fundamental form II is

II = −r2dθ2 −R cos θdφ2. (1.16)

From Eq. (1.12) and Eq.(1.15), the Gaussian curvature K and mean curvature H are

K =
cos θ

rR
, H = −cos θ

2R
− 1

2r
. (1.17)

From Eq. (1.17), the principal curvatures κ1 and κ2 are κ1 = − cos θ/R and κ2 = −1/r,

respectively. Let B0 be the magnitude of the magnetic field at the magnetic axis, the

magnetic field B is

B =

(
0,

rB0

qR
,

R0B0

R

)
. (1.18)

We assume that the inverse aspect ratio εt = r/R is small (εt ≪ 1), then

Bθ

Bφ

≪ 1 (1.19)

is satisfied.

In the absence of a magnetic field gradient, the poloidal cross-section of the plasma

orbit coincides with the flux surface. However, because the tokamak magnetic field

always has a gradient, the particle orbit does not coincides with the flux surface. The

trajectory of the poloidal section of the particle satisfying vs∥ ≫ vs⊥ can be calculated

from the equation of motion,
dr

dt
= −vds sin θ (1.20)

r
dθ

dt
=−vds cos θ + v∥

Bθ

B
(1.21)

where vds = (v2⊥/2 + v2∥)/(ΩsR). Assuming v2∥ is constant, we obtain [2]

d

dt

{(
R−R0 −

vds
ωl

)2

+ z2

}
= 0, (1.22)
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where ωl ≡ v∥Bθ/(rB) = v∥/(qR) is the reciprocal of the time to pass through the

connection length. From Eq. (1.22), the difference between the flux surface and the

particle orbit is ∆c ≡ vds/ωl. Using the approximation vds ≃ v2Ts/(ΩsR), it can be

evaluated [4, 5] as

|∆c| =

∣∣∣∣vdsωl

∣∣∣∣ ≃ qρs = εtρps, (1.23)

where vTs is the thermal velocity, ρs is the Larmor radius evaluated by the thermal

velocity, and ρps = msvTsc/(|qs|Bθ) is the poloidal Larmor radius. Equation (1.23)

indicates that the plasma cannot be confined in the limit of zero poloidal magnetic

field because of ∆c → ∞. It is also suggested that a larger poloidal magnetic field will

result in a smaller ∆c and thus better confinement.

1.2.2 Trapped particles

For magnetically confined plasmas, the scales of temporal and spatial variation

of the magnetic field are much smaller than the temporal and spatial scales of the

gyromotion. The magnetic drift Eq. (1.9) and E × B drift Eq. (1.10) of the guiding

center are also slower than the gyromotion. Thus, points with the same guiding center

can be considered to have the same guiding center at a later time. The adiabatic

invariant J can be obtained by taking integrals along the gyro-orbit [190].

J =

∮
p
∂q

∂α
dα ≃ 2π

ms

qs
µ, (1.24)

where α is the gyro phase, p = msv + qsA is the canonical momentum, and A is the

vector potential. µ is the magnetic moment and satisfies

dµ

dt
=

d

dt

(
msv

2
⊥

2B

)
= 0. (1.25)

Equation (1.25) can be proved by perturbation expansion for the equations of mo-

tion [190]. Using the magnetic moment, the kinetic energy can be written as

W =
1

2
msv

2 =
1

2
msv

2
∥ + µB. (1.26)

It can be seen that the particles are subjected to the mirror force F∥ = −µ∇∥B in the

direction parallel to the magnetic field lines. Since the kinetic energy and magnetic

moment are conserved, v⊥ increases and v∥ decreases when a particle moves from a

small magnetic field to a large magnetic field. Where v∥ becomes zero, the particle

is reflected. Because the maximum value of the magnetic field Bmax divided by the

minimum value of the magnetic field Bmin is Bmax/Bmin = (1 + εt)/(1 − εt) ≃ 1 + 2εt,

the condition for a particle to be trapped by the magnetic field is(v∥
v

)2
< 2εt. (1.27)
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Fig. 1.4: Contour plot of the Mawellian. The black curve represents the boundary

between trapped and passing particles.

Figure 1.4 is the contour plot of the Maxwellian. The black curve represents the

boundary between trapped and passing particles. The particles inside the curve are

trapped. The passing particles in tokamak plasmas satisfy

0 <
Bµ

msv2Ts

<
1

2

(
v∥
vTs

)2
(R0 − r)(R + r cos θ)

R0r(1 + cos θ)
. (1.28)

Assuming the distribution function is the Maxwellian and calculating the fraction of

the passing particle αpass, we get

αpass =

∫ ∞

∞

∫ Cv2
s∥

0

1√
2πT 3

s

exp

(
−
v2s∥ + 2µsB

2Ts

)
Bdµsdvs∥ = 1 −

√
r(1 + cos θ)

R0 + r cos θ
,

(1.29)

where C ≡ (R0 − r)(R0 + r cos θ)/ {2R0r(1 + cos θ)}. Equation (1.29) shows that the

proportion of the trapped particles is about ε
1/2
t of the total.

Figure 1.5 shows the projection of the trajectories of trapped and passing particles

onto the poloidal cross section. The red circle represents the flux surface and the green

circle represents the drift surface described by Eq. (1.22). The difference between the

magnetic and drift planes ∆c is given by Eq. (1.23). The trapped particles have banana

orbits as represented by the blue curve. The banana width ∆b is obtained from the
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Fig. 1.5: Projection of trajectories of trapped and passing particles on poloidal cross

sections.

equation of motion and the trapped condition Eq. (1.27). For v∥ ·Bθ > 0, Eq. (1.20),

Eq. (1.21), and Eq. (1.27) lead to
dr

dt
= −vds sin θ

r
dθ

dt
=

rv

qR0

√
2εt

√
κ2 − sin2(θ/2)

, (1.30)

where κ2 ≡ cos2 β/(2εt) < 1, β is the pitch angle at θ = 0 where the magnetic field is

minimum. In Eq. (1.21), we used µ ≃ msv
2
⊥/(2B0)(1 + εt) and ignored the term due

to the magnetic drift. From Eq. (1.30), we get

r =

∫
dr

dθ
dθ ≃ −

∫
qρs

2
√
εt

sin θ√
2κ2 − 1 + cos θ

dθ =
qρs√
εt

√
2κ2 − 1 + cos θ + r0. (1.31)

The trapped particle is reflected at (r, θ) = (r0, θ0). The banana width ∆b = r − r0 at

θ = 0 is obtained [4] as

∆b =
qρs√
εt

√
2κ ≃ qρs√

εt
. (1.32)

Equations (1.23) and (1.32) show that the banana width is ε
−1/2
t times larger than

∆c. Since the trapped particles have a slower velocity parallel to the magnetic field

(v∥ ∼
√
εtv) than the passing particles, they are more strongly affected by the magnetic

drift and deviate significantly from the flux surface. ∆b > ∆c > ρs is generally satisfied
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in tokamak plasmas. The period around the banana orbit τb is calculated from

τb =

∮
dl

v∥
= ms

∂

∂W

∮
v∥dl =

∂J∥
∂W

. (1.33)

J∥ represents the longitudinal invariant and is calculated [4, 7] as

J∥ = ms

∮
v∥dl = 8

√
2εtmsR0qv

{
E(κ) −

(
1 − κ2

)
K(κ)

}
, (1.34)

from Eq. (1.30). The complete elliptic integral of the first kind K(κ) is defined as

K(κ) ≡
∫ π/2

0

dθ√
1 − κ2 sin2 θ

, (0 ≤ κ < 1) (1.35)

and the complete elliptic integral of the second kind E(κ) is defined as

E(κ) ≡
∫ π/2

0

√
1 − κ2 sin2 θdθ, (0 ≤ κ < 1). (1.36)

When the particle is deeply trapped (κ→ 0), K(κ) can be approximated as (π/2)(1 +

κ2/2) [5]. From Eqs. (1.33) and (1.34), we obtain [4, 7]

τb = 4
√

2
R0q

v
√
εt
K(κ) ≃ R0q

vTs
√
εt
. (1.37)

The trapped particles move across magnetic field lines due to the magnetic drift. In

other words, the filed line label ξ = φ− qθ changes over time. The time variation of ξ

is
dξ

dt
= vs,d · ∇(φ− qθ) ≃ v2s

2ΩsRr

(
q cos θ +

dq

dr
rθ sin θ

)
. (1.38)

Taking the bounce average of Eq. (1.38), we obtain [5, 7]

vξ ≡
〈
dξ

dt

〉
b

= εt
v2q

2Ωsr2
G(ŝ, κ), (1.39)

where G(ŝ, κ) is defined as

G(ŝ, κ) ≡
[
2
E(κ)

K(κ)
− 1 + 4ŝ

(
E(κ)

K(κ)
+ κ2 − 1

)]
(1.40)

and ⟨·⟩b represents the bounce average. Equation (1.39) shows that the direction of the

precession drift is opposite for trapped electrons and trapped ions. Sometimes G(ŝ, κ)

is approximated as

G′(ŝ) = 0.64ŝ+ 0.57 (1.41)

that does not depend on κ [8]. Note that the bounce average of the longitudinal

invariant Eq. (1.34) is
〈
dJs∥/dt

〉
b

= 0. The time derivative of the flux label χ ≡
(1/4π2)

∫
B · ∇θdV is 〈

dχ

dt

〉
b

= − 1

qs

∂J∥/∂ξ

∂J∥/∂W
= 0, (1.42)

which indicates that the center of the banana orbit is always on the same flux surface [9].
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1.2.3 Neoclassical transport

In tokamak plasmas, the collision frequency ν, which is the frequency at which the

pitch angle changes by 90◦, is much smaller than the gyrofrequency. Therefore, the

particles can complete their gyro motion. In the absence of a magnetic field gradient,

the particle can be considered as performing a random walk with a step size ρ. The

diffusion coefficient in this case is estimated to be Dcl ∼ νρ2. In reality, however, the

magnetic field gradient cannot be ignored, so the diffusion coefficient is always larger

than Dcl. Since trapped particles become passing particles when they are scattered

by an angle of about
√
εt by collision, their effective collision frequency is νeff ∼ ν/εt.

This relationship is derived from the equation for the time variation of the distribution

function f due to pitch angle scattering [4],

∂f

∂λ
=
ν

2

∂

∂λ

(
1 − λ2

) ∂f
∂λ
, (1.43)

where λ ≡ v∥/v. When νeff is smaller than τ−1
b given by Eq. (1.37), then both the

trapped and passing particles can complete the orbits represented in Fig. 1.5. The

frequency region satisfying ν < ε
3/2
t vT/qR0 is called the banana regime. The diffusion

coefficient in the banana regime is evaluated as Db ∼ ε
1/2
t ∆2

bνeff ∼ ε
−3/2
t ρ2q2ν from

Eq. (1.32). Since q is greater than 1 and εt is smaller than 1, Db is significantly

larger than Dcl. On the other hand, when the collision frequency satisfies ν > vT/qR0,

even passing particles cannot complete their orbits. This frequency region is referred

to as the Pfirsch-Schlüte regime, and the diffusion coefficient is estimated as DPS ∼
∆2

cν ∼ ρ2q2ν from Eq. (1.23). Db is ε
−3/2
t times larger than DPS. This is due to the

difference in magnitude of ∆b and ∆c, in other words, the difference in the velocity,

in the direction along the magnetic field, of the trapped and passing particles. The

frequency region between the banana regime and Pfirsch-Schlüte regime is referred to

as the plateau regime. In this regime, particles that satisfy the resonance condition

v∥/vT ∼ (νR0q/vT )1/3 contribute to the diffusion process [2]. These particles move

over distances of around the connection length while experiencing the magnetic drift

before being scattered due to collisions. The step time is τp ∼ R0q/v∥ and the step size

is ∆p ∼ vdτp ∼ ρqvT/v∥. Therefore, the diffusion coefficient in the plateau regime is

estimated as

Dp ∼
(
v∥
vT

)
∆2

pν

(
vT
v∥

)2

∼ ρ2qvT
R0

. (1.44)

The diffusion coefficient in the plateau regime is independent of collision frequency.

Figure 1.6 illustrates the collision frequency dependence of the neoclassical diffusion

coefficient, summarizing the discussion above.
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Fig. 1.6: Collision frequency dependence of the neoclassical diffusion coefficient.

It is noteworthy that these neoclassical diffusion coefficients do not exhibit a depen-

dence on temperature gradients or density gradients. This characteristic establishes

a precise linear relationship between a flow and thermodynamic force, enabling the

application of the non-equilibrium thermodynamics [10]. In fact, it has been proved

that the Onsager reciprocal relations holds in the neoclassical transport [11]. Although

the neoclassical diffusion coefficients are larger than the classical diffusion coefficient

Dcl due to the non-uniformity of the magnetic field, the diffusion coefficient is ex-

pected to be smaller in high temperature plasmas because the collision frequency is

proportional to the −1/2 power of temperature. However, the experimentally observed

transport is more than one order of magnitude larger than the neoclassical transport.

This anomalous transport is believed to be caused by plasma turbulence [2, 12].

1.3 Plasma turbulence

1.3.1 Microinstabilities

In fusion plasmas, particle and heat transport across flux surfaces are caused by

turbulent eddies with spatial scales significantly smaller than device size. A typical

example of a small characteristic length is the Larmor radius of ions or electrons.

Microinstabilities that create small-scale eddies and the associated turbulent transport

have been investigated using the kinetic models based on the gyrokinetic theory [13,

96, 15, 16, 17, 18, 19, 20] and fluid models [21, 22, 23, 243, 86, 87]. Both kinetic

and fluid models have their own strengths and weaknesses. The gyrokinetic theory

removes phenomena on time scales below the gyroperiod and spatial scales below the
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gyro radius from the Vlasov equation

dfs
dt

=
∂fs
∂t

+
dx

dt
· ∇fs +

dv

dt
· ∂fs
∂v

= 0 (1.45)

and Maxwell equations

∇ ·E = 4π
∑
s

qs

∫
fsd

3v, (1.46)

∇ ·B = 0, (1.47)

∇×E = −1

c

∂B

∂t
, (1.48)

∇×B = −4π

c

∑
s

qs

∫
vfsd

3v +
1

c

∂E

∂t
, (1.49)

using the perturbation theory, as will be explained in the next chapter. The process

reduces the dimension of velocity space by one. The gyrokinetic models are suitable for

the studies of micro-turbulences which are much slower than the gyromotion of charged

particles. However, it is still difficult to conduct analytical studies and numerical

simulations using them because the distribution function is expressed in five dimensions

of phase space: the position of the guiding center X = x−b×v/Ωs, kinetic energy w,

and magnetic moment µ. Fluid models described in three dimensions in real space are

easier to handle than kinetic models. However, due to the presence of the advection

term in the Vlasov and Boltzmann equations, fluid models have the problem that

the equation for nth-order moment include n + 1st-order moment and the system of

equations is not closed. This is referred to as the closure problem. By employing the

Hammett-Perkins model [21, 22] as a closure model, kinetic effects such as the Landau

damping can be incorporated, and the dispersion relation of the fluid model matches

that derived from a kinetic model. However, the thermal diffusion coefficient in the

fluid simulation using the Hammett-Perkins model are reported to be much larger than

that in the gyrokinetic simulation [27].

The ion temperature gradient (ITG) instability has received the most attention as

a microinstability on the ion gyroradius scale [28, 29]. This is because it is believed to

be the cause of anomalous ion heat transport in the core region. We derive dispersion

relations for slab ITG mode (sITG mode) and toroidal ITG mode (tITG mode) and

discuss the physical mechanisms. The electrostatic linear gyrokinetic equation for

particle species s is given by{
∂

∂t
+ i(ωE + ωds) +

v∥
qR

∂

∂θ

}
hsk⊥ =

{
∂

∂t
+ i(ωE + ω∗Ts)

}
qsϕk⊥

Ts
J0 (k⊥ρs) f0s,

(1.50)

where hsk⊥(X, w, µ, t) = δfsk⊥(X, w, µ, t) + qs⟨ϕ⟩αs/Tsf0s(w) is the nonadiabatic part

of the perturbed distribution function δfsk⊥ , ⟨ϕ⟩αs = (1/2π)
∮
ϕdα is the gyro-averaged
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electrostatic potential, ωE ≡ k⊥ · vE, ωds ≡ k⊥ · vds, ω∗T i ≡ ω∗s{1 + ηs(msv
2/(2Ts) −

3/2)}, ηs ≡ d lnTs/d lnns, ω∗s ≡ {cTs/(esB)}k ·b×∇ lnns, J0 is the Bessel function of

the first kind of order zero representing the finite Larmor radius effects, and f0s(w) ≡
n0{ms/(2πTs)}3/2 exp(−w/Ts) is the equilibrium part (Maxwellian) of the distribution

function. As we use the field-aligned coordinate system [30], the θ derivative of Eq.

(1.50) represents the derivative along the magnetic field lines. Considering only the

vicinity of a certain poloidal angle, and assuming a parallel wave number k∥, the Fourier

transformation of Eq. (1.50) for ions with respect to time yields

hik⊥ =
ω − ωE − ω∗T i

ω − ωE − ωdi − k∥v∥

eϕk⊥

Ts
J0 (k⊥ρi) f0i. (1.51)

Here we assume the adiabatic electron approximation ñek⊥/n0 = eϕk⊥/Te where ñek⊥ is

the perturb part of the density. It corresponds to keeping the electron energy constant

and the mass close to zero, and the electrons move along the magnetic field lines at

an infinite velocity [31]. From the adiabatic electron approximation and the quasi-

neutrality condition ñek⊥ = ñik⊥ =
∫
d3v{−(eϕk⊥/Ti)f0i + hik⊥ exp(−ik⊥ · ρi)}, we

obtain the dispersion relation for the ITG modes:

1 +
Ti
Te

− 1

n0

∫
d3v

ω − ωE − ω∗T i

ω − ωE − ωdi − k∥v∥

qsϕk⊥

Ts
J0 (k⊥ρi) f0i = 0. (1.52)

The condition where the denominator of the integrand in Eq. (1.52) becomes zero

corresponds to the resonance condition between particles and waves. From Eq. (1.52),

it is evident that ωE only contributes to the Doppler shift and does not affect the growth

rate. Therefore, for simplicity, ω − ωE is replaced by ω. Under the assumptions of the

long wavelength approximation k⊥ρi ≪ 1 and fluid approximation vT i/|ω/k∥| ≪ 1, by

approximating 1/(ω − ωdi − k∥v∥) ≃ (1/ω)(1 + k∥v∥/ω + ωdi/ω + k2∥v
2
∥/ω), we obtain

the dispersion relation for the fluid approximation of the ITG modes [32, 33],

1 + τ
ω∗i

ω
+

(
k2⊥ρ

2
c −

k2∥c
2
s

ω2
− τ

ω̂di

ω

)(
1 − ω∗pi

ω

)
= 0, (1.53)

where ρc ≡ cs/Ωi, cs ≡
√
Te/mi, ω̂di ≡ 2cTi/(eB)k⊥ ·b×(b·∇b), ω∗pi = ω∗i(1+ηi)、τ ≡

Te/Ti. Assuming a uniform magnetic field, flat density profile, and steep temperature

gradient, from Eq. (1.53), we get the dispersion relation for the sITG mode:

ω =
(
k2∥c

2
s|ω∗pi|

)1/3 −1 + i
√

3

2
. (1.54)

Equation (1.54) shows that the sITG mode is caused by parallel ion motion. The dis-

persion relation for the slab ITG modes can also be derived directly from a fluid model

of the slab configuration. From the ion continuity equation, the equation of parallel
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motion of ions, the ion energy equation, and the adiabatic electron approximation, we

obtain

1

τ

∂Φ

∂t
= iω∗iΦ − ivT ikzUi∥, (1.55)

∂Ui∥

∂t
= −ivT ikz(Φ + P ), (1.56)

∂P

∂t
= i(1 + ηi)ω∗iΦ − i

5

3
vT ikzUi∥, (1.57)

where Φ ≡ eϕk⊥/Ti, Ui∥ = Ṽi∥k⊥/vT i, P ≡ p̃ik⊥/pi. From Eqs. (1.55), (1.56), and

(1.57), the dispersion relation for the sITG mode{
ω2

k2∥v
2
T i

(ω
τ

+ ω∗i

)
− 1ω

}
− 5

3

ω

τ
+

(
ηi −

2

3

)
ω∗i = 0 (1.58)

is derived [34]. In the limit vT i/|ω/k∥| ≪ 1, Eq. (1.58) can be approximated to be

equal to

ω =

{
k2∥v

2
T iτ

(
ηi −

2

3

)
ω∗i

}1/3 −1 + i
√

3

2
. (1.59)

Equation (1.59) is similar to Eq. (1.54), but the mode does not become unstable when

ηi = 2/3 in this fluid model. The physical mechanism for the sITG mode is as follows.

Temperature fluctuations T̃i cause differences in the speed at which ions move along the

direction of the magnetic field lines. This leads to the generation of density fluctuations

ñi between the regions where T̃i > 0 and where T̃i < 0, resulting in the creation of

electric fields to cancel the charge separation. The E × B drift due to the electric

fields further increase the temperature in the region T̃i > 0 and further decrease the

temperature in the region T̃i < 0. In this way, the initial fluctuations exponentially

amplify.

By neglecting the dynamics in the parallel direction and employing the long wave-

length approximation in Eq. (1.53), the dispersion relation for the tITG mode

ω = i

√
τ
ω̂diω∗pi

1 + k2⊥ρ
2
c

(1.60)

is derived. On the other hand, in the fluid model (Eqs. (1.55), (1.56) , and (1.57)), by

substituting the parallel fluid velocity with the diamagnetic drift and introducing the

Braginskii closure [35] q = 5cpi/(2eB)b×∇Ti to equation Eq. (1.57), we obtain

1

τ

∂Φ

∂t
= iω∗iΦ − iωdi(Φ + P ), (1.61)

∂P

∂t
= i(1 + ηi)ω∗iΦ − i

5

3
ωdi

[
Φ

(
−1

τ

)
+ 2P

]
. (1.62)
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From Eqs. (1.61) and (1.62), the dispersion relation for the tITG mode

ω =
5

3
ωdi +

τ

2
(ωdi − ω∗i) +

√
τω∗iωdi(ηc − ηi) (1.63)

is derived. ηc is the threshold for the tITG mode, defined as

ηc ≡
2

3
+
τ

4

(
ωdi

ω∗i
+
ω∗i

ωdi

− 2

)
+

10

9τ
τ
ωdi

ω∗i
. (1.64)

In this model, it becomes unstable when ηi > ηc. From Eqs. (1.60) and (1.63), it is

understood that in order for the tITG mode to become unstable, ω∗pωdi needs to be

greater than 0. This condition implies that the product of the pressure gradient and

magnetic field gradient is positive, indicating that the tITG mode is unstable in the

bad curvature region.

Fig. 1.7: Physical mechanism of the tITG mode.

Figure 1.7 shows the physical mechanism of the tITG mode. The physical mech-

anism of the tITG mode is similar to that of the sITG mode. With the presence of

pressure fluctuations p̃i, the magnitude of the magnetic drift, which depends on particle

velocity, varies. This results in regions between the peaks and troughs of the fluctua-

tions where ñi > 0 and ñi < 0. This leads to the generation of electric fields due to
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the charge separation, and the E × B drift. As depicted in Fig. 1.7, in regions where

p̃i < 0, the pressure becomes higher, whereas in regions where p̃i < 0, the pressure

becomes lower. Thus, the initial pressure fluctuations amplify exponentially with time.

Another ion-scale microinstability that is of interest, similar to the ITG modes, is

the trapped electron mode (TEM) [36, 37]. The ITG mode becomes unstable when the

density gradient is small, while the TEM becomes unstable when the density gradient is

large. When both the temperature and density gradients are large, both the ITG mode

and TEM become unstable[38, 39]. It has been observed that when the critical gradient

ζc = R/LT + 4(R/Ln) = 22 is exceeded, both the ITG and TEM become unstable,

thereby increasing the particle fluxes and changing the direction of convection [40].

Since the TEM is unstable due to the motion of the trapped electrons, we employ the

bounce-averaged gyrokinetic equations for electrons [41](
∂

∂t
+ i⟨ωde⟩b

)
hsk⊥ = −

(
∂

∂t
+ iω∗Te

)
eϕk⊥

Ts
f0e. (1.65)

Equation (1.65) is obtained by taking the bounce average of Eq. (1.50), neglecting the

finite Larmor radius effects of electrons, and using ⟨v∥/(qR)∂hek⊥/∂θ⟩b = 0, ⟨ϕk⊥⟩b ≃
ϕk⊥ , and the fact that the lowest order of hsk⊥ is independent of θ. From equations

Eq. (1.39) and Eq. (1.41), the precession drift frequency of trapped electrons is

⟨ωde⟩b ≃ ω∗e
Lnw

RTe
G′(ŝ) = ωpre

w

Te
, (1.66)

where ωpre ≡ ω∗eLnG
′(ŝ)/Te. From Eq. (1.65), the adiabatic part of the distribution

function of trapped electrons is determined as

hek⊥,trap = − ω − ω∗Te

ω − ⟨ωde⟩b
eϕk⊥

Ts
f0e. (1.67)

Thus, the electron density fluctuation is [9]

ñe ≃ n0
eϕk⊥

Te
+ 4π

√
2εt

eϕk⊥

Te

∫ ∞

0

dv
ω − ω∗Te

ω − ⟨ωde⟩b
v2f0e. (1.68)

On the other hand, in the limit ω ≫ vT i/qR, from Eq. (1.51), the density fluctuation

of ions is obtained as

ñi = −n0
eϕk⊥

Ti
+ n0eϕk⊥

{
1

Ti

(
1 − ω∗i

ω

)
Γ0i − ηi

ω∗i

ω
k2⊥ρ

2
T i (Γ1i − Γ0i)

}
, (1.69)

where Γ0i ≡ I0(k
2
⊥ρ

2
T i) exp(−k2⊥ρ2T i), Γ1i ≡ I1(k

2
⊥ρ

2
T i) exp(−k2⊥ρ2T i), I0 and I1 are the

modified Bessel function of the first kind of order zero and of fist order, respectively.

From Eqs. (1.68) and (1.69), we obtain the dispersion relation of the TEM:

1+τ−
(
τ +

ω∗e

ω

)
Γ0i−ηi

ω∗e

ω
k2⊥ρ

2
T i(Γ1i−Γ0i) =

4π
√

2εt
n0

∫ ∞

0

dv
ω − ω∗Te

ω − ⟨ωde⟩b
v2f0e. (1.70)
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Assuming γ ≪ ωr and
√
εt ≪ 1, and using 1/ω ≃ 1/ωr − iγ/ω2

r , Eq. (1.70) can be

approximated as [9]

{1 + τ(1 − Γ0i)}
γ

ωr

= 2
√

2πεt

(
ωr

ωpre

)3/2

e
− ωr

ωpre

[
ω∗e

ωr

{
1 + ηe

(
ωr

ωpre

− 3

2

)}
− 1

]
.

(1.71)

We employed the Sokhotski-Plemelj theorem limγ→+0 1/(ω − ⟨ωde⟩b) = P1/(ωr −
⟨ωde⟩b)− iπδ(ωr−⟨ωde⟩b) on the right-hand side of Eq. (1.70). The physical mechanism

of the TEM is similar to that of the ITG modes. The role played by the magnetic drift

in the case of the tITG mode is played by the precession drift in the case of the TEM.

When temperature and density fluctuations occur, the precession drift causes charge

separation and associated E × B drift, which amplifies the fluctuations.

1.3.2 Turbulent transport

When linearly unstable modes grow, nonlinear coupling between modes leads to

the coexistence of countless waves with different wavenumbers and frequencies. The

turbulent diffusion coefficient Dturb for the slab configuration can be estimated from

the continuity equation

∂n

∂t
+ ∇ · (nV ) =

∂n0

∂t
+
∂ñ

∂t
+ ∇ ·

(
n0Ṽ + ñṼ

)
= 0, (1.72)

where Ṽ (r, t) = B ×∇ϕ/B2 is the fluctuation part of the flow velocity. The average

of the fluctuating part of a physical quantity Ψ becomes zero ⟨Ψ̃⟩ = 0. From the first

order of Eq. (1.72), we derive the relationship between the fluctuating density and elec-

trostatic potential fluctuation. By extracting the first order terms of Eq. (1.72), we get

the relationship between the fluctuating density and electrostatic potential fluctuation:

ñk =
1

ωk

(∇n0) ·
(
b× k

B
ϕk

)
= n0

ω∗k

ωk

eϕk

Te
. (1.73)

Equation (1.73) indicates that plasma motion generated by the electric field fluctuations

couples with the density gradient, leading to the generation of density fluctuations.

Taking the average of Eq. (1.72) results in

∂n0

∂t
+ ∇ ·

〈
ñṼ
〉

= 0. (1.74)

The second term on the left-hand side of Eq. (1.74) is the term ignored in linear theory.

Modes grow and this nonlinear term becomes larger, causing transport. Since both the

density and velocity fluctuation are superpositions of countless waves, substituting

ñ(r, t) =
1

2π

∫ ∞

−∞
ñk e

i(k·r−ωkt)dk and Ṽ (r, t) =
1

2π

∫ ∞

−∞
Ṽk e

i(k·r−ωkt)dk (1.75)
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into Eq. (1.74) yields

∂n0

∂t
+ ∇ ·

(∫ ∞

−∞
dk ñkṼ−k e

2γkt

)
= 0 (1.76)

We employed the relationships 2πδ(k + k′) =
∫∞
−∞ exp {i(k + k′) · r} dr, ωk = ωkr +

iγk (ωkr, γk ∈ R), ωkr = −ω−kr, and γk = γ−k. The second term on the left-hand side

of the equation Eq. (1.74) represents the divergence of the particle flux Γ, and since

Γ = Dturbn0/Ln, the diffusion coefficient can be written as

Dturb =
Ln

n0

∫ ∞

−∞
dk ñkṼ−kx e

2γkt = i
Ln

n0B

∫ ∞

−∞
dk kyñkϕ−kx e

2γkt. (1.77)

Substituting Eq. (1.73) into Eq. (1.77) yields

Dturb =

(∫ ∞

−∞
Ln
kyγk
ω∗k

|ñk|2

n2
0

e2γkt dk

)
Te
eB

. (1.78)

Equation (1.78) indicates important things. The first important point is that when

the density fluctuations ñk and electrostatic potential fluctuations ϕk are in phase,

no particle transport occurs because of Dturb = 0. Although the E × B drift creates

positive and negative radial flows, the density fluctuations are equal at both regions,

therefore the particle transport cancels out and the net particle transport is zero. The

second important point is that lower frequency waves contribute more to the diffusion

when the fluctuation amplitudes are comparable. Accurate evaluation of Eq. (1.78)

is difficult because of the need to consider nonlinear processes. However, it is possible

to evaluate phenomenologically by using the mixing length theory. Since Dturb is

proportional to exp(2γkt), it becomes a reasonable approximation to consider the only

fluctuation with the highest linear growth rate. In the mixing length theory, a density

fluctuation is assumed to grow until the gradient of them becomes comparable to the

gradient of a equilibrium density (kxñ ∼ n0/Ln). The validity of this assumption has

been confirmed through experiments such as Alcator A and Princeton Large Torus

(PLT) [42]. Substituting this relationship into Eq. (1.78) leads to

Dturb ∼ γk
k2x
. (1.79)

Equation (1.79) can be interpreted as a balance between the linear growth of a mode

and the stabilizing effect of turbulent diffusion k2xDturb [2]. Equation Eq. (1.79) is

consistent with the diffusion coefficient of a random walk where the correlation length

is the radial wavelength and the correlation time is the inverse of the linear growth rate.

The mode width of drift waves, such as the ITG modes localized on the flux surface

(x = xm) where q(xm) = m/n, have been studied by eigenvalue analysis [43, 44, 45],

and Dturb can be estimated by applying the results to Eq. (1.79). In the sheared
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slab configuration B = (0, B0(x− xm)/Ls, B0), the lowest order eigenmode function

satisfies [44]
dϕ0

dξ2
+
(
E0 − ξ2

)
ϕ0 = 0. (1.80)

The temperatures of ions and electrons are assumed to be equal, and Ls represents the

characteristic spatial scale at which the pitch of the magnetic field lines varies radially

near the rational surface. ξ and E0 are defined as

ξ =

√
iLn

LsΩ0

x− xm
ρsT

and E0 = − iLsΩ0

Ln

(
−k2y +

1 − Ω0

1 + Ln/LT + Ω0

)
, (1.81)

respectively, and ϕ0 and Ω0 are the lowest order normalized eigenfunction and eigen-

value, respectively. Equation Eq. (1.80) is the Weber equation and is isomorphic to

the Schrödinger equation for a particle moving under a harmonic oscillator potential.

Upon assuming |Re(Ω0)| ≫ |Im(Ω0)|, the eigenfunction is a oscillatory function in the

x direction. A physically meaningful solution is one that satisfies lim|x|→∞ |ϕ0| → 0

and Im(Ω0) > 0 [171]. The asymptotic solution of Eq. (1.80) is given by [45]

lim
|x|→0

ϕ0 = C exp

{
−i Ln

2LsΩ0

(x− xm)2

ρ2s

}
, (1.82)

where C is a constant. Thus, the mode width of the drift wave ∆x is found to be

∆x ≃ ρs

√
Ls

Ln

. (1.83)

Equation (1.83) can also be obtained from the balance between the acoustic wave term

and the finite inertial dispersion term in the mode equation (ρ2s/∆x
2 ≃ v2Tsk

2
y∆x2/(ω2L2

s)) [47].

Figures 1.8(a), 1.8(b), and 1.8(c) show the the (m,n) = (m, 20) electrostatic po-

tentials of the tITG mode for the magnetic shears ŝ1, ŝ2, and ŝ3, shown in Fig. 1.9,

respectively. The parameters other than magnetic shear are the same as for the Cy-

clone base case parameters. The magnetic shears are ŝ1(rs) ≃ 0.26, ŝ2(rs) ≃ 0.48, and

ŝ3(rs) ≃ 0.78 at rs = 0.5a0 and ŝ3(rs) is the same as in the Cyclone base case. Figure

1.8 shows that the mode width of the tITG mode decreases as the magnetic shear

increases, as indicated in Eq. (1.83). Upon assuming that the characteristic timescale

of drift waves is approximately the diamagnetic drift ω∗i, the turbulent diffusion coef-

ficient can be estimated as

Dturb ∼ (∆x)2 ω∗i ∝ ρ∗
T

eB
≡ χGB, (1.84)
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Fig. 1.8: (a), (b) and (c) represent the radial profiles of the (m,n) = (m, 20) electro-

static potential. (d), (e) and (f) are contour maps of the n = 20 electrostatic potential.

(a) and (d) are the simulation result for the case where ŝ1(rs) ≃ 0.26, (b) and (e) are

for the case where ŝ2(rs) ≃ 0.48, and (c) and (f) are for the case where ŝ3(rs) ≃ 0.78.

[By courtesy of Mr. Okuda of Kyoto University]

Fig. 1.9: Radial profiles of the magnetic shear for each case in Fig. 1.8.

where we used ρ∗ ≡ ρs/a0 and Ln ∼ a0. The gyroBohm diffusion coefficient χGB

is proportional to the 3/2 power of temperature, indicating that transport increases

with increasing temperature. Since χGB is proportional to a−1
0 , the larger the device
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size is, the smaller the transport is. χGB is the diffusion coefficient corresponding to

the transport brought about by local and microscale fluctuations. On the other hand,

since ∆x given by Eq. (1.83) is proportional to ŝ−1/2 and the distance between adjacent

rational surfaces ∆xm ≃ xm/(mŝ) is proportional to ŝ−1, ∆x > ∆xm is satisfied as the

magnetic shear increases. Indeed, from Fig. 1.8, it is evident that as the magnetic shear

increases, the spacing between the rational surfaces decreases, leading to the overlap of

the modes. In such cases, the interaction between modes must be considered [49, 50].

This interaction is due to the cos θ dependence of the magnetic field. Due to the

coupling between the magnetic field and E × B drift, the poloidal mode number of

the potential contained in the E × B drift changes by ±1. Hence, the equation of

ϕm includes ϕm+1 and ϕm−1. The mode structure due to toroidal coupling has been

investigated using the two-dimensional eigenequation [51, 52]

L

[
ω,∇∥,

∂

∂r
,
∂

∂θ
, r, θ

]
ϕ(r, θ) = 0 (1.85)

in the (r, θ) coordinate. Upon assuming that the eigenmode are centered on the rational

surface r = rm, the potential is expressed as ϕ = exp(imθ)
∑

l ϕl(r) exp(ilθ) where

ϕl(r) = A(x)ϕ̂ exp(−ilθ0) and x ≡ n(∂q/∂r)rm(r − rm) = kθŝ(rm)(r − rm). A(x)

represents a slowly varying envelope and is written as

A(x) = exp

(
−i
∫ x

0

θ1(x
′)dx′

)
. (1.86)

ϕ̂ is the shape function and is the same for all poloidal harmonics. exp(−ilθ0) cor-

responds to the phase difference between adjacent modes, and θ0 is the ballooning

angle. θ1 in Eq. (1.86) is obtained as θ1(x) ≃ −(∂ω/∂x)/(∂ω/∂θ0)x by expanding

ω [θ0 + θ1(x), x] = ω(θ0, x) which is the first order equation of Eq. (1.85) . Therefore,

from Eq. (1.86), we get

A(x) ≃ exp

(
−i ∂ω/∂x
∂ω/∂θ0

x2

2

)
. (1.87)

For A(x) to converge as x increases, Im((∂ω/∂x)/(∂ω/∂θ0)) > 0 must be satisfied.

The eigenfrequency is approximated as ω(θ0, x) = ωr(θ0, x) + iγ(θ0, x) ≃ ωr(0) +

(∂ωr/∂x)0x + iγ̂0 cos θ0. The real frequency is dominated by x and the growth rate

is dominated by θ0. From Eq. (1.87), we obtain

A(x) ≃ exp

(
−(∂ωr/∂x)0

2γ̂0 sin θ0
x2
)

= exp

(
− x2

(n(∂q/∂r)rm∆r)2

)
. (1.88)

Approximating with (∂ωr/∂r)0 ∼ ωd/LT ∼ γ̂0/LT , we find

∆r =

√
2

ŝkθ

∣∣∣∣ γ̂0 sin θ0
(∂ωr/∂x)0

∣∣∣∣1/2 ≃ √
2

∣∣∣∣sin θ0(LTρs)

ŝ(kθρs)

∣∣∣∣1/2 ∼
√
LTρs
ŝ

. (1.89)
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∆r is one order of magnitude larger than the microscale mode width ∆x given by

Eq. (1.83). In other words, the drift waves have a mesoscale structure due to toroidal

coupling. Figs. 1.8(d), 1.8(c) and 1.8(f) show contour maps of the n = 20 electrostatic

potential of the tITG mode for the magnetic shears ŝ1, ŝ2 and ŝ3 shown in Fig. 1.9,

respectively. It is found that large mesoscale vortex structures are formed when the

magnetic shear is large. On the other hand, when the magnetic shear is small, the

different modes are difficult to couple, and smooth global structures are not formed.

Using Eq. (1.89) to evaluate the turbulent diffusion coefficient results in

Dturb ∼ (∆r)2 ω∗i ∝
T

eB
≡ χB. (1.90)

χB is referred to as the Bohm diffusion coefficient, and it is greater than χGB. It

is proportional to temperature, indicating that transport is greater in high temper-

ature plasmas. χB, unlike χGB, does not depend on the size of devices. The flux

tube model (ρ∗ → 0) is known to give results consistent with the gyroBohm scale [19].

By performing the global gyrokinetic simulations with different device sizes, Lin et

al. showed that the turbulent transport is consistent with the Bohm scaling where

ρ∗ is large and gyroBohm scaling where ρ∗ is small [53]. Transport coefficients are

closely linked to confinement performance. the L-mode ITER89P scaling τ ITER89P
E =

0.048A0.5I0.85p B0.2
0 R1.2

0 a0.30 κ0.5n0.1P−0.5
h corresponds to the Bohm scaling and the H-

mode IPB98(y, 2) scaling τ
IPB98(y,2)
E = 0.145A0.19I0.93p B0.15

0 R1.39
0 a0.580 κ0.78n0.41P−0.69

h cor-

responds to the gyroBohm scaling [2], where A is the ion mass number, Ip is the

plasma current (MA), B0 is the toroidal magnetic field at the plasma center (T), κ is

the ellipticity, n is the line-averaged density (1020 m−3), and Ph is the heating power

(MW).

In the nonlocal ballooning theory discussed above, the lowest order linear growth

rate is γ0(θ0, x) = γ̂0 cos θ0. The linear growth rate is maximized for θ0 → 0, and the

mode width is ∆r → 0 from Eq. (1.89). That is, at the lowest order, the mode width

of the mode with the largest linear growth rate is zero. Higher order correction terms

for the growth rate need to be taken into account. By taking the correction term as

−γ̂0/(kθŝ∆r)2 and expanding the growth rate in terms of θ0, we obtain

γ ≃ γ̂0

(
cos θ0 −

(∂ωr/∂x)0
2γ̂0| sin θ0|

)
≃ γ̂0

(
1 − θ20

2
− (∂ωr/∂x)0

2γ̂0|θ0|

)
. (1.91)

The radial variation in the background profiles has a stabilizing effect. Because flux-

tube simulations cannot account for variations in the equilibrium profiles, they overes-

timate turbulent transport compared to global simulations [48]. From Eq. (1.91), the

ballooning angle at which the linear growth rate is maximized is expressed as

(θ0)max ≃ ∓
∣∣∣∣(∂ωr/∂r)rm

kθγ̂0ŝ

∣∣∣∣1/3 . (1.92)
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Therefore, from Eq. (1.89), the mode width with the largest linear growth rate is

∆r =
√

2

∣∣∣∣ sin(θ0)max

k2θ ŝ
2(θ0)3max

∣∣∣∣1/2 . (1.93)

Fig. 1.10: Mode structure for small ballooning angle (a) and mode structure for large

ballooning angle (b).

Figure 1.10 shows the mode width and linear growth rate for small (a) and large

(b) ballooning angles. When the ballooning angle is small, the mode width and linear

growth rate are large. On the other hand, when the ballooning angle is large, the

mode width and linear growth rate are small. When poloidal flow Vθ or toroidal flow

Vφ is present in the background, ∂ωr/∂r replaces ∂ωr/∂r + ∂ωf/∂r in the equations

for ballooning angle and mode width (Eq. (1.92) and Eq. (1.93)). ωf ≡ kθVθ + kφVφ

is the Doppler shift frequency. Thus, it can be seen that the background flow has a

significant effect on the linear growth rate of the mode.

1.3.3 Profile stiffness

We consider how turbulence transport affects the density and temperature profiles.

The time evolution of the wave energy ε ≡ |eϕk/T |2 is modeled as [54]

∂ε

∂t
= 2 (γL − γNL) ε, (1.94)
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where γL ≡ γ0(R/LT − R/LTc) is the linear growth rate of the mode, R/LTc is the

critical temperature gradient, and γNL is the nonlinear decay rate. In this model,

the wave energy does not increase unless the critical temperature gradient R/LTc is

exceeded. This feature is based on experiments on Joint European Torus (JET) [55, 56]

and turbulence simulation results [48]. They show that turbulent transport increases

rapidly above the critical temperature gradient, as shown in Fig. 1.11.

Fig. 1.11: Schematic graph of turbulent thermal diffusivity against R/LT

The critical temperature gradient inferred from experiments on JET and obtained from

gyrofluid simulations is smaller and closer to a linear critical gradient than that ob-

tained from gyrokinetic simulations [55, 48]. The difference in the results between

gyrofluid simulations and gyrokinetic simulations is explained by the difference in

Rosenbluth-Hinton residual zonal flows [64]. The critical temperature gradient ob-

tained from gyrokinetic simulations is R/LTc ≃ 6 and the thermal diffusion coefficient

is χLn/(ρ
2
i vT ) ≃ 15.4[1.0− 6.0(R/LT )−1] [48]. Calculations incorporating the effects of

plasma shape have also been performed, yielding χ ∝ [1.0−αE(γE/γL)] [57, 58], where

αE ≡ 0.71(3εt)
0.6(κ/1.5) and γE is E×B shear rate. In Eq. (1.94), when γ0 ≫ γNL and

R/LTc is exceeded, ε becomes significantly large, leading to R/LT = R/LTc. Therefore,

the temperature profile is

T (r) = T (a0) exp

(
a0 − r

LTc

)
. (1.95)

Equation (1.95) shows that the temperature profile is proportional to the tempera-

ture at the edge T (a0). In ASDEX Upgrade experiments, it has been observed that
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there exists a linear relationship between the edge and core temperatures [59]. In the

following, we consider the case where γL ∼ γNL ∼ ω∗p and the fluctuation scale is

sufficiently fast compared to the transport scale. In this case, the diffusion coefficient

D due to the E × B drift is D ∼ D0ε ≡ vTLT ε [54]. Thus, the nonlinear decay rate

is estimated to be γNL ∼ γN0ε ≡ k2rD0ε from Eq. (1.79). The ratio of the nonlinear

decay rate γ
(GB)
N0 evaluated by the gyroBohm diffusion coefficient Eq. (1.84) to the

nonlinear decay rate γ
(B)
N0 evaluated by the Bohm diffusion coefficient Eq. (1.90) is

γ
(B)
N0 /γ

(GB)
N0 ≃ ρ/LT ≪ 1. This means that the nonlinear effect of suppressing mode

growth is much greater for micro-scale vortex structures than for mesoscale vortex

structures. At the transport scale, phenomena at the fluctuation scale can be consid-

ered steady-state, thus ε = (γ0/γN0) (R/LT − R/LTc) holds. Therefore, the diffusion

coefficient is D = D0 (γ0/γN0) (R/LT −R/LTc). Substituting D into the energy equa-

tion assuming adiabatic response yields [54]

3

2
n
∂T

∂t
=

∂

∂r

{
nD0

γ0
γN0

(
R

LT

− R

LTc

)}
∂T

∂r
+ Pin, (1.96)

where Pin is the input power. The temperature gradient at steady state is found to be

R

LT

=
1

2

R

LTc

+
1

2

√(
R

LTc

)2

+ 4Q
γN0

γ0
, Q ≡ R

nD0T

∫ r

0

Pin(r′)dr′. (1.97)

Therefore, the difference between the temperature gradient and the critical temperature

gradient ∆(R/LT ) is obtained as

∆

(
R

LT

)
≡ R

LT

− R

LTc

=
1

2

R

LT

√1 + 4

(
R

LTc

)−2

Q
γN0

γ0
− 1

 . (1.98)

In the high temperature limit, let us substitute γ
(GB)
N0 and γ

(B)
N0 into Eq. (1.98), denoting

the resulting expressions as ∆ (R/LT )(GB) and ∆ (R/LT )(B), respectively. Their ratio is

∆ (R/LT )(B) /∆ (R/LT )(GB) ≃ ρ/LT ≪ 1. This means that when turbulent transport

scales to the Bohm scaling, the temperature profile is closer to Eq. (1.95) than when

it scales to the gyroBohm scaling. The small variation in temperature profile is often

described as ”stiff,” and it is suggested that reducing the profile stiffness plays a crucial

role in internal transport barrier (ITB) formation [56]. In experiments on JET, it

has been observed that toroidal flow relaxes profile stiffness [55] and that this effect

works particularly strongly in low magnetic shear [56]. The experimental results are

explained by the electromagnetic stabilization of the ITG mode. [60]. The ŝ dependence

of the electromagnetic stabilization is qualitatively consistent with the ŝ dependence of

stiffness obtained in the experiments on JET. δf gyrokinetic simulations have shown

that when the flow shear rate γtor is small, R/LTc is large but stiffness increases, and

when γtor is moderate (large but not too large), both R/LTc and stiffness decrease [61].
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This is due to the unstable mode changing to the parallel velocity gradient (PVG)

mode [62, 63]. Similarly or even more than toroidal flows, poloidal flows are drawing

significant attention, as we will explain in the next section.

1.3.4 Poloidal Flows

There are three major poloidal flows in toroidal plasmas. They are the geodesic

acoustic mode (GAM) [65], zonal flow [73], and flow due to mean electric field [88],

respectively. GAM is a mode in which the (m,n) = (0, 0) electrostatic potential is

coupled to the (m,n) = (1, 0) pressure fluctuation due to the toroidal effect. The

zonal flow is the (m,n) = (0, 0) flow driven by nonlinear coupling of waves (Reynolds

stress), and the mean electric field is the electric field generated to satisfy the radial

force balance. The characteristics of each are described below.

From Eq. (1.72), the time evolution equation for the normalized density fluctuation

Ñ = ñ/n0:
∂Ñ

∂t
− 2

R
sin θṼE×B + ∇∥Ṽ∥ = 0 (1.99)

is derived. Due to the toroidal effect, the divergence of the E × B flow is not zero.

κ = sin θ/R in the second term of Eq. (1.99) is the geodesic curvature. From the

momentum equation

n0m
∂Ṽ

∂t
= −∇p̃+ J̃ ×B (1.100)

and the charge neutrality condition

∇ · J̃ = 0, (1.101)

the time evolution equations for ṼE×B and Ṽ∥ are derived as

∂ṼE×B

∂t
+

c2s
πR

∮
Ñ sin θdθ = 0 (1.102)

and
∂Ṽ∥
∂t

+ c2s∇2
∥Ñ = 0, (1.103)

respectively [66]. Assuming that the E × B flow causes up-down asymmetric den-

sity perturbations and that Ñ ∝ exp i
{

(kr, 0, k∥)
T · r − ωt

}
sin θ, the GAM dispersion

relation equation

−ω2
GAM +

2c2s
R2

+ k2∥c
2
s = 0 (1.104)

is derived from Eqs. (1.99), (1.102), and (1.103). Thus, the frequency of the GAM is

obtained as

ω2
GAM =

c2s
R2

(
2 + k2∥R

2
)
≃ c2s
R2

(
2 +

1

q2

)
. (1.105)
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From Eqs. (1.105), (1.102), and (1.103), the toroidal velocity of the GAM is [67]

Ṽ∥ =
1

q
cos θ ṼE×B. (1.106)

From Eqs. (1.105) and (1.102), the density fluctuation of the GAM is

ñ

n0

= krρ

√
2 +

1

q2
eϕ

T
sin θ. (1.107)

Historically, the GAM was first theoretically predicted in 1968 by Winsor et al. They

derived the equation [65]

ω2

∫
|ρ̃m|2J dS = c2s

[∣∣∣∣∫ ρ̃m
B ×∇ψ · ∇B2

B4
J dS

∣∣∣∣2/∫ |∇ψ|2

B2
J dS +

∫
|B · ∇ρ̃m|2

B2
J dS

]
.

(1.108)

from Eqs. (1.72), (1.100), (1.101) and

ρ−Γ
m0

∂p̃

∂t
− Γp0ρ

Γ
m0

∂ρ̃m
∂t

+ Ṽ · ∇
(
p0ρ

−Γ
m0

)
= 0. (1.109)

Here, Γ is the ratio of specific heats, ρm is the mass density, ψ is the flux label,

and the integral represents the flux-surface average. The first term on the right-hand

side, which depends on the magnetic field gradient in the B × ∇ψ direction, repre-

sents the GAM. On the other hand, the second term on the right-hand side repre-

sents the normal acoustic mode along the magnetic field. Substituting the magnetic

field B = B0/(1 + εt cos θ)
{
ez + r/

(
q
√
R2

0 − r2
)
eθ

}
into Eq. (1.108) yields the

GAM frequency Eq. (1.105). Equation (1.105) are the result from the fluid mod-

els, and the derivation using the gyrokinetic model was done by Sugama and Watan-

abe [68]. According to the Sugama and Watabae theory (SW Theory), the time evo-

lution of an initially given (m,n) = (0, 0) electrostatic potential ϕkr(0) is given by

ϕkr(0) = ϕkr(∞) + [ϕkr(0) − ϕkr(∞)] cos(ωGAMt) exp(γt). The GAM frequency ωGAM

and decay rate γ are given by [68]

ωGAM =

√
11

2
q

(
vT i

qR0

)√
1 +

86

121q2
(1.110)

and

γ = −
√
π

2
(qω̂GAM)2

(
vT i

qR0

)
121q2

121q2 + 86

[
e−ω̂2

GAM
(
ω̂2
GAM + 3

)
+

q2

256
(krρi)

2 e−ω̂3
GAM/4

(
ω̂4
GAM + 11ω̂2

GAM + 66
)]
, (1.111)

respectively, assuming ω̂2
GAM ≡ (qR0ωGAM/vT i)

2 ≫ 1 and Te/Ti = 1.
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Fig. 1.12: Time evolution of the (m,n) = (0, 0) electrostatic potential based on the

SW theory. The yellow horizontal line is the residual zonal flow based on the RH

theory.

Fig. 1.13: Physical mechanism of the GAM.

Figure 1.12 shows the time evolution of the (m,n) = (0, 0) electrostatic potential

based on Eqs. (1.110) and (1.111). The yellow horizontal line is the residual zonal flow

ϕkr(∞) = ϕkr(0)/(1+1.6q2/ε
1/2
t ) derived by Rosenbluth and Hinton (RH Theory) [64].
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The GAM repeats the cycle: positive radial electric field Er > 0 → up-down

asymmetric density perturbation δnn=0 ∝ − sin θ → negative radial electric field Er <

0 → density perturbation in opposite phase δnn=0 ∝ sin θ → positive radial electric

field Er, as shown in Fig. 1.13. The radial electric field and density fluctuations

in the figure were obtained from the GAM simulations using the global gyrokinetic

code GyroKinetic Numerical Experiment of Tokamak (GKNET) [92]. The background

density and temperature distributions are n(r) = T (r) = 1, the magnetic shear is ŝ3,

shown in Fig. 1.9, and the initial distribution function is given as

δfi(X, v∥, µ, t = 0) = 10−5

[(
π

a0

)2

cos

(
πr

a0

)
+

π

a0r
sin

(
πr

a0

)]
f0i. (1.112)

The physical mechanism of GAM is described as follows [69, 70]. The E × B flow is

created when a positive radial electric field Er > 0 is generated. The toroidal effect

leads to larger E × B flow outside the torus, resulting in the creation of up-down

asymmetric pressure perturbations δpn=0 ∝ − sin θ. Due to the pressure gradient, a

diamagnetic current is generated. To maintain the quasi-neutrality Eq. (1.101), a

polarization current flows to balance the diamagnetic current. This leads to changes

in the radial electric field, causing its direction to reverse. GAM has been observed in

many devices such as the DIII-D and ASDEX-U [71]. GAM damping tests are widely

used as benchmarks for gyrokinetic simulations [72].

In Eq. (1.100), when ñ does not depend on θ, then ω equals zero. In this case,

ñ = 0 from Eq. (1.103). Thus, unlike the GAM, zonal flow has no density fluctuations

and does not oscillate in time. From Eq. (1.99), the velocity in the toroidal direction

is obtained as [67]

Ṽ∥ = −2q cos θṼE×B. (1.113)

To investigate the mechanism of zonal flow generation, we introduce the partial ensem-

ble average ⟨·⟩. Using the average, the electrostatic potential ϕ = ϕ̄+ ϕ̃ is expressed as

the sum of ϕ̄ ≡ ⟨ϕ⟩, which varies slowly on the large scale, and ϕ̃, which varies quickly

on the small scale. When ϕ̄ and ϕ̃ are Fourier expanded, the former has a large con-

tribution from low wavenumber components, while the latter has a large contribution

from high wavenumber components. The E × B flow can likewise be separated into

large- and small-scale flow as VE×B = V̄ZF + ṼE×B. The dynamics are described in

the Modified Hasegawa-Mima euqation (MHM equation) [74, 75](
∂

∂t
+ V̄ZF · ∇⊥

)
eϕ̃

Te
+ V∗ · ∇⊥

eϕ̃

Te
− ρ2s

(
∂

∂t
+ VE×B · ∇⊥

)
∇2

⊥
eϕ

Te
= 0. (1.114)

The equation represents the dynamics of a two-dimensional slab configuration, with

r = xex+yey and k = kxk̂x+kyk̂y. Linearizing Eq. (1.114), we find that the frequency
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of the wave is

ωk =
kyV∗

1 + ρ2sk
2

+ k · V̄ZF . (1.115)

The Doppler shift is caused by the zonal flow. From Eq. (1.115), we obtain

∂ωk

∂k
=

V∗
1 + ρ2sk

2
k̂y −

2V∗kyρ
2
s

(1 + ρ2sk
2)2

k + V̄ZF (1.116)

and

∂2ωk

∂k∂k
=

8V∗kyρ
4
s

(1 + ρ2sk
2)3

kk − 2V∗ρ
2
s

(1 + ρ2sk
2)2

(
kk̂y + k̂yk + kyI

)
+
∂V̄ZF

∂k
, (1.117)

where I is the unit matrix. Taking the average of Eq. (1.114) and extracting the

large-scale dynamics,
∂

∂t
V̄ZF = − ∂

∂x
Rxy (1.118)

is derived [76, 77] from the incompressibility condition ∇ · VE×B = 0. Rxy ≡
−c2/B2

〈
(∂ϕ̃/∂x)(∂ϕ̃/∂y)

〉
is the Reynolds stress. Equation (1.118) shows that the

zonal flow is generated by the nonlinear coupling of the drift waves. In the limit

q/k ≪ 1 where the wavenumber of the drift wave k is sufficiently larger than that of

the zonal flow q, the Reynolds stress is

Rxy = − c2

B2

∫
dk

kxky
(1 + ρ2sk

2)2
Nk. (1.119)

Nk is the wave action, defined [76] as

Nk ≡ (1 + ρ2sk
2)2
∫
dq eiq·r

〈
ϕ̃kϕ̃q−k

〉
. (1.120)

From Eqs. (1.118) and (1.119), we obtain the equations describing the zonal flow

dynamics [67]:
∂

∂t
V̄ZF =

c2

B2

∂

∂x

∫
dk

kxky
(1 + ρ2sk

2)2
Nk. (1.121)

Since Eq. (1.121) contains Nk, we close the system of the equations by finding the

governing equation for Nk. Differentiating Eq. (1.120) by time and using q/k ≪ 1, we

obtain
∂Nk

∂t
− ∂ωk

∂r
· ∂Nk

∂k
+
∂ωk

∂k
· ∂Nk

∂r
= 0. (1.122)

Equation (1.122) has a Hamiltonian structure, indicating that the action spectrum of

the drift wave is constant along any trajectory derived from the Hamiltonian [67]. From

Eqs. (1.121) and (1.122), the linear equation for V̄ZF

∂

∂t
V̄ZF = −DZF

∂2

∂x2
V̄ZF (1.123)

is derived, where Ω is the complex frequency of the zonal flow and DZF is defined as

DZF ≡ − c2

B2

∫
dk

i

Ω − qx∂ωk/∂kx

kxk
2
y

(1 + ρ2sk
2)2

∂Nk

∂kx
. (1.124)
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Equation (1.123) shows that the zonal flow grows with time when ∂Nk/∂kx < 0.

Zonal flows are believed to be generated through the modulational instability [78,

79, 80]. The complex amplitude a of a quasi-monochromatic drift wave ψ(r, t) =

a(r, t) exp i(k · r − ωkt) of wavenumber k and frequency ωk satisfies the Nonlinear

Schrödinger equation [78]

i
∂a

∂t
+ i

V∗
1 + ρ2sk

2

{
k̂y −

2kyρ
2
s

1 + ρ2sk
2
k

}
· ∇a

− V∗ρ
2
s

(1 + ρ2sk
2)2

{
kk̂y + k̂yk + kyI − 4kyρ

2
s

1 + ρ2sk
2
kk

}
: ∇∇a =

(1 + ρ2sk
2)2ky

ρ2sV∗
|a|2a

(1.125)

from Eqs. (1.116) and (1.117) when the spectral width ∆k/k and the complex am-

plitude |a|/k are of the same order. The coefficient in the second term on the left-

hand side of Eq. (1.125) represents the group velocity vg and does not contribute

to the deformation of a. The third term on the left-hand side is a term propor-

tional to ∂2ω/∂k∂k, known as the group velocity dispersion term. This term describes

the deformation of a caused by the change in the group velocity with wavenumber.

The right-hand side of Eq. (1.125) represents the nonlinear frequency shift, and

using ς ≡ (1 + ρ2sk
2)2ky/ρ

2
sV∗|a|2, the solution which is independent of positions is

a = a′ exp(−iςt). Adding perturbations to the uniform solution and performing a

stability analysis, the instability condition for the modulation instability is derived as{
− V∗kyρ

2
s

(1 + ρ2sk
2)2

+
4V∗kyk

2
xρ

4
s

(1 + ρ2sk
2)3

}{
(1 + ρ2sk

2)2ky
ρ2sV∗

}
< 0 ⇐⇒ 1 − 3ρ2sk

2
x + ρ2sk

2
y > 0.

(1.126)

The linear growth rate has the maximum value

γmax =
(1 + ρ2sk

2)2ky
V∗ρ2s

|a′|2 (1.127)

when

qx =

√
(1 + ρ2sk

2)5

1 − 3ρ2sk
2 + ρ2sk

2
y

a′

V∗ρ2s
. (1.128)

Fig. 1.14 shows the physical mechanism of the modulational instability when the

group velocity is a decreasing function of wavenumber and ς > 0. When the amplitude

increases due to fluctuations, since ς > 0, i.e., the phase velocity of the drift wave vp

increases, the wavenumber increases in the front and decreases in the back. As the

group velocity is a decreasing function of wavenumber, the group velocity is smaller in

the front and larger in the back. Since the group velocity is the propagation speed of

energy, the amplitude increases further where the amplitude increases. Through such
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Fig. 1.14: Physical mechanism of the modulational instability.

a mechanism, fluctuations exponentially grow. The modulation analysis is also useful

for studying structures called streamers (qx ≪ 1) [81], which are radially elongated

vortices generated through nonlinear three-wave coupling. Li and Kishimoto showed

by the modulation analysis that zonal flows and streamers are selectively generated by

the anisotropy of a carrier wave [82]. When the drift wave satisfies (kx ≪ ky), zonal

flows are generated, and when it satisfies (kx ≫ ky), streamers are generated. This

result indicates that zonal flow and streamer generation can be controlled by controlling

the magnetic shear, since kx is proportional to ŝ−1/2 from Eq. (1.83). They showed by

3D electron temperature gradient (ETG) mode turbulence simulations that zonal flows

dominate when the magnetic shear is small and streamers dominate when the magnetic

shear is large [82]. It is worth noting here that ETG turbulence has a slower zonal flow

growth rate than ITG turbulence [83]. This is because in the case of ITG turbulence,

the zonal flow with k∥ = 0 is not shielded by the Boltzmann electrons, however in the

case of ETG turbulence, the zonal flow is also shielded by the Boltzmann ions.

In order to investigate the impact of zonal flows on turbulent transport, ITG tur-

bulence simulations with the adiabatic electron model were performed using GKNET.

The temperature gradients are (R/LT i, R/LTe) = (10, 6.92). The other parameters are

the same as for the Cyclone base case parameters. We compared the case of the normal

simulation with the case where the (m,n) = (0, 0) electrostatic potential is numerically

removed. Figure 1.15 shows the n = 16 electrostatic potentials for each case. In the

linear phase tvT i/R0 = 40, the electrostatic potential structures are exactly the same,
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Fig. 1.15: n = 16 electrostatic potential structure with and without zonal flow.

Fig. 1.16: Time evolution of turbulent heat flux with and without zonal flow.

however after nonlinear saturation tvT i/R0 = 50, the wavenumber of the electrostatic

potentials are different and kx is larger in the presence of zonal flows. This is due to

the deformation and tearing of the turbulent eddies by the zonal flow shear [84, 85].
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As kx increases, the transport is expected to be small because the turbulent diffusion

coefficient becomes small from Eq. (1.79). Furthermore, an increase in kx leads to a

decrease in the drift frequency as indicated by Eq. (1.115). Therefore, the energy of the

drift wave is expected to decrease from conservation of the action density [83]. Figure

1.16 illustrates that the turbulent heat flux is more than two times smaller in the pres-

ence of zonal flows compared to the case without zonal flows. Thus, zonal flows are the

key to achieving fusion power generation because they suppress turbulent transport.

Static zonal flows are more important for turbulent transport suppression, because en-

ergy transport from oscillating zonal flows to turbulence has been observed [86]. Since

static zonal flows are dominant in low q region and oscillatory zonal flows are dominant

in high q region [87], it is better to extend the low q region to improve confinement.

The other poloidal flow in toroidal plasmas is the flow due to the mean radial electric

field. The mean electric field is determined to satisfy the radial force balance [84]

Er +
k

B

∂T

∂r
− rB

qR
V∥ −

1

nB

∂p

∂r
= 0. (1.129)

k is the coefficient of neoclassical poloidal flow, given by [72, 89]

k =

1.17 − 0.35
√
ν⋆

1 + 0.7
√
ν⋆

− 2.1ν2⋆ε
3
t

1 + ν2⋆ε
3
t

. (1.130)

The neoclassical poloidal flow rotates in the ion diamagnetic direction in the low fre-

quency range, however as the collision frequency increases, the direction reverses and

the poloidal flow rotates in the electron diamagnetic direction [90, 91]. In the collision-

less case, k equals 1.17 and becomes a constant. In the absence of momentum injection,

the pressure gradient term becomes dominant, leading to the generation of the negative

radial electric field. The Doppler shift frequency due to the mean radial electric field

cancels with the drift frequency of the ITG mode, resulting in a smaller ballooning

angle [92]. From Eq. (1.91), it is evident that the presence of the mean electric field

leads to an increase in the linear growth rate of the ITG mode. Zonal flow evolves

on a turbulent timescale, whereas the mean radial electric field evolves on a transport

timescale. The mean radial electric field is driven by equilibrium profiles whereas zonal

flow is only generated by nonlinear wave coupling [83]. Hence, the mean radial electric

field can be controlled by heating or momentum injection. Imadera and Kishimoto

have shown using GKNET that the ITB is formed by co-injection of momentum [92].

Due to the momentum injection, the toroidal rotation term −rB/(qR)V∥ < 0 in Eq.

(1.129) becomes dominant, causing the radial electric field to become positive Er > 0.

In the inner region where the radial electric field shear is positive, the ballooning angle

is negative and the momentum flux is positive [93]. On the other hand, in the outer

region where the radial electric field shear is negative, the ballooning angle is positive
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and the momentum flux is negative. Hence, momentum diffusion is reduced, large ra-

dial field shear is maintained, and the ITB is formed. In the case with counter-injection

of momentum, the sign of the generated radial electric field is reversed, so the direction

of the momentum fluxes is also reversed from that in the case with the co-injection of

momentum, and the momentum diffusion is larger. Hence, ITB is less likely to form

in the case of counter-injection of momentum.

Fig. 1.17: Spatiotemporal evolution of the heat flux with (a) and without (b) momen-

tum injection. [By courtesy of Dr. Imadera of Kyoto University]

In the case of reversed magnetic shear, the ITB is also formed by the co-injection of

momentum, as shown in Fig .1.17. Interestingly, in the case of the reversed magnetic

shear, the radial position where the ITB is formed is near the flux surface with the

lowest safety factor qmin, regardless of the location of momentum sources [92]. This is

due to the fact that the toroidal rotation has the maximum value near the qmin surface

by the momentum fluxes and that the toroidal rotation term in Eq. (1.129) is inversely

proportional to the safety factor. Thus, it can be seen that the mean radial electric

field also contributes significantly to confinement improvement.

1.4 Overview of this thesis

Plasma turbulence driven by microinstabilities has been studied through gyrokinetic

simulations. Especially, the simulations employing the flux-tube model have been ex-

tensively conducted since their computational costs are relatively small. While they
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can evaluate the turbulent transport for given background profiles, they do not eval-

uate the changes in the profiles due to the transport and the associated variation in

the turbulence. Research on the interaction between turbulence and profiles remains

insufficient. Since many previous studies using δf global simulations have focused on

the dynamics of ions and electrons, research on turbulent impurity transport and the

associated profile formations is insufficient as well. Impurity accumulation can lead

to increased radiative losses and fuel dilution. Conversely, it was reported that the

stabilization of instabilities by accumulated impurities can improve confinement per-

formance. Therefore, it is necessary to analyze the turbulent transport and profile

formations when the impurity density gradient is positive and negative. In this study,

we first focus on entropy and perform full-f simulations to investigate the interaction

between the profile formation and turbulent transport, and their relationship with dis-

sipation. In addition, the role of equilibrium electric field in profile formation and the

interaction between profile variation and turbulence in the presence of magnetic islands

are elucidated. Subsequently, by conducting δf global simulations that introduce im-

purities, we examine the impact of the impurity mode driven by a hollow (outwardly

peaked) impurity density profile on impurity transport. Furthermore, we investigate

methods to control turbulent transport through heating, to relax a peaked (inwardly

peaked) impurity density profile and simultaneously increase the gradients of bulk ion

and electron density profiles .

In Chapter 2, the gyrokinetic theory is described and the gyrokinetic equations are

derived. The equation of motion in noncanonical Hamiltonian mechanics corresponds

to the equation of the vortex lines of the fundamental 1-form in the seven-dimensional

extended phase space (z, t). Since the equation of motion is derived from the exterior

derivative of the fundamental 1-form, closed forms contained within the fundamental

1-form can be neglected. In the Lie transform perturbation theory, the fundamental

1-form is transformed by the pullback of a map given by vector fields, thereby remov-

ing the gyrophase dependence. This method is simpler than directly averaging the

Vlasov equation over the spacetime scale of the gyro-motion and has the advantage of

rigorously treating symmetries and conservation laws. The drift-kinetic Vlasov equa-

tion is obtained by the guiding center transformation in terms of the small parameter

εB ∼ ρ/LB ≪ 1. The phase space and energy conservations are strictly satisfied. When

electrostatic potential fluctuations are introduced, the guiding center fundamental 1-

form again has the gyrophase dependence. The gyrokinetic Vlasov equation is obtained

by the gyrocenter transformation in terms of the small parameter εδ ∼ eϕ/T ≪ 1. In

this study, since the electrostatic approximation is employed, the form of the symplec-

tic part remains unchanged by the gyrocenter transformation, and the Jacobian and

the Poisson brackets are the same as those in the guiding center coordinates. The
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density is represented by the distribution function in the particle phase space coordi-

nates, but what is obtained from the gyrokinetic Vlasov equation is the distribution

function in the gyrocenter coordinates. From the push-forward representation of the

densities, the gyrokinetic Poisson equation is derived. The expression of the gyroki-

netic Poisson equation differs between the adiabatic electron model, where all electrons

are treated adiabatically, and the hybrid electron model, where trapped electrons are

treated kinetically.

In Chapter 3, the numerical schemes and algorithms used in the global gyrokinetic

code GKNET are explained. The algorithm implemented to cancel numerical fluxes

near a singularity result in the magnetic field and vector potential becoming discon-

tinuous functions. To resolve the discontinuity by using the gauge transformation,

the gyrokinetic Vlasov equation is reformulated using the curl. GKNET adopts the

Euler method, discretizing the phase space. The gyrokinetic Vlasov equation is dis-

cretized using the Morinishi scheme, which numerically conserves the L1 norm and the

L2 norm, and the time integration is computed using the fourth-order Runge-Kutta

method. The finite Larmor radius effect is evaluated by the Padé approximation or

calculating along gyro-orbits using interpolation functions. The latter method can

more accurately evaluate the gyrophase averaging, but it requires longer computation

times when the Larmor radius is large. The gyrokinetic Poisson equation is solved by

lower-upper decomposition after Fourier transformation along the θ and φ directions

and making band diagonal matrices of r, kθ, and kφ.

In Chapter 4, the gyrokinetic entropy balance and dynamics are discussed. By de-

composing the distribution function f into the equilibrium part f0 and the fluctuating

part δf and expanding the entropy density s(all) = −f log f , the first-order entropy

density s(1) = −δf (1 + log f0) and the second-order entropy density s(2) = −δf 2/ (2f0)

can be defined. Integration of the first-order entropy density over the velocity space is

proportional to the change in the pressure profile and represents entropy change asso-

ciated with profile relaxation. On the other hand, integrating the second-order entropy

density over the phase space coincides with the opposite sign of the fluctuation entropy,

often used in gyrokinetic studies. The fluctuation entropy represents entropy change

related to structure formation in velocity space. While the first-order entropy is the

thermodynamic entropy associated with profile formation, the second-order entropy

pertains to entropy related to turbulent fluctuations. From the gyrokinetic Vlasov

equation, the equations for the first- and second-order entropy densities are newly

derived, and each term of these equations is evaluated using full-f gyrokinetic simu-

lations. It is found that the first-order entropy S(1) =
∫
s(1)J d5z primarily changes

due to the entropy generation by heat flux Γ and the entropy destruction by energy

input/output −E. Meanwhile, the second-order entropy S(2) =
∫
s(2)J d5z mainly
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changes by the entropy generation due to collisional dissipation D and the entropy

destruction due to phase mixing −Γ. This is consistent with the fluctuation entropy

balance equation obtained in previous studies. The fact that both the first- and second-

order entropies change due to Γ implies that the temperature profile and turbulence

interact through the heat flux. Γ does not generate net entropy, and the net entropy

is produced through dissipation in velocity space. Intuitively, it would seem that the

larger flow, the smaller entropy generation because ordered structure is large. How-

ever, large flow leads to large D, resulting in increased entropy generation. Therefore,

higher confinement performance corresponds to greater entropy generation. D is de-

termined byΓ and is independent of collision frequency. In the entire plasma, since

the first-order entropy increases due to the entropy generation by heat flux, ∂S(1)/∂t

and Γ are in phase. Locally, the dynamics of the first-order entropy is dominated by

the advection term, leading to an increase in the first-order entropy generation rate

followed by a rise in Γ. This suggests a time lag in the heat flux response to change

in the temperature profile, with the delay time being on the order of the inverse of the

linear growth rate. Similarly, the dynamics of the second-order entropy is dominated

by the advection term and it propagates with the heat avalanches. This implies that

locally generated turbulence propagates without dissipation.

In Chapter 5, the effects of magnetic islands on turbulence and profile formation are

discussed. To investigate the interaction between turbulence and profile in the presence

of magnetic islands, it is necessary to perform full-f gyrokinetic simulations. In order to

solve the gyrokinetic Poisson equation, the flux-surface averaging must be performed,

but no standard computational method exists in the presence of magnetic islands. In

this study, a new algorithm called the labeling method is developed, which groups

real-space grid points by the nearest magnetic field line. By implementing the labeling

method, the previous study result that the electrostatic potential with the same mode

numbers as the magnetic island and the (m,n) = (0, 0) electrostatic potential oscillate

together at the GAM frequency is reproduced. In neoclassical simulations, solving

only the gyrokinetic Vlasov equation results in the flattening of the both temperature

and density profiles at the O-point. On the other hand, self-consistently solving the

gyrokinetic Vlasov and Poisson equations reveals that while the temperature profile is

flattened, the density profile is not relaxed. This result is explained by the balance

between the forces due to the mean radial electric field and due to the parallel stream-

ing. The profile formation inside magnetic islands is a critical issue, as it pertains to

the stability of the neoclassical tearing mode. The finding in this study, that the mean

radial electric field maintains the density gradient inside the magnetic island, suggests

the need to consider the electric field that satisfies the radial force balance for properly

evaluating the destabilizing effects. In flux-driven ITG turbulence simulations with a
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magnetic island, a quasi-periodic transport reduction due to the interaction between

the temperature profile and turbulence is discovered. Since the temperature profile

is relaxed in side the magnetic island, the large temperature gradient is formed at

the inner boundary of the island and drives the ITG mode. Since the mode satisfy-

ing k∥ = 0 inside the magnetic island has the same mode numbers as the magnetic

island, a mesoscale vortex mode with the mode numbers grows. Analysis based on

the Hasegawa-Mima equation confirm that the vortex mode is excited by two drift

waves. The vortex mode transports heat from the O-point to the X-point, reducing

the temperature gradient inside the magnetic island. Since the temperature gradient

is small, turbulence is not excited, and the shear effect of the vortex mode prevents

the heat flux from penetrating into the island, resulting in reduced heat flux inside the

magnetic island. However, as the turbulence intensity is small, the amplitude of the

vortex mode also diminishes. When it becomes smaller than the amplitude of the tur-

bulence, the turbulent structure becomes similar to that without the magnetic island.

Turbulence driven by the temperature gradient re-excites the vortex mode, leading to

the quasi-periodic transport reduction. If the heating power is increased, a positive

feedback loop where the temperature gradient at the boundary of the magnetic island

is increased, and the accompanying large radial electric field further increases the tem-

perature gradient may occur. This could lead to the formation of a transport barrier

due to the magnetic island.

In Chapter 6, results on turbulent transport and profile formation in cases of pos-

itive and negative impurity density gradients are presented. While it is theoretically

predicted and observed experimentally that the toroidal impurity mode (tIM) become

unstable when the impurity density gradient is positive, there is no analysis of the

physical mechanisms or evaluation of the turbulent transport by global gyrokinetic

simulations. In this study, a fluid model is first used to analytically derive the condi-

tion under which the tIM becomes unstable. It is demonstrated that the tIM can be

explained as an interchange instability. The tIM simulation results reveal that the im-

purity particle flux caused by the tIM turbulence is an order of magnitude greater than

that caused by the ITG turbulence. Additionally, it is found that the tIM turbulence

induces an inward ion heat flux, leading to an increase in the core bulk ion tempera-

ture. This is attributed to the significant contribution of the non-diagonal terms of the

heat flux. In the presence of the positive impurity density gradient and the large ion

temperature gradient, the ITG mode becomes dominant, but it is shown that the large

impurity transport is driven by the subdominant IM. The study also examines methods

of controlling particle fluxes through heating in the case of a negative impurity density

gradient, not only to expel impurities but also to simultaneously facilitate fuel supply.

When only electrons are heated, the particle fluxes are small, and the density profiles
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hardly change. When only ions are heated, the ITG turbulence drives the inward bulk

ion particle flux Γi and the outward impurity particle flux ZΓz. These fluxes satisfy

Γi +ZΓz ≃ 0 and the electron particle flux is small. When both ions and electrons are

heated, the bulk ion and electron pinches are an order of magnitude greater than when

only ions are heated, leading to an increase in their density gradients. Additionally,

the large outward impurity transport relaxes the impurity density profile. These parti-

cle transports are thought to be driven by the dominant ITG mode and subdominant

TEM. This result suggests that heating can achieve both fuel supply and impurity

exhaust, significantly contributing to the realization of fusion energy. In Chapter 7, a

summary of the results obtained in this study is presented.



Chapter 2

Gyrokinetic theory

2.1 Lie transform perturbation theory

In this chapter, we derive the gyrokinetic Vlasov equation and the gyrokinetic

Poisson equation used in this study. To this end, this section describes the basic

concepts of the gyrokinetic theory and the Lie transform perturbation theory used

to derive the equations. It is noted that since the electrostatic model is used in this

study, magnetic field fluctuations are not considered, however a general discussion is

presented.

As mentioned in the introduction, fluid models cannot precisely evaluate turbulent

transport in fusion plasmas. Hence, when we perform the simulations of plasma turbu-

lences, solving kinetic equations is necessary, however directly utilizing the 6D Vlasov

equation Eq. (1.45) is not practical due to computational resource limitations. There-

fore, a theory has been developed to approximate the gyromotion of charged particles,

which is much faster than the dynamics of turbulence, and to reduce the number of

dimensions to be treated. That is the gyrokinetic theory. In numerical simulations, the

reduction of the dimension reduces the number of required phase-space grids dramat-

ically, and the computation time can be reduced to a realistic level. The gyrokinetic

theory that can deal with phenomena such as drift wave turbulence of which character-

istic time scale is slower than the cyclotron frequency is an approximation theory and

its validity is limited to dynamics satisfying the gyrokinetic orderings. In the gyroki-

netic ordering, our focus is on the parameters εω, εB, ε⊥, and εδ [18]. εω is the ratio of

the cyclotron frequency Ω to the characteristic frequency ω of fluctuations, satisfying

ω

Ω
∼ εω ≪ 1. (2.1)

This shows that phenomena such as cyclotron waves are outside the scope of the theory.

The parameter εB characterizes the ratio of the magnetic field scale length LB to the

43
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gyro radius ρ and satisfies
ρ

LB

∼ εB ≪ 1. (2.2)

The two small parameters εω, εB are common to both the drift and gyrokinetic ordering.

The parameter ε⊥ is of different order for standard gyrokinetic and drift kinetic theory,

k⊥ρ ∼ ε⊥


∼ 1 (standard gyrokinetic orderings)

≪ 1 (drift orderings)

. (2.3)

It is noted that the ordering ε⊥ ≪ 1 in the drift kinetic theory may also be used in

the gyrokinetic theory. This is because this condition can be used to approximate the

finite Larmor radius (FLR) effects in a simple form that is easy to solve numerically.

In the case of core region ITG turbulence, ε⊥ ≪ 1 is considered to be satisfied, and

for instance, the assumption is adopted in the full-f Eulerian code GT5D [117]. In this

study, ε⊥ ≪ 1 is applied only to the calculation of the double gyro-averaging which is

explained later. The order of the ratio of the perpendicular to the parallel electric field

fluctuations is estimated to be

δE∥

δE⊥
∼
k∥
k⊥

∼ εω
ε⊥
. (2.4)

In the case of the standard gyrokinetic theory, the perpendicular electric field fluctua-

tions are found to be large, however this is not so in the case of drift kinetic theory. εδ

is a parameter related to the magnitude of the fluctuation and satisfies

δf

f
∼ eϕ

T
∼ εδ ≪ 1. (2.5)

In the presence of magnetic fluctuations, it can be deduced from Eq.(2.5) that the ratio

of the magnitude of the magnetic fluctuations to the equilibrium magnetic field is of

the order of εδ. In the case of the standard gyrokinetic orderings, it is easy to see that

eρ∇⊥ϕ

T
∼ vE
vT

≪ 1. (2.6)

This is referred to as the slow flow condition. In the case of the MHD, vE ∼ vT is used.

The slow flow condition is satisfied even when ε⊥ ≪ 1 and eϕ/T ∼ 1. However, in this

case, it is pointed out that the rigorous discussion requires the incorporation of higher-

order terms derived from the guiding-center transformation in the quasi neutrality

condition and Hamiltonian [95]. In this study, the four parameters are assumed to

satisfy ε ∼ εω ∼ εB ∼ ε⊥ ∼ εδ. These are the perturbation parameters when discussing

the perturbation theory. In the standard gyrokinetic theory, parameter εB is used

for the guiding-center transformation, and parameter εδ is used for the gyro-center

transformation.
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Since the Lie transform perturbation theory also bears the name of perturbation

theory, the idea is basically no different from other perturbation theories such as the

multiple-scale method. It only pushes unnecessary things into the extra degrees of

freedom. In the Lie transform perturbation theory, the gyrophase is eliminated by

operating the fundamental 1-form, rather than by directly transforming or averaging

the equations of motion such as Eq. (1.45). First, we show that the equation of motion

in the noncanonical Hamiltonian theory [96] can be derived from the fundamental 1-

form. The fundamental 1-form Γ on the seven dimensional extended phase space is

written as

Γ = γi(z, t)dz
i −H(z, t)dt (2.7)

with the seven-dimensional noncanonical coordinates (z, t) and Hamiltonian H. γi is

expressed by the Lagrangian L and the six-dimensional canonical coordinate (q,p) and

is given by

γi =
∂L(z, ż, t)

∂żi
= p(z, t) · ∂q(z, t)

∂zi
. (2.8)

Since the equation of motion is the equation of vortex lines of the fundamental 1-

form [13], the exterior derivative of Eq. (2.7) is taken to obtain the equation of motion.

When the components of the Lagrange brackets is defined as

ωij ≡
[
zi, zj

]
=
∂γj
∂zi

− ∂γi
∂zj

, (2.9)

the exterior derivative of Eq.(2.7) is written by

Υ ≡ dΓ =
∑
i<j

ωijdz
i ∧ dzj −

(
∂γi
∂t

+
∂H

∂zi

)
dzi ∧ dt. (2.10)

The first term on the right-hand side is the Lagrange tensor. The interior product of

the vector field

V =
dzi

dt

∂

∂zi
+
∂

∂t
(2.11)

and the 2-form given by Eq.(2.10) is

iV Υ =
dzi

dt
ωijdz

j +

(
∂γi
∂t

+
∂H

∂zi

)
dzi −

(
∂γi
∂t

+
∂H

∂zi

)
dt. (2.12)

When iV Υ = 0 and the components of the Poisson bracket, which is the inverse matrix

of the Lagrange bracket, is written by

J ij ≡
{
zi, zj

}
=
∂zi

∂qk
∂zj

∂pk
− ∂zj

∂qk
∂zi

∂pk
, (2.13)

we obtain
dzi

dt
= J ij

(
∂H

∂zj
+
∂γj
∂t

)
. (2.14)
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Equation (2.14) can also be derived by directly calculating the Euler-Lagrange equation

from the Lagrangian expressed in the noncanonical coordinates [97]. From Eq. (2.14),

we can see that transforming the fundamental 1-form is equivalent to transforming the

equation of motion. It is important to note that since the equation of motion is the

equation of vortex lines of the fundamental 1-form, it is determined by the exterior

derivative of the fundamental 1-form. This means that the equation of motion does

not change when closed forms are added to the fundamental 1-form Eq.(2.7). In the

Lie transform perturbation theory, the original fundamental 1-form Γ is transformed

into

Γ ≡
(
T−1

)∗
Γ + dS, (2.15)

through the pull-back by a map T−1. T is a map that is given by a vector field G and

is defined as

T = exp (εG) . (2.16)

S is a scalar field and dS in Eq. (2.15) vanishes when we take the exterior derivative.

It means that dS does not affect the equations of motion. Expanding Γ̄,Γ, γ,H, and

S as

a = a0 + εa1 + ε2a2 + · · · ,
(
a = Γ̄,Γ, γ,H, S

)
, (2.17)

we obtain the equations:

Γ0 = Γ0 + dS0, (2.18)

Γ1 = Γ1 − LGΓ0 + dS1, (2.19)

Γ2 = Γ2 − LGΓ1 +
1

2
L2

GΓ0 + dS2. (2.20)

LG is the Lie derivative given by the vector field G. When it acts on a fundamental

1-form, we get

LGΓ = (d iG + iG d) Γ (2.21)

by the Cartan’s homotopy formula [98]. The Lie derivative is a differential operator

that does not change tensor properties, and from Eq. (2.21), it is evident that the Lie

derivative of a 1-form remains a 1-form. For the reason that the exterior derivative of

the fundamental 1-form is the equation of motion, the first term on the right-hand side

of Eq. (2.21) is not necessary to calculate since it disappears anyway. Henceforth, when

performing calculations involving the Lie derivative of 1-forms, we implicitly assume

that terms arising from the first term on the right-hand side of Eq. (2.21) are included

in the exterior derivative of scalar fields, and we will not explicitly write. Here, we

define the maps

Tn = exp (εnGn) , (n = 1, 2, 3, · · · ) (2.22)
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by vector fields Gn (n = 1, 2, 3, · · · ) and introduce the composite map T = · · ·T3T2T1.
The fundamental 1-form is pulled back by the inverse map of the composite map [13].

In this case, the relations

Γ0 = Γ0 + dS0, (2.23)

Γ1 = Γ1 − LG1Γ0 + dS1, (2.24)

Γ2 = Γ2 − LG1Γ1 +

(
1

2
L2

G1
− LG2

)
Γ0 + dS2, (2.25)

are established between the transformed fundamental 1-form Γ and the original funda-

mental 1-form Γ. The Gn and Sn appearing here correspond to the degrees of freedom

in perturbation theory, and the gyrophase dependence can be removed by choosing

them well so that the gyrophase dependence is eliminated. In this study, we are not

interested in orders higher than the third order, so it is enough to know G1, G2, and

S1. We do not consider higher orders as in Eq. (2.17), but only up to the first-order

a = a0 + εa1, (a = Γ, γ,H, S).

Next, we will obtain the expressions of G1, G2, and S1, and the symplectic com-

ponents and Hamiltonian after transformations. We assume that the zeroth-order

Hamiltonian H0 before transformations is independent of the gyrophase. First, we cal-

culate the symplectic components. From Eq. (2.24), the transformed first-order 1-form

γ1 can be expressed as

γ1 = γ1 − iG1ω0 + dS1, (2.26)

where we denote the exterior derivative of γn (n = 0, 1, 2) as ωn = dγn (n = 0, 1, 2).

By solving Eq. (2.26) for the components of the vector field G1, we obtain

Gj
1 =

{
S1, z

j
}
0

+ ∆γ1iJ
ij
0 , (2.27)

where J ij
0 is the component of the Poisson bracket obtained from the zeroth order 1-

form γ0 and it is used to define the Poisson bracket of arbitrary scalar functions F and

G,

{F,G}0 ≡ J ij
0

∂F

∂zi
∂G

∂zj
. (2.28)

∆γ1i is defined as ∆γ1i ≡ γ1i−γ1i and represents the difference between the symplectic

components changed by the pull back transformation. The second-order 1-form is

obtained as

γ2 = −iG2ω0 −
1

2
iG1(ω1 + ω1) (2.29)

from ω1 = dγ1 and Eq. (2.25). It is noted that the closed form arising from the Lie

derivative disappear because the second-order scalar field is zero. G2 is obtained as

Gj
2 = −1

2
Gk

1 (ω1ki + ω1ki) J
ij
0 (2.30)
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from γ2 = 0. The transformed first-order Hamiltonian H1 can similarly be calculated,

and from Eq. (2.24),

H1 = K1 + γ1i
{
zi, H0

}
0
− {S1, H0}0 (2.31)

can be obtained. K1 is the effective first-order Hamiltonian before transformations,

and is defined as K1 ≡ H1 − γ1i {zi, H0}0. We chose the first-order gauge function S1

such that ⟨S1⟩ = 0, where ⟨·⟩ represents the gyro averaging operation. S1 is determined

from the equation

{S1, H0}0 ≡ K1 − ⟨K1⟩ . (2.32)

This equation can also be derived by the variational principle [99] and we obtain

H1 = ⟨K1⟩ + γ1i
{
zi, H0

}
0
. (2.33)

The transformed second-order Hamiltonian can be calculated in the same way by Eq.

(2.25). The gyro averaged second-order Hamiltonian is obtained as

H2 = − 1

2

〈
{S1, {S1, H0}0}0

〉
−
〈
∆γ1j

{
zj, K1

}
0

〉
− 1

2

〈
∆γ1jJ

jk
0 {λ1k, H0}0

〉
− 1

2

〈
λ1i∆γ1j

{
zj,
{
zi, H0

}
0

}
0

〉
, (2.34)

where λ1i = γ1i + γ1i is the sum of the first-order symplectic components before and

after transformations. The Lie transformed symplectic components and Hamiltonian,

as well as the vector and scalar fields were obtained.

2.2 Gyrokinetic Vlasov equation

In order to derive the gyrokinetic Vlasov equation, the particle coordinates z =

(x,v) are transformed into the guiding-center coordinates Z = (X, U, ζ, µ) by the

guiding-center transformation and further into the gyrocenter coordinates Z = (X, U, ζ, µ)

by the gyrocenter transformation. First, let us derive the equations describing the mo-

tion of particles in the guiding-center coordinates. In the following, we consider the

electrostatic model and assume that the magnetic field is constant with time. The

fundamental 1-form γ is written

γ =
(
εmv +

e

c
A
)
· dx− ε

1

2
m|v|2dt (2.35)

in the particle coordinates. It is noted that ε should strictly be written as εB because

mv
e

c
A

∼ ρ

LB

∼ εB. (2.36)
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We aim to remove the gyrophase dependence through the guiding-center transformation

from Eq. (2.35), however, the gyrophase does not explicitly appear in Eq. (2.35). To

address this, we perform a coordinate transformation in velocity space. The velocity v

is divided into the component parallel to the magnetic field u ≡ v ·b and the component

perpendicular to the magnetic field w ≡ v− ub. The unit vector perpendicular to the

magnetic field is defined as c ≡ w/|w|. From a = b×c, we construct a right-handed set

of unit vectors (a, b, c). Using the unit vectors a and c perpendicular to the magnetic

field, we define the unit vectors e1 and e2 as

e1 ≡ cosαa− sinαc (2.37)

and

e2 ≡ − sinαa− cosαc, (2.38)

respectively. α is the gyrophase and the angle between a and e1. The unit vectors

e1 and e2 constitute a right-handed set of unit vectors (e1, e2, b). After performing

the transformation of the velocity coordinates and expressing the velocity in terms of

u,w ≡ |w|, and α, Eq. (2.35) becomes

γ =
(
εmub + εmwc +

e

c
A
)
· dx− ε

(
1

2
mu2 +

1

2
mw2

)
dt. (2.39)

The fundamental 1-form Eq. (2.39) is transformed by the pull back of the inverse map

of the map TGC ≡ exp (εV ) which is given by the vector field

V ≡ −ρ · ∇ − ρ ·R ∂

∂α
, (2.40)

where ρ and R are defined as

ρ ≡ cmw

eB
a and R ≡ ∇e1 · e2, (2.41)

respectively. The vector field V is a part of the vector field in the standard guiding-

center transformation [100]. If it is necessary to systematically remove the gyrophase

dependence to higher orders to derive the drift kinetic equations, the standard vector

field should be used. Since we focus mainly on turbulent rather than neoclassical

transport, we do not consider higher orders in the guiding-center transformation. The

vector field V does not change its form depending on how the gyrophase is chosen [97].

When the gyrophase is shifted by ψ, denoted as α′ ≡ α + ψ, R transforms into R′ ≡
R+∇ψ, and the α component of the vector field V changes from −ρ·R to −ρ·R′, which

means that the form of V remains unchanged. Using the map TGC, the fundamental

1-form is transformed from Eq. (2.15) to Γ =
(
T−1
GC

)∗
γ + dS. From the perspective

of considering the transformation as a coordinate transformation, it corresponds to

the transformation from the coordinates (x, u, α, w) to coordinates (X, U, ζ,W ). By
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obtaining γ in the passive point of view [15] from Eqs. (2.18), (2.19), and (2.20),

and disregarding the second-order terms with the gyrophase dependence in the X

component, we get

γ =
(e
c
A + εmUb

)
· dX + ε2

cm

e
µdζ − ε

(
1

2
mU2 + µB

)
dt, (2.42)

where µ is the magnetic moment and is defined as

µ ≡ mW 2

2B
=
mw2

2B
. (2.43)

We introduce the modified vector potential

A∗ ≡ A + ε
cm

e
Ub (2.44)

and the zeroth order Hamiltonian

H0 ≡
1

2
mU2 + µB, (2.45)

and Eq. (2.42) can be written as

γ =
e

c
A∗ · dX + ε2

cm

e
µdζ − εH0dt. (2.46)

Calculating the components of the Lagrange bracket from Eqs. (2.46) and (2.9) reveals

that the non-zero components are only[
X i, Xj

]
=
e

c
εijkB

∗
k, (2.47)[

X i, U
]

= −εmbi, (2.48)

[ζ, µ] = −ε2 cm
e
, (2.49)

where B∗ = ∇×A∗ is the modified magnetic field. εijk is the completely antisymmetric

tensor of rank 3, being +1 for (i, j, k) being an even permutation of (1, 2, 3), -1 for

(i, j, k) being an odd permutation of (1, 2, 3), and 0 otherwise. The determinant of the

Lagrange bracket is ε6m4B∗ 2
∥ where B∗

∥ ≡ B∗ · b. We can see that the Jacobian J
of the transformation from the particle coordinates z to guiding-center coordinates Z

becomes B∗
∥/m [101]. From Eq. (2.46), the Poisson bracket is

{F,G} =ε−2 e

cm

(
∂F

∂ζ

∂G

∂µ
− ∂F

∂µ

∂G

∂ζ

)
+ ε−1 B∗

mB∗
∥
·
(
∇F ∂G

∂U
− ∂F

∂U
∇G

)
− ε0

c

eB∗
∥

(b · ∇F ×∇G) , (2.50)

where F and G are arbitrary scalar functions. The terms of Eq. (2.50) are arranged in

the order of ε−2, ε−1, and ε0. Each term corresponds to the gyromotion, motion parallel



2.2 Gyrokinetic Vlasov equation 51

to the magnetic field, and motion perpendicular to the magnetic field, respectively [18].

It is noteworthy that replacing the differential operator ∇ in Eq. (2.50) with

∇′ ≡ ∇ +

{
R +

1

2
(b · ∇ × b) b

}
∂

∂ζ
(2.51)

yields the same equation obtained by performing the standard guiding-center transfor-

mation. From Eqs. (2.50) and (2.14), we obtain the equations of motion:

dX

dt
=

B∗

mB∗
∥

∂H0

∂U
+

c

eB∗
∥
b×∇H0 (2.52)

dU

dt
= − B∗

mB∗
∥
· ∇H0 (2.53)

dζ

dt
=

e

cm

∂H0

∂µ
(2.54)

dµ

dt
= 0 (2.55)

Since the equations do not depend on gyrophase, when the initial distribution function

in the guiding-center coordinates is independent of gyrophase, the distribution function

F (Z) ≡
(
T−1
GC

)∗
f(Z) does not depend on gyrophase even after the time evolution.

Hence, we obtain the drift kinetic equation:

∂F

∂t
+
dX

dt
· ∇F +

dU

dt

∂F

∂U
= 0. (2.56)

Next, an electrostatic potential fluctuation ϕ1 is introduced. The Hamiltonian

becomes

H = H0 + εH1, (2.57)

where H1 ≡ eϕ1. It is noted that ε on the right-hand side of Eq. (2.57) should

strictly be written as εδ. Since the electrostatic potential fluctuation has gyrophase de-

pendence, ϕ1

(
T−1
GCx, t

)
= ϕ1 (X + ρ + O (ε2B) , t), the Hamiltonian also has gyrophase

dependence. T−1
GCx denotes the particle position in the guiding-center phase space. The

transformation to remove this gyrophase dependence is the gyrocenter transformation,

which is a transformation from the guide center coordinates Z = (X, U, ζ, µ) to gyro-

center coordinates Z =
(
X, U, ζ, µ

)
from the viewpoint of considering the transforma-

tion as a coordinate transformation. We will denote all quantities transformed by the

gyrocenter transformation with an overbar. In the case of the electrostatic model, the

symplectic structure does not change because there is no vector potential fluctuation.

Therefore, the gyrocenter transformation does not change the equations of motion or

the Jacobian. It is worth mentioning that even in the case of the electromagnetic model,

by introducing the electromagnetic fluctuation A1 initially and performing the stan-

dard guiding-center transformation with the particle velocity as v′ ≡ v + (e/cm)A1,
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the electromagnetic fluctuation can be pushed into the Hamiltonian [32]. The com-

posite map TGY ≡ · · ·T3T2T1 is defined by the map Tn = exp (εnGn) (n = 1, 2, 3, · · · )
determined by the vector field Gn (n = 1, 2, 3, · · · ) as in Eq. (2.22). The G1, G2, and

S1 involved in this transformation and the transformed Hamiltonians H =
(
T−1
GY

)∗
H

have already been computed in the previous section. From Eqs. (2.27), the vector field

G1 is obtained as

Gj
1 =

{
S1, Z

j
}
. (2.58)

Because K1 − ⟨K1⟩ = H1 − ⟨H1⟩, the first-order scalar field satisfies

{S1, H0} = eϕ1 − e ⟨ϕ1⟩ (2.59)

from Eq. (2.32). Thus, the first-order scalar field is represented by an indefinite

integral, as

S1 =
e

Ω

∫
ϕ̃1dζ, (2.60)

where ϕ̃1 ≡ ϕ1 − ⟨ϕ1⟩. The transformed Hamiltonian is obtained from Eqs. (2.33) and

(2.34) as

H1 = e ⟨ϕ1⟩ and H2 = −e
2

〈{
S1, ϕ̃1

}〉
, (2.61)

respectively. Approximating the second-order Hamiltonian, we obtain

H2 ≃ − e2

2B

∂

∂µ

〈
ϕ̃2
1

〉
= − e2

2B

∂

∂µ

(〈
ϕ2
1

〉
− ⟨ϕ1⟩2

)
. (2.62)

Equation (2.62) is often used as the second-order Hamiltonian of the electrostatic

model [18, 95]. In summary, the transformed Hamiltonian is

H =
1

2
mU

2
+ µB + e ⟨Φ⟩ , (2.63)

where

Φ ≡ εϕ1 − ε2
e

2B

∂ϕ̃2
1

∂µ
. (2.64)

Therefore, the fundamental 1-form becomes

γ =
e

c
A∗ · dX +

cm

e
µdζ −Hdt, (2.65)

where the modified vector potential is defined as

A∗ ≡ A +
cm

e
Ub. (2.66)

The equations of motion are obtained as

dX

dt
=

B∗

mB∗
∥

∂H

∂U
+

c

eB∗
∥
b×∇H, (2.67)
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dU

dt
= − B∗

mB∗
∥
· ∇H, (2.68)

dζ

dt
=

e

cm

∂H

∂µ
, (2.69)

dµ

dt
= 0. (2.70)

Substituting Eq. (2.63) into these equations of motion yields the widely used equa-

tions [117, 118, 103]

dX

dt
= Ub +

c

eB∗
∥
b×

(
e∇⟨Φ⟩ +mU

2
b · ∇b + µ∇B

)
, (2.71)

dU

dt
= − B∗

mB∗
∥
·
(
e∇⟨Φ⟩ + µ∇B

)
, (2.72)

dζ

dt
= Ω, (2.73)

dµ

dt
= 0. (2.74)

The second, third, and fourth terms on the right-hand side of Eq. (2.71) represent the

E×B drift, curvature drift, and ∇B drift, respectively. The first and second terms on

the right-hand side of Eq. (2.72) represent the force due to the electric field and the

mirror force, respectively. Since the equations do not depend on gyrophase, when the

initial distribution function in the gyrocenter coordinates is independent of gyrophase,

the distribution function F (Z) ≡
(
T−1
GY

)∗
F (Z) does not depend on gyrophase even

after the time evolution. Hence, we obtain the gyrokinetic Vlasov equation:

∂F

∂t
+
dX

dt
· ∇ F +

dU

dt

∂F

∂U
= 0. (2.75)

2.3 Gyrokinetic Poisson equation

Since the electrostatic potential also varies with the motion of charged particles, an

equation describing the field is necessary. This is the gyrokinetic Poisson equation, also

referred to as the quasi-neutrality condition. In this section, we consider only protons

and electrons. Assuming the quasi-neutrality condition n0i = n0e holds initially, we

obtain

ñi(r) = ñe(r) (2.76)

from Eq. (1.46). It is note that since the Debye length is sufficiently small, the left-hand

side of Eq. (1.46) can be neglected. The gyrokinetic Poisson equation is obtained by

expressing the fluctuation densities by the perturbed part of the distribution functions
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δF s(Z) in the gyrocenter coordinates. Using the Dirac delta function δ, the ion density

at position r is described as

ni(r) =

∫
d6zfi(z)δ3(x− r)

=

∫
d6Z J

[
(TGY)∗ F i

] (
Z
)
δ3
([
T−1
GCx

] (
Z
)
− r
)
, (2.77)

where the distribution function in the guiding-center coordinates is represented as the

pull back transformation of the distribution function in the gyrocenter coordinates [95,

104]. J is defined as J ≡ J
(
Z
)
. (TGY)∗ F i can be approximated as [19]

(TGY)∗ F i ≃ F i +
{
S1, F 0i

}
≃ F i +

eϕ̃1

B

∂F 0i

∂µ
, (2.78)

where the distribution function in the gyrocenter coordinates F i is divided into the

equilibrium part F 0i and the fluctuation part δF i. We assume the local Maxwellian

for the equilibrium distribution function and Eq. (2.78) becomes

(TGY)∗ F i = F 0i + δF i −
eϕ̃1

Ti
F 0i. (2.79)

By approximating the guide center coordinates with
[
T−1
GCx

] (
Z
)
≃ X + ρ using ρ ≡

ρ
(
Z
)
,

ni(r) =

∫
d6Z J F 0i δ

3
(
X + ρ− r

)
+

∫
d6Z J δF i δ

3
(
X + ρ− r

)
−
∫
d6Z J eϕ̃1

Ti
F 0i δ

3
(
X + ρ− r

)
(2.80)

is obtained from Eq. (2.77). Since the first term on the right-hand side of Eq. (2.80)

is n0i, the ion density fluctuation is expressed as

ñi =

∫
d6Z J δF i δ

3
(
X + ρ− r

)
−
∫
d6Z J eϕ̃1

Ti
F 0i δ

3
(
X + ρ− r

)
. (2.81)

The second term on the right-hand side of Eq. (2.81) represents the gyrokinetic polar-

ization density. We denote this term as

ñp ≡ −
∫
d6Z J eϕ̃1

Ti
F 0i δ

3
(
X + ρ− r

)
. (2.82)

There are two commonly used representations of ñp. One representation uses the double

gyro-averaging. By using δ3
(
X + ρ− r

)
= exp

(
ρ · ∇

)
δ3
(
X − r

)
and neglecting the

gradients of the background profiles since they are of higher order, we obtain [105]

ñp = −
∫
d6Z J δ3

(
X − r

) e
Ti
F 0i e

−ρ·∇⊥ϕ̃1

(
X + ρ

)
. (2.83)
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Substituting ϕ̃1

(
X + ρ

)
= ϕ1

(
X + ρ

)
−
〈
ϕ1

(
X + ρ

)〉
into Eq. (2.83) yields

ñp = −
∫
d3Xδ3

(
X − r

) en0i

Ti
ϕ1 +

∫
d6Z J δ3

(
X − r

) e
Ti
F 0i e

−ρ·∇⊥
〈
ϕ1

(
X + ρ

)〉
.

(2.84)

The second term on the right-hand side of the equation represents the double gyro-

averaged electrostatic potential. By using

⟨⟨ϕ1⟩⟩ (X) ≡ 1

n0i

∫
dUdµdζ J F 0i

〈
eρ·∇⊥

〉2
ϕ1

(
X
)
, (2.85)

ñp is expressed as [19, 106]

ñp = −
∫
d3Xδ3

(
X − r

) en0i

Ti
ϕ1(X) +

∫
d3Xδ3

(
X − r

) en0i

Ti
⟨⟨ϕ1⟩⟩ (X). (2.86)

This is the representation using the double gyro-averaging. The other is the approxi-

mate representation by taking the long wavelength limit ε⊥ ≪ 1. By using the zeroth-

order Bessel function of the first kind,

J0(z) =
1

2π

∫ 2π

0

eiz cos ζ dζ, (2.87)

because 〈
ϕ1

(
X + ρ

)〉
=

∫
dkϕ̂1k e

ik·XJ0 (k⊥ρ) , (2.88)

ñp can be represented as

ñp = −
∫
d3Xδ3

(
X − r

) en0i

Ti
ϕ1+

∫
d6ZJ δ3

(
X − r

) e
Ti
F 0i

∫
dkϕ̂1ke

ik·XJ0 (k⊥ρ)2 .

(2.89)

From the theory of Bessel functions we have the expression,∫ ∞

0

dW W exp

(
−W

2

2v2T i

)
J0

(
k⊥W

Ωi

)2

= v2T iΓ0

(
k2⊥ρ

2
i

)
, (2.90)

where Γ0 is defined as Γ0(b) = I0(b)e
−b and I0 is the zeroth-order modified Bessel

function of the first kind. In the long wavelength limit, Γ0 is approximated as [31]

Γ0

(
k2⊥ρ

2
i

)
≃ 1 − k2⊥ρ

2
i . (2.91)

From Eq. (2.89), Eq. (2.90) and Eq. (2.91), we get [117, 118]

ñp =

∫
d3Xδ3

(
X − r

) en0i

Ti
∇⊥ · ρ2i∇⊥ϕ1(X). (2.92)

From Eqs. (2.76), (2.81), and (2.86), we obtain the gyrokinetic Poisson equation

1

λ2Di

∫
d3Xδ3

(
X − r

) (
ϕ1 − ⟨⟨ϕ1⟩⟩

)
+ 4πeñe = 4πe

∫
d6Z J δF i δ

3
(
X + ρ− r

)
,

(2.93)
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where

λDs ≡
√

Ts
4πn0se2

(2.94)

is the Debye length of particle species s. From Eqs. (2.76), (2.81), and (2.92), the long

wavelength approximated gyrokinetic Poisson equation

−
∫
d3Xδ3

(
X − r

)
∇⊥ · ρ

2
i

λ2Di

∇⊥ϕ1 + 4πeñe = 4πe

∫
d6Z J δF i δ

3
(
X + ρ− r

)
(2.95)

is derived.

In this study, we employ the adiabatic electron model and the hybrid electron

model [107, 108]. The adiabatic electron model assumes that electrons can move very

fast in the direction parallel to the magnetic field and, as a result, always satisfy

Boltzmann equilibrium. The flux-surface averaged electron density fluctuation can be

assumed to be zero. Therefore, the electron density fluctuation in the adiabatic electron

approximation can be expressed as [109]

ñe =
en0e

Te

(
ϕ1 − ⟨ϕ1⟩f

)
. (2.96)

The second term on the right-hand side of Eq. (2.96) represents the flux-surface av-

eraged electrostatic potential fluctuation. Substituting Eq. (2.96) into Eq. (2.95), we

obtain the gyrokinetic Poisson equation in the adiabatic electron model:

−∇⊥·
ρ2i
λ2Di

∇⊥ϕ1(X)+
1

λ2De

(
ϕ1(X) −

〈
ϕ1(X)

〉
f

)
= 8π2e

∫ 〈
δF i(X + ρ, U, µ)

〉
J dUdµ.

(2.97)

In the adiabatic electron model, as discussed in the Introduction, turbulent particle flux

becomes zero, preventing the study of particle transport. The dynamics of electrons

are largely disregarded, making it impossible to conduct research on TEM turbulence.

However, it is not possible to perform electrostatic gyrokinetic simulations using the

full kinetic electron model. This is because the ωH mode [110, 111], the electrostatic

limit of the kinetic Alfvén wave, appears. The frequency of the ωH mode, ωH =

(k∥/k⊥)
√
mi/meΩi, is of the same order as the cyclotron frequency. Consequently, from

the perspective of the gyrokinetic ordering, the ωH mode is considered unphysical. To

simulate electron dynamics while avoiding the ωH mode, we employ the hybrid electron

model. In the hybrid electron model, the electron density fluctuation is defined as
ñe,(m,n)=(0,0) =

∫
d6Z J δF e,(m,n)=(0,0) δ

3
(
X + ρ− r

)
, (2.98)

ñe,(m,n) ̸=(0,0) =

∫
d6Z J δF e,trap,(m,n) ̸=(0,0) δ

3
(
X + ρ− r

)
−
αpassn0eeϕ1,(m,n) ̸=(0,0)

Te
. (2.99)

αpass which is the flux-surface averaged fraction of passing electrons, is given by Eq.

(1.29). Equation (2.98) means that the (m,n) = (0, 0) electron density fluctuation
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is calculated with the full kinetic electron model. On the other hand, Eq. (2.99)

implies treating (m,n) ̸= (0, 0) passing electrons as adiabatic electrons and consider-

ing only the dynamics of (m,n) ̸= (0, 0) trapped electrons. This allows us to avoid

the emergence of the ωH mode associated with (m,n) ̸= (0, 0) passing electrons and

simultaneously enables simulations for the TEM arising from the motion of trapped

electrons. Substituting Eqs. (2.98) and (2.99) into equation Eq. (2.95), we obtain the

gyrokinetic Poisson equation in the hybrid electron model.



Chapter 3

Global gyrokinetic code GKNET

3.1 Normalized equations

In this chapter, we provide an overview of the global gyrokinetic code, GKNET

(GyroKinetic Numerical Experiment of Tokamak) [112], employed in this study. For

clarity, the gyro-center coordinates (X, U, µ) and the guiding-center distribution func-

tion F s = F 0s + δF s are denoted as (R, v∥, µ) and fs = f0s + δfs, respectively. In

GKNET, the equations are described in the toroidal coordinates as shown in Fig. 1.3,

where R = (r, θ, φ). The motion of the particle species s is computed by numerically

solving the gyrokinetic Vlasov equation:

∂fs
∂t

+
dR

dt
· ∇ fs +

dv∥
dt

∂fs
∂v∥

= Ssrc + Ssnk + Ccoll, (3.1)

where Ssrc, Ssnk, and Ccoll are the source, sink, and collision terms, respectively. The

advection velocities on the left-hand side of Eq. (3.1) are given by Eqs. (2.67) and

(2.68). The electric field that varies due to the motion of plasma is calculated by the

gyrokinetic Poisson equation Eq. (2.95).

The toroidal coordinates are periodic in the θ and φ directions and possess a sin-

gularity at r = 0. In numerical calculations of advection equations like Eq. (3.1), the

presence of a singularity can lead to a breakdown in the conservation properties near

the singularity. As an example, we consider a physical quantity g(r, θ, t) that satisfies

the advection equation

∂g(r, θ, t)

∂t
= − ∂

∂r
{v(r, θ, t)g(r, θ, t)} . (3.2)

When discretized using a second-order central difference, it is represented as

∂g

∂t

∣∣∣∣
j,k

= −vj+1,kgj+1,k − vj−1,kgj−1,k

2∆r
= −Γj+1,k + Γj−1,k. (3.3)

We let ∆r and ∆θ respectively represent the grid spacing of the minor radius and

poloidal angle. The value of an arbitrary function a on the polar coordinates at the

58
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point (j∆r, k∆θ) is denoted as aj,k, and the flux is defined as Γ ≡ vg/(2∆r). We con-

sider that the radial direction is discretized by Nr grid points. It is straightforward to

see that summing over j from 2 to Nr+1 in Eq. (3.3) yields Γ1,k+Γ2,k−ΓNr+1,k−ΓNr+2,k.

Due to Γ1,k+Γ2,k, the numerical conservation properties are compromised. In nonlinear

simulations, ensuring the conservation of conserved quantities is of importance from the

perspective of the reliability of the computational results. In GKNET, an algorithm

ensuring the conservation properties near the singularity has been implemented [113].

Fig. 3.1: (a) Fluxes at k∆θ and (b) fluxes at k∆θ + π.

Figure 3.1 (a) and (b) show the fluxes at poloidal angle k∆θ and at poloidal angle

k∆θ+π, respectively. Nθ represents the number of grid points in the poloidal direction,

and for clarity, the point (j∆r, k∆θ) is denoted as (j, k). Figure 3.1 shows that one

point could have two notations when the radial discretization is performed across the

singularity in the polar coordinate system. For instance, (1, k) and (2, k +Nθ/2) both

point to the exact same location. Since the fluxes Γ1,k and Γ2,k+Nθ/2 are equal, by

inverting the sign of Γ1,k and summing in the poloidal direction, it cancels out with

Γ2,k+Nθ/2. In GKNET, this is achieved by reversing the sign of the magnetic field and

vector potential for r < 0. However, by merely inverting the signs of the magnetic

field and vector potential, they become discontinuous functions, and their derivatives

diverge. To alleviate the discontinuity, the magnetic field and vector potential are

parallel transported using a gauge transformation. To accomplish this, Eqs. (2.67)

and (2.68) are reformulated as [92]

dR

dt
=

1

B∗
∥s

[
v∥ (∇×A) +

B

Ωs

v2∥ (∇× b) +
c

qs
Hs∇× b− c

qs
∇× (Hsb)

]
, (3.4)
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dv∥
dt

= − 1

msB∗
∥s

[
(∇×A) · ∇Hs +

B

Ωs

v∥∇ · (Hs∇× b)

]
. (3.5)

Fig. 3.2: Radial profile of the function Rbφ before and after the gauge transformation.

Figure 3.2 depicts the radial profile of Rbφ both before and after the gauge trans-

formation (Rbφ − R0). bφ is the unit vector in the toroidal direction of the magnetic

field. From Fig. 3.2, it is evident that using the gauge transformation ensures conti-

nuity at r = 0. In other words, one chooses the gauge degrees of freedom to ensure

continuity at r = 0. By employing this method, it has been confirmed that there is an

approximate 35% improvement in energy conservation when we conduct a simulation

up to t = 1000R0/vT i.

Normalization is performed as follows.(
Ω0it,

r

ρT i

,
v∥
vTs

,
B0µ

msv2Ts

,
Hs

T0e

)
−→

(
t, r, v∥, µ,Hs

)
(3.6)

(
B∗

∥s

B0

,
A

B0ρT i

,
eϕ1

T0e
,
2πfsv

3
Ts

n0s

,
Ts
T0e

)
−→

(
B∗

∥s, A, ϕ, fs, n, Ts

)
(3.7)

T0s ≡ Ts(rs) and n0s ≡ ns(rs) are the temperature and density at rs ≡ 0.5a0, respec-

tively. B0, vTs =
√
T0s/ms, Ω0i = eB0/mic, and ρT i = vT i/Ω0i are the magnitude of

the magnetic field at the magnetic axis, thermal velocity, ion cyclotron frequency, and

ion gyro radius, respectively. At rs, the temperatures of ions, impurities, and electrons

are always assumed to be the same T0s = T0e. It is noted that while time normaliza-

tion is used as Ω0it during calculations, the simulation results are output with time

normalization tvti0/R0. The normalization time tvti0/R0 = 100 corresponds to about

0.22 [ms] in real time. This was estimated with the ion density as n0i = 5× 1019 [m−3],
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the ion temperature as T0i = 2 [keV], the equilibrium magnetic field as B0 = 2 [T],

the toroidal minor radius as a0 = 0.34 [m], and the major radius as R0 = 0.95 [m].

Normalizing Eqs. (3.4) and (3.5), we obtain

dr

dt
=

1

rRB∗
∥s

{√
mi

ms

v∥

[
∂(RAφ)

∂θ
− ∂(rAθ)

∂φ

]
+
qi
qs
v2∥

[
∂(Rbφ)

∂θ
− ∂(rbθ)

∂φ

]

+
qi
qs
Hs

[
∂(Rbφ)

∂θ
− ∂(rbθ)

∂φ

]
− qi
qs

[
∂(HsRbφ)

∂θ
− ∂(Hsrbθ)

∂φ

]}
,

(3.8)

1

r

dθ

dt
=

1

rRB∗
∥s

{√
mi

ms

v∥

[
∂Ar

∂φ
− ∂(RAφ)

∂r

]
+
qi
qs
v2∥

[
∂br
∂φ

− ∂(Rbφ)

∂r

]

+
qi
qs
Hs

[
∂br
∂φ

− ∂(Rbφ)

∂r

]
− qi
qs

[
∂(Hsbr)

∂φ
− ∂(HsRbφ)

∂r

]}
,

(3.9)

1

R

dφ

dt
=

1

rRB∗
∥s

{√
mi

ms

v∥

[
∂(rAθ)

∂r
− ∂Ar

∂θ

]
+
qi
qs
v2∥

[
∂(rbθ)

∂r
− ∂br
∂θ

]

+
qi
qs
Hs

[
∂(rbθ)

∂r
− ∂br
∂θ

]
− qi
qs

[
∂(Hsrbθ)

∂r
− ∂(Hsbr)

∂θ

]}
,

(3.10)

dv∥
dt

= − 1

rRB∗
∥s

{√
mi

ms

[
∂(RAφ)

∂θ
− ∂(rAθ)

∂φ

]
∂Hs

∂r
+

√
mi

ms

[
∂Ar

∂φ
− ∂(RAφ)

∂r

]
∂Hs

∂θ

+

√
mi

ms

[
∂(rAθ)

∂r
− ∂Ar

∂θ

]
∂Hs

∂φ
+
qi
qs
v∥

[
∂

∂r

{
Hs

[
∂(Rbφ)

∂θ
− ∂(rbθ)

∂φ

]}

+
∂

∂θ

{
Hs

[
∂br
∂φ

− ∂(Rbφ)

∂r

]}
+

∂

∂φ

{
Hs

[
∂(rbθ)

∂r
− ∂br
∂θ

]}]}
.

(3.11)

Substituting the magnetic field B Eq. (1.18) and Hamiltonian Eq. (2.63) into these

equations leads to

J dr

dt
= v0x + v1x, (3.12)

J 1

r

dθ

dt
= v0y + v1y, (3.13)

J 1

R

dφ

dt
= v0z + v1z, (3.14)

J
dv∥
dt

= v0v∥ + v1v∥ , (3.15)

where

v0x =
qi
qs

(
v2∥ + µB

) ∂
∂θ

(Rbφ −R0) , (3.16)

v1x = ⟨ϕ⟩αs
∂

∂θ
(Rbφ −R0) −

∂

∂θ
(⟨ϕ⟩αsRbφ) +

∂

∂φ
(⟨ϕ⟩αs rbθ) , (3.17)
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v0y = −
√
mi

ms

v∥
∂

∂r
(RAφ) − qi

qs

(
v2∥ + µB

) ∂
∂r

(Rbφ −R0) +
qi
qs
µ
∂

∂r
(BRbφ −R0) ,

(3.18)

v1y =
∂

∂r

(
⟨ϕ⟩αsRbφ − ⟨ϕ⟩αs,r=0R0

)
− ⟨ϕ⟩αs

∂

∂r
(Rbφ −R0) , (3.19)

v0z =

√
mi

ms

v∥
∂

∂r
(rAθ) +

qi
qs

(
v2∥ + µB

) ∂
∂r

(rbθ) −
qi
qs
µ
∂

∂r
(Brbθ) , (3.20)

v1z = − ∂

∂r
(⟨ϕ⟩αs rbθ) + ⟨ϕ⟩αs

∂

∂r
(rbφ) , (3.21)

v0v∥ = − µ

[
−
√
mi

ms

∂

∂r
(RAφ)

∂B

∂θ
+
qi
qs
v∥

[
∂

∂r

{
B
∂

∂θ
(Rbφ −R0)

}

− ∂

∂θ

{
B
∂

∂r
(Rbφ −R0)

}]]
,

(3.22)

v1v∥ =

√
mi

ms

qs
∂

∂r
(RAφ)

∂ ⟨ϕ⟩αs
∂θ

−
√
mi

ms

qs
∂

∂r
(rAθ)

∂ ⟨ϕ⟩αs
∂φ

− v∥

[
∂

∂r

{
⟨ϕ⟩αs

∂

∂θ
(Rbφ −R0)

}
− ∂

∂θ

{
⟨ϕ⟩αs

∂

∂r
(Rbφ −R0)

}

+
∂

∂φ

{
⟨ϕ⟩αs

∂

∂r
(rbφ)

}]
.

(3.23)

The zeroth order velocities represent the motion along the magnetic field and magnetic

drift, while the first order velocities signifies the E × B drift. While E × B drift

inherently does not depend on the particle species, in the gyrokinetic theory, it varies

by species due to the FLR effect. ⟨ϕ⟩αs,r=0 is evaluated using a fifth-order polynomial

interpolation. Normalizing the gyrokinetic Poisson equation, we obtain

−
∑
s

n0s

n0e

ms

mi

∇⊥ · ns∇⊥ϕ = −ñe +
∑
s

n0s

n0e

qs
qi

〈∫∫
δfsB

∗
∥sdv∥dµ

〉
αs

. (3.24)

In the case of the adiabatic electron model, ñe is given by

ñe =
ne

Te
(ϕ− ⟨ϕ⟩f ) . (3.25)

In the case of the hybrid electron model, ñe is given by

ñe,(m,n)=(0,0) =

∫∫
δfe,(m,n)=(0,0)B

∗
∥edv∥dµ (3.26)

and

ñe,(m,n) ̸=(0,0) =
ne

Te
αpassϕ(m,n) ̸=(0,0) +

∫∫
δfe,trap,(m,n) ̸=(0,0)B

∗
∥edv∥dµ. (3.27)

Among the five-dimensional coordinate (r, θ, φ, v∥, µ), the radial r, poloidal angle

θ, and magnetic moment µ directions are decomposed by MPI. For the µ direction, it
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is set to hold data for one grid per core. The coordinates in the r and θ directions are

each divided based on the square root of the quotient obtained by dividing the total

number of cores by the number of the grid number in the µ direction. For instance,

when we perform a simulation using 2048 cores, the coordinates in the µ direction are

divided into 8 regions, and the coordinates in the r and θ directions are divided into

16 regions each.

3.2 Vlasov solver

3.2.1 Morinishi scheme

The gyrokinetic Vlasov equation Eq. (3.1), when the terms of the right-hand side

are ignored, is a hyperbolic partial differential equation, which can generally be written

as
∂f

∂t
+ ui

∂f

∂xi
= 0, (3.28)

where x ≡ (R, v∥). Since the density, energy and entropy also follow the advection

equation, their time evolution can also be calculated by the algorithm for solving Eq.

(3.28). The primary numerical schemes for solving the gyrokinetic Vlasov equation are

the Particle-in-cell (PIC), Euler, and semi-Lagrangian methods [19]. In PIC methods,

by placing markers randomly in phase space and following the motion of the mark-

ers along their characteristics, the distribution function is computed. This method has

issues such as sampling noise and challenges associated with the implementation of col-

lision terms. A renowned code that employs the PIC methods is ORB5 [114, 115, 116].

In Euler methods, phase space is discretized and the distribution function is computed

using a finite difference scheme. This approach is subject to challenges such as restric-

tion on the time step due to the Courant-Friedrichs-Lewy (CFL) stability condition

and issues with numerical dissipation. A renowned code that employs the Euler meth-

ods is GT5D [117, 118, 119]. The semi-Lagrangian methods can be viewed as a hybrid

approach, incorporating the advantages of both PIC methods and Euler methods. In

semi-Lagrangian methods, the distribution function is calculated using the fact that

the distribution function at a node xnode at time t + ∆t is equal to the distribution

function at the point x∗ at time t on the characteristics [120]. Because x∗ is not nec-

essarily on a node, an appropriate interpolation scheme should be used. A renowned

code that employs the semi-Lagrangian methods is GYSELA [120, 121, 122]. GKNET

is a code that utilizes the Euler methods, discretizing the phase space and computing

the distribution function using the fourth-order Morinishi scheme [123, 124], a type of

finite difference method. The term “fourth-order” implies that the truncation error of

the differential operator is O
(

(∆xi)
4
)

where ∆xi is the grid spacing in the direction
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xi. This can be verified by substituting the exact solution into the difference equa-

tion. The reason for employing the Morinishi scheme is that it numerically conserves

both the L1 and L2 norms. The proof is provided as follows. From the phase space

conservation
∂vi

∂xi
= 0, (3.29)

Eq. (3.28) can be expressed as

J ∂f

∂t
+

∂

∂xi
(
vif
)

= 0, (3.30)

where J is the Jacobian and v = (vr, vθ, vφ, vv∥) ≡ Ju. The Morinishi scheme was

originally proposed for incompressible fluids, and Eq. (3.29) corresponds to that in-

compressibility condition. The fourth-order Morinishi scheme rewrites the second term

on the left-hand side of Eq. (3.30) as

∂

∂xi
(
vif
)

=
1

2

∂

∂xi
(
vif
)

+
1

2
vi
∂f

∂xi
, (3.31)

and then discretizes the differential operators in Eq. (3.31) using the fourth-order cen-

tral difference scheme. The fourth-order central difference of the differential operator

in the r direction is given by

∂a

∂r

∣∣∣∣
P

=
−aj+2,k,l,m + 8aj+1,k,l,m − 8aj−1,k,l,m + aj−2,k,l,m

12∆r
+ O

(
∆r4

)
, (3.32)

where aj,k,l,m represents the value of a function a(x) on the node P = (0.5∆r +

j∆r, 0.5∆θ + k∆θ, l∆φ, 0.5∆v∥ − 0.5Lv∥ + m∆v) in the phase space. Discretizing Eq.

(3.31) using Eq. (3.32), we obtain

∂

∂xi
(
vif
)∣∣∣∣

P

=
1

3∆r

{(
vrj,k,l,m fj+1,k,l,m − vrj,k,l,m fj−1,k,l,m

)
− 1

8

(
vrj,k,l,m fj+2,k,l,m − vrj,k,l,m fj−2,k,l,m

)
+
(
vrj+1,k,l,m fj+1,k,l,m − vrj−1,k,l,m fj−1,k,l,m

)
− 1

8

(
vrj+2,k,l,m fj+2,k,l,m − vrj−2,k,l,m fj−2,k,l,m

)}
+

1

3∆θ

{(
vθj,k,l,m fj,k+1,l,m − vθj,k,l,m fj,k−1,l,m

)
− 1

8

(
vθj,k,l,m fj,k+2,l,m − vθj,k,l,m fj,k−2,l,m

)
+
(
vθj,k+1,l,m fj,k+1,l,m − vθj,k−1,l,m fj,k−1,l,m

)
− 1

8

(
vθj,k+2,l,m fj,k+2,l,m − vθj,k−2,l,m fj,k−2,l,m

)}
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+
1

3∆φ

{(
vφj,k,l,m fj,k,l+1,m − vφj,k,l,m fj,k,l−1,m

)
− 1

8

(
vφj,k,l,m fj,k,l+2,m − vφj,k,l,m fj,k,l−2,m

)
+
(
vφj,k,l+1,m fj,k,l+1,m − vφj,k,l−1,m fj,k,l−1,m

)
− 1

8

(
vφj,k,l+2,m fj,k,l+2,m − vφj,k,l−2,m fj,k,l−2,m

)}
+

1

3∆v∥

{(
v
v∥
j,k,l,m fj,k,l,m+1 − v

v∥
j,k,l,m fj,k,l,m−1

)
− 1

8

(
v
v∥
j,k,l,m fj,k,l,m+2 − v

v∥
j,k,l,m fj,k,l,m−2

)
+
(
v
v∥
j,k,l,m+1 fj,k,l,m+1 − v

v∥
j,k,l,m−1 fj,k,l,m−1

)
− 1

8

(
v
v∥
j,k,l,m+2 fj,k,l,m+2 − v

v∥
j,k,l,m−2 fj,k,l,m−2

)}
+ O

(
∆r4,∆θ4,∆φ4,∆v4∥

)
. (3.33)

When we sum (or integrate) Eq. (3.33) over all directions, most terms cancel out, leav-

ing only the fluxes at the boundaries. Thus, the conservation of the L1 norm has been

demonstrated. Similarly, the conservation of the L2 norm can also be demonstrated.

Upon multiplying Eq. (3.30) by f and then discretizing it, one obtains

f
∂

∂xi
(
vif
)∣∣∣∣

P

=
1

3∆r

{(
fj+1,k,l,m vrj,k,l,m fj,k,l,m − fj,k,l,m vrj−1,k,l,m fj−1,k,l,m

)
− 1

8

(
fj+2,k,l,m vrj,k,l,m fj,k,l,m − fj,k,l,m vrj−2,k,l,m fj−2,k,l,m

)
+
(
fj,k,l,m vrj+1,k,l,m fj+1,k,l,m − fj−1,k,l,m vrj,k,l,m fj,k,l,m

)
− 1

8

(
fj,k,l,m vrj+2,k,l,m fj+2,k,l,m − fj−2,k,l,m vrj,k,l,m fj,k,l,m

)}
+

1

3∆θ

{(
fj,k+1,l,m vθj,k,l,m fj,k,l,m − fj,k,l,m vθj,k−1,l,m fj,k−1,l,m

)
− 1

8

(
fj,k+2,l,m vθj,k,l,m fj,k,l,m − fj,k,l,m vθj,k−2,l,m fj,k−2,l,m

)
+
(
fj,k,l,m vθj,k+1,l,m fj,k+1,l,m − fj,k−1,l,m vθj,k,l,m fj,k,l,m

)
− 1

8

(
fj,k,l,m vθj,k+2,l,m fj,k+2,l,m − fj,k−2,l,m vθj,k,l,m fj,k,l,m

)}
+

1

3∆φ

{(
fj,k,l+1,m vφj,k,l,m fj,k,l,m − fj,k,l,m vφj,k,l−1,m fj,k,l−1,m

)
− 1

8

(
fj,k,l+2,m vφj,k,l,m fj,k,l,m − fj,k,l,m vφj,k,l−2,m fj,k,l−2,m

)
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+
(
fj,k,l,m vφj,k,l+1,m fj,k,l+1,m − fj,k,l−1,m vφj,k,l,m fj,k,l,m

)
− 1

8

(
fj,k,l,m vφj,k,l+2,m fj,k,l+2,m − fj,k,l−2,m vφj,k,l,m fj,k,l,m

)}
+

1

3∆v∥

{(
fj,k,l,m+1 v

v∥
j,k,l,m fj,k,l,m − fj,k,l,m v

v∥
j,k,l,m−1 fj,k,l,m−1

)
− 1

8

(
fj,k,l,m+2 v

v∥
j,k,l,m fj,k,l,m − fj,k,l,m v

v∥
j,k,l,m−2 fj,k,l,m−2

)
+
(
fj,k,l,m v

v∥
j,k,l,m+1 fj,k,l,m+1 − fj,k,l,m−1 v

v∥
j,k,l,m fj,k,l,m

)
− 1

8

(
fj,k,l,m v

v∥
j,k,l,m+2 fj,k,l,m+2 − fj,k,l,m−2 v

v∥
j,k,l,m fj,k,l,m

)}
+ O

(
∆r4,∆θ4,∆φ4,∆v4∥

)
. (3.34)

When we sum Eq. (3.34) over each direction, just as in Eq. (3.33), only the boundary

values remain. Thus, the conservation of the L2 norm is also demonstrated. The

numerical conservation of the L2 norm is of importance for the suppression of numerical

oscillations. It is worth noting that the proof of these conservation laws is analogous

to that in the Arakawa Jacobian [125, 126].

3.2.2 Source/sink model and collision operator

The source term Ssrc and the sink term Ssnk in the normalized gyrokinetic Vlasov

equation are given by

Ssrc = Asrc(r)τ
−1
src

1

J
√

2π

(
1√
1.1

e−
v2∥
2.2 − e−

v2∥
2

)
e−µB (3.35)

and

Ssnk = Asnk(r)τ
−1
snk {fs(t = 0) − fs(t)} , (3.36)

respectively. Asrc and Asnk are the radial profiles of the source and sink terms, re-

spectively; τ−1
src and τ−1

snk are their corresponding time scales. The source term causes

the temperatures to rise over time, which corresponds to the increase in the particle

velocities due to heating. In this model the source term is constant in time. Increasing

τ−1
src increases the heating power. If there are no collision terms, there is a possibility

that the distribution function may become negative in low velocity region because of

this term. Hence, a collision term is essential when a source term is included. Equation

(3.36) is a Krook-type operator, which acts to bring the distribution function closer to

the initial one. This enables the suppression of numerical oscillations at the boundaries.

The collision term Ccoll is a self-collision operator abd given as

Ccoll = CT (fs) + Pf0s. (3.37)
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The first and second terms on the right-hand side represent the test particle operator

and field particle operator, respectively. In this study, we used the linear Fokker-Planck

operator [91]

CT (fs) =
∂

∂v∥

{
D ∂

∂v∥
fs − Vfs

}
. (3.38)

as the test particle operator. The diffusive operator D and the convective operator V
are defined as

D =
3
√
π

2(q(r = 0.5a0)R0)

(
a0
R0

)3/2

ν⋆
ns√
Ts

Φ(υ) −G(υ)

2υ
(3.39)

and

V = −
v∥
Ts

D, (3.40)

respectively, where υ is defined as υ ≡
√(

v2∥/2 + µB
)
/T , and ν⋆ = qR0νss/(vTsε

3/2
t )

is the dimensionless collision frequency. The collision frequency νss is given by

νss =
4
√
π

3

nsq
4
s log Λ

m2
sv

2
Ts

, (3.41)

where log Λ is referred to as the Coulomb logarithm. Λ is defined as Λ ≡ λD/rc and is

proportional to (rd/rc)
3/2 where rc ≡ e2/Ts and rd ≡ n

−1/3
s are the distance of closest

approach and the average distance between particles, respectively. Because we consider

a weakly coupled plasma where the kinetic energy is larger than the potential energy of

the interaction, Λ is large [190]. It is noteworthy that Λ corresponds to the number of

particles in a Debye sphere. The error function Φ(υ) and the Chandrasekhar function

G(υ) are respectively defined as

Φ(υ) ≡ 2√
π

∫ υ

0

e−t2dt (3.42)

and

G(υ) ≡
Φ(υ) − υ ∂Φ(υ)

∂υ

2υ2
. (3.43)

The collision term acts to restore the distribution function to a Maxwellian

f0s =
1√

2πT 3
s

exp

(
−
v2∥ + 2µB

2Ts

)
. (3.44)

If the distribution function is a Maxwellian, the collision term becomes zero. This

can be easily verified by substituting a Maxwellian into Eq. (3.38). The field particle

operator is defined such that the velocity space integration of the product of the collision

term Ccoll and a vector M = (1, v∥, v
2
∥ + 2µB)T is zero. This ensures the numerical

conservation of the density, momentum, and energy. The operator P is given by [127,

128]

P = − [aF (x) + bG(x, ξ) + cH(x)] , (3.45)
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where

x ≡ 1

2Ts

(
v2∥ + 2µB

)
, ξ ≡

v∥√
v2∥ + 2µB

(3.46)

and

ϕ(x) ≡ − 2√
π
e−x

√
x+ Φ(

√
x). (3.47)

a, b, and c are defined as

a =

∫
CT (fs)Bdv∥dµ, (3.48)

b =

∫
v∥CT (fs)Bdv∥dµ, (3.49)

and

c =

∫ (
v2∥ + 2µB

)
CT (fs)Bdv∥dµ, (3.50)

respectively. F (x), G(x, ξ), and H(x) are defined as

F (x) = 1 − 3

√
π

2
x−1/2

(
ϕ(x) − dϕ(x)

dx

)
, (3.51)

G(x, ξ) =
6√
2Ts

√
π

2

ξ

x
ϕ(x), (3.52)

and

H(x) =
1

Ts

√
π

2
x−1/2

(
ϕ(x) − dϕ(x)

dx

)
, (3.53)

respectively. Eqs. (3.51), (3.52), and (3.53) satisfy

∫
MF (x)f0sBdv∥dµ =

1

0

0

 , (3.54)

∫
MG(x)f0sBdv∥dµ =

0

1

0

 , (3.55)

and ∫
MH(x)f0sBdv∥dµ =

0

0

1

 , (3.56)

respectively, hence it is evident that

∫
MCcollBdv∥dµ =

∫
M [CT (fs) + Pf0s]J dv∥dµ =

0

0

0

 . (3.57)
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3.2.3 Time integration

When we calculate the integration of a function vector y(tn+1) = y(n+1) at time

tn+1 using a single stage explicit method, it can generally be expressed as

y(n+1) = y(n) + ∆t F (tn,y
(n)) (3.58)

using an appropriate approximation function F (tn,y
(n+1)), where ∆t represents the

time step size, and tn+1 = tn + ∆t. The computation time and accuracy depend on the

choice of the function F .

A function y(t) is assumed to be sufficiently smooth, and its derivative is assumed

to be expressed using the function f(t,y) as

dy

dt
= f(t,y). (3.59)

Expanding y(t+ ∆) up to the order of ∆t yields

y(t+ ∆t) = y(t) + ∆tf(t,y). (3.60)

Thus, from Eqs. (3.75) and (3.77), we obtain

F (t,y) = f(t,y). (3.61)

This scheme is referred to as the first-order explicit Euler method, and can be repre-

sented as

y(n+1) = y(n) + ∆tf(tn,y
(n)). (3.62)

The implicit scheme with the same approximation function F is represented as

y(n+1) = y(n) + ∆tf(tn+1,y
(n+1)), (3.63)

which is known as the first-order implicit Euler method. In the case of implicit methods,

unlike explicit methods, since there is data at time tn+1 on the right-hand side, it is

necessary to solve a system of equations, which takes longer than explicit methods.

On the other hand, explicit methods are often vulnerable to numerical instabilities

and typically require a larger number of grid points. In the first-order explicit Euler

method, to reduce the truncation error to one-tenth, one must decrease ∆t to one-tenth,

resulting in a tenfold increase in computational effort.

By retaining higher-order terms in the Taylor expansion, it is possible to improve

the first-order Euler scheme and construct a more accurate scheme. However, in the

case, higher-order derivatives of f(t,y) appear, making it less desirable for numerical

computations. In Runge-Kutta methods, in order to enhance accuracy without includ-

ing derivatives of f(t,y), a linear combination of f(t,y) is used as F . The function F
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of the 2-stage 2nd-order Runge-Kutta method (RK4) is denoted as
k1 = f(t,y) (3.64)

k2 = f(t+ α1∆t,y + β21k1∆t) (3.65)

F (t,y) = ∆t(w1k1 + w2k2) (3.66)

where α1, β21, w1, and w2 are unknowns. Among the unknowns, two can be arbitrarily

chosen, while the remaining two are determined from the expression where y(t+ ∆) is

expanded up to the order of ∆t2 and from Eq. (3.66). The commonly used expression

for the method is 

k1 = f(tn,y
(n))

k2 = f(tn + ∆t,y(n) + k1∆t)

y(n+1) = y(n) +
∆t

2
(k1 + k2)

(3.67)

which is referred to as the Heun’s method. The function F of the 4-stage 4th-order

Runge-Kutta method (RK4) is denoted as

k1 = f(t,y) (3.68)

k2 = f(t+ α1∆t,y + β21k1∆t) (3.69)

k3 = f(t+ α2∆t,y + β31k1∆t+ β32k2∆t) (3.70)

k4 = f(t+ α3∆t,y + β41k1∆t+ β42k2∆t+ β43k3∆t) (3.71)

F (t,y) = ∆t(w1k1 + w2k2 + w3k3 + w4k4) (3.72)

where α1, α2, α3, β21, β31, β32, β41, β42, β43, w1, w2, w3, and w4 are unknowns. Among

the unknowns, two can be arbitrarily chosen, while the remaining eleven are determined

from the expression where y(t + ∆) is expanded up to the order of ∆t4 and from Eq.

(3.72). The commonly used expression for the method is

k1 = f(tn,y
(n))

k2 = f

(
tn +

1

2
∆t,y(n) +

1

2
k1∆t

)
k3 = f

(
tn +

1

2
∆t,y(n) +

1

2
k2∆t

)
k4 = f

(
tn + ∆t,y(n) + k3∆t

)
y(n+1) = y(n) +

∆t

6
(k1 + 2k2 + 2k3 + k4)

. (3.73)
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The stability of these numerical time integration methods is analyzed using a linear

ordinary differential equation,
dy

dt
= λy, (3.74)

where λ is an arbitrary complex constant. The exact solution of Eq. (3.74) is y = y0e
λt

where y(0) = y0 is the initial value. For Re(λ) < 0, it converges to 0 as t approaches

infinity. The conditions under which the numerical solutions obtained by the first-order

explicit Euler method, first-order implicit Euler method, RK2, and RK4 do not diverge

as the number of time steps approaches infinity can be expressed as

|1 + z| ≤ 1 (Explicit Euler),∣∣∣∣ 1

1 − z

∣∣∣∣ ≤ 1 (Implicit Euler),

∣∣∣∣1 + z +
1

2
z2
∣∣∣∣ ≤ 1 (RK2),

∣∣∣∣1 + z +
1

2
z2 +

1

6
z3 +

1

2
z4
∣∣∣∣ ≤ 1 (RK4),

respectively, where z ≡ λ∆t.

Figure 3.3 shows the stability regions for the 1st-order explicit Euler method, 1st-

order implicit Euler method, 2nd-order Runge-Kutta method (RK2), and 4th-order

Runge-Kutta method (RK4). From Fig. 3.3, it can be observed that for a large value

of |Re(λ)|, one must select a smaller value for ∆t when employing explicit methods.

On the other hand, the implicit Euler method is always stable in the region where

Re(λ) < 1. Additionally, from the figure, it can be observed that as the order of

the Runge-Kutta method increases, its stability region expands. It is noted that the

first-order explicit Euler method is equivalent to the first-order Runge-Kutta method.

However, it should be cautioned that even if the exact solution converges for Re(λ) < 0,

it doesn’t guarantee that the numerical solution from the fourth-order Runge-Kutta

method converges.

In GKNET, numerical integration is computed using the 4-stage 4th-order Runge-

Kutta method. It is known that in Runge-Kutta methods of five stages or more,

increasing the number of stages does not necessarily increase the order of accuracy.

For instance, the maximum order of accuracy for a five-stage Runge-Kutta method is

fourth-order, which is the same as that of the RK4. When the advection terms in Eq.

(3.30) is discretized using the Morinishi scheme as in Eq. (3.33), Eq. (3.30) becomes

an ordinary differential equation with respect to time

dfj,k,l,m
dt

= − 1

J
∂

∂xi
(
vif
)∣∣∣∣

P

. (3.75)
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Fig. 3.3: Stability regions for the first-order explicit Euler method, first-order implicit

Euler method, second-order Runge-Kutta method (RK2), and fourth-order Runge-

Kutta method (RK4).

Omitting the subscripts representing the position, and denoting the right-hand side of

the equation as Fts(f), we obtain

df

dt
= Fts(f). (3.76)

Thus, the algorithm employed in GKNET for computing the distribution function

f (n+1) at the subsequent time from the distribution function f (n) at the time step n

can be expressed as

k1 = Fts

(
f (n)

)
k2 = Fts

(
f (n) +

1

2
k1∆t

)
k3 = Fts

(
f (n) +

1

2
k2∆t

)
k4 = Fts

(
f (n) + k3∆t

)
f (n+1) = f (n) +

∆t

6
(k1 + 2k2 + 2k3 + k4)

. (3.77)
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3.3 Field solver

3.3.1 Finite Larmor radius effect

The gyrophase averaging represents a kinetic effect and appears in the gyrokinetic

Hamiltonian Eq. (2.63) and the gyrokinetic Poisson equation Eq. (3.24). The gyro-

phase average of a physical quantity Ψ is represented by

⟨Ψ⟩α =
∑
k

ΨkJ0 (k⊥ρ) eik·R. (3.78)

There are two methods to compute the finite Larmor radius effect. One approach is to

calculate the effect using the Padé approximation of J0 [129]. When we use the Padé

approximation, J0 can be approximated as

J0 (k⊥ρ) ≃ 1

1 + (k⊥ρ)2 /4
. (3.79)

Figure 3.4 represents a plot of the Bessel function J0 and its Padé approximation as

a function of k⊥ρ. From Fig. 3.4, it is evident that the Padé approximation provides

a good approximation of the Bessel function in the long wavelength region. However,

in the high wavenumber region, the Padé approximation overestimates the gyro aver-

aged value. In GKNET, because the real space is discretized, when the FLR effect is

evaluated by the Padé approximation,(
1 − ρ2

4
∇2

⊥

)
⟨Ψ⟩α = Ψ (3.80)

is solved. This equation is derived from Eqs. (3.78) and (3.79). For electrons, since

ρe is extremely small, ⟨Ψ⟩αe equals Ψ. By normalizing and discretizing Eq. (3.80), the

system of equations

⟨Ψ⟩α,j−
µ

2B

(
qi
qs

)2(
ms

mi

)[
⟨Ψ⟩α,j−2 − 16⟨Ψ⟩α,j−1 + 30⟨Ψ⟩α,j − 16⟨Ψ⟩α,j+1 + ⟨Ψ⟩α,j−2

12∆r

− 1

rj

{
2 (⟨Ψ⟩α,j+1 − ⟨Ψ⟩α,j−1)

3∆r
− ⟨Ψ⟩α,j+2 − ⟨Ψ⟩α,j−2

12∆r

}
+
m2

r2j

]
= Ψj (3.81)

is obtained. In Eq. (3.81), ⟨Ψ⟩α and Ψ are Fourier transformed in the θ and φ

directions, and ⟨Ψ⟩α,j is given by ⟨Ψ⟩α,j ≡ ⟨Ψ⟩α(0.5∆r + j∆r,m, n). Equation (3.81)

is solved using the lower-upper (LU) decomposition.
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Fig. 3.4: (a) Plot of the Bessel function and its Padé approximation. (b) is the enlarged

view of (a).

Another approach is to directly compute the gyrophase averaging by constructing

interpolation functions on poloidal cross-sections [130]. Figure 3.5 depicts the Larmor

motion centered around a point (r, θ) on a poloidal cross-section. The coordinates

(rFLR, θFLR) of a point P on the circular trajectory are represented by

rFLR =
√
r2 + ρ2 + 2rρ cos(α− θ) (3.82)

and

θFLR =


arccos

(
r cos θ+ρ cosα

rFLR

)
(r sin θ + ρ cosα ≥ 0)

2π − arccos
(

r cos θ+ρ cosα
rFLR

)
(r sin θ + ρ cosα < 0)

, (3.83)

respectively. θFLR is defined such that it does not exceed π. The point P (rFLR, θFLR)

typically does not lie on a grid point. Therefore, interpolation is required to determine
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Fig. 3.5: Gyromotion centered around a point (r, θ) on a poloidal cross-section (a

modified version of Fig. 3.2 from the reference [130]).

the value of a function at the point. When the discretized points in the r and θ

directions are defined as ri, θi(i = 1, 2, 3, · · · ) in ascending order, rFLR and θFLR satisfy

r[rFLR/∆r+2.5] ≤ rFLR ≤ r[rFLR/∆r+2.5]+1 (3.84)

and

θ[θFLR/∆θ+2.5] ≤ θFLR ≤ θ[θFLR/∆θ+2.5]+1, (3.85)

respectively, where [· · · ] is the floor function.

For interpolation, as illustrated in Fig. 3.6, the values of Ψ at the 16 grid points

surrounding the point (rFLR, θFLR), Ψi (i = 1, 2, . . . , 16), are used to determine an

interpolation function F (r, θ), and the value of Ψ at the point (rFLR, θFLR) is evaluated

as F (rFLR, θFLR). F (r, θ) is defined by

F (r, θ) =
3∑

i,j=0

ai,j
(
r − r[rFLR/∆r+2.5]

)i (
θ − θ[θFLR/∆θ+2.5]

)j
, (3.86)

where ai,j (i, j = 0, 1, 2, 3) are real coefficients. By imposing the condition that the

interpolation function F (r, θ) matches Ψi (i = 1, 2, . . . , 16) at the 16 points surrounding

the point (rFLR, θFLR), the coefficients can be determined as follows.

a3,3 = − 1

36∆r3∆θ3
(
− Ψ1 + 9Ψ10 − 9Ψ11 + 3Ψ12 + Ψ13 − 3Ψ14

+ 3Ψ15 − Ψ16 + 3Ψ2 − 3Ψ3 + Ψ4 + 3Ψ5
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Fig. 3.6: Grid points used for interpolation and the corresponding function values (a

modified version of Fig. 3.7 from the reference [130]).

− 9Ψ6 + 9Ψ7 − 3Ψ8 − 3Ψ9

)
(3.87)

a3,2 = − 1

12∆r3∆θ2
(
Ψ1 − 3Ψ10 + 3Ψ11 − Ψ12 − 3Ψ2 + 3Ψ3

− Ψ4 − 2Ψ5 + 6Ψ6 − 6Ψ7 + 2Ψ8 + Ψ9

)
(3.88)

a2,3 = − 1

12∆r2∆θ3
(
Ψ1 − 6Ψ10 + 3Ψ11 − Ψ13 + 2Ψ14 − Ψ15

− 2Ψ2 + Ψ3 − 3Ψ5 + 6Ψ6 − 3Ψ7 + 3Ψ9

)
(3.89)

a2,2 = − 1

4∆r2∆θ2
(
− Ψ1 + 2Ψ10 − Ψ11 + 2Ψ2 − Ψ3 + 2Ψ5

− 4Ψ6 + 2Ψ7 − Ψ9

)
(3.90)

a3,1 = − 1

36∆r3∆θ

(
− 2Ψ2 − 18Ψ10 + 18Ψ11 − 6Ψ12 − Ψ13 + 3Ψ14

− 3Ψ15 + Ψ16 + 6Ψ2 − 6Ψ3 + 2Ψ4 − 3Ψ5

+ 9Ψ6 − 9Ψ7 + 3Ψ8 + 6Ψ9

)
(3.91)

a1,3 = − 1

36∆r∆θ3
(
− 2Ψ1 − 9Ψ10 + 18Ψ11 − 3Ψ12 + 2Ψ13 + 3Ψ14
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− 6Ψ15 + Ψ16 − 3Ψ2 + 6Ψ3 − Ψ4 + 6Ψ5

+ 9Ψ6 − 18Ψ7 + 3Ψ8 − 6Ψ9

)
(3.92)

a3,0 = − 1

6∆r3
(
Ψ5 − 3Ψ6 + 3Ψ7 − Ψ8

)
(3.93)

a0,3 = − 1

6∆θ3
(
3Ψ10 − Ψ14 + Ψ2 − 3Ψ6

)
(3.94)

a2,1 = − 1

12∆r2∆θ

(
2Ψ1 + 12Ψ10 − 6Ψ11 + Ψ13 − 2Ψ14 + Ψ15

− 4Ψ2 + 2Ψ3 + 3Ψ5 − 6Ψ6 + 3Ψ7 − 6Ψ9

)
(3.95)

a1,2 = − 1

12∆r∆θ2
(
2Ψ1 + 3Ψ10 − 6Ψ11 + Ψ12 + 3Ψ2 − 6Ψ3

+ Ψ4 − 4Ψ5 − 6Ψ6 + 12Ψ7 − 2Ψ8 + 2Ψ9

)
(3.96)

a2,0 = − 1

2∆r2
(
− Ψ5 + 2Ψ6 − Ψ7

)
(3.97)

a0,2 = − 1

2∆θ2
(
− Ψ10 − Ψ2 + 2Ψ6

)
(3.98)

a1,1 = − 1

36∆r∆θ

(
− 4Ψ1 + 18Ψ10 − 36Ψ11 + 6Ψ12 − 2Ψ13 − 3Ψ14

+ 6Ψ15 − Ψ16 − 6Ψ2 + 12Ψ3 − 2Ψ4 − 6Ψ5

− 9Ψ6 + 18Ψ7 − 3Ψ8 + 12Ψ9

)
(3.99)

a1,0 = − 1

6∆r

(
2Ψ5 + 3Ψ6 − 6Ψ7 + Ψ8

)
(3.100)

a0,1 = − 1

6∆θ

(
−6Ψ10 + Ψ14 + 2Ψ2 + 3Ψ6

)
(3.101)

a0,0 = Ψ6 (3.102)

By substituting (rFLR, θFLR) which is obtained from Eqs. (3.82) and (3.83) into Eq.

(3.86),

F (rFLR, θFLR) =
16∑
n=1

cnΨn (3.103)
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is obtained. The coefficients cn (n = 1, 2, · · · , 16) can be determined by substituting

all equations from (3.87) to (3.102) into Eq. (3.86) as follows.

c1 =
1

36
x3dy

3
d −

1

12
x3dy

2
d −

1

12
x2dy

3
d +

1

4
x2dy

2
d +

1

18
x3dyd +

1

18
xdy

3
d

− 1

6
x2dyd −

1

6
xdy

2
d +

1

9
xdyd (3.104)

c2 =
1

12
x3dy

3
d +

1

4
x3dy

2
d +

1

6
x2dy

3
d −

1

2
x2dy

2
d −

1

6
x3dyd +

1

12
xdy

3
d

+
1

3
x2dyd −

1

4
xdy

2
d +

1

6
xdyd −

1

6
y3d +

1

2
y2d −

1

3
yd (3.105)

c3 =
1

12
x3dy

3
d −

1

4
x3dy

2
d −

1

12
x2dy

3
d +

1

4
x2dy

2
d +

1

6
x3dyd −

1

6
xdy

3
d

− 1

6
x2dyd +

1

2
xdy

2
d −

1

3
xdyd (3.106)

c4 = − 1

36
x3dy

3
d +

1

12
x3dy

2
d −

1

18
x3dyd +

1

36
xdy

3
d −

1

12
xdy

2
d +

1

18
xdyd (3.107)

c5 = − 1

12
x3dy

3
d +

1

6
x3dy

2
d +

1

4
x2dy

3
d −

1

2
x2dy

2
d +

1

12
x3dyd −

1

6
xdy

3
d

− 1

4
x2dyd +

1

3
xdy

2
d +

1

6
xdyd −

1

6
x3d +

1

2
x2d −

1

3
xd (3.108)

c6 =
1

4
x3dy

3
d −

1

2
x3dy

2
d −

1

2
x2dy

3
d + x2dy

2
d −

1

4
x3dyd −

1

4
xdy

3
d

+
1

2
x2dyd +

1

2
xdy

2
d +

1

4
xdyd +

1

2
x3d − x2d −

1

2
xd

+
1

2
y3d − y2d −

1

2
yd + 1 (3.109)

c7 = − 1

4
x3dy

3
d +

1

2
x3dy

2
d +

1

4
x2dy

3
d −

1

2
x2dy

2
d +

1

4
x3dyd +

1

2
xdy

3
d

− 1

4
x2dyd − xdy

2
d −

1

2
xdyd −

1

2
x3d +

1

2
x2d + xd (3.110)

c8 =
1

12
x3dy

3
d −

1

6
x3dy

2
d −

1

12
x3dyd −

1

12
xdy

3
d +

1

6
xdy

2
d +

1

12
xdyd

+
1

6
x3d −

1

6
xd (3.111)

c9 =
1

12
x3dy

3
d −

1

12
x3dy

2
d −

1

4
x2dy

3
d +

1

4
x2dy

2
d −

1

6
x3dyd +

1

6
xdy

3
d

+
1

2
x2dyd −

1

6
xdy

2
d −

1

3
xdyd (3.112)
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c10 = − 1

4
x3dy

3
d +

1

4
x3dy

2
d +

1

2
x2dy

3
d −

1

2
x2dy

2
d +

1

2
x3dyd +

1

4
xdy

3
d

− x2dyd −
1

4
xdy

2
d −

1

2
xdyd −

1

2
y3d +

1

2
y2d + yd (3.113)

c11 =
1

4
x3dy

3
d −

1

4
x3dy

2
d −

1

4
x2dy

3
d +

1

4
x2dy

2
d −

1

2
x3dyd −

1

2
xdy

3
d

+
1

2
x2dyd +

1

2
xdy

2
d + xdyd (3.114)

c12 = − 1

12
x3dy

3
d +

1

12
x3dy

2
d +

1

6
x3dyd +

1

12
xdy

3
d −

1

12
xdy

2
d −

1

6
xdyd (3.115)

c13 = − 1

36
x3dy

3
d +

1

12
x2dy

3
d +

1

36
x3dyd −

1

18
xdy

3
d −

1

12
x2dyd +

1

18
xdyd (3.116)

c14 = − 1

12
x3dy

3
d −

1

6
x2dy

3
d −

1

12
x3dyd −

1

12
xdy

3
d +

1

6
x2dyd +

1

12
xdyd

+
1

6
x3d −

1

6
yd (3.117)

c15 = − 1

12
x3dy

3
d +

1

12
x2dy

3
d +

1

12
x3dyd +

1

6
xdy

3
d −

1

12
x2dyd −

1

6
xdyd (3.118)

c16 =
1

36
x3dy

3
d −

1

36
x3dyd −

1

36
xdy

3
d +

1

36
xdyd (3.119)

xd and yd are defined as

xd ≡
rFLR − r[rFLR/∆r+2.5]

∆r
and yd ≡

θFLR − θ[θFLR/∆θ+2.5]

∆θ
, (3.120)

respectively. For the electrostatic model, since xd and yd do not vary with time, cn (n =

1, 2, · · · , 16) remain constant. In GKNET, each core only possesses a portion of the

information in the r and θ directions. Therefore, it is not guaranteed that a core has

all the values of a function at the grid points around a point (rFLR, θFLR). Therefore, in

advance, the cores receive the values at the grid points corresponding to the maximum

gyro radius ρmax ≃
√

2µmax/(1 − a0/R0) from other cores, and the the poloidal cross-

sections one core handles are extended. For partially ionized impurities with large

mass, the gyro radius becomes large, which increases communication between cores

and makes the calculations more time-consuming.
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Fig. 3.7: Linear growth rate of the tITG mode with Padé approximation and with

real space evaluation.

Figure 3.7 shows the linear growth rate of the tITG mode for the case where the

Padé approximation is used and the case where the real space interpolation method is

used. In the long wavelength region, the linear growth rates of both cases are consistent.

This is consistent with the result in Fig. 3.4, that the Padé approximation is valid in

the long wavelength limit. However, in high wavenumber region, the linear growth rate

is different between the two cases and the mode number for which the linear growth rate

has a maximum value is also different. The previous study has shown that evaluating

the FLR effect in real space interpolation method gives more reasonable results [130].

3.3.2 Velocity space integration

The integral in velocity space appears on the right-hand side of the gyrokinetic

Poisson equation Eq. (3.24). The v∥ direction is discretized in equidistant intervals in

the same way as in the real space, and the integral in the direction is computed by

the rectangle rule. On the other hand, in the µ direction, since there is no need to

differentiate in that direction, it is discretized non-uniformly to allow high-precision

integration with fewer grid points. Specifically, it is discretized using the points ob-

tained by applying an affine transformation to the zeros of the Legendre polynomial,

and the integration is computed using the Gauss-Legendre quadrature. In this section,

we derive the Gauss-Legendre formula as implemented in GKNET.

Orthogonal polynomials are a sequence of polynomials {Pn(b)}∞n=0 that satisfy

degPn = n and exhibit an orthogonal relationship

L[Pn(b)Pm(b)] = λnδn,m, λn ̸= 0 (3.121)
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for any given n,m ∈ N0 where L is a linear functional from C[b] to C [131]. It can

be readily proven that orthogonal polynomials can also be defined as a sequence of

polynomials that satisfy a three-term recurrence relation

Pn(b) = (αnb+ βn)Pn−1(b) − γnPn−2(b). (3.122)

P−1(b) is equal to 0. αn, βn, γn ∈ C are given by

αn =
µn

µn−1

(3.123)

βn = −αnL[bPn−1(b)Pn−1(b)]

λn−1

(3.124)

γn =
αnL[bPn−1(b)Pn−2(b)]

λn−2

=
αnλn−1

αn−1λn−2

=
µnµn−2λn−1

µ2
n−1λn−2

(3.125)

where µn is the leading coefficient of Pn(b). In the case of b ̸= c, from Eqs. (3.122) and

(3.125), we obtain

Sn − Sn−1 =
1

λn−1

(b− c)Pn−1(b)Pn−1(c), (3.126)

where Sn is defined as

Sn ≡ 1

αnλn−1

{Pn(b)Pn−1(c) − Pn−1(b)Pn(c)} . (3.127)

By summing from n = 1 to n = N and substituting Eq. (3.123),

N−1∑
n=0

Pn(b)Pn(c)

λn
=

µN−1

µNλN−1

PN(b)PN−1(c) − PN−1(b)PN(c)

b− c
(3.128)

is derived. It is known that Pn(b) (n ≥ 1) has n zeros within the domain and the zeros

of Pm(b) (m > n) exist between any zeros of Pn(b). Hence, we can take the zeros of

PN(b) as bi (i = 1, 2, · · · , N). By substituting b = bj, c = bk(j ̸= k) into Eq. (3.128),

we obtain
N−1∑
n=0

Pn(bj)Pn(bk)

λn
= 0. (3.129)

By substituting b = bk into Eq. (3.128) and then taking the limit c→ bk,

N−1∑
n=0

{Pn(bk)}2

λn
=

µN−1

µNλN−1

PN−1(bk)P ′
N(bk) ≡ 1

ak
(3.130)

is derived. From Eqs. (3.129) and (3.130), the Lagrange interpolation coefficients are

obtained as

L
(N−1)
k (b) ≡ ak

N−1∑
n=0

Pn(bk)Pn(b)

λn
=


1, b = bj (j ̸= k)

0, b = bk

. (3.131)
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The interpolation formula gN(b) using N sample points of a function g(b) is represented

as

gN(b) =
N∑
k=1

g(bk)L
(N−1)
k (b). (3.132)

The integral in the direction of µ for a function g(µ) is approximated as

I =

∫ Lµ

0

g(µ)dµ, (3.133)

where Lµ is a cut-off velocity. For Eq. (3.133), by applying the transformation µ =

(b+1)Lµ/2 and performing the Lagrange interpolation Eq. (3.132), it can be expressed

as

I =
Lµ

2

∫ 1

−1

g(b)db ≃ Lµ

2

∫ 1

−1

gN(b)db =
N−1∑
n=0

{
N∑
k=1

Lµ

2
akPn(bk)g(bk)

}
1

λn

∫ 1

−1

Pn(b)db.

(3.134)

We consider the Legendre polynomials as orthogonal polynomials {Pn(b)}∞n=0. The Leg-

endre polynomials are orthogonal with respect to the L2 norm over the closed interval

[−1, 1]. From the perspective of the three-term recurrence relation, they correspond to

the case where αn = (2n− 1)/n, βn = 0, and γn = (n− 1)/n, satisfying

bPn(b) = (2n− 1)bPn−1(b) − (n− 1)Pn−2(b). (3.135)

In this case, from ∫ 1

−1

Pn(b)db =
1

µ0

∫ 1

−1

Pn(b)P0(b)db =
λ0
µ0

δn,0, (3.136)

Eq. (3.134) becomes

I =
N∑
k=1

Lµ

2
akg(bk). (3.137)

Upon using

wk ≡
Lµ

2
ak and µk ≡

Lµ

2
bk +

Lµ

2
, (3.138)

Eq. (3.137) can be rewritten as

I =
N∑
k=1

wkg(µk). (3.139)

Equation (3.139) is used in the µ direction integration in GKNET. The positions of the

zeros bk and the weights ak are precomputed and are stored in a text file. In GKNET,

this file is read, the values are loaded into arrays, and the integration is then performed

using the arrays. ak satisfies

ak =
µNλN−1

µN−1PN−1(bk)P ′
N(bk)

=
2

(1 − b2k)P ′
N(bk)2

=
2 (1 − b2k)

(NPN−1(bk))2
, (3.140)
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derived from Eq. (3.130),

λN =
2

2N + 1
, µN =

N∏
k=1

2k − 1

k
, (3.141)

and (
1 − x2

)
P ′
n(x) = nPn−1(x) − nxPn(x). (3.142)

We precompute ak using Eq. (3.140).

The Gauss-Legendre formula Eq. (3.139) using N sample points provides an exact

integration value, barring rounding errors, when g(µ) is a polynomial of at most 2N−1

degrees. Assuming g(µ) is a polynomial of degree 2N − 1 or lower, upon transforming

with µ = (b + 1)Lµ/2 and then dividing by PN(b), with the quotient being Q(b) and

the remainder being R(b), we obtain

g(b) = PN(b)Q(b) + R(b). (3.143)

Upon integrating Eq. (3.143) and given that Q(b) is a polynomial of at most degreeN−
1, it can be expressed as

Lµ

2

∫ 1

−1

g(b)db =
Lµ

2

∫ 1

−1

PN(b)Q(b)db+
Lµ

2

∫ 1

−1

R(b)db =
Lµ

2

∫ 1

−1

R(b)db. (3.144)

On the other hand,

N∑
k=1

wkg(bk) =
N∑
k=1

wkPN(bk)Q(bk) +
N∑
k=1

wkR(bk) =
N∑
k=1

wkR(bk). (3.145)

Since R(b) is a polynomial of degree N − 1 or lower, Eq. (3.144) and Eq. (3.145) are

equivalent. This indicates that when g(µ) is a polynomial of at most 2N − 1 degrees,

Eq. (3.139) provides an exact integration value, excluding rounding errors.

3.3.3 Algorithm

The field solver algorithm in GKNET differs between the adiabatic electron model

Eq. (3.25) and the hybrid electron model Eqs. (3.26), (3.27). This is because, in

the case of the adiabatic electron model, it is necessary to evaluate the flux-surface

averaged electrostatic potential. When it is approximated as ⟨ϕ⟩f ≃ ⟨ϕ⟩θ,φ, it has

been confirmed that the collisionless damping of zonal modes cannot be accurately

simulated. ⟨Ψ⟩θ,φ represents the average of Ψ in the θ and φ directions. It is necessary

to evaluate ⟨ϕ⟩f without approximation.

First, we describe the field solver algorithm in the adiabatic electron model for the

case of a pure plasma. Since n0 = n0i = n0e in the case, dividing both sides of the

equation by n = ni = ne yields

Dϕ+
1

Te
(ϕ− ⟨ϕ⟩f ) =

ρi
n
, (3.146)
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where D and ρs are defined as

D ≡ − ∂2

∂r2
−
(

1

r
+

1

n

∂n

∂r

)
∂

∂r
− 1

r2
∂2

∂θ2
(3.147)

and

ρs ≡
〈∫∫

δfs B
∗
∥s dv∥dµ

〉
αs

, (3.148)

respectively. The right-hand side of Eq. (3.146) is computed using the methods ex-

plained in the previous two sections, concerning the gyrophase averaging and velocity

space integration. Equation (3.146) cannot be solved directly because ⟨ϕ⟩f on the left-

hand side is not known. In the adiabatic electron model, ϕ is obtained by the algorithm

illustrated in Fig. 3.8.

Fig. 3.8: Field solver algorithm in the adiabatic electron model.

In Step 1, ϕ̃ ≡ ϕ− ⟨ϕ⟩θ,φ is determined. By taking the θ, φ average of Eq. (3.146),

and since ⟨⟨ϕ⟩f⟩θ,φ = ⟨ϕ⟩,

D⟨ϕ⟩θ,φ +
1

Te
(⟨ϕ⟩θ,φ − ⟨ϕ⟩f ) =

1

n
⟨ρi⟩θ,φ (3.149)

is obtained. By subtracting Eq. (3.149) from Eq. (3.146), we obtain

Dϕ̃+
ϕ̃

Te
=
δ̃n

n
, (3.150)

where δ̃n is defined as

δ̃n ≡ ρi − ⟨ρi⟩θ,φ . (3.151)
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Since ⟨ϕ⟩f does not appear in Eq. (3.150) and δ̃n is known, ϕ̃ can be determined. To

solve Eq. (3.150), δ̃n is discrete Fourier transformed in both the θ and φ directions.

For the discrete Fourier transformation, the pencil decomposition [132], which divides

the processor grid into two dimensions, is used. We employ the software package

P3DFFT [133] for this purpose.

Fig. 3.9: An example of a 2D Fourier transform using the Pencil decomposition.

Figure 3.9 illustrates the algorithm for fast Fourier transformation in the θ and φ

directions using P3DFFT, when four processors are employed. Upon inputting the real

number array data which is φ-oriented pencil, the 1D fast Fourier transformation is first

performed in the φ direction. After arranging the data from φ- to θ-oriented pencils

by an all-to-all exchange, a fast Fourier transformation is performed in the θ direction.

After transposing the data from θ- to r-oriented pencils by calling MPI ALLTOALL,

the complex array is outputted. By performing the discrete Fourier transformation,

only the differential operator in the r direction remains in Eq. (3.150). By discretizing

Eq. (3.147) using a fourth-order central difference,

ϕ̃j−2 − 16ϕ̃j−1 + 30ϕ̃j − 16ϕ̃j+1 + ϕ̃j+2

12∆r2

−

(
4

3

ϕ̃j+1 − ϕ̃j−1

2∆r
− 1

3

ϕ̃j+2 − ϕ̃j−2

4∆r

)(
1

rj
− 1

Ln,j

)
+
m2

r2j
ϕ̃j +

ϕ̃j

Te,j
=
δ̃nj

nj

(3.152)



3.3 Field solver 86

is obtained. At the boundary j = 1, 2, when m is even, from ϕ1 = ϕ0, ϕ2 = ϕ−1, Eq.

(3.152) is

14ϕ̃1 − 15ϕ̃2 + ϕ̃3

12∆r2
+

(
2

3
ϕ̃1 −

3

4
ϕ̃2 +

1

12
ϕ̃3

)(
1

r1
− 1

Ln,1

)
+
m2

r21
ϕ̃1 +

ϕ̃1

Te,1
=
δ̃n1

n1

(3.153)

for j = 1 and

−15ϕ̃1 + 30ϕ̃2 − 16ϕ̃3 + ϕ̃4

12∆r2
+

(
7

12
ϕ̃1 −

2

3
ϕ̃3 +

1

12
ϕ̃4

)(
1

r2
− 1

Ln,2

)
+
m2

r22
ϕ̃2 +

ϕ̃2

Te,2
=
δ̃n2

n2

(3.154)

for j = 2. On the other hand when m is odd, from ϕ1 = −ϕ0, ϕ2 = −ϕ−1, Eq. (3.152)

is

46ϕ̃1 − 17ϕ̃2 + ϕ̃3

12∆r2
+

(
−2

3
ϕ̃1 −

7

12
ϕ̃2 +

1

12
ϕ̃3

)(
1

r1
− 1

Ln,1

)
+
m2

r21
ϕ̃1 +

ϕ̃1

Te,1
=
δ̃n1

n1

(3.155)

for j = 1 and

−17ϕ̃1 + 30ϕ̃2 − 16ϕ̃3 + ϕ̃4

12∆r2
+

(
3

4
ϕ̃1 −

2

3
ϕ̃3 +

1

12
ϕ̃4

)(
1

r2
− 1

Ln,2

)
+
m2

r22
ϕ̃2 +

ϕ̃2

Te,2
=
δ̃n2

n2

(3.156)

for j = 2. The left-hand side of Eq. (3.152) is an Nr × Nr square matrix, where Nr

represents the number of grid points in the radial direction. The system of equations is

solved using the LU decomposition. Since the matrix is a banded matrix, computational

costs can be significantly reduced by employing the calculation method illustrated in

Fig. 3.10.

Figure 3.10 shows the algorithm of the LU decomposition for the case of Nr = 6.

The element of the matrix in the i-th row and j-th column is denoted by aij. The

blue squares indicate the calculation for the lower left triangular matrix, while the red

squares represent the computation for the upper right triangular matrix. The numbers

written inside the circles located at the upper right of each square represent the values

of the loop variable. By proceeding with forward elimination as in Fig. 3.10, LU

decomposition can be achieved efficiently. The obtained ϕ̃ is transformed back to the

real space using the inverse Fourier transformation with the P3DFFT. In Step 2, the

flux-surface average of ϕ̃ is computed. It is obtained from equation〈
ϕ̃
〉
f

=

∫∫
ϕ̃rR dθdφ∫∫
rR dθdφ

=
1

(2π)2R0

∫∫
ϕ̃R dθdφ. (3.157)
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Fig. 3.10: Algorithm for the LU decomposition for a 6 × 6 matrix. Blue squares

represent the computation of the lower triangular matrix, while red squares indicate

the computation of the upper triangular matrix.

In Step 3, we find the flux-surface averaged electrostatic potential ⟨ϕ⟩f . By substituting〈
ϕ̃
〉
f

= ⟨ϕ⟩f − ⟨ϕ⟩θ,φ into Eq. (3.149), we obtain

D⟨ϕ⟩f =
1

n
⟨ρi⟩θ,φ + D

〈
ϕ̃
〉
f

+

〈
ϕ̃
〉
f

Te
. (3.158)

All the terms on the right-hand side of Eq. (3.158) are known. Thus, by discretizing

as in Eq. (3.152) and using the LU decomposition, ⟨ϕ⟩f can be determined. Finally,

in Step 4, using
〈
ϕ̃
〉
f

= ⟨ϕ⟩f − ⟨ϕ⟩θ,φ and ϕ̃ = ϕ− ⟨ϕ⟩θ,φ, the electrostatic potential is

determined from

ϕ = ϕ̃+ ⟨ϕ⟩f −
〈
ϕ̃
〉
f
. (3.159)

In the hybrid electron model, the gyrokinetic Poisson equation can be solved more

directly compared to the adiabatic electron model since it does not contain ⟨ϕ⟩f . We

consider hydrogen plasma with impurities (s = z). In this case, n0e ̸= n0i. Upon Fourier

transforming Eqs. (3.24), (3.26), and (3.27) and subsequently discretizing them, we

obtain(
n0i

n0e

ni,j +
n0z

n0e

mz

mi

nz,j

)
ϕj−2 − 16ϕj−1 + 30ϕj − 16ϕj+1 + ϕj+2
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− n0i

n0e

[
4

3

ϕj+1 − ϕj−1
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3
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ei
ρz,j − ρe,j (3.160)

for (m,n) = 0, 0 and(
n0i

n0e

ni,j +
n0z

n0e

mz

mi

nz,j

)
ϕj−2 − 16ϕj−1 + 30ϕj − 16ϕj+1 + ϕj+2

12∆r2
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− n0i

n0e
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ei
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(3.161)

for (m,n) ̸= 0, 0. At the boundary j = 1, 2, when m is even,(
n0i

n0e

ni,1 +
n0z

n0e
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nz,1
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is employed for j = 2. On the other hand, when m is odd,(
n0i

n0e

ni,1 +
n0z

n0e

mz

mi

nz,1

)
46ϕ1 − 17ϕ2 + ϕ3

12∆r2

+
n0i

n0e

1

∆r

[
−2

3
ϕ1 −

7

12
ϕ2 +

1

12
ϕ3

]{
ni,1

r1
− 1

∆r

(
−2

3
ni,1 −

7

12
ni,2 +

1

12
ni,3

)}

+
n0z

n0e

mz

mi

1

∆r

[
−2

3
ϕ1 −

7

12
ϕ2 +

1

12
ϕ3

]{
nz,1

r1
− 1

∆r

(
−2

3
nz,1 −

7

12
nz,2 +

1

12
nz,3

)}

+

(
n0i

n0e

ni,1 +
n0z

n0i

mz

mi

nz,1

)
m2

r21
ϕ1 +

ne,1

Te,1
αpassϕ1 =

n0i

n0e

ρi,1 +
n0z

n0e

ez
ei
ρz,1 − ρe,trap,1

is used for j = 1 and(
n0i

n0e

ni,2 +
n0z

n0e

mz

mi

nz,2

)
−17ϕ1 + 30ϕ2 − 16ϕ3 + ϕ4

12∆r2



3.3 Field solver 89

+
n0i

n0e

1

∆r

[
3

4
ϕ1 −

2

3
ϕ3 +

1

12
ϕ4

]{
ni,2

r2
− 1

∆r

(
3

4
ni,1 −

2

3
ni,3 +

1

12
ni,4

)}

+
n0z

n0e

mz

mi

1

∆r

[
3

4
ϕ1 −

2

3
ϕ3 +

1

12
ϕ4

]{
nz,2

r2
− 1

∆r

(
3

4
nz,1 −

2

3
nz,3 +

1

12
nz,4

)}

+

(
n0i

n0e

ni,2 +
n0z

n0e

mz

mi

nz,2

)
m2

r22
ϕ2 +

ne,2

Te,2
αpassϕ2 =

n0i

n0e

ρi,2 +
n0z

n0e

ez
ei
ρz,2 −

n0e

n0i

ρe,trap,2

is employed for j = 2.



Chapter 4

Gyrokinetic entropy balances and

dynamics

4.1 Entropies in nonlinear and nonequilibrium plasma

4.1.1 Thermodynamic entropy

In thermodynamics, the thermodynamic relations are described in the Pfaffian form.

When a system can be described by only two state variables, it always possesses an

integrating factor; however, for systems with three or more state variables, this is not

necessarily the case. For a Pfaffian equation with three or more state variables, the

existence of an integrating factor implies the presence of points in a certain neighbor-

hood that cannot be reached along the solution. This signifies that within a vicinity of

a thermally equilibrated state, there exist states that cannot be reached from the state

through adiabatic processes [10]. This is called the Carathéodory principle. This is

equivalent to the second law of thermodynamics and the principle of entropy increase.

In thermodynamics, entropy is defined as heat (which is not a state variable) divided

by thermodynamic temperature.

We assume that the heat δQ that transfers energy during a process, depends on n

state variables X = (X1, X2, · · · , Xn). δQ can be expressed as

δQ =
n∑

i=1

YidXi (4.1)

using Y = (Y1, Y2, · · · , Yn), which a vector function of X. The adiabatic condition

δQ = 0 implies that the system can only reach states in directions orthogonal to Y ,

and according to the principle of Carathéodory, there always exists states that are inac-

cessible. This implies that in the case where a state on the surface Z(X1, X2, · · · , Xn)

spanned by vectors orthogonal to Y transitions to a state on the surface located dZ

away, δQ is necessary. Using an integrating denominator t( ̸= 0) for any arbitrary X,

90
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we obtain

dZ =
δQ

t
. (4.2)

To prove that the integrating factor is solely a function of temperature, we consider

the composite system of the two systems. When the heat δQ(1) is provided to one

system and the heat δQ(2) to another, the total heat δQ(3) is given by δQ(3) = δQ(1) +

δQ(2). From Eq. (4.2), δQ(i) = t(i)dZ(i) (i = 1, 2, 3) is satisfied. Let t(i) depend on the

a parameter θ that is common to {t(i)}i=1,2,3. From

dZ(3) =
t(1)

t(3)
dZ(1) +

t(2)

t(3)
dZ(2), (4.3)

it is evident that Z(3) is a function of Z(1) and Z(2). Therefore, t(1)/t(3) and t(2)/t(3) are

independent of θ and
1

t(1)
∂t(1)

∂θ
=

1

t(2)
∂t(2)

∂θ
=

1

t(3)
∂t(3)

∂θ
(4.4)

is satisfied. Upon integrating the function that depends solely on θ:

g(θ) ≡ ∂

∂θ
log t(i), (4.5)

we obtain

t(i) = T (θ)F (i)
(
Z(i)
)
, (4.6)

where, θ0 is a constant, F (i)(Z(i)) represents an integration constant, and T (θ) is defined

as

T (θ) ≡ exp

{∫ θ

θ0

g(θ)dθ

}
. (4.7)

When we consider the parameter θ as empirical temperature defined by phenomena

such as the volumetric expansion of mercury, the function T (θ) depending solely on θ

can also be interpreted as temperature. By definition, T (θ) > 0 is trivial. Since T is

defined by g(θ) common to all systems, it is independent of the properties of a system.

Substituting Eq. (4.6) into Eq. (4.2), we obtain

F (i)
(
Z(i)
)
dZ(i) =

δQ(i)

T (θ)
. (4.8)

The right-hand side of the equation is named thermodynamic entropy,

dS(i) ≡ δQ(i)

T (θ)
. (4.9)

From this definition, the additivity of thermodynamic entropy is evident. It is worth

noting that the thermodynamic entropy is defined by the difference between states.

According to the third law of thermodynamics, entropy becomes zero at absolute zero.

Following this, we determine the zero point of it.
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In information theory, entropy is characterized by the Shannon-Khinchin axioms.

Let ∆n be an n dimensional simplex

∆n =

{
(f1, · · · , fn) ∈ R

∣∣∣∣∣fi ≥ 0,
n∑

i=1

fi = 1

}
. (4.10)

The Shannon-Khinchin axioms are the following four requirements imposed on the

function S(f1, · · · , fn). (I) For any n ∈ N, the function S is continuous with respect to

(f1, · · · , fn) ∈ ∆n. (II) For any n ∈ N, the function S attains its maximum value with

fi = 1/n (i = 1, · · · , n). In other words, for any f1, · · · , fn ∈ ∆n,

S(f1, · · · , fn) ≤ S

(
1

n
, · · · , 1

n

)
(4.11)

is satisfied. (III) The following equality holds.

S(f11, · · · , fnmn) = S(f1, · · · , fn) +
n∑

i=1

fi S

(
fi1
fi
, · · · , fimi

fi

)
, (4.12)

where fij ≥ 0 and fi =
∑mi

j=1 fij (∀i = 1, · · · , n, ∀j = 1, · · · ,mi). (IV) For any

(f1, · · · , fn) ∈ ∆n,

S(f1, · · · , fn, 0) = S(f1, · · · , fn) (4.13)

is satisfied. The function satisfying these conditions is uniquely determined as

S(f1, · · · , fn) = −λ
n∑

i=1

fi log fi, (4.14)

where λ is a positive constant. This is referred to as the Shannon entropy. In the Γ

space, let the number of microscopic states be denoted by W . Assuming that each of

these states occurs with equal probability, fi is given by fi = 1/W . By choosing λ such

that λ = kB, from the equation, we obtain

S = kB logW. (4.15)

While the statistical entropy is derived from the Shannon entropy, the converse is,

of course, also possible. We assume a discrete probability distribution fi follows the

Boltzmann distribution at energy Ei. By using the partition function Z, fi can be

represented as fi = e−βEi/Z. Therefore, from

E =
∑
i

fiEi = −fi
β

(log fi + logZ) (4.16)

and the Helmholtz free energy

F = − 1

β
logZ, (4.17)
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S =
E − F

T

=
1

Tβ

{∑
i

fi(log fi + logZ) + logZ

}

= −kB
∑
i

fi log fi

is derived.

The fluid definition of entropy density is [190]

s = n log

(
T 3/2

n

)
. (4.18)

The corresponding entropy flux is given as Js = sV + Q/T where Q is the heat flux.

From Eq. (1.72) and the energy equation

3

2

dp

dt
+

5

2
p∇ · V + π : ∇V + ∇ ·Q = 0, (4.19)

we obtain the time evolution equation for the entropy density in the fluid model [190],

∂s

∂t
+ ∇ · Js = σ, (4.20)

where π and

σ ≡ −π : ∇V

T
− Q · ∇T

T 2
(4.21)

are the viscosity tensor and entropy generation rate, respectively. A more refined

entropy density equation was derived by Gürcan and colleagues [134]. They first de-

rived the time evolution equation for the two-point correlation function ⟨δf1δf2⟩ =

⟨δf(x1, v1)δf(x2, v2)⟩ from the drift kinetic equation. By taking moments of the equa-

tion, they derived the Guyer-Krumhansl constitutive relation

τ
∂Q

∂t
+ τ

∂

∂r
ΓQ + χ

∂T

∂r
+Q = 0, (4.22)

where ΓQ ≡ −(λ2/τ)(∂Q/∂r) is the flux of heat flux, χ is the heat diffusivity, τ is the

mean response time of the heat flux to the changes in temperature gradient、λ is the

flux penetration length which represents the cross-correlation length between the flux

and the gradient. These parameters are nonlinear functions of the turbulence intensity.

In the limit λ→ 0, Eq. (4.22) converges to the Maxwell-Cattaneo relation

τ
∂Q

∂t
+ χ

∂T

∂r
+Q = 0. (4.23)

Furthermore, in the limit τ → 0, the equation reduces to Fourier’s law

Q = −χ∂T
∂r
. (4.24)
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Fourier’s law Eq. (4.24) means that the heat flux responds instantaneously and locally

to changes in the temperature gradient. On the other hand, the Guyer-Krumhansl

relation indicates that the heat flux responds non-locally to changes in the temperature

gradient with the response time τ . The solution of Eq. (4.22) is

Q(r, t) = −
∫∫

χK(t, t′, r, r′)
∂T (t′, r′)

∂r′
dr′dt′, (4.25)

where

K(t, t′, r, r′) =

√
τ

2λ
√
π(t− t′)

exp

{
− τ(r − r′)2

4λ2(t− t′)
− 1

τ
(t− t′)

}
(t > t′). (4.26)

These describe the global nature of the heat flux. From Eq.(4.22), the heat transport

equation
∂T

∂r
+
∂Q

∂r
= 0, (4.27)

and the extended Sackur-Tetrode equation

∂s

∂t
=

∂

∂t
log T − τQ

χT 2

∂Q

∂t
, (4.28)

we obtain [134]
∂s

∂t
+
∂Js
∂r

=
Q2

χT 2
− ΓQ

∂

∂r

(
τQ

χT 2

)
, (4.29)

where the entropy flux Js is given by Js = Q/T − (τQ/χT 2)ΓQ.

In an adiabatically isolated system, the entropy flux at the boundary is zero. Hence,

from Eqs. (4.20) and (4.29), the entropy production rate is zero in a steady state. On

the other hand, in a open system which a steady heat flux flows into and out of from

the outside, the entropy production rate does not become zero even when the time

variation of entropy is zero. In this paper, such a state is referred to as a quasi-steady

state.

Fig. 4.1: Simple model of temperature profile in quasi-steady state for magnetically

confined plasma.
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We calculate the entropy production rate in the simple composite system shown

in Fig. 4.1 under a quasi-steady state. Th and Tc represent the temperature at the

magnetic axis and at the edge, respectively. The plasma is divided into n subsystems,

with the temperature of the hotter side of the subsystem i (1 ≤ i ≤ n) denoted by Ti−1

and that of the cooler side denoted by Ti. T0 = Th and Tn = Tc are established. In

a quasi-steady state, the entropy of the subsystems remain unchanged. The entropy

generation of the subsystem is given by

Q

Ti−1

− Q

Ti
= σi, (1 ≤ i ≤ n). (4.30)

Summing over all subsystems in the equation, we obtain

n∑
i=1

σi =
Q

Tc
− Q

Th
. (4.31)

∑n
i=1 σi balances the negative entropy production rate (1/Th − 1/Tc)Q at the bound-

aries, and the net entropy production rate for the sum of the subsystems is zero. The

entropy production rate of the composite system is given by [136]

ṡwhole = ṡh +
∑
i

ṡ+ ṡc = Q
Th − Tc
ThTc

≥ 0, (4.32)

where ṡh and ṡc represent the entropy production rates of the high-temperature and

low-temperature heat baths, respectively. The entropy production rate of the compos-

ite system is always larger than zero. The entropy production rate is proportional to

the temperature gradient, which is enhanced by the generation of zonal flows. The or-

dered structures of zonal flows leads to an increase in entropy, representing the degree

of disorder. That appears counterintuitive at first glance. To address the problem,

the concept of scale separation was proposed [137], suggesting that the formation of

macroscopic structures does not influence the entropy generation at microscopic scale.

We address this issue through the analysis based on the gyrokinetic theory. In systems

far from thermodynamic equilibrium, based on the principle of maximum entropy pro-

duction which posits that entropy production is maximized to most efficiently alleviate

non-equilibrium states [138, 139, 140], at the microscopic scale the most disordered

state is realized, while at the macroscopic scale an ordered flow with maximum energy

emerges.

4.1.2 Fluctuation entropy

In turbulence transport studies based on the gyrokinetic theory, the fluctuation

entropy

δS =

∫
δf 2

2f0
d5Z (4.33)
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is employed. The distribution function f is normalized. From the gyrokinetic Vlasov

equation, the gyrokinetic Poisson equation, and suitable approximations, the evolution

equation for the fluctuation entropy is derived as [141, 142]

∂δS

∂t
= Γ −D, (4.34)

where Γ and D represent the entropy generation due to heat flux and dissipation,

respectively. This equation establishes a direct relationship between transport and

dissipation. Due to the high temperatures in fusion plasmas, the collision frequency

is exceedingly low. Consequently, the limit where the collision frequency approaches

zero might serve as a good approximation. However, from Eq. (4.34), when D = 0, we

obtain ∂δS/∂t = Γ. This implies that, even if the electrostatic potential is saturated,

the entropy continue to increase indefinitely with time, never reaching saturation. This

is referred to as the entropy paradox [143] and was confirmed by Eulerian gyrokinetic

simulations of collisionless slab ITG turbulence [144]. The fluctuation entropy δS

increases due to the formation of fine-scale structures in the distribution function from

phase mixing. The ballistic mode [145] is a kinematic effect observed not only in

plasmas but also in neutral gases. We show that the initial density fluctuation decay

with time due to phase mixing [22]. For simplicity, let us consider a distribution

function g(x, v, t) that satisfies the advection equation

∂g

∂t
+ v

∂g

∂x
= δ(t)g0. (4.35)

The function g0 represents the initial distribution and is given by

g0(x, v) =
(n0 + ñ)√

2πv2T
e−v2/(2v2T ) =

n0√
2πv2T

e−v2/(2v2T ) + ñ(0). (4.36)

The solution to Eq. (4.35) is

g(x, v, t) =
1√

2πv2T

(
n0 + ñ eik(x−vt)

)
e−v2/(2v2T ). (4.37)

Equation (4.37) indicates that the wavenumber kv = kt in the velocity space increases

with time. From Eq. (4.37), the density fluctuation is given by

ñ(t) = ñ(0) e−k2v2T t2/2, (4.38)

which signifies that the initial density fluctuation decays with time.
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Fig. 4.2: Temporal evolution of the distribution function satisfying Eq. (4.39).

Fig. 4.3: Plot of the cross-section at x = 0 in Fig. 4.2.

Figures 4.2 and 4.3 illustrate the formation of fine-scale structures in the distribution

function due to phase mixing. These figures are obtained by numerically solving the

advection equation
∂h(x, v, t)

∂t
+ 4v

∂h(x, v, t)

∂x
= 0, (4.39)

describing the evolution of a distribution function h(x, v, t), with a given initial distri-

bution

h(x, v, 0) =
1√
2π
e−(v−1.5)2/2

{
1 + 0.3 cos

(
2π(x− 100)

100

)}
. (4.40)
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The numerical scheme employed is the CIP-CSL2 scheme [146, 147]. As time progresses,

the structures become more refined, and when kv becomes equal to the wavenumber

corresponding to the grid width, the distribution function reverts to the initial one.

The fluctuation entropy can be interpreted as one of the f -divergences, specifically the

Pearson divergence [148]. Due to the formation of fine-scale structures, the distance

from the reference distribution f0 increases, leading to an increase in δS.

The ballistic mode can also be interpreted as entropy transfer in the Hermite space.

The equation describing entropy transfer is derived from the normalized gyrokinetic

Vlasov equation for the slab model,

∂

∂t
δfk + iΘv∥kyδfk −

∑
k′+k′′=k

b·(k′ × k′′)ψk′δfk′′

= −ikyψk

[
1 + (v2∥ − 1 − k2⊥)

η

2
+ Θv∥

]
f0 + Ccoll(δfk),

(4.41)

where ψk ≡ ϕk exp (k2⊥ρ
2/2) and Θ represents the angle formed between the magnetic

field and ez. We multiply both sides of Eq. (4.41) by δf ∗
k/f0 and integrate them, and

then the real parts are taken. δfk can be expressed as

δfk(v∥) =
∞∑
n=0

δ̂fk,nHn(v∥)f0(v∥), (4.42)

where Hn(v∥) is the n-th order Hermite polynomial and is defined as

Hn(v∥) = (−1)nev
2
∥/2

dn

dvn∥
e−v2∥/2. (4.43)

Due to the orthogonality of the Hermite polynomials∫
Hm(v∥)Hn(v∥)e

−v2∥/2dv∥ = n!
√

2πδm,n, (4.44)

the first term on the left-hand side of Eq. (4.41) becomes

∑
k

∫
dv∥

|δfk|2

2f0
=
∑
k

∑
n

1

2
n!
∣∣∣δ̂fk,n

∣∣∣2 . (4.45)

This equation indicates that the fluctuation entropy can be expressed as an infinite

series of velocity moments. From equation∫
Hn(v∥)Hm(v∥)v∥e

−v2∥/2dv∥ = n!
√

2πδn−1,m + (n+ 1)!
√

2πδn+1,m, (4.46)

the second term on the left-hand side of Eq. (4.41) is∫ ∑
k

iΘv∥ky
|δfk|2

f0
dv∥ =

∫ ∑
k

∑
n

∑
m

iΘkyv∥δ̂fk,nδ̂f−k,nHn(v∥)Hm(v∥)
1√
2π
e−v2∥/2dv∥
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=
∑
k

∑
m

∑
n

iΘky δ̂fk,nδ̂f−k,n {n!δn−1,m + (n+ 1)!δn+1,m}

= −
∑
k

∑
n

iΘky

{
n!δ̂fk,n−1δ̂f

∗
k,n + (n+ 1)!δ̂fk,nδ̂f

∗
k,n+1

}
.

(4.47)

The first term on the right-hand side of Eq. (4.47) represents transfer from the n−1th

order to the nth order, while the second term signifies transfer from the nth order to

the n− 1th order. The Lenard-Bernstein model [149]

Ccoll(δfk) = ν
∂

∂v∥

(
v∥ +

∂

∂v∥

)
δfk =

ν√
2π
δ̂fk,ne

−v2∥/2

(
∂2Hn

∂v2∥
+ v∥

∂Hn

∂v∥

)
(4.48)

is used here as the collision model. From ∂Hn/∂v∥ = v∥Hn −Hn+1, the collision term

in the equation becomes

−
∑
k

∑
n

∑
m

∫
nν√
2π
δ̂fk,nδ̂f

∗
k,mHnHme

−v2∥/2dv∥ =
∑
k

∑
n

−nνn!
∣∣∣δ̂fk,n

∣∣∣2 . (4.49)

In summary, we obtain [150]

d

dt

[
δSn + δn,0

∑
k

|δϕk|2
{

2 − Γ0(k
2
⊥)
}]

= Jn−1/2 − Jn+1/2 + δn,2ηQ− 2νnδSn, (4.50)

where

δSn =
∑
k

1

2
n!
∣∣∣δ̂fk,n

∣∣∣2 , (4.51)

Jn−1/2 =
∑
k

Θkyn! Im
(
δ̂fk,n−1δ̂f

∗
k,n

)
, (4.52)

and

Jn+1/2 =
∑
k

Θky(n+ 1)! Im
(
δ̂fk,nδ̂f

∗
k,n+1

)
. (4.53)

Entropy is transferred to higher order δSn by the transfer functions Jn−1/2 and Jn+1/2.

This is consistent with the decay of the initial density fluctuation shown in Eq. (4.38).

It is noteworthy that the dissipation term −2νnδSn is proportional to n. No matter

how small the collision frequency is, when n increases due to the ballistic mode, the

dissipation effect becomes non-negligible. The entropy paradox is due to the fact that

the collision frequency is zero. It was reported that the entropy paradox is resolved

and a quasi-steady state is achieved when the collision frequency is not zero in the

Eulerian gyrokinetic simulations for the slab ITG mode turbulence [150]. In this case,

Eq. (4.34) shows that Γ = D is satisfied. The relationship implies that the entropy

production due to the heat flux Γ is determined by a different mechanism from the

entropy production due to the collision D, and D is determined such that Γ = D. If



4.1 Entropies in nonlinear and nonequilibrium plasma 100

the causal relationship were reversed, no entropy would be generated by the heat flux

in the collisionless case, which is clearly erroneous [143]. The fluctuation entropy is

used as an important benchmark for steady state [19]. In studies using the flux-tube

Eulerian code GYRO [151], the flux-tube Eulerian code GKV [152], and the global

PIC code ORB5 [153], the entropy balance equation was calculated, confirming that a

quasi-steady state is achieved. On the other hand, from the drift kinetic equation and

adiabatic electron approximation, under the assumption that the initial distribution

function is the Maxwellian, Kosuga et al. derived the time evolution equation for the

fluctuation entropy [154]

∂δS

∂t
=

∫
d3z

[{ n

TLT

Q− n

v2T
⟨ṼrṼ⊥⟩

∂

∂r
⟨V⊥⟩ −

n

v2T
⟨ṼrṼ∥⟩

∂

∂r
⟨V∥⟩

+
1

T
⟨J̃∥Ẽ∥⟩

}
+

∫
d3v

⟨δfCcoll(δf)⟩
⟨f⟩

]
, (4.54)

where ⟨ṼrṼ ⟩ ≡ n−1
∫
d3v (v − ⟨V ⟩) ⟨Ṽrδf⟩ and ⟨J̃∥Ẽ∥⟩ ≡ e

∫
d3v

(
v∥ − ⟨V∥⟩

)
(δẼ∥).

From Eq. (4.54), the lowest order entropy production rate

σ(0) = nχL−2
T − nγZF

(qrvT )2

(
∂

∂r
⟨VE⟩

)2

(4.55)

and the first order entropy production rate

σ(1) =
nχφ

v2T

(
∂

∂r
⟨V∥⟩

)2

−
nΠ2

r∥

v2Tχφ

(4.56)

in the case of ITG turbulence are obtained. γZF χφ, and Πr∥ are the linear growth rate

of zonal flow, momentum diffusion coefficient, and residual stress, respectively. The first

term on the right-hand side of Eq. (4.55) is the entropy production rate due to profile

relaxation, which is always positive, and the second term is the entropy destruction

rate due to zonal flow generation, which is always negative. The first term on the right-

hand side of Eq. (4.56) is the entropy production rate due to viscous heating, which

is always positive, and the second term is the entropy destruction rate due to intrinsic

toroidal rotation generation, which is always negative. These equations suggest that

even in the case of no collisions D = 0, ∂δS/∂t = 0 is satisfied if σ(0) = σ(1) = 0 due to

the generation of zonal flows and intrinsic toroidal rotation.

Fluctuation entropy transfer is frequently used as a method to investigate nonlinear

interactions in plasma turbulence. This is because the fluctuation entropy is conserved

even in systems where energy is not conserved, allowing us to investigate the entropy

transfer between modes from the three-wave interaction term.

From entropy transfer analysis, it was observed that in the case of the ITG turbu-

lence, radial low wavenumber components are transferred to high wavenumber com-

ponents via zonal flows, resulting in reduced heat transport [155]. Conversely, for the
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ETG turbulence, the rate of zonal flow generation is lower, thus diminishing the effect.

For the ITG turbulence in LHD, when the magnetic axis is shifted inward compared

to the standard configuration, the transfer from low wavenumber components to high

wavenumber components is enhanced, leading to turbulence suppression and an im-

proved confinement performance [156]. It was elucidated that zonal flows driven by

the TEM turbulence meditate the entropy transfer of the ETG modes from low to

high radial wavenumber regions [157], and the turbulence at electron scale reduces the

entropy transfer from turbulent modes to zonal modes [158].

It is noted that besides the linear phase mixing, there exists nonlinear phase mixing

that at spatial scales smaller than the Larmor radius, drives the structure formation

of f(v⊥) more rapidly than parallel phase mixing drives f(v∥). In the inertial range in

electrostatic turbulence, k
−10/3
⊥ scaling was theoretically predicted [159]. This predic-

tion was corroborated by simulations using AstroGK [160] and observed experimentally

using MPX (magnetized plasma experiment) device which is a mirror linear plasma

device [161].

4.2 Gyrokinetic entropy balances

4.2.1 Simulation settings

The relationship between the thermodynamic entropy and the fluctuation entropy

remains unclear to this day. Furthermore, a thermodynamic entropy equation corre-

sponding to the balance equation for the fluctuation entropy Eq. (4.34) has not yet

been derived. Full-f gyrokinetic simulations are essential for research on these issues.

This is because, in the local flux-tube model that fixes the background temperature

gradient, it is not possible to evaluate the thermodynamic entropy associated with

profile relaxation. It is anticipated that the results concerning entropy production at

constant heat flux, discussed in the previous section, are reproduced in simulations

using the fixed-flux model. In full-f gyrokinetic simulations, poloidal flows include

not only zonal flow but also mean radial electric field. Therefore, we can accurately

evaluate the correlation between poloidal flows and entropy production. There are two

conflicting research findings regarding this correlation. One suggests that poloidal flow

leads to a larger temperature gradient, resulting in increased entropy production [137].

The other posits that entropy decreases due to the ordered structure introduced by the

poloidal flow. We aim to elucidate which of these findings is true [154].

We perform flux-driven full-f gyrokinetic simulations. Due to the necessity of

longe time computation until the background profile reaches equilibrium, we employ

the adiabatic electron model to reduce computational costs. We use the Maxwellian

as the initial distribution function. The Maxwellian maximizes entropy under the
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condition that the Hamiltonian is constant. This is referred to as the maximum entropy

principle and can be readily proven by solving the constrained maximization problem

using Lagrange multipliers [142].

Fig. 4.4: (a) Radial profile for source term and sink term. (b) Radial profile for density,

ion temperature, electron temperature, and safety factor at initial time.

Fig. 4.4(a) shows the radial profile of energy source and sink. These are given by

Asrc(r) =
1

2

[
1 + tanh

(
−x− 0.4a0

0.1a0

)]
(4.57)

and

Asnk(r) = exp

{
−(x− a0)

2

0.5a0

}
. (4.58)

The timescale for the energy source is τ−1
src = 0.01, which means that the input power

is 2 MW. The time scale parameter of the energy sink is determined to satisfy the

energy balance, τ−1
snk = 0.1. Figure 4.4(b) represents the radial profiles of density, ion

temperature, electron temperature, and safety factor at initial time, given respectively

by

n(r) = exp

{
− T
Ln

tanh

(
x− 0.5a0

T

)}
, (4.59)

Ts(r) = exp

{
− T
LTs

tanh

(
x− 0.5a0

T

)}
, (4.60)

and

q(r) = qa

(
x

a0

)2

+ qb, (4.61)

where

T ≡ ∆r exp

{
−
(
x− 0.5a0

2a0

)2
}
, (4.62)
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∆r = 0.3a0, qa = 2.18, and qb = 0.85. At rs = 0.5a0, R/Ln = 2.22, R/LT i = 9,

R/LTe = 6.92, q ≃ 1.4, ŝ ≃ 0.78. Except for the ion temperature profile, they do not

change with time. Simulations are performed using the minor radius a0 = 150ρi and

the inverse aspect ratio a0/R0 = 0.36. The gyrokinetic equations are computed in a

1/4 wedge torus by taking velocity spaces v∥ = −5vT i ∼ 5vT i and v⊥ = −5vT i ∼ 5vT i

on grids (Nr, Nθ, Nφ, Nv∥ , Nµ) = (96, 192, 48, 96, 16).

4.2.2 Entropy density equations

By expanding the entropy density s(all) = −fi log fi, we can obtain both the first-

order entropy density s(1) ≡ −δfi(1 + log f0i) and the second-order entropy density

s(2) ≡ −δf 2
i /(2f0i) [162]. The gyrocenter phase-space integral of the second-order

entropy density is equal to opposite sign of the fluctuation entropy δS given by Eq.

(4.33). In other words, the second-order entropy represents the discrepancy between

the reference distribution f0 and the distribution function f . The second-order entropy

can also be interpreted as a kinetic extension of turbulent energy. The equation for the

second-order entropy and the equation for zonal flow shear have the same structure as

a predator-prey model [154]. The fluctuation entropy plays the same role of turbulent

intensity. On the other hand, the first-order entropy is linked to the thermodynamic

entropy. Integrating the first-order entropy density over velocity space yields

S(1) ≡
∫∫

s(1)J dv∥dµ =
3

2

δPi

Ti
− δni

(
1 +

1

2
log

n2
i

2πT 3
i

)
, (4.63)

where ion pressure fluctuation δPi and ion density fluctuation δni are defined as

δPi =
1

3

∫∫
δfi (v2∥ + 2µB)J dv∥dµ, and δni =

∫∫
δfiJ dv∥dµ, (4.64)

respectively. In the adiabatic electron model, since δni ≃ 0, it follows that S(1) ≃
3δPi/(2Ti). This means that the first-order entropy represents the entropy change due

to profile relaxation.

The time evolution equations for the entropy density s(all), first-order entropy den-

sity s(1), and second-order entropy density s(2) can be derived by multiplying the ion

gyrokinetic Vlasov equation

∂fi
∂t

+ vi
∂fi
∂zi

= Ssnk + Ssrc + Ccoll (4.65)

by Υ(all) ≡ −J (1 + log fi), Υ(1) ≡ −J (1 + log f0i), and Υ(2) ≡ −J δfi/f0i, respectively.

Here, z = (R, v∥) and v = ({R, H}, {v∥, H}). The entropy density equation is

J ∂s(all)

∂t
= − ∂

∂zi
(
J vis(all)

)
+ S

(all)
snk + S(all)

src + C
(all)
coll . (4.66)
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Equation (??) represents the continuity equation for the entropy density. When the

right-hand side of Eq. (4.65) is zero, the entropy is conserved. The first-order entropy

density equation and the second-order entropy density equation are

J ∂s(1)

∂t
= − ∂

∂zi
(
J vis(1)

)
+ (1 + log f0i)J vi

∂f0i
∂zi

+ α + S
(1)
snk + S(1)

src + C
(1)
coll (4.67)

and

J ∂s(2)

∂t
= − ∂

∂zi
(
J vis(2)

)
+

1

2
J vi

(
δfi
f0i

)2
∂f0i
∂zi

− α + S
(2)
snk + S(2)

src + C
(2)
coll, (4.68)

respectively, where ψ(s) ≡ ψΥ(s) (ψ = Ssnk, Ssrc, Ccoll , s = all, 1, 2) and α is defined

as

α ≡ −δfiJ vi
∂

∂zi
(log f0i) . (4.69)

C is included in both Eqs. (4.67) and (4.68) and represents the interaction between the

first- and second-order entropy. In this study, this term is referred to as the interaction

term between the first- and second- order entropy, or simply the interaction term. As

can be seen from the presence of the interaction term, the mth-order entropy density

equation also contains terms other than mth-order, exhibiting a hierarchical structure

reminiscent of the BBGKY hierarchy. This arises from the fact that the distribution

function fi encompasses both the transport scale f0i and the fluctuation scale δfi. It is

worth noting that Eqs. (4.67) and (4.68) are obtained without approximation. The sec-

ond term on the right-hand side of Eq. (4.68) represents the interaction term between

the second-order entropy density and the third-order entropy density (1/6)(δf 3
i /f

2
0i).

In general, mth-order entropy can be defined as

s(m) =



−f0i log f0i (for m = 0)

−δfi(1 + log f0i) (for m = 1)(
1

m
− 1

m− 1

)
ζmf0i (for even m and m ≥ 2)

(
1

m− 1
− 1

m

)
ζmf0i (for odd m and m ≥ 3)

, (4.70)

where ζ ≡ δfi/f0i. By multiplying Eq. (4.65) by

Υ(m) =



−J (1 + log f0i) (for m = 0, 1)

−J 1

m− 1
ζm−1 (for even m and m ≥ 2)

J 1

m− 1
ζm−1 (for odd m and m ≥ 3)

, (4.71)
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we obtain the mth-order entropy density equation

for m = 0: J ds(0)

dt
= S(0)

src + S
(0)
snk + C

(0)
coll, (4.72)

for m = 1: J ds(0)

dt
+ J ds(1)

dt
+ J ζ df0i

dt
= S(1)

src + S
(1)
snk + C

(1)
coll, (4.73)

for even m and m ≥ 2: J ds(m)

dt
− J

(
1

m− 1
ζm−1 +

1

m
ζm
)
df0i
dt

= S(m)
src + S

(m)
snk + C

(m)
coll ,

(4.74)

for odd m and m ≥ 3: J ds(m)

dt
+ J

(
1

m− 1
ζm−1 +

1

m
ζm
)
df0i
dt

= S(m)
src + S

(m)
snk + C

(m)
coll ,

(4.75)

where ψ(m) ≡ ψΥ(m) (ψ = Ssnk, Ssrc, Ccoll). Equation (4.73) is identical to Eq. (4.67).

The second term on the left-hand side of the mth-order entropy density equations

Eq. (4.74) and Eq. (4.75) represents the interaction with the m − 1th-order entropy

density, while the third term represents the interaction with the m+ 1th-order entropy

density. When the interaction term between the mth-order entropy and the m + 1th-

order entropy is positive in the mth-order entropy density equation, it is necessarily

negative in the m+ 1th-order entropy density equation, and vice versa. Therefore, the

interaction terms do not produce a net entropy.

4.2.3 Entropy production and dissipation

First, we investigate the interaction between the thermodynamic entropy (first-

order entropy) and the fluctuation entropy (second-order entropy). By integrating α

over both the time and gyrocenter phase space, we obtain∫ t

0

∫
αrRd5zdt =

∫ t

0

∫
rRJ d5zdt

(
δfivr
Ln

− 3

2

δfivr
LT i

+
v2

2Ti

δfivr
LT i

+ δfivr
µ

Ti

∂B

∂r
+ δfi

{
v∥, H

} v∥
Ti

+ δfivθ
µ

Ti

∂B

∂θ

)
. (4.76)

Figure 4.5 shows the time evolution of each tem on the right-hand side of Eq. (4.76).

The third term is at least 6.6 times larger than the other terms. Since the third term

corresponds to the heat flux, the interaction term can be approximated as entropy

change due to heat flux.
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Fig. 4.5: Time evolution of each tem on the right-hand side of Eq. (4.76).

Fig. 4.6: Temporal and spatial profile of turbulent heat flux divided by temperature

and interaction term.

As shown in Fig. 4.6, the spatiotemporal structures of the turbulent heat flux divided

by temperature and the interaction term are similar. This further supports the ap-

proximation that the interaction term corresponds to the entropy change due to the

heat flux. The turbulent heat flux is given by

Q(r, θ, φ) =

∫
(vE,r − vE,r,n=0)

(
1

2
v2∥ + µB

)
fJ dv∥dµ, (4.77)

where vE,r,n=0 represents the n = 0 component of the E×B drift, which contributes to

neoclassical transport. The fact that the interaction term represents the entropy change

due to heat flux indicates that the background profile and turbulence are interacting

through the heat flux.

Figure 4.7 shows the time evolution of each term in Eqs. (4.67) and (4.68) integrated

in the gyrocenter phase space. The second terms on the right-hand sides of Eqs.

(4.67) and (4.68) are nearly zero, and therefore are not plotted in the figure. For

large |v∥| and/or large µ, f0 is almost zero. As a result, it is extremely difficult to
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Fig. 4.7: Temporal evolution of each term in the first- and second-order entropy

equation. The vertical black lines (tvT i/R0 = 300 and tvT i/R0 = 900) represent the

time it takes for the first- and second-order entropies to reach the quasi-steady state,

respectively.

compute numerically the terms including δf/f0, such as the second-order entropy. For

small Lv∥ and small Lµ, direct computation of these terms becomes feasible. However,

in this case, the conservation laws are violated and unphysical entropy oscillations

are observed. Moreover, the potential structure and turbulent heat flux cannot be

accurately evaluated [142]. In this study, we assume that the entropy of the third

order and beyond is sufficiently small. By subtracting the first-order entropy S(1) from

the entropy S(all), we compute the second-order entropy S(2) = S(all) − S(1). The fact

that the interaction between the second-order entropy and the third-order entropy is

small supports this assumption.

The first-order entropy density is of the first order, while the second-order entropy

density is of the second order. However, as shown in Fig. 4.7, the production rates of

the first-order and second-order entropies are of the same order. This is understood as

follows. For simplicity, the radial direction is divided into two regions: the region with
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a smaller radius has a temperature denoted as Th, and the region with a larger radius

has a temperature denoted as Tc. When there is a pressure change δPi due to profile

relaxation, from Eq. (4.63), the change in the first-order entropy is

δS(1) = −3

2

δPi

Th
+

3

2

δPi

Tc
=

3

2
δPi

(
Th − Tc
ThTc

)
> 0. (4.78)

As indicated by Eq. (4.78), integrating the first-order entropy radially leads to a

cancellation of increases and decreases in entropy. Consequently, the production rate

of the first-order entropy becomes of the same order as that of the second-order entropy.

Figure 4.7(a) suggests that first-order entropy is not changed by collisions. This is

due to the fact that velocity integral of the collision term C
(1)
coll = CcollΥ

(1) in the first-

order entropy density equation is analytically almost zero. To show this, we compute∫∫
C

(1)
collBdv∥dµ = −

∫∫
(1 + log f0i) [CT (fi) + Pf0i]Bdv∥dµ. (4.79)

The first term on the right-hand side of Eq. (4.79) is∫∫
(1 + log f0i)CT (fi)Bdv∥dµ =

{
1 +

1

2
log

(
n2

2πT 3
i

)}
a− 1

2Ti
c. (4.80)

From ∫∫
aF (x)f0i log f0iBdv∥dµ =

1

2
log

(
n2

2πT 3
i

)
a, (4.81)∫∫

bG(x, ξ)f0i log f0iBdv∥dµ = 0, (4.82)

and ∫∫
cH(x)f0i log f0iBdv∥dµ = − 1

2Ti
c, (4.83)

the second term on the right-hand side is∫∫
(1 + log f0i)Pf0iBdv∥dµ = −

{
1 +

1

2
log

(
n2

2πT 3
i

)}
a+

1

2Ti
c. (4.84)

Therefore,
∫∫

C
(1)
collBdv∥dµ = 0. In general, when a collision operator conserves density

and energy, the first-order entropy is not changed by the collision term. It is noted that

it is in the collision theory only that the change in the first-order entropy by collision is

strictly zero. In the gyrokinetic theory, because the Jacobian is B∗
∥ = B + v∥b · ∇ × b,

not B, the first-order entropy change due to collision is not strictly zero. Figure 4.7

indicates that while the second-order entropy reaches a steady state at tvT i/R0 ∼ 300,

it takes 900R0/vT i for the background profile to achieve equilibrium.
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Fig. 4.8: Time evolution of electrostatic potential for each toroidal mode number. The

black vertical lines represent tvT i/R0 = 100, 300 and 900, respectively.

As shown in Fig. 4.8, the linear instability saturates at tvT i/R0 ∼ 100. The second-

order entropy reaches the steady state after nonlinear saturation. This result is con-

sistent with the results of GKV simulations [155]. The time it takes for the first- and

second-order entropies to reach the steady state corresponds to the time it takes for the

background profile and turbulence to reach that, respectively. Thus, the time differ-

ence can be interpreted as the difference between the timescale of transport and that

of turbulence. Even in the quasi-steady state, the first-order and second-order entropy

exhibit differences.

Fig. 4.9: Frequency spectra of the first-order and second-order entropy generation

rates (a) and their autocorrelation functions (b) in the quasi-steady state.

The probability density distribution (PDF) of the first-order entropy production

rate and that of the second-order entropy production rate in the quasi-steady state

(tvT i/R0 = 1500 ∼ 3000) are close to Gaussian. The standard deviation of the PDF

of the first-order entropy is about twice as large as that of the second-order entropy,
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with their skewness being nearly identical. Figure 4.9 shows the frequency spectrum

and autocorrelation function of the first-order entropy production rate and the second-

order entropy production rate in the quasi-steady state. High-frequency components of

the second-order entropy production rate are larger than that of the first-order entropy

production rate. This is consistent with the fact that the timescale for turbulence is

faster than that for transport. The autocorrelation function of second-order entropy

production rate decreases more rapidly than that of first-order entropy production rate.

Interestingly, the autocorrelation function of the heat flux is close to the average of the

autocorrelation functions for the first-order and second-order entropy production rates.

This might reflect that the heat flux arises from the interaction between the background

profile and turbulence.

From Fig. 4.7, the first-order entropy balance equation and the second-order en-

tropy balance equation can be approximated as

∂S(1)

∂t
=

∫
αrRd5z +

∫ (
S(all)
src + S

(all)
snk

)
rRd5z = Γ − E (4.85)

and
∂S(2)

∂t
= −

∫
αrRd5z +

∫
C

(all)
coll rRd

5z = −Γ +D, (4.86)

respectively, where Γ ≡
∫
αrRd5z, E ≡ −

∫ (
S
(all)
src + S

(all)
snk

)
rRd5z, andD ≡

∫
C

(all)
coll rRd

5z

represent the entropy production rates due to heat flux, energy input and output, and

collisional dissipation, respectively. Equation (4.85) means that S(1) changes depending

on the thermodynamic terms, such as the heat source and sink terms. Equation (4.86)

is equivalent to Eq. (4.33) and means that S(2) changes depending on kinematic terms,

such as the collision term. In some previous studies [19, 144, 150, 155, 156, 157, 158],

it is seen that the fluctuation entropy balance equation contains a term represent-

ing the time derivative of the square of the potential, dWk⊥/dt = d/dt[Re⟨(1 − Γ0 +

(Ti/Te))|ϕk⊥ |2⟩ − (Ti/Te)|⟨ϕk⊥⟩|2δky ,0]/2. This term is included within the interaction

term of Eq. (4.86). To explicitly represent dWk⊥/dt, one must substitute the continu-

ity equation and quasi-neutrality condition into the interaction term. As in Eq. (4.33),

D in Eq. (4.86) is determined by Γ. −Γ can be interpreted as the entropy change

due to phase mixing that forms fine-scale structures. As indicated by the arrows in

Fig. 4.7(b), after the formation of fine-scale structures, entropy increases due to the

irreversible process of collisional dissipation.

Figure 4.10 depicts CΓD, CS(1)Γ, and CS(1)S(2) . They are the cross-correlation func-

tions (CCF) of Γ and D, ∂S(1)/∂t and Γ, and ∂S(1)/∂t and ∂S(2)/∂t, respectively. For
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Fig. 4.10: Cross-correlation function between interaction term Γ and collision term

D (blue), between first-order entropy production and Γ (red), and between first- and

second-order entropy production (green).

time series X(t) and Y (t), their cross-correlation function is given by

CXY (τ) =
∑
t

X(t+ τ)Y (t), (4.87)

where τ is a time lag.

CΓD reaches its peak at τ = −4.65R0/vT i. This suggests that fine-scale structures

form without dissipation for 4.65R0/vT i. CS(1)Γ indicates that the first-order entropy

production rate and the entropy generation due to heat flux increase simultaneously.

As indicated by Eq. (4.86), ∂S(2)/∂t is determined by −Γ and D. Reflecting this,

CS(1)S(2) takes its maximum value at τ = −23.65R0/vT i. This suggests that on average

it takes 23.65R0/vT i for the fine-scale structures to dissipate due to collisions.

The figure is a schematic diagram of the first-order entropy balance equation and

of the second-order entropy balance equation. Figure 4.11 is a schematic diagram

of the first- and second-order entropy balance equation. In the quasi-steady state,

Eq. (4.85) illustrates the entropy balance between the energy source/sink and the

heat flux (interaction term). On the other hand, Eq. (4.86) indicates the entropy

balance between the collisional dissipation and the phase mixing (interaction term).

The interaction term does not produce net entropy, which means that the energy

input/output term and collision term are balanced. In other words, the quasi-steady

state is achieved by profile formation in real space and structural dissipation in velocity

space.

Given a constant positive Γ, in the absence of collisions D = 0, Eq. (4.86) indicates

that the second-order entropy continues to decrease indefinitely. This is the same as the
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Fig. 4.11: Schematic diagram of first- and second-order entropy balance equations.

conventional entropy paradox. Given a constant positive Γ, in the absence of energy

sources and sinks E = 0, the equations show that first-order entropy continues to

increase indefinitely. This is a new type of entropy paradox. D and E are determined

by Γ, and Γ = E = D is satisfied in a quasi-steady state. Kosuga et al. pointed out the

existence of a steady state where the entropy production due to profile relaxation and

the entropy destruction due to zonal flow generation balance each other, satisfying Γ =

0 [154]. This corresponds to the trivial steady state of the fluctuation entropy satisfying

Γ = D = 0 [144]. For the case of Γ = 0, the temperature gradient becomes infinitely

large, and thus the first-order entropy does not reach a steady state. Therefore, this

particular steady state is unlikely to be observed in reality.

Net entropy is generated in velocity space, and turbulence in real space does not

contribute to entropy production directly. Therefore, even when there are ordered

flows like zonal flows in real space, they do not lead to a reduction in entropy. The

turbulence suppression by zonal flows is anticipated to lead to the generation of entropy.

Moreover, from the entropy balance equation where D = E, it is inferred that the

entropy production is independent of collision frequency. To verify these hypotheses,

we conduct simulations for cases with collision frequencies of ν⋆ = 0.2 and ν⋆ = 0.05.

Figure 4.12 shows the time evolution of the main terms in the first- and second-

order entropy balance equations for ν⋆ = 0.2 and ν⋆ = 0.05. It can be seen that when

the collision frequency is high, the first-order entropy become smaller, even though the

entropy production due to heat flux become larger. This is explained by the collisional
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Fig. 4.12: Time evolution of the main terms in the first-order (a) and second-order

(b) entropy balance equations.

Fig. 4.13: Spatiotemporal evolutions of the absolute value of radial electric field shear

for ν⋆ = 0.2 and ν⋆ = 0.05.

damping of zonal flow. As illustrated in Fig. 4.13, The high collision frequency results

in a reduction in both zonal flow and poloidal flow shear. Consequently, with increased
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collision frequency, the turbulence suppression effect due to the poloidal flow shear

becomes weaker, leading to an enhanced heat flux and associated interaction term.

When the heat flux is large, the time required for the sink term to reach a quasi-

steady state is reduced. As a result, the first-order entropy reaches a steady state more

rapidly. Therefore, in cases with a higher collision frequency, the first-order entropy

is smaller. On the other hand, the second-order entropy does not depend on the

collision frequency. This is because the more entropy is reduced by fine-scale structure

formation, the more entropy is produced by collisional dissipation. The second-order

entropy might be dependent on the driving source of turbulence.

Fig. 4.14: (a) Time-averaged ion temperature profiles and (b) temporal evolutions of

D for ν⋆ = 0.2 and ν⋆ = 0.05

Figure 4.14(a) shows the radial profile of the ion temperature, averaged over tvT i/R =

1000 ∼ 2000. The temperature gradient is larger when the collision frequency is

smaller. Particularly for r/a0 < 0.5, the improvement is pronounced. The figure

indicates the formation of the large radial electric field shear in that region, suggesting

that the large temperature gradient is formed due to turbulence suppression. Figure

4.14(b) illustrates that for ν⋆ = 0.05, despite the collision frequency being 4 times

smaller than that in the case of ν⋆ = 0.2, the entropy production is larger. This indi-

cates that entropy production is not dependent on the collision frequency but is reliant

on the temperature gradient. In other words, ordered flows such as zonal flows can

significantly increase entropy production. Yoshida and Mahajan also pointed out that

zonal flows lead to a significant increase in entropy generation, based on their analytical

results using the heat engine model of the plasma boundary layer [137]. They proposed

that while zonal flows are generated on a macroscopic scale, entropy is produced on a

microscopic scale. On the other hand, our results suggest that entropy production is

not explained by scale separation. We demonstrate that entropy is produced in velocity

space, and that flows in real space do not directly contribute to entropy production.
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In the local gyrokinetic model, the fluctuation entropy balance equation Eq. (4.86)

is assumed to be locally satisfied. To validate this assumption, we vary the radial

integration range and calculate the temporal evolution of the terms in the second-order

entropy balance equation. The results are presented in Fig. 4.15. As the integral range

becomes smaller, the contribution from the advection term becomes larger. Locally, the

advection term is one order of magnitude larger than the other terms. This suggests

that turbulence is not simply dissipated locally. In other words, Eq. (4.86) does not

hold locally. This might be due to heat avalanches, necessitating a global analysis of

turbulent transport.

Fig. 4.15: Temporal evolution of the terms in the second-order entropy balance equa-

tion for radial integration ranges of 0 ≤ r/a0 ≤ 1 (a), 0.3 ≤ r/a0 ≤ 0.7 (b), and

0.49 ≤ r/a0 ≤ 0.51 (c).
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4.3 Gyrokinetic entropy dynamics

4.3.1 Nonlocal heat transport

Figure 4.15 suggests that turbulent transport exhibits global rather than local char-

acteristics. The non-local nature of turbulent transport is evaluated by the kernel

(generalized diffusivity) Kr in

Q(r) = −
∫

Kr(r, r
′)
∂T

∂r′
dr′. (4.88)

GYSELA and XGC-1 simulation results show that it is represented by the Cauchy-

Lorentz distributuion [163]

Kr(r, r
′) =

Λ

π

∆/2

(∆/2)2 + |r − r′|2
. (4.89)

Λ is a parameter that represents the turbulence intensity and is proportional to

⟨ϕ2⟩r
√

⟨R/LT ⟩r −R/LTc. ∆ is a nonlocality parameter, which is larger than the tur-

bulence autocorrelation length. This indicates that turbulent transport exhibits nonlo-

cality. ∆ corresponds to the avalanche size and E×B staircase width. E×B staircase

is a quasi-regular shear flow pattern. At scales smaller than ∆, transport is dominated

by avalanches. The temperature profile becomes corrugated due to heat avalanche

jam, leading to the formation of E × B staircase from the radial force balance Eq.

(1.129) [164].

Turbulent transport exhibits long-range correlations not only in space but also in

time. The long-time correlation of time series data can be evaluated by the Hurst

exponent [165]. The Hurst exponent for time series data {Xi}Ni=1 is calculated from the

rescaled range (R/S) statistic as follows [166]. We construct a subset of the time series

data, {Xi}t+n
i=t+1, t, n ∈ N, and utilize it to generate a new dataset, {Yi}t+n

i=t+1, where

Yt+i ≡ Xi − X(t, n), X(t, n) ≡
∑n

i=1Xt+i/n. The standard deviation of {Xi}t+n
i=t+1

is obtained from S(t, n) =
√∑n

i=1 Y
2
t+i. From {Yi}t+n

i=t+1, we generate a new dataset,

{Zi}t+n
i=t+1, where Zt+i ≡

∑i
k=1 Yt+k. The adjusted range R(t, n) is defined as

R(t, n) ≡ max{Zt+1, Zt+2, · · · , Zt+n} − min{Zt+1, Zt+2, · · · , Zt+n}. (4.90)

The average of R(t, n)/S(t, n) can be expressed as

R(n)

S(n)
= CnH , (4.91)

where C is a constant and H represents the Hurst exponent with a range of 0 to

1. When X1, X2, · · · , XN are mutually independent, H = 0.5 from the central limit
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theorem. For time series data exhibiting long memor, H > 0.5 is observed. Simulation

results from GKNET indicate that for turbulent heat transport, H ≃ 0.7 [167].

It is believed that models based on self-organized criticality (SOC) can explain fea-

tures of turbulent transport such as long-range correlations in time and space as well

as the critical temperature gradient depicted in Fig. 1.11 [168, 169, 170, 171]. Dynam-

ical systems with SOC spontaneously maintain a critical state without the need for

external interventions [172, 173, 174]. A commonly used model to represent SOC is

the sandpile model [175, 176]. When sand is continuously dropped onto a sandpile, the

pile accumulates until it reaches a point where the sand starts to flow downward. Con-

sequently, the sandpile doesn’t grow infinitely tall, but instead achieves a statistically

steady state. The sandpile model is a cellular automaton that simulates this dynamics.

Instead of steadily releasing energy, the system accumulates it and releases a burst of

energy once a critical threshold is exceeded. The similarities between turbulent heat

transport and the sandpile model are summarized in Tab. 4.1 [176].

Tab. 4.1: Analogies between turbulent heat transport and sandpile model [176].

Turbulent transport Sandpile model

Turbulent eddy Cell

Critical gradient for instability Critical sandpile slope

Local eddy-induced transport Number of grains moved

Total energy Total number of grains

Background fluctuations Random rain of grains

Turbulent heat flux Sand flux

Mean temperature profile Average slope of sandpile

Transport event Avalanche

Electric field shear Wind shear

Figure 4.16 shows the frequency spectrum of turbulent heat flux at r = 75.8ρi.

The spectrum has three characteristic frequency regions that appear in the frequency

spectrum of systems with SOC [175, 176]. The low frequency range where the power

spectrum is proportional to ω0 corresponds to large avalanche events that release stored

energy all at once and exhibits a long-time correlation. The frequency of such large

avalanches is proportional to the input energy. This is because the time it takes

to re-establish the significant temperature gradient after the catastrophic bursts is
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Fig. 4.16: Frequency spectrum of turbulent heat flux at r = 75.8ρi.

proportional to the energy source. The intermediate frequency domain is related

to the overlapping avalanches. This suggests the lack of characteristic scale for the

avalanches [177]. The high frequency range which is proportional to A corresponds

to small scale avalanches that do not interact with each other. Similar frequency

spectra was reported in many previous studies. The heat flux spectra in the global

fluid code [177], GT5D [118], GYSELA [178], GENE[179], and GKNET [180] suggest

that turbulent heat transport has the properties of SOC. The ion saturation current

spectrum observed in the stellarator device W7-AS [181], the frequency spectrum of

electron temperature fluctuations in the tokamak device DIII-D [182], the spectra of

the floating potential and density fluctuations in the TEXTOR [183], the frequency

spectra of density fluctuations in both Tore Supra and Castor Tokamak [184], and the

frequency spectrum of electron temperature fluctuations in the HL-2A tokamak [185]

are all consistent with the theoretical predictions of SOC. This is noteworthy because

it implies that despite the differences in device configuration (e.g., stellarators ver-

sus tokamaks) and diagnostics, the underlying turbulent transport mechanisms share

commonalities which can be captured by the concepts of SOC, which could provide

a unifying framework to understand intermittent, avalanche-like transport in fusion

devices. In HL-2A, an increase in the temporal and spatial correlation lengths was

observed after supersonic molecular beam injection (SMBI) [185]. This indicates an

enhanced SOC, leading to an increase in inward heat avalanches, thereby raising the

core temperature. This contributes to confinement improvement.
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Fig. 4.17: Spatiotemporal evolution of time derivative of (a) flux-surface averaged

turbulent heat flux and (b) first-order entropy.

4.3.2 Entropy advection

Figure 4.17(a) shows the spatiotemporal evolution of the time derivative of the flux-

surface averaged turbulent heat flux. The dotted circles and the dashed circles represent

outward and inward intermittent heat avalanches, respectively. Figure 4.17(b) shows

the spatiotemporal evolution of the first-order entropy production. In this section,

when evaluating entropy, we employ the Maxwellian based on the density and tem-

perature that are time-averaged in the steady state as the initial distribution. Con-

sequently, Fig. 4.17(b) illustrates the extent to which the pressure has deviated from

the steady-state profile. The dynamics of entropy are dominated by entropy advection,

and the time derivative of entropy is almost equivalent to the advective term. From

Fig. 4.17(b), it can be observed that the bumps of the temperature profile propagate

with the outward heat avalanches, while the voids of the temperature profile propagate

with the inward heat avalanches.

Figure 4.18 provides an illustration of the propagation of bump and void. The bump

propagates outwardly because the temperature gradient at the outer front exceeds

the critical gradient. Conversely, the void propagates inwardly because temperature

gradient at the inner front is larger than the critical gradient. In the model based

on the theory of SOC, both bump and void have identical probability distributions
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Fig. 4.18: Schematic diagrams of avalanche propagation.

owing to symmetry. However, in real plasmas, the symmetry is broken by the mean

radial electric field [186, 187]. From the radial force balance Eq. (1.129), the radial

electric field shear ∂Er/∂r is proportional to the curvature of the temperature profile.

As illustrated in Fig. 4.18, the bump has a negative temperature curvature, while

the void has a positive temperature curvature. Therefore, the bump and void induce

negative and positive radial electric field shears, respectively. When the background

radial electric field shear is positive, the presence of a bump leads to a reduction in

the shear, whereas the presence of a void results in an increased shear. Therefore, only

the bump propagates outward. Conversely, when the background radial electric field

shear is negative, the presence of a bump enhances the absolute value of the shear,

while the presence of a void diminishes the absolute shear value. Hence, only the

void propagates inwardly. In this manner, the symmetry between bumps and voids is

broken. The background radial electric field shear, as shown by Eqs. (4.60) and (1.129),

is negative for r/a0 < 0.5 and positive for r/a0 > 0.5. Figure 4.17(b) illustrates that

for r/a0 < 0.5, the voids propagate, whereas forr/a0 > 0.5, the bumps propagate. This

is consistent with the symmetry-breaking avalanche theory.

Figure 4.19(a) shows the CCFs of the first-order entropy production rate and the

interaction term in the inward avalanche region at r/a0 = 0.4 and in the outward

avalanche regions at r/a0 = 0.6 and r/a0 = 0.7. Figure 4.19(a) represents the local

counterpart of the red line in Fig. 4.10. Figure 4.10 indicates that the first-order

entropy production rate and the interaction term are in-phase, while Fig. 4.19(a)

demonstrates that there is a time lag between their increases or decreases. This rep-

resents a delay in the heat flux response to changes in the temperature profile. The
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Fig. 4.19: (a) CCFs between first-order entropy production and interaction term and

(b) CCFs between interaction and collision term.

heat flux increases approximately tvT i/R0 ∼ 1.4 after the temperature rises. It is note-

worthly that this time lag is of the same order as the inverse of the linear growth rate

of the tITG mode. The first-oder entropy production rate is positive for bumps and

negative for voids, hence their signs of the CCTs are opposite.

Fig. 4.20: Spatiotemporal evolution of (a) fluctuation entropy production and (b) the

absolute value of electric field shear.

Figure 4.20 shows the spatiotemporal evolution of the fluctuation entropy and the

absolute values of the radial electric field shear. It can be seen that the turbulence

propagates with the heat avalanches. This result is consistent with the simulation

results for the collisionless slab ITG turbulence [162]. The first-order and second-order
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entropies are in-phase in the outward avalanche region, while they are out-of-phase in

the inward avalanche region. This relationship markedly differs from the one shown

by the green line in Fig. 4.10. In Fig. 4.20(a), the solid circles represent regions

where the fluctuation entropy significantly changes from positive to negative, implying

a substantial reduction in turbulence intensity. FromFig. 4.20(b), it can be observed

that in these areas, the shear flow is four times the average value. This means that

the turbulence is suppressed by the strong shear flow. Figure 4.19(b) depicts the local

CCFs between the interaction term and the collision term. Its global counterpart is

represented by the blue line in Fig. 4.10. From Fig. 4.19(b), it is seen that the

relationship indicating the dissipation of fine-scale structures holds true locally as well

and is independent of the direction of the avalanches. However, locally, the contribution

from the entropy advection is more significant than that from the entropy production

due to dissipation.



Chapter 5

Effects of magnetic island on profile

formation

5.1 Magnetic island and plasma turbulence

Magnetic fusion devices such as tokamaks and stellarators confine high-temperature

plasmas by nested flux surfaces. Due to perturbations with tearing parity, the topology

of magnetic fields changes, leading to the formation of a magnetic island [188]. It is

noteworthy that even instabilities such as the ITG mode, which only have twisting

parity in the linear regime, can generate tearing parity through nonlinear parity mix-

ing [189]. A magnetic island structure can be understood from the discussion presented

below [190].

In a coordinate system (χ, θ, ζ), a magnetic field can be described as

B(χ, θ, ζ) = ∇ζ ×∇ψ(χ, θ, ζ) + ∇χ×∇θ, (5.1)

where χ and ψ respectively represent the toroidal and poloidal magnetic flux divided by

2π, θ and ζ are generalized angles for the poloidal and toroidal directions, respectively.

Equation (5.1) is the Clebsch representation of the magnetic field, and it always satisfies

∇ ·B = 0. The equations for the magnetic field lines,

dχ

dζ
=
Bχ

Bζ
=

B · ∇χ
B · ∇ζ

(5.2)

and
dθ

dζ
=
Bθ

Bζ
=

B · ∇θ
B · ∇ζ

, (5.3)

can be expressed
dχ

dζ
= −∂ψ

∂θ
,

dθ

dζ
=
∂ψ

∂χ
(5.4)

by using

∇ψ(χ, θ, ζ) =
∂ψ

∂χ
∇χ+

∂ψ

∂θ
∇θ +

∂ψ

∂ζ
∇ζ (5.5)

123
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and

∇χ×∇θ · ∇ζ =
1
√
g
. (5.6)

Equation (5.4) is equivalent to the Hamilton’s canonical equations. θ, χ, ζ, and ψ

correspond to the position, momentum, time, and Hamiltonian in Hamiltonian me-

chanics, respectively. In the case of an axisymmetric tokamak, the magnetic field does

not depend on ζ, therefore dψ/dζ = 0. This corresponds to the Hamiltonian being

independent of time in Hamiltonian mechanics. If ψ depends only on χ, then from

Eq. (5.4), the solution is (ψ, θ) = (ψ0, θ0 + ζ/q), where ψ0 and θ0 are constant, and

q = dχ/dψ is the safety factor. θ = θ0 + ζ/q indicates that when q is a rational num-

ber, the magnetic field line returns to the poloidal angle θ0, and when q is an irrational

number, it does not return to θ0. Instabilities like resistive [191, 192] and neoclassi-

cal [193, 194] tearing modes lead to magnetic field fluctuations at a rational surface

q(χs) = qs = m0/n0. In tokamaks, the reduction of bootstrap current due to magnetic

islands induces their growth. However, in stellarators, due to the negative magnetic

shear, the decrease in bootstrap current causes magnetic islands to shrink [195]. The

perturbed part of ψ can be approximated as

δψ

(
χ, θ − ζ

qs

)
=
∑
l

δψlm0,ln0e
il(m0θ−n0ζ), (5.7)

implying that the Hamiltonian is completely integrable. On transforming θ into α =

θ − ζ/qs, Eq. (5.1) becomes

B = ∇ζ ×
(
∇ψ − 1

qs
∇χ
)

+ ∇χ×∇α

= ∇ζ ×∇ψh + ∇χ×∇α.

The Hamiltonian after the transformation ψh is defined as

ψh(χ, α) = ψ(χ, α) − 1

qs
χ. (5.8)

Because of the discussion near the rational surface, we can substitute χ = χs + ξ and

obtain [190]

ψh(ξ, α) = − 1

2q2s

dq

dχ

∣∣∣∣
χ=χs

ξ2 + δψ(χs, α). (5.9)

When the magnetic field perturbation δψ(χs, α) is proportional to cos(mα), Eq. (5.9)

is equivalent to the pendulum Hamiltonian. As illustrated in Fig. 5.1, the magnetic

island structure can be seen from the orbits in phase space.
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Fig. 5.1: Magnetic island structure

Magnetic islands have traditionally been believed to degrade plasma performance.

This is because magnetic islands possess a radial component, and there is a potential

for the background profiles to be flattened due to the parallel streaming, which is faster

than the E × B drift. This characteristic profiles have been confirmed in numerous

experiments to have a significant impact on turbulence and confinement. In LHD, the

impact of an (m,n) = (1, 1) static magnetic island generated by external perturbation

coils on the ion temperature profile and poloidal flow was investigated [196]. Similar to

the electron temperature profile, the ion temperature profile is flattened inside the mag-

netic island. Furthermore, because the poloidal flow becomes zero inside the magnetic

island, a poloidal flow shear was observed at the boundaries of the magnetic island.

Experiments on HL-2A showed that the flow inside the magnetic island is nearly zero

with minimal density fluctuation, while at the boundary of the magnetic island, there

is a large flow shear and large density fluctuation [199]. Similar results was obtained

in experiments on J-TEXT [198]. In DIII-D experiments, a reduction in turbulent fluc-

tuations was observed at the O-point of the neoclassical tearing mode islands [200]. In

the experiments on LHD, when the magnetic island width exceeds 15% to 20% of the

plasma radius, the poloidal flow within the magnetic island no longer remains zero and

the direction of the poloidal flow reverses across the island [196]. Similarly, in KSTAR,

a reversal of the poloidal flows direction across the (m,n) = (2, 1) magnetic island in-

duced by an external resonant magnetic perturbation (RMP) field was observed [197].

These poloidal flows increase towards the O-point. It was suggested that these re-

versed flows could suppress turbulence, maintaining a large temperature gradient at

the boundaries. Regarding toroidal rotation, it is nearly zero in the q = 2 region in

KSTAR [197]. In JT-60U experiments, no toroidal rotation was observed inside the

magnetic island, while a significant toroidal flow shear was observed at the boundaries
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of the island [201]. Significant improvement in ion heat transport inside the magnetic

island was observed, with the thermal diffusivity being an order of magnitude smaller

than that outside. These results could be related to the formation of the internal

transport barrier on the rational surface [202, 203, 204, 205]. In experiments on LHD,

when a magnetic island is present, the electron temperature increases significantly after

the onset of on-axis electron cyclotron heating (ECH) compared with the case without

the magnetic island [206]. The foot point of the electron ITG was observed to move

outward in conjunction with the movement of the magnetic island (rational surface) in

experiments conducted on Heliotron-J [207].

The impact of magnetic islands on plasma turbulence and associated turbulent

transport has been investigated using gyrokinetic simulations. δf ITG turbulence

simulations by ORB5 were conducted with the introduction of an (m,n) = (3, 2)

magnetic island [208, 209]. They assumed the adiabatic electron approximation and,

for simplicity, ignored the n = m = 0 mode. Outside the O-point region, despite

the high temperature gradient due to the flattened temperature profile within the

magnetic island, the heat flux is small. Instead, it was found to be larger near the

X-point region. This is attributed to turbulence vortices being torn apart outside

the O-point region by the n = 2 mode generated by inverse cascade, similar to the

turbulence suppression by zonal flows. ITG turbulence simulations in the presence of

an (m,n) = (2, 1) magnetic island using GTC also demonstrated that the turbulence

is considerably weakened inside the magnetic island, and the particle and heat fluxes

peak near the X-point [210]. The dynamics of electrons was computed from the drift-

kinetic equation. In the simulations, only five toroidal modes were considered: the

zonal mode (m,n) = (0, 0), the mode same as the magnetic island (m,n) = (2, 1), and

the high n modes (m,n) = (10 ∼ 30, 9), (10 ∼ 30, 10), (10 ∼ 30, 11). It is believed

that the turbulence is suppressed due to the flow shear from a vortex mode formed

by nonlinear coupling. The vortex mode, which is a mesoscale turbulent vortex with

the same toroidal and poloidal mode numbers as the magnetic island, was reported

in simulations by the flux-tube code GKW [211, 212, 213]. Kinetic electron dynamics

was retained in the simulations. The flow shear induced by the vortex mode not only

suppresses turbulence and enhances the temperature gradient at the magnetic island

boundary but also inhibits turbulent advection from the X-point to the O-point. It was

pointed out that the presence of the turbulence inside the magnetic island originates

from drift-direction advection and is not due to turbulent diffusion [214]. On the other

hand, as the magnetic island width W increases, radial heat transport due to the vortex

mode increases, competing with the heat transport by the parallel streaming. The

dependence of the turbulent transport and profile on the island width was examined

in greater detail by the flux-tube code GENE [215]. It demonstrated that when the
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island width exceeds Wt ≃ 33ρi, the temperature profiles is flattened and the vortex

mode appears. Furthermore, when W > Wt, it was found that the radial electric field

shear is proportional to W and the turbulent particle and heat fluxes decrease by an

order of 1 ∼ 2.

These simulation results shed light on the impacts of a magnetic island on mi-

croturbulence. On the other hand, since the studies were based on δf gyrokinetic

simulations, there was insufficient discussion of the influence of magnetic islands and

the vortex mode on background profiles. It is important to investigate the influence,

because variations in the background profiles are likely to influence the dynamics of

the vortex mode. Additionally, it was reported that the mean radial electric field, orig-

inating from the large temperature gradient at the boundaries of a magnetic island,

exerts a significant influence on turbulence [216]. In this study, initially, neoclassi-

cal simulations using the full-f PIC code XGC1 were performed to self-consistently

compute the evolution of gyrokinetic ions and drift kinetic electrons, determining the

background profiles. It was found that the flow due to the mean radial electric field

is large at the O-point and small at the X-point. By using the obtained background

profiles, linear gyrokinetic simulations were performed by the δf PIC code gKPSP. In

this code, the evolution of gyrokinetic ions and bounce-averaged electrons is solved.

The simulation results indicate that the shearing rate due to the mean radial electric

field across the O-point of the island is close to the maximum linear growth rate of

the TEM, suggesting that the majority of modes are suppressed by the flow shear.

Therefore, the large electron temperature gradient is maintained. This result suggests

that the flow shear has the potential to suppress turbulence in the vicinity of magnetic

islands, regardless of the existence of a vortex mode. From these points of view, full-f

simulations are urgently required in which the background profiles and turbulence are

solved self-consistently.

5.2 Numerical method

5.2.1 Velocities and forces

In this study, the (m,n) = (2, 1) static parallel vector potential fluctuation

δA∥ =
Iar

2B0

R
h(r) cos(2θ − φ) (5.10)

is introduced as in previous studies [216, 210]. h(r) ≡ exp [−(r − Ibρi)
2/(Icρ

2
i )] is the

dimensionless radial profile for the vector potential fluctuation. Ia = 0.003, Ib = 108.6,

Ic = 289.7, are the dimensionless parameters for the intensity, center position, radial

extent of the fluctuation, respectively. As indicated by the star in Fig. 5.2(a), q(Ib) = 2.
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Magnetic island width is W ≃ 22ρi ∼ 5cm, evaluated by

W =

√
8qIaI2b
ŝ

ρi. (5.11)

This width is the same as in the reference literature [210]. Figure 5.2(b) represents

the contour plot of the vector potential fluctuation given by Eq. (5.10). The magnetic

island width is much larger than the typical turbulent vortices, and the vector potential

fluctuation is symmetrical.

Fig. 5.2: (a) Radial profiles of safety factor and magnetic shear. The center of the

magnetic island is also shown. (b) Contour plot of the vector potential fluctuation.

The magnetic field B is derived from B = ∇×A such that

Br = −2Ia
r

R
e−

(r−Ib)
2

Ic sin(2θ − φ)

Bθ =
r

qR
− 2Ia

r

R
e−

(r−Ib)
2

Ic cos(2θ − φ) + 2 (r − Ib)
Ia
Ic

r2

R
e−

(r−Ib)
2

Ic cos(2θ − φ)

Bφ =
R0

R

.

(5.12)

Since the vector potential fluctuation and the corresponding magnetic field fluctuation

are zero at r = 0, the numerical scheme which enables us to avoid numerical errors at

the singularity can be used without modifications. The magnetic field has the finite

radial component, which is not present in the axisymmetric tokamak field. This can

potentially lead to the relaxation of the profiles within the magnetic island due to

motion along the field. Furthermore, the magnetic field has φ dependence, and the φ
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derivative is not zero. In the presence of the magnetic island, from Eqs. (3.8) ∼ (3.11),

the ion velocities and forces in each direction are given as

v0x =
(
v2∥ + µB

) ∂
∂θ

(Rbφ −R0) −
(
v2∥ + µB

) ∂

∂φ
(rbθ) + v∥

∂

∂θ

(
δA∥

)
+ µ

∂

∂φ
(rbθB) − µ

∂

∂θ
(BRbφ −R0) , (5.13)

v1x =
∂

∂φ
(⟨ϕ⟩αirbθ) −

∂

∂θ
(⟨ϕ⟩αiRbφ − ⟨ϕ⟩αi,r=0R0)

+ ⟨ϕ⟩αi
∂

∂θ
(Rbφ −R0) − ⟨ϕ⟩αi

∂

∂φ
(rbθ), (5.14)

v0y = −v∥
∂

∂r
(RAφ −R0) −

(
v2∥ + µB

) ∂
∂r

(Rbφ −R0)

+
(
v2∥ + µB

) ∂br
∂φ

− µ
∂

∂φ
(Bbr) + µ

∂

∂r
(BRbφ −R0), (5.15)

v1y =
∂

∂r
(⟨ϕ⟩αiRbφ − ⟨ϕ⟩αi,r=0R0) − ⟨ϕ⟩αi

∂

∂r
(Rbφ −R0)

− ∂

∂φ
(⟨ϕ⟩αibr) + ⟨ϕ⟩αi

∂br
∂φ

, (5.16)

v0z = v∥
∂

∂r
(rAθ) +

(
v2∥ + µB

) ∂
∂r

(rbθ) − µ
∂

∂r
(rbθB)

−
(
v2∥ + µB

) ∂br
∂θ

+ µ
∂

∂θ
(brB), (5.17)

v1z = − ∂

∂r
(⟨ϕ⟩αirbθ) + ⟨ϕ⟩αi

∂

∂r
(rbθ) +

∂

∂θ
(⟨ϕ⟩αibr) − ⟨ϕ⟩αi

∂br
∂θ

, (5.18)

v0v∥ = −µ ∂
∂θ

(
δA∥

) ∂B
∂r

+ µ
∂

∂r
(RAφ −R0)

∂B

∂θ
− µ

∂

∂r
(rAθ)

∂B

∂φ

− v∥µ
∂

∂r

[
B

{
∂

∂θ
(Rbφ −R0) −

∂

∂φ
(rbθ)

}]
− v∥µ

∂

∂θ

[
B

{
∂br
∂φ

− ∂

∂r
(Rbφ −R0)

}]
− v∥µ

∂

∂φ

[
B

{
∂

∂r
(rbθ) −

∂br
∂θ

}]
,

(5.19)

and

v1v∥ = − ∂

∂θ

(
δA∥

) ∂⟨ϕ⟩αi
∂r

+
∂

∂r
(RAφ −R0)

∂⟨ϕ⟩αi
∂θ

− ∂

∂r
(rAθ)

∂⟨ϕ⟩αi
∂φ
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− v∥
∂

∂r

[
⟨ϕ⟩αi

{
∂

∂θ
(Rbφ −R0) −

∂

∂φ
(rbθ)

}]
− v∥

∂

∂θ

[
⟨ϕ⟩αi

{
∂br
∂φ

− ∂

∂r
(Rbφ −R0)

}]
− v∥

∂

∂φ

[
⟨ϕ⟩αi

{
∂

∂r
(rbθ) −

∂br
∂θ

}]
.

(5.20)

The Vlasov solver for the case with the magnetic island is the same as that for the

axisymmetric tokamak magnetic field.

5.2.2 Calculation of flux surface average

In the absence of a magnetic island, the flux-surface average of ϕ is given by

⟨ϕ⟩f =

∫ 2π

0

∫ 2π

0

ϕ rRdθdφ∫ 2π

0

∫ 2π

0

rRdθdφ

. (5.21)

By expanding ϕ as

ϕ =
∑
m,n

ϕm,n e
i(mθ−nφ) (5.22)

and substituting it into Eq. (5.21), we obtain

⟨ϕ⟩f = ϕ0,0 +
r

R0

Re[ϕ1,0]. (5.23)

The equation (5.23) indicates that flux-surface averaged quantities are represented by

the zonal mode and its sidebands. The second term on the right-hand side arises due

to toroidal effects. Fig. 5.3(a) shows the contour plots of the flux-surface averaged

electrostatic potential calculated by Eq. (3.158). In poloidal cross-sections, magnetic

surfaces are represented by countless circles with the same center and the m = 0 mode

is dominant. The m = 1 mode is small because it cancels out between the high field

side surface and the low field side surface.

When the magnetic field structure is varied by a vector potential fluctuation, the

calculation of the flux-surface average becomes challenging. Without it, it is impossible

to solve the gyrokinetic Poisson equation, both in the adiabatic electron model and in

the hybrid electron model. This is because even in the hybrid electron model, the

adiabatic response is assumed for (m,n) ̸= (0, 0) passing electrons. It has been pointed

out that without appropriately considering the electron response, the vortex mode does

not appear [209]. Therefore, in the presence of a magnetic island, ⟨ϕ⟩f ≃ ϕ(m,n)=(0,0)

is not valid. To address this issue, several methods have been developed to date [217],
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Fig. 5.3: Contour plots of the flux-surface averaged electrostatic potential calculated

from Eq. (3.158) (a), using the tracing method (b), and using the labeling method (c).

however, to our knowledge, no standard method has been established. Therefore, in

this study, we develop a new method for calculating the flux-surface average. First,

we verify whether the results obtained by applying the methods in the absence of a

magnetic island match with Fig. 5.3(a).

A method called the tracing method is developed as an intuitive and accurate

approach. This method consists of the following three steps.

1. The equations for the magnetic field lines
dr

dφ
= 0

dθ

dφ
=

R

qR0

(5.24)

are calculated using all real-space grid points as initial values, and the coordinates

of intersections with each poloidal cross-section are computed.

2. The coordinates calculated in step 1 are not on the nodes, thus interpolation
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functions are used to determine their values from the values at neighboring grid

points.

3. The flux-surface averaged value at each grid point is obtained by summing all

values along the magnetic field line from that point and dividing by the total

number.

The equations for the magnetic field lines need to be computed Nr × Nθ × Nφ times,

which is time-consuming. However, since steps 1 and 2 only need to be performed

once, the effective computation time can be reduced to virtually zero. The equations

are solved using the Runge-Kutta method. At the grid number Nφ, the CFL condition

may not be satisfied or the accuracy may degrade. Therefore, we compute the magnetic

field line equations using the grid number 4Nφ in the toroidal direction. The flux-

surface averaged electrostatic potential obtained by the tracing method shown in Fig.

5.3(b) significantly differs from that presented in Fig. 5.3(a). This is attributed to

memory limit constraints. In the tracing method, due to the time-consuming nature

of repeatedly solving the magnetic field line equations and loading the computational

results, interpolation coefficients are stored in memory. However, due to the necessity

of storing all the intersections between the magnetic field lines originating from every

grid point and all poloidal cross-sections, as well as the interpolation coefficients, the

memory usage exceeds its limit. For instance, in the case of the Cray XC50, only 2GB

per process can be utilized. For instance, if we trace the magnetic field lines for 500

toroidal rotations and use a 4-point interpolation, it requires memory on the order of

terabytes. Therefore, it is not feasible to trace the magnetic field lines for more than

1000 toroidal rotations due to the memory constraint. Figure 5.4 indicates that tracing

for about 100 laps is insufficient to construct a flux surface. Instead, approximately

1000 rotations are necessary to properly form the flux surfaces. The reason for the

incorrect results shown in Fig. 5.3(b) is considered to be the overestimation of low

poloidal number modes due to the insufficient formation of the flux surfaces.

We improve the tracing method and develop a new method called the labeling

method consisting of the following three steps.

1. By calculating the equations of the magnetic field lines with different initial values

in the radial and poloidal directions, we obtain the coordinates of the points

constituting the flux surfaces on poloidal planes. Each magnetic field line is

traced 3000 laps in the toroidal direction to construct the flux surface.

2. The distance between the 3D discretized grid points in real space and the points

obtained in step 1 is calculated, and then the grid points are grouped according
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Fig. 5.4: Poincaré plots at φ = 90 in the absence of magnetic islands. From left to

right, the plots represent the magnetic field line trajectories after 10, 100, and 1000

toroidal rotations, respectively.

to the magnetic field line that minimizes the distance. The maximum number of

groups is the number of initial values when solving the equations of the magnetic

field lines.

3. We take the average for each group.

Similar to the tracing method, since steps 1 and 2 need only be performed once initially,

the effective computational time is essentially zero. When there is no magnetic island,

there is no gap between the grid points and magnetic flux surfaces. From Fig. 5.3, it is

evident that the labeling method provides a good approximation. However, it is noted

that the labeling method cannot fully reproduce the flux-surface average given by Eq.

(5.23). Due to the same grid number on the high magnetic field side and low magnetic

field side, the (m,n) = (1, 0) mode disappears with the flux-surface averaging. This

issue comes from perceiving a flux surface as points rather than as a face. To achieve

accurate calculations of the (m,n) = (1, 0) mode, improvements to the method are

necessary.

The equations of the magnetic field lines in the presence of the magnetic island are

given by 

dr

dφ
= − 2Ia

rR

R0

h(r) sin(2θ − φ)

dθ

dφ
=

R

qR0

− 2Ia
R

R0

h(r) cos(2θ − φ)

+ 2(r − Ibρi)
Ia
Ic

rR

ρ2iR0

h(r) cos(2θ − φ)

. (5.25)
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Fig. 5.5: Grouped grid point in the poloidal plane at φ = 155◦ and φ = 255◦.

Figure 5.5 shows an example of grouped real space grid points calculated by the labeling

method, where points of the same color represent the same groups (the flux surfaces),

and the small blue dots are the numerical solutions of Eq. (5.25). For clarity, the low-

resolution case (Nr, Nθ, Nφ) = (12, 36, 36) is shown. The distance between flux surfaces

and grid points reaches its maximum at the O-point and is given by
√
r2∆θ2 + ∆r2ρi/2.

It becomes smaller as the grid size decreases. For the parameters used in this study,

(Nr, Nθ, Nφ) = (96, 160, 144), The largest gap is calculated to be 1.07ρi.

Figure 5.6(a) represents the Poincaré map obtained by tracing the magnetic field

lines for 3000 laps in the toroidal direction. It is noteworthy that the magnetic field

is asymmetric in the poloidal direction and possesses ergodic regions. This comes

from a toroidal effect. For (Nr, Nθ, Nφ) = (80, 160, 160), the result of calculating the

flux-surface average of

ϕ =
m=79∑
m=−79

79∑
n=0

100 cos(mθ − nφ) (5.26)

using the labeling method is also shown in 5.6(a). Not only does the (m,n) = (2, 1)

mode have a relatively large value, but due to the toroidal effect, several modes other

than the (m,n) = (2, 1) harmonics have finite small values. On the other hand, if the

toroidal effect is ignored, as shown in Fig. 5.6(b), only the (m,n) = (2, 1) harmonic
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Fig. 5.6: Magnetic field structures and mode components of the flux-surface average,

in the presence of the magnetic island (a) and in the case of the simplified magnetic

island (b).

modes are non-zero. In this case, the magnetic field is given by

dr

dφ
= − 2Iarh(r) sin(2θ − φ)

dθ

dφ
=

1

q
− 2Iah(r) cos(2θ − φ)

+ 2(r − Ibρi)
Ia
Ic

r

ρ2i
h(r) cos(2θ − φ)

. (5.27)

However, this approximation breaks the Gauss’s law for magnetism ∇ · B = 0 and

the phase space volume conservation ∂/∂R · (J dR/dt) + ∂/∂v∥
(
J dv∥/dt

)
= 0, which

are required for the Morinishi scheme. In order to avoid numerical noise caused by

small amplitude modes due to the toroidal effects, only the main modes (m,n) =

(0, 0), (2, 1), (4, 2) are extracted by a numerical filter. It is applied only to flux-surface

averaged values.
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5.3 Effects of magnetic island on profiles and tur-

bulence

5.3.1 Profile flattening

We conduct neoclassical transport simulations in the presence of the magnetic is-

land. The simulations are performed for a tokamak with a0 = 150ρi and a0/R0 = 0.36.

Although wedge torus configurations are often used to save computational cost in full-

f simulations, such an approximation cannot be adopted in this study because the

magnetic island with n = 1 is introduced. Lv∥ and Lµ are the same as those in the pre-

vious chapter. The grid numbers used in the simulations are (Nr, Nθ, Nφ, Nv∥ , Nµ) =

(96, 160, 144, 80, 16). The initial density and temperature gradients at r = 0.5a0 are

(R/Ln, R/LT i, R/LTe) = (3, 3, 3) and below the linear instability threshold for the

toroidal ITG mode. Their radial profiles are given by Eqs. (4.59) and (4.60).

Fig. 5.7: Temporal evolution of radial average of ϕ0,0 and ϕ2,1

Figure 5.7 shows that the (0, 0) and (2, 1) components of the electrostatic potential

oscillate at the same frequency ωR0/vT i = 2.17. This frequency corresponds to that

of the GAM. This result is consistent with the simulation results obtained by GTC

in the presence of the (2, 1) magnetic island [210]. The (0, 0) and (2, 1) electrostatic

potentials are phase-shifted by π/2 from the (1, 0) electrostatic potential. The electric

field that gives rise to the polarization current to counteract the diamagnetic current

caused by the (1, 0) pressure fluctuation is phase-shifted by π/2 with respect to the

(1, 0) electrostatic potential. This suggests that the (2, 1) electrostatic potential orig-

inates from the electric field responsible for generating the polarization current. The

result suggests a connection with the synchronization of the GAM and magnetic field

fluctuations observed in HL-2A [218]. This oscillation of ϕ2,1 does not appear unless
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the flux-surface average is accurately computed. Without using the labeling method,

the gyroknetic Poisson equation is computed in the same manner as in the absence of

a magnetic island. In the case, the (2, 1) electric field is underestimated, and the (0, 0)

electric field is increased instead. As as result, the (2, 1) electric field does not involve

with the GAM dynamics. A GAM oscillation with a long period and a small damping

rate, which originates from the magnetic field structure of the island, was theoretically

predicted and confirmed in simulations using GKW [213]. However, it it not observed

in our simulations. This might be attributed more to globality or island width than

to differences in electron response or the radial force balance. This is because it is not

observed even in GTC simulations using a drift kinetic electron model.

Fig. 5.8: Radial profile of time averaged parallel flow at the O-point.

Figure 5.8 shows the radial profile of time averaged parallel flow. Inside the mag-

netic island, the flow is zero, and a large flow shear is observed at the boundaries

of the island. It is considered that the flow is formed to satisfy the radial force bal-

ance. This result is consistent with the experimental findings in JT-60U where the

toroidal flow inside the magnetic island is zero and the large flow shear is formed at

the boundaries [201].

Figure 5.9 shows the time averages of (a) the ion density profile and (b) the ion

temperature profile at the X-point and O-point. The light blue dotted lines indicate the

boundaries of the magnetic island. (V) indicates the case where only the gyrokinetic

Vlasov equation is computed, and (V + P) indicates the case where the gyrokinetic
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Fig. 5.9: Time averaged radial profiles of (a) ion density and (b) ion temperature at

the X-point and O-point.

Vlasov equation and the gyrokinetic Poisson equation are solved self-consistently. Pro-

file corrugation of the density and temperature might be due to the ergodic region

due to the toroidal effects. When only the gyrokinetic Vlasov equation is computed

with the electrostatic potential being zero, both the density and temperature profiles

are flattened at the O-point. On the other hand, when solving particle motion and

field self-consistently, only the temperature profile becomes flat at the O-point, while

the density profile remains almost unchanged from the initial state. It is noteworthy

that this is brought about by the mean electric field rather than by trapped particles.

While previous studies have focused on trapped particles hindering the flattening of

the density profile at the O-point, it is a novel result that the mean electric field plays

this role.

In order to investigate the mechanism of this phenomenon, we examine the force

balance in the direction parallel to the magnetic field. This is because the flattening

of the profiles is brought about by the motion along the magnetic field. Multiplying

the gyrokinetic Vlasov equation by v∥B
∗
∥/mi, integrating it over vecoity apace, and

averaging it over the poloidal and toroidal directions, without any approximations, we

obtain the parallel force balance equation,

− ∂

∂t
⟨nU∥⟩θ,φ =

1

mi

∂

∂r
⟨p∥br⟩θ,φ +

∂

∂r
⟨nΠ∥,E×B,r⟩θ,φ +

∂

∂r
⟨nΠ∥,∇B,r⟩θ,φ

− ⟨nAEr⟩θ,φ − ⟨nAEθ⟩θ,φ − ⟨nAEφ⟩θ,φ + ⟨nA∇B⟩θ,φ

+ Asnkτ
−1
snk⟨nU∥⟩θ,φ (5.28)

where we define the fluid quantities as follows;

nU∥ =

∫∫
v∥fi

B∗
∥

mi

dv∥dµ, (5.29)

nΠ∥,E×B,r =

∫∫
v∥

c

mi

(E × b)r fidv∥dµ, (5.30)
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p∥ = mi

∫∫
v2∥fi

B∗
∥

mi

dv∥dµ, (5.31)

nΠ∥,∇B,r =

∫∫
v∥

c

mie

{
b×

(
miv

2
∥b · ∇b + µ∇B

)}
r
fidv∥dµ, (5.32)

nAEr =

∫∫
e

m2
i

B∗
rErfidv∥dµ, (5.33)

nAEθ =

∫∫
e

m2
i

B∗
θEθfidv∥dµ, (5.34)

nAEφ =

∫∫
e

m2
i

B∗
φEφfidv∥dµ, (5.35)

nA∇B =

∫∫
µ

m2
i

B∗ · ∇Bfidv∥dµ. (5.36)

(5.37)

Fig. 5.10: Time-averaged radial profiles of the main terms in the parallel force balance

equation.

Figure 5.10 shows the radial profiles of the main terms in the parallel force balance

equation. The other terms are very small and can be ignored. It is found that, in the

steady state, inside the magnetic island,

1

mi

∂

∂r
⟨p∥br⟩θ,φ = ⟨nAEr⟩θ,φ (5.38)

is satisfied, while outside the island,

⟨nA∇B⟩θ,φ = ⟨nAEθ⟩θ,φ (5.39)

is met. (1/mi)(∂/∂r)⟨p∥br⟩θ,φ in Eq. (5.38) is derived from the term representing the

ion parallel streaming in the gyrokinetic Vlasov equation and is zero in the absence of
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magnetic islands because br = 0. When only the gyrokinetic Vlasov equation is solved,

the parallel momentum is driven by this term, leading to the flattening of the density

profile. On the other hand, when the gyrokinetic Poisson equation is also calculated

self-consistently, the force balances with the force due to the mean radial electric field

⟨nAEr⟩θ,φ, preventing the density profile from becoming flat. This does not imply a

balance between the parallel energy flux due to parallel streaming and that due to the

mean radial electric field and the temperature profile is flattened at the O-point. It

is noteworthy that (1/mi)(∂/∂r)⟨p∥br⟩θ,φ is determined primarily by the temperature

gradient rather than the density gradient. This is because the primary component of

br is (m,n) = (2, 1), and when it is coupled with the density gradient that has only

(0, 0) component, the poloidal and toroidal average of the coupling is quite small.

The gradients within a magnetic island is deeply associated with the stability of

the neoclassical tearing mode (NTM), a large-scale MHD instability that set a limit

to achievable pressure. When the pressure gradient inside a magnetic island decreases,

the bootstrap current decreases, leading to reinforce the NTM growth. The primary

contribution to the bootstrap current comes from the density gradient, accounting

for approximately 65% [219]. Therefore, the question of whether the magnetic island

flattens the density profile is of importance for the realization of commercial fusion

energy, and has been the subject of research. It was shown that when a small magnetic

island rotates at a frequency close to the ion diamagnetic frequency, the density gradient

becomes zero inside the magnetic island. Conversely, when it rotates at a frequency

close to the electron diamagnetic frequency, the density gradient is preserved [220].

When the island width exceeds the radial correlation length of turbulence, it was

observed that the density gradient no longer depends on the rotation frequency of the

island, and the density profile relaxes [221]. Simulation results from GTC revealed

that in the banana region, while the density profile is flattened on the high field side,

on the low field side, the density gradient is preserved due to trapped particles [222].

It was also shown that in the plateau region, the density profile is flattened, and in

the collisional region, a small density gradient exists due to collisional transport across

the magnetic island. The simulation results from GENE indicate that the density

gradient at the O-point shows little dependence on the width of the magnetic island

and, while it relaxes, it does not flatten as much as the temperature gradients [215].

Some believe that the density profile within a magnetic island should be flattened.

In Ref [210], the electrostatic potential was turned off until a flat density profile was

attained, and then they performed self-consistent gyrokinetic simulations. On the other

hand, the results of the neoclassical simulations using XGC1, and HL-2A experiment

results indicate that the density profile is not flattened at the O-point [216, 199]. It is

speculated that the trapped particles maintain a steep density profile at the O-point
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in the reference [215]. We consider that the observed flattening of the density profile

in previous studies is due to the neglect of the mean radial electric field, namely, the

use of the δf gyrokinetic model. When one takes into account the the mean electric

field, the force arising from the radial electric field is balanced by the force due to

the parallel streaming, maintaining the density gradient within the magnetic island.

The destabilizing effect for a magnetic island is smaller than that observed in previous

studies.

5.3.2 Statistical analysis for turbulent vortices

We conducted turbulence simulations in the presence of the magnetic island and

performed statistical analysis of the turbulent vortices. The input power is 2 MW, and

the initial background profiles are such that at r = 0.5a0, (R/Ln, R/LT i, R/LTe) =

(2.22, 6.92, 6.92). The temperature profile is flattened by parallel streaming, and at the

inner boundary of the magnetic island, R/LT i exceeds 9.5. Therefore, as illustrated

in Fig. 5.11, there exists modes that arise at the boundary of the island. Figure 5.11

shows the contour plots of the n = 22 electrostatic potential at tvT i/R0 = 60, where

the black line represents the inner boundary of the magnetic island. In the presence

of the island, the maximum value of the temperature gradient is larger and the time

to nonlinear saturation is shortened. In the linear phase, the electrostatic potential is

dominated by the n = 0 and n = 1 components. This is attributed to the radial force

balance.

Fig. 5.11: Electrostatic potential structure in the presence and absence of the magnetic

island.
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Fig. 5.12: (a) Size PDF of the electrostatic potential inside the magnetic island and

(b) size PDF in the magnetic island and its vicinity.

Figures 5.12(a) and 5.12(b) show the size probability distribution function (PDF)

of the electrostatic potential within the magnetic island (97ρi < r < 117ρi) and the

size PDF of the magnetic island and its surroundings (80ρi < r < 130ρi), respectively.

The size PDF represents the distribution of the area of the turbulent vortices in the

poloidal cross-sections, with the detailed algorithm described in Appendix A. While

the turbulent vortices inherently possess a three-dimensional structure, the size PDF

analysis assumes that the two-dimensional turbulent vortices in each poloidal cross-

section are independent of those in other poloidal cross-sections. From Figs. 5.12(a)

and 5.12(b), it is found that in the presence of the magnetic island, turbulent vortices

are sheared, leading to an increase in smaller vortices and a decrease in relatively larger

ones. Moreover, mesoscale turbulent vortices, which did not exist when there was no

magnetic island, are also observed. These large vortices correspond to the vortex mode

with the same (2, 1) mode as the magnetic island. These vortices drifts in the poloidal

direction, thus they are not the electrostatic potential due to the lowest-order force

balance. The reason why the vortex mode grows easily within the magnetic island is

the same as why zonal flows grow readily in the absence of a magnetic island [73, 83].

Since k∥ = 0 fluctuations do not produce an electric field along the magnetic field

lines, Boltzmann electrons cannot shield these fluctuations, leading to mode growth.

Therefore, within the magnetic island, the mode with the same topology as the mag-

netic island grow nonlinearly. The vortex mode cannot be generated unless adiabatic

electrons are properly treated. If one assumes ⟨ϕ⟩f ≃ ϕ0,0, the vortex mode does not

appear. It is considered that turbulent vortices are sheared by the mesoscale flow

shear [223], resulting in smaller turbulent vortices inside the magnetic island.
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Fig. 5.13: Spatiotemporal evolutions of the turbulent heat flux in (a) the presence and

(b) the absence of the magnetic island.

Fig. 5.14: Heat flux contribution for both positive and negative components against

the size of eddies, and net cumulative heat flux. (a) and (b) correspond to the case of

β = 0.01, while (c) and (d) correspond to β = 0.05. (a) and (c) correspond to the case

of the presence of the magnetic island, whereas (b) and (d) correspond to its absence.

Figure 5.13 shows the spatiotemporal evolutions of the poloidal and toroidal av-
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eraged turbulent heat flux ⟨Q⟩θ,φ, both in the presence and absence of the magnetic

island. The light blue lines represent the boundaries of the magnetic island. It is

observed that heat avalanches do not penetrate the interior of the magnetic island.

Additionally, the radial correlation length of the turbulence is small. These phenom-

ena are attributed to the shearing effect of the vortex mode and the flat temperature

profile. It is suggested that heat could be dammed at the inner boundary of the mag-

netic island. Figures 5.14(a) and 5.14(b) respectively depict the averaged heat flux

contribution for both positive (red) and negative (blue) components against the size of

the turbulent eddies, and the averaged net cumulative heat flux (green) in the presence

and absence of the magnetic island for β = 0.01. The averaged heat flux contribution

is evaluated using the heat flux at tvT i/R0 = 175, 200, 250, 300, 350 which are indicated

by the green dashed lines in Fig. 5.13. As shown in Fig A.3, for β = 0.01, it is possible

to reproduce the original net heat flux. In the absence of the magnetic island, the heat

flux contribution has a peak only around 103ρ2i , however when there is the magnetic

island, two peaks are observed around 103ρ2i and 104ρ2i . Figure 5.13(a) indicates that

tvT i/R0 = 175 corresponds to a bursting phase, and the averaged heat flux contribu-

tion at tvT i/R0 = 175 is similar to that in Fig.5.14(b). Therefore, the peak around

103ρ2i can be concluded to result from transport burst. On the other hand, the peak

around 104ρ2i originates from the mesoscale vortex mode. This does not imply that

the vortex mode induces significant radial transport. Due to the small value of β, Fig.

5.14(a) shows the contribution of heat flux from vortices which combine ones with long

radial correlation with the vortex mode. Whether the vortex mode produces heat flux

or not cannot be determined from Fig. 5.14(a). Figures 5.14(c) and 5.14(d) represent

the counterparts for Figs. 5.14(a)と 5.14(b) respectively, for β = 0.05. The averaged

heat flux contribution is similar both with and without the presence of the magnetic

island. This implies that the radial heat flux due to the vortex mode is less than 5%

of the maximum heat flux caused by the turbulence. In other words, the heat flux

due to the vortex mode is not zero, but it is small. In our simulations, the vortex

mode contributes to confinement improvement. As indicated in previous studies, there

is a possibility that the heat flux due to low n modes increase as the island width is

enlarged [209, 211].

5.3.3 Impact of magnetic island on confinement

By setting the input power to 16 MW, we investigate how strong plasma turbulence

interacts with the magnetic island and affects confinement performance. The initial ion
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Fig. 5.15: Spatiotemporal evolutions of (a) the turbulent heat flux and (b) the ion

temperature gradient length.

temperature gradient length is R/LT i = 10 at r = 0.5a0. Figures 5.15(a) and 5.15(b)

show the spatiotemporal evolution of the heat flux ⟨Q⟩θ,φ and ion temperature gradient

length R/LT i, averaged in the poloidal and toroidal directions, respectively. The green

dotted lines represent the boundaries of the magnetic island. Figure 5.16(a) displays the

temporal evolution of the heat flux averaged within the magnetic island (⟨Q⟩θ,φ)inside,

and the heat flux and ion temperature gradient at the inner boundary of the magnetic

island, (⟨Q⟩θ,φ)boundary and (R/LT i)boundary. In Fig. 5.15, the areas enclosed by the

orange circle indicate a transport reduction phase. In Fig. 5.16, the corresponding

times are shaded in orange. This implies that in the presence of a magnetic island,

turbulence transport is periodically suppressed. During the transport reduction phase,

the heat diffusion coefficient is confirmed to be less than half compared to the case

without a magnetic island. The large temperature gradient at the inner boundary

of the island is maintained. It increases just before the transport reduction phase.

Figure 5.16(b) shows the temporal evolution of the normalized ϕ(2,1)−⟨ϕ(2,1)⟩t and the

temperature gradient length averaged within the magnetic island, demonstrating that

they are out of phase. The (2, 1) electrostatic potential is in the vortex mode, growing

linearly, and reaches its maximum amplitude just before the transport reduction phase.

During the transport reduction phase, the amplitude of the vortex mode monotonically

decreases and the temperature gradient inside the magnetic island increases. Figure

5.17 shows the contour plots of the electrostatic potential at tvT i/R0 = 175, 225, 275
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Fig. 5.16: (a) Temporal evolutions of the heat flux averaged inside the island and

the heat flux at the inner boundary, and ion temperature gradient length at the inner

boundary. (b) Temporal evolutions of the normalized (m,n) = (2, 1) electrostatic

potential subtracted by the average and the ion temperature gradient length averaged

inside the island.

and 325 on the φ = 3.75◦ poloidal plane. In Fig. 5.15, tvT i/R0 = 175, 225, 275 and

325 are indicated by the white dotted lines. From Fig. 5.17, similar to Fig. 5.16(b),

it can be seen that the vortex mode grows until the transport reduction phase and

then decays. It is worth highlighting that while the vortex mode grows, it rotates

in the poloidal direction. The direction of the rotation is in line with the electron

diamagnetic drift direction, which is opposite to the drift direction of the ITG mode.

This implies that the rotation is due to the mean radial electric field. As the vortex

mode grows, the temperature gradient inside the magnetic island decreases. Therefore,

the drift velocity of the vortex mode also reduces, as shown in Figs. 5.16(b) and 5.17.

During the transport reduction phase, as the amplitude of the vortex mode reduces,

the structure of the electrostatic potential becomes close to that in the case without

a magnetic island, as depicted in the contour plot at tvT i/R0 = 325 in Fig. 5.17.

Therefore, after the transport reduction phase, as shown in Fig. 5.15(a), the heat
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avalanche occurs inside the magnetic island. At this time, as shown in Fig. 5.16(a),

the heat flux at the inner boundary of the magnetic island and its interior is almost

the same.

Fig. 5.17: Contour plots of the electrostatic potential at tvT i/R0 = 175, 225, 275 and

325 on the φ = 3.75◦ poloidal plane.

Using the normalized Hasegawa-Mima equation

(
1 −∇2

) ∂ϕ
∂t

+

(
∂

∂x
∇2ϕ

∂ϕ

∂y
− ∂

∂y
∇2ϕ

∂ϕ

∂x

)
= 0, (5.40)

we investigate the mechanism by which the vortex mode linearly grows. We expand

ϕ as ϕ = ϕk1(t) e
ik1·r + ϕk2(t) e

ik2·r + ϕk3(t) e
ik3·r using Fourier decomposition. For

simplicity, we consider only the wave numbers k1,k2, and k3 (k1 < k2 < k3) that satisfy
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the resonance condition k1 + k2 + k3 = 0. From Eq. (5.40), we obtain the three-wave

interaction equations [224]:
dϕk1

dt
= Λk1

k2,k3
ϕ∗
k2
ϕ∗
k3
, (5.41)

dϕk2

dt
= Λk2

k3,k1
ϕ∗
k3
ϕ∗
k1
, (5.42)

dϕk3

dt
= Λk3

k1,k2
ϕ∗
k1
ϕ∗
k2
, (5.43)

where Λ
kp
kq ,kr

is defined as

Λ
kp
kq ,kr

≡ 1

2

1

1 + k2p
(kqxkry − kqykrx)

(
k2r − k2q

)
. (5.44)

The three-wave interaction equations describe the energy exchange between three

waves. Indeed, from Eqs. (5.41), (5.42), and (5.43), we have

d

dt
(Nk3 −Nk1) = 0,

d

dt
(Nk2 +Nk3) = 0,

d

dt
(Nk1 +Nk2) = 0, (5.45)

where Nkp is given by

Nkp ≡ sgn
(
k2q − k2r

) (1 + kp)
2

k2q − k2r

∣∣ϕkp

∣∣2 . (5.46)

At t = 0, when the amplitude of the wave with wave number k3 is large and the

amplitudes of other waves are small, |ϕk3 | ≫ |ϕk1 |, |ϕk2 | ≃ 0, from Eq. (5.43), we get

ϕk3(t) ≃ ϕk30 (constant). From Eqs. (5.41) and (5.42), we obtain

d2ϕk1

dt2
≃ Λk1

k2,k3
ϕ∗
k30

dϕ∗
k2

dt
= Λk1

k2,k3
Λk2

k3,k1
|ϕk30|

2 ϕk1 (5.47)

and
d2ϕk2

dt2
≃ Λk2

k3,k1
ϕ∗
k30

dϕ∗
k1

dt
= Λk1

k2,k3
Λk2

k3,k1
|ϕk30|

2 ϕk2 . (5.48)

Consequently, in this case, ϕk1 and ϕk2 grow exponentially as represented by

ϕk1 , ϕk2 ∝ exp

(√
Λk1

k2,k3
Λk2

k3,k1
|ϕk30| t

)
. (5.49)

Since the vortex mode grows linearly, it is found that its growth is not due to the decay

instability that excites two other waves from a single wave. Conversely, we consider the

case where a single wave is excited by two waves. For ϕk1(0) = 0, ϕk2(0) = ϕk20, and

ϕk3(0) = ϕk30, from Eqs. (5.42) and (5.43), we obtain ϕk2(t) = ϕk20 and ϕk3(t) = ϕk30.

Thus, from Eq. (5.41), we get

ϕk1 =
(
Λk1

k2,k3
ϕ∗
k20
ϕ∗
k30

)
t. (5.50)

This suggests a linear growth of ϕk1 and is qualitatively consistent with Fig. 5.16(b).

Therefore, it can be considered that the vortex mode is excited by two drift waves.
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Fig. 5.18: (a) Time evolution of the temperatures at the X-points and the O-point.

(b) Poincaré map of magnetic field lines on the φ = 3.75◦ poloidal plane.

Figure 5.18(a) shows the temporal evolution of the ion temperatures at the X-points

(red and green) and the O-point (blue). The corresponding locations are indicated on

the Poincaré map in Fig. 5.18(b). tvT i/R0 = 175, 225, 275 and 325 are indicated by

the black dotted lines. With the growth of the vortex mode, it can be observed that

the temperature rises at the X-points and decreases at the O-points. This suggests

that the vortex mode drives the heat flux in the θ direction. This heat flux leads to

the reduction in the temperature gradient inside the magnetic island, as observed in

Fig. 5.16(b).

The mechanism for the quasi-periodic transport reduction and associated vortex

mode dynamics can be described as follows. When the ITG turbulence is driven by ion

temperature gradients, non-linear wave coupling leads to the linear growth of the vortex

mode inside the island, which has the same topology as the magnetic island (Figs.

5.16(b) and 5.17). With the growth of the vortex mode, the heat transport occurs

from the O-point regions to the X-point regions (Fig. 5.18), leading to a reduction

in the temperature gradient inside the magnetic island (Figs. 5.15(b) and 5.16(b)).

When the temperature gradient becomes sufficiently small, the ITG mode is no longer

excited, and the drift velocity of the vortex mode decreases (Fig. 5.17). During the

transport reduction phase, both the heat flux and thermal diffusivity decrease inside

the island (Figs. 5.15(a) and 5.16(a)). The amplitude of the vortex mode decreases,

while the temperature gradient inside the magnetic island increases (Figs. 5.15(b) and

5.16(b)). When the amplitude of the ITG turbulence exceeds that of the vortex mode,

the electrostatic potential distribution becomes similar to that in the case without a

magnetic island (Fig. 5.17). At this point, the ITG turbulence behaves as if there is

no magnetic island, resulting in the heat avalanche inside the magnetic island (Figs.
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5.15(a) and 5.16(a)). When the amplitude of the vortex mode is large, heat avalanches

cannot penetrate into the interior of the island.



Chapter 6

Impurity transport and profile

formation

6.1 Toroidal impurity mode turbulence

6.1.1 Stabilization and destabilization by impurities

It is believed that the accumulation of impurities can degrade confinement per-

formance due to increased radiative losses and fuel dilution. However, when benefits

brought by impurities outweigh the adverse effects, the confinement performance can

be improved due to impurities. In tokamaks such as Impurity Study Experiment (ISX-

B) [225, 226], TXTOR-94 [227, 228], HT-7 [229], DIII-D [230], and TFTR [231, 232],

as well as in stellarators like LHD [233, 234, 235], the confinement improvement due to

impurity injection was observed. In ISX-B, it was reported that puffing of neon led to

an increase in ion and electron temperatures and electron density, with their gradients

becoming more large [225]. Without the puffing of neon, the energy confinement time

does not depend on the density. However, in the presence of neon, it was found that

the energy confinement time increases proportionally with the density [226]. Similarly,

in TXTOR-94, it was observed that with neon seeding, there is a rise in radiated

power Prad/Ptot > 60%, and the enhancement factor increases proportionally with the

density [227]. Prad and Ptot represent the radiated power and total heating power, re-

spectively. The confinement performance improves beyond the ELM-free H mode, and

the density exceeds the Greenwald density limit. Adverse effects on fusion reactivity

due to impurity seeding were not observed. This can be attributed to the reduction in

sputtering as the edge temperature decreases, and the intrinsic impurities decreases by

the amount the neon increases. Furthermore, the Li- and Be-like states of Ne, which

are responsible for most of the radiation, have a longer ionization time compared to

intrinsic impurities, resulting in the observation of a poloidally symmetric radiating
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mantle at the plasma boundary. The radiation can dissipate the energy uniformly

over the walls. This high-confinement regime, characterized by the radiating belt and

strong density peaking, is referred to as the radiative improved (RI) mode. During

the RI mode, the root mean square values of the potential fluctuations, the density

fluctuations and poloidal electric field fluctuations decrease by half, and the turbulent

particle transport reduces by a factor of 4–7 [228]. The cross-power spectrum of the

density and electrostatic potential diminishes across all frequencies. The turbulence

suppression in the RI mode does not originate from the E ×B shear but is attributed

to the stabilization of the ITG mode due to changes in the ion temperature and den-

sity profiles. The initial density peaking is triggered by a reduction in the turbulent

particle transport due to a decreased linear growth rate, stemming from the increase

in the effective mass and charge [236, 237, 238]. The RI mode by neon puffing was also

observed on HT-7 [229]. Both energy and particle confinement improve simultaneously,

with the electron density doubling and the profile steepening, and the central electron

temperature increases by 1.4 times. A reduction in the turbulence was observed in

the core region. In DIII-D, when neon was injected into an L-mode plasma, increases

in the confinement performance and neutron rate were observed despite the rise in

the radiated power and dilution of bulk ions [230]. The density fluctuation spectrum

at r/a0 = 0.7 is reduced by a factor of five due to impurity injection. Notably, for

k⊥ρs > 0.35, the fluctuation is almost entirely suppressed. Unlike the RI mode, the

radial electric field is believed to play a significant role. Impurity seeding reduces the

growth rate, resulting in a reduction in the turbulent momentum transport. With the

reduced momentum transport, the toroidal rotation increases, leading to an increase in

the E × B shearing rate. The E × B shearing further suppresses the turbulence. Gy-

rokinetic simulations confirmed that the shearing rate surpasses the linear growth rate

due to the impurity injection. In the TFTR plasma with an input power of 16–22MW,

xenon injection leads to a significant increase in the density and ion temperature [231].

The electron density increase due to the impurity gas is not prominent, indicating an

enhancement in particle confinement. While impurities cause an increase in radiated

power, the change in the electron temperature is small due to the rise in ion-electron

equilibration power qei ∼ n2
e(Ti − Te)/T

3/2
e . In TFTR supershots, immediately after

xenon puff, an increase in the poloidal velocity near the edge was observed, and the

radial electric field increases by a factor of three. With krypton injection, the E × B

shearing rate increases across the entire profile compared to cases without impurity

puff [232]. In LHD, high ion temperature plasmas are achieved with the formation

of an ion transport barrier due to carbon pellet injection and intensive neutral beam

heating [233]. Because the electron and impurity densities have a hollow (outwardly

peaked) profile, this high confinement mode is different from the RI mode. When the
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electron density exceeds a threshold, the ion temperature rather decreases with increas-

ing the electron density. When the carbon density becomes less than a threshold, a

rapid increase in the thermal diffusivity is observed [234]. In a separate experiment,

by injecting boron powder, enhancements in ion temperature, electron temperature,

stored energy, and confinement time was observed [235]. It was found that the density

profile becomes hollow and there is a reduction in recycling and impurity influx from

the plasma-facing components. With the injection of boron powder, it was found that

the low-frequency components of the turbulence decreases, while the high-frequency

components increases. The improvement in confinement is believed to be related to

the suppression of the ITG turbulence.

Fig. 6.1: Linear growth rate of the ITG mode in the presence of impurities for R/LTs =

6.

Figure 6.1 shows the linear growth rate of the ITG mode in the presence of fully

stripped carbon (C, A = 12, Z = 6) at a concentration fc = Znz/ne = 0.2. The

gradients of the background profiles are given by (R/LTs, R/Lne) = (6, 3) at r =

0.5a0. In tokamaks, the ITG mode is stabilized when the impurity density has a

peaked (inwardly peaked) profile, and conversely, it becomes unstable with a hollow

impurity profile. These results are consistent with the findings obtained from numerical

computations of gyrokinetic integral equations [237, 239] and gyrokinetic simulation

results from GYRO, XGC1, and gKPSP [240, 241]. In addition to the stabilization of

the linear ITG mode by a peaked impurity profile, full-f ITG turbulence simulations

with adiabatic electron approximation by XGC1 demonstrated that when the impurity
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density has a peaked profile, the peak of the turbulence wavenumber spectrum shifts

towards the lower wavenumber side, and the turbulence intensity decreases for all

wavelengths [240]. Additionally, it was shown that impurities can enhance the E × B

shear. In global δf simulations by gKPSP, the formation of a robust E × B staircase

due to impurities and the consequent suppression of heat transport were reported [241].

The improvement in confinement observed in experiments due to impurity injection

can be understood to be driven by a peaked impurity profile. How injected impurities

form a peaked profile is an intriguing question. The direction of the turbulent impurity

particle flux can vary depending on the background profiles and the instabilities driving

the turbulence [243, 244, 245], meaning that injected impurities do not necessarily

accumulate at the center. There are reports suggesting that the outward turbulent

particle flux can exceed the inward neoclassical transport [252, 242], and that the

particle flux can be altered due to the interplay between turbulent and neoclassical

transport [246, 247]. In DIII-D, when the ion temperature gradient is large, it has

been observed that the impurity density profile becomes hollow due to the strong

outward convection of impurities [248, 249]. This outward convective flux is driven by

temperature screening.

In this study, we focus on the toroidal impurity mode (tIM). The instability condi-

tion for the impurity mode in slab geometry,

ni

nz

Lnz

Lni

+
Zni

(Ti/Te)ne + ni

< 0, (6.1)

was first derived by Coppi et al. [250]. The impurity mode, as represented by Eq. (6.1),

is characterized by becoming unstable when the density gradient of bulk ions and that

of impurities are opposite. In experiments involving argon supersonic molecular beam

injection into H-mode plasma in HL-2A, the IM turbulence was observed [251]. In the-

oretical research, through the analysis based on the gyrokinetic integral equations, it

was shown that the tIM becomes more unstable as the impurity concentration and the

absolute value of the impurity density gradient increase [236, 237]. Furthermore, the

quasi-linear impurity particle flux due to the tIM turbulence was shown to be about an

order of magnitude larger than that due to the TEM turbulence [251]. However, nonlin-

ear fluid simulations and nonlinear gyrokinetic simulations for the tIM turbulence have

not yet been performed, leading to an incomplete understanding of turbulent transport

caused by it. The hollow impurity profiles which could drive the IM were observed in

several experiments such as KSTAR [252], HL-2A [253], and LHD [254]. Impurities are

not necessarily injected solely for the confinement improvement. They can be used to

address issues such as mitigating a large influx of carbon [255] or suppressing edge-

localized modes (ELMs) [256]. Additionally, impurities can be introduced for a divertor

heat load reduction [257]. Understanding how the injected impurities are transported
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by turbulence is an important issue. Therefore, investigating the transport caused by

the IM turbulence is meaningful from these perspectives.

6.1.2 Stability analysis and physical mechanism

The instability condition for the tIM can be derived using a fluid model and the

adiabatic electron approximation as in Ref. [34]. The density ns of particle species

s can be expressed as the sum of an equilibrium part n0s and a fluctuating part ñs.

The time evolution of the perturbed density of the particle species s is given by the

continuity equation
∂ñs

∂t
+ ∇ · {ns(vE + vps)} = 0, (6.2)

where the E × B drift vE and the diamagnetic drift vps are defined by

vE =
b×∇ϕ
B

, vps = T0s
b×∇ns

qsnsB
, (6.3)

respectively. For simplicity, the flat temperature profiles are assumed and the inertial

drift is neglected. In local slab coordinates (x radial, y poloidal, and z along B), b×∇ϕ
is (−∂yϕ, ∂xϕ, 0). Eq. (6.2) becomes

∂ñs

∂t
− Zsτsn0sv∗s

∂Φ

∂y
+ Zsτsn0svDs

∂Φ

∂y
+ vDs

∂ñs

∂y
= 0, (6.4)

where τs = T0e/T0s, v∗s = T0s/(ZseBLns), vDs = T0s/(ZseBLB), and Φ = eϕ/T0e =

(ñi + Zñz)/n0e. From Eq. (6.4), we obtain
∂ñz

∂t
− τzfcv∗z

∂ñi

∂y
− Zτzfcv∗z

∂ñz

∂y
+ τzfcvDz

∂ñi

∂y
+ ZτzfcvDz

∂ñz

∂y
+ vDz

∂ñz

∂y
= 0

∂ñi

∂t
− τifiv∗i

∂ñi

∂y
− Zτifiv∗i

∂ñz

∂y
+ τifivDi

∂ñi

∂y
+ ZτifivDi

∂ñz

∂y
+ vDi

∂ñi

∂y
= 0

,

(6.5)

where fc = Zn0z/n0e and fi = n0i/n0e = (n0e − Zn0z)/n0e = 1 − fc represent the

impurity concentration and the bulk ion concentration, respectively. Considering plane

waves, we get (−ω − Zτzfcω∗z + ZτzfcωDz + ωDz) ñz + (−τzfcω∗z + τzfcωDz) ñi = 0

(−Zτifiω∗i + ZτifiωDi) ñz + (−ω − τifiω∗i + τifiωDi + ωDi) ñi = 0,
(6.6)

where ω∗s = v∗sky, ω∗i = vDiky. From the conditions where the density fluctuations of

bulk ions and impurities have non-trivial solutions, in the limit ωDz → 0, we obtain

ω2 + (τifiω∗i − τifiωDi − ωDi + Zτzfcω∗z)ω

− Zτzfcω∗z (−τifiω∗i + τifiωDi + ωDi) + τzfcω∗z (−Zτifiω∗i + ZτifiωDi) = 0. (6.7)
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The instability condition is equivalent to the discriminant being negative; hence,

D ≡ τ 2i f
2
i ω

2
∗i + Z2τ 2z f

2
c ω

2
∗z + (τifi + 1)2ω2

Di + 2Zτiτzfifcω∗iω∗z

− 2Zτiτzfifcω∗zωDi + 2Zτzfcω∗zωDi − 2τ 2i f
2
i ω∗iωDi − 2τifiω∗iωDi < 0, (6.8)

is derived. In the absence of impurities (fc → 0), the mode is stable because D =

(τifiω∗i − τifiωDi − ωDi)
2 > 0. In this model, because D = (τifiω∗i + Zτzfcω∗z)

2 > 0

without the gradient of the magnetic field (ωDi → 0), the instability does not occur.

This is because the model does not account for the motion parallel to the magnetic

field, which plays an important role for the slab IM. When ω∗iωDi < 0 and ω∗iω∗z < 0,

the mode is stable because D = (τifiω∗i + Zτzfcω∗z − τifiωDi)
2 + 2τifiω

2
Di + ω2

Di +

2Zτzfcω∗zωDi − 2τifiω∗iωDi > 0. When ω∗iωDi < 0 and ω∗iω∗z > 0, it is also stable

because D = (Zτzfcω∗z + ωDi)
2 + τ 2i f

2
i ω

2
∗i + τ 2i f

2
i ω

2
Di + 2τifiω

2
Di + 2Zτiτzfifcω∗iω∗z −

2Zτiτzfifcω∗zωDi − 2τ 2i f
2
i ω∗iωDi − 2τifiω∗iωDi > 0. Therefore, for the mode to grow,

the condition ω∗iωDi > 0 must be satisfied. This is satisfied in the bad curvature

region. When ω∗iωDi > 0, ω∗iω∗z > 0 and ωDi > ω∗i, the mode is stable because

D = (τifiω∗i + Zτzfcω∗z − τifiωDi)
2 + ω2

Di + 2Zτzfcω∗zωDi + 2τifi (ωDi − ω∗i)ωDi > 0.

When ω∗iωDi > 0, ω∗iω∗z > 0 and ω∗i > ωDi, it is also stable because D = (τifiω∗i −
τifiωDi−ωDi)

2 +Z2τ 2z f
2
c ω

2
∗z + 2Zτzfcω∗zωDi + 2Zτiτzfifc(ω∗i−ωDi)ω∗z > 0. Therefore,

for the mode to be unstable, ω∗iω∗z < 0 must be satisfied. The condition indicates that

the density gradients of bulk ions and impurities must be in opposite directions. For

these reasons, the instability deserves to be called the tIM.

We consider the background profiles depicted in Fig. 6.2. The gray vertical dashed

line indicates r = rs = a0/2 and the gradients of the temperatures and densities

are (R/LTs(rs), R/Lne(rs), R/Lni(rs), R/Lnz(rs)) = (0, 3, 5.75,−8). The introduced

impurity is carbon with fc(rs) = 0.2. The temperatures are normalized by the electron

temperature at rs, T0e = Te(rs). Similarly, the densities are normalized by the electron

density at rs, n0e = ne(rs). The normalized ion density and impurity density at rs are

0.80 and about 0.03, respectively. The density gradients are not independent of each

other and satisfy

R

Lni(r)
=

R

Lne(r)
− fc(r)

R

Lnz(r)

1 − fc(r)
. (6.9)

Given the electron density profile and impurity density profile, the ion density profile is

determined from Eq. (6.9). The gradient of the electron density and impurity density
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Fig. 6.2: Radial profiles of density ns and temperature Ts (s = i, e, z). These profiles

are also used as the initial ones for the tIM simulations.

Fig. 6.3: Value of each term on the left-hand side of the instability condition (6.8)

normalized by the first term. The blue line represents the cumulative sum. The

parameters (fc, R/Lne, R/Lni, R/Lnz) = (0.2, 3, 5.75,−8) shown in Fig. 6.2 are used to

evaluate the values.

reaches its maximum value at r = rs, while the gradient of the ion density peaks around

r = 0.55ρi.
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Figure 6.3 shows the value of each term in D at rs normalized by the first term.

The blue line represents the cumulative sum. Since the cumulative sum is negative

(D < 0), the mode is unstable in the profiles shown in Fig. 6.2. Figure 6.3 indicates

that the major terms in D are the first, fourth, and eighth terms, therefore D can be

approximated as

D ≃ τ 2i f
2
i ω

2
∗i + 2Zτiτzfifcω∗iω∗z − 2τifiω∗iωDi. (6.10)

The second term on the right-hand side of Eq. (6.10) represents the contribution due

to the necessary condition ω∗iω∗z < 0. Because it increases with the absolute value of

the impurity density gradient |R/Lnz| and impurity concentration fc, as |R/Lnz| and

fc increase, the linear growth rate increases. The third term on the right-hand side of

Eq. (6.10) represents the contribution from the necessary conditions ω∗iωDi > 0.

Fig. 6.4: Physical mechanism of the tIM.

We regard the tIM as one of interchange instabilities and consider that it grows

through a mechanism similar to the ITG mode depicted in Fig. 1.7. Figure 6.4 shows

the physical mechanism of the tIM that we propose. The stability analysis indicates

that the bulk ion density must have a peaked profile and the impurity density must

have a hollow profile to destabilize the tIM. Therefore, the effective charge Zeff has a
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hollow profile. Because the magnetic drift is proportional to A = 1/Zeff , regions where

the electrostatic potential is positive or negative are created by an effective charge

fluctuation δA. The electrostatic potential gradient generates the electric field that

creates an E × B drift. In the bad curvature region, the E × B drift increases the

amplitude of the fluctuation, leading to exponential growth of the mode.

6.1.3 Impurity mode turbulence simulations

We conduct collisionless δf simulations with impurities. The radial profiles of

the safety factor and magnetic shear are shown in Fig. 5.2. The time evolution of

the perturbed guiding center distribution function is given by the gyrokinetic Vlasov

equation

∂δfs
∂t

+ v∥b · ∇δfs −
µB∗

s

msB∗
∥s

· ∇B∂δfs
∂v∥

= −vds · ∇δfs −
c

B∗
∥s

[⟨ϕ⟩αs, δfs] +
qs
Ts
f0sv∗s · ∇⟨ϕ⟩αs −

qs
ms

⟨E∗⟩αs
∂fs
∂v∥

, (6.11)

where ⟨E∗⟩αs = −(B∗
s/B

∗
∥s) · ∇⟨ϕ⟩αs, [⟨ϕ⟩αs, δfs] = b · (∇⟨ϕ⟩αs ×∇δfs) = (B∗

∥s/c)vEs ·
∇δfs, vEs = (c/B∗

∥s)b×∇⟨ϕ⟩αs is the E×B drift, vds = (c/qsB
∗
∥s)b×(µ∇B+mv2∥b·∇b)

is the magnetic drift, v∗s = (cTs/qsB
∗
∥s)b×∇ ln f0s is the diamagnetic drift. The gyro-

averaged electrostatic potential ⟨ϕ⟩αs is evaluated by using the Padé approximation

⟨ϕ⟩αs ≃ ϕ/(1+ρ2sk⊥/4) [129]. It is necessary to introduce a source model that prevents

relaxation of the equilibrium profiles in order to investigate the steady-state transport

in nonlinear global simulations [258, 259]. However, the source term is ignored in

the simulations. Decaying turbulence simulations are performed. The electrostatic

potential is obtained by solving the gyrokinetic Poisson equation

−∇⊥ · ρ
2
i

λ2Di

∇⊥ϕ−∇⊥ · ρ2z
λ2Dz

∇⊥ϕ+ 4πeñe

= 4πe

∫
d6ZJiδ

3 (R + ρi − x) δfi + 4πZe

∫
d6ZJzδ

3 (R + ρz − x) δfz.

(6.12)

For the adiabatic electron model, ñe is given by Eq. (2.96), while for the hybrid electron

model, it is given by Eqs. (2.98) and (2.99). The simulations are performed using a

1/4 wedge torus of the minor radius a0 = 100ρi and inverse aspect ratio a0/R0 = 0.36.

The grid numbers are (Nr, Nθ, Nφ, Nv∥ , Nµ) = (64, 256, 64, 96, 16) and convergence tests

have confirmed that the grid numbers are sufficiently large.



6.1 Toroidal impurity mode turbulence 160

Fig. 6.5: Linear growth rates of the tIM (R/LT i, R/Lnz) = (0,−8), and the ITG modes

(R/LT i = 6, 9).

Fig. 6.6: Color map of the n = 16 electrostatic potentials for tIM (a) and ITG mode

(b).

In this subsection, the adiabatic electron approximation is employed to avoid com-

plications arising from electron dynamics. Figure 6.5 shows the linear growth rates of

tIM and the ITG modes. The initial profiles of the simulation of the tIM are given

in Fig. 6.2. The simulation of the ITG mode (R/LT i = 6) corresponds to the fc = 0

case in Fig. 6.1. In cases where the linear growth rates are comparable, the unstable

spectrum of the tIM is broader than that of the ITG mode. As the linear growth rate

of the ITG mode increases, the unstable spectrum becomes comparable to that of the
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tIM. Figure 6.6(a) shows a poloidal cross section of the n = 16 electrostatic potential,

indicating that a ballooning mode structure is formed. The fact that it is unstable in

the bad curvature region is consistent with the results of the stability analysis. The

peak of the mode is not at rs but is shifted outward. It might be attributed to the

outward shift of the maximum of the ion density gradient. For comparison, the contour

plot of the n = 16 electrostatic potential for the ITG mode is shown in Fig. 6.6(b). It

is found that the ballooning angles of the tIM and ITG mode are different. Even when

the tIM and ITG mode coexist, in linear phase, it is possible to determine which mode

is dominant from the ballooning angle.

Figure 6.7 shows the parameter dependences of the linear growth rate of the tIM.

The other background parameters are the same as the profiles shown in Fig. 6.2,

(A,Z, fc, R/LTs, R/Lnz, R/Lni, ) = (12, 6, 0.2, 0,−8, 5.75). From Figs. 6.7(a) and

6.7(b), it is evident that as fc and |R/Lnz| increase, the linear growth rate also in-

creases. This result is consistent with both the results expected from the stabiliy anal-

ysis and the numerical results of the gyrokinetic integral equations [236, 237]. Figure

6.7(c) indicates, consistent with previous studies [237, 251], that the tIM is destabi-

lized by the ion temperature gradient. As depicted in Figs. 6.7(d)と 6.7(e), we find

that the impurity temperature gradient destabilizes the tIM, and an increase in the

impurity temperature stabilizes the tIM. Figure 6.7(f) shows that the linear growth

rates are nearly identical when the impurity is argon (Ar, A = 40, Z = 18) and when

it is tungsten (W, A = 184, Z = 40). However, there is dependency on the impurity

species; the linear growth rates for both are about twice as large as for carbon impurity

(C, A = 12, Z = 6). The difference in the linear growth rates is considered to be due

to the FLR effect. The Larmor radii for carbon, argon, and tungsten are ρC ≃ 0.58ρi,

ρAr ≃ 0.35ρi, and ρW ≃ 0.34ρi, respectively. The similar linear growth rates between

the cases where the impurity is argon and where it is tungsten can be explained by

their similar Larmor radii. The smaller linear growth rate when the impurity species is

carbon can be attributed to its larger Larmor radius. When the mass of the impurities

is the same but with different charges, as illustrated in Fig. 6.7(g), the linear growth

rate increases as the charge becomes larger. This is consistent with the results obtained

in prior study. It is confirmed that the real frequency of the tIM is slower than that of

the ITG mode.

Figure 6.8(a) shows the time evolution of the turbulent ion particle flux ⟨Γi turb⟩f,r
and the turbulent impurity particle flux ⟨ZΓz turb⟩f,r. ⟨·⟩f,r represents the radial average



6.1 Toroidal impurity mode turbulence 162

Fig. 6.7: fc dependence (a), R/Lnz dependence (b), R/LT i dependence (c), R/LTz de-

pendence (d), τz dependence (e), impurity species dependence (f) and impurity charge

dependence (g) on the linear growth rate of tIM.

of a flux-surface averaged value. From 6.8(a), it is found that the large outward ion

particle flux and inward impurity particle flux occur. Since the tIM turbulence is

driven by the negative density gradient of bulk ions and the positive density gradient
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Fig. 6.8: (a) Time evolution of the turbulent particle fluxes of bulk ions and impurities.

(b) Time evolution of the ion (b) and impurity (c) particle fluxes due to the magnetic

drift and due to the n = 0 component of the E × B drift.

of impurities, it is a reasonable that such turbulent transports are observed. The

particle fluxes of bulk ions and impurities are of the same order. On the other hand,

the heat flux of bulk ions is two orders of magnitude larger than that of impurities.

Figure 6.8(b) shows the time evolution of the ion particle flux due to the magnetic drift

⟨Γi ∇B⟩f,r and that due to the n = 0 component of the E×B drift ⟨Γi E×B n=0⟩f,r. Figure

6.8(c) depicts the fluxes for the case of impurities. They are an order of magnitude

smaller than the turbulent particle flux. ⟨Γi ∇B⟩f,r and ⟨Γi E×B n=0⟩f,r are balanced,

except for the burst phase. This balance establishes more quickly than the balance

between ⟨ZΓz ∇B⟩f,r and ⟨ZΓz E×B n=0⟩f,r. This is due to the fact that bulk ions reach
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equilibrium
(
∂⟨ñi⟩f/∂t = −∂/∂r {⟨Γi ∇B⟩f + ⟨Γi E×B n=0⟩f} = 0

)
faster than impurities

by the parallel streaming motion that generates the return current since the thermal

velocity of bulk ions is larger than that of impurities.

Fig. 6.9: Time evolution of the impurity particle fluxes (a) and the bulk ion heat fluxes

(b) due to the tIM turbulence or the ITG turbulences

Figure 6.9(a) shows the temporal evolution of the impurity particle fluxes and the

bulk ion heat fluxes due to the tIM turbulence or the ITG turbulences. In the ITG

turbulence simulations, the impurity particle flux is evaluated using the trace impurity

approximation [260, 261], treating impurities as test particles that do not affect the

quasi-neutrality condition. From Figs. 6.5 and 6.9(a), it can be seen that when the

linear growth rates of the tIM and the ITG mode are comparable, the impurity particle

flux induced by the tIM turbulence is an order of magnitude larger than that induced by

the ITG turbulence. Furthermore, even when the linear growth rate of the ITG mode is

more than twice that of the tIM, the impurity particle flux due to the ITG turbulence

is less than half of that from the tIM turbulence. In the previous study, it was shown

that the impurity particle flux due to the tIM turbulence is an order of magnitude

larger than that due to the TEM turbulence [251]. The impurity transport due to tIM



6.1 Toroidal impurity mode turbulence 165

turbulence is significantly large, and treating impurities as trace impurities can lead

to an underestimation of the impurity transport. Figure 6.9(b) depicts the temporal

evolutions of the ion heat flux induced by the tIM turbulence or the ITG turbulences.

For a fair comparison, the ion heat flux obtained from the ITG turbulence simulations

are multiplied by n0i = 0.8 and plotted. Since in the simulations, the presence of

impurities has no influence with the quasi-neutrality condition, the ion density is 1.25

times larger than that in the tIM turbulence simulation. The ion heat flux due to

the tIM turbulence is found to be negative, indicating an increase in the central ion

temperature. A heat flux can be expressed as the sum of a diagonal term proportional to

the temperature gradient and an off-diagonal term proportional to the density gradient

in a quasilinear limit. In the case of the tIM turbulence, since the absolute value of the

off-diagonal term is larger than that of the diagonal term, the ion heat flux becomes

negative. Interestingly, when the linear growth rates of the tIM and the ITG mode

are comparable, the absolute value of the ion heat flux due to the tIM turbulence is

larger than that due to the ITG turbulence, even in the absence of an ion temperature

gradient. When the tIM is dominant, the off-diagonal term is very large, implying that

the heat flux can be negative even if the ion temperature gradient is not zero. Even

when the linear growth rate of the ITG mode is more than twice that of the tIM, the

ion heat flux due to the ITG mode turbulence is only 1.17 times larger than that due to

the tIM turbulence. It can be said that tIM turbulence can cause significant turbulent

heat transport even with a small linear growth rate.

Figure 6.10(a) shows the spatiotemporal evolution of the radial electric field aver-

aged in θ and φ directions. It is found that the large scale and robust radial electric

field is formed. Figure 6.10(b) depicts the radial profiles of the change the θ and φ

averaged radial electric field ⟨Er⟩θ,φ, the change of the sum of the turbulent particle

fluxes δ
∑

s⟨ZsΓs,turb⟩f = δ(⟨Γi,turb⟩f + ⟨ZΓz,turb⟩f ), and the change of the flux-surface

averaged ion heat flux δ⟨Qi⟩f , during time interval δt = 2 from t = 165. From Fig.

6.10(b), it is considered that the radial electric field is generated by the difference in the

magnitude of the bulk ion and impurity turbulent particle fluxes. In local flux-tube gy-

rokinetic simulations, the sum of the turbulent particle fluxes is always zero because the

equations are derived using the flute approximation, k∥/k⊥ ≪ 1. On the other hand, in

global gyrokinetic simulations, the sum of particle fluxes is not necessarily zero, as the

flute approximation is not strictly valid. By assuming the flute approximation and the

limit a0/R0 → 0,
∑

s qsΓs = 0 can be proven as follows. From the turbulent particle
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Fig. 6.10: (a) Spatiotemporal evolution of the radial electric field ⟨Er⟩θ,φ. (b) Radial

profile of the change of the radial electric field δ⟨Er⟩θ,φ (blue), the change of the sum

of the turbulent particle fluxes δ
∑

s⟨ZsΓs,turb⟩f (red), the change of the ion heat flux

δ⟨Qi⟩f (green).

flux Γs = ⟨ñs(1/rB)∂ϕ/∂θ⟩f and the Poisson equation −∇2
⊥ϕ =

∑
s qsñs, we obtain

∑
s
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〈∑
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dφ. (6.13)

Assuming the flute approximation, we use the eikonal representation,

ϕ̂m = ϕ̃m eiS/ε (ε≪ 1). (6.14)

Because the radial derivative of ϕ̂m can be approximated as

∂

∂r
ϕ̂m =

∂ϕ̃m

∂r
eiS/ε +

i

ε

∂S

∂r
ϕ̃m eiS/ε ≃ i

ε

∂S

∂r
ϕ̃m eiS/ε,

The radial derivative term in Eq. (6.13) is
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∂
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1

r

∂
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ϕ̂m +

∂2
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ϕ̂m ≃ − 1

ε2

(
∂S

∂r

)2

ϕ̂m. (6.15)
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Substituting Eq. (6.15) into Eq. (6.13), we get

∑
s

qsΓs ≃ −Re
1

2π

∫ ∑
m

{
1

ε2

(
∂S

∂r

)2

+
m2

r2

}
im

rB
|ϕ̂m|2dφ = 0. (6.16)

The profile of δ⟨Er⟩θ,φ largely overlaps with that of δ⟨Qi⟩f . Therefore, the zonal flow

induced by the tIM turbulence is also candidate for generating the electric field [187].

However, since the profile of δ
∑

s⟨ZsΓs,turb⟩f is closer to that of δ⟨Er⟩θ,φ, the electric

field could primarily be driven by the difference of the turbulent particle fluxes. It

was shown that the radial electric field generated by temperature relaxation due to

turbulence transport is about 1/3 compared to that by zonal flow [187]. Therefore, a

similar profile of the change of the radial electric field would likely be observed in the

case of full-f simulations.

The radial electric field can explain the dynamics of ⟨Γi ∇B⟩f in the burst phase

when ⟨Γi ∇B⟩f and ⟨Γi E×B n=0⟩f are not balanced as shown in Fig. 6.8(b). The E ×
B drift due to the radial electric field Er < 0 induces up-down asymmetric density

fluctuations ñi ∝ −Er sin θ, which couples with the magnetic drift vD,r ∝ − sin θ,

leading to ⟨Γi ∇B⟩f ≃ ⟨ñivD,r⟩f ∝ Er⟨sin2 θ⟩f < 0 [247]. The dynamics of ⟨ZΓz ∇B⟩f
are also explained by the same mechanism.

6.1.4 Coexistence of impurity mode and ITG mode

In the previous subsection, it was shown that the tIM becomes unstable even with-

out temperature gradients, leading to an inward impurity particle flux and an inward

ion heat flux due to the tIM turbulence. We investigate whether these fluxes are ob-

served in the presence of temperature gradients and a hollow impurity profile. Because

an ion temperature gradient drives the ITG mode, the presence of a negative ion tem-

perature gradient and a positive impurity density gradient causes the ITG mode and

the tIM to be unstable simultaneously. The mode with a higher linear growth rate

becomes dominant mode. As shown in Fig. 6.1, when the impurity density profile is

hollow, the linear growth rate of the ITG mode increases. It is inferred that the ITG

mode dominates when the ion temperature gradient is large and the tIM dominates

when it is small.

We perform simulations for the case with small temperature gradients R/LTs =

4 (Case A), and the case with large temperature gradients R/LTs = 6 (Case B).

Figure 6.11 shows the density, temperature, and pressure profiles of bulk ions (a) and
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Fig. 6.11: Density, temperature, and pressure profiles of bulk ions (a) and impurities

(b). The solid and dashed lines represent the profiles for Case A and Case B, respec-

tively.

Fig. 6.12: Linear growth rate (a) and real frequency (b) for Case A and Case B in

adiabatic electron model or hybrid electron model.

impurities (b) in Case A and Case B. In both cases, the pressure of bulk ions and that

of impurities are the same. The ion density gradient in Case A is larger compared to

that in Case B. On the other hand, the impurity density gradient in Case A is smaller

than that in Case B. Figure 6.12 shows the linear growth rate (a) and real frequency

(b) for Case A and Case B in the adiabatic electron model or hybrid electron model.

The linear growth rates are similar for Case A and Case B. In both cases, for the hybrid

electron model, the wavenumber at which the linear growth rate peaks becomes lower,

but the unstable spectra are not changed by the dynamics of electrons. The modes in

Case A is more destabilized by the non-adiabatic motion of electrons. Since the real

frequency of the tIM is smaller than that of the ITG mode, it is found that the dominant

mode is the tIM for Case A and the ITG mode for Case B. We have also confirmed the

dominant modes by the difference in the ballooning angles between the tIM and ITG

mode. The real frequency does not change significantly due to electron dynamics, but

in Case A, at kθρi ∼ 0.25, the real frequency is positive (in the direction of the electron
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diamagnetic drift). For the tIM, the effect of electron motion might be significant in the

low wavenumber range. Due to the destabilizing effect of impurities, in the adiabatic

electron model for Case B, despite the ion temperature gradient being R/LT i = 6,

the linear growth rate is larger than that in the case shown in Fig. 6.5, where there

are no impurities and is the temperature gradient R/LT i = 9. The turbulent thermal

diffusivity is larger in Case B, while the ion heat flux is larger in the pure ITG mode

case.

Fig. 6.13: Time evolution of the turbulent particle fluxes (a) and turbulent heat fluxes

(b) for Case A. Time evolution of the turbulent particle fluxes (c) and turbulent heat

fluxes (d) for Case B.

Figure 6.13(a) and (b) show the time evolution of the turbulent particle fluxes and

turbulent heat fluxes for Case A in the hybrid electron model, respectively. Since the

particle fluxes and heat fluxes are qualitatively similar in both the adiabatic electron

model and the hybrid electron model, figures are only provided for the case of the

hybrid electron model. It can be seen that the tIM turbulence generates the outward

ion particle flux, the outward electron particle flux and the inward impurity particle

flux. A notable result is that the ion heat flux is negative in Fig. 6.13(b), despite

the presence of the ion temperature gradient. This increases the ion core temperature

and ion temperature gradient. The absolute value of the ion heat flux is greater than

the sum of the outward impurity and electron heat fluxes, thus the net heat flux is

negative. If a multi-species collision operator is implemented, the temperatures of the

electron and impurity would increase by thermal equipartition. In the quasi-steady
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state, the temperature profiles could be more peaked than the initial ones. This result

indicates that when the dominant mode changes from the ITG mode to the tIM by

injecting impurities into a L-mode plasma, the energy confinement could be improved.

Fig. 6.14: Eigenmodes and frequencies of the n = 28 electrostatic potential in the

linear phase of Case B.

Figure 6.13(c) and (d) show the time evolution of the turbulent particle fluxes and

turbulent heat fluxes for Case B in the hybrid electron model, respectively. It can be

seen that the large inward impurity transport occurs even though the dominant mode

is the ITG mode. The impurity transport is larger than in the case of the pure ITG

mode with a nearly identical linear growth rate. However, even though in Case B the

absolute value of the impurity density gradient is larger than that in Case A, since the

dominant mode is the ITG mode, the impurity particle flux is smaller. The large inward

impurity transport comes from a subdominant tIM. The presence of the subdominant

tIM can be confirmed using dynamic mode decomposition (DMD) [262, 263, 264]. The

details are discussed in Appendix B. Figure 6.14 shows the frequency and corresponding

eigenmodes of the n = 28 electrostatic potential in the linear phase. The real frequency

of Mode 1 is consistent with that shown in Fig. 6.12(b). In other words, Mode 1 is

the most unstable ITG mode. Mode 2 can also be identified as the ITG mode from

its positive ballooning angle and relatively large frequency. A notable result is Mode

3. It has a negative ballooning angle and a relatively small real frequency, indicating

that it is the tIM. The result indicates the presence of the subdominant tIM in the

shadow of the dominant ITG mode. The contribution rates of Mode 1, Mode 2, and

Mode 3 are 62.2%, 22.6%, and 8.5%, respectively, which means that only three modes

can reproduce 93.3% of the original electrostatic potential dynamics.
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When the temperature gradients are large, as seen in Fig. 6.13(d), the large outward

ion and electron heat fluxes occur. In this case, unlike Case A, impurity injection does

not improve energy confinement immediately. However, it is possible that even for

large temperature gradients, if the impurity density gradient is sufficiently large, the

dominant mode might change to the tIM.

The results indicate that not only neoclassical impurity transport but also the

transport by the tIM turbulence contributes to the inward impurity flux. Once the

impurity density evolve into a peaked profile, the tIM turbulence and ITG turbulence

are both suppressed, and the confinement performance is improved.

Fig. 6.15: Radial profiles of the θ, φ and time averaged radial electric field ⟨Er⟩θ,φ,t
(blue) and the time average of the sum of the turbulent particle fluxes ⟨

∑
s⟨ZsΓs,turb⟩f⟩t

(red).

Figure 6.15 shows the radial profile of the θ, φ and time averaged radial elec-

tric field ⟨Er⟩θ,φ,t and the time average of the sum of the turbulent particle fluxes

⟨
∑

s⟨ZsΓs,turb⟩f⟩t for Case A and Case B. Figs. (a) and (b) correspond to the case of

the adiabatic electron model, while Figs. (b) and (d) correspond to the case of the

hybrid electron model. The averaging is taken over δt = 50. Because the ⟨Er⟩θ,φ,t
profile and the ⟨

∑
s⟨ZsΓs,turb⟩f⟩t profile are similar, it can be inferred that the robust

radial electric field is generated not by zonal flow due to the Reynolds stress, but by

the non-ambipolar turbulent particle fluxes. For the cases where the adiabatic electron

model are employed, the directions of the electric field are opposite between Case A

where the tIM is dominant and Case B where the ITG mode is dominant. It can also be
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seen that the absolute value of ⟨Er⟩θ,φ in Case B is larger than that in Case A because∑
s⟨ZsΓs,turb⟩f in Case B is larger than that in Case A. For Case A in the adiabatic

electron model,
∑

s⟨ZsΓs,turb⟩f is positive and ⟨Er⟩θ,φ is negative since the absolute

value of the ion particle flux is larger. These results are consistent with the pure tIM

turbulence simulation results shown in Fig. 6.10(b). However, in the case of the hybrid

electron model, since Γe,turb > Γi,turb + ZΓz,turb,
∑

s⟨ZsΓs,turb⟩f becomes negative and

⟨Er⟩θ,φ becomes positive. This result also supports the idea that the radial electric field

is generated by the sum of the turbulent particle fluxes. In Case B, the electron particle

flux is smaller compared to that of ions or impurities. In both the adiabatic electron

model and the hybrid electron model,
∑

s⟨ZsΓs,turb⟩f is negative and ⟨Er⟩θ,φ is positive.

These results are similar to those of the full-f ITG turbulence simulation in a previous

study. In Ref [247], the positive electric field Er > 0 is driven by ΓD,turb − Γe,turb < 0

where ΓD,turb and Γe,turb are the turbulent particle flux of deuterium and electrons,

respectively.

6.2 Fuel supply and impurity exhaust by ITG and

TEM turbulence

6.2.1 Impurity exhaust by heating

When turbulence cannot be sufficiently suppressed by impurities, impurity accu-

mulation causes dilution of fuel ions and radiation cooling, thus degrading plasma

performance. In order to deal with the problem, turbulent impurity transport is being

actively studied, because impurity density profiles observed experimentally cannot be

reproduced by the neoclassical transport theory alone, and turbulent transport plays an

important role. It was reported that the diffusivity and convective velocity observed

in DIII-D can be modeled as a linear combination of the turbulent and neoclassical

transport [249]. If only the contribution from neoclassical transport are considered, it

was found that the impurity density profiles become either substantially more peaked

or extremely hollow compared to the measured impurity profiles. Similarly, it was

reported that with only neoclassical transport, the impurity density profiles become

much more peaked compared to the measured impurity profiles in W7-X [265]. In this

experiment, it was determined that the turbulent diffusion is 1–2 orders of magnitude

larger than the neoclassical diffusion. To avoid impurity accumulation, it is necessary

to control turbulence and drive a strong outward impurity particle flux. In KSTAR,

by heating the L-mode plasma with the electron cyclotron resonance heating (ECH),

it was observed that impurities are expelled and the impurity density profile becomes

hollow [252]. The ECH effect is most pronounced with on-axis heating and diminishes
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as the heating positions move outward. The impurity transport due to the ECH is at-

tributed to the increase in the diffusivity and convection velocity, and the change in the

direction of the convection from inward to outward in the core region. The turbulent

transport is 1–2 orders of magnitude larger than the neoclassical transport. According

to linear simulations, the instability is the TEM, and the outward convection could be

due to the parallel compression pinch [266]. Similarly, in EAST, it was observed that

with on-axis ECH, in the core region the diffusion coefficient increases and the convec-

tive velocity changes from negative to positive, and the central molybdenum density

decreases to 1/5 compared to that before the ECH [242]. Since the neoclassical trans-

port is an order of magnitude smaller than the turbulent transport, it is believed that

the relaxation of the molybdenum density profile is caused by the TEM turbulence.

These results suggest that heating can control turbulent impurity transport and the

associated impurity density profile. However, in EAST, due to the ECH, not only the

impurity density but also the electron density decreases across the entire plasma radii.

Since fusion power increases with densities, it is desirable for turbulent particle flux of

fuel ions and electrons to be inward. In DEMO-class reactors, fuel supply is challenging

because fuel pellets only reaches 80–90% of the small radius. From this perspective,

an inward turbulent ion particle flux is ideal. In this section, we study how turbulent

particle fluxes are changed by heating in order to investigate how to achieve both fuel

supply and impurity exhaust.

6.2.2 Differences between numerical methods

Fig. 6.16: Linear growth rate (a) and real frequency (b) for the case with the Padé

approximation and with the real space solver.

When conducting simulations with the hybrid electron model, where both the ITG
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mode and TEM become unstable, one must be cautious as the results could vary

depending on computation methods for gyro-phase averaging. As mentioned in Sub-

section 3.3.1, in GKNET, gyro-phase averaging can be calculated in two ways: using

the Padé approximation and by interpolation in real space. Figure 6.16 represents the

linear growth rate and real frequency for the initial gradients (R/LT i, R/LTe, R/Lns) =

(10, 10, 2.22), comparing results from the Padé approximation and the real space solver.

The impurity concentration is zero and the grid numbers are (Nr, Nθ, Nφ, Nv∥ , Nµ) =

(64, 256, 64, 96, 16). A positive real frequency represents the rotation in the electron

diamagnetic drift direction, while a negative real frequency indicates rotation in the ion

diamagnetic drift direction. As shown in Fig. ??, using the Padé approximation tends

to overestimate the high wavenumber components of the linear growth rate. Using the

Padé approximation, the TEM is dominant from kθρi ∼ 0.4, whereas when employing

the real space solver, the ITG mode is dominant up to kθρi ∼ 0.8. This result sug-

gests that the contributions of the ITG mode and TEM to turbulent transport vary

depending on numerical methods for gyro-phase averaging.

Fig. 6.17: Time evolution of the sum of the turbulent particle fluxes and the particle

flux due to the magnetic field drift for the case with the Padé approximation (a) and

the case with the real space solver (b).
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Figure 6.17 shows the temporal evolution of the sum of the turbulent particle fluxes∑
s⟨ZsΓs,turb⟩f,r = ⟨Γi E×B n ̸=0⟩f,r − ⟨Γe E×B n ̸=0⟩f,r and the particle flux due to the

magnetic drift ⟨Γi ∇B⟩f,r in the case with Padé approximation and with the real-space

solver. With the Padé approximation, the turbulent electron particle flux is larger, with∑
s⟨ZsΓs,turb⟩f,r being negative, leading to the formation of a positive radial electric

field. On the other hand, for the case with the real space solver, the turbulent ion

particle flux is larger, with
∑

s⟨ZsΓs,turb⟩f,r being positive, resulting in the formation

of a negative radial electric field. A radial electric field induces an up-down asymmetric

density fluctuation and ⟨Γi ∇B⟩f,r is increased. When using the Padé approximation

compared to when using the real space solver, the sign of the formed radial electric field

is reversed. Consequently, ⟨Γi ∇B⟩f,r also has the opposite direction. These differences

can be attributed to the overestimation of the TEM in the high wavenumber region by

the Padé approximation, especially when the linear growth rates of the ITG mode and

TEM are comparable. In this section, we employ the real space solver. In situations

where the linear growth rates of the ITG mode and TEM significantly differ, or when

only a single mode becomes unstable, although the linear growth rate and real frequency

are overestimated by the Padé approximation, the turbulent transport qualitatively

remains unchanged regardless of computational methods used for gyro-phase averaging.

Fig. 6.18: Time evolution of the neoclassical impurity transport (a) and the impurity

density profile at tvT i/R0 = 25 (b) in the δf simulation and the full-f simulations

where the initial distribution function is the Maxwellian and the numerical solution of

the gyrokinetic Vlasov equation.

Figures 6.18(a) and 6.18(b) show the temporal evolution of the neoclassical impu-

rity transport ⟨ZΓz,neo⟩f,r= ⟨ZΓz ∇B⟩f,r + ⟨ZΓz E×B n=0⟩f,r and the radial profile of the
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Fig. 6.19: Spatiotemporal evolution of the radial electric field in the case of the

δf simulation (a) and the full-f simulations where f0 is the Maxwellian (b) and the

numerical solution of the gyrokinetic Vlasov equation (c).

impurity density at tvT i/R0 = 25, respectively. The gradients of the initial profiles are

(R/LT i, R/LTe, R/Lns) = (10, 3, 3) and the ITG mode is excited. In the δf simulation,

during the linear phase, ⟨ZΓz,neo⟩f,r is zero. On the other hand, in the full-f simulation

with the initial distribution f0 as the Maxwellian, the neoclassical impurity particle flux

during the linear phase is about twice as large as the turbulent impurity particle flux.

Consequently, the impurity density profile becomes more peaked. The large neoclassi-

cal impurity transport can be attributed to the large radial electric field resulting from

the initial distribution function not satisfying the gyrokinetic Vlasov equation, and it

is considered to be unphysical. When using the numerical solution of the gyrokinetic

Vlasov equation as the initial distribution function, as shown in Fig. 6.18, no signif-

icant neoclassical impurity transport occurs, and the density profile does not become

peaked. The neoclassical impurity particle flux is 2 orders of magnitude smaller than

that when using the Maxwellian as f0. Figure 6.19 depicts the spatiotemporal evo-

lution of the radial electric field ⟨Er⟩θ,φ for each case. In the full-f simulation using

the numerical solution of the gyrokinetic Vlasov equation as the initial distribution

function, the structure of the radial electric field resembles that in the δf simulation.

In contrast, the results from the full-f simulation using the Maxwellian as the initial

distribution function show that the radial electric field is an order of magnitude larger

and its structure differs from the other cases. In this case, due to the large Doppler

shift frequency, the ITG mode drifts in the direction of the electron diamagnetic drift.

In this section, when conducting full-f simulations, we use the numerical solution of

the gyrokinetic Vlasov equation as the initial distribution function to avoid numerical

impurity accumulation. The larger linear growth rate in the full-f simulation when



6.2 Fuel supply and impurity exhaust by ITG and TEM turbulence 177

using the numerical solution as the initial distribution function compared to that in

the δf simulation, is attributed to the mean radial electric field satisfying the radial

force balance. Due to the Doppler shift frequency canceling with the real frequency,

the ballooning angle decreases, leading to an enhanced linear growth rate [92].

6.2.3 Global gyrokinetic simulation results

The turbulent particle fluxes in the ITG and TEM turbulence have been studied

using the fluid model [243] and the gyrokinetic model [267, 268], and a quasilinear

particle flux can be expressed as

R
Γs

ns

= Ds
R

Lns

+DTs
R

LTs

+RVs. (6.17)

The transport coefficients Ds, DTs and the convective velocity Vs are functions of the

temperature and density gradients. The second term in Eq. (6.17) represents the

thermodiffusion and is expected to be dominant as a result of heating because it is

proportional to the temperature gradient. In the presence of impurities, there are

degrees of freedom in the particle fluxes as Γe ≃ Γi + ZΓz. Therefore, for example,

when Γe is negative, it does not necessarily imply that Γi and Γz are also negative.

Fig. 6.20: Linear growth rate (a) and real frequency (b) for the cases of

(R/LT i, R/LTe, R/LTz) = (10, 6, 10), (6, 10, 6), (10, 10, 10).

To investigate the changes in particle fluxes due to heating, we conduct global

δf gyrokinetic simulations using the hybrid electron model for cases of ion heat-

ing (R/LT i, R/LTe, R/LTz) = (10, 6, 10), electron heating (R/LT i, R/LTe, R/LTz) =

(6, 10, 6), and ion and electron heating (R/LT i, R/LTe, R/LTz) = (10, 10, 10). A 1/4

wedge torus with a0 = 100 and a0/R = 0.36 is employed and the grid numbers are

(Nr, Nθ, Nφ, Nv∥ , Nµ) = (80, 256, 64, 96, 16). The initial density gradients are (R/Lni,
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R/Lne, R/Lnz) = (3, 3, 3), and the normalized collision frequency is ν⋆ = 0.025. The

mass ratio is
√
mi/me = 10 to reduce computational time. Figure 6.20(a) and 6.20(b)

show the linear growth rate and real frequency. It can be seen that the ITG mode is

dominant for ion heating (R/LT i, R/LTe, R/LTz) = (10, 6, 10), while the TEM is dom-

inant for electron heating (R/LT i, R/LTe, R/LTz) = (10, 10, 10). In the case of ion and

electron heating (R/LT i, R/LTe, R/LTz) = (10, 10, 10), the ITG mode is dominant in

the low wavenumber region and the TEM is dominant in the high wavenumber region,

with the linear growth rate in the low wavenumber region being larger than that in

the high wavenumber region. In the case of electron heating, the linear growth rate is

the highest. On the other hand, when both ions and electrons are heated, the linear

growth rate is the lowest.

Fig. 6.21: Radial profiles of the bulk ion, electron, impurity densities for

(R/LT i, R/LTe, R/LTz) = (10, 6, 10), (6, 10, 6), and (10, 10, 10).

Figure 6.21 shows the flux-surface averaged radial profiles of the bulk ion, electron,

and impurity density at tvT i/R0 = 90 after nonlinear saturation, which are normalized

by n0i = 0.8, n0e = 1, and n0z = 0.33, respectively. In the case of ion heating, the

inward bulk ion transport and outward impurity transport occur, which are roughly

balanced (Γi +ZΓz ≃ 0). The bulk ion particle flux is negative because the thermodif-

fusion pinch is dominant. In the absence of impurities, Γi ≃ Γe is satisfied and the bulk

ion and electron density profile become peaked. However, in the presence of impurities,

while the bulk ion density profile becomes peaked, the electron density profile changes

little, and the impurity density profile relaxes instead. In the case of electron heating,

the negative electron particle flux and the negative bulk ion particle flux are balanced

(Γi ≃ Γe), and the impurity transport is much smaller than that in other cases. When



6.2 Fuel supply and impurity exhaust by ITG and TEM turbulence 179

the electron density gradient is large and the density gradient driven TEM is dominant,

the first term in Eq. (6.17) becomes dominant, so the bulk ion and electron particle

fluxes are outward, which leads to particle pump-out. In this case, the impurity parti-

cle flux is also outward and the impurity density profile is relaxed. In the case of ion

and electron heating, the particle pinch of bulk ions and electrons that is about one

order of magnitude larger than that in the other cases results in density peaking, as

shown in Fig. 6.21(c). Because the absolute value of the particle flux of bulk ions is

larger than that of electrons, the impurity is exhausted outward (ZΓz ≃ Γe − Γi > 0).

The maximum impurity particle flux in the case of ion and electron heating is about

2.4 times larger than that in the case of ion heating.

Fig. 6.22: Temporal evolution of the bulk ion, electron, and impurity particle fluxes in

the δf simulation (a) and the full-f simulation (b). (c) Radial density profile of bulk

ions and impurities for the δf and full-f simulations.

Figures 6.22(a) and 6.22(b) depict the temporal evolution of the bulk ion, electron,

and impurity particle fluxes for the ion and electron heating case, as obtained from the

δf and full-f simulations, respectively. Due to the Doppler shift frequency, the linear

growth rate and turbulence intensity in the full-f simulation are smaller than those

in the δf simulation. In the full-f simulation, the large inward bulk ion and electron

particle fluxes, as well as the large outward impurity particle flux, are observed. These

results are qualitatively consistent with those obtained from the δf simulation. The

neoclassical particle fluxes are an order of magnitude smaller than the turbulent particle

fluxes. Since electrons have a smaller mass and a shorter time to reach equilibrium,

⟨−Γe ∇B⟩f,r = ⟨−Γe E×B n=0⟩f,r is satisfied. As a result, the net electron neoclassical

particle flux is nearly zero. On the other hand, due to the larger mass of the impurities,

the inward neoclassical particle flux occurs. However, since the turbulent impurity
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particle flux is much larger, the impurity density profile is relaxed. Figure 6.22(c)

shows the radial profile of the bulk ion and impurity densities at tvT i/R0 = 90 in the

δf and full-f simulations. In both cases, the ion density is peaked and the impurity

density is relaxed. The bulk ion density profile in the δf simulation is more peaked

than in the full-f simulation. This is attributed to the initial bulk ion density and its

gradient being smaller in the full-f simulation compared to those in the δf simulation.

The initial distribution function in the full-f simulation is a numerical solution of the

gyrokinetic Vlasov equation. Therefore, before conducting the full-f simulation, it is

necessary to perform a neoclassical simulation with the electrostatic potential being

zero and the initial distribution function as Maxwellian. Due to the neoclassical particle

transport, the bulk ion density relaxes, leading to a smaller gradient of the initial bulk

ion density in the full-f simulation.

When only the electron temperature gradient is large, the TEM becomes dominant.

In this case, neither the particle pinch in bulk ions nor outward impurity transport

occurs. When only the ion temperature gradient is large, the ITG turbulence drives

a small inward bulk ion particle flux and an outward impurity particle flux. In this

case, since the electron temperature gradient is relatively small, the bulk ion particle

flux and the impurity particle flux are balanced, resulting in the small electron particle

flux. When both ion and electron temperature gradients are large, the large particle

pinch occurs for both bulk ions and electrons, along with the large outward impurity

transport. The dominant mode in this case is also the ITG mode. To achieve both

fuel supply and impurity exhaust, it is essential that the dominant mode is the ITG

mode and there is a large electron temperature gradient. We investigate whether the

electron pinch occurs as a result of the influence of the electron temperature gradient

on the ITG turbulence or if it occurs due to other effects of the electron temperature

gradient.

Fig. 6.23: Linear growth rate (a) and real frequency (b) for the cases of

(R/LT i, R/LTe, R/LTz) = (8, 8, 8), (10, 8, 10).
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Figures 6.23(a) and 6.23(b) show the linear growth rate and the real frequency for

the cases of (R/LT i, R/LTe, R/LTz) = (8, 8, 8) and (R/LT i, R/LTe, R/LTz) = (10, 8, 10),

respectively. The case of (R/LT i, R/LTe, R/LTz) = (8, 8, 8) corresponds to the case

where both ions and electrons are heated. In the low wavenumber region, the ITG

mode is dominant, while in the high wavenumber region, the TEM is dominant. The

linear growth rate of the ITG mode is larger. The case of (R/LT i, R/LTe, R/LTz) =

(10, 8, 10) corresponds to a situation where ion heating is further applied from the

case of (R/LT i, R/LTe, R/LTz) = (8, 8, 8). Due to the large ion temperature gra-

dient, the ITG mode is dominant across the entire spectrum. In both cases, the

electron temperature gradient is R/LTe = 8. If a large electron pinch is induced

by the ITG turbulence, one would expect the electron particle flux, along with the

inward bulk ion and outward impurity particle fluxes, to be larger in the case of

(R/LT i, R/LTe, R/LTz) = (10, 8, 10). However, Fig. 6.24 indicates that the particle

fluxes in the case of (R/LT i, R/LTe, R/LTz) = (8, 8, 8) is larger than those in the case

of (R/LT i, R/LTe, R/LTz) = (10, 8, 10). This result suggests that even when the tem-

perature gradients and linear growth rate are large, the particle fluxes are smaller. This

implies that a significant electron pinch is not necessarily driven by the ITG turbulence

only.

Fig. 6.24: Temporal evolution of the bulk ion, electron, and impurity particle fluxes

for (R/LT i, R/LTe, R/LTz) = (8, 8, 8) (a) and (R/LT i, R/LTe, R/LTz) = (10, 8, 10) (b)

.
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Fig. 6.25: Eigenmodes of the n = 20 electrostatic potential the cases of

(R/LT i, R/LTe, R/LTz) = (8, 8, 8) (a) and (R/LT i, R/LTe, R/LTz) = (10, 8, 10) (b)

.

We propose the hypothesis that a significant electron pinch in cases dominated by

the ITG mode is also driven by a subdominant TEM. Figure 6.25 shows the eigenmodes

of the n = 20 electrostatic potential in the linear phase, as obtained by DMD, along

with their contribution rates. For the case of (R/LT i, R/LTe, R/LTz) = (10, 8, 10), it

can be seen that the eigenmode with the largest contribution rate corresponds to the

ITG mode and is dominat. On the other hand, for the case of (R/LT i, R/LTe, R/LTz) =

(8, 8, 8), the second largest contributing eigenmode corresponds to the TEM, and its

contribution rate is relatively large. It is worth noting that in this case, the second

eigenmode corresponds to the TEM, even for n = 12, where the linear growth rate of the

ITG mode is the largest. Based on this hypothesis, it can be concluded that the ratio

of ITG turbulence intensity to TEM turbulence intensity is crucial for simultaneously

achieving fuel supply and impurity exhaust. For the case of (R/LT i, R/LTe, R/LTz) =

(10, 8, 10), despite the large free energy and turbulence intensity, the small particle

fluxes can be explained by the intensity of the ITG turbulence being much larger than

that of the TEM turbulence, which did not induce the large electron pinch. From these

results, it is suggested that in order to induce a large inward particle transport of bulk

ions and electrons and a large outward particle transport of impurities, it is necessary

to heat both ions and electrons and maintain an appropriate ratio of the amplitudes
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of the ITG mode and the TEM.



Chapter 7

Summary

7.1 Gyrokinetic entropy balances and dynamics

The first-order entropy density equation and the second-order entropy density equa-

tion were derived from the gyrokinetic Vlasov equation. The first-order entropy cor-

responds to thermodynamic entropy. It can be approximated as S(1) ≃ 3δPi/(2Ti),

representing the entropy change associated with profile relaxation. On the other hand,

the second-order entropy corresponds to the fluctuation entropy and is related to the

turbulence intensity. The first-order entropy and the second-order entropy interact

through the interaction term α. The simulations revealed that α corresponds to the

entropy change due to the heat flux. This implies that the temperature profile in

real space and the fluctuations in velocity space interact via the heat flux. From the

temporal evolution of the first-order entropy equation, it was found that the entropy

production due to the heat flux Γ and the entropy destruction due to the energy in-

put/output −E are balanced. The collision term has little influence on the first-order

entropy which is primarily determined the thermodynamic terms. From the temporal

evolution of the second-order entropy equation, it was found that the entropy produc-

tion due to the collisonal dissipation D and the entropy destruction due to the phase

mixing −Γ are balanced. This entropy balance is consistent with previous studies and

suggests that D is determined by Γ. The causality is also demonstrated through the

CCF analysis. In the absence of collisions D = 0, even when the electrostatic potential

is saturated, the second-order entropy decreases due to −Γ infinitely. This is the en-

tropy paradox that has been confirmed in previous studies. We identified a new type

of entropy paradox wherein the first-order entropy increases to infinity in the absence

of energy input/output E = 0. This implies that E and D are essential for the system

to reach a quasi-steady state. The second-order entropy reaches a steady state more

quickly than the first-order entropy. However, it takes a longer time than the turbu-

lence saturation time. In the quasi-steady state, the second-order entropy fluctuates

184
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and its autocorrelation function decays, more rapidly.

The relationship between flow and entropy production is often a subject of debate.

Some argue that when ordered flows like zonal flows exists, entropy, which evaluates

degree of disorder, should decrease. On the other hand, since entropy is correlated with

the temperature gradient, there are those who believe that the zonal flows could lead

to an increase in entropy. The entropy balances indicate that entropy is generated by

D rather than Γ. This means that the net entropy is produced in velocity space, and

turbulence and flows in real space do not directly contribute to entropy generation. It

is expected that entropy production rate increases due to the zonal flows. In order to

verify this, simulations were performed at different collision frequencies. The simula-

tion results indicate that entropy production rate correlates with the flow shear and

increases as confinement performance improves.

On the whole, the second-order entropy is determined by −Γ and D. However, it

became clear that locally, the second-order entropy is dominated by the advective term.

This implies that the turbulence exhibits non-local dynamics, which was not previously

shown in previous local gyrokinetic simulations. The fluctuation entropy production

rate propagates radially together with the heat avalanches. The positive first-order

entropy production rate corresponds to bumps, while the negative one corresponds to

voids. The bumps propagate with the outward avalanches, and the voids propagate

with the inward avalanches. This is consistent with the symmetry-breaking avalanche

theory. Overall, since the first-order entropy production rate increases by the entropy

change due to the heat flux, ∂S(1)/∂t and Γ are in-phase. Locally, however, due to the

time lag for the heat flux to respond to change in the temperature profile, Γ increases

after the rise in ∂S(1)/∂t. The time delay is on the same order as the inverse of the

linear growth rate. The relationship between Γ and D holds locally. D increases after

an increase in Γ. Locally, the entropy change due to the entropy advection is more

significant than the entropy increase from the collisional dissipation.

7.2 Effects of magnetic island on profile formation

In order to investigate the effects of magnetic islands on turbulent transport and

profile formation, we performed neoclassical and turbulent simulations with a (m,n) =

(2, 1) static magnetic island. When magnetic islands are present, the computation of

the flux-surface average is challenging. Consequently, even for the adiabatic electron

model or the hybrid electron model, solving the electrostatic gyrokinetic Poisson equa-

tion is difficult. To address this issue, we developed a novel algorithm called the labeling

method. The method consists of three steps: (1) calculating the equations for the mag-

netic field lines, (2) grouping the 3D real space grid points, and (3) taking the average
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for each group. In the absence of magnetic islands, all grid points are located on the

magnetic surfaces, and the flux-surface average computed using the labeling method

closely matches that of the precise calculation. When a magnetic island is present, it

was confirmed that, in addition to the (0, 0) component, the (2, 1) harmonics have a

large value. With the implementation of the labeling method, we were able to repro-

duce the previously reported results where the (0, 0) electrostatic potential ϕ(0,0) and

the (2, 1) electrostatic potential ϕ(2,1) oscillate at the GAM frequency. ϕ(0,0) and ϕ(2,1)

are out of phase with ϕ(1,0) by π/2. Therefore, it is considered that the oscillation of

ϕ(2,1) originates from an electric field that produces the polarization current, balancing

the diamagnetic current.

In the neoclassical simulation, it was found that when only the gyrokinetic Vlasov

equation is computed while the electrostatic potential is zero, the ion temperature and

density profiles are flattened at the O-point, however when both the gyrokinetic Vlasov

equation and the gyrokinetic Poisson equation are self-consistently solved, although

the temperature profile is flattened at the O-point, the density profile is not flattened.

From the numerical calculation of the parallel force balance equation which is derived

from the gyrokinetic Vlasov equation, it was found that inside the magnetic island,

(1/mi)(∂/∂r)
〈
p∥br

〉
θ,φ

= ⟨nAEr⟩θ,φ is satisfied. (1/mi)(∂/∂r)
〈
p∥br

〉
θ,φ

represents the

force derived from parallel streaming, and ⟨nAEr⟩θ,φ ≡
〈∫∫

(e/m2
i )B

∗
rErfidv∥dµ

〉
θ,φ

is

the force due to the mean radial electric field. When the electrostatic potential is zero,

the parallel momentum is driven by (1/mi)(∂/∂r)
〈
p∥br

〉
θ,φ

, causing the density profile

to relax. On the other hand, when the gyrokinetic Vlasov equation and the gyrokinetic

Poisson equation are self-consistently solved, (1/mi)(∂/∂r)
〈
p∥br

〉
θ,φ

balances with the

force due to the radial electric field, preventing the density profile from becoming

flat. The issue of whether the gradients of the profiles inside the magnetic island

relax is of importance because it greatly influences the stability of the NTM and the

associated confinement performance. In previous studies, it has been pointed out that

the density gradient inside the magnetic island is maintained due to the presence of

trapped particles and collisional transport. The finding that the density profile does

not relax due to the force from the radial electric field is novel. The destabilizing

effects due to magnetic islands cannot be adequately evaluated unless the evolution

of the background profiles is also computed self-consistently. In previous studies, this

effect could have been overestimated.

The turbulence simulation was conducted for the input power of 2 MW, and the size

PDF was calculated. Inside the magnetic island, it was observed that the turbulence

vortices are smaller than in the absence of a magnetic island. Moreover, around the

periphery of the magnetic island, the turbulent vortices are torn apart, leading to an

increase in the number of small vortices, and it was also noted that there is a decrease
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in the relatively large vortices. This is believed to be due to the shearing effects of the

mesoscale vortex mode, which has the same mode numbers as the magnetic island. The

area of the vortex mode is larger than that of the turbulence vortices. For β = 0.05,

the distribution of positive and negative heat fluxes with respect to the size is similar

in cases with and without the magnetic island. That is, the vortex mode does not

significantly contribute to the radial heat flux.

Fig. 7.1: Hysteresis of the turbulent heat flux and temperature gradient length aver-

aged inside the magnetic island.

The results of the flux-driven ITG turbulence simulation where the input power is

16 MW revealed a quasi-periodic transport reduction due to the interaction between

the temperature profile and the vortex mode. Figure 7.1 shows the Lissajous plot of the

turbulent heat flux and the temperature gradient length averaged inside the magnetic

island. The color bar represents the time from tvTi/R0 = 55 when the ITG linear

mode saturates. The hysteresis loop reflects a predator–prey relationship between the

vortex mode and the temperature gradient. The ITG turbulence is driven by the

temperature gradient in phase A in Fig. 7.1. Subsequently, the vortex mode grows

linearly due to the nonlinear coupling of drift waves. By an analytical analysis based

on the Hasegawa-Mima equation, it was confirmed that the vortex mode is excited by

two waves. In phase B, the heat transport from the O-point regions to the X-point

region occurs, leading to a reduction in the temperature gradient within the magnetic

island. It is in antiphase with the amplitude of the vortex mode. The vortex mode
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drifts due to the mean electric field, and its drift velocity decreases with the relaxation

of the temperature gradient. In phases C and D, because of the shearing effects of the

vortex mode and the small temperature gradient, the heat flux and thermal diffusion

coefficient inside the magnetic island are reduced. As the temperature gradient becomes

small, the amplitude of the vortex mode decreases. When it becomes smaller than the

amplitude of the turbulence, the turbulent structure becomes similar to that in the

absence of a magnetic island. In phase E, because the vortex mode is absent and

there are no shearing effects, the heat avalanche occurs inside the magnetic island.

This result suggests that the mean electric field alone is not sufficient to reduce the

turbulent heat flux and that the vortex mode is essential for transport reduction.

In this study, a internal transport barrier was not observed. This might be due to

the introduction of the relatively small magnetic island W ≃ 22ρi. In previous study,

it has been pointed out that when the island width W exceeds the threshold width

Wt ≃ 33ρi, the flow shear increases proportionally to W . Therefore, by introducing

larger magnetic islands, there is a possibility that a internal transport barrier could be

formed.

Fig. 7.2: Hysteresis loops for the input powers of 16 MW (blue) and 64 MW (red).

Another approach to form a transport barrier is to increase the input power. Fig.

7.2 shows the Lissajous plots for the input powers of 16 MW and 64 MW. As shown

in Fig. 7.2, as the heating power increases, the center of the hysteresis loop shifts

to the right. Hence, if the heating is sufficiently strong, a transport barrier could be

formed by the positive feedback loop where the temperature gradient increases, leading

to the larger mean electric field that suppresses the turbulence, further increasing the

temperature gradient.
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7.3 Impurity transport and profile formation

In order to investigate the characteristics of the tIM and turbulent transport driven

by the tIM turbulence, the stability analysis and gyrokinetic simulations were per-

formed for a hollow impurity density profile.

The stability analysis using a simple fluid model indicates that ω∗iω∗z < 0 and

ω∗iωDi > 0 must be satisfied for the tIM to grow. This condition implies that the

ion density gradient is in the opposite direction to the impurity density gradient and

is in the same direction as the magnetic field gradient. These are satisfied in the

bad curvature region. The results of the stability analysis showed that as |R/Lnz|
and fc increase, the linear growth rate of the tIM increases. These dependences were

confirmed by the linear gyrokinetic simulations. We proposed the physical mechanism

for the tIM similar to an interchange instability. In this model, the tIM is driven by the

effective charge gradient, and the instability occurs when the effective charge gradient

and magnetic field gradient are in the opposite direction. This condition is satisfied in

the bad curvature region when the impurity density has a hollow profile.

The simulations for the tIM were conducted in the absence of temperature gradients.

Despite the real frequency of the tIM being in the ion diamagnetic drift direction, it

was found that the ballooning angle of the tIM is negative. Furthermore, compared to

the case of the pure ITG mode, the ballooning structure is larger, and the center of

the mode shifts outward. From the nonlinear global gyrokinetic simulations of the tIM

turbulence, it was revealed that the tIM turbulence drives the large inward impurity

transport and the large outward ion heat transport. When the linear growth rates

of the tIM and the ITG mode are comparable, the impurity transport due to the

tIM turbulence is an order of magnitude larger than that due to the ITG turbulence.

Furthermore, even when the linear growth rate of the ITG mode is more than twice

that of the tIM, the impurity particle flux due to the tIM turbulence is more than

twice as large as that due to the ITG turbulence. The previous study showed that the

impurity particle flux due to the TEM turbulence is an order of magnitude smaller

than that due to the tIM turbulence. It is found that the impurity transport due to

tIM turbulence is significant. When the linear growth rates of the tIM and the ITG

mode are comparable, despite the absence of a temperature gradient, the absolute

value of the ion heat flux due to the tIM turbulence is larger than that due to the

ITG turbulence. This indicates a substantial contribution from the off-diagonal terms

to the heat flux. Moreover, it was found that the turbulent transport due to the tIM

turbulence does not significantly change qualitatively due to the dynamics of electrons.

A robust negative radial electric field was found to form. The profiles of variations

in ⟨Er⟩θ,φ and
∑

s⟨ZsΓs,turb⟩f are similar, indicating that
∑

s⟨ZsΓs,turb⟩f contributes

significantly to the formation of this electric field. It is noted that unlike local gy-
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rokinetic simulations, in global gyrokinetic simulations, the flute approximation is not

strictly valid; thus, the ambipolar condition is not satisfied. In regions where the radial

electric field is formed, the turbulence intensity is high, so the contribution from zonal

flows may not be negligible.

Due to their lighter mass compared to impurities, the ion density profile reaches

a quasi-steady-state faster than the impurity density profile. Therefore, ⟨Γi ∇B⟩f and

⟨Γi E×B,n=0⟩f are balanced earlier. During the burst phase, this balance is not estab-

lished. The dynamics of ⟨Γi ∇B⟩f and ⟨ZΓz ∇B⟩f in this phase are consistent with the

theory of the enhanced neoclassical transport and can be explained by the formation

of the negative radial electric field.

For the small temperature gradients, the linear growth rate of the tIM is larger than

that of the ITG mode, indicating that the tIM is dominant. Because the contribution

from the off-diagonal term proportional to the ion density gradient is large, the inward

ion heat flux occurs despite the presence of the negative ion temperature gradient. The

inward ion heat flux is greater than the sum of the outward heat flux of impurities and

electrons, resulting in the net heat flux directed inward. This result suggests that if

the dominant mode changes from the ITG mode to the tIM by impurity injection, the

central temperatures and the temperature gradients could increase. For the adiabatic

electron model, since Γi,turb+ZΓz,turb > 0, a negative radial electric field arises, but the

electric field is small due to the minor difference in the turbulent particle fluxes. In the

case of the hybrid electron model, Γi,turb−Γe,turb+ZΓz,turb < 0, leading to the formation

of a positive radial electric field. The direction of a radial electric field changes the

direction of the particle transport due to the magnetic drift. In turbulent transport

caused by tIM turbulence, the dynamics of electrons play a crucial role, suggesting

that they cannot be ignored.

In the presence of the large temperature gradients, the dominant mode is the ITG

mode. In contrast to the case where the tIM is dominant, the large outward ion and

electron heat fluxes were observed. It was revealed that the large impurity trans-

port is generated by the subdominant tIM even when the ITG mode is dominant.

By applying DMD to the time series data of the electrostatic potential in the linear

phase, the subdominant mode was detected. Although the contribution rate of the

subdominant mode is only 8.5%, it plays a significant role in transport. The electron

particle transport is smaller compared to the ion and impurity particle transports,

|Γi,turb|, |ZΓz,turb| ≫ |Γe,turb|. For both the adiabatic electron model and the hybrid

electron model, since Γi,turb + ZΓz,turb < 0, a positive radial electric field is formed.

In the presence of a hollow impurity density profile, the large turbulent impurity

transport occurs regardless of the dominant mode. If the impurity density becomes a

peaked profile by the turbulent and neoclassical impurity flux, the tIM and the ITG
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mode are stabilized. as future work, we plan to investigate the statistical properties of

turbulent transport by performing gradient-driven δf simulations with a source term.

We also plan to verify impurity profile peaking and associated turbulence suppression

due to the turbulent and neoclassical impurity transport by performing flux-driven

full-f simulations.

We explored control methods to simultaneously achieve fuel supply and impurity

exhaust through heating when a peaked impurity density profile is present. When

only electrons are heated, the temperature gradient driven TEM becomes dominant.

In this case, the particle fluxes are small, the density profiles hardly change, and

the initial density gradients are preserved. On the other hand, when only ions are

heated, the ITG mode becomes dominant, and the inward bulk ion particle flux and

the outward impurity particle flux are observed. Γi + ZΓz ≃ 0 holds, and the electron

particle flux is 5–6 times smaller than the bulk ion and impurity particle fluxes. The

impurity density profile relaxes, while the bulk ion and electron density profiles remain

largely unchanged. When both ions and electrons are heated, the ITG mode and TEM

coexist, with the ITG mode dominating in the low wavenumber region and the TEM

prevailing in the high wavenumber region. The linear growth rate is higher in the

low wavenumber region. In this case, compared to when only ions are heated, the

inward bulk ion particle flux that is 7.1 times larger and the inward electron particle

flux that is 14.3 times larger are generated. Since the bulk ion particle flux is large

and ZΓz ≃ Γe − Γi > 0, the impurity particle flux is positive and 2.4 times larger

than that when only ions are heated. As a result, the density profiles of bulk ions and

electrons become significantly peaked, and the impurity density profile is substantially

relaxed. It was found from the full-f simulation that these particle fluxes are driven

by turbulence, and the neoclassical particle fluxes are an order of magnitude smaller

than the turbulent particle fluxes. These results indicate that fuel supply and impurity

exhaust can be achieved when the dominant mode is the ITG mode and there is a large

electron temperature gradient.

With only a large ion temperature gradient, the dynamics of the densities is roughly

determined by the bulk ion and impurity particle fluxes. The presence of a large

electron temperature gradient and the resulting significant inward electron particle

flux are crucial for achieving both fuel supply and impurity exhaust. To investigate

what drives this electron particle flux, we peformed the simulation in the case where

ions are strongly heated and electrons are heated. The ITG mode is dominant across

the entire spectrum, and the linear growth rate is larger than that when both ions

and electrons are heated to the same degree. However, in this case, the turbulent

particle fluxes are smaller. The result suggests that the large electron particle flux

is not solely driven by the ITG turbulence. We believe that a subdominant TEM
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plays a significant role. This is because the turbulent particle fluxes are larger when

the contribution rate of the subdominant TEM is large, even when the temperature

gradients and linear growth rate are small. It was found that by heating both ions and

electrons and maintaining an appropriate ratio of ITG turbulence intensity to TEM

turbulence intensity, it is possible to achieve both fuel supply and impurity exhaust.

We plan to perform full-f simulations to investigate whether fuel supply and im-

purity exhaust can be achieved by gradually increasing the temperature gradients by

heating from small temperature gradients. Additionally, it is needed to examine the

impurity species dependency in detail. As the charge and mass of impurities increase,

instabilities stabilize, implying that high heating power could be required to exhaust

of high Z impurities using this method. We plan to investigate the necessary heating

power and temperature gradients for their exhaust. In this study, the self-collision

operator is employed, so neoclassical transport was not accurately evaluated. There is

also a need to implement a multi-species collision operator and precisely evaluate the

magnitude of neoclassical transport.



Appendix A

Size probability distribution

function analysis

The size probability distribution function (size-PDF) analysis is a method devel-

oped to elucidate features of real-space turbulent vortices that cannot be captured by

spectral analysis [180]. By using this analysis, the probability distribution function

for the size of turbulent eddies and the contribution of each vortex to the heat flux

can be obtained. The method initially labels each eddy from the real-space three-

dimensional data of the heat flux and electrostatic potential obtained from gyrokinetic

simulations, as illustrated in Fig. A.1. Although turbulent eddies inherently possess

a three-dimensional structure, in this method, two-dimensional turbulent vortices in a

poloidal cross-section are considered independent from those in other poloidal cross-

sections. After labeling the turbulence vortices in each poloidal cross-section, these

results are aggregated, and statistical outcomes are produced. Therefore, as Nφ in-

creases, the accuracy of the analysis increases. The analysis is conducted using Nφ

cores. Each core simultaneously labels the turbulence vortices in a different poloidal

cross-section. Therefore, the computational time does not depend on Nφ.

To label the turbulence vortices in real space, the data in two-dimensional polar

coordinates Q(r, θ) is first converted to data in two-dimensional Cartesian coordinates

Q(x, y). The conversion formulas are given by r = x2 + y2 and θ = arctan(y/x). The

number of meshes in the x direction and y direction is given by NI = Nx = Ny = 1500,

which is considerably larger compared to Nr and Nθ. In the Cartesian coordinates,

the mesh width is ∆x = ∆y = 2a0/NIρi and the cell size is ∆x∆y = (2a0/NI)
2ρ2i .

Since Q(x, y) is not a value on the nodes in the polar coordinates, it is necessary to

evaluate the value through interpolation. In this analysis, the bilinear interpolation,

as explained in Fig. A.2, is employed. In Fig. A.2, θ1, θ2, r1, r2, Q1, Q2, Q3, and Q4
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Fig. A.1: Overview of the algorithm for labeling turbulent eddies.

are, respectively, θ1 = θ−k∆θ, θ2 = ∆θ− θ1, r1 = (l−1)∆r+ ∆r/2, r2 = l∆r+ ∆r/2,

Q1 = Q(∆r/2 + (l+ 1)∆r,∆θ/2 + (k+ 1)∆θ), Q2 = Q(∆r/2 + l∆r,∆θ/2 + (k+ 1)∆θ),

Q3 = Q(∆r/2 + (l + 1)∆r,∆θ/2 + k∆θ), and Q4 = Q(∆r/2 + l∆r,∆θ/2 + k∆θ)

where where k = [θ/∆θ] and l = [(r − ∆r/2)/∆r] + 1. The areas colored red, blue,

green, and yellow are w1 = (r2 − r21)θ1/2, w2 = (r22 − r2)θ1/2, w3 = (r2 − r21)θ2/2, and

w4 = (r22 − r2)θ2/2, respectively. The sum of these areas is

w =
4∑

i=1

wi =
(r22 − r21)∆θ

2
. (A.1)

Therefore, Q(x, y) is evaluated as

Q(x, y) =
1

w

4∑
i=1

wiQi. (A.2)

It should be noted that we assume that the values change linearly on the radial and

poloidal direction, the interpolation itself is performed in the polar system.
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Fig. A.2: Schematic diagram of the bilinear interpolation.

For the case where Q is positive (negative), cells satisfying Q ≥ Qc (Q ≤ −Qc) are

considered as occupied cells where Qc = βQmax is a threshold value, and β represents

the cutoff ratio to the maximum heat flux Qmax. Previous research has shown that

β ≤ 0.1 needs to be satisfied [180]. However, in the presence of a magnetic island,

the turbulent heat flux cannot be reproduced in Cartesian coordinates unless β ≤ 0.01

as shown in Fig. A.3. Figure A.3 represents the average heat flux at each toroidal

angle in both polar and Cartesian coordinates. The red and blue lines respectively

represent the positive and negative heat fluxes in Cartesian coordinates, divided by 15.

The heat flux corresponds to one at tvT i/R0 = 200 in the simulation with a magnetic

island, as discussed in subsection 5.3.2. (a), (b), and (c) correspond to the cases of

β = 0.05, β = 0.025, and β = 0.01, respectively, with the ratio of the net heat flux in

Cartesian coordinate to the real net heat flux in polar coordinate being approximately

3%, 56%, and 95%, respectively. In the bottom-right of Fig. A.1, occupied cells are

shown in green and unoccupied cells in navy. In order to label clusters composed of

occupied cells, the Hoshen-Kopelman algorithm [269], which is based on the union-find

algorithm, is employed. Through raster scan, occupied cells are identified and checked
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Fig. A.3: Heat flux in each poloidal cross-section in both polar and Cartesian coordi-

nates.

for adjacency with other occupied cells to determine and label clusters. The Hoshen-

Kopelman algorithm is described by three functions: find, union, and rescan. They

are defined as follows.

function A.1: find

1 SUBROUTINE find(label_list , k, N, label)

2 IMPLICIT NONE

3 INTEGER k , N , label_list(N) , label

4

5 DO WHILE (label_list(k) .ne. k)

6 k = label_list(k)

7 END DO

8 label = label_list(k)
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9 END SUBROUTINE find

function A.2: union

1 SUBROUTINE union(left , above , label_list , N)

2 IMPLICIT NONE

3 INTEGER left , above , N, label_list(N), x, y

4

5 CALL find(label , left , N, x)

6 CALL find(label , above , N, y)

7

8 IF (x .gt. y) THEN

9 label_list(x) = y

10 ELSE

11 label_list(y) = x

12 END IF

13 END SUBROUTINE union

function A.3: rescan

1 SUBROUTINE rescan(label , N_I , label_list , N)

2 IMPLICIT NONE

3 integer N_I , N, label(N_I , N_I)

4 integer label_list(N), temp , i, j

5

6 DO i = 1 , N_I

7 DO j = 1 , N_I

8 IF (label(i, j) .ne. 0) THEN

9 temp = label(i, j)

10 IF (temp .ne. label_list(temp)) THEN

11 CALL find(label_list , temp , N, label(i, j))

12 END IF

13 END IF

14 END DO

15 END DO

16 END SUBROUTINE rescan

N is a constant greater than the number of occupied cells and label list records

the label for each occupied cell. Initially, each occupied cell is assigned a unique label,

therefore, label list(k)==k is satisfied. If label list(l)==k then labels l and k

belong to the same cluster. When there is an occupied cell to the left or above an
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occupied cell, find is called, and the label of the neighboring occupied cell is assigned

to that cell. When there is an occupied cell both to the left and above an occupied cell,

union is called. In union, the labels of the left cell x and the upper cell y are checked,

and the larger label is replaced with the smaller label. After calling union, the label

of the upper cell is assigned to that cell through find. After a raster scan, there still

exist the occupied cells that satisfy label list(k) ̸=k. rescan aligns all labels of the

occupied cells with those provided in label list. Through this algorithm, turbulent

vortices are labeled as illustrated in the bottom-left of Fig. A.1. The size of a cluster

is determined by the sum of its constituent cells, and the heat flux of the cluster is

computed based on the heat flux possessed by its cells. As a result, the relationship

between the area and the heat flux of turbulent vortices is obtained.

By labeling the turbulent vortices across all poloidal cross-sections, the number

of turbulent vortices generating positive heat flux, N+, and the number of turbulent

vortices producing negative heat flux, N−, can be determined. To plot the probability

distribution function P±(S) for the size S± of the turbulent vortices on a logarithmic

scale, we employ dSlog = (log(Smax) − log(Smin))/Nl as the size spacing. Nl represents

the number of grid points, Smax and Smin are the maximum and minimum size, respec-

tively, given as Smax = 5 × 104ρ2i and Smin = ρ2i . The size-PDF P±(S) is obtained

as

P±(S)dSlinear =
N±

S

N± , (A.3)

where dSlinear ≡ exp(log S + dSlog) represents the size spacing on a linear scale, and

N±
S denotes the number of vortices with an area ranging from S to S+ dSlinear. P

±(S)

satisfies ∫ Smax

Smin

P±(S)dSlinear = 1. (A.4)

It is noted that Nl should be adjusted appropriately, depending on the size and number

of turbulent eddies. Figure A.4 shows the size-PDF of the electrostatic potential inside

the island. The orange dots display the size-PDF for Nl = 80, which is very small

compared to analyzing the entire torus, and the blue dots show that for Nl = 800.

It can be observed that as Nl increases, the size-PDF becomes linear. If the cells are

sufficiently small, vortices of exactly the same area do not exist. If the size spacing is

exceedingly narrow (Nl → ∞), there exists only one vortex with an area ranging from

S to S + dSlinear. Hence, the size-PDF becomes a monotonically decreasing straight

line.



199

Fig. A.4: Size-PDF of the electrostatic potential inside the island.



Appendix B

Dynamic mode decomposition

A description of the dynamic mode decomposition used to detect the subdominant

mode is presented. Dynamic mode decomposition (DMD) is a numerical algorithm

that simultaneously extracts the characteristic spatial structures of time series data

and its frequencies. This corresponds to finding the eigenfunctions and eigenvalues of

the Koopman operator K.

A discrete dynamical system on a state space S is given by

x(k+1) = F
(
x(k)

)
, (B.1)

using the flow map F : S → S which maps the state x(k) to x(k+1). Defining the

Koopman operator K : G → G as

Kg
(
x(k)

)
= g

(
F
(
x(k)

))
= (g ◦ F )

(
x(k)

)
,

which advances observables of the state g linearly on the observable space G, from Eq.

(B.1), we obtain

g
(
x(k+1)

)
= Kg

(
x(k)

)
. (B.2)

In DMD, the Koopman operator in Eq. (B.2) is approximated as a matrix A ∈ Cn×n

that advances the state of a system,

x(k+1) ≈ Ax(k), (B.3)

where n is the dimension of the system state. When m snapshots are collected to make

matrices

X =

 | | . . . |
x(1) x(2) . . . x(m−1)

| | . . . |

 , X ′ =

 | | . . . |
x(2) x(3) . . . x(m)

| | . . . |

 , (B.4)

Eq. (B.3) becomes

X ′ ≈ AX. (B.5)
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In order to obtain the eigenvalues of A and the corresponding eigenmodes from the

time series data, one first finds the matrix A∗ that minimizes J(A) = ||AX−X ′||2F ≥ 0,

where ||A||F is the Frobenius norm of A. Let aij be the (i, j) component of A and A†

be the adjoint matrix of A, the Frobenius norm of A is defined as ||A||2F = tr
(
A†A

)
=

tr
(
AA†) =

∑
i,j a

2
ij. The best fit matrix A∗ is given by

A∗XX
† = X ′X†. (B.6)

When X has r non-zero singular values, the economy singular value decomposition of

X is given by

X = ÛrΣ̂rV̂
†
r , (B.7)

where Ûr is an n × r unitary matrix , Σ̂r is a r × r diagonal matrix with the ordered

singular values along the diagonal and V̂ †
r is the conjugate transpose of a r × (m− 1)

unitary matrix V̂r. Substituting Eq. (B.7) into equation Eq. (B.6), A∗ is expressed as

A∗Ûr = X ′V̂rΣ̂
−1
r . (B.8)

Since A∗ is the large matrix with n rows and n columns, it is unwise to calculate the

eigenvalues and eigenvectors of A∗. Using the unitary matrix Ûr as the change-of-basis

matrix, A∗ is transformed into a r × r matrix Ã∗:

Ã∗ = Û †
rA∗Ûr. (B.9)

From Eq. (B.8), Ã∗ is obtained as

Ã∗ = Û †
rX

′V̂rΣ̂
−1
r . (B.10)

Ã∗ is diagonalized using a invertible matrix W :

W−1Ã∗W = Λ. (B.11)

Λ is a r × r diagonal matrix of eigenvalues of Ã∗. From Eq. (B.8), (B.9) and (B.11),

A∗Φ = ΦΛ is derived, where Φ is defined as

Φ = X ′V̂rΣ̂
−1
r W. (B.12)

Each column of the n × r matrix Φ is an eigenfunction representing a characteristic

spatial structure. Using the eigenvalues and eigenfunctions, the time evolution from the

initial state is described as x(k+1) = ΦΛkΦ+x(1), where + denotes the Moore-Penrose

pseudoinverse.

The algorithm for DMD is shown below.

1. Create matrices X and X ′ from time series data. (Eq. (B.4))
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2. Approximate X by singular value decomposition as X = ÛrΣ̂rV̂
†
r (Eq. (B.7))

3. Obtain Ã which is a similarity transformation of A as Ã = Û †
rX

′V̂rΣ̂
−1
r (Eq.

(B.10))

4. Diagonalize Ã as W−1ÃW = Λ (Eq. (B.11))

5. Calculate the eigenmodes of A as Φ = X ′V̂rΣ̂
−1
r W (Eq. (B.12))

Fig. B.1: Eigenmodes of the n = 28 electrostatic potential after nonlinear saturation

for Case B in subsection 6.1.4. “CR” is an initialism for contribution rate.

Because it is difficult to apply DMD to the time series data of the turbulent fluctu-

ations after nonlinear saturation, in this study, it is applied to the time series data of
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the electrostatic potential in the linear phase to detect subdominant modes. Fig. B.1

shows the eigenmodes of the n = 28 electrostatic potential after nonlinear saturation

and their contribution rates. It can be seen that there are complex eigenmodes that

are a mixture of the IM and ITG mode. It is difficult to separate the eigenmodes

into the IM and ITG mode, respectively. The radial electric field changes the phase

velocities and ballooning angles, making the problem even more difficult. Figure B.1

also indicates that even with 25 eigenmodes, only 58.1% of the original data can be

reproduced. This is because turbulent fluctuations are represented by the superpo-

sition of a number of eigenmodes. For the data in the linear phase, the cumulative

contribution rate is 93.3% with only three modes, as shown in Fig. 6.14. The difficulty

in classifying the many eigenmodes into the IM and ITG mode, respectively, prevents

us from determining the relative fluctuation energies of the IM and ITG mode and

their contribution to the particle and heat fluxes.
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(2013).

[165] H. E. Hurst, Trans. Am. Soc. Civ. Eng. 116, 770 (1951).

[166] M. Gilmore, C. X. Yu, T. L. Rhodes, and W. A. Peebles, Phys. Plasmas 9, 1312

(2002).

[167] M. Muto, Investigation of the temporal characteristics of turbulent transport in fu-

sion plasma with momentum injection, bachelor’s thesis, Nagoya University (2019)

[168] P. H. Diamond and T. S. Hahm, Phys. Plasmas 2, 3640 (1995).

[169] F. Sattin and M. Baiesi, Phys. Rev. Lett. 96, 105005 (2006).

[170] R. Sanchez and D. E. Newman, Plasma Phys. Control. Fusion 57, 123002 (2015).

[171] T. S. Hahm and P. H. Diamond, J. Korean Phys. Soc. 73, 747 (2018).

[172] P. Bak, C. Tang, and Kurt Wiesenfeld, Phys. Rev. A 38, 364 (1988).

[173] P. Bak, Physica A 163, 403 (1990).

[174] T. Hwa and M. Kardar, Phys. Rev. A 45, 7002 (1992).

[175] R. Sánchez, D. E. Newman, and B. A. Carreras, Nucl. Fusion 41, 247 (2001).

[176] D. E. Newman, B. A. Carreras, P. H. Diamond, and T. S. Hahm, Phys. Plasmas

3, 1858 (1996).

[177] X. Garbet and R. E. Waltz, Phys. Plasmas 5, 2836 (1998).

[178] Y. Sarazin, V. Grandgirard, J. Abiteboul, S. Allfrey, X. Garbet, Ph. Ghendrih,

G. Latu, A. Strugarek, and G. Dif-Pradalier, Nucl. Fusion 50, 054004 (2010).

[179] M. Mavridis, H. Isliker, L. Vlahos, T. Görler, F. Jenko, and D. Told, Phys.

Plasmas 21, 102312 (2014).



BIBLIOGRAPHY 214

[180] W. Wang, Y. Kishimoto, K. Imadera, H. R. Liu, J. Q. Li, M. Yagi, and Z. X.

Wang, Nucl. Fusion 60, 066010 (2020).

[181] B. A. Carreras, B. Ph. van Milligen, M. A. Pedrosa, R. Balb́ın, C. Hidalgo, D.

E. Newman, E. Sánchez, M. Frances, I. Garćıa-Cortés, J. Bleuel, and M. Endler
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