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Abstract

In a diverse linguistic landscape where over 7,100 languages are spoken, vast

swathes of digital content remain isolated within language silos, creating signif-

icant barriers to global communication. Bridging these gaps is the purview of

multilingual representation learning, an emerging field within natural language

processing (NLP) that seeks to develop computational models capable of un-

derstanding and translating across multiple languages. This specialized area of

research aims to dismantle linguistic barriers, facilitating the flow of information

and ideas in our increasingly interconnected world.

This thesis delves into the intricacies of multilingual representation learning,

concentrating on two pivotal tasks: multilingual sentence embedding (MSE) learn-

ing and multilingual neural machine translation (NMT). These tasks are key ob-

jectives of multilingual representation learning due to their profound impact on

facilitating communication across language barriers. MSE learning enables the

alignment of semantically similar sentences from different languages, serving as a

key enabler for applications such as cross-lingual information retrieval and paral-

lel corpus construction. Meanwhile, multilingual NMT extends the boundaries of

language translation to a multilingual context, which is crucial for real-time in-

terpretation and content localization. Ultimately, MSE learning and multilingual

NMT encapsulate the primary objectives of multilingual representation learning,

underpinning innovative applications that help dissolve language barriers, thus

granting more equitable access to information and fostering cross-cultural under-

standing in a multilingual world.

Within multilingual representation learning, specifically for applications in

alignment and translation tasks, three major challenges persist: (1) high computa-
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tional demands, which refers to the significant computational overhead incurred in

scaling up the language coverage of a multilingual model; (2) data scarcity, the lack

of sufficient and diverse language data, particularly for low-resource languages; (3)

limitations in Transformer architecture, meaning the current Transformer models

are not fully appropriate for the complexities of processing multiple languages.

Addressing these challenges is crucial for further advancement in this field. To

this end, this thesis seeks to provide solutions to these existing challenges while

also exploring potential approaches for enhancing recent large multilingual lan-

guage models (LLMs). Eventually, we expect to pave the way for more advanced

and efficient multilingual representation learning, thus broadening the reach of

NLP techniques to a wider audience.

Specifically, to tackle the challenge of high computation demands associated

with expanding the language support in training MSE models, we first introduce

efficient and effective massively multilingual sentence embedding, using cross-

lingual token-level reconstruction and sentence-level contrastive learning as train-

ing objectives. Compared with related studies, the proposed model can be effi-

ciently trained using significantly fewer parallel sentences and GPU computation

resources. Secondly, we introduce a novel distilled MSE model to streamline the

inference process for MSE models. Precisely, we systematically explore learning

language-agnostic sentence embeddings with lightweight models. We demonstrate

that a thin-deep encoder can construct robust low-dimensional sentence embed-

dings for 109 languages. With our proposed distillation methods, we achieve

further improvements by incorporating knowledge from a teacher model.

To tackle the challenge of data scarcity in low-resource languages, we first in-

troduce innovative sequence-to-sequence pre-training objectives for low-resource

NMT to leverage the linguistic knowledge to compensate for the lack of training

data. The proposed methods employ phrase structure masking and reordering

tasks. Secondly, we propose word-level contrastive learning to leverage statisti-

cal word alignments for low-resource multilingual NMT, without the requirement

to use high-quality bilingual dictionaries. Additionally, we introduce contrastive

alignment instructions to address the challenge of the lack of data in low-resource

languages. AlignInstruct emphasizes cross-lingual supervision via a cross-lingual
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discriminator built using statistical word alignments, which is empirically demon-

strated superior to NMT instruction tuning baseline methods.

To tackle the challenge of limitations in Transformer architecture for zero-shot

NMT, we first unveil a novel Transformer architecture that constructs universal

interlingua representations atop Transformer encoder. This development signif-

icantly enhances the performance of zero-shot NMT than standard Transformer

architectures. Moreover, we comprehensively explore the effects of layer normal-

ization on zero-shot NMT. Our results demonstrate that post-layer normalization

consistently outperforms pre-layer normalization for zero-shot NMT, regardless of

the language tag and residual connection settings.
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Chapter 1

Introduction

Multilingual representation learning is a field within natural language processing

(NLP) focusing on developing computational models that are adept at understand-

ing and processing a variety of languages. This field strives to overcome language

barriers, making diverse information accessible to people who speak different lan-

guages. In an era dominated by digital content, much of which is confined within

linguistic silos, achieving this goal is not only an academic exercise but also a

crucial step towards fostering a more inclusive and globally connected society.

At its core objectives, multilingual representation learning is concerned with

developing algorithms that allow machines to align and translate diverse lan-

guages efficiently, minimizing the need for human efforts. This thesis hones in

on two fundamental tasks within this domain: multilingual sentence embedding

(MSE) learning and multilingual neural machine translation (NMT). MSE learn-

ing, which seeks to align sentences conveying similar meanings across languages,

is critical in overcoming language barriers. For instance, a cross-lingual search

feature, an application of MSE learning, enables users to search for information

in one language and retrieve relevant results in another. Additionally, MSE is

instrumental in constructing multi-way parallel sentences, which are invaluable

not only for educational purposes but also for training translation models. In

parallel, multilingual NMT plays an essential role in real-time interpretation and

content localization scenes, the importance of which is profound and cannot be

overstated in bridging linguistic divides.

1
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These complex MSE learning and multilingual NMT tasks demand sophisti-

cated deep-learning models capable of capturing the nuances of language beyond

simple words, and this thesis ultimately endeavors to develop such neural mod-

els and propose novel methods to existing intricate challenges, paving the way

for more robust multilingual representation learning for sentence alignment and

translation.

This introduction begins with a detailed background of multilingual repre-

sentation learning in the context of MSE learning and multilingual NMT tasks

(Section 1.1). Following this, the ensuing sections meticulously dissect the in-

herent challenges and introduce the proposed innovative methods within this do-

main. Specifically, challenges of high computational demands, data scarcity, and

limitations in Transformer architecture are discussed in Section 1.2. Subsequent

chapters illuminate the pathways to overcoming these challenges in multilingual

NLP.

1.1 Background of Multilingual Representation Learn-

ing

1.1.1 Two Fundamental Tasks and Advancements

This section begins with a comprehensive introduction to two fundamental tasks

of multilingual representation learning: MSE learning and multilingual NMT,

which involve acquiring the ability to align and translate sentences, respectively.

It also provides an overview of the methodologies employed in training multilin-

gual representations for these two tasks. Following this, it delves into the recent

advancements in large language models (LLMs), posited as potential universal

solutions for both tasks in multilingual NLP.

Multilingual Sentence Embedding Learning

MSE learning effectively aligns sentences from diverse languages within a shared

semantic space, known as multilingual sentence embedding or language-agnostic

sentence embedding. Such embedding space ensures that each sentence, regardless
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Zero-shot Cross-lingual Transfer on Downstream Tasks:
(cross-lingual genre classification, etc.)

Initialize

Model for 
downstream tasks

e.g. genre 
classification

US Professional Sports 
Teams Promote Vaccinations News Training

in English
Inference

for Japanese
新奇超薄膜「二次元材料」

の成長と評価
Science

zh
ja
en

I am a student.
私は学生です。

我是学生。

我住在京都。
京都に住んでいます。

I live in Kyoto.

Pre-trained Multilingual Sentence Embedding Space:

Figure 1.1: An example of a multilingual sentence embedding space and its ap-

plications in zero-shot cross-lingual transfer.

of its original language, is mapped into a common semantic domain. For example,

the sentence “I am a student” in English should correspond to an equivalent MSE

as its Japanese counterpart, “私は学生です”, or its Chinese version, “我是学生”,

as illustrated in Figure 1.1.

With the constructed shared semantic space across languages, MSE models

can be applied to various downstream NLP tasks, such as cross-lingual sentence

retrieval and cross-lingual sentence classification. These tasks are facilitated with-

out the prerequisite of initial training or reliance on a monolingual model. Signif-

icantly, MSE models offer substantial benefits to low-resource languages, which

typically lack sufficient training data, thereby reducing the need for extensive hu-

man effort in curating large datasets for language-specific model training. For

example, as depicted in Figure 1.1, once the pre-trained MSE model is fine-tuned

using English datasets for genre classification tasks, this fine-tuned model can be

directly applied for inference in Japanese. This is possible because the pre-trained
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MSE model is designed to be language-agnostic. Section 1.1.2 delves deeper into

the application paradigms of MSE models, specifically focusing on their imple-

mentation in various cross-lingual downstream tasks.

The pursuit of such dense text embedding has evolved significantly, beginning

with the advent of word vector [128] and progressing to sentence embedding and

multilingual scenarios. In the monolingual scenario, initial approaches, such as

those by Arora et al. [9], advocated for the weighted average of word embed-

dings to create sentence embeddings, establishing a robust baseline. Subsequent

efforts shifted towards leveraging neural models [39, 25] and pre-trained Trans-

formers [172, 144, 250, 226] as backbone architectures.

In the realm of multilingual contexts, Schwenk and Douze [182] pioneered

the concept of MSE, leveraging intermediate representations from LSTM [73]

encoder-decoder frameworks in NMT. Concurrently, Grégoire and Langlais [63]

devised MSE by aligning outputs from LSTM dual encoders (akin to Siamese

networks [253]) into a unified representational space. Building on this, España-

Bonet et al. [52] experimented with sum pooling of NMT encoder’s top hidden

states, diverging from the max pooling and last hidden state approach in Schwenk

and Douze [182]. Yu et al. [255] introduced a training methodology for MSE that

combines bidirectional NMT losses and minimizes the Euclidean distance between

translation pair embeddings.

The transition to dual Transformer architectures replacing LSTM was initi-

ated by Guo et al. [66], who first utilized Transformers for constructing MSE in

bilingual settings. This was expanded by Chidambaram et al. [29], who incorpo-

rated multiple tasks such as conversational response [247], quick-thought [111],

natural language inference [21], and translation into the training regimen. Build-

ing on these efforts, Yang et al. [244] further refined the training objectives by

integrating an AMS loss, enhancing the approach proposed by Guo et al. [66].

Recent studies have shifted their focus towards massively multilingual scenarios,

a direction that inherently brings with it the challenge of heightened computa-

tional demands. This specific challenge is explored in detail in Section 1.2, where

we delve into its implications and potential proposals.
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Training an English-Japanese-
Chinese Multilingual Neural 
Machine Translation Model

[to ja] I am a student. 

[to en] 私は学生です。

私は学生です。

I am a student. 

[to zh] I am a student. 

[to en]我是学生。

我是学生。

I am a student. 

Multilingual Neural Machine Translation: Training with English-centric Parallel Sentences

Multilingual Neural Machine Translation: Inference for Zero-shot Directions

A Trained English-Japanese-
Chinese Multilingual Neural 
Machine Translation Model[to zh] 私は学生です。

私は学生です。[to ja]我是学生。

我是学生。

Figure 1.2: An example of English–Chinese–Japanese multilingual neural machine

translation model trained with English-centric parallel data and its applications

in zero-shot translation.

Multilingual Neural Machine Translation

Multilingual Neural Machine Translation (NMT) distinguishes itself by jointly

training a system capable of both accepting input and generating output in mul-

tiple languages, a significant departure from traditional bilingual translation sys-

tems limited to a single language pair. This multilingual approach offers a more

unified and efficient solution for language translation, covering a broader linguistic

spectrum. For instance, a bilingual English-Japanese NMT system is restricted

to translating the sentence “I am a student” only into Japanese as “私は学生で
す”. In contrast, as depicted in Figure 1.2, a multilingual NMT system can trans-

late the same sentence into several other languages the model supports, such as

Chinese. In such multilingual translation scenarios, the introduction of language

tags plays a crucial role in specifying desired source or target languages. As il-

lustrated in Figure 1.2, the target language can be determined using a “to target

language” token alongside the source sentence [81]. Another efficient approach to

language tagging involves specifying both the source and target languages sepa-

rately in their respective sentences, a method pioneered by mBART [110]. This

thesis will adopt these two key language tag settings primarily in multilingual
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machine translation, following the insights from previous work investigating the

language tag settings [236].

A trained multilingual NMT model can be applied to various translation tasks,

encompassing supervised and zero-shot directions. We introduce these applica-

tions in depth in Section 1.1.2, providing a comprehensive overview along with the

downstream tasks of aforementioned MSE learning. As an instance of zero-shot

translation, Figure 1.2 illustrates how a multilingual NMT model trained with

English-centric parallel sentences can effectively handle zero-shot translation sce-

narios, such as translating from Chinese to Japanese and vice versa, showcasing

the model’s versatility in handling diverse linguistic tasks.

The genesis of machine translation can be traced back to the era of bilin-

gual systems, where early models were designed to translate between two specific

languages. These systems, often rule-based or statistical [136, 22, 219], laid the

groundwork for understanding linguistic structures and translation patterns, al-

beit within a limited linguistic context. The evolution from these bilingual models

to multilingual ones [55, 81, 3, 186, 8, 105, 149] marked a significant leap, expand-

ing the horizon of MT to include multiple languages within a single model frame-

work. This shift streamlined the translation process, facilitated a more compre-

hensive understanding of linguistic relationships across various languages, and no-

tably improved translation quality for low-resource languages. This improvement

is largely attributable to the cross-lingual knowledge transfer, leveraging shared

scripts and syntactic structures across languages. Recently, the exploration of lan-

guage relatedness has emerged as an important research topic in the field of multi-

lingual NMT, as the performance of low-resource languages within a multilingual

NMT system is increasingly recognized as being heavily dependent on the extent

of cross-lingual transfer capabilities among related languages [142, 3, 8, 53, 42].

In parallel with the historical progression of NMT, the field has witnessed

significant shifts in model architecture and methodology. Initially dominated by

sequence-based models [208] like RNNs [176] and LSTM [73] networks, the advent

of Transformer models revolutionized NMT [219], significantly enhancing transla-

tion accuracy and efficiency. Alongside this, multilingual NMT has gained promi-

nence as a research focus, evidenced by various studies [48, 55, 67, 81, 43]. These
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efforts seek to augment multilingual NMT performance across multiple language

pairs, even as model capacity poses challenges in scaling up languages [3, 210, 261].

Research has predominantly concentrated on strategies like oversampling low-

resource languages [8, 230, 213] and incorporating language-specific model com-

ponents [192, 18, 156, 261, 233, 106, 246] to elevate translation quality for diverse

language pairs. Moreover, the balance between shared and language-specific com-

ponents in models is an area of ongoing exploration [20, 242, 258, 92], illustrating

the dynamic evolution of NMT to cater to an expanding linguistic spectrum.

However, two critical challenges persist in the realm of multilingual NMT: data

scarcity in low-resource languages, particularly in zero-shot NMT scenarios, and

limitations in Transformer architecture. These issues are explored in depth in

Section 1.2, where we delve into their specifics and discuss potential approaches.

In the Era of LLMs

Recent developments in NLP have heralded a new era with the advent of LLMs,

also known as generative AI [23, 31, 180, 216, 132, 145, 5, 217, 196]. These models

signify a substantial advancement for multilingual NLP, offering the potential to

simultaneously support MSE learning and machine translation tasks within a

singular, unified model architecture and parameter set. This significant progress

can be largely credited to the innovative paradigm of LLM prompting techniques,

which has redefined the capabilities and efficiency in handling multilingual tasks

in NLP.

In the case of MSE learning, LLMs excel in generating embeddings that cap-

ture the nuanced semantic representations of sentences across various languages.

Jiang et al. [78] and Su et al. [205] have pioneered the study of constructing MSE

using LLMs. On the other hand, downstream tasks that MSE models can be

applied to can also potentially be tackled by prompting LLMs. For multilingual

NMT, LLMs also demonstrated remarkable proficiency in accurately and con-

textually translating text between multiple languages [222, 31, 2, 259, 104, 257,

59, 152, 131, 264, 23, 180, 69, 126] but still suffer from the issue of poor perfor-

mance for low-resource languages. This multi-functionality of LLMs, underpinned

by their vast and diverse training data, positions them as a highly generalized
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paradigm for multilingual NLP, offering previously unattainable solutions with

traditional task-specific models.

Although the primary focus of this thesis remains on enhancing multilingual

representation for task-specific MSE and multilingual NMT models, it is antici-

pated that LLMs will progressively supersede the current state-of-the-art (SOTA)

models in the realm of multilingual NLP. Furthermore, the techniques proposed

in this thesis hold the potential to significantly contribute to the advancement of

multilingual LLMs, potentially influencing their development and efficacy in this

rapidly evolving field.

1.1.2 Training and Inference Paradigms

This section provides an overview of the key training and inference paradigms

for MSE learning and NMT, which are essential in assessing the performance of

MSE and multilingual NMT models. The discussion commences with introducing

standard paradigms typically employed in supervised settings, followed by intro-

ducing crucial and unique inference paradigms in zero-shot settings for MSE and

multilingual NMT models.

Supervised Scenarios

The efficacy of MSE models is determined by how accurately sentences from differ-

ent languages are aligned in the shared embedding space. The alignment accuracy,

typically measured using benchmark datasets comprising parallel sentences, re-

flects the model’s ability to capture semantic similarities across languages. Thus,

supervised scenarios for the MSE model focus on trained language pairs in the

context of parallel sentence alignment tasks, which usually aim to retrieve par-

allel sentences from comparable corpora.1 Although the training objectives for

MSE continued to evolve, even in unsupervised ways, the SOTA MSE models

were still constructed by aligning parallel sentences. Goswami et al. [61] proposed

an unsupervised multi-task learning approach for training MSE, eliminating the

reliance on parallel sentences. Despite this innovation, their results still fell short

1Comparable corpora refer to sets of documents in different languages, where many sentences

within them are translations of each other.
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of SOTA massively multilingual supervised models like LASER [12], LaBSE [54]

and LEALLA [123] in cross-lingual sentence retrieval tasks. Recently, research

has been delving into constructing MSE using LLMs through sentence-level con-

trastive objectives using parallel sentences, with promising results observed using

BLOOM models [180].

Conversely, supervised scenarios of multilingual NMT models is relatively

straightforward compared to MSE models. This is because the alignment nature

of MSE models supports a broader range of cross-lingual tasks, whereas multilin-

gual NMT models are typically confined to translation tasks. The effectiveness

of a multilingual NMT model is primarily measured by its ability to accurately

translate text between languages within the trained pairs and domains [48, 55].

Despite the promising performance of unsupervised multilingual NMT across var-

ious languages [97], largely due to the utilization of back-translation techniques

in an iterative manner for improvement [189], these models generally fall short

of their supervised counterparts that are trained on extensive parallel data. The

studies on multilingual NMT discussed in this thesis primarily focus on the su-

pervised paradigm, with evaluations conducted on trained language pairs [48, 55].

Zero-shot Scenarios

Zero-shot scenarios are a critical measure of a model’s capacity to generalize to

scenarios beyond its explicit training objectives, which serves as a robust indicator

of its ability to comprehend and accurately represent linguistic semantics outside

its trained scope. It is particularly vital for multilingual models, as it demon-

strates the extent to which capabilities acquired from training in high-resource

languages or domains can be effectively applied to previously unseen languages or

domains. Successfully achieving this transferability significantly reduces the neces-

sity for extensive training data across all targeted scenarios, thereby highlighting

the efficiency and adaptability of multilingual models across diverse languages and

domains.

The zero-shot capability of MSE models is typically assessed on unseen lan-

guage pairs within parallel sentence alignment tasks, extending to various cross-

lingual downstream tasks that depend on cross-lingual sentence alignment. This



10 CHAPTER 1. INTRODUCTION

includes zero-shot cross-lingual classification tasks, where a linear layer is fine-

tuned to adapt the MSE model to one language and then directly tested on an-

other. Such an approach evaluates the model’s proficiency in transferring knowl-

edge across languages by leveraging the well-aligned embedding space of pre-

trained MSE models. In terms of enhancing the generalizability of MSE models

in zero-shot scenarios, substantial research has been conducted. mUSE [245] was

a forerunner in this field, employing multi-task learning across multiple natural

language understanding (NLU) tasks. Simultaneously, LASER [12] adopted an

LSTM framework for training MSE models with translation objectives, demon-

strating effective generalization in zero-shot settings. Following this research,

Reimers and Gurevych [173] introduced SBERT-distill, showing that fine-tuning

from a monolingual English sentence encoder can yield a robust MSE model in

zero-shot settings. LaBSE [54] further indicated that language model pre-training

combined with AMS loss [244] can significantly enhance MSE models’ zero-shot

capabilities. This thesis includes evaluations in zero-shot scenarios to assess the

generalizability capabilities of trained MSE models, but with a particular focus

on addressing efficiency issues as outlined in Section 1.2.

For multilingual NMT, zero-shot inference involves testing the model’s profi-

ciency in translating between unseen language directions. This inference paradigm

is critical in understanding how well the model can leverage its learned linguistic

knowledge to translate between languages for which it has not been explicitly

trained. The accuracy and fluency of these translations are key indicators of

the model’s adaptability and potential to bridge linguistic divides in real-world

applications. Zero-shot translation is also a critical problem, as obtaining suf-

ficient training data for all translation directions is often impractical. A mul-

tilingual NMT model’s zero-shot translation performance usually benefits from

the encoder-side representations being language-independent and decoder-side

representations being language-specific. To achieve this, some studies have pro-

posed removing encoder-side residual connections [108] or introducing language-

independent constraints [4, 155, 7, 246, 120]. Other methods involve decoder pre-

training and back-translation [64, 261], denoising autoencoder objectives [228],

and encoder-side neural interlingua representations [113, 220, 270]. This thesis
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not only incorporates zero-shot translation to assess the effectiveness of multilin-

gual models but also introduces novel model architectures aiming at enhancing

zero-shot translation capabilities, as detailed in Section 1.2.

1.1.3 Connections across Sentence Alignment and Translation

Tasks

In the intricate landscape of NLP, the interconnectedness between sentence align-

ment and translation tasks plays a pivotal role. This section aims to elucidate

the symbiotic relationships and mutual influences these tasks exert on each other,

highlighting how advancements in one task can significantly benefit the other.

Firstly, the role of MSE models in facilitating translation corpus (i.e., parallel

corpus) construction is noteworthy. MSE models, designed to encode sentences

into meaningful, dense vectors, are instrumental in identifying parallel sentences

across languages. This capability is particularly beneficial in constructing cor-

pora for MT, especially in scenarios involving low-resource languages or domains

where traditional methods of corpus construction are challenging [184, 181]. By

efficiently aligning sentences from bilingual or multilingual corpora, these mod-

els not only enhance the quality of the MT training data but also expand the

potential for more accurate and diverse translations [42, 53].

Secondly, the assessment of multilingual NMT models often involves a close ex-

amination of the quality of encoder-side sentence embeddings [236, 108, 114, 120].

The encoder in an NMT model is responsible for comprehending and encoding

the source language into intermediate representations that the decoder can trans-

late. The effectiveness of this encoding process, which is essentially the quality

of the sentence embeddings, directly influences the translation’s accuracy. Thus,

evaluating the encoder’s ability to generate language-agnostic sentence embed-

dings can provide crucial insights into the overall performance and efficiency of

the multilingual NMT model.

Thirdly, the application of multilingual NMT models is not limited to di-

rect translation tasks; conversely, they play a crucial role in the construction

of MSE models. Multilingual NMT models, trained across a spectrum of lan-

guages, possess a unique ability to encode diverse linguistic inputs into a univer-
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sal representation space. By harnessing this capability, they can be effectively

employed to develop MSE models, which can be further employed for tasks re-

quiring cross-lingual semantic understanding, such as multilingual document clas-

sification or cross-lingual information retrieval. It is noteworthy that the LASER

series2 [12, 70] of MSE models have capitalized on this interconnectedness.

1.2 Challenges and Our Proposals

In the preceding sections, we introduced the backgrounds of multilingual repre-

sentation learning for MSE and multilingual NMT, delving into its foundational

concepts, methodologies, training and inference paradigms, and the synergistic

relationship between sentence alignment and translation tasks. Building upon

this foundation, this section transitions to address the key challenges encountered

in multilingual representation learning. Specifically, we identify three primary

challenges: high computational demands, data scarcity, and limitations in Trans-

former architecture. As illustrated in Figure 1.3, we propose innovative methods

to these challenges in subsequent chapters, with each challenge being the focus of

a distinct chapter. These approaches aim to pave the way for more robust and

efficient multilingual representation learning.

High Computational Demands

One of the most significant challenges is the high computational demands associ-

ated with expanding language support, a hurdle that becomes increasingly promi-

nent as the number of languages in a model grows. This thesis specifically con-

centrates on addressing this challenge within the context of MSE models. In the

realm of training MSE models for massively multilingual scenarios, mUSE [245]

pioneered this effort by training MSE for 16 languages, adopting the training

methodology of Chidambaram et al. [29]. Concurrently, LASER [12] utilized an

LSTM framework to train MSE for 93 languages, expanding upon Schwenk and

Douze [182]. Following this, Reimers and Gurevych [173] introduced SBERT-

distill, leveraging parallel sentences to distill multilingual capabilities from pre-

2https://github.com/facebookresearch/LASER
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trained English sentence encoders for 50 languages. LaBSE [54] further advanced

Yang et al. [244] by extending from bilingual scenarios to 109 languages using a

pre-trained masked language model. However, the use of a large amount of data

or inefficient model architectures results in heavy computation to train a new

massively multilingual model according to our desired languages and domains.

Concurrently, a model that supports a larger number of languages typically en-

compasses a greater number of parameters, leading to inefficient inference.

To tackle the challenge associated with expanding the language support in

training MSE models, we present innovative efficient MSE training methods in

Chapter 2. Specifically, we introduce efficient and effective massively multilingual

sentence embedding (EMS), using cross-lingual token-level reconstruction (XTR)

and sentence-level contrastive learning as training objectives. Compared with

related studies, the proposed model can be efficiently trained using significantly

fewer parallel sentences and GPU computation resources. To streamline the infer-

ence process for MSE models, we introduce a novel distilled MSE model, LEALLA,

in Chapter 3. Specifically, we systematically explore learning language-agnostic

sentence embeddings with lightweight models. We demonstrate that a thin-deep

encoder can construct robust low-dimensional sentence embeddings for 109 lan-

guages. With our proposed distillation methods, we achieve further improvements

by incorporating knowledge from a teacher model.

Data Scarcity

Data scarcity in low-resource languages also presents a critical obstacle, limiting

the efficacy and accuracy of multilingual models in these languages. This thesis

specifically focuses on this challenge in the context of multilingual NMT mod-

els. In addressing low-resource multilingual NMT, three main approaches have

emerged: cross-lingual transfer, using data from different or multiple language

pairs [273, 44, 48, 135]; data augmentation, notably back-translation to create

synthetic bilingual data from monolingual sources [51, 72, 189, 268]; and monolin-

gual pre-training, exemplified by the successes of GPT [166], BERT [46], and oth-

ers [153, 206, 248], and tailored for NMT tasks by MASS [204] and mBERT [110],

which jointly trains the encoder and decoder. However, the integration of mono-
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lingual linguistic knowledge and cross-lingual alignment information, which are

at finer granularities, remains underexplored. To address this gap, we propose

innovative methods aimed at enhancing cross-lingual signals in low-resource mul-

tilingual NMT.

We first present innovative methods detailing the integration of linguistic

knowledge to enhance multilingual representation in Chapter 4. Precisely, we

propose novel sequence-to-sequence pre-training objectives for low-resource NMT:

Japanese-specific sequence-to-sequence (JASS) for language pairs that involve

Japanese as the source or target, and English-specific sequence-to-sequence (ENSS)

for language pairs involving English. JASS focuses on masking and reordering

Japanese linguistic units known as bunsetsu, whereas ENSS is proposed based on

phrase structure masking and reordering tasks. Secondly, in Chapter 5, we delve

into the utilization of cross-lingual word alignments to augment encoder-side mul-

tilingual representation, focusing on both from-scratch training and fine-tuning of

multilingual NMT models. Specifically, we propose a word-level contrastive ob-

jective to leverage statistical word alignments for low-resource multilingual NMT,

without the requirement to use high-quality bilingual dictionaries. Additionally,

in Chapter 6, we extend our exploration to the application of word alignments in

the fine-tuning of LLMs for low-resource multilingual NMT tasks. In particular,

we introduce contrastive alignment instructions (AlignInstruct) to address the

challenge of the lack of data in low-resource languages. AlignInstruct emphasizes

cross-lingual supervision via a cross-lingual discriminator built using statistical

word alignments, which is empirically demonstrated superior to NMT instruction

tuning baseline methods.

Limitations in Transformer Architecture

Moreover, the issue of limitations in Transformer architecture for multilingual

tasks is prevalent, given that the widely-used Transformer [219] architecture was

originally designed for bilingual machine translation, specifically for English-French

translation tasks. This underscores the need for more specialized and effective de-

signs capable of addressing the complexities inherent in multiple languages. In this

thesis, our focus is on investigating the optimal model architecture for zero-shot



16 CHAPTER 1. INTRODUCTION

NMT, a critical inference scenario in the realm of multilingual NMT models. Re-

ferring to the introduction of backgrounds about zero-shot NMT in Section 1.1.2,

research focusing on exploring the optimal model architectures for zero-shot NMT

almost remains blank with the exception that the setting of Transformer residual

connections [108] was shown significantly to impact the performance of zero-shot

NMT, and the fixed-length interlingua representation was shown beneficial for

zero-shot NMT [270]. To this end, we delve into a closer look at the model archi-

tectures for zero-shot NMT in this thesis.

In Chapter 7, we unveil a novel Transformer architecture that constructs uni-

versal interlingua representations on top of Transformer encoder. This develop-

ment significantly enhances the performance of zero-shot NMT. More precisely,

we introduce a novel method to enhance neural interlingua representations by

making their length variable, thereby overcoming the constraint of fixed-length

neural interlingua representations introduced by previous work [270]. Moreover,

in Chapter 8, we comprehensively explore the effects of layer normalization on

zero-shot NMT. Our results demonstrate that post-layer normalization consis-

tently outperforms pre-layer normalization for zero-shot NMT, regardless of the

language tag and residual connection settings.



Chapter 2

EMS: Efficient and Effective

Massively Multilingual

Sentence Representation

Learning

Cross-lingual sentence representation (CSR) models [182, 52, 255, 46, 29, 12, 177,

40, 244, 245, 173, 38, 122, 54, 123] prove to be essential for downstream NLP tasks

like cross-lingual sentence retrieval and cross-lingual transfer without the need for

initial training and monolingual model. Thus, CSR models benefit low-resource

languages without sufficient training data.

A majority of the CSR training methods can be ascribed to one of the follow-

ing two categories: global fine-tuning or sentence embedding . global fine-tuning

methods indicate that for a specific downstream task, we conduct fine-tuning by

updating pre-trained language models e.g., mBERT [46], XLM [40], and XLM-

R [38]. The fine-tuning efficiency of this method group is determined by the

scale of the pre-trained model. Thus, the update of the large-scale parame-

ters of the pre-trained model tends to be the computation bottleneck for fine-

tuning. The computationally lite global fine-tuning methods have been explored

sufficiently either by compressing the model [98], training a student by knowl-

17
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edge distillation [178, 207, 80]. On the other hand, sentence embedding meth-

ods, e.g., LASER [12], aim to train the CSR that aligns the embedding space

across languages without further fine-tuning. For example, the English sentence

“I am a student.” should have an identical sentence embedding to its French trans-

lation, “Je suis un étudiant.” As a result, this group of methods can be efficiently

adapted to several cross-lingual downstream tasks by merely adding a multi-layer

perceptron without the need for tuning parameters within the pre-trained CSR

model. However, existing massively multilingual sentence embedding (MSE) mod-

els, LASER [12], SBERT-distill [173], and LaBSE [54], require a considerable

amount of data or inefficient model architectures, for which the efficient training

objectives have not been explored.

In this study, we present Efficient and effective massivelyMultilingual Sentence

embedding (EMS), a computationally lite and effective architecture for training

MSE, which ameliorates the data and computation efficiency to train an MSE

model according to our preferred domains or language groups and may have a

promising future for deploying MSE model training and adaptation on memory-

limited devices. In particular, we propose cross-lingual token-level reconstruction

(XTR) and sentence-level contrastive learning as training objectives. XTR cap-

tures the target token distribution information, whereas the contrastive objective

serves to recognize translation pairs. We claim that these two objectives effectively

construct the multilingual signals for learning MSE within the dual-encoder model

architecture, which results in highly efficient model training. Compared with pre-

vious MSE models in the massively multilingual scenario, EMS can be trained

using significantly fewer parallel data and less GPU consumption.

In contrast to our previous study [122], lightweight bilingual sentence repre-

sentation learning, we focus on exploring how to train a model efficiently and

effectively for a massively multilingual scenario in this work. To address this, we

tailor the model capacity for a large number of languages and introduce a language

embedding layer for the generative objective and a linear layer for the contrastive

objective. Furthermore, our findings indicate that the combination of the XTR

objective and the alignment-based sentence-level contrastive objective, as pro-

posed in our previous study, is advantageous for massively multilingual training.
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In contrast, the unified generative task (UGT) from our earlier work does not per-

form effectively in such a scenario. Notably, we discovered that the sentence-level

contrastive objective consistently enhances performance in cross-lingual retrieval

and classification tasks as jointly trained with XTR. This contrasts with our pre-

vious observation, where this objective was detrimental to classification tasks in

bilingual sentence embedding models. In addition, regarding model performance,

we validate the effectiveness of EMS with over 100 languages and more evaluation

benchmarks in this study, along with the contribution of each model component

via the ablation study.

Despite the small amount of training data and low-cost training, experimental

results demonstrate that the proposed EMS learned a robustly aligned multilin-

gual sentence embedding space. With regard to the Tatoeba [12] cross-lingual

similarity benchmark, EMS significantly achieves better results than LASER and

SBERT-distill and comparable results considering middle- and high-resource lan-

guages1 compared with LaBSE. Based on the results on Flores [62, 42] cross-

lingual similarity benchmark for non-English language pairs, we demonstrate

that EMS is completely language-agnostic while LASER is an English-dependent

model. Moreover, we evaluate the model performance for mining parallel sen-

tences [199, 195] from larger comparable corpora, including ParaCrawl [17] and

BUCC benchmarks [274, 275]. The experimental results show that EMS performs

better than SBERT-distill and comparably with LASER. Furthermore, we eval-

uate the language-agnostic representation based on three classification tasks in

a zero-shot manner, document genre classification based on MLDoc [183], and

sentiment classification based on two Amazon review datasets [162, 84]. Empir-

ical results show that EMS outperforms LASER and SBERT-distill on MLDoc

and one of the Amazon review datasets and yields comparable performance with

SBERT-distill and LaBSE on the other Amazon review dataset. In addition,

upon integrating LaBSE’s additive margin softmax (AMS) contrastive objective

into the EMS framework, while maintaining identical training data and model

architecture, we noted a decline in performance. This outcome suggests that the

effectiveness of AMS’s objective is heavily reliant on LaBSE’s extensive batch

1languages for which we possess over 300k parallel sentences for training data.
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size and training data. It also highlights the superior efficacy of the form of the

contrastive objective proposed in our study and the complementary nature of the

XTR generative objective.

The major contributions of this study are summarized as:

• The training architecture and objectives we developed were both efficient in

terms of data and computation, and they achieved improved or competitive

results in cross-lingual sentence retrieval and sentence classification tasks

when compared to other MSE models.

• We identified effective forms of generative and contrastive objectives, and

demonstrated that the proposed language embedding layers significantly

enhance MSE performance in massively multilingual scenarios, marking a

notable advancement from our previous study in bilingual settings.

• We revealed that incorporating temperature-based scaling and linear layers

within the contrastive objective offers a more effective approach for MSE

learning compared to the AMS-based contrastive objective used in LaBSE.

• We release the codes of the model training and the EMS model, which

supports 62 languages.

2.1 Related Work

In this section, we revisit the literature on recent MSE models and training ob-

jectives for developing MSE.

2.1.1 Multilingual Sentence Embedding

The pursuit of dense text embeddings has evolved significantly, beginning with

the advent of word vectors [128] and progressing to sentence embeddings. Initial

approaches, such as those by Arora et al. [9], advocated for the weighted average

of word embeddings to create sentence embeddings, establishing a robust base-

line. Subsequent efforts shifted towards leveraging neural models [39, 25] and

pre-trained Transformers [172, 144, 250, 226] as backbone architectures. Recent
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studies have predominantly focused on refining the training objectives with con-

trastive loss [266, 60, 85, 241, 57, 28] and on the strategic use of various training

datasets, often involving translation pairs [265]. More recently, the integration

of large language models (LLMs) [78] and prompting methods [205] have further

advanced the capabilities of sentence embedding models.

In the realm of multilingual contexts, Schwenk and Douze [182] pioneered the

concept of MSE, leveraging intermediate representations from LSTM [73] encoder-

decoder frameworks in neural machine translation (NMT). Concurrently, Grégoire

and Langlais [63] devised MSE by aligning outputs from LSTM dual encoders

(akin to Siamese networks [253]) into a unified representational space. Building

on this, España-Bonet et al. [52] experimented with sum pooling of NMT encoder’s

top hidden states, diverging from the max pooling and last hidden state approach

in Schwenk and Douze [182]. Yu et al. [255] introduced a training methodology

for MSE that combines bidirectional NMT losses and minimizes the Euclidean

distance between translation pair embeddings.

The transition to dual Transformer architectures replacing LSTM was initi-

ated by Guo et al. [66], who first utilized Transformers for constructing MSE in

bilingual settings. This was expanded by Chidambaram et al. [29], who incorpo-

rated multiple tasks such as conversational response [247], quick-thought [111],

natural language inference [21], and translation into the training regimen. Build-

ing on these efforts, Yang et al. [244] further refined the training objectives by

integrating an AMS loss, enhancing the approach proposed by Guo et al. [66].

Subsequently, research shifted towards massively multilingual contexts, aim-

ing to develop universal sentence embedding models supporting a large number

of languages, usually at least over 10 languages. mUSE [245] pioneered this effort

by training MSE for 16 languages, adopting the training methodology of Chi-

dambaram et al. [29]. Concurrently, LASER [12] utilized an LSTM framework

to train MSE for 93 languages, expanding upon Schwenk and Douze [182]. Fol-

lowing this, Reimers and Gurevych [173] introduced SBERT-distill, leveraging

parallel sentences to distill multilingual capabilities from pre-trained English sen-

tence encoders for 50 languages. LaBSE [54] further advanced Yang et al. [244] by

extending from bilingual scenarios to 109 languages using a pre-trained masked
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language model.

Concurrently, the training objectives for MSE continued to evolve. Goswami

et al. [61] proposed an unsupervised multi-task learning approach for training

MSE, eliminating the reliance on parallel sentences. Despite this innovation, their

results still fell short of massively multilingual supervised models like LASER

and LaBSE in cross-lingual sentence retrieval tasks. mSimCSE [232] adapted the

English monolingual SimCSE [57] to multilingual contexts, achieving performance

comparable to LASER and marginally below LaBSE. LEALLA [123] introduced a

method for distilling robust low-dimensional MSE from LaBSE using knowledge

distillation. This technique could similarly be applied to distill efficient MSE

from our EMS model. Recently, research has been delving into constructing MSE

using LLMs through sentence-level contrastive objectives, with promising results

observed using BLOOM models [180].

Recent research has also focused on incorporating word-level supervision in

the training of MSE alongside traditional sentence-level contrastive objectives.

Our previous work [122] introduced and validated the efficacy of a word-level

XTR objective in bilingual settings, and this study extends that approach to a

massively multilingual setting. Concurrently, Li et al. [102] developed a method

for training MSE across 36 languages, introducing a representation translation

learning task that utilizes contextualized token representations from one language

to reconstruct their counterparts in another language. This method resonates with

our focus on utilizing cross-lingual token-level signals to enhance MSE. Given the

simultaneous development of these methods, a comparative analysis with their

approach is reserved for future research.

In this study, we continue to focus on the exploration of effective objectives

for training MSE in massively multilingual contexts. We introduce the token-

level XTR and sentence-level contrastive objectives, ensuring enhanced training

efficiency and effectiveness on downstream tasks. The subsequent subsection will

detail the discussion of the training objectives for sentence embedding models.
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2.1.2 Training Objectives for Sentence Embedding Learning

This section provides an in-depth survey of two training objective types usually

used for constructing sentence embedding, followed by a comprehensive discussion

on the current state of research regarding these objectives within the context of

MSE.

Generative Objectives measure a generation probability of the token predic-

tion, via training a language model, which primarily contributes to the perfor-

mance of downstream tasks. BERT’s masked language model (MLM) [46] and

its variants [40, 174, 38] focused on optimizing the encoder-side token genera-

tion probability. Sequence-to-sequence learning used the encoder–decoder frame-

work to train either a translation task [182, 52, 12] or a sentence reconstruction

task [204, 167, 100] through optimizing the decoder-side token generation proba-

bility. Subsequently, sentence embedding could be constructed using the encoder-

side output for both groups of generative objectives.

Contrastive Objectives aim to transform the representation space by adjusting

the distance between the representations of tokens (or the sentences), which were

initially used jointly with the generative objectives to improve sentence representa-

tion learning. Next sentence prediction (NSP) in BERT [46], token discrimination

in ELECTRA [37], sentence discrimination in DeCLUTR [60], and hierarchical

contrastive objective in HICTL [235] were the typical ones. Recent research, no-

tably the SimCSE [57] study, has shown exceptional results by focusing solely on

training with contrastive objectives.

Referring to the evolution of MSE training objectives discussed in Section 2.1.1,

the contrastive objective has been widely adopted in MSE research, including

our prior work [122]. Yet, in massively multilingual contexts, the optimal vari-

ant of the contrastive objective remains uncertain. This study evaluates the

temperature-scaled contrastive objective inheriting our earlier work and contrasts

it with the AMS loss used in LaBSE. While generative objectives have typically

relied on translation tasks [12], these can be inefficient. Token-level generative

tasks built upon a dual-encoder framework offer greater efficiency and have been

less investigated. Therefore, we introduce the XTR objective into training for

massive MSE, enhancing it with a suitable form of contrastive objective through
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joint training, extending our previous research in the bilingual domain [122] to

a massively multilingual scenario. The only other concurrent study employing a

token-level generative objective is Li et al. [102], as mentioned in Section 2.1.1.

Another efficient paradigm of the generative objective for MSE was by knowledge

distillation introduced in SBERT-distill [173], which we treat as a baseline for

comparison in this study.

2.2 Proposed Methods

We conduct massively MSE learning by employing the dual Transformer encoder

as the backbone of the training framework. For the training objective, we propose

a novel cross-lingual training method, which jointly optimizes generative and con-

trastive objectives. We introduce cross-lingual token-level reconstruction (XTR)

as the generative objective and employ sentence-level self-supervised learning as

the contrastive objective. The training framework and objectives that we propose

are expected to learn a well-aligned representation space for multiple languages.

2.2.1 Architecture

We introduce the dual Transformer sharing parameters to encode parallel sen-

tences along with several multi-layer perceptrons (MLP) to extract cross-lingual

information and compute the generative and contrastive losses (Figure 2.1). We

use parallel corpora as the training data. First, we build monolingual sentence

representations u and v on top of a Transformer encoder. Two groups of the

MLP are employed to construct two training objectives. After completing the

model training, given a sentence in any language, we use the Transformer en-

coder to infer the language-agnostic sentence representation. We can implement

cross-lingual downstream tasks in a zero-shot manner using u or v, as they are

representations independent of the specific language.

Specifically, as shown in Figure 2.1, assume that we have a parallel corpus

C that includes multiple languages {l1, l2, ..., lN}, and each sentence pair S =

(Sl, Sl′) contains a sentence in language l and its translation in language l′, where

l, l′ ∈ {l1, l2, ..., lN}, as shown in the blue dashed box in Figure 2.1. We use the
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I am a student . Je suis un étudiant .

京都に住んでいる。

I am a student . Je suis un étudiant .

I love dancing .

I live in Kyoto .

我喜欢跳舞。
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Figure 2.1: Training architecture of EMS. u and v are language-agnostic sen-

tence representations for inference, and the model components in the red dashed

rectangle are used for inference. ula and ula are the target language token rep-

resentations. ⊕ denotes the hidden vector concatenation. A batch sample of the

training data is given in the blue dashed box. Orange arrows and dashed box de-

note the gold token distributions within the generative objective. The part within

the red dashed box indicates the pre-trained EMS model for downstream tasks.

dual Transformer encoder E sharing parameters to encode each sentence pair.

Assume that the Transformer encoder outputs of Sl are (hT
1 ,h

T
2 , ...,h

T
∥Sl∥), where

∥Sl∥ indicates the length of Sl. We use the mean-pooled hidden states as the

language-agnostic sentence representation u:

u =
1

∥ Sl ∥
∑
i

hi (2.1)

Similarly, we can obtain v for Sl′ .
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2.2.2 Generative Objective

Generative objective plays an essential role in MSE learning. SBERT-distill and

LaBSE use the pre-trained models as the model initialization; therefore, the pre-

trained language models for each language serve as generative objectives. LASER

finished the model training in one run without using any pre-training models, and

the translation objective serves as a cross-lingual generative objective. Inspired

by LASER, we include the generative objective for the one-run model training.

However, the presence of the Transformer decoder in LASER increases the com-

putational overhead. Instead, we propose a novel generative objective known as

cross-lingual token-level reconstruction (XTR) to improve the training efficiency

while retaining the quality of sentence representation, which circumvents using

the Transformer decoder.2

As we expect the XTR objective to measure a cross-lingual reconstruction loss,

it is necessary to notify the model what the target language is. Thus, we compute

a target language representation for each sentence by employing a language em-

bedding layer Lla to encode the target language token (e.g., < 2en > if the target

language is English). More precisely, for each sentence pair S = (Sl, Sl′),

ula = Wlahl′ (2.2)

vla = Wlahl (2.3)

where Wla ∈ Rdla×dvcb denotes the parameters of Lla. hl and hl′ respectively

denote the one-hot embedding of < 2l > and < 2l′ >. dla and dvcb denote the

dimension of the language embedding and the size of the vocabulary, respec-

tively. The incorporation of language embeddings effectively clarifies the target of

the XTR objective, particularly when transitioning from our previous bilingual-

focused study to a massively multilingual scenario.

Subsequently, we concatenate the language representation with the sentence

representation and use a fully connected layer Lfc to transform the concatenated

representation for extracting the cross-lingual information. Finally, we use another

2It should be noted that both LASER and our model have the potential for further enhance-

ment through language model pre-training. However, this aspect falls outside the scope of the

current study and is left for future work.
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linear embedding layer Lemb followed by Softmax to transform the representation

to present two probability distributions, which are formulated as:

qSl
= softmax(Wembσxtr(Wfc(ula ⊕ u) + bfc)) (2.4)

qSl′
= softmax(Wembσxtr(Wfc(vla ⊕ v) + bfc)) (2.5)

where Wemb ∈ Rdvcb×(dla+d), Wfc ∈ R(dla+d)×(dla+d), bfc ∈ Rdla+d, and d in-

dicates the dimension of u (or v). σxtr is the activation function in Lfc, for

which we use swish [169]. ⊕ indicates the concatenation over the first dimension.

In our previous study [122], we employed the identical parameters for Wemb as

that in the Transformer encoder. We demonstrate in this work that use different

parameters for Wemb would enhance further enhance the MSE in the massively

multilingual scenario (see Section 2.4.7).

Assume that Bi is a batch sampled from the training corpus C. Then, the

training loss of the XTR objective for the Bi is formulated as follows:

L(i)XTR =
∑
S∈Bi

(
DKL

(
pSl′

(W) ∥ qSl

)
+DKL

(
pSl

(W) ∥ qSl′

))
(2.6)

where DKL denotes KL-divergence and W indicates the vocabulary set. As illus-

trated in the orange dashed box in Figure 2.1, we use discrete uniform distribution

for the tokens in Sl to define pSl
. Specifically, for each w ∈W, pSl

(w) is defined

as:

pSl
(w) =


Nw

∥Sl∥
, w ∈ Sl

0, w /∈ Sl

(2.7)

where Nw indicates the number of words w in sentence Sl, and Nw is 1 in most

cases. ∥Sl∥ indicates the length of Sl. In other words, pSl
(W) is approximately

an average of one-hot embeddings of Sl’s tokens. Similarly, we can obtain the

definition of pSl′ (W).

Herein, we use the KL-divergence to measure the similarity between the token

distribution of the sentence in the target language and the model output of the

sentence in the source language and vice versa, which helps align the language-

agnostic representation space. In Section 2.4.7, we will demonstrate that this

objective also possesses good alignment abilities for non-English language pairs,
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even when trained on English-centric data, thanks to the exposure to multiple

languages during the training process.

Moreover, in our previous study [122], we introduced another generative objec-

tive known as the unified generative task (UGT) that combines XTR and single-

word MLM [122]. We will provide empirical results and analyses to show that

this objective is not relevant in the massively multilingual scenario and current

model architecture (see Section 2.4.7).

2.2.3 Contrastive Objective

Based on our previous study [122], we employ a sentence-level contrastive objec-

tive as an assisting objective to force the model to grasp similar information of

sentences across languages. We demonstrate that the sentence-level contrastive

objective is a beneficial model component to jointly assist the generative objec-

tive. In Section 2.4.7, we provide empirical shreds of evidence that this objective

plays a beneficial role in the generative objective introduced in Section 2.2.2.

Specifically, we employ in-batch sentence-level contrastive learning by dis-

criminating between positive and negative samples for each sentence. Given a

sentence, its translation (paired sentence in another language) is deemed as a

positive sample, whereas other sentences within the batch are used as negative

samples. Unlike our previous study, we employ temperature-based scaling and

add two fully-connected layers to decrease the dimension of the sentence repre-

sentation to compute the contrastive objective, following Chen et al. [27]. Assume

that Bi is a batch sampled from the training corpus C, and the j-th sentence pair

of Bi is S
(ij) = (S

(ij)
l , S

(ij)
l′ ). Then the sentence-level contrastive objective for Bi

is formulated as:

L(i)cntrs = −
∑

S(ij)∈Bi

(
log

exp (sim(S
(ij)
l , S

(ij)
l′ )/T )∑

S(ik)∈Bi

exp (sim(S
(ij)
l , S

(ik)
l′ )/T )

+ log
exp (sim(S

(ij)
l , S

(ij)
l′ )/T )∑

S(ik)∈Bi

exp (sim(S
(ik)
l , S

(ij)
l′ )/T )

) (2.8)

where T denotes a temperature hyperparameter to scale the cosine similarity.
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sim(Sl, Sl′) is defined as:

sim(Sl, Sl′) = cos(h(Sl),h(Sl′)) (2.9)

h(Sl) = W1σcntrs(W2u+ b2) + b1 (2.10)

h(Sl′) = W1σcntrs(W2v + b2) + b1 (2.11)

where W1 ∈ Rdcntrs×d and W2 ∈ Rd×d mean the weights of two fully-connected

layers, b1 ∈ Rdcntrs and b2 ∈ Rd mean the biases of two fully-connected layers,

and dcntrs < d. According to Chen et al. [27], we use ReLU [137] for σcntrs.

Our proposed objective diverges from LaBSE’s AMS contrastive loss by omitting

the additive margin and incorporating temperature-based scaling and linear lay-

ers prior to loss computation. We showcase the enhanced effectiveness of this

approach for MSE learning in Section 2.4.

In Mao et al. [122], moreover, we introduced a sentence similarity-based con-

trastive task. We discard that objective in this study because we found that it

has minimal impact on multilingual model training of EMS. This may be because

it relies on high-dimensional sentence embeddings (e.g., 1,024) to determine simi-

larities, while the sentence embedding dimension is reduced to a low-dimensional

size in the current model architecture after adding two fully-connected layers.

2.2.4 Joint Training

We train the model by jointly optimizing the losses of the proposed generative

and contrastive objectives. Specifically, we simultaneously train each batch with

Eqs. (2.6) and (2.8):

L(i) = 1

∥ Bi ∥
(L(i)XTR + L(i)cntrs) (2.12)

where ∥ Bi ∥ denotes the number of sentence pairs within batch Bi, namely, the

batch size. Both LXTR and Lcntrs play a dominant role in massively MSE training

(details are given in Section 2.4.7).

2.3 Model Training

In this section, we introduce the parallel corpora that we used to train language-

agnostic sentence representations and specific preprocessing and training details.



30 CHAPTER 2. EMS

Model af ar bg bn ca cs da de el eo es et eu fa fi fr

LASER 67k 8.2M 4.9M 913k 813k 5.5M 7.9M 8.7M 6.5M 397k 4.8M 5.3M 1.2M - 7.9M 8.8M

EMS (ours) 50k 4.9M 2.8M 606k 1.0M 3.3M 4.3M 5.6M 3.9M 683k 9.5M 2.7M 818k 5.1M 4.2M 8.7M

Model gl gu he hi hr hu hy id it ja jv ka kk ko ku lt

LASER 349k - 4.1M 288k 4M 5.3M 6k 4.3M 8.3M 3.2M - 296k 4k 1.4M 50k 3.2M

EMS (ours) 409k 0.3k 2.7M 199k 2.3M 3.2M 42k 2.6M 6.1M 2.9M 0.9k 229k 24k 1.9M 0.3k 2.2M

Model lv mk ml mn mr ms my nb nl pl pt ro ru sk sl sq

LASER 2M 4.2M 373k - 31k 2.9M 2k 4.1M 8.4M 5.5M 8.3M 4.9M 9.3M 5.2M 5.2M 3.2M

EMS (ours) 1.2M 2.4M 402k 26k 126k 1.9M 3k 46k 4.8M 3.2M 6.1M 3.0M 6.2M 2.8M 2.8M 2.1M

Model sr sv sw ta te th tl tr uk ur vi yo zh Total

LASER 4M 7.8M 173k 42k 33k 4.1M 36k 5.7M 1.4M 746k 4M - 8.3M 204M

EMS (ours) 2.4M 4.2M 41k 42k 30k 2.2M 45k 3.8M 1.5M 50k 2.6M 0.2k 6.6M 143M

Table 2.1: Number of parallel sentences in each language-used model for

training. Bold denotes fewer data used for training. Compared with LASER,

we use 60% of the training data in total, and we use significantly fewer parallel

sentences for 43 out of 61 language pairs. The total amount of the LASER training

data is calculated in these 61 languages.

2.3.1 Training Data

We collected parallel corpora for 62 languages from OPUS3 [214] (See Table 2.1).4

The 62 languages that we selected cover all the languages in Schwenk et al. [181]

and the languages of the cross-lingual generalization benchmark, XTREME [76].

While gathering each corpus, we used toolkits provided by Aulamo et al. [13]5

and Reimers and Gurevych [173].6 Specifically, we used the following corpora for

training:

Europarl is a parallel corpus extracted from the European Parliament website

by Philipp Koehn [89]. We used the entire corpus for each language pair.

GlobalVoices is a parallel corpus of news stories from the website Global Voices

compiled and provided by CASMACAT.7 We used the entire corpus for each

language pair.

NewsCommentary is a news commentary parallel corpus provided by WMT8

for training statistical machine translation. We used the entire corpus for each

3https://opus.nlpl.eu/
4We do not distinguish between traditional and simplified Chinese.
5https://github.com/Helsinki-NLP/OpusTools
6https://github.com/UKPLab/sentence-transformers
7http://casmacat.eu/corpus/global-voices.html
8https://statmt.org/
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language pair.

OpenSubtitles is a parallel corpus of movie subtitles collected from the website

of opensubtitles.org [107]. Considering that the lengths of most sentences are

short, we used at most 2M sentence pairs for each language pair to control the

training data size.

Ted is a parallel corpus comprising TED talks. We used the 2020 version crawled

by Reimers and Gurevych [173], which includes 4000 TED talks for each language

pair available.

UNPC United nations parallel corpus of six languages [271]. We used 5M sen-

tence pairs for en–ru and 2M sentence pairs for other language pairs.9

WikiMatrix is a parallel corpus crawled by Schwenk et al. [181]. We used the

entire corpus for each language pair.

Tatoeba is a parallel corpus gathered from Tatoeba’s website,10 the language

learning supporting website. As training on the Tatoeba benchmark will proba-

bly improve the evaluation performance on the Tatoeba benchmark [12], following

Reimers and Gurevych [173], we excluded the training data of Tatoeba for most

language pairs. Only for the language pairs that are not included in the afore-

mentioned corpora, we used Tatoeba corpora.

The aforementioned training data leads to a 143M parallel corpus. As listed in

Table 2.1, we used much fewer data for 43 languages than LASER. Moreover, we

excluded the JW300 [1] corpus and pruned OpenSubtitles and UNPC corpora and

included less training data than SBERT-distill.11 In the next section (Section2.4),

we will show that our model yields better or comparable sentence representation

performance, compared with LASER and SBERT-distill. Considering our model’s

ability to deliver superior outcomes with reduced training data, it becomes feasible

to extend our model to accommodate more low-resource languages, even with

limited data availability.

9As the number of en–ru sentence pairs from other parallel corpora is relatively small, we

used more for data for en–ru to balance the size for different language pairs.
10https://tatoeba.org/
11Reimers and Gurevych [173] used JW300 and all of the entire corpora we used.
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Hyperparameters Values

number of the Transformer layers 2, 4, 6, 12

Transformer hidden dropout 0.0, 0.1, 0.3

Transformer attention dropout 0.0, 0.1

T 0.01, 0.1, 0.2, 0.5, 1.0

learning rate 1e-4, 3e-4, 5e-4, 1e-3

weight decay 0.0, 1e-5, 1e-4, 1e-3

warm-up steps 0, 5,000, 10,000, 20,000

Table 2.2: Values of the hyperparameters tuned by grid search. Bold

denotes the best hyperparameter combination.

2.3.2 Preprocessing Details

For the parallel corpus containing 62 languages, we removed the sentences that

appear in any evaluation dataset (see Section 2.4). We tokenized Chinese using

jieba12 and Japanese using Jumanpp13 [130, 215], as the application of language-

specific word segmentation for Japanese and Chinese has been shown to enhance

performance across various tasks, including NMT [163, 119, 93, 118, 116] and

MLM pre-training [40, 238]. We used Moses tokenizer for other languages.14

We converted all the sentences to lowercase. Subsequently, we applied Sentence-

Piece15 [94] to convert words to subwords, which leads to a vocabulary with 60k

tokens.16 Finally, we add 62 language tokens (e.g., < 2en >, < 2fr >, ...) to the

60k vocabulary.

12https://github.com/fxsjy/jieba
13https://github.com/ku-nlp/jumanpp
14https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/

tokenizer.perl
15https://github.com/google/sentencepiece
16SBERT-distill used a vocabulary of 250k tokens, which significantly improved the model

parameters. In contrast, we used 60k, which is comparable with LASER’s 50k vocabulary.
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2.3.3 Training Details

We employed Transformer encoder [219] as the basic unit of the training architec-

ture (Figure 2.1). We conducted a grid search for optimal hyperparameter com-

binations by observing the validation loss on the WikiMatrix validation datasets

(Table 2.2).

As a result, the dual Transformer encoder sharing parameters has 6 layers,

16 attention heads, a hidden size of 1,024, and a feed-forward size of 4,096. The

Transformer encoder can be substituted by encoders with other structures. d,

dvcb, dla, and dcntrs are 1,024, 60,000, 128, and 128, respectively. We set 0.1 for

the temperature T of the contrastive objective.

For the model training, we fed the parallel sentences into the dual Transformer

encoder and truncated the sentences up to 120 tokens.17 We trained three epochs

for the entire training corpus with the Adam optimizer [86], the learning rate of

0.0003 with the linear warm-up strategy of 10,000 steps, a weight decay of 0.00001,

and a dropout18 of 0.1 for the Transformer encoder. We used four V100 GPUs to

conduct the model training with a batch size of 152 parallel sentences.

2.3.4 Efficiency Comparison with Competing Models

The superior efficiency of EMS stems from two key aspects: data efficiency and

computation efficiency. In terms of data efficiency, as listed in Table 2.3, the pro-

posed method includes 143M parallel sentences for model training, which is sig-

nificantly less than those of other massive MSE models. Nevertheless, as demon-

strated in Section 2.4, the reduced data for EMS results in a comparable or even

improved model.

In terms of training efficiency, we employed the dual Transformer architecture

as the basic model unit, whereas LASER required the encoder-decoder architec-

ture to perform the translation task, where the presence of the decoder decreased

17Although LASER and SBERT-distill allowed much longer sentences during the training

phase, we demonstrate that 120 tokens are sufficient for a single sentence with complete semantics.

For the evaluation, documents longer than 120 tokens can be separated into several sentences,

which would not limit the usage of our model.
18the hidden and attention dropouts
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Model #Langs #Paral Mono Archit. #Param.

LASER 93 223M Seq2seq-LSTM 148M

SBERT-distill 50 >>223M
√

Dual-Trans 270M

LaBSE 109 6B
√

Dual-Trans 471M

EMS (ours) 62 143M Dual-Trans 147M

Table 2.3: Comparison between related studies and the proposed EMS.

“#Langs” and “#Paral” denote the number of languages the model supports and

the number of parallel sentences used for training, respectively. “Mono” means

whether the model incorporated monolingual data for training; “Archit.” denotes

the model architecture; “#Param.” indicates the number of model parameters.

training efficiency. This indicates that the proposed model is an alternative to

LASER, whereas SBERT-distill and LaBSE are complementary because the dis-

tillation from the English-SBERT and the use of the pre-trained model of LaBSE

are feasible to be combined with the proposed training objectives. By leveraging

a pre-trained model for initialization, EMS could potentially see further improve-

ments. In this study, we do not use pre-trained models for comparison, as LaBSE’s

pre-trained model is not publicly accessible. Instead, we integrate LaBSE’s AMS

loss into our EMS framework, maintaining consistency in training data and model

architecture, to determine the most efficient and effective training objective. For

detailed configurations and results, please refer to Section 2.4.

With regard to the specific training time, the loss nearly converged after being

trained for 0.5 epochs (122,196 steps) and converged completely after 3 epochs

(733,176 steps), whereas LASER is trained for 17 epochs till convergence. Con-

cerning the training time, SBERT-distill and LaBSE rely on large-scale pre-trained

models; thus, their fine-tuning requires heavy computation as operating forward-

ing on large-scale models. LASER is trained with 80 V100 GPU×days, while our

EMS requires 5 V100 GPU×days to nearly converge and 20 V100 GPU×days
to converge fully, which indicates 4∼16 times speedup of EMS compared with

LASER. In Section 2.4.7, we delve deeper into the training efficiency of each

model component, demonstrating that the proposed generative and contrastive
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objectives, along with the language embedding and linear layers for the contrastive

objective, can be implemented efficiently without significantly increasing compu-

tational demands in a dual-encoder architecture.

In terms of inference efficiency, which can vary significantly depending on

computational resources, we do not report the absolute time required for inference.

As indicated in Table 2.3, our model has the fewest parameters, resulting in

the quickest embedding inference time compared to LASER, SBERT-distill, and

LaBSE. However, this does not lead to faster application in downstream tasks,

as the embedding dimension remains at 1,024, identical to LASER and larger

than 768 of both SBERT-distill and LaBSE. To enhance efficiency in downstream

applications, the distillation technique from LEALLA [123] could be employed to

create a lower-dimensional version of EMS with comparable performance.

In addition, other previous studies on learning language-agnostic sentence rep-

resentation models [66, 29, 244], and mUSE [245], propose the training objective

of distinguishing the positive translation from several hard negative samples. The

heavy computation load of hard negative samples for each sentence limits the

feasibility of their methods to a small number of languages, i.e., fewer than 16.

2.4 Evaluation

In this section, we evaluate the performance of the language-agnostic sentence rep-

resentation on two groups of downstream tasks. On the one hand, without any

further fine-tuning, we test the parallel sentence retrieval capability of the model

using the cosine similarity between sentences. We evaluate this based on the fol-

lowing four tasks: Tatoeba benchmark [12], Flores benchmark [62, 42], BUCC

benchmark [274, 275], and cross-lingual sentence retrieval on the ParaCrawl cor-

pus [17]. On the other hand, by fine-tuning a simple multi-layer perceptron, we

evaluate the model performance based on three cross-lingual sentence classifica-

tion tasks in a zero-shot manner. Three evaluation tasks include the MLDoc

benchmark [183] and cross-lingual sentiment classification on two versions of the

multilingual Amazon review corpora [162, 84]. The former group of the evaluation

measures the alignment performance of the language-agnostic sentence representa-



36 CHAPTER 2. EMS

tion space, whereas the latter group evaluates the fundamental natural language

classification ability of the model. More complicated cross-lingual natural lan-

guage understanding (XNLU) tasks, e.g., XNLI [41] and XQuAD [38], have been

comprehensively proven to perform better with cross-lingual language model pre-

training and fine-tuning in XTREME [76], while fixed representation models are

not competent to address such tasks [12]. Thus, we do not include the evalua-

tion of XNLU in this study. Furthermore, we analyze the effectiveness of each

component of the model structure based on an ablation study.

For all the evaluation tasks, we compare the following massively multilingual

sentence representation models:

LASER [12] employed the BiLSTM encoder-decoder to train MSE for 93 lan-

guages by optimizing the translation task. 223M parallel sentences are used for

training.

SBERT-distill [173] trained MSE for 50 languages by distilling the monolingual

pre-trained encoder. Our training data are a subset of their data (Section 2.3.1).

“paraphrase-xlm-r-multilingual-v1” is used for evaluation.19

LaBSE [54] trained MSE for 109 languages by fine-tuning the sentence-level

contrastive task from mBERT. We italicize this model in the following tables

(results) as the upper bound performance on downstream tasks because a large

number of parallel sentences, 6B, are used for training. LaBSE continues to be

the leading state-of-the-art model for parallel sentence retrieval in a massively

multilingual scenario.

EMS (ours) We trained an MSE model for 62 languages. We used significantly

less training data, thus less computation overhead, than those used in the previous

study. The proposed model can be easily trained from scratch with competitive

MSE performance.

LaBSE-EMS-vanilla In our EMS model architecture, we implement the AMS

loss of LaBSE for learning MSE, a variant of the contrastive loss originally intro-

duced in Yang et al. [244]. We substitute the standard contrastive loss in EMS

with AMS, setting the margin to 0.3 without temperature-based scaling and linear

19https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/

paraphrases
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layers upon sentence embedding.

LaBSE-EMS-scaled In this setting, based on LaBSE-EMS-vanilla, AMS is fur-

ther applied with temperature-based scaling and linear layers on top of the sen-

tence embeddings, as introduced in Section 2.2.3.

LaBSE-EMS-joint (ours) This setting evaluates the compatibility of the scaled

AMS contrastive loss with our XTR generative loss within the EMS framework,

combining LaBSE-EMS-scaled and XTR.

LaBSE-EMS-vanilla, LaBSE-EMS-scaled, and LaBSE-EMS-joint (ours) are

for identifying the most effective contrastive loss for MSE learning and to assess

the compatibility of LaBSE’s AMS with EMS’s XTR objectives. We also include

the results of LASER2 [70] on Tatoeba20, mUSE [245] on Tatoeba and BUCC,

and LaBSE-bilingual [244] on BUCC benchmarks for comparison.21 LASER2

is a more recent version of the LASER model, incorporating SentencePiece [94]

instead of BPE tokenization [190], trained with Transformer architecture, and can

yield improved results for low-resource languages. On the other hand, mUSE is a

universal sentence encoder model that is only compatible with 16 languages. In

this study, we do not include LASER3-related models [70, 209] in our analysis, as

their focus on adapting existing models to low-resource languages by language-

specific parameters diverges from our objective of identifying efficient and effective

objectives for one-for-all models.

2.4.1 Tatoeba Similarity Search

We use Tatoeba benchmark [12] to evaluate the cross-lingual alignment between

English and other 58 languages.22 Specifically, given a sentence in language l1,

we retrieve its translation from several sentences in language l2. We use cosine

similarity for retrieving sentences and report the average P@1 of l1 → l2 and

l2 → l1 because both directions show similar precision considering a language

pair.

20As LASER2 only outperforms LASER in a handful of low-resource languages (See Sec-

tion 2.4.1), we solely present the findings on Tatoeba.
21mUSE serves as a crucial baseline on Tatoeba and BUCC for high-resource languages that

have been utilized in previous studies [173, 54, 122].
22my, yo, and gu are not included in the Tatoeba benchmark.
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Model afr ara ben bul cat ces cmn dan deu ell epo est eus fin fra

LASER 89.5 92.0 89.6 95.0 95.9 96.5 95.4 96.0 99.0 95.0 97.2 96.7 94.6 96.3 95.6

LASER2 85.5 85.8 87.2 90.3 92.4 93.1 69.2 90.3 93.7 93.2 90.5 93.2 85.2 89.3 92.0

SBERT-distill 84.5 87.7 77.6 94.0 96.4 96.3 95.0 96.2 98.7 95.5 68.8 95.8 48.6 96.4 94.7

LaBSE-EMS-vanilla 27.1 25.5 18.1 45.7 32.1 38.8 31.5 41.9 54.2 41.1 37.8 32.8 21.1 33.9 40.1

LaBSE-EMS-scaled 90.3 89.7 88.0 91.4 96.0 96.3 94.3 95.1 99.4 95.4 98.0 96.6 93.6 96.1 95.6

LaBSE-EMS-joint (ours) 93.1 93.0 89.5 95.6 97.2 97.5 95.4 96.3 99.1 96.5 98.6 97.7 95.1 97.1 96.3

EMS (ours) 94.0 93.9 83.8 95.8 97.0 97.4 95.9 97.0 99.3 96.5 98.9 97.8 94.9 98.0 96.2

LaBSE 97.4 91.0 91.3 95.7 96.5 97.5 96.2 96.4 99.4 96.6 98.4 97.7 95.8 97.0 96.0

Model glg heb hin hrv hun hye ind ita jav jpn kat kaz kor kur lit

LASER 95.5 92.2 94.7 97.2 96.0 36.1 94.5 95.3 22.9 90.7 35.9 18.6 88.9 17.2 96.2

LASER2 88.9 84.6 88.3 94.1 90.5 81.8 88.1 92.3 17.1 88.2 69.6 38.4 77.7 12.1 92.9

SBERT-distill 96.0 88.4 96.4 97.0 94.7 91.3 94.1 94.9 37.3 94.2 91.4 73.7 90.1 43.7 95.8

LaBSE-EMS-vanilla 30.2 30.2 19.5 39.1 32.3 10.6 40.5 44.9 11.5 25.1 8.1 8.3 17.4 11.2 31.8

LaBSE-EMS-scaled 95.6 89.6 92.5 96.8 96.6 81.2 94.4 93.5 43.9 93.7 64.1 55.7 88.4 22.3 96.1

LaBSE-EMS-joint (ours) 96.9 92.2 95.2 97.5 97.6 85.0 95.8 96.3 49.0 95.3 70.1 60.3 90.8 27.4 96.8

EMS (ours) 97.1 92.5 93.4 97.5 97.4 87.8 95.8 96.7 55.6 95.8 73.5 63.8 92.3 31.3 97.3

LaBSE 97.2 93.0 97.7 97.8 97.2 95.0 95.3 94.6 84.4 96.4 95.9 90.5 93.5 87.1 97.3

Model lvs mal mar max mkd mon nld nob pes pol por ron rus slk slv

LASER 95.4 96.9 91.5 50.9 94.7 8.2 96.3 98.8 93.4 97.8 95.2 97.4 94.6 96.6 95.9

LASER2 92.2 95.1 89.5 30.3 89.2 2.8 92.4 86.9 84.1 91.2 92.4 93.0 91.2 93.9 91.1

SBERT-distill 96.4 94.0 91.0 58.5 92.2 91.7 96.0 98.0 94.8 97.0 94.8 96.4 93.5 96.2 95.5

LaBSE-EMS-vanilla 31.5 17.6 17.8 14.1 30.8 8.1 42.6 32.5 26.3 34.6 49.2 39.3 41.7 38.3 35.4

LaBSE-EMS-scaled 94.9 95.7 90.8 60.4 93.6 68.4 96.5 95.5 94.7 96.7 94.5 96.8 94.7 96.7 95.3

LaBSE-EMS-joint (ours) 96.7 97.1 94.3 66.2 96.4 72.0 97.7 97.4 95.6 98.1 96.1 98.0 95.6 97.7 96.7

EMS (ours) 96.9 77.8 88.2 69.9 97.0 73.9 97.7 97.5 96.0 98.2 95.9 97.9 95.2 97.5 97.1

LaBSE 96.8 98.9 94.8 71.1 94.8 96.6 97.2 98.9 96.0 97.8 95.6 97.8 95.3 97.3 96.7

Model spa sqi srp swe swh tam tel tgl tha tur ukr urd vie Avg.

LASER 98.0 98.0 95.3 96.6 57.6 69.4 79.7 50.6 95.4 97.5 94.5 81.9 96.8 84.7

LASER2 93.4 94.9 89.5 92.1 44.4 77.9 93.6 50.1 92.1 95.3 91.5 71.9 89.9 81.5

SBERT-distill 98.0 97.5 93.8 95.7 27.6 85.7 89.1 32.4 96.3 97.2 94.3 92.2 97.2 87.7

LaBSE-EMS-vanilla 47.2 38.3 33.9 36.5 4.1 9.4 7.5 8.9 32.9 36.4 37.4 9.9 35.8 29.0

LaBSE-EMS-scaled 98.5 97.9 95.8 95.4 37.1 69.7 64.1 76.6 95.0 97.8 94.7 76.3 96.5 87.6

LaBSE-EMS-joint (ours) 98.7 98.4 96.0 96.5 45.9 74.6 74.8 82.1 96.8 99.0 96.0 84.2 97.5 90.0

EMS (ours) 98.6 98.4 96.4 97.0 53.2 52.8 69.7 84.8 97.4 98.6 96.0 86.0 97.7 89.8

LaBSE 98.4 97.6 96.2 96.5 88.6 90.7 98.3 97.4 97.1 98.4 95.2 95.3 97.8 95.3

Table 2.4: P@1 results on Tatoeba benchmark. Bold fonts denote the best

precisions among all the models except LaBSE. We report the average precision

of the English→X and X→English for each language.

As shown in Table 2.4, in most languages, EMS achieves better retrieval pre-

cision than LASER, LASER2, SBERT-distill, LaBSE-EMS-vanilla, LaBSE-EMS-

scaled, and performs comparably with LaBSE-EMS-joint. Observing the aver-

age score, 89.8, significantly outperforms LASER’s 84.7, LASER2’s 81.5, LaBSE-

EMS-vanilla’s 29.0, and is slightly higher than SBERT-distill and LaBSE-EMS-

scaled.
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Model mUSE (15) XTREME (38) SBERT-distill (48) <LASER (43) >300k (42) <300k (11)

mUSE 93.9 - - - - -

LASER 95.1 84.2 - 89.6 94.4 58.3

LASER2 89.0 80.6 - 85.0 88.9 66.4

SBERT-distill 94.9 85.5 94.8 - 92.1 73.3

LaBSE-EMS-vanilla 37.4 27.3 33.0 31.6 34.8 12.0

LaBSE-EMS-scaled 94.9 86.0 93.0 89.1 94.2 67.7

LaBSE-EMS-joint (ours) 96.3 88.8 94.8 91.4 95.7 73.0

EMS (ours) 96.6 88.2 95.0 91.8 95.4 72.0

LaBSE 96.2 94.7 - - 95.8 93.9

Table 2.5: Average P@1 results of different groups of the languages on

Tatoeba benchmark. Bold are the best precisions among all the models except

LaBSE. “mUSE,” “XTREME,” and “SBERT-distill” denote the 15, 38, and 48

languages that the respective model or benchmark includes. “<LASER” denotes

the 43 languages that use less training data than LASER. “>300k” and “<300k”

indicate that LASER, LASER2, and EMS (the proposed model) include more than

or less than 300k parallel sentences for training. Refer to Table 2.1; “>300k” and

“<300k” contain 42 and 11 languages, respectively.

We further summarize the results of Table 2.4 in Table 2.5. First, with regard

to 15 main languages that mUSE [245] supports, our model achieves the best

retrieval prevision, even better than LaBSE, which leveraged 6B training data and

used a large batch size of 4,096 sentences. Second, with regard to 38 languages that

XTREME [76] supports, 48 languages that SBERT-distill supports, 43 languages

for which we use less training data than LASER, and 42 languages for which

all the models used training data over 300k, EMS consistently obtains higher

retrieval precision than LASER, LASER2, SBERT-distill, LaBSE-EMS-vanilla,

LaBSE-EMS-scaled, and performs on par with LaBSE-EMS-joint.

In addition, we observe similar results as compared with LaBSE for languages

in which we used over 300k parallel sentences. This highlights the proposed

model’s efficiency in terms of data usage and computational resources for middle-

and high-resource languages. Finally, with regard to 11 low-resource languages for

which less than 300k training data are used in LASER, LASER2, LaBSE-EMS-

vanilla, LaBSE-EMS-scaled, LaBSE-EMS-joint and EMS, EMS significantly out-

performs than LASER, LASER2, LaBSE-EMS-vanilla, and LaBSE-EMS-scaled,
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Model amh ang arq arz ast awa aze bel ber bos bre cbk ceb cha

LASER 42.0 37.7 39.5 68.9 86.2 36.1 66.0 69.6 68.2 96.5 15.8 77.0 15.7 29.2

LASER2 69.4 14.2 22.5 53.7 68.9 24.7 63.4 56.4 72.0 95.1 23.4 57.8 6.6 12.0

SBERT-distill 67.9 25.0 30.6 63.7 78.3 46.5 85.0 86.9 6.8 95.8 10.1 69.4 11.7 25.9

LaBSE-EMS-vanilla 1.5 17.9 4.7 13.9 36.6 5.6 8.2 14.5 1.9 46.8 3.1 11.7 6.4 13.9

LaBSE-EMS-scaled 2.1 32.5 33.9 66.4 82.7 48.3 49.1 51.5 4.8 95.9 6.5 69.8 22.6 29.9

LaBSE-EMS-joint (ours) 2.4 43.7 46.0 76.6 89.0 56.5 58.8 66.0 7.3 96.6 11.3 80.6 27.1 40.9

EMS (ours) 0.6 47.4 48.7 77.7 88.2 56.1 62.1 70.3 7.6 96.6 12.0 80.6 30.1 46.4

LaBSE 94.0 64.2 46.2 78.4 90.6 73.2 96.1 96.2 10.4 96.2 17.3 82.5 70.9 39.8

Model cor csb cym dsb dtp fao fry gla gle gsw hsb ido ile ina

LASER 7.5 43.3 8.6 48.0 7.2 71.6 51.7 3.7 5.2 44.4 54.5 83.7 86.2 95.2

LASER2 4.9 23.9 5.9 37.2 4.0 49.1 34.4 2.1 3.8 28.6 38.6 66.4 82.0 85.1

SBERT-distill 5.1 40.5 34.9 51.9 7.3 50.8 58.4 7.5 18.6 36.8 57.6 56.0 70.5 87.9

LaBSE-EMS-vanilla 2.1 14.8 3.0 12.8 2.0 9.4 17.3 1.3 2.5 20.1 15.2 16.1 23.9 26.6

LaBSE-EMS-scaled 4.5 50.8 9.5 50.3 6.2 30.3 55.8 3.4 4.2 39.3 58.5 77.5 76.6 88.2

LaBSE-EMS-joint (ours) 6.5 64.2 13.7 65.0 8.2 39.1 65.6 6.0 7.8 50.0 73.0 84.5 82.3 93.4

EMS (ours) 7.8 69.2 16.3 69.7 9.5 47.3 63.9 6.8 7.8 54.7 79.0 88.1 86.4 94.0

LaBSE 12.8 56.1 93.6 69.3 13.3 90.6 89.9 88.8 95.0 52.1 71.2 90.9 87.1 95.8

Model isl kab khm kzj lat lfn mhr nds nno nov oci orv pam pms

LASER 95.6 58.1 20.6 7.2 58.5 64.5 10.4 82.9 88.3 66.0 61.2 28.1 6.0 49.6

LASER2 90.8 60.8 65.4 2.9 46.5 44.5 5.4 64.7 55.5 53.7 45.4 19.2 2.8 28.7

SBERT-distill 75.8 2.7 64.8 8.0 28.0 57.7 11.9 50.7 89.3 58.8 52.4 33.4 7.0 44.3

LaBSE-EMS-vanilla 2.7 2.2 1.0 2.2 5.9 16.8 2.6 13.7 16.2 22.6 9.5 5.0 1.5 10.7

LaBSE-EMS-scaled 11.7 3.6 1.6 6.2 28.8 57.6 9.2 60.4 75.0 66.9 54.2 36.7 6.9 48.4

LaBSE-EMS-joint (ours) 17.9 4.2 1.1 9.2 43.6 68.1 14.2 70.7 81.5 74.3 64.6 47.1 12.7 60.0

EMS (ours) 22.2 4.7 1.2 10.4 46.4 72.1 14.5 73.7 84.9 75.7 67.4 50.1 14.2 67.7

LaBSE 96.2 6.2 83.2 14.2 82.0 71.2 19.2 81.2 95.9 78.2 69.9 46.8 13.6 67.0

Model swg tat tuk tzl uig uzb war wuu xho yid yue zsm Avg.

LASER 46.0 31.1 20.7 44.7 45.2 18.7 13.6 87.7 8.5 5.7 90.0 96.4 47.5

LASER2 29.9 20.2 14.8 40.9 38.2 15.7 5.4 52.4 3.9 3.4 64.9 89.0 38.3

SBERT-distill 33.9 17.8 24.1 41.3 65.5 32.6 11.4 82.7 11.6 52.7 84.4 95.6 44.9

LaBSE-EMS-vanilla 15.6 3.6 9.6 11.5 1.4 6.5 2.1 8.2 7.0 0.8 9.0 40.5 10.8

LaBSE-EMS-scaled 47.3 16.2 26.1 52.4 4.3 17.8 19.3 72.6 7.4 4.4 67.5 96.1 38.0

LaBSE-EMS-joint (ours) 56.7 22.4 29.8 59.1 6.8 24.1 27.5 82.1 9.5 9.6 76.9 96.7 45.0

EMS (ours) 58.9 25.7 30.5 61.1 8.1 23.7 28.7 82.9 8.5 11.6 78.9 97.0 47.1

LaBSE 65.2 87.9 80.0 63.0 93.7 86.8 65.3 90.3 91.9 91.0 92.1 96.9 70.2

Table 2.6: P@1 results of EMS’s unseen languages on the Tatoeba bench-

mark. Bold fonts denote the best precisions among all the models except LaBSE.

We report the average of the English→X and X→English for each language.

whereas it is comparable with SBERT-distill and LaBSE-EMS-joint.23

Furthermore, we evaluate the other 54 unseen languages of our model (Ta-

ble 2.6). Although few languages are trained in LASER and LASER2, we observe

that EMS and LaBSE-EMS-joint still yield results comparable with LASER and

significantly better than LASER2 for these 54 languages. This indicates that EMS

has cross-lingual transferability for unseen languages to a certain extent with the

joint vocabulary.

23LASER, LASER2, LaBSE-EMS-x and EMS utilized less than 300k training data in the

“<300k(11)” setting, whereas SBERT-distill and LaBSE significantly used more training data.
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Model mUSE (182) af-gu hi-hy jv-ka kk-mr my-nb sw-ta te-tl ur-yo <300k (240)

LASER 62.8 0.4 2.7 1.3 1.6 0.8 6.0 4.6 1.1 5.9

SBERT-distill 99.7 84.7 99.1 46.6 82.5 97.3 14.6 23.2 18.3 60.6

LaBSE-EMS-joint (ours) 99.7 13.6 89.6 39.3 72.7 3.5 32.7 38.0 20.1 46.6

EMS (ours) 99.7 8.9 89.6 38.7 68.6 6.5 39.0 39.2 20.6 47.0

LaBSE 99.1 100.0 100.0 99.9 99.7 99.5 100.0 99.9 91.7 98.9

Table 2.7: Average P@1 results of non-English language pairs on Flores

benchmark. Bold are the best precisions among all the models except LaBSE.

“mUSE” and “<300k” respectively denote 182 high-resource and 240 low-resource

language pairs. We additionally report the specific results of 8 randomly selected

low-resource language pairs.

In summary, the presented results on Tatoeba benchmarks highlight two key

points: (1) EMS demonstrates superior data and computational efficiency, sur-

passing LASER, LASER2, and SBERT-distill; (2) AMS (i.e., LaBSE’s contrastive

loss) is not an appropriate form of contrastive loss in a dual-encoder framework,

while temperature-based scaling and linear layers, as introduced in our contrastive

loss (Section 2.2.3), facilitate the effectiveness of AMS, showing that AMS is com-

patible with our framework under certain changes. More precisely with the second

point, the poor performance of LaBSE-EMS-vanilla demonstrates that LaBSE’s

AMS contrastive loss is dependent on LaBSE’s extensive training data and large

batch sizes. However, the incorporation of temperature-based scaling and linear

layers (LaBSE-EMS-scaled) can enhance AMS’s performance within EMS’s ef-

ficient framework, and AMS’s additive margin can enhance the performance in

several low-resource languages (see results of LaBSE-EMS-joint).

2.4.2 Flores Similarity Search

In this section, we assess the model’s ability to perform cross-lingual retrieval

for non-English language pairs using the Flores multilingual benchmark [62, 42].

Flores is an N-way evaluation dataset that consists of 200 languages, with 1,012

sentences per language. We assess two distinct groups of languages: (1) 14 main

languages, excluding English, which are supported by mUSE; (2) 16 low-resource

languages, which are designated as “<300k” in Section 2.4.1. This results in a
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Example 1

en The Declaration of Brussels (1874) stated that the “honours and rights of the family...should be respected.”

zh 布鲁塞尔宣言（1874年）表示，“家庭荣誉和权利…应当受到尊重。”

Example 2

en In 2004. the E.U. undertook a major eastward enlargement, admitting ten new member states (eight of which were former communist states).

zh 2004年欧盟进行一次大规模东扩，接纳10个新成员国（其中的 8个是前共产主义国家）。
Example 3

en In March 2013, Ban Ki-moon had also recommended to the Council that women raped in war have access to abortion services.

zh 2013年 3月，潘基文同样建议安理会保证在战争中被强奸的妇女能享有堕胎服务。

Table 2.8: Extracted parallel sentence examples from BUCC that are not included

in the official gold labels.

total of 182 high-resource and 240 low-resource language pairs. We compute the

P@1 metric for each language pair, as described in Section 2.4.1.

Table 2.7 showcases the results for two groups of languages previously men-

tioned, along with eight randomly selected low-resource language pairs. Our

analysis indicates that for 182 main non-English language pairs, SBERT-distill,

LaBSE-EMS-joint, EMS, and LaBSE achieve nearly 100% precision, whereas

LASER demonstrated a precision of 62.8. These results highlight that SBERT-

distill, LaBSE-EMS-joint, EMS, and LaBSE are English-independent models.

Secondly, for low-resource non-English language pairs, LASER performed poorly

in retrieving the sentences accurately, whereas SBERT-distill, LaBSE-EMS-joint,

and EMS delivered relatively good results. This demonstrates that the training

objective of SBERT-distill, EMS, and LaBSE is conducive to generating language-

agnostic embeddings. In contrast, the LASER model’s translation objective still

falls short of eliminating English as a pivot language for cross-lingual retrieval.

2.4.3 BUCC: Bi-text Mining

Moreover, we evaluate the model’s cross-lingual retrieval performance on BUCC

benchmark [274, 275] that contains the comparable corpora with the size of

150k∼1.2M for four language pairs: English–German, English–French, English–

Russian, and English–Chinese. This task measures the model’s ability to ex-

tract parallel sentences from comparable corpora. Following LASER and SBERT-

distill, we use the margin-based scoring function [11] for mining parallel sentences.

As the BUCC dataset mixes a significant number of monolingual sentences, we

report F1 as the evaluation metric for this task following previous work [173, 54],
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Model en-de en-fr en-ru en-zh Avg.

mUSE 88.5 86.3 89.1 86.9 87.7

LASER 95.4 92.4 92.3 91.2 92.8

SBERT-distill 90.8 87.1 88.6 87.8 88.6

LaBSE-bilingual 92.6 90.0 90.1 92.5 91.3

LaBSE-EMS-joint (ours) 93.7 90.4 91.1 90.6 91.5

EMS (ours) 93.3 90.2 91.3 92.1 91.7

LaBSE 95.9 92.5 92.4 93.0 93.5

Table 2.9: F1 Scores on the BUCC benchmark. Bold fonts denote the best

precisions among mUSE, LASER, SBERT-distill, LaBSE-bilingual, LaBSE-EMS-

joint, and EMS.

which differs from the one employed for Tatoeba and Flores.

Results measured using F1 are listed in Table 2.9.24 We observe that EMS

exhibits significantly higher results than mUSE [245] and SBERT-distill, and

comparable results with LaBSE-lingual and LaBSE-EMS-joint. However, com-

pared with LASER and LaBSE, EMS exhibits slightly poor performance. Such

performance deterioration is negligible because it can be attributed to incorrect

gold labels within the BUCC dataset, which is also mentioned in Reimers and

Gurevych [173]. For example, three extracted sentence pairs listed in Table 2.8

are translation pairs, whereas they are not contained in the official gold labels.

2.4.4 Cross-Lingual Sentence Retrieval

The Tatoeba benchmark supports the cross-lingual retrieval evaluation based on

small-scale (1000 sentences for most language pairs) data, whereas the BUCC

benchmark supports retrieval from large-scale data for four language pairs. There-

fore, we conduct a cross-lingual sentence retrieval evaluation based on large-scale

comparable data for 21 language pairs.25 Based on our previous study [122], given

24We use the code from https://github.com/UKPLab/sentence-transformers/blob/master/

examples/applications/parallel-sentence-mining/bucc2018.py
25In this study, we have chosen not to evaluate our model using the UN benchmark [271] as [54].

This decision is based on the fact that a portion of the UN benchmark data has been incorporated
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Model bg cs da de el es et fi

LASER 90.5 87.8 86.1 89.4 85.3 89.4 87.6 83.4

SBERT-distill 83.3 73.6 78.6 81.4 72.2 82.5 75.1 73.7

LaBSE-EMS-joint (ours) 89.8 84.3 84.3 89.3 79.2 90.0 86.3 81.7

EMS (ours) 90.9 85.5 85.1 90.1 81.4 90.9 87.7 83.4

LaBSE 91.2 87.8 88.9 90.4 85.3 89.8 88.3 82.8

Model fr hr hu it lt lv nl pl

LASER 90.9 87.1 86.8 82.5 89.0 84.8 88.3 81.9

SBERT-distill 85.4 76.6 74.0 69.9 83.4 75.7 83.7 71.7

LaBSE-EMS-joint (ours) 90.8 85.7 82.6 82.6 87.9 82.5 89.1 79.2

EMS (ours) 91.6 87.3 87.5 83.5 90.5 84.0 90.6 81.5

LaBSE 90.5 89.1 84.5 85.1 91.0 86.2 89.5 84.2

Model pt ro sk sl sv Avg.

LASER 90.9 85.2 87.9 88.9 85.3 87.1

SBERT-distill 86.2 80.4 79.2 80.0 79.8 78.4

LaBSE-EMS-joint (ours) 90.3 86.0 86.9 87.7 86.0 85.8

EMS (ours) 91.5 87.1 88.2 89.0 86.3 87.3

LaBSE 90.9 88.2 88.2 89.6 84.7 87.9

Table 2.10: Cross-lingual sentence retrieval results on ParaCrawl. We report P@1

scores of 2,000 source queries while searching among 200k sentences in the target

language. The best performance results among LASER, SBERT-distill, LaBSE-

EMS-joint, and EMS are in bold font.

2000 sentences in language l1, we conduct the translation retrieval from 200k

candidate sentences in language l2. Unlike our previous study, we used parallel

sentences from ParaCrawl v5.026 [17] for evaluation because the previously used

Europarl corpus is included in the training data in this study. We calculate P@1

for each language pair using margin-based scoring [11].

As reported in Table 2.10, EMS performs significantly better than SBERT-

distill LaBSE-EMS-joint, and is comparable with LASER and LaBSE. The 21

into our model’s training dataset, which could potentially bias the evaluation results.
26https://opus.nlpl.eu/ParaCrawl-v5.php
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Model
en-de en-es en-fr en-it en-ja en-ru en-zh

Avg.
→ ← → ← → ← → ← → ← → ← → ←

LASER 86.3 76.7 76.2 68.1 82.1 75.7 70.3 69.8 71.5 59.8 64.6 68.9 77.7 67.3 72.5

SBERT-distill 78.5 78.7 72.7 73.3 79.7 79.6 64.4 73.0 65.7 72.0 64.2 72.7 60.3 70.2 71.8

LaBSE-EMS-joint (ours) 86.1 81.0 78.1 76.4 83.9 80.5 71.1 70.1 64.3 76.1 67.3 76.0 65.8 73.6 75.0

EMS (ours) 87.6 81.1 82.0 75.5 82.9 80.6 70.4 73.6 67.0 72.3 68.5 77.5 68.6 69.1 75.5

LaBSE 87.2 82.8 78.8 78.2 87.3 83.6 74.1 74.8 73.4 78.8 74.6 79.0 85.3 80.0 79.9

Table 2.11: MLDoc benchmark results (zero-shot scenario). We report

the mean accuracy of 5 runs. Best performance results of LASER, SBERT-distill,

LaBSE-EMS-joint, and EMS are in bold font.

Model

en-de en-fr en-ja

Avg.books dvd music books dvd music books dvd music

→ ← → ← → ← → ← → ← → ← → ← → ← → ←
LASER 78.3 76.0 73.7 73.4 76.1 77.2 77.2 77.4 76.8 75.4 75.8 76.6 72.0 72.9 73.0 70.9 75.5 75.5 75.2

SBERT-distill 78.2 81.2 73.9 77.1 74.1 80.1 78.9 80.6 77.8 79.4 70.6 78.8 74.5 81.9 76.5 78.2 78.2 78.6 77.7

LaBSE-EMS-joint (ours) 82.7 82.8 79.1 73.2 77.4 82.8 81.8 84.0 82.1 78.5 74.9 80.6 76.1 78.8 75.6 75.2 77.5 80.3 79.1

EMS (ours) 82.3 84.9 77.0 76.7 78.8 81.9 80.4 84.6 78.0 81.1 74.7 83.0 75.6 79.5 75.4 79.2 79.2 80.9 79.6

LaBSE 82.2 79.9 77.1 77.2 79.0 80.0 83.2 82.3 81.0 80.1 77.9 80.3 78.0 80.7 77.7 77.1 81.6 79.0 79.7

Table 2.12: Results of the cross-lingual sentiment classification of Ama-

zon Review version-1. We report the mean accuracy of 5 runs. The best

performance results of LASER, SBERT-distill, LaBSE-EMS-joint, and EMS are

in bold font.

languages evaluated herein are trained with more than 300k parallel sentences,

for which we used approximately half of the LASER’s training data and a tiny

fraction of the LaBSE’s training data. This suggests that our training archi-

tecture and objective are rather effective for languages where we used a certain

number of parallel sentences. Furthermore, the superior performance relative to

LaBSE-EMS-joint underscores the limitations in the effectiveness of the additive

margin introduced by LaBSE’s AMS contrastive objective, when handling large-

scale cross-lingual retrieval tasks.

2.4.5 MLDoc: Multilingual Document Classification

Subsequently, we evaluate the model performance based on the MLDoc classifica-

tion task. MLDoc27 is a benchmark to evaluate cross-lingual sentence represen-

tations, which contain datasets for eight languages [99]. Following Artetxe and

27https://github.com/facebookresearch/MLDoc
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Model
en-de en-es en-fr en-ja en-zh

Avg.
→ ← → ← → ← → ← → ←

LASER 84.4 81.6 85.2 81.4 85.3 81.4 77.9 78.4 77.6 76.8 81.0

SBERT-distill 85.8 85.6 87.0 85.8 86.8 84.6 81.7 83.8 81.6 81.3 84.4

LaBSE-EMS-joint (ours) 86.4 83.5 85.8 86.0 86.0 85.1 79.4 80.8 78.0 81.8 83.3

EMS (ours) 85.7 85.8 87.4 84.9 87.1 86.3 79.0 84.1 78.5 82.2 84.1

LaBSE 87.0 84.5 87.1 85.3 88.0 84.7 83.4 82.0 80.7 79.9 84.3

Table 2.13: Results of the cross-lingual sentiment classification of Ama-

zon Review version-2. We report the mean accuracy of 5 runs. The best

performance results of LASER, SBERT-distill, LaBSE-EMS-joint, and EMS are

in bold font.

Schwenk [12], we conduct the evaluation in a zero-shot manner using 1000 sen-

tences in language l1 for training, 1000 sentences in language l1 for validation, and

4000 sentences in language l2 for the test. Specifically, we train a multilayer per-

ceptron classifier based on source language representations and test the classifier

for the target language.

We list the average results of 5 runs for 7 language pairs and 14 directions in

Table 2.11. We observe significantly higher accuracies of EMS in most directions

than those of LASER and SBERT-distill, and comparable results with LaBSE-

EMS-joint. These results demonstrate the effectiveness of the proposed training

method. Although LASER yields better performance for English→Japanese and

English→Chinese, it performs much worse in the reverse directions. We further

calculate the average accuracy discrepancy between two directions for each lan-

guage pair. LASER shows 7.3, whereas SBERT-distill is 3.5 and EMS is 4.7.

This indicates that LASER is highly sensitive to the specific cross-lingual transfer

direction, whereas SBERT-distill and EMS are much more robust.

2.4.6 CLS: Cross-Lingual Sentiment Classification

Moreover, we gauge the quality of language-agnostic sentence representation based

on the sentiment classification task. We use the two versions of the Amazon review

datasets for evaluation to conduct the zero-shot cross-lingual classification. The

version-1 dataset [162] includes the data for English–German, English―French,
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and English–Japanese on “books,” “dvd,” and “music” domains for each language

pair. For each language pair and domain, we use 2000 sentences in language l1

for training, 2000 sentences in language l1 for validation, and 2000 sentences in

language l2 for testing. However, the version-2 dataset [84] includes five language

pairs, whereas different genres of the reviews are mixed. For each language pair, we

use 2000 sentences for training, 4000 sentences for validation, and 4000 sentences

for the test. Same as on MLDoc, we train a multi-layer perceptron using the

language-agnostic sentence representations in language l1 and test the classifier

for another language.

As listed in Tables 2.12 and 2.13, EMS significantly outperforms LASER

and performs comparably to LaBSE on the two versions of the datasets, which

proves the effectiveness of EMS. SBERT-distill achieves comparable results on the

version-2 dataset, whereas its performance negligibly deteriorates on the version-1

dataset. This can be attributed to SBERT-distill’s capability of clustering similar

sentences (Section 4.1 in Reimers and Gurevych [173]). On the version-1 dataset,

each genre of the reviews is evaluated; more similar sentences in each genre com-

pared with version-2 lead to lower classification accuracy for version-1. Moreover,

EMS marginally surpasses LaBSE-EMS-joint in two benchmarks, suggesting that

the additive margin in LaBSE’s AMS does not enhance EMS’s contrastive loss in

classification tasks, which aligns with the findings from the MLDoc benchmark.

2.4.7 Ablation Study and Training Efficiency

We conduct an ablation study to investigate the effectiveness of each model com-

ponent and the computation resource. We report the results on the Tatoeba,

Flores, and MLDoc benchmarks for cross-lingual sentence retrieval and classifica-

tion tasks, respectively.

As listed in Table 2.14, we observe that the performance significantly decreases

on Tatoeba, Flores, and MLDoc benchmarks by removing the language token,

sentence-level contrastive objective, XTR objective, or the linear layer within the

contrastive objective. Moreover, sharing the Transformer embedding layer param-

eters with the Lemb in the XTR objective and replacing XTR with UGT degrade

the model performance. Among all these ablations, we observe a significant de-
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Model
Tatoeba Flores MLDoc

Sec./1k Steps
Avg. (58) >300k (43) <300k (15) mUSE (182) <300k (240) en→ X Avg. X→ en Avg.

EMS 89.8 95.4 73.7 99.7 47.0 75.3 75.7 732

− langs tok 89.3 95.4 71.8 99.7 46.9 73.5 74.4 725

− Lcntrs 84.3 93.9 56.6 99.5 33.3 71.0 72.1 725

− LXTR 85.5 92.9 64.5 97.1 33.5 68.8 69.1 696

− Lcntrs mlp 86.3 93.8 64.6 99.1 39.0 69.8 73.8 727

share Lemb params 85.1 93.8 60.3 98.8 32.2 68.5 71.1 730

replace XTR with UGT 86.9 94.5 64.9 99.5 40.6 71.1 73.8 731

LaBSE-EMS-vanilla 29.0 34.6 13.0 19.0 4.6 42.5 43.3 709

LaBSE-EMS-joint (ours) 90.0 95.7 73.7 99.7 46.6 73.8 76.2 747

replace V100 with A100 89.8 95.5 73.3 99.7 46.6 75.1 75.4 -

Table 2.14: Ablation study of each model component, the AMS objective

of LaBSE, and the computation resource. Best performances are in bold

font. The training efficiency is measured in seconds per 1k steps, utilizing four

V100 GPUs.

crease in low-resource languages for training data less than 300k on both Tatoeba

and Flores benchmarks, which indicates that the performance is more sensitive to

model components on low-resource languages. This motivates future exploration

to improve the model performance more for low-resource languages.

By comparing “− Lcntrs” with “− LXTR,” we observe superior performances

of “− Lcntrs” on MLDoc and high-resource languages of Tatobea and Flores, and

superior performances of “− LXTR” on Tatoeba. This demonstrates that the

generative objective contributes more to the classification of downstream tasks

and the detection of parallel sentences high-resource language pairs, whereas the

contrastive objective is more beneficial for the detection of parallel sentences of

low-resource language pairs.

Moreover, we observe a negligible decrease in “− langs tok” on the Tatoeba

and Flores benchmark. As the ground-truth label we designed for the XTR objec-

tive includes information on tokens in specific languages, the effect of the language

token gradually diminishes during the model training. In our prior research, we

recommended using UGT for bilingual settings; however, the current XTR in

EMS surpasses it in three benchmarks. This may be because UGT is a more

challenging task than XTR, which concurrently predicts the token distribution of

the target language and a masked token, and the current model architecture may

not be capable of accommodating numerous languages for UGT. Moreover, in our
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previous research [122], we found that contrastive objectives negatively impacted

classification tasks like MLDoc. However, in the current study with EMS in a

massively multilingual context, both generative and contrastive objectives consis-

tently enhance performance in retrieval and classification tasks. This improvement

is likely due to the enhanced general capabilities of sentence embeddings, a result

of exposure to massively multilingual data.

In terms of training efficiency, as detailed in Table 2.14, the generative and

contrastive objectives require extra 36 and 7 seconds per 1,000 steps, respec-

tively. This is notably more efficient compared to using a Transformer decoder

for the generative objective in a translation task like LASER and LASER2, where

the process could potentially double the training time.28 Our XTR approach en-

hances sentence embedding in a generative manner, bypassing the need for a

Transformer decoder in a dual-encoder setup. Incorporating an additive margin

into the contrastive objective leads to diminished performance and efficiency in

LaBSE-EMS-vanilla compared to − LXTR, while LaBSE-EMS-joint shows only

marginal improvements with a notable decrease in training efficiency relative to

EMS. In addition, by replacing V100 GPUs with A100 and a larger batch size

of 200 parallel sentences, only trivial performance fluctuation is observed, which

suggests that EMS is robust to the computation resource.

2.4.8 Case Study for the XTR Objective

EMS utilizes an XTR objective that is independent of word order. To evaluate

its robustness against sentences with identical word frequencies but differing se-

mantics, we conducted a case study. This study compares EMS with LASER,

SBERT-distill, and LaBSE using the following specific sentences designed for this

purpose:

(1). can you believe that what he actually did was steal the money she saved for

the children?

(2). what can you actually believe she did was save the money for the children

that he stole?

28A 6-layer Transformer decoder demands more training time compared to a 6-layer Trans-

former encoder due to its auto-regressive token generation process.
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We process the above sentences in their uncased form to guarantee an identical

word bag for both sentences. Upon acquiring their sentence embeddings, we

calculate the cosine similarity to determine the extent to which different MSE

models perceived these two sentences as similar.

LASER, SBERT-distill, LaBSE, and EMS produce similarities of 0.90, 0.97,

0.95, and 0.97, respectively. This suggests that EMS struggles with such sentence

pairs, despite the joint combined sentence-level contrastive objective should the-

oretically account for word order. Similarly, SBERT-distill and LaBSE, which do

not incorporate word order-independent objectives like XTR, also fail to discern

the semantic differences between the sentences. This indicates that sentence-

level objectives within a dual-encoder architecture may not effectively address

this issue. In contrast, LASER exhibits a lower similarity for this sentence pair,

suggesting that its translation objective, which generates the target sentence word

by word, might be more capable of resolving such issues. However, as these sen-

tence pairs are relatively rare, further investigation into this limitation of the

dual-encoder architecture is reserved for future research.

2.5 Summary of This Chapter

This study presented EMS, an efficient and effective method for MSE learning.

To improve training efficiency in terms of data and computation while retaining

the quality of MSE, we proposed a novel framework to train “XTR” generative

and sentence-level contrastive objectives jointly. The empirical results based on

four cross-lingual sentence retrieval tasks and three cross-lingual sentence classi-

fication tasks demonstrated the effectiveness of EMS. In future research, we aim

to leverage LLMs for model initialization to further refine sentence embeddings.

Additionally, we plan to streamline the model architecture through knowledge

distillation, aiming for a more rapid inference experience.



Chapter 3

LEALLA: Learning

Lightweight Language-agnostic

Sentence Embeddings with

Knowledge Distillation

Language-agnostic sentence embedding models [12, 245, 173, 121, 54, 115, 117]

align multiple languages in a shared embedding space, facilitating parallel sentence

alignment that extracts parallel sentences for training translation systems [181].

Among them, LaBSE [54] achieves state-of-the-art parallel sentence alignment

accuracy over 109 languages. However, 471M parameters of LaBSE lead to

the computationally heavy inference. The 768-dimensional sentence embeddings

of LaBSE (LaBSE embeddings) make it suffer from computation overhead of

downstream tasks (e.g., kNN search). This limits its application on resource-

constrained devices. Therefore, we explore training a lightweight model to gen-

erate low-dimensional sentence embeddings while retaining the performance of

LaBSE.

We first investigate the performance of dimension-reduced LaBSE embeddings

and show that it performs comparably with LaBSE. Subsequently, we experiment

with various architectures to see whether a lightweight encoder can obtain such

51
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effective low-dimensional embeddings. We observe that the thin-deep [175] ar-

chitecture is empirically superior for learning language-agnostic sentence embed-

dings. Diverging from previous work, we show that low-dimensional embeddings

based on a lightweight model are effective for parallel sentence alignment of 109

languages.

LaBSE benefits from multilingual language model pre-training, but no multi-

lingual pre-trained models are available for the lightweight architectures. Thus,

we propose two knowledge distillation methods to further enhance the lightweight

models by forcing the model to extract helpful information from LaBSE. We

present three lightweight models improved with distillation: LEALLA-small,

LEALLA-base, and LEALLA-large, with 69M, 107M, and 147M parameters,

respectively. Fewer model parameters and their 128-d, 192-d, and 256-d sentence

embeddings are expected to accelerate downstream tasks, while the performance

drop of merely up to 3.0, 1.3, and 0.3 P@1 (or F1) points is observed on three

benchmarks of parallel sentence alignment. In addition, we show the effectiveness

of each loss function through an ablation study.

3.1 Background: LaBSE

LaBSE [54] fine-tunes dual encoder models [66, 244] to learn language-agnostic

embeddings from a large-scale pre-trained language model [38]. LaBSE is trained

with parallel sentences, and each sentence pair is encoded separately by a 12-layer

Transformer encoder. The 768-d encoder outputs are used to compute the training

loss and serve as sentence embeddings for downstream tasks. Expressly, assume

that the sentence embeddings for parallel sentences in a batch are {(xi,yi)}Ni=1

where N denotes the number of the sentence pairs within a batch. LaBSE trains

the bidirectional additive margin softmax (AMS) loss:

Lams =
1

N

N∑
i=1

(L(xi,yi) + L(yi,xi)), (3.1)

where the loss for a specific sentence pair in a single direction is defined as:

L(xi,yi) = − log
eϕ(xi,yi)−m

eϕ(xi,yi)−m +
∑

n ̸=i e
ϕ(xi,yn)

. (3.2)
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m is a margin for optimizing the separation between correct and incorrect trans-

lation pairs. ϕ (xi,yi) is defined as Cosine Similarity between xi and yi.

3.2 Lightweight Language-agnostic Embeddings

To address the efficiency issue of LaBSE, we probe the lightweight model for

learning language-agnostic embeddings with the following experiments: (1) We

directly reduce the dimension of LaBSE embeddings to explore the optimal em-

bedding dimension; (2) We shrink the model size with various ways to explore the

optimal architecture.

3.2.1 Evaluation Settings

We employ Tatoeba [12], United Nations (UN) [271], and BUCC [157] benchmarks

for evaluation, which assess the model performance for parallel sentence alignment.

Following LaBSE [54] and LASER [12], we report the average P@1 of bidirectional

retrievals for all the languages of Tatoeba, the average P@1 for four languages of

UN, and the average F1 of bidirectional retrievals for four languages of BUCC.1

Tatoeba [12] supports the evaluation across 112 languages and contains up to 1,000

sentence pairs for each language and English. The languages of Tatoeba that are

not included in the training data of LaBSE and LEALLA serve as the evaluation

for unseen languages. UN [271] is composed of 86,000 aligned bilingual documents

for en-ar, en-es, en-fr, en-ru, and en-zh. Following LaBSE [54], we evaluate the

model performance for es, fr, ru, and zh on the UN task. There are about 9.5M

sentence pairs for each language with English after deduping. BUCC shared

task [157] is a benchmark to mine parallel sentences from comparable corpora.

We conduct the evaluation using BUCC2018 tasks for en-de, en-fr, en-ru, and

en-zh, following the setting of Reimers and Gurevych [173].2 For the results of

LaBSE reported in Table 3.3, we re-conduct the evaluation experiments using the

open-sourced model of LaBSE.3

1For BUCC, we use margin-based scoring [11] for filtering translation pairs.
2https://github.com/UKPLab/sentence-transformers/blob/master/examples/

applications/parallel-sentence-mining/bucc2018.py
3https://tfhub.dev/google/LaBSE
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Figure 3.1: Dimension reduction for LaBSE.

3.2.2 Exploring the Optimal Dimension of Language-agnostic Sen-

tence Embeddings

Mao et al. [122] showed that a 256-d bilingual embedding space could achieve an

accuracy of about 90% for parallel sentence alignment. However, existing multi-

lingual sentence embedding models such as LASER [12], SBERT [173], EMS [115],

and LaBSE generate 768-d or 1024-d sentence embeddings, and whether a low-

dimensional space can align parallel sentences over tens of languages with a solid

accuracy (>80%) remains unknown. Thus, we start with the dimension reduction

experiments for LaBSE to explore the optimal dimension of language-agnostic

sentence embeddings.

We add an extra dense layer on top of LaBSE to transform the dimension of

LaBSE embeddings from 768 to lower values. We experiment with seven lower di-

mensions ranging from 512 to 32. We fine-tune 5k steps for fitting the newly added

dense layer, whereas other parameters of LaBSE are fixed. Refer to Section 3.3.2

for training details.

As shown in Figure 3.1, the performance drops more than 5 points when

the dimension is 32 on Tatoeba, UN, and BUCC. Meanwhile, given sentence

embeddings with a dimension over 128, they performs slightly worse than 768-

d LaBSE embeddings with a performance drop of fewer than 2 points, showing
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# L dh H P PE Tatoeba UN BUCC

LaBSE

0 12 768 12 471M 85M 83.7 89.6 93.1

Fewer Layers

1 6 768 12 428M 42M 82.9 88.6 91.9

2 3 768 12 407M 21M 82.2 87.5 91.2

Smaller Hidden Size

3 12 384 12 214M 21M 82.6 88.4 92.1

4 12 192 12 102M 6M 81.0 87.0 91.3

Thin-deep Architecture

5 24 384 12 235M 42M 83.2 88.6 92.4

6 24 256 8 147M 19M 82.9 88.5 92.2

7 24 192 12 107M 11M 81.7 87.4 91.9

8 24 128 8 69M 5M 80.3 86.3 90.4

Table 3.1: Results of LaBSE variants. L, dh, H, P, and PE denote the num-

ber of layers, dimension of hidden states, number of attention heads, number of

parameters, and number of encoder parameters (except for the word embedding

layer). Refer to Appendix A.3 for detailed results.

that low-dimensional sentence embeddings can align parallel sentences in multiple

languages. Refer to Appendix A.2 for detailed results.

3.2.3 Exploring the Optimal Architecture

Although we revealed the effectiveness of the low-dimensional embeddings above,

it is generated from LaBSE with 471M parameters. Thus, we explore whether

such low-dimensional sentence embeddings can be obtained from an encoder with

less parameters. We first reduce the number of layers (#1 and #2 in Table 3.1)

and the size of hidden states (#3 and #4) to observe the performance. Subse-

quently, inspired by the effectiveness of FitNet [175] and MobileBERT [207] and

taking advantage of the low-dimensional sentence embeddings shown above, we
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experiment with thin-deep architectures with 24 layers (#5 - #8), leading to fewer

encoder parameters.4 Refer to Section 3.3.2 for training details.

We report the results in Table 3.1. First, architectures with fewer layers (#1

and #2) perform worse than LaBSE on all three tasks and can only decrease

parameters by less than 15%. Second, increasing the number of layers (#5 and

#7) improves the performance of 12-layer models (#3 and #4) with a limited

parameter increase of less than 10%. Referring to LaBSE (#0), low-dimensional

embeddings from thin-deep architectures (#5 - #8) obtain solid results on three

benchmarks with performance drops of only 3.4 points at most. Until this point,

we showed that thin-deep architecture is effective for learning language-agnostic

sentence embeddings.

3.3 Knowledge Distillation from LaBSE

Besides the large model capacity, multilingual language model pre-training ben-

efits LaBSE for parallel sentence alignment. As no multilingual pre-trained lan-

guage models are available for lightweight models we investigated in Section 3.2.3,

we instead explore extracting helpful knowledge from LaBSE.

3.3.1 Methodology

Feature distillation and logit distillation have been proven to be effective paradigms

for knowledge distillation [71, 175, 252, 211]. In this section, we propose methods

applying both paradigms to language-agnostic sentence embedding distillation.

We use LaBSE as a teacher to train students with thin-deep architectures which

were discussed in Section 3.2.3.

Feature Distillation

We propose applying feature distillation to language-agnostic sentence embedding

distillation, which enables lightweight sentence embeddings to approximate the

LaBSE embeddings via an extra dense layer. We employ an extra trainable dense

4Following MobileBERT, we attempted architectures that have an identical size for hidden

state and feed-forward hidden state, but it works poorly than #5 - #8. (Refer to Appendix A.3)
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Figure 3.2: Feature and logit distillation from LaBSE.

layer on top of the lightweight models to unify the embedding dimension of LaBSE

and lightweight models to be 768-d, as illustrated in Figure 3.2.56 The loss function

is defined as follows:

Lfd =
1

N

N∑
i=1

(∥ xt
i − f(xs

i ) ∥22 + ∥ yt
i − f(ys

i ) ∥22), (3.3)

where xt (or yt) and xs (or ys) are the embeddings by LaBSE and the lightweight

model, respectively. f(·) is a trainable dense layer transforming the dimension

from d (d < 768) to 768.

5SBERT [173] used feature distillation to make monolingual sentence embeddings multilin-

gual, but distillation between different embedding dimensions has not been studied.
6We investigated another two patterns to unify the embedding dimensions in Appendix A.1,

but they performed worse.
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Logit Distillation

We also propose applying logit distillation to language-agnostic sentence embed-

ding distillation to extract knowledge from the sentence similarity matrix as shown

in Figure 3.2. Logit distillation forces the student to establish similar similarity

relationships between the given sentence pairs as the teacher does. We propose

the following mean squared error (MSE) loss:

Lld =
1

N2

N∑
i=1

N∑
j=1

((
ϕ
(
xt
i,y

t
j

)
− ϕ

(
xs
i ,y

s
j

))
/T

)2
, (3.4)

where T is a distillation temperature, and other notations follow those in Equa-

tions 3.2 and 3.3.

Combined Loss

Finally, we combine two knowledge distillation loss functions with the AMS loss

(Equation 3.1) to jointly train the lightweight model:

Llealla = αLams + βLfd + γLld. (3.5)

Here α, β, and γ are weight hyperparameters, which are tuned with the develop-

ment data.

3.3.2 Experiments

Training

We train three models, LEALLA-small, LEALLA-base, and LEALLA-large,

using the thin-deep architectures of #8, #7, and #6 in Table 3.1 and the training

loss of Equation 3.5. All of the models in this work are trained with the same

training data and development data as LaBSE [54]. Refer to Section 3.1 and

Appendix C of Feng et al. [54] for dataset and supported language details. We

train models on Google Cloud TPU V3 with 32-cores with a global batch size of

8,192 sentences and a maximum sequence length of 128. For a fair comparison

with LaBSE for more than 109 languages, we use the 501k vocabulary of LaBSE

(trained with BPE [190]) and do not consider modifying its size in this work. We
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Hyperparameter Bound

α 1

β 1e02, 1e03, 1e04, 1e05

γ 1e-01, 1e-02, 1e-03

batch size 2,048, 4,096, 8,192

learning rate 1e-4, 5e-4, 1e-3

Table 3.2: Hyperparameter bounds.

Model La. d P Ttb.
UN BUCC

es fr ru zh avg. de fr ru zh avg.

LASER [12] 93 1024 154M 65.5 - - - - - 95.4 92.4 92.3 91.7 93.0

m-USE [245] 16 512 85M - 86.1 83.3 88.9 78.8 84.3 88.5 86.3 89.1 86.9 87.7

SBERT [173] 50 768 270M 67.1 - - - - - 90.8 87.1 88.6 87.8 88.6

EMS [115] 62 1024 148M 69.2 - - - - - 93.3 90.2 91.3 92.1 91.7

LaBSE [54] 109 768 471M 83.7 90.8 89.0 90.4 88.3 89.6 95.5 92.3 92.2 92.5 93.1

LEALLA-small 109 128 69M 80.7 89.4 86.0 88.7 84.9 87.3 94.0 90.6 91.2 90.3 91.5

LEALLA-base 109 192 107M 82.4 90.3 87.4 89.8 87.2 88.7 94.9 91.4 91.8 91.4 92.4

LEALLA-large 109 256 147M 83.5 90.8 88.5 89.9 87.9 89.3 95.3 92.0 92.1 91.9 92.8

Table 3.3: Results of LEALLA. We mark the best 3 scores in bold. La., d, P,

and Ttb. indicate the number of languages, dimension of sentence embeddings,

number of parameters, and Tatoeba.

employ AdamW [112] for optimizing the model using the initial learning rate of

1e-03 for models with a hidden state size larger than 384 and 5e-04 for models with

a hidden state size smaller than 256. For LEALLA-small and LEALLA-base, α, β,

and γ are set as 1, 1e03 and 1e-02. For LEALLA-large, they are set as 1, 1e04, and

1e-02, respectively. T in Equation 3.4 is set to 100. All the models in Section 3.2.2

are trained for 5k steps. Models in Section 3.2.3 and Section 3.3 with a hidden

state size over 256 are trained for 200k steps, and those with a hidden state size

below 192 are trained for 100k steps. It costs around 24 hours, 36 hours, and 48

hours to train LEALLA-small, LEALLA-base, and LEALLA-large, respectively.

Hyperparameters are tuned using a held-out development dataset following Feng

et al. [54] with a grid search. The bounds tuned for each hyperparameter are

shown in Table 3.2.
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Figure 3.3: LEALLA with different loss combinations. AMS, FD, and LD mean

Lams, Lfd, and Lld.

Results

The results of LEALLA on Tatoeba, UN, and BUCC benchmarks are presented in

Table 3.3. Overall, LEALLA can yield competitive performance compared with

previous work. LEALLA-large performs comparably with LaBSE, where the av-

erage performance difference on three tasks is below 0.3 points. LEALLA-base

and LEALLA-small obtain strong performance for high-resource languages on UN

and BUCC, with a performance decrease less than 0.9 and 2.3 points, respectively.

They also achieve solid results on Tatoeba with 1.3 and 3 points downgrades com-

pared with LaBSE. The solid performance of LEALLA on Tatoeba demonstrates

that it is effective for aligning parallel sentences for more than 109 languages.

Moreover, all the LEALLA models perform better or comparably with previous

studies other than LaBSE.

Ablation Study

We inspect the effectiveness of each loss component in an ablative manner. First,

we compare settings with and without distillation loss functions. As shown in

Figure 3.3, by adding Lfd or Lld, LEALLA trained only with Lams is improved on

Tatoeba and UN tasks. By further combining Lfd and Lld, LEALLA consistently
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Loss
LEALLA-small LEALLA-base LEALLA-large

Tatoeba UN Tatoeba UN Tatoeba UN

all 80.7 87.3 82.4 88.7 83.5 89.3

Lams 80.3 86.3 81.7 87.4 82.9 88.5

Lfd 78.2 85.2 81.1 88.1 82.4 88.1

Lld 75.1 2.3 80.6 63.1 82.3 84.1

Table 3.4: Results of LEALLA with each loss function. “all” denotes LEALLA

without ablation (with all the loss functions).

achieves superior performance. Second, we separately train LEALLA with each

loss. Referring to the results reported in Table 3.4, LEALLA trained only with

Lfd yields solid performance in the “small” and “base” models compared with

Lams, showing that distillation loss benefits parallel sentence alignment. Lfd and

Lld perform much worse in the “small” model, which may be attributed to the

discrepancy in the capacity gaps between the teacher model (LaBSE) and the

student model (“small” or “base”).7 Refer to Appendix A.4 for all detailed results

in this section.

3.4 Summary of This Chapter

We presented LEALLA, a lightweight model for generating low-dimensional mul-

tilingual sentence embeddings. Experimental results showed that LEALLA could

yield solid performance for 109 languages after distilling knowledge from LaBSE.

Future work can focus on reducing the vocabulary size of LaBSE to shrink the

model further and exploring the effectiveness of lightweight model pre-training for

parallel sentence alignment.

7Lld can hardly work for UN and BUCC as they contain hundreds of thousands of candidates

for the model to score, which is more complicated than the 1,000 candidates of Tatoeba.
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Linguistically-driven Multi-task

Pre-training for Low-resource

Neural Machine Translation

Neural machine translation (NMT) [16, 208] can achieve state-of-the-art perfor-

mance when large parallel corpora are available for training. However, this pre-

requisite for parallel corpora limits its usefulness for several language pairs, such

as Japanese, Chinese, and Korean, along with domains (history and COVID) for

which such large corpora do not exist. Often, these resource-poor language pairs

consist of languages that have resource-rich monolingual corpora. Therefore, it is

possible to compensate for the lack of parallel corpora by leveraging large monolin-

gual corpora. One popular approach for this is data augmentation, for instance,

through back-translation [189, 72]. Another approach involves pre-training the

NMT model on tasks that only require monolingual corpora [165, 204].

As a promising technique for leveraging monolingual corpora, pre-training has

experienced a surge in popularity in NLP ever since models such as BERT [46]

achieved state-of-the-art results in text understanding. However, BERT-like mod-

els were not designed to be used for NMT in the sense that they are essentially

techniques for pre-training encoders, but not sequence-to-sequence models. To

address this, Song et al. [204], Lewis et al. [100] and Liu et al. [110] recently pro-
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posed self-supervised language-agnostic pre-training methods, which are sequence-

to-sequence pre-training tasks for NMT, have achieved new state-of-the-art results

in low-resource scenarios.

Languages that are sufficiently “rich” to have large monolingual corpora of-

ten have available tools for linguistic analysis. Meanwhile, usually a low-resource

language pair is composed by a resource-rich language and a low-resource lan-

guage and the linguistic knowledge of the resource-rich language can be easily

extracted. In addition, studies such as Sennrich and Haddow [187] and Murthy

et al. [135] have demonstrated that linguistic knowledge can improve NMT with-

out using additional corpora. Therefore, it is natural to use monolingual corpora

and linguistic tools in bilingual low-resource scenarios. However, the manner in

which linguistic knowledge should be provided is not always clear, because NMT

models are implemented in an end-to-end scheme. From a technical perspective,

it is practical to extract linguistic features on the monolingual side. Therefore,

monolingual pre-training provides an ideal framework for leveraging monolingual

corpora and injecting linguistic information.

In Mao et al. [118], we proposed a linguistically motivated pre-training ap-

proach known as Japanese-specific sequence-to-sequence (JASS), which was in-

spired by masked sequence-to-sequence pre-training (MASS), but focused on syn-

tactic analysis obtained by using a parser. Particularly, we added syntactic con-

straints to the sentence-masking process of the MASS to obtain the bunsetsu-

based MASS task (BMASS).1 We also proposed the bunsetsu reordering-based

sequence-to-sequence (BRSS), which is a linguistically motivated reordering task.

Several previous studies [100, 167] have provided evidence that “multi-task” pre-

training that combines various styles of self-supervised training tasks results in

significantly superior results for NMT. We proposed JASS based on a combination

of the above-mentioned two tasks and it is tailored for NMT involving Japanese.

In contrast, in this study, we also propose linguistically-driven pre-training

methods for English to leverage linguistic-specific information in the pre-training

phase.2 They are referred to as phrase structure-based MASS (PMASS) & head

1For BMASS, bunsetsus are used as syntactic spans, which is the elementary syntactic com-

ponent of Japanese. It can be extracted using the KNP. [95, 130]
2Although some language pairs involving English are middle- or high-resource scenarios (par-
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finalization-based sequence-to-sequence (HFSS), and their combination is denoted

as English-specific sequence-to-sequence (ENSS).3 Moreover, unlike the proposed

methods for Japanese, the proposed methods for English can be transplanted onto

any SVO language. Thus, our proposed ENSS and JASS can be applied to any

translation pair involving English or Japanese.4

We experimented with ASPEC Japanese–English & Japanese–Chinese [140],

Wikipedia Japanese–Chinese [34, 35], and News English–Korean [151] in various

pre-training settings for JASS and ENSS.5 Our results indicate that BMASS,

BRSS, and HFSS significantly outperform the state-of-the-art MASS pre-training,

whereas PMASS yields marginal improvements. Furthermore, we demonstrate

that linguistically-driven multi-task pre-training methods (JASS & ENSS) lead

to further improvements of up to +2.9 BLEU points for Japanese to English,

+2.7 BLEU points for English to Japanese, +4.3 BLEU points for Japanese to

Chinese , +7.0 BLEU points for Chinese to Japanese, +0.5 BLEU points for

English to Korean, and +1.3 BLEU points for Korean to English in low-resource

scenarios, respectively.

Unlike in our previous study [118], we provide substantial analyses for evalu-

ating the translations generated by JASS and ENSS, which focus on the relation-

ship between different pre-training tasks, and the specific adequacy and fluency of

corresponding translations. Specifically, we validate the superior translation ad-

equacy improvement of linguistically-driven methods by implementing automatic

adequacy evaluation using LASER, human evaluation, and case study. To confirm

the complementary nature between the masked language model and reordering the

pre-training task, we performed an evaluation of the pre-training accuracy.

We expect this study to extend the usefulness of linguistically-driven pre-

allel corpora size over 100k), we deem that it is worth proposing methods for English because a

large number of low-resource language pairs involving English are still present.
3Head finalization [77] is the technique used to reorder sentences in SVO language to be

SOV-like sentences.
4According to the reordering task we proposed (specifically, BRSS and HFSS), more significant

improvements are expected to observe on English–SOV language or Japanese–SVO language.
5In Mao et al. [118], we only conducted experiments on ASPEC Japanese–English and

JaRuNC Japanese–Russian for JASS (BLEU results on Japanese–Russian were excessively low

for comparison).
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training methods for more low-resource language pairs and compensate for the

defects of Mao et al. [118] in terms of the empirical evaluation. The contributions

of this study can be summarized as follows.

1. BMASS and BRSS: Linguistically-driven novel pre-training methods for

NMT involving Japanese.

2. PMASS and HFSS: Linguistically-driven novel pre-training methods for

NMT involving English (can be theoretically implemented on any SVO lan-

guage).

3. Multi-task pre-training (JASS and ENSS): We demonstrate that multi-

task training through the combination of the masked language model and

reordering task (BMASS+BRSS & MASS+HFSS) leads to better perfor-

mance. Particularly, BMASS and BRSS can complement each other more

if they are performed based on analogous syntactic units.

4. Empirical evaluation: Comparisons among MASS, BART, JASS, ENSS

and newly added baseline methods (MultiMASS and Deshuffling) for 6 trans-

lation directions and 3 different domains in several data size settings to iden-

tify situations in which each technique can be the most effective compared

to other techniques.

5. Analyses: Linguistic and statistical analyses of pre-training methods, their

inter-relationships, and corresponding translations.

4.1 Related Work

4.1.1 Low-resource Neural Machine Translation

There are mainly three lines of work related to improving NMT in low-resource sit-

uations: cross-lingual transfer, data augmentation, and monolingual pre-training.

These approaches are potentially complementary. Our work belongs to the mono-

lingual pre-training category.

Cross-lingual transfer addresses the low-resource issue by using data from dif-

ferent language pairs. One can use a richer language pair [273] or several language
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pairs simultaneously [44, 48]. Murthy et al. [135] also proposed reordering the as-

sisting languages to be similar to a low-resource language.

Data augmentation involves the creation of synthetic bilingual data from

monolingual data. In the popular back-translation approach [51, 72, 189], the

source side of the data is synthesized using an MT system to back-translate the

target side data. Recently, Zhou et al. [268] proposed the creation of this source

side through rule-based reordering via word-to-word translation.

In monolingual pre-training approaches, all or part of a model is first trained on

tasks that require monolingual data.6 Pre-training has enjoyed significant success

in other NLP tasks with the development of GPT [166], BERT [46], and several

others [153, 206, 248, 197, 202, 203, 198].

Pre-training schemes such as BERT were designed for natural language un-

derstanding (NLU) tasks and they are not directly suitable for NMT. Conneau

and Lample [40] and Ren et al. [174] proposed multilingual variants. However,

they trained the encoder and decoder independently. To address this, Song et

al. [204] recently proposed MASS, a new state-of-the-art NMT pre-training task

that jointly trains the encoder and decoder. Our approach develops on the ini-

tial idea of MASS, but adds more diverse and linguistically-motivated training

objectives.

Linguistic information is known to be useful for NMT [187], especially in

low-resource scenarios. Outside of pre-training, studies [135, 262, 268] have suc-

cessfully used a linguistically-motivated reordering similar to that of our BRSS

task. Sun et al. [206] used linguistically-motivated pre-training tasks for text un-

derstanding. To the best of our knowledge, there are no studies on linguistically-

motivated pre-training tasks for NMT.

4.1.2 Pre-training Tasks for Neural Machine Translation

After the appearance of BERT [46], several pre-training methods have been pro-

posed to enhance NMT [40, 100, 105, 110, 167, 174, 194, 201, 204, 227, 233, 249].

Particularly, Song et al. [204] proposed a random span reconstruction task to

6This is an instance of “transfer learning,” similar to cross-lingual transfer. “Pre-training”

often implies that the training task differs from the target task.
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pre-train a sequence-to-sequence framework for NMT; Wang et al. [227] first pro-

posed using shuffling, deleting, and replacing operations to implement the de-

noising pre-training for the NMT system; thereafter, Lewis et al. [100] combined

the denoising methods with the masked language model pre-training of Song et

al. [204], and provided detailed empirical results for a large number of language

pairs; mBART [110] is a multilingual sequence-to-sequence denoising pre-training

that is pre-trained through denoising tasks on 25 languages including Japanese,

English, Chinese, Russian, and others, and it can be deemed as an extension

of Lewis et al. [100]; other studies focus on leveraging the cross-lingual supervi-

sion between languages through word alignment [105], phrase alignment [174],

sentence-level alignment [40], code-switching technique [249], or assisting lan-

guages (shared scripts) [201].

Among the above-mentioned pre-training techniques for NMT, we observe

that no study has focused on leveraging specific linguistic features for NMT. Syn-

tactic span-masking [269] and semantic-aware BERT [267] have been proposed

using linguistically-driven supervision for language understanding tasks. How-

ever, linguistically-driven methods for sequence-to-sequence pre-training should

be considered and explored.

Studies have also focused on improving MASS. Siddhant et al. [194] adapted

MASS in multilingual scenarios; Qi et al. [164] proposed using an n-stream self-

attention mechanism to enhance MASS for language generation tasks. No previous

study has attempted to enhance MASS from a linguistic perspective, which will

be explored in our study.

Moreover, Wang et al. [233] highlighted that multitask learning can signifi-

cantly benefit multilingual NMT. In addition to the MT task, the essential jointly-

learned tasks should be masked langauge model task and denoising (reconstruc-

tion) task, which are two basic pre-training styles based on which we propose our

linguistically-driven methods.
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Pre-trained
model NMT model

LANGUAGE1
||

LANGUAGE2
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LANGUAGE1 
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Monolingual corpora

LANGUAGE2 
monolingual corpus

Randomly
initialized
S2S model

Pre-training Fine-tuning

Figure 4.1: Pre-training and fine-tuning for NMT. “S2S” denotes sequence-

to-sequence.

4.2 Preliminary Backgrounds

In this section, we introduce the preliminary backgrounds of pre-training and

fine-tuning for NMT and MASS, which serve as the backbone for this study.

4.2.1 Pre-training and Fine-tuning for NMT

We first introduce the pre-training and fine-tuning pipelines for the NMT. As

shown in Figure 4.1 below, we first utilize monolingual corpora to pre-train the

initialized sequence-to-sequence model. Subsequently, we use a parallel corpus of

languages of interest to fine-tune the pre-trained models. The fine-tuned model

was the final NMT model. All the experiments in this study will be conducted on

the basis of this pre-training and fine-tuning pipeline for NMT.

4.2.2 MASS

MASS is a pre-training method for NMT proposed by Song et al. [204]. As shown

in Figure 4.2, in MASS pre-training, the input is a sequence of tokens where a

part of the sequence is masked and the output is a sequence where the masking

is inverted.

We consider x ∈ X , which is a sequence of tokens where X is a monolingual

corpus. Additionally, we consider the token span C = [pi, pj ], where 0 < pi ≤
pj ≤ len(x) and len(x) are the number of tokens in sentence x. We denote the
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Encoder Attention Decoder

x1 x8x7 x1 x1x1 x3 x1 x5 x6

x1 x1x3 x1 x5 x6 x1
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x1

[SOS] [M] [M] [M] [M]

[EOS][M][M]

[M]

[M]

x2

[M] x4

x4

Figure 4.2: Sequence-to-sequence structure for MASS. xi represents a token

and x3 to x6 are consecutive tokens to be masked/predicted.

masked sequence by xC , where tokens in positions from pi to pj in x are replaced

by a mask token [M ]. x!C is the sequence with an inverted mask, that is, where

tokens in positions other than the aforementioned fragments are replaced by the

mask token [M ]. In MASS, the pre-training objective is to predict the masked

fragments in x using an encoder-decoder model, where xC is the input to the

encoder and x!C is the target output of the decoder. The log-likelihood objective

function is

Lmass(X ) =
1

|X |
∑
x∈X

logP
(
x!C |xC ,θ

)
. (4.1)

where θ denotes the model parameters. The number of tokens to be masked is

a hyperparameter of the MASS. The NMT model is jointly pre-trained with the

MASS task for both the source and target languages.

4.3 Proposed Methods

In this section, we describe JASS and ENSS, which are our proposed pre-training

techniques.

4.3.1 Proposed Methods for Japanese

Our methods are based on the ideas of the original MASS and are improved

by jointly learning multiple linguistics-aware tasks. For Japanese, we propose

a bunsetsu-based MASS (BMASS) pre-training and bunsetsu reordering-based

sequence-to-sequence (BRSS) pre-training. Their combination, Japanese-specific

sequence-to-sequence (JASS) pre-training, is introduced in the following section.
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three

構成よってにプロジェクトのつ三、はラブライブ さ れて いる 。

: Bunsetsu : Token

(theme) on (passive)LoveLive , _ of project based make _ _ .

Figure 4.3: Word and bunsetsu segmentations for a Japanese sentence with mean-

ing “LoveLive is made of three projects.” In word for word English translations,

“ ” represents words with no meaningful translations.

Bunsetsu

Bunsetsu is the syntactic component of Japanese sentences [95, 130]. It is equiv-

alent to the concepts of noun phrases or verb phrases in English syntax and it

constitutes a minimal unit of meaning. The concept of “word” is ambiguous for

writing systems such as Japanese where word-separators are not applicable, and

Japanese segmenters [95, 130] can segment Japanese sentences either in words or

bunsetsus. Therefore, bunsetsu is also more likely to correspond to a well-defined

entity or concept than words. Figure 4.3 illustrates the difference between the

word- and bunsetsu-level segmentation. Each bunsetsu contains self-contained

information and case markers, which indicate its relation with other bunsetsus.

Based on the bunsetsu, we introduce our proposed pre-training techniques for the

Japanese.

BMASS

We propose BMASS, which leverages syntactically parsed Japanese monolingual

data for sequence-to-sequence pre-training. MASS pre-trains an NMT model by

making it predict random parts of a sentence given their context, whereas BMASS

involves making the model predict a set of bunsetsus given the contextual bun-

setsus. We expect this will allow the model to learn about bunsetsus and thereby

focus on predicting meaningful subsequences instead of random, albeit fluent sub-

sequences.

To perform BMASS, we modify the definition of mask C in Equation 4.1: C =

[[pi1 , pj1 ], [pi2 , pj2 ], ... [pin , pjn ]], where 0 < pi1 ≤ pj1 ≤ pi2 ≤ pj2 ≤ ...pin ≤ pjn ≤
len(x). Term len(x) denotes the number of tokens in sentence x. Subsequently,

the k − th position span from pik to pjk corresponds to the start and end of a
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構成よってにプロジェクトのつ三、はラブライブ さ れて いる 。

よってにプロジェクト、はラブライブ

構成のつ三 さ れて いる 。[M] [M][M][M][M]

Src.

Tgt.

: Bunsetsu : Token : Chunking Signal Token

(c) BMASS

(a) Origin

(d) BRSS
よって のつ三、はラブライブ 構成 さ れて いる 。Src.

構成よってにプロジェクトのつ三、はラブライブ さ れて いる 。Tgt.

[M][M]はラブライブ れて いる 。

よってにプロジェクトのつ[M]

、

[M]

Src.

Tgt.
(b) MASS

[M] [M]

[M]

にプロジェクト

[M]三

[M]

[M] [M]

[M] [M] [M]

[M] 構成 [M] [M][M]さ

[M]

[M]

[M] [M] [M][M][M] [M]

[M][M]

(theme) three onLoveLive , _ of project based make (passive)_ _ .

Figure 4.4: Example of source and target for MASS, BMASS, and BRSS with the

meaning “LoveLive is made of three projects.”

specific bunsetsu in a Japanese sentence. Consequently, we denote the BMASS

loss as Lbmass. The main difference between MASS and BMASS is that in MASS,

we mask random token spans, whereas in BMASS, we only mask tokens spans

that are complete bunsetsus. The number of bunsetsus to be masked constitutes

a hyperparameter for BMASS. Figures 4.4-b and 4.4-c provide training pairs for

MASS and BMASS.

Note that our BMASS pre-training task differs from the entity masking task

of ERNIE [206] and random span masking of SpanBERT [82]. ERNIE and Span-

BERT have been proposed without using syntactic units and they are employed

in natural language understanding downstream tasks.

BRSS

Japanese sentences are typically in an SOV word order that can be reordered to

SVO to reduce the difficulty of translation to languages with SVO order. We

first define a simple process for reordering a (typically SOV) Japanese sentence

into a “SVO Japanese” pseudo-sentence that will be used in BRSS. There are

several previous studies on reordering a SOV-ordered sentence to a SVO-ordered

sentence [74, 91]. In our case, to consistently leverage bunsetsu units in Japanese
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with BMASS, we propose bunsetsu-based reordering, which is able to generate

an SVO-ordered Japanese sentence while retaining syntactic information at the

bunsetsu-level. We first define “chunking signal words” as any punctuation mark

or the topic marker “は.” The reordering process is as follows:

1. split the sentence into bunsetsus

2. select sequences of bunsetsus bounded by chunking signal words

3. simply reverse the order of the bunsetsus in these sequences without using

rules

We can now propose BRSS, which involves a Japanese sentence and its re-

ordered version obtained using the aforementioned procedure. Refer to Figure 4.4-

d as an example of a bunsetsu-reordered sentence. The pre-training objective was

a reordering task. We expect that this will allow the system to learn the structure

of the Japanese language, and prepare it for the reordering operation it will have to

perform when translating to a language with different grammar. Although BRSS

task is constructed by simple rules, the predictions for the bunsetsu boundaries

and orders are expected to equip the model with abundant linguistic knowledge.

We have two choices from which we can make the NMT system predict the origi-

nal sentence given the reordered sentence (BRSS.F) or vice-versa (BRSS.R). We

will experiment with both options.

4.3.2 Proposed Methods for English

Similar to the proposed methods for Japanese, we propose two linguistically-driven

methods for English that are based on the MASS language model and reordering

sequence-to-sequence language model, respectively. One is phrase structure-based

MASS (PMASS), and the other method is head finalization-based sequence-to-

sequence pre-training (HFSS). The combination of PMASS, HFSS, and ENSS

is introduced in the next section. Before introducing our proposed methods for

English, we first provide background information on head-driven phrase structure

grammar and head finalization, which forms our linguistically-driven methods.
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Figure 4.5: Example of HPSG parsing result and head finalization. Head finaliza-

tion [77] reorders an English sentence into a Japanese-like sentence. Blue arrows

denote the “head.”

Head-driven Phrase Structure Grammar

As opposed to dependency-based grammar, head-driven phrase structure gram-

mar (HPSG) [158, 159] is lexicalism-based grammar that focuses on generalizing

phrase structures. HPSG primarily handles word and phrase signs in a sentence

in terms of their syntactic and semantic roles. Thus, HPSG should be an appro-

priate parsing rule for extracting phrase structures in sentences and applying the

following proposed pre-training techniques. Figure 4.5 (left) shows an instance of

parsing an English sentence using HPSG grammar.

Head Finalization

Using the above-mentioned HPSG, sentences in any language can be character-

ized using phrase structures. From the definition of a phrase, the “head” of a

phrase is subsequently defined as the syntactically determinant part in a phrase.

In other words, “head” determines the syntactic category of the phrase and its

“dependents.” Particularly, English is referred to as a “head-initial” language

because “head” appears before its “dependents,” whereas Japanese is referred to

as a ”head-final” language because “head” usually appears after “dependents” in
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a phrase.

The deliberate phrase structures provided by the HPSG parser are utilized

in several scenarios in the NLP. Particularly, Isozaki et al. [77] proposed a sim-

ple reordering rule for the SVO language (head-initial languages) by using the

phrase structure information provided by the HPSG parser. Figure 4.5 shows

an example of reordering an English sentence to be an SOV-like sentence on the

basis of the result of HPSG parsing. By reordering sentences in SVO languages

such as English to be SOV-like sentences, the performance of statistical machine

translation (SMT) is improved. Particularly, Isozaki et al. [77] first proposed head

finalization and applied it to English-to-Japanese SMT; Han et al. [68] applied

it to Chinese-to-Japanese SMT and obtained significant improvements; more re-

cently, Zhou et al. [268] utilized this reordering technique to generate synthetic

parallel sentences in the back-translation phase when translating SOV and SVO

languages. In this study, we utilize this reordering rule in the pre-training phase

for NMT (see Section 4.3.2).

PMASS

We propose PMASS by leveraging phrase-span information in an English sentence.

In general, we perform PMASS pre-training by limiting the masked tokens in

MASS to be an entire phrase span. Thus, for masking plural phrase spans, we

denote it as PMASS.P. For masking only a single phrase span, we denote it as

PMASS.S. Particularly, the source and target for PMASS.P and PMASS.S pre-

training can be generated using our proposed phrase-masking algorithms described

in Appendix B.1. Inspired by MASS, we force the number of masked tokens to

be approximately half of the length of the sentence to guarantee the effectiveness

of the sequence-to-sequence masked language model. Examples of PMASS.P and

PMASS.S are presented in Figure 4.6-c. We observe that several phrase spans in

PMASS.P and a single long phrase span in PMASS.S are masked. We expect such

special masking patterns to force the NMT system to extract more phrase-level

syntactic information in the pre-training phase.
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Tgt.
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John Mary his wallet lost because the police to went .

John  went   to   the  police   because  Mary   lost    his   wallet   .

: Phrase Span : Token

Figure 4.6: Example of source and target for MASS, PMASS, and HFSS of a

sentence in English.

HFSS

We propose HFSS using the head finalization technique [77] for pre-training En-

glish. As shown in Figure 4.6-d, the pre-training task is also a reordering task

that simulates the translation from SOV languages to English. More precisely, the

source sentence for sequence-to-sequence pre-training is the reordered (SOV-like

or head-finalized) English sentence, and the target sentence is the original En-

glish monolingual sentence. We expect HFSS to help the system learn the word

reordering pattern of the translation between head-initial (SVO) and head-final

(SOV) languages in advance.

According to the prior experiments for Japanese (see [118] and 4.5.1), BRSS.F

consistently outperforms BRSS.R. In addition, BART [100] also claims that re-

constructing the original sentence benefits the language generation tasks. There-

fore, we do not distinguish HFSS with HFSS.F and HFSS.R (HFSS.F performs
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pre-training with the SOV-SVO pattern, whereas HFSS.R performs the reverse

pattern).7 Instead, we directly defined HFSS using the pre-training pattern of

HFSS.F. Moreover, HFSS is performed on the basis of head finalization, which

utilizes the results from HPSG parsers. This is consistent with PMASS in which

we extract phrases using HPSG-parsing results.

We develop our proposal on English through head finalization, whereas for

SOV languages such as Japanese, it is unmanageable to reorder SOV sentences to

SVO-like sentences [77]. Furthermore, HFSS can be used for all head-initial lan-

guages apart from English, as well-developed reordering rules have been proposed

and demonstrated to be effective for NMT. However, BRSS can only be imple-

mented for Japanese-involved translation pairs because bunsetsu information is

required to establish the source and target sentences for sequence-to-sequence

pre-training.

4.3.3 Multi-task Pre-training

Multi-task pre-training objectives lead to a robust initial state for NMT sys-

tems [100, 167]. Because our proposed methods can also be categorized into two

groups of pre-training tasks, we propose a multi-task pre-training task for both

Japanese and English.

We define JASS pre-training, which is a combination of the two previous pro-

cedures: BMASS and BRSS. Our actual pre-training will consist of the joint

execution of these two pre-training sessions. Therefore, the pre-training objective

for JASS is

Ljass(Xja) = Lbmass(Xja) + Lbrss(Xja) (4.2)

where Xja represents the monolingual corpus of Japanese, and Lbrss denotes the

reordering loss using the forward or reverse variants mentioned in Section 4.3.1.

We expect BMASS & BRSS to jointly learn syntactic knowledge and BRSS to

learn word ordering knowledge.

7More precisely, HFSS.F denotes the source sentence of the head-finalized English sentence

and the target sentence of the original English sentence. HFSS.R indicates the source sentence

of the original English sentence and the target sentence of the head-finalized English sentence.
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For English, we similarly define ENSS pre-training, which combines PMASS

and HFSS. More precisely, the training objective is:

Lenss(Xen) = Lpmass(Xen) + Lhfss(Xen) (4.3)

where Xen denotes the monolingual corpus of English, Lpmass the PMASS.P or

PMASS.S loss, and Lhfss the reordering loss of HFSS.

JASS is specifically designed for Japanese, whereas theoretically, ENSS can

be transplanted onto any SVO language as long as we can extract the phrase

structure information of the corresponding language from a HPSG parser.

We also mixed JASS pre-training for Japanese with MASS pre-training for the

other languages involved in the translation. In practice, we therefore designated

using JASS pre-training for Japanese monolingual data with BMASS and BRSS

objectives, along with “other languages” monolingual data with the MASS ob-

jective. Similarly, for English, ENSS pre-training consists of PMASS & HFSS for

English and MASS for “other languages” involved in fine-tuning translation pair.

We also consider attempting the combination of our proposed linguistically-

driven methods with a strong baseline pre-training objective, MASS, which we

refer to as MASS + JASS (or ENSS) in the subsequent sections. To allow the pre-

training model to determine the language and sub-task (MASS, BMASS, BRSS,

PMASS, and HFSS) that it should perform, we prepend tags to inputs similar to

those used in [81] (see Section 4.4.2 for details).

4.4 Experimental Settings

In this section, we evaluate our pre-training methods on simulated low-resource

scenarios for ASPEC Japanese–English [140], Japanese–Chinese translations [138,

124], and realistic low-resource scenarios for Wikipedia Japanese–Chinese [34, 35]

and News English–Korean [151] translations.

4.4.1 Datasets

We used monolingual data for pre-training and parallel data for fine-tuning. Refer

to Table 4.1 for an overview.
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Language Dataset Size

Monolingual

Ja Common Crawl 22M

Zh Common Crawl 22M

En Common Crawl 22M

Ko Common Crawl 22M

Parallel

Ja-En ASPEC-JE 1M

Ja-Zh ASPEC-JC 670k

Ja-Zh Wikipedia 258k

En-Ko News 94k

Table 4.1: Overview of training data. “Size” denotes the number of the monolin-

gual sentences or parallel sentences.

Monolingual data: For pre-training, we use monolingual data of 22M lines

each for Japanese, English, Chinese, and Korean, randomly sub-sampled from

Common Crawl mentioned in the official WMT monolingual training data.8 9

For pre-training in Japanese–English and English–Korean, given that these two

languages have different scripts and thus have few common words, the pre-training

objectives for each language will work separately, even though they are performed

jointly for two languages. However, for pre-training in Japanese and Chinese,

they share more characters, which indicates that the monolingual pre-training

tasks will be run in a pseudo-cross-lingual manner. Thus, we also expect to see

whether such pre-training will benefit from more fine-tuning.

Parallel Data: We use scientific abstracts domain ASPEC parallel corpus for

training Japanese–English and Japanese–Chinese models. For Japanese–Chinese

fine-tuning, we also utilize the Wikipedia parallel corpus, which is a real low-

resource scenario. We use News parallel corpus for English–Korean, which is a

low-resource dataset.

8http://www.statmt.org/wmt19/translation-task.html
9Different from Mao et al. [118]. Currently, we unify the monolingual corpus domains for all

the languages for fairer comparisons.
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For ASPEC, we used the official training, development, and test splits pro-

vided by WAT 2019.10 11 For Wikipedia, we used the dataset released by Kyoto

University.12 For News, we use dataset provided by Park et al. [151].13

4.4.2 Pre-processing

We tokenize the monolingual data by using the Moses tokenizer for English and

Korean,14 Jumanpp for Japanese,15 and jieba for Chinese.16 We obtain the bun-

setsu information by using KNP17 and obtain the HPSG parsing results using

enju.18 Sentences with more than 175 tokens were removed. For each language

pair, we constructed a joint vocabulary with 60,000 sub-word units through byte-

pair encoding (BPE) [190] on the concatenated monolingual corpora involved

during pre-training.19, whereas 40,000 BPE merge operations is set for Japanese-

English. In the multi-task pre-training, each sentence is prepended with a task

token [MASS], [BMASS], [BRSS], [PMASS], or [HFSS], and a language to-

ken [Ja], [En], [Zh], or [Ko].20 This ensures that the model learns to distinguish

between different pre-training objectives and languages. This token can be used

when monolingual pre-training is conducted jointly by multiple languages and

multiple tasks.

10http://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2019/index.html\#task.html
11For ASPEC Japanese–English, we use the first 1M parallel sentences. Parallel sentences for

different fine-tuning size settings were randomly sampled from the selected 1M dataset.
12http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?Wikipedia\%20Chinese-Japanese\

%20Parallel\%20Corpus
13https://sites.google.com/site/koreanparalleldata
14https://github.com/moses-smt/mosesdecoder
15https://github.com/ku-nlp/jumanpp
16https://github.com/fxsjy/jieba
17https://github.com/ku-nlp/pyknp
18https://mynlp.is.s.u-tokyo.ac.jp/enju/
19Particularly, 30,000 BPE merging operations will lead to a joint vocabulary with a size of

approximately 60,000 for Japanese–Chinese and English-Korean
20As an implementation trick, we recommend to unify the task tag for the same group of tasks,

e.g. use the same tag for [BRSS] and [HFSS].
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4.4.3 Training and Evaluation Details

In our experiments, we used the open-source OpenNMT [87] implementation of the

Transformer [219] NMTmodel.21 The hyperparameters are set to the Transformer-

big setting in OpenNMT. Particularly, our model has a 6-layer encoder and de-

coder, a hidden size of 1024, feed-forward hidden layer size of 4096, batch size

of 4096, dropout rate of 0.3, and 16 attention heads. An ADAM optimizer with

a learning rate of 10−4 was used for both pre-training and fine-tuning. All the

pre-training tasks are run until convergence on four TITAN V100 GPU cards oc-

curs, and fine-tuning uses only one GPU. It took approximately two days for each

pre-training run. Mixed precision training [127] was used for both pre-training

and fine-tuning. For multi-task pre-training, data are randomly shuffled such that

even in each mini-batch, different pre-training objectives appear, corresponding

to a real joint pre-training. Our proposed pre-training methods converge within

the similar training time as compared to that of MASS.

Pre-training tasks are evaluated using perplexity, and the checkpoint with the

lowest pre-training perplexity was selected for fine-tuning. We used BLEU [150]

for automatic evaluation, adequacy, and fluency for human evaluation. We per-

formed early stopping using 1-gram accuracy and perplexity on the development

set. We evaluated the statistical significance of our BLEU scores through boot-

strap resampling [88].

4.4.4 Baselines

In addition to MASS, we employ the “text infilling” in BART as another main

baseline.22 We also define two pre-training baselines for comparison with our

proposed methods. They are named multi-span-based MASS (MultiMASS) and

deshuffling. Moreover, the joint training with MASS and deshuffling was set as

the multi-task pre-training baseline. All of the baselines are as follows:

Baselines without pre-training. First, we employ the vanilla Transformer big

as the baseline without pre-training because all of the pre-training methods are

21https://github.com/OpenNMT/OpenNMT-py
22Text infilling has been demonstrated as the most effective pre-training objective for NMT

among several objectives in BART [100].
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[M][M]

は

ラブライブ れて いる 。よってに

プロジェクトのつ[M] 、

[M]Src.

Tgt. [M] [M] [M]

三

[M]

[M] [M][M]

構成 [M] [M][M]さ

[M]

[M]

Figure 4.7: Example of source and target for MultiMASS with the meaning “Love-

Live is made of three projects.”

based on this model structure. Moreover, following Araabi and Monz [6], we also

present the best performance for low-resource NMT by using Transformer model.

Hyperparameter details are shown in Appendix B.2.

MASS. Using the same settings as in Song et al. [204].

BART (text infilling). Different from MASS, BART (text infilling) masks

several token spans within a sentence by a single [M ] where span lengths are

samples from Poisson distribution and the model is also required to predict the

lengths of the masked spans. We use the same settings as in Lewis et al. [100].23

MultiMASS. MultiMASS is a baseline method added to help demonstrate the

effectiveness of masking specific syntactic units such as bunsetsu or phrase spans

in a sentence that we propose as BMASS and PMASS.

As shown in Figure 4.7, MultiMASS predicts several randomly masked tokens

in a sentence, which differs from the single masked span in MASS, masked busetsu

spans in BMASS, several phrase spans in PMASS.P, and a single phrase span in

PMASS.S.

Deshuffling. Deshuffling denotes the pre-training task of random shuffling-based

sentence reconstruction, which is also a crucial pre-training task. We perform this

pre-training task as another baseline to confirm the effectiveness of reordering

syntactic units in BRSS and the reordering driven by head finalization of HFSS.

A pre-training example is presented in Figure 4.8.

23In order to conduct fair comparisons for our proposed methods, we only present the most

effective sub-task, text infilling, within BART. The combination of text-infilling and sentence

permutation is proven to be the best practice of BART. With regard to sentence permutation,

we do not consider it in this study because it is mainly designed for document NMT. When it

comes to multi-sentence pre-training, sentence permutation and other possible patterns of multi-

sentence linguistically-driven pre-training tasks should be explored and compared in future work.
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は

ラブライブれて いる。よって に

プロジェクトのつ、

Src.

Tgt.

三

構成 [M]さラブライブ 三

つ の

。いるれてよってに

は、プロジェクト 構成さ

Figure 4.8: Example of source and target for deshuffling with the meaning “Love-

Live is made of three projects.”

Multi-task Baseline. The multi-task baseline is the combination of the re-

spective best baseline methods from the masked language model and reordering

pre-training. Thus, the multi-task baseline consists of MASS,24 and deshuffling.

The baseline is formulated as follows:

L(X ) = Lmass(X ) + Ldeshuffling(X ) (4.4)

where X represents the monolingual corpora.

4.4.5 Pre-trained Models

We pre-trained our NMT models by leveraging the monolingual data of the source

and target languages. For Japanese, we can use MASS, BMASS, or BRSS, whereas

for English, we can use MASS, PMASS, or HFSS. For Chinese and Korean, we use

only the MASS. Particularly, we pre-trained different types of models in Table 4.2.

Note that we use MASS for ENSS because PMASS underperforms MASS by a

significant margin (see 4.5.1).

4.4.6 Fine-tuned NMT Models

We fine-tuned to improve Japanese-English, English-Japanese, Japanese-Chinese,

Chinese-Japanese, English–Korean and Korean–English translations. We trained

the following NMT models:

1. Ja–En and En–Ja: Japanese to English and English to Japanese models

using from 3k to 50k parallel sentences randomly sampled from ASPEC

for fine-tuning.

24MASS outperforms MultiMASS, we therefore use MASS rather than MultiMASS. (See 4.5.1)
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# Pre-trained Model Details

Main baseline

1 MASS Using the same settings as in Song et al. [204].

1* BART (text infilling) Using the same settings as in Lewis et al. [100].

Proposed methods for Japanese

2 BMASS
Similar to MASS, we mask half the number of

bunsetsus during pre-training.

3 BRSS
We separately pre-trained on the SVO–SOV (BRSS.F)

as well as SOV–SVO (BRSS.R) models.

4 JASS Multi-task training of BMASS and BRSS.

Combinations of proposed methods with MASS

5 MASS+BMASS Multi-task training of MASS and BMASS.

6 MASS+BRSS Multi-task training of MASS and BRSS.

7 MASS+BMASS+BRSS Multi-task training of BMASS, BRSS and MASS.

Other baselines for Japanese

8 MultiMASS (Ja)
Based on MASS pre-training, several random tokens are

masked rather than one consecutive span.

9 Deshuffling (Ja) Random shuffling-based original sentence reconstruction.

10 MASS+Deshuffling (Ja) Multi-task pre-training baseline for Japanese.

Proposed methods for English

11 PMASS

Similar to MASS, we mask an entire phrase span based on the

head-driven phrase structure grammar. We

performed the experiments for PMASS.P and PMASS.S, respectively.

12 HFSS We train SOV (head finalized)―SVO (original) models for English.

13 ENSS Multi-task training of MASS and HFSS.

Other baselines for English

14 MultiMASS (En)
Based on the MASS, several random tokens are

masked rather than one consecutive span.

15 Deshuffling (En) Random shuffling-based original sentence reconstruction.

16 MASS+Deshuffling (En) Multi-task pre-training baseline for English.

Combination of the proposed methods for English and Japanese

17 JASS+ENSS Multi-task training of JASS and ENSS.

Baseline for #17

18 MASS+Deshuffling Multi-task pre-training baseline for JASS+ENSS.

Table 4.2: Settings of pre-trained models.

2. Ja–Zh and Zh–Ja: Japanese to Chinese and Chinese to Japanese models

using from 3k to 50k parallel sentences randomly sampled from ASPEC
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and Wikipedia, respectively, for fine-tuning.

3. En-Ko and Ko-En: English to Korean and Korean to English models

using 20k (randomly sampled) and 94k (full dataset) parallel sentences from

News for fine-tuning.

We compared these models with pre-trained model baselines and vanilla base-

lines, which are fully-supervised NMT models on the same data settings, but

without pre-training. In addition, fine-tuning results under the high-resource sce-

narios (with more than 50k parallel sentences) are provided and discussed in 4.5.6.

4.5 Results and Analyses

Tables 4.3, 4.4, 4.5, and 4.6 contain the NMT BLEU results of our proposed

methods for Japanese–English, Japanese–Chinese and English–Korean translation

on various translation domains, respectively. Subsequently, we provide in-depth

analysis for translation quality in terms of adequacy by using LASER [12], human

evaluation scores, specific cases for the real low-resource scenario of Wikipedia Ja-

Zh. Finally, we conduct an investigation on the pre-training accuracy to analyze

the difference between the pre-trained models and their complementation of each

other, and present the results in middle/high-resource scenarios.

4.5.1 NMT Results

In Tables 4.3 and 4.4, where we simulate several low-resource settings for Japanese–

English and Japanese–Chinese translations on ASPEC with different pre-training

datasets; in Table 4.5 and 4.6, where we use realistic low-resource settings for

Wikipedia Japanese–Chinese translation and News English–Korean translation,

we observe that all settings using pre-training outperform those without pre-

training (#0 & #0*), which indicates the importance of pre-training. The results

also indicate that JASS (#4) and ENSS (#13) are generally better than MASS

(#1). With regard to two main baselines with pre-training, MASS and BART

(text infilling), we observe that MASS outperforms BART (text infilling) in most

cases as shown in Table 4.3, 4.4, 4.5. So we focus on the comparisons with MASS
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# Model
Ja-En En-Ja

3k 10k 20k 50k 3k 10k 20k 50k

Main baselines

0 w/o pre, vanilla 0.8 2.1 3.5 16.1 1.1 2.7 5.1 19.4

0* w/o pre, optimized 2.2 6.8 10.7 19.8 3.3 6.5 13.6 23.7

1 MASS 8.8 13.8 17.2 21.2 9.1 16.0 20.6 25.0

1* BART (text infilling) 3.1 11.1 15.5 20.7 5.6 14.9 19.8 25.6†

Proposed methods for Japanese

2 BMASS 8.9 13.9 17.4 21.8 8.7 15.9 20.1 25.4

3 BRSS 8.8 14.9† 18.1† 22.0† 10.0† 17.3† 21.0 26.0†

3 (R) BRSS.R 8.2 14.3† 17.7† 21.7† 10.0† 17.2† 20.5 25.7†

4 JASS 10.6† 15.7† 18.9† 22.3† 11.5† 17.7† 21.6† 26.5†

Combinations of proposed methods with MASS

5 1 + 2 9.2 14.8† 17.7† 21.7† 9.7† 16.6† 20.9 25.9†

6 1 + 3 10.9† 15.9† 18.3† 22.2† 11.0† 17.7† 21.7† 26.8†

7 1 + 4 10.5† 15.5† 18.5† 22.0† 11.5† 17.9† 21.7† 26.4†

Other Baselines for Japanese

8 MultiMASS (Ja) 7.1 12.1 15.1 20.5 6.9 13.0 17.7 24.1

9 Deshuffling (Ja) 6.8 12.7 16.6 21.0 7.8 14.7 19.3 24.9

10 1 + 9 8.2 13.3 17.0 21.4 8.3 15.5 19.5 25.4

Proposed methods for English

11 PMASS.P 6.8 12.1 15.9 20.7 5.5 13.5 17.8 24.5

11* PMASS.S 6.5 12.3 16.2 21.2 6.2 13.5 18.2 24.6

12 HFSS 10.5† 16.3† 18.9† 22.6† 9.8† 17.8† 21.7† 26.8†

13 ENSS 11.2† 16.7† 19.0† 22.1† 11.7† 18.7† 22.5† 27.0†

Other baselines for English

14 MultiMASS (En) 6.9 12.0 15.2 20.1 7.0 12.8 17.5 23.8

15 Deshuffling (En) 6.6 12.5 15.9 20.9 6.8 14.1 19.2 24.7

16 1 + 15 7.7 13.2 16.7 21.0 8.6 15.7 20.4 25.6

Combination of methods for Japanese and English

17 4 + 13 10.9† 16.4† 18.7† 22.3† 11.9† 18.4† 22.0† 26.5†

18 10 + 16 (baseline) 7.2 12.6 16.4 20.9 8.4 14.8 19.1 25.5

Table 4.3: BLEU scores for simulated low/high-resource settings for Japanese–

English ASPEC translation using from 3k to 50k parallel sentences for fine-tuning.

Pre-trained models used for fine-tuning are numbered according to their descrip-

tion in Section 4.4.5. Results better than MASS with statistical significance

p < 0.05 are marked in †. Bold denotes the three top scores.

in the following analyses. We also present the results by combing BART (text in-
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# Model
Ja-Zh Zh-Ja

3k 10k 20k 50k 3k 10k 20k 50k

Main baselines

0 w/o pre, vanilla 0.7 3.4 11.5 21.0 1.9 4.5 16.0 28.2

0* w/o pre, optimized 3.7 12.0 19.5 23.3 6.7 15.8 24.8 31.2

1 MASS 15.7 20.3 22.4 24.7 19.4 25.9 29.4 32.9

1* BART (text infilling) 13.5 19.0 21.3 24.4 20.3† 25.8 29.1 33.0

Proposed methods

2 BMASS 16.7† 21.1† 23.0† 25.3† 20.9† 27.2† 30.2† 33.7†

3 BRSS 15.6 21.1† 22.6 24.9 20.7† 26.8† 30.0† 33.3†

4 JASS 17.1† 22.2† 23.2† 25.2† 21.6† 27.5† 30.4† 33.6†

Combinations of proposed methods with MASS

7 1 + 4 17.0† 21.7† 23.1† 25.4† 21.8† 27.6† 30.2† 33.4†

Other baselines

8 MultiMASS 14.5 20.5 22.3 24.7 19.6 25.7 29.8 33.2

9 Deshuffling 14.1 19.5 21.6 24.3 18.4 25.0 28.7 32.8

10 1 + 9 15.0 20.2 22.1 25.0 18.9 25.9 29.3 33.1

Table 4.4: BLEU scores for simulated low-resource settings for Japanese–Chinese

ASPEC translation using 3k to 50k parallel sentences for fine-tuning. Results

better than MASS with statistical significance p < 0.05 are marked in †.

filling) with ours in Appendix B.3.25 Without pre-training, we observe that using

optimized Transformer (#0*) benefits the low-resource setting, which has been

proven by previous work [6, 191]. However, pre-training can further improve the

optimized baselines without pre-training.

Particularly, for the Japanese–English translation, BMASS (#2) is comparable

to MASS; BRSS (#3 & #3(R)) and their combination, along with JASS (#5) are

significantly better than MASS. However, as summarized in Tables 4.4 and 4.5,

the results for two parallel corpora on different domains for Japanese–Chinese

25Note that better results from BART than MASS in Lewis et al. [100] are based on the

multi-task objectives while we are comparing with the most effective single task within BART

here.
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# Model
Ja-Zh Zh-Ja

3k 10k 20k 50k 3k 10k 20k 50k

Main baselines

0 w/o pre, vanilla 0.9 2.9 2.9 6.0 1.6 2.9 3.9 6.5

0* w/o pre, optimized 3.3 7.8 11.7 21.9 6.7 12.0 16.2 24.2

1 MASS 7.7 15.4 18.3 23.4 9.6 17.6 23.3 27.1

1* BART (text infilling) 5.9 14.0 18.0 21.8 8.7 17.8 24.2† 28.5†

Proposed methods

2 BMASS 10.8† 15.7 20.1† 24.5† 16.2† 19.4† 25.4† 30.0†

3 BRSS 11.6† 16.2† 20.0† 24.6† 15.7† 21.6† 25.0† 28.3†

4 JASS 12.0† 17.0† 20.1† 25.0† 16.6† 21.2† 26.5† 29.2†

Combinations of proposed methods with MASS

7 1 + 4 11.8† 16.8† 20.1† 24.6† 16.6† 22.3† 25.5† 29.6†

Other baselines

8 MultiMASS 8.2 13.8 18.6 21.5 10.7 17.3 22.0 26.4

9 Deshuffling 9.3 14.2 18.7 22.7 12.4 18.4 23.2 27.4

10 1 + 9 8.7 13.8 19.4 23.2 14.3 18.8 24.8 27.8

Table 4.5: BLEU scores for simulated low-resource settings for Japanese–Chinese

Wikipedia translation using from 3k to 50k parallel sentences for fine-tuning.

Results better than MASS with statistical significance p < 0.05 are marked in †.

yield significantly better results when using our proposed BMASS and BRSS.

We observe that only a few settings on Japanese-to-Chinese BRSS yield lower

BLEU results than MASS, whereas other settings using the proposed methods

yield better results than MASS by significant margins. Although MASS is better

than BMASS for Japanese–English translation, the reverse can be observed for

the Japanese–Chinese translation. This indicates that the effects of the proposed

span-masking techniques might correlate with specific translation directions and

domains. We suppose it is worth exploring the span-masking tricks that are non-

sensitive to language pairs and domains in the future.

As summarized in Table 4.3 and 4.6, our proposed methods of leveraging

linguistic knowledge for English yield significantly higher BLEU results when
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# Model
En-Ko Ko-En

20k 94k 20k 94k

Main baselines

0 w/o pre-training 1.3 2.1 2.9 4.5

0* optimized Transformer 2.1 3.7 3.9 8.3

1 MASS 2.9 4.5 5.6 9.6

Proposed methods

2 PMASS 2.4 4.3 5.2 9.4

3 HFSS 3.1 4.8 7.7† 10.3†

4 ENSS (1 + 3) 3.2 5.0† 6.8† 10.9†

Other combinations

2 + 3 3.0 4.7 7.0† 10.6†

Table 4.6: BLEU scores for simulated low-resource settings for English–Korean

News translation using 20k and 94k parallel sentences for fine-tuning. Results

better than MASS with statistical significance p < 0.05 are marked in †. The

BLEU scores are relatively low because English–Korean is a dissimilar language

pair. Previous work [191, 151] reported similar BLEU results.

we perform the reordering pre-training task, HFSS (#12). However, the pro-

posed linguistically-driven masked language modeling tasks PMASS.P (#11) and

PMASS.S (#11*) yielded comparable results to several other baseline methods

such as MultiMASS (#14) and deshuffling (#15). This demonstrates that the syn-

tactical span-based masked language model may merely work on head-final lan-

guages such as Japanese.26 Considering the weak performance of the PMASS, we

combined HFSS with MASS for ENSS. The multi-task pre-trained ENSS yielded

the highest results on almost all the low-resource settings. We will explore proper

26The weak performance of PMASS can also be attributed to the discrete nature of the remain-

ing tokens (tokens that are not masked) without constituting complete semantic spans. We will

attempt chunking-based masking for PMASS in future work to allow PMASS to be performed

in a manner similar to BMASS.
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chunking techniques for linguistically-driven span-masking pre-training for lan-

guages like English in the future.

However, in Table 4.3, when performing a universal linguistically-driven pre-

training simultaneously for Japanese and English (#17), we did not achieve fur-

ther significant BLEU improvements. This can be attributed to the increased

dependence of NMT on specific linguistic information on a single language side,

and the joint pre-training does not allow linguistic knowledge transfer across lan-

guages and between dissimilar languages.

In addition to the main baseline MASS, we also performed several other

sequence-to-sequence pre-training baselines: MultiMASS (#8 & #14) and deshuf-

fling (#9 & #15) along with their multi-task combinations (#10, #16 & #18)

for Japanese and English. As summarized in Tables 4.3, 4.4, 4.5, and 4.6, we

observe that the proposed masked style pre-training task, BMASS, and reorder-

ing pre-training tasks, BRSS & HFSS, outperform these baselines by significant

margins, thereby indicating that linguistically-driven methods should be supe-

rior to self-supervised pre-training without leveraging linguistic features. More-

over, we investigated the percentages of the words of which the position changed.

For Japanese pre-training, the percentages are 79.58% for BRSS and 94.72% for

deshuffling. For English pre-training, the percentages are 91.97% for HFSS and

95.22% for deshuffling. Although there exists a gap for the percentages between

BRSS and deshuffling, we can see that the percentages of deshuffling and HFSS

are similar, which demonstrates that the quality of the linguistically generated

reordered sentence is much more important than the percentage.

As summarized in Table 4.3, BRSS-F (English-order to Japanese-order) yielded

slightly better results than BRSS-R (vice-versa); thus, we only experimented with

BRSS-F for the remaining experiments. We suppose that the reason is that train-

ing the decoder with the original sentence is more important than training the

encoder with it, which is also the reason why BART pre-training [100] treats the

original sentence as the target sentence to be predicted from the decoder.27 In

other words, forcing the decoder to generate a natural sentence leads to a better

initialized decoder for NMT. Meanwhile, HFSS pre-training is performed in an

27In BART, the original sentences without any noise are treated as target sentences.
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# Model
ASPEC ASPEC Wikipedia News

Ja-En En-Ja Ja-Zh Zh-Ja Ja-Zh Zh-Ja En-Ko Ko-En

* Reference 80.78 86.10 87.26 73.93

0 w/o pre-training 52.59 45.89 69.54 67.08 57.55 56.48 59.68 65.38

1 MASS 75.63 76.09 85.52 86.32 81.08 78.52 72.54 73.30

2 BMASS 75.75 76.68 85.42 86.49 80.91 81.36 - -

3 BRSS 78.34 76.66 85.87 86.54 81.71 84.29 - -

4 JASS 80.00 77.63 85.96 86.58 85.39 83.08 - -

11 PMASS 76.08 73.67 - - - - 71.90 74.14

12 HFSS 79.38 79.13 - - - - 73.60 75.59

13 ENSS 79.79 79.64 - - - - 74.13 75.66

Table 4.7: Adequacy scores evaluated by LASER embedding-based cosine sim-

ilarity for ASPEC Japanese–English, Japanese–Chinese, Wikipedia Japanese–

Chinese and News English–Korean translations, respectively, using 10k sentences

for fine-tuning (using 94k sentences for English–Korean). Reference (*) is the

cosine similarity between test sets in two languages.

analogous manner for the same reason.

As mentioned above, JASS yields the best results when we consider only lin-

guistically driven methods for Japanese. After combining the proposed methods

for Japanese with MASS (#5∼#7 in Table 4.3), we observe comparable results

as compared to JASS by combing MASS and BRSS. This indicates the effects

of combining masked style methods and reordering style methods. In Table 4.4

and 4.5, we believe that BMASS is better than MASS for combining with BRSS

because of the significant improvements yielded by BMASS.

Moreover, as summarized in Tables 4.4 and 4.5, we observe that on the AS-

PEC domain, JASS improves up to 2.2 BLEU scores, whereas on the Wikipedia

domain, JASS achieves up to 7.0 BLEU improvements. This demonstrates the

promising performance of the proposed methods. Meanwhile, this indicates that

the overlapping of pre-training domain with the fine-tuning domain is directly pro-

portional to the realization of improvements by linguistically-driven pre-training
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# Model
BLEU Adequacy Fluency

Ja-Zh Zh-Ja Ja-Zh Zh-Ja Ja-Zh Zh-Ja

0 w/o pre-training 2.9 2.9 1.22 1.05 3.90 3.99

1 MASS 15.4 17.6 2.72 2.33 4.11 4.09

2 BMASS 15.7 19.4 3.12 2.88 4.34 4.32

3 BRSS 16.2 21.6 3.30 3.35 4.30 4.40

4 JASS 17.0 21.2 3.79 3.44 4.47 4.36

Table 4.8: Adequacy and fluency of Wikipedia Japanese–Chinese translations

using 10k sentences for fine-tuning.

methods.

Finally, by comparing the BLEU results in Table 4.3 with those reported by

Mao et al. [118], we find that the BLEU scores of models pre-trained with News

Crawl are better than those pre-trained with the Common Crawl monolingual

corpus, which shows that pre-training with a high-quality monolingual dataset

leads to superior fine-tuning results.

4.5.2 Adequacy Evaluation

Reference-free MT evaluation evaluates the translation system without using the

target reference. Such an evaluation can help circumvent the noise existing in

the references of translation targets. After the emergence of multilingual sentence

encoders [12], Yankovskaya et al. [251] proposed the use of multilingual sentence

embeddings encoded by LASER to implement the reference-free MT evaluation.

More precisely, we first apply LASER to encode the source sentence and the trans-

lated sentence, respectively. Thereafter, the cosine value of those two embeddings

is used to evaluate the similarity between the source and translation. This cosine

value is thus the metric used to evaluate translation adequacy. This approach has

two advantages. The first advantage is that target references are not required, as

mentioned above. The other advantage is that every two translation directions
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# Model
BLEU Adequacy Fluency

Ja-En En-Ja Ja-En En-Ja Ja-En En-Ja

0 w/o pre-training 2.1 2.7 1.08 1.08 2.56 3.60

1 MASS 13.8 16.0 2.61 3.03 3.40 4.17

2 PMASS 12.1 13.5 2.40 2.76 3.24 4.07

3 HFSS 16.3 17.8 3.24 4.00 3.60 4.31

4 ENSS 16.7 18.7 3.72 4.11 3.76 4.42

Table 4.9: Adequacy and fluency of ASPEC Japanese–English translations using

10k sentences for fine-tuning.

can be compared with each other because language-agnostic embedding is used

for evaluation.

We report the adequacies in Table 4.7. First, we observe that methods with

pre-training can yield more semantically correct translations than those with-

out pre-training. Second, our proposed methods can significantly obtain higher

LASER similarity scores than the MASS baseline, particularly the results on AS-

PEC Japanese–English, Wikipedia Chinese–Japanese and News English–Korean

translations. Moreover, we can observe that the adequacy results obtained from

the LASER embedding-based cosine similarity scores are consistent with the

BLEU results.

4.5.3 Human Evaluation

Following Nakazawa et al. [139], we performed adequacy and fluency evaluations

for the Japanese–Chinese and Japanese–English translations when 10k Wikipedia

parallel sentences and 10k ASPEC parallel sentences were used for fine-tuning

the pre-trained models. We randomly sampled 100 test-set English sentences and

blindly evaluated their translations across various models. Each sentence was

scored on a scale of 1 to 5, with 1 representing the worst score. The higher the

score, the more adequate (meaningful) or fluent (well-formed) the sentence is. The
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#
Reference–Ja

水の性質の多様性について,まず,水分子同士の間に働く力である水素結合と,そのネットワーク構造
について解説した。

Reference–En
Various properties of water were explained on hydrogen bonds in which the force works among the water

molecules and the network structure.

0 w/o pre-training This study introduces the outline of the development of the system, and it is described.

1 MASS
The network structure of the water, hydrogen combination as the power of the water, and the network str-

ucture are explained.

2 BMASS
On the basis of the water properties, hydrogen coupling and the network structure are explained in the fir-

st stage of water.

3 BRSS
On the formation of the water, this study explains hydrogen bond and hydrogen bond, which is connected

between the water vapor man fellows.

4 JASS
This study explains the development of the properties of water and hydrogen combination, which is the

power between the moisture man fellows and the network structure.

8 MultiMASS (Ja)
This study explains the rich characteristics of the water and also explains the network structure of the hyd-

rogen joining with the network structure.

9 Deshuffling (Ja)
This study explains the potential of the water in the water, and the network structure that is connected be-

tween the water and hydrogen joining.

10 Multi-task baseline (Ja)
The active properties of water are explained, and hydrogen combination that is connected to the network

structure and the power of the water are explained.

11 PMASS
The importance of the properties of water and the network structure, which is the active component of the

water, are explained.

12 HFSS
The formation of the properties of water is first explained, then hydrogen combination and the network str-

ucture between the moisture man.

13 ENSS
The importance of the property of the water is first explained: hydrogen combination and the network str-

ucture, which is the power for the entire body of the water.

14 MultiMASS (En)
The growth of the water is explained, and the network structure and structure are explained through the

hydrogen combination and network structure.

15 Deshuffling (En)
The network structure of the water properties is explained, and the network structure with hydrogen in

the water is described.

16 Multi-task baseline (En)
This study explains the growth of the water properties, and it also explains hydrogen bonding and its net-

work structure with the ability to develop between the water molecules.

Table 4.10: Japanese–English translation examples fine-tuned using 10k ASPEC

parallel sentences.

final score was the average of the scores of 100 sentences. We did not consider the

references, but only considered the sources for our evaluation.

In Table 4.8 and 4.9, we can observe that NMT models, even without pre-

training, are capable of generating rather fluent sentences, and the lack of parallel

sentences (low-resource scenario) will mainly influence the translation adequacy

(refer to the extremely low adequacy of models without pre-training). Meanwhile,

we can observe that our proposed BMASS, BRSS, JASS, HFSS, and ENSS result

in large improvements in adequacy and moderate improvements in fluency, for

both translation directions, whereas PMASS yielded marginal improvements. The
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#
Reference–Ja 翌嘉永２年（１８４９年）１１月２２日に婚姻し、御廉中様（将軍世子の正室）と称された。
Reference–Zh 翌嘉永２年（１８４９年）１１月２２日成婚，被称作御廉中样（将军世子的正室）。

(He married on November 22nd in the second year of Kaei (1849), and was called Gorenju (Seishitsu of the Shogun’s son).)

0 w/o pre-training 慶長２年（１５８３年）、劉宮将軍となり、幕府の命を率いた。
(He became 劉宮 Shogun in the second year of Keicho, and lived the life of Shogun.)

1 MASS 翌嘉永２年（１８４９年）５月２７日に成婚。
(He married on May 27th in the second year of Kaei (1849).)

2 BMASS 翌嘉永２年（１８４９年）１１月２３日に結婚。
(He married on November 23rd in the second year of Kaei (1849).)

3 BRSS 翌嘉永２年（１８４９年）１１月２３日に成婚し、御廉の中样（将軍世子の正室）と呼ばれる。
(He married on November 23rd in the second year of Kaei (1849), and was called Naka of Goren (Seishitsu of the Shogun’s son).)

4 JASS 翌嘉永２年（１８４９年）１１月２２日成婚し、御廉中様（将軍世子の正室）と称した。
(He married on November 22nd in the second year of Kaei (1849), and was called Gorenju (sSeishitsu of the Shogun’s son).)

8 MultiMASS 翌嘉永２年（１８４９年）１月２９日に成婚した。
(He married on January 29th in the second year of Kaei (1849).)

9 Deshuffling 翌嘉永２年（１８４９年）１１月２３日、御廉中の正室（将軍世子の正室）と称された。
(He was called Seishitsu of Gorenju (Seishitsu of the Shogun’s son) on November 22nd in the second year of Kaei (1849).)

10 Multi-task baseline 翌嘉永２年（１８４９年）１１月２２日成婚し、御廉の代わりに義子と呼ばれる。
(He married on November 22nd in the second year of Kaei (1849), and was called Gishi instead of Goren.)

Table 4.11: Japanese–Chinese translation examples fine-tuned using 10k

Wikipedia parallel sentences. Sentences in brackets correspond to English sen-

tences of the above Japanese translations.

improved performance of adequacy compared with that of MASS demonstrates

the effectiveness of linguistically-driven pre-training methods. Moreover, we can

observe that the results of human evaluation are almost consistent with those of

BLEU.

4.5.4 Case Study

We conducted case studies on Japanese-to-English translation fine-tuned using 10k

ASPEC parallel sentences and Chinese-to-Japanese translation fine-tuned using

10k Wikipedia parallel sentences to make improvements shown by BLEU score

evaluations visible. As summarized in Tables 4.10 and 4.11, we find that the

vanilla NMT system trained using 10k parallel sentences without pre-training can

hardly implement the translation. With regard to models with pre-training, we

observed that MASS and other baseline models generated several incorrect tokens

in terms of semantics, whereas the entire sentence seemed fluent. However, our

proposed methods can generate sentences with superior adequacy and fluency,

where fewer missing keywords are observed.
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# Model Overall MASS BMASS BRSS

1 MASS 69.75 69.75 - -

2 BMASS 77.32 - 77.32 -

3 BRSS 87.90 - - 95.90

4 JASS 85.15 - 77.34 97.89

5 1 + 2 74.53 70.17 78.59 -

6 1 + 3 81.58 69.72 - 94.43

7 1 + 4 80.81 70.22 77.90 97.73

Table 4.12: Component-wise and overall pre-training accuracies on ASPEC

Japanese development sentences. Column names “MASS,” “BMASS,” and

“BRSS” denote the pre-training components in the respective model. Note the

boost of BRSS accuracy in multitask settings, although the opposite could have

been expected.

4.5.5 Pre-training Accuracy

Pre-training accuracy is the accuracy of the monolingual pre-training tasks, and

it can be an indicator of task complexity and pre-training objective performance.

Tables 4.12 and 4.13 summarize the component-wise and overall pre-training ac-

curacies for various models, respectively, on the ASPEC Japanese and English

development set sentences. Regarding individual component methods, it can be

observed that MASS and PMASS are the harder tasks, given their low accuracy,

whereas BRSS and HFSS are the easier tasks. Moreover, for Japanese, the ac-

curacy of MASS and BRSS improves when coupled with BMASS, whereas for

English, the accuracy of HFSS and MASS improves when they are combined with

each other. Cross-referencing these accuracies with the BLEU scores in Table 4.3,

we observe that an increase in BLEU scores has no significant relationship with

the pre-training accuracy. However, masked language model-based pre-training

methods (MASS & BMASS) seem to act as an accuracy improving catalyst for

BRSS and HFSS, and this in turn has a positive impact on the translation quality.
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# Model Overall MASS PMASS HFSS

1 MASS 70.97 70.97 - -

2 PMASS 71.04 - 71.04 -

3 HFSS 96.48 - - 96.48

4 ENSS 84.97 71.24 - 98.05

Table 4.13: Component-wise and overall pre-training accuracies on ASPEC En-

glish development sentences. Column names “MASS,” “PMASS,” and “HFSS”

denote the pre-training components in the respective model. Note the boost of

the HFSS accuracy in multitask settings, although the opposite could have been

expected.

One possible reason for this is that multi-task training of different pre-training

methods helps boost the performance of individual methods. This is in accordance

with several previous studies on multi-task training for NMT [48, 100, 110, 167].

Therefore, we recommend that such an analysis of multi-objective pre-training

methods can help isolate the importance of individual pre-training objectives.

Nevertheless, our analyses reveal that the components of JASS, BMASS, and

BRSS, and the components of ENSS, MASS, and HFSS are certainly responsible

for improving translation quality for Japanese-involved or English-language pairs.

4.5.6 Results in Middle/High-resource Scenarios

As summarized in Table 4.14, we report that BLEU leads to middle/high-resource

scenarios. The fine-tuning is performed by more than 200k parallel sentences on

the respective language pair and domain. By comparing with models without

pre-training, we find that pre-training can still lead to some improvements, but

much less than those in low-resource scenarios. Second, we observe that most pre-

training methods obtained comparable BLEU results regardless of whether they

were linguistically-driven methods or not. This indicates that in middle/high-

resource scenarios, our proposed methods might be limited, which also shows
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# Model

Ja-En En-Ja Ja-Zh Zh-Ja

ASP

200k

ASP

1M

ASP

200k

ASP

1M

ASP

200k

ASP

672k

Wiki

258k

ASP

200k

ASP

672k

Wiki

258k

Main baselines

0 w/o pre-training 26.1 27.5 33.4 35.8 27.0 31.2 24.6 36.7 42.4 30.4

1 MASS 26.5 28.8 33.7 37.6 27.2 33.0 29.4 36.7 44.8 34.6

Proposed methods for Japanese

2 BMASS 26.5 28.9 33.8 37.8 27.8 32.6 29.8 36.4 44.7 35.6

3 BRSS 26.8 28.4 34.0 37.4 27.2 32.7 30.8 36.8 44.5 35.0

4 JASS 26.7 28.8 33.2 37.5 27.2 32.7 31.1 37.4 44.8 35.4

Proposed methods for English

11 PMASS.P 26.3 28.0 33.5 37.0 - - - - - -

11* PMASS.S 26.2 28.9 33.2 37.8 - - - - - -

12 HFSS 26.5 28.6 33.9 37.7 - - - - - -

13 ENSS 26.3 28.8 33.9 37.9 - - - - - -

Table 4.14: BLEU scores in middle/high-resource scenarios. “ASP” and “Wiki”

denote ASPEC and Wikipedia parallel corpus, respectively.

that linguistically-driven supervision can be utilized to compensate for the lack

of parallel sentences.

4.6 Summary of This Chapter

In this study, we proposed JASS and ENSS pre-training methods that leverage in-

formation from syntactic structures of sentences on the basis of language-agnostic

pre-training schemes such as MASS for NMT. Our work leveraged abundant mono-

lingual data and syntactic analysis such that the pre-training phase became aware

of specific language structures. Our experiments on ASPEC Japanese–English,

Japanese–Chinese, Wikipedia Japanese–Chinese, and News English–Korean trans-

lations demonstrated that JASS and ENSS outperform MASS and other language-

agnostic pre-training methods in most low-resource settings. This demonstrates

the importance of injecting language-specific information into the pre-training

objective, as well as the benefit of multi-task pre-training with masked style and

reordering objectives. Our adequacy evaluation through LASER, human evalua-

tion, and case study also demonstrated that our methods resulted in a significant
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improvement in terms of the adequacy and fluency of translations. The analy-

ses of pre-training accuracy reveal the complementary nature of individual tasks

within JASS and ENSS.

Our future work will focus on implementing linguistic-aware multilingual pre-

training using more languages for more robust pre-trained models. We also note

that Raffel et al. [167] demonstrated that several NLP tasks such as text under-

standing can be reformulated as text-to-text tasks. This broadens the domain of

usefulness of sequence-to-sequence pre-training tasks including ours, and we will

be interested in evaluating our approach on various NLP tasks.



Chapter 5

When do Contrastive Word

Alignments Improve

Many-to-many Neural Machine

Translation?

Many-to-many neural machine translation (NMT) [55, 81, 3, 186, 8, 105, 149]

jointly trains a translation system for multiple language pairs and obtain signif-

icant gains consistently across many translation directions. Previous work [105]

shows that word alignment information helps improve pre-training for many-to-

many NMT. However, manually cleaned high-quality ground-truth bilingual dic-

tionaries are used to pre-edit the source sentences, which are unavailable for most

language pairs.

Recently, contrastive objectives [37, 65, 60, 235, 122, 224, 193, 223] have been

shown to be superior at leveraging alignment knowledge in various NLP tasks

by contrasting the representations of positive and negative samples in a discrim-

inative manner. This objective, which should be able to utilize word alignment

learned by any toolkit, which in turn will remove the constraints of using manu-

ally constructed dictionaries, has not been explored in the context of leveraging

word alignment for many-to-many NMT.

99
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An existing contrastive method [149] for multilingual NMT relies on sentence-

level alignments. Given that the incorporation of word alignments has led to

improvements in previous work, we believe that fine-grained contrastive objec-

tives focusing on word alignments should help improve translation. Therefore,

this study proposes word-level contrastive learning for many-to-many NMT using

the word alignment extracted by automatic aligners. We conduct experiments

on three many-to-many NMT systems covering general and spoken language do-

mains. Results show that our proposed method achieves significant gains of 0.8

BLEU in the general domain compared to previous word alignment based methods

and the sentence-level contrastive method.

We then analyze how the word-level contrastive objective affects NMT train-

ing. Inspired by previous work [12] that train sentence retrieval models using

many-to-many NMT, we speculate that our contrastive objectives affect the sen-

tence retrieval performance and subsequently impact the translation quality. Fur-

ther investigation reveals that in many-to-many NMT, the sentence retrieval pre-

cision of the multilingual encoder for a language pair strongly correlates with

its translation quality (BLEU), which provides insight about when contrastive

alignment improves translation. This revelation emphasizes the importance of

improving the retrieval performance of the encoder for many-to-many NMT.

5.1 Word-level Contrastive Learning for NMT

Inspired by the contrastive learning framework [27] and the sentence-level con-

trastive learning objective [149], we propose a word-level contrastive learning

objective to explicitly guide the training of the multilingual encoder to obtain

well-aligned cross-lingual representations. Specifically, we use word alignments,

obtained using automatic word aligners, to supervise the training of the multilin-

gual encoder by a contrastive objective alongside the NMT objective.

5.1.1 Alignment Extraction

Two main approaches for automatically extracting aligned words from a sentence

pair are: using a bilingual dictionary and using unsupervised word aligners. The
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former extracts fewer but precise alignments, whereas the latter extracts more but

noisy alignments. We extract word-level alignments by both methods and explore

how they impact NMT training. For the former approach, we use word2word [30]

to construct bilingual lexicons and then extract word pairs from parallel sentences.

The extracted word pairs are combined to form a phrase if words are consecutive

in the source and target sentence. For the latter approach, we use FastAlign [49]

and use only 1-to-1 mappings for training.

5.1.2 Word-level Contrastive Learning

With the extracted alignments, we propose a word-level contrastive learning objec-

tive for the multilingual encoder by the motivation that the aligned words within

a sentence pair should have a similar contextual representation. We expect the

supervision of the contrastive objective on the corresponding contextual word

representation leads to a robust multilingual encoder. Assume that the tokenized

source and target parallel sentences in the i− th batch are Di = {srcij , tgtij}Bj=1,

and the extracted alignments from all the sentence pairs in each batch are Ai =

{sik, tik}Nk=1, where B and N denote the batch-size and the number of alignments,

respectively. Note that sik and tik may contain several tokens after the word com-

bination for word2word or subword tokenization for NMT. Then the word-level

contrastive loss in a batch is:

L(i)align = −
N∑
k=1

(log
exp (sim(sik, tik)/T )∑N

m=1 exp (sim(sik, tim)/T )

+ log
exp (sim(sik, tik)/T )∑N

m=1 exp (sim(sim, tik)/T )
)

(5.1)

where T denotes a similarity scaling temperature. The similarity between two

words is measured by:

sim(wordx, wordy) = cos(g(x̄), g(ȳ)) (5.2)

where g(x) = W2σ(W1x) and x̄ denotes the average of contextual hidden states of

the corresponding subword positions on top of the multilingual encoder. Following

Chen et al. [27], we use an MLP between contrastive loss and the contextual
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La. pair Train Valid Test Size OD Size N (w2w) N (FA)

en-et WMT18 WMT18 WMT18 1.9M 10.7M 5,762,977 38,454,477

en-it IWSLT17 IWSLT15 IWSLT16 231k 13.6M 603,032 3,000,011

en-ja IWSLT17 IWSLT15 IWSLT16 223k 10.7M 684,583 2,797,882

en-kk WMT19 WMT19 WMT19 124k 851k 124,511 279,429

en-my ALT ALT ALT 18k 446k 75,383 377,392

en-nl IWSLT17 IWSLT15 IWSLT16 237k 12.7M 564,697 2,836,873

en-ro WMT16 WWT16 WMT16 612k 11.0M 3,271,848 13,092,240

en-tr WMT17 WWT16 WMT16 207k 11.1M 770,873 2,885,102

en-vi IWSLT15 IWSLT13 IWSLT14 133k 11.9M 354,167 2,120,755

Table 5.1: Data Source and number of the extracted word pairs. La.

pair, N (w2w) and N (FA) denote the language pair, the number of the word

pairs extracted by word2word and FastAlign, respectively. “Size” denotes the

size of training data and “OD Size” denotes the number of the out-of-domain

sentence pairs used for training FastAlign.

representation for NMT loss. ReLU activation is used for σ, W1 is d× d and W2

is d× d′, where d is the encoder’s hidden dimension and d′ < d .

Finally, to jointly train with the NMT loss, we use the following equation to

combine our proposed word-level contrastive loss for a batch:

L(i) = 1

B
(L(i)NMT + w

NT

2N
L(i)align) (5.3)

where NT is the number of the tokens within a batch, NT
2N is a multiplier that

scales the contrastive loss to be consistent with NMT loss, and w is a weight to

balance the joint training.

5.2 Experimental Settings

5.2.1 Datasets and Preprocessing

We selected ten languages, including English (en), Estonian (et), Italian (it),

Japanese (ja), Kazakh (kk), Burmese (my), Dutch (nl), Romanian (ro), Turkish

(tr), Vietnamese (vi) from different language families to train the NMT systems.
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We used the parallel datasets from different domains for the selected nine lan-

guage pairs, including IWSLT, WMT, and ALT. We followed mBART [110] for

tokenization. For Japanese, we use Jumanpp [130, 215] for segmentation, and we

follow the same settings as in mBART [110] for other languages: myseg.py [47] is

used for Burmese, Moses tokenization and special normalization is used for Roma-

nian following Sennrich et al. [188],1 and Moses tokenization for other languages.2

Following mBART, we apply SentencePiece [94] to further segment sentences into

subwords.3

The datasets used for NMT training, validation and test are shown in Ta-

ble 5.1. For each parallel dataset, we implemented two approaches as stated in

Section 5.1.1 to extract word pairs for the contrastive training objective. Data

source and the number of the extracted word pairs are shown in Table 5.1. For

the word alignment extraction using FastAlign, we also use out-of-domain par-

allel corpora to train the FastAlign jointly, aiming to obtain word alignments

with less noise. The out-of-domain corpora for all the language pairs contain

Tatoeba, Europarl, GlobalVoices, NewsCommentary, OpenSubtitles, TED, Wiki-

Matrix, QED, GNOME, bible-uedin, and ASPEC [140]. We collect them from the

OPUS project [32] and WAT.4 The number of the out-of-domain parallel sentences

for each language pair is shown in Table 5.1.

Many-to-many NMT systems We established three many-to-many NMT sys-

tems as follows:

• 222 en-ja: Bidirectional en-ja NMT model using en-ja parallel corpus.

• 626 en-it-ja-nl-tr-vi: 6-to-6 multilingual NMT model using spoken lan-

guage domain corpora for en-it, en-ja, en-nl, en-tr and en-vi.

• 626 en-tr-ro-et-my-kk: 6-to-6 multilingual NMT model using general do-

main corpora for en-tr, en-ro, en-et, en-my and en-kk.

1https://github.com/rsennrich/wmt16-scripts
2https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/

tokenizer.perl
3https://github.com/google/sentencepiece
4https://lotus.kuee.kyoto-u.ac.jp/WAT/WAT2021/index.html
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5.2.2 Baselines and Ours

For each language group setting above, we conducted NMT experiments on both

the multilingual training from scratch (MLSC) [81, 3] and the mBART multilin-

gual fine-tuning (mBART FT) [212] as baselines. We applied our proposed word-

level contrastive learning in both MLSC and mBART FT, and compared with

another strong baseline, word alignment based joint NMT training (+align) [58].

For applying our method, we investigated the performance of joint training with

word pairs extracted by both word2word (+w2w) and FastAlign (+FA). We

omitted Lin et al. [105] as a baseline because their method can not be applied to

mBART fine-tuning, and they used high-quality ground-truth dictionaries, which

are unavailable for most languages pairs.

5.2.3 Implementation

We used mBART-large (mBART-25) for mBART FT and Transformer-base [219]

for MLSC. Following Tang et al. [212], we set the oversampling temperature of

1.5 for all the settings. For MLSC, we set the dropout of 0.3 to avoid overfitting

on small-scale training data. We used the batch size of 1,024 tokens for all the

settings. For our word-level contrastive learning, we set the weight of 0.1, the

temperature of 0.2, d′ of 128, and a smaller dropout of 0.2 because our proposed

objective serves as a regularization part. We followed the hyperparameter setting

of Garg et al. [58] for word alignment-based joint NMT training. We used 8

NVIDIA A100 for mBART FT and 8 TITAN Xp for MLSC model training. The

model is validated every 1000 steps for 222 en-ja and 2000 steps for both two 626

settings. We do the early stopping if no improvement of the validation loss is

observed for 8 checkpoints. The model with the best validation loss was used for

evaluation.



5.3. RESULTS AND ANALYSES 105

Methods 222 en-ja 626 I 626 II

MLSC 13.90 23.76 13.55

+align 13.90 23.67 13.39

+w2w (ours) 13.85 23.44 13.69

+FA (ours) 13.30 23.68 13.48

mBART FT 18.90 29.11 20.64

+align 18.55 28.87 20.42

+w2w (ours) 18.80 29.08 20.89

+FA (ours) 18.65 29.01 20.87

Table 5.2: Overall average BLEU of all the systems. 626 I and 626 II denote

626 en-it-ja-nl-tr-vi and 626 en-tr-ro-et-my-kk, respectively. Results better than

MLSC or mBART FT are marked bold. Refer to Appendix C.1 for the detailed

scores of all the systems.

5.3 Results and Analyses

5.3.1 BLEU Results

We report case-sensitive tokenized BLEU [150] results in Table 5.2 and 5.3. In

Table 5.2, we observe that with our proposed training objectives, BLEU scores are

comparable in 222 en-ja and 626 en-it-ja-nl-tr-vi while they are slightly improved

in 626 en-tr-ro-et-my-kk. However, “+align” performs comparable or even worse

compared with the baseline. Referring to Table 5.3 for specific BLEUs on each

language pair, we find that with our methods, translation performances are sig-

nificantly improved for mBART FT while nontrivial improvements can merely be

observed on en-ro and en-kk direction for MLSC. This indicates that NMT fine-

tuning on monolingual pre-trained models (mBART) may benefit more from our

proposed methods. Note that the BLEU improvements for MLSC are not signifi-

cant, and we explain why this happens in the “Word Retrieval P@1 is improved”

part.
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Methods
en-tr en-ro en-et en-kk en-my

→ ← → ← → ← → ← → ←

MLSC 9.3 12.6 25.0 26.2 10.8 15.1 0.5 5.3 15.1 15.6

+align 9.0 12.4 24.6 26.5 10.7 14.6 0.4 5.4 15.0 15.3

+w2w (ours) 9.4 12.6 24.8 26.8 10.8 15.1 0.5 5.8 15.2 15.9

+FA (ours) 9.1 12.2 24.8 26.7 10.7 14.8 0.3 5.6 15.0 15.6

mBART FT 17.7 22.2 33.8 37.1 14.5 24.3 1.8 14.1 17.8 23.1

+align 17.5 21.9 33.8 36.7 15.2 24.3 1.8 14.0 16.9 22.1

+w2w (ours) 17.6 22.2 34.2 37.5 15.0 25.0 1.2 14.1 18.3 23.8

+FA (ours) 17.5 22.2 34.3 37.5 14.9 25.1 1.3 14.4 17.9 23.6

Table 5.3: BLEU scores of 626 en-tr-ro-et-my-kk system. Significantly

better scores [88] are in cyan, and marginal improvements are in lightcyan.

5.3.2 Latent Encoder Alignment Property

We now inspect which aspect of alignment-based methods impacts the translation

performance. Previous work [12] showed that the encoder of a strong multilingual

NMT system is an ideal model for the bilingual sentence retrieval task. In addi-

tion, Arivazhagan et al. [7] introduced the correlation between the encoder-side

sentence representation5 and the translation quality. Inspired by these, we specu-

late that alignment-based objectives affect sentence retrieval performance, which

further impacts the translation quality. We train MLSC and mBART FT and

report the sentence retrieval precision and NMT loss during the training. Results

are reported in Figure 5.1. We observe that the validation retrieval precision show

similar trends as the NMT loss. This indicates that during many-to-many NMT

training from scratch, encoder-side sentence-level retrieval precision is optimized

along with the NMT loss.

5Usually a pooled encoder output.
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Figure 5.1: NMT loss, sentence retrieval P@1 of the encoder in MLSC

and mBART FT. The average of the contextual embeddings on top of the en-

coder is used as the sentence embedding. We report the average in-batch retrieval

precision of both directions of each language pair.

5.3.3 Sentence Retrieval P@1

According to the investigation of the encoder alignment property above, we ver-

ify the relationship between BLEU score and sentence retrieval precision on the

validation set for each language pair. Results are shown in Figure 5.2. Cross-

referencing the BLEU score in Table 5.3, we found that BLEU scores are improved

when the encoder achieves gains on the sentence retrieval precision.6 For example,

we see increases of the retrieval P@1 on en-ro, en-et, and en-my on mBART FT

(the middle of Figure 5.2) while BLEU scores are significantly improved on these

three language pairs (Table 5.3). We further calculate the Pearson correlation

coefficient between the BLEU changes and sentence retrieval P@1 changes for

mBART+align, mBART+w2w, and mBART+FA in the 626 en-tr-ro-et-my-kk

6222 en-ja MLSC setting can hardly learn a well-aligned encoder while our methods improve

the encoder sentence-level alignment quality without sacrificing BLEU scores.



108 CHAPTER 5. WCL
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Figure 5.2: Sentence retrieval P@1 on the validation set for each language

pair. Top Left and Top Right are the results on 626 en-tr-ro-et-my-kk MLSC and

mBART FT, respectively. “626” in Bottom subfigure denote 626 en-it-ja-nl-tr-vi.

Refer to Appendix C.2 for setup and results in details.

setting. Results are 0.79, 0.93, 0.90, respectively, demonstrating a strong correla-

tion between translation quality and sentence retrieval precision.

5.3.4 Word Retrieval P@1

We probe the trained contextualized word representations on top of the encoder.

As shown in Figure 5.3, we observe that the word retrieval precision is improved

in all the settings. This demonstrates that the encoder parameters of the NMT

system trained with our proposed objective are of a rather different distribution.

By just changing the random seed, we can expect similar BLEU results, but we

cannot obtain a better aligned encoder. However, the improvement of the word

retrieval precision does not directly contribute to the translation quality, which

we explain next.
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Figure 5.3: Average Word retrieval P@1 on the validation set for each

language pair. “626-*-1” and “626-*-2” indicate 626 en-it-ja-nl-tr-vi and 626 en-

tr-ro-et-my-kk, respectively. Refer to Appendix C.3 for setup and results in de-

tails.

5.3.5 Word-level Contrastive Objective and Sentence Retrieval

P@1

With the word-level contrastive objective, we observed significant BLEU score im-

provements on language pairs such as en-ro, en-et and en-my for mBART FT as

presented in Table 5.3. However, noisy word pairs [148] extracted via word align-

ment toolkits leads to poor supervision signals for improving sentence retrieval

P@1, which in turn prevents some language pairs such as en-kk from exhibiting

BLEU improvements. We found that for en-kk, the numbers of extracted word

pairs per sentence by word2word and FastAlign are 1.0 and 2.2, respectively. In

contrast, these numbers are 4.2 and 20.7 for improved language pairs, calculated

from Table 5.1. Although better extracted word alignments for the word-level

contrastive objective leads to BLEU improvements, its contribution towards im-

provements varies for MLSC and mBART FT, as shown in Table 5.3. We expect

these findings to provide new perspectives for improving many-to-many NMT.
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5.3.6 Sentence-level Contrastive Objective

We conducted the experiments for the sentence-level contrastive objective [149] on

all two six-to-six settings and compared it against our proposed approach. The

average BLEUs of our methods significantly outperform those of sentence-level

contrastive objectives (see Table C.2 and C.3), clearly showing the sentence-level

objective’s limitation. Moreover, we checked the sentence retrieval P@1 for Pan et

al. [149] (Table C.5 and C.6) and found that it correlates with BLEU changes, in-

dicating that sentence-level contrastive objective is suboptimal for language pairs

with decreased retrieval precision.7

5.4 Summary of This Chapter

We proposed a word-level contrastive learning objective for many-to-many NMT.

Experimental results showed that our proposed method leads to significantly bet-

ter translation for several language pairs, which is then explained by analyses

showing the relationship between BLEU scores and sentence retrieval performance

of the NMT encoder. Future work can focus on: (1) further improving the en-

coder’s retrieval performance in many-to-many NMT; (2) contrastive objective’s

feasibility in a massively multilingual scenario.

7Note that the sentence-level contrastive objective incorporates sentences in multiple lan-

guages for contrastive loss. It does not necessarily improve the pair-wise retrieval precision.



Chapter 6

Tuning LLMs with Contrastive

Alignment Instructions for

Machine Translation in Unseen,

Low-resource Languages

Large language models (LLMs) achieved good performance for a wide range of

NLP tasks for prevalent languages [23, 31, 180, 216, 132, 145, 5, 217, 225]. How-

ever, insufficient coverage for low-resource languages remains to be one significant

limitation. Low-resource languages are either not present, or orders of magnitude

smaller in size than dominant languages in the pre-training dataset. This limita-

tion is in part due to the prohibitive cost incurred by curating good quality and ad-

equately sized datasets for pre-training. Incrementally adapting existing multilin-

gual LLMs to incorporate an unseen, low-resource language thus becomes a cost-

effective priority to address this limitation. Previous study [45, 134, 254] explored

extending language support using either continual pre-training [141, 10, 133, 50],

or parameter efficient fine-tuning (PEFT) methods [154, 75, 109] on monolingual

tasks. Extending language support for cross-lingual tasks remains underexplored

due to the challenge of incrementally inducing cross-lingual understanding and

generation abilities in LLMs [254].

111
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Figure 6.1: Average COMET scores of BLOOMZ models across 24 un-

seen languages, comparing settings of without fine-tuning, fine-tuning with

MTInstruct, and fine-tuning that combines MTInstruct and AlignInstruct.

This study focused on machine translation (MT) to highlight the cross-lingual

LLM adaptation challenge. The challenge lies in enabling translation for low-

resource languages that often lack robust cross-lingual signals. We first explored

the efficacy of fine-tuning LLMs with MT instructions (MTInstruct) in unseen,

low-resource languages. MTInstruct is a method previously shown to bolster

the translation proficiency of LLMs for supported languages [101]. Subsequently,

given that cross-lingual alignments are suboptimal in LLMs as a result of data

scarcity of low-resource languages, we proposed contrastive alignment instructions

(AlignInstruct) to explicitly provide cross-lingual supervision during MT fine-

tuning. AlignInstruct is a cross-lingual discriminator formulated using statistical

word alignments. Our approach was inspired by prior studies [96, 174, 105, 114],

which indicated the utility of word alignments in enhancing MT. In addition to

AlignInstruct, we discussed two word-level cross-lingual instruction alternatives

cast as generative tasks, for comparison with AlignInstruct.

Our experiments fine-tuned the BLOOMZ models [132] of varying sizes (1b1,

3b, and 7b1) for 24 unseen, low-resource languages, and evaluated translation on

OPUS-100 [261] and Flores-200 [42]. We first showed that MTInstruct effectively
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induced the translation capabilities of LLMs for these languages. Building on the

MTInstruct baseline, the multi-task learning combining AlignInstruct and MTIn-

struct resulted in stronger translation performance without the need for additional

training corpora. The performance improved with larger BLOOMZ models, as il-

lustrated in Figure 6.1, indicating that AlignInstruct is particularly beneficial for

larger LLMs during MT fine-tuning. When compared with the generative variants

of AlignInstruct, our results indicated that discriminator-style instructions better

complemented MTInstruct. Furthermore, merging AlignInstruct with its gener-

ative counterparts did not further improve translation quality, underscoring the

efficacy and sufficiency of AlignInstruct in leveraging word alignments for MT.

In zero-shot translation evaluations on the OPUS benchmark, AlignInstruct

exhibited improvements over the MTInstruct baseline in 30 zero-shot directions

not involving English, when exclusively fine-tuned with three unseen languages

(German, Dutch, and Russian). However, when the fine-tuning data incorporated

supported languages (Arabic, French, and Chinese), the benefits of AlignInstruct

were only evident in zero-shot translations where the target language was a sup-

ported language.

To interpret the inherent modifications within the BLOOMZ models after

applying MTInstruct or AlignInstruct, we conducted a visualization of the layer-

wise cross-lingual alignment capabilities of the model representations. In addition,

we discussed the effect of monolingual instructions in the resource-constrained

scenario.

6.1 Related Work

6.1.1 Prompting LLMs for MT

LLMs have shown good performance for multilingual MT through few-shot in-

context learning (ICL) [79]. Vilar et al. [222] showed that high-quality examples

can improve MT based on PaLM [31]. Agrawal et al. [2] and Zhang et al. [259]

explored strategies to compose better examples for few-shot prompting for XGLM-

7.5B [104] and GLM-130B [257]. Ghazvininejad et al. [59], Peng et al. [152], and

Moslem et al. [131] claimed that dictionary-based hints and domain-specific style
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information can improve prompting OPT [264], GPT-3.5 [23], and BLOOM [180]

for MT. He et al. [69] used LLMs to mine useful knowledge for prompting GPT-3.5

for MT.

6.1.2 Fine-tuning LLMs for MT

ICL-based methods do not support languages unseen during pre-training. Current

approaches address this issue via fine-tuning. Zhang et al. [263] explored adding

new languages to LLaMA [216] with interactive translation task for unseen high-

resource languages. However, similar task datasets are usually not available for

most unseen, low-resource languages. Li et al. [101] and Xu et al. [239] showed

multilingual fine-tuning with translation instructions can improve the translation

ability in supported languages. Our study extended their finding to apply in the

context of unseen, low-resource languages. In parallel research, Yang et al. [243]

undertook MT instruction fine-tuning in a massively multilingual context for un-

seen languages. However, their emphasis was on fine-tuning curriculum based on

resource availability of languages, whereas we exclusively centered on low-resource

languages and instruction tuning tasks.

6.2 Methodology

This section presents MTInstruct as the baseline, and AlignInstruct. The MTIn-

struct baseline involved fine-tuning LLMs using MT instructions. AlignInstruct

dealt with the lack of cross-lingual signals stemming from the limited parallel

training data in low-resource languages. The expectation was enhanced cross-

lingual supervision cast as a discriminative task without extra training corpora.

Following this, we introduced two generative variants of AlignInstruct for com-

parison and discussed monolingual instructions for MT fine-tuning.

6.2.1 Baseline: MTInstruct

Instruction tuning [231, 129, 36, 147, 179, 234] has been shown to generalize LLMs’

ability to perform various downstream tasks, including MT [101].
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--- Input ---
Translate from English to Japanese.
English: What’s the future of generative AI?
Japanese:
--- Output ---
生成 AI の未来はどうなるでしょうか?

--- Input ---
Given the following parallel sentence between English and Japanese, 
judge whether the assertion is True or False.
English: What’s the future of generative AI?
Japanese: 生成 AI の未来はどうなるでしょうか?
Assertion: “generative” can be aligned with “生成” statistically.
--- Output ---
True (or False)

ABC ---いろは

Multilingual Parallel Corpora

English-Japanese 
Parallel Corpora

A Sentence Pair Example 
between English and Japanese

MTInstruct AlignInstruct

Alignment Extractor:
IBM Model 2 (FastAlign)

Multilingual Training

A Sentence Pair Example 
between English and Japanese

Inference English-Japanese 
Word Alignments

future ↔未来
generative↔生成

of↔の

Instruction Fine-tuning

Figure 6.2: Proposed instruction tuning methods combining MTInstruct

(Section 6.2.1) and AlignInstruct (Section 6.2.2) for LLMs in MT tasks.

⊕ denotes combining multiple instruction patters with a specific fine-tuning cur-

riculum (Section 6.3.2). IBM Model 2 indicates word alignment model of statis-

tical machine translation [22].

Given a pair of the parallel sentences,
(
(xi)

N
1 , (yj)

M
1

)
, where (xi)

N
1 := x1x2 . . .

xN , (yi)
N
1 := y1y2 . . . yN . xi, yj ∈ V are members of the vocabulary V containing

unique tokens that accommodate languages X and Y . Li et al. [101] showed that

the following MT instructions (MTInstruct) can improve the translation ability

in an LLM with a limited number of parallel sentences:

• Input: “Translate from Y to X.

Y : y1y2 . . . yM .

X: ”

• Output: “x1x2 . . . xN .”

Note that Li et al. [101] demonstrated the utility of MTInstruct solely within

the context of fine-tuning for languages acquired at pre-training phase. This study

called for an assessment of MTInstruct on its efficacy for adapting to previously

unsupported languages, denoted as X, accompanied by the parallel data in a

supported language Y .
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6.2.2 AlignInstruct

Word alignments have been demonstrated to enhance MT performance [96, 174,

105, 114], both in the fields of statistical machine translation (SMT) [22] and neu-

ral machine translation (NMT) [208, 16]. Ren et al. [174] and Mao et al. [114] re-

ported the utility of SMT-derived contrastive word alignments in guiding encoder-

decoder NMT model training. Built upon their findings, we introduced AlignIn-

struct for bolstering cross-lingual alignments in LLMs. We expected AlignIn-

struct to enhancing translation performance particularly for languages with no

pre-training data and limited fine-tuning data.

As shown in Figure 6.2, we employed FastAlign [49] to extract statistical word

alignments from parallel corpora. Our approach depended on a trained FastAlign

model, IBM Model 2 [22], to ensure the quality of the extracted word pairs. These

high-quality word alignment pairs were regarded as “gold” word pairs for con-

structing AlignInstruct instructions.1 Assuming one gold word pair (xkxk+1, ylyl+1

yl+2) was provided for the sentence pair
(
(xi)

N
1 , (yj)

M
1

)
, the AlignInstruct instruc-

tion reads:

• Input: “Given the following parallel sentence between Y and X, judge

whether the assertion is True or False.

Y : y1y2 . . . yM .

X: x1x2 . . . xN .

Assertion: “ylyl+1yl+2” can be aligned with “xkxk+1” statistically.”

• Output: “True” (or “False”)

Instructions with the “False” output were constructed by uniformly swap-

ping out part of the word pair to create misalignment. We anticipated that

this treatment forced the model to learn to infer the output by recognizing true

alignment-enriched instructions. This would require the model to encode word-

level cross-lingual representation, a crucial characteristic for MT tasks.

1Note that these word pairs may not necessarily represent direct translations of each other;

instead, they are word pairs identified based on their co-occurrence probability within the similar

context. Refer to IBM model 2 in SMT.
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6.2.3 Generative Counterparts of AlignInstruct

Previous studies [103, 256] have suggested the importance of both discriminative

and generative tasks in fine-tuning LLMs. We accordingly considered two gen-

erative variants of AlignInstruct. We then compared them with AlignInstruct to

determine the most effective training task. As detailed in Section 6.4, our re-

sults indicated that these variants underperformed AlignInstruct when applied to

unseen, low-resource languages.

HintInstruct

HintInstruct as a generative variant of AlignInstruct was instructions containing

word alignment hints. It was inspired by Ghazvininejad et al. [59], where dictio-

nary hints were shown to improve few-shot in-context leaning. Instead of relying

on additional dictionaries, we used the same word alignments described in Sec-

tion 6.2.2, which were motivated by the common unavailability of high-quality dic-

tionaries for unseen, low-resource languages. Let {(xksxks+1 . . . xks+ns , ylsyls+1 . . .

yls+ms)}Ss=1 be S word pairs extracted from the sentence pair
(
(xi)

N
1 , (yj)

M
1

)
.

HintInstruct follows the instruction pattern:

• Input: “Use the following alignment hints and translate from Y to X.

Alignments between X and Y :

– (xk1xk1+1 . . . xk1+n1 , yl1yl1+1 . . . yl1+m1),

– (xk2xk2+1 . . . xk1+n1 , yl2yl2+1 . . . yl2+m2),

. . .,

– (xkSxkS+1 . . . xkS+nS
, ylSylS+1 . . . ylS+mS

),

Y : y1y2 . . . yM .

X: ”

• Output: “x1x2 . . . xN .”

where S denotes the number of the word alignment pairs used to compose the

instructions. Different from AlignInstruct, HintInstruct expects the translation

targets to be generated.
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ReviseInstruct

ReviseInstruct was inspired by Ren et al. [174] and Liu et al. [110] for the notion

of generating parallel words or phrases, thereby encouraging a model to encode

cross-lingual alignments. A ReviseInstruct instruction contained a partially cor-

rupted translation target, as well as a directive to identify and revise these erro-

neous tokens. Tokens are intentionally corrupted at the granularity of individual

words, aligning with the word-level granularity in AlignInstruct and HintInstruct.

ReviseInstruct follows the instruction pattern:

• Input: “Given the following translation of X from Y , output the incorrectly

translated word and correct it.

Y : y1y2 . . . yM .

X: x1x2 . . . xkxk+1 . . . xk+n . . . xN .”

• Output: “The incorrectly translated word is ”xkxk+1 . . . xk+n”. It should

be ”xjxj+1 . . . xj+m”.”

6.2.4 Monolingual Instructions

New language capabilities may be induced through continual pre-training on

monolingual next-word prediction tasks [254]. The coherence of the generated

sentences is crucial in MT [233, 110], especially when the target languages are un-

seen and low-resource. We examined the significance of this approach in fostering

the translation quality. We reused the same parallel corpora to avoid introducing

additional monolingual datasets.

Given a monolingual sentence, (xi)
N
1 , with length N in an unseen language

X. The LLM is incrementally trained on the following task:

• Input: “Given the context, complete the following sentence: x1x2 . . . xl<N ,”

• Output: “xl+1xl+2 . . . xN .”
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Language ISO 639-1 Language Family Subgrouping Script Seen Script #sent.

Afrikaans af Indo-European Germanic Latin ! 275,512

Amharic am Afro-Asiatic Semitic Ge’ez % 89,027

Belarusian be Indo-European Balto-Slavic Cyrillic % 67,312

Welsh cy Indo-European Celtic Latin ! 289,521

Irish ga Indo-European Celtic Latin ! 289,524

Scottish Gaelic gd Indo-European Celtic Latin ! 16,316

Galician gl Indo-European Italic Latin ! 515,344

Hausa ha Afro-Asiatic Chadic Latin ! 97,983

Georgian ka Kartvelian Georgian-Zan Georgian % 377,306

Kazakh kk Turkic Common Turkic Cyrillic % 79,927

Khmer km Austroasiatic Khmeric Khmer % 111,483

Kyrgyz ky Turkic Common Turkic Cyrillic % 27,215

Limburgish li Indo-European Germanic Latin ! 25,535

Burmese my Sino-Tibetan Burmo-Qiangic Myanmar % 24,594

Norwegian Bokmål nb Indo-European Germanic Latin ! 142,906

Norwegian Nynorsk nn Indo-European Germanic Latin ! 486,055

Occitan oc Indo-European Italic Latin ! 35,791

Sinhala si Indo-European Indo-Aryan Sinhala % 979,109

Tajik tg Indo-European Iranian Cyrillic % 193,882

Turkmen tk Turkic Common Turkic Latin ! 13,110

Tatar tt Turkic Common Turkic Cyrillic % 100,843

Uyghur ug Turkic Common Turkic Arabic ! 72,170

Northern Uzbek uz Turkic Common Turkic Latin ! 173,157

Eastern Yiddish yi Indo-European Germanic Hebrew % 15,010

Total 4,498,632

Table 6.1: Statistics of training data for BLOOMZ+24: 24 unseen, low-

resource languages for BLOOMZ. !and %indicate whether script is seen or un-

seen.

6.3 Experimental Settings

6.3.1 Backbone Models and Unseen Languages

Our experiments fine-tuned the BLOOMZ models [132] for MT in unseen, low-

resource languages. BLOOMZ is an instruction fine-tuned multilingual LLM from

BLOOM [180] that supports translation across 46 languages. Two lines of exper-

iments evaluated the effectiveness of the MTInstruct baseline and AlignInstruct:
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BLOOMZ+24 Tuning BLOOMZ-7b1, BLOOMZ-3b, and BLOOMZ-1b12 for 24

unseen, low-resource languages. These experiments aimed to: (1) assess the effec-

tiveness of AlignInstruct in multilingual, low-resource scenarios; (2) offer compar-

ison across various model sizes. We used the OPUS-100 [261]3 datasets as training

data. OPUS-100 is an English-centric parallel corpora, with around 4.5M paral-

lel sentences in total for 24 selected languages, averaging 187k sentence pairs for

each language and English. Training data statistics of BLOOMZ+24 are shown

in Table 6.1. Several selected languages involved previously unseen scripts by

BLOOMZ, but such fine-tuning is practical as BLOOMZ is a byte-level model

with the potential to adapt to any language. Note that our proposed methods

can be applied to any byte-level generative LLMs.

We used OPUS-100 and Flores-200 [42]4 for evaluating translation between

English and 24 unseen languages (48 directions in total) on in-domain and out-of-

domain test sets, respectively. The identical prompt as introduced in Section 6.2.1

was employed for inference. Inferences using alternative MT prompts are discussed

in Appendix D.3.

BLOOMZ+3 Tuning BLOOMZ-7b1 with three unseen languages, German (de),

Dutch (nl), and Russian (ru), or a combination of these three unseen languages

and another three seen (Arabic (ar), French (fr), and Chinese (zh)). We denote

the respective setting as de-nl-ru and ar-de-fr-nl-ru-zh. These experiments

assessed the efficacy of AlignInstruct in zero-shot translation scenarios, where

translation directions were not presented during fine-tuning, as well as the trans-

lation performance when incorporating supported languages as either source or

target languages. To simulate the low-resource fine-tuning scenario, we randomly

sampled 200k parallel sentences for each language. For evaluation, we used the

OPUS-100 supervised and zero-shot test sets, comprising 12 supervised direc-

tions involving English and 30 zero-shot directions without English among six

languages.

2https://huggingface.co/bigscience/bloomz
3https://opus.nlpl.eu/opus-100.php
4https://github.com/facebookresearch/flores/blob/main/flores200/README.md
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6.3.2 Training Details and Curricula

The PEFT method, LoRA [75], was chosen to satisfy the parameter efficiency

requirement for low-resource languages, as full-parameter fine-tuning would likely

under-specify the models. We employed 128 V100 GPUs for the BLOOMZ+24

and 32 V100 GPUs for the BLOOMZ+3 experiments. The batch sizes were con-

figured at 4 sentences for BLOOMZ-7b1 and 8 sentences for both BLOOMZ-3b

and BLOOMZ-1b1, per GPU device. We configured LoRA with a rank of 8, an

alpha of 32, and a dropout of 0.1. Consequently, the BLOOMZ-7b1, BLOOMZ-

3b, and BLOOMZ-1b1 models had 3.9M, 2.5M, and 1.2M trainable parameters,

respectively, constituting approximately 0.05 - 0.10% of the parameters in the

original models. We conducted training for 5 epochs, ensuring a stable conver-

gence is achieved. To facilitate this stability, we introduced a warm-up ratio of

0.03 into our training process. Maximum input and output length were set as

384. S for HintInstruct was set as 5 at most. Additionally, we used mixed preci-

sion training [127] to expedite computation using DeepSpeed [170]. We tuned the

optimal learning rate for each individual experiment according to validation loss.

We conducted all experiments once due to computational resource constraints and

reported the average scores across all languages.

How AlignInstruct and MTInstruct are integrated into training remained un-

determined. To that end, we investigated three training curricula:

Multi-task Fine-tuning combined multiple tasks in a single training session [24].

This was realized by joining MTInstruct and AlignInstruct training data, denoted

as MT+Align.5

Pre-fine-tuning & Fine-tuning arranges AlignInstruct and MTInstruct into

two stages; namely, curriculum learning [19].6 This configuration, denoted as

Align→MT, validates whether AlignInstruct should precede MTInstruct.

Mixed Fine-tuning [33, 200] arranged the two aforementioned curricula to start

with MT+Align, followed by MTInstruct, denoted as MT+Align→MT.

5Note that AlignInstruct and MTInstruct were derived from the same parallel corpora.
6An effective curriculum often starts with a simple and general task, followed by a task-specific

task.
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6.4 Evaluation and Analysis

This section reports BLEU [150, 161], chrF++ [160], and COMET [171] scores

for respective experimental configurations. We further characterized of the degree

to which intermediate embeddings were language-agnostic after fine-tuning.

6.4.1 BLOOMZ+24 Results

Table 6.2 shows the scores for the unmodified BLOOMZ models, as well as the

models of BLOOMZ+24 under MTInstruct, AlignInstruct, and the three distinct

curricula. Non-trivial improvements in all metrics were evident for BLOOMZ+24

under MTInstruct. This suggests that MTInstruct can induce translation ca-

pabilities in unseen languages. Applying AlignInstruct and MTInstruct via the

curricula further showed better scores than the baselines, suggesting the role of

AlignInstruct as complementing MTInstruct. Align→MT was an exception, per-

forming similarly to MTInstruct. This may indicate AlignInstruct’s complemen-

tarity depends on its cadence relative to MTInstruct in a curriculum.

Superior OPUS and Flores scores under the xx→en direction were evident,

compared to the reverse direction, en→xx. This suggests that our treatments

induced understanding capabilities more than generative ones. This may be at-

tributed to the fact that BLOOMZ had significant exposure to English, and that

we used English-centric corpora. Finally, we noted the inferior performance of

Flores than OPUS. This speaks to the challenge of instilling translation abilities

in unseen languages when dealing with the out-of-domain MT task.

6.4.2 Assessing AlignInstruct Variants

From the results reported in Table 6.3, we observed the objectives with AlignIn-

struct consistently outperformed those with HintInstruct or ReviseInstruct across

metrics and model sizes. Namely, easy, discriminative instructions, rather than

hard, generative ones, may be preferred for experiments under similar data con-

straints. The low-resource constraint likely made MTInstruct more sensitive to

the difficulty of its accompanying tasks.

Further, combining more than two instruction tuning tasks simultaneously



124 CHAPTER 6. ALIGNINSTRUCT

BLOOMZ
Objective

OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en

model BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

BLOOMZ-7b1

MTInstruct 11.54 25.33 64.68 18.59 33.25 68.75 3.30 17.10 42.62 11.37 27.14 55.82

MT+Align 12.28 26.17 65.28 18.72 34.02 69.75 3.26 17.20 43.05 11.60 27.38 56.28

MT+Hint 12.12 25.92 64.82 18.25 33.18 69.21 3.34 17.13 42.95 11.45 27.37 56.21

MT+Revise 11.96 25.73 64.99 18.69 33.74 69.30 3.34 17.10 43.01 11.44 27.37 56.08

BLOOMZ-3b

MTInstruct 10.40 23.08 62.66 16.10 31.15 67.67 2.85 16.23 41.30 8.92 24.57 52.77

MT+Align 10.61 23.64 63.03 16.73 31.51 67.94 2.95 16.62 41.86 9.50 25.16 53.63

MT+Hint 10.49 23.34 62.66 16.29 31.43 68.16 3.11 16.95 42.17 9.52 25.25 53.72

MT+Revise 10.52 23.03 62.38 16.22 30.98 67.27 2.99 16.83 41.84 9.47 25.21 53.29

BLOOMZ-1b1

MTInstruct 7.42 17.85 58.05 11.99 25.59 63.50 2.11 14.40 38.90 5.33 20.65 48.42

MT+Align 7.80 18.48 58.58 12.57 25.92 63.49 2.16 14.54 39.36 5.46 20.90 48.81

MT+Hint 7.71 18.15 58.26 11.52 24.88 62.98 2.21 14.61 39.59 5.47 20.78 48.56

MT+Revise 7.31 17.99 58.18 12.00 25.33 63.11 2.07 14.32 38.97 5.41 20.91 48.67

Table 6.3: Results of BLOOMZ+24 fine-tuned combining MTInstruct

with AlignInstruct (or its generative variants). Scores that surpass the

MTInstruct baseline are marked in bold.

Objective
OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en

BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

MTInstruct 11.54 25.33 64.68 18.59 33.25 68.75 3.30 17.10 42.62 11.37 27.14 55.82

MT+Align 12.28 26.17 65.28 18.72 34.02 69.75 3.26 17.20 43.05 11.60 27.38 56.28

MT+Align+Revise 12.08 25.73 64.67 19.23 34.32 69.65 3.33 17.25 43.05 11.60 27.61 56.51

MT+Align+Hint 12.02 25.51 64.68 19.40 34.44 69.54 3.25 16.87 42.85 11.58 27.48 56.31

MT+Hint+Revise 12.10 25.69 64.71 19.58 34.49 69.46 3.34 17.24 43.07 11.70 27.62 56.48

MT+Align+Hint+Revise 12.00 25.39 64.35 19.68 34.48 69.58 3.40 17.17 43.09 11.67 27.54 56.44

Table 6.4: Results of BLOOMZ+24 combining MTInstruct with multiple

objectives among AlignInstruct, HintInstruct, and ReviseInstruct on

BLOOMZ-7b1. Scores that surpass MTInstruct are marked in bold.

did not guarantee consistent improvements, see Table 6.4. Notably, MT+Align

either outperformed or matched the performance of other objective configura-

tions. While merging multiple instruction tuning tasks occasionally resulted in

superior BLEU and chrF++ scores for OPUS xx→en, it fell short in COMET

scores compared to MT+Align. This indicated that while such configurations

might enhance word-level translation quality, as reflected by BLEU and chrF++

scores, due to increased exposure to cross-lingual word alignments, MT+Align

better captured the context of the source sentence as reflected by COMET scores.

Overall, these instruction tuning tasks did not demonstrate significant synergistic

effects for fine-tuning for unseen languages.
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Objective
OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en

BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

MTInstruct 11.54 25.33 64.68 18.59 33.25 68.75 3.30 17.10 42.62 11.37 27.14 55.82

MT+Mono-full 9.89 22.42 62.56 15.43 29.04 65.45 3.00 16.68 42.34 10.26 25.15 53.67

MT+Mono-half 10.23 22.45 62.59 15.51 29.65 66.18 3.18 16.91 42.69 10.66 26.15 54.41

MT+Mono-full+Align 10.15 22.35 62.39 15.72 29.86 66.54 3.07 16.59 42.54 10.61 25.58 54.59

MT+Mono-half+Align 10.09 22.61 63.01 16.00 30.34 67.15 3.10 16.75 42.63 10.79 26.27 54.87

MT+Mono-full+Align+Hint+Revise 10.33 23.04 63.06 17.16 31.61 67.40 3.23 16.70 42.74 10.98 26.18 54.97

MT+Mono-half+Align+Hint+Revise 10.62 23.10 63.07 17.32 31.80 67.43 3.20 16.93 42.97 11.09 26.77 55.41

Table 6.5: Results of BLOOMZ+24 fine-tuned incorporating monolin-

gual instructions on BLOOMZ-7b1. Scores that surpass the MTInstruct

baseline are marked in bold.

6.4.3 Assessing Monolingual Instructions

We conducted experiments with two MonoInstruct settings: MonoInstruct-full,

an objective to generate the entire sentence, and MonoInstruct-half for gen-

erating the latter half of the sentence given the first half, inspired by GPT [166]

and MASS [204], respectively. We reported the MonoInstruct results in Table 6.5.

Firstly, we observed that fine-tuning MTInstruct jointly with either MonoInstruct-

full or MonoInstruct-half harms the MT performance, which could be attributed

to the inherent difficulty of monolingual instruction tasks and the limited amount

of monolingual data. We found that the simpler MT+Mono-half yielded better

results than MT+Mono-full as richer contexts were provided. However, MonoIn-

struct still did not improve the MTInstruct baseline. Secondly, further combining

MonoInstrcut with AlignInstruct variants yielded improvements compared with

MT+Mono-full (or half), but underperformed the MTInstruct baseline. This

suggested that improving MT performance with monolingual instructions is chal-

lenging without access to additional monolingual data.

6.4.4 BLOOMZ+3 Zero-shot Evaluation

Table 6.6 reports the results of the two settings, de-nl-ru and ar-de-fr-nl-ru-zh.

Results of MT+Align+Hint+Revise and pivot-based translation are reported in

Appendices D.1 and D.4. In the de-nl-ru setting, where BLOOMZ was fine-

tuned with the three unseen languages, we noticed MT+Align consistently outper-

formed the MTInstruct baseline across all evaluated zero-shot directions. Notably,
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Fine-tuned
Objective

Zero-shot Directions Supervised Directions

Languages Directions BLEU chrF++ COMET Directions BLEU chrF++ COMET

- w/o fine-tuning

overall 6.89 19.14 57.95
en→xx 13.38 26.65 64.28

xx→en 21.70 42.05 72.72

seen→seen 16.95 30.78 74.58 en→seen 20.13 32.87 76.99

seen→unseen 2.30 13.31 49.98 en→unseen 6.63 20.43 51.56

unseen→seen 7.78 20.07 62.74 seen→en 26.30 48.70 78.22

unseen→unseen 2.37 14.83 46.06 unseen→en 17.10 35.40 67.23

de-nl-ru

MTInstruct

overall 8.38 22.75 59.93
en→xx 17.05 32.02 69.26

xx→en 25.13 45.02 76.29

seen→seen 14.52 27.25 70.48 en→seen 17.60 29.87 73.81

seen→unseen 6.14 22.82 54.75 en→unseen 16.50 34.17 64.70

unseen→seen 7.56 19.22 61.99 seen→en 25.73 47.07 77.52

unseen→unseen 6.85 23.45 54.07 unseen→en 24.53 42.97 75.06

MT+Align

overall 8.86 23.30 60.70
en→xx 16.63 31.73 68.79

xx→en 25.62 45.37 76.45

seen→seen 14.77 27.80 71.07 en→seen 15.80 28.47 72.35

seen→unseen 6.31 23.08 54.81 en→unseen 17.47 35.00 65.24

unseen→seen 8.61 20.24 63.81 seen→en 25.90 47.13 77.47

unseen→unseen 7.15 23.70 54.51 unseen→en 25.33 43.60 75.43

ar-de-fr-nl-ru-zh

MTInstruct

overall 11.79 26.36 63.22
en→xx 21.18 35.52 70.86

xx→en 28.35 48.00 77.30

seen→seen 22.68 35.32 76.39 en→seen 26.20 37.77 78.22

seen→unseen 7.10 24.50 55.18 en→unseen 16.17 33.27 63.50

unseen→seen 12.56 24.74 68.83 seen→en 31.97 52.93 79.72

unseen→unseen 6.78 22.62 53.69 unseen→en 24.73 43.07 74.88

MT+Align

overall 12.13 26.65 63.23
en→xx 21.33 35.65 70.99

xx→en 28.60 48.27 77.49

seen→seen 23.67 36.53 76.89 en→seen 26.30 37.63 78.25

seen→unseen 7.27 24.32 54.96 en→unseen 16.37 33.67 63.73

unseen→seen 12.92 25.29 69.10 seen→en 32.03 53.07 79.93

unseen→unseen 6.68 22.30 53.19 unseen→en 25.17 43.47 75.05

Table 6.6: Results of BLOOMZ+3 without fine-tuning or fine-tuned with

MTInstruct, or MT+Align. Scores that surpass the MTInstruct baseline are

marked in bold. xx includes seen and unseen languages.

MT+Align enhanced the translation quality for unseen→seen and seen→unseen

directions compared to w/o fine-tuning and MTInstruct, given that the model was

solely fine-tuned on de, nl, and ru data. This suggested AlignInstruct not only

benefits the languages supplied in the data but also has a positive impact on other

languages through cross-lingual alignment supervision. In terms of supervised di-

rections involving English, we noticed performance improvements associated with

unseen languages, and regression in seen ones. The regression may be attributed
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to forgetting for the absence of seen languages in fine-tuning data. Indeed, con-

tinuous exposure to English maintained the translation quality for seen→en. As

LoRA is modular, the regression can be mitigated by detaching the LoRA param-

eters for seen languages.

The ar-de-fr-nl-ru-zh setting yielded a consistently higher translation quality

across all directions when compared with the de-nl-ru setting. This improvement

was expected, as all the six languages were included. Translation quality improved

for when generating seen languages under the zero-shot scenario. However, the

same observation cannot be made for unseen languages. This phenomenon un-

derscored the effectiveness of AlignInstruct in enhancing translation quality for

BLOOMZ’s supported languages, but suggested limitations for unseen languages

when mixed with supported languages in zero-shot scenarios. In the supervised

directions, we found all translation directions surpassed the performance of the

MTInstruct baseline. This highlighted the overall effectiveness of AlignInstruct

in enhancing translation quality across a range of supervised directions.

6.4.5 How did MTInstruct and AlignInstruct Impact BLOOMZ’s

Representations?

This section analyzed the layer-wise cosine similarities between the embeddings

of parallel sentences to understand the changes in internal representations af-

ter fine-tuning. The parallel sentences were prepared from the English-centric

validation datasets. We then mean-pool the outputs at each layer as sentence em-

beddings and compute the cosine similarities, as illustrated in Figure 6.3. Results

for BLOOMZ+3 are discussed in Appendix D.2.

We observed that, after MTInstruct fine-tuning, the cosine similarities rose in

nearly all layers (∆1, Figure 6.3). This may be interpreted as enhanced cross-

lingual alignment, and as indicating the acquisition of translation capabilities.

Upon further combination with AlignInstruct (∆2, Figure 6.3), the degree of

cross-lingual alignment rose in the early layers (layers 4 - 7) then diminished in

the final layers (layers 29 & 30). This pattern aligned with the characteristics

of encoder-decoder multilingual NMT models, where language-agnostic encoder

representations with language-specific decoder representations improve multilin-
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Figure 6.3: Differences in cosine similarity of layer-wise embeddings for

BLOOMZ+24. ∆1 represents the changes from the unmodified BLOOMZ to

the one on MTInstruct, and ∆2 from MTInstruct to MT+Align.

gual NMT performance [108, 236, 120]. This highlights the beneficial impact of

AlignInstruct.

6.5 Summary of This Chapter

In this study, we introduced AlignInstruct for enhancing the fine-tuning of LLMs

for MT in unseen, low-resource languages while limiting the use of additional train-

ing corpora. Our multilingual and zero-shot findings demonstrated the strength

of AlignInstruct over the MTInstruct baseline and other instruction variants. Our

future work pertains to exploring using large monolingual corpora of unseen lan-

guages for MT and refining the model capability to generalize across diverse MT

prompts.



Chapter 7

Variable-length Neural

Interlingua Representations for

Zero-shot Neural Machine

Translation

Multilingual neural machine translation (MNMT) [48, 55, 67, 81, 43] systems en-

able translation between multiple language pairs within a single model by learning

shared representations across different languages. One of the key challenges in

building effective MNMT systems is zero-shot translation performance involving

unseen language pairs.

Previous work reveals that improving the language-independency of encoded

representations is critical for zero-shot translation performance, with neural inter-

lingua representations [113, 220, 270] being proposed as an effective method for

achieving this. Neural interlingua representations are shared, language-agnostic

representations that behave as a neural pivot between different natural languages.

As shown in Figure 7.1 (a), it enables sentences in different languages with the

same meaning to have the same interlingua representations. Previous work has

shown the effectiveness of fixed-length neural interlingua representations for zero-

shot translation. However, a fixed length can limit neural interlingua representa-

129
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Enc.

Fixed-length Neural
Interlingua Representations

Thank you. Dec.

谢谢。 Enc. Dec.
(a)

Enc.I live in Japan. Dec.

日本に住んでいる。 Enc. Dec. …

…

…

…

Enc.

Variable-length Neural 
Interlingua Representations

Thank you. Dec.

谢谢。 Enc. Dec.
(b)

Enc.I live in Japan. Dec.

日本に住んでいる。 Enc. Dec. …

…

…

…

(Thank you.)

(Thank you.)

(I live in Japan.)

(I live in Japan.)

Figure 7.1: (a) Previous fixed-length neural interlingua representations;

(b) Our proposed variable-length neural interlingua representations.

Each colored box denotes the representation (Rd×1) on the corresponding position.

“Enc.”, “Dec.”, and “d” are encoder, decoder, and dimension of model hidden

states.

tions’ flexibility and representation ability. It is highly model size and training

data size-sensitive according to our experimental results for different settings of

model and training data size.

This study proposes a novel method for improving neural interlingua represen-

tations by making their length variable. As shown in Figure 7.1 (b), our method

enables the length of the interlingua representations to vary according to different

lengths of source sentences, which may provide more flexible neural interlingua

representations. Specifically, we utilize the sentence length in the centric lan-

guage1 (e.g., English) as the length of neural interlingua representations. We pro-

1In this work, we consider using an x-centric parallel corpus, wherein all sentence pairs within

the corpus consist of sentences in language x paired with another language. It is noteworthy that
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pose a variable-length interlingua module to project sentences in different source

languages with the same meaning into an identical neural interlingua representa-

tion sequence. To enable translating from non-centric language source sentences

during inference, we also introduce a length predictor within the variable-length

interlingua module. Moreover, as for the initialization of the interlingua module,

we propose a novel method that facilitates knowledge sharing between different in-

terlingua lengths, which can avoid introducing redundant model parameters. We

expect that variable-length interlingua representations provide enhanced represen-

tations according to different source sentence lengths, which mitigates the model

size and training data size-sensitive problem of previous work in low-resource sce-

narios and improves performance for zero-shot translation.

We conduct experiments on three MNMT datasets, OPUS [261], IWSLT [26],

and Europarl [89] with different settings of training data size and model size.

Results demonstrate that our proposed method yields superior results for zero-shot

translation compared to previous work. Our method exhibits stable convergence

in different settings while previous work [270] is highly sensitive to different model

and training data sizes. However, we also observe the inferior performance of our

method for translation from non-centric language source languages. We attribute

it to the accuracy of the interlingua length predictor and point out the possible

directions of this research line.

7.1 Related Work

Constructing neural interlingua representations is a powerful method to improve

shared encoder representations across various source languages and enhance zero-

shot translation. Lu et al. [113] first proposed the concept of neural interlin-

gua representations for MNMT, intending to bridge multiple language-specific

encoders and decoders using an intermediate interlingua attention module, which

has a fixed sequence length. Vázquez et al. [220] extended this approach with a

universal encoder and decoder architecture for MNMT and introduced a regular-

the English-centric corpus is the most prevalent setting. We denote a language distinct from x

as a “non-centric language” in the subsequent text.
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我 是 学⽣ 。
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Figure 7.2: Variable-length interlingua module. “zh-x” denotes the x-th

embedding of a Chinese-specific interlingua query.

ization objective for the interlingua attention similarity matrix. More recently,

Zhu et al. [270] applied the neural interlingua approach in the Transformer [219]

model architecture and proposed a position-wise alignment objective to ensure

consistent neural interlingua representations across different languages. How-

ever, these methods utilized fixed-length neural interlingua representations, which

may reduce the model’s representation ability for source sentences with different

lengths. This study focuses on revisiting and improving neural interlingua ap-

proaches.

7.2 Variable-length Interlingua Representations

We present an MNMT model that comprises three distinct components: a source

language encoder, a neural interlingua module, and a decoder. The source lan-

guage encoder converts source sentences to language-specific representations, the

neural interlingua module generates language-agnostic representations, and the

decoder converts these representations into the target language translation. In
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this section, we introduce a novel neural interlingua module.

Specifically, we propose variable-length neural interlingua representations sur-

passing prior work’s fixed-length constraint. To achieve this breakthrough, we

have developed a module that includes interlingua encoder layers, an interlingua

length predictor, and a language-specific interlingua query. Our module uses an

embedding sharing mechanism, as shown in Figure 7.2. Moreover, we introduce

the objectives that guide the training of variable-length neural interlingua repre-

sentations.

7.2.1 Variable-length Interlingua Module

Interlingua Encoder Layers In accordance with Zhu et al. [270], we construct

a variable-length interlingua module within a Transformer model architecture.

Our model utilizes N Transformer encoder layers and 6 Transformer decoder

layers, with M interlingua encoder layers introduced between them. To maintain

consistency with a standard 6-layer Transformer encoder, we set M + N = 6,

ensuring that the number of model parameters remains almost the same. Each

interlingua encoder layer consists of a sequential series of operations, including self-

attention mechanisms (or feed-forward networks),2 encoder-interlingua attention,

and feed-forward networks, as illustrated in Figure 7.2.

The input representations for interlingua encoder layers are denoted as QI ∈
Rd×lenI(X), where d and lenI(X) respectively indicates the dimension of hidden

representations and the length of the neural interlingua representations given a

source sentence X = x1, x2, ..., xk. Specifically, we define lenI(X) as follows:

lenI(X) =

 len(X), Xis in centric

len(CT(X)), Xis in non-centric
, (7.1)

where CT(X) denotes the translation of X in the centric language. We use teacher

forcing to generate interlingua length during training. For instance, if we use

2We utilize feed-forward networks for the first interlingua encoder layer and employ a self-

attention mechanism for subsequent layers. This is because the interlingua query is initially

weak and unable to capture similarities through a self-attention mechanism. This design choice

is similar to that of Zhu et al. [270].
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English-centric parallel sentences as training data, lenI(X) for each sentence pair

will be the length of English sentences. Thus, sentences that convey the same

semantic meaning can have the same interlingua length, and interlingua length

is variable according to different sentences. For the initialization of QI, we will

provide a detailed explanation of how to generate it later in this section.

Subsequently, QI undergoes self-attention (or feed-forward networks), and we

obtain the output Q
′
I. Assume that the contextualized representations on top of

N Transformer encoder layers are HS ∈ Rd×k. Then we establish an encoder-

interlingua attention mechanism:

HEI = Attn(Q
′
I,HS,HS), (7.2)

where Attn(Q,K,V) indicates the multi-head attention mechanism [219]. This

encoder-interlingua attention inherits the design in previous studies of neural in-

terlingua representations [113, 220, 270].

Finally, we pass HEI through position-wise feed-forward networks to obtain

HI, the output of the interlingua encoder layers. HI serves as a language-agnostic

neural interlingua and can vary in length depending on the source sentence. Once

we have HI, we feed it into a standard Transformer decoder to generate the

translation.

Interlingua Length Predictor Length of interlingua representations is not

readily available during inference when translating from non-centric source sen-

tences (e.g., non-English source sentences) using Equation (7.1). To address this,

we propose using an interlingua length predictor to obtain lenI(X) for inference.

Specifically, we treat the length prediction of translation in the centric language

as a classification task, addressed utilizing mean pooled contextualized represen-

tations atop the Transformer encoder.3 More precisely, we predict X’s interlingua

length as:

lenI(X) = argmax
i

softmax(
1 HT

S

k
W + b)i, (7.3)

where k is the length of X, 1 ∈ R1×k denotes a vector with all the elements of 1,

W ∈ Rd×K and b ∈ R1×K indicates the weight and bias of a linear layer, and K

3We attempted to treat it as a regression task, but the performance of the regression model

was notably inferior to that of the classifier-based predictor.
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is the maximum sequence length allowed in the model.

Language-specific Interlingua Query Here, we present the method for ob-

taining input representations QI for the interlingua encoder layers. Initially, we

randomly initialize an embedding matrix El ∈ Rd×K containing K embeddings

for the source language l. Next, we extract the first lenI(X) embeddings from El

to obtain QI.

QI = ElIS, (7.4)

where IS ∈ RK×lenI(X) has 1s as main diagonal elements and 0s for other ele-

ments. Note that the language-specific nature of El allows the model to learn a

unique mapping from each language to the neural interlingua representations. Zhu

et al. [270] used the technique of language-aware positional embedding [229] for

both the neural interlingua representations and the source and target sentences,

resulting in ambiguity regarding whether the improvements were from the neural

interlingua representations or not. In contrast, our proposed language-specific in-

terlingua query clarifies whether a language-specific mapping to neural interlingua

representations benefits zero-shot translation.

7.2.2 Training Objectives

Given a training sample sentence pair (X,Y ), we introduce the following training

objective, combining an NMT loss, an interlingua alignment loss, and a length

prediction loss. The interlingua alignment loss is utilized to guarantee the con-

sistency of the neural interlingua representations for each training sentence pair

sample. In contrast, the length prediction loss ensures the generation of variable

interlingua length during inference. Specifically, the training objective is defined

as follows:

L(X,Y ) = αLNMT + βLIA + γLLP, (7.5)

where α, β, and γ are weight hyperparameters for each loss, LLP is a cross-

entropy loss computed from the softmax outputs from Equation (7.3), and LIA is

a position-wise alignment loss using cosine similarity following Zhu et al. [270]:

LIA = 1− 1

lenI(X)

∑
i

cos < HI(X)i,HI(Y )i > . (7.6)
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Datasets Languages # Sup. # Zero. # Train # Valid # Test

OPUS
ar, de, en,

12 30 12,000,000 2,000 2,000
fr, nl, ru, zh

IWSLT en, it, nl, ro 6 6 1,378,794 2,562 1,147

Europarl de, en, es, fr, nl 8 12 15,782,882 2,000 2,000

Table 7.1: Statistics of the training data. “# Sup.” and “# Zero.” indicate

the respective number of language pairs for supervised and zero-shot translation.

“# Train” denotes the total number of the training parallel sentences while “#

Valid” and “# Test” showcase the number per language pair.

Here HI(·)i denotes the i-th column of HI(·).4 Please note that during training,

we always have lenI(X) = lenI(Y ) because we apply teacher forcing to generate

the interlingua length for the sentence pair (X,Y ). With LIA, different sentence
pairs with varying lengths of translation in centric language can be represented

using variable-length neural interlingua representations. This can enhance the

bridging ability for zero-shot translation.

7.3 Experimental Settings

7.3.1 Datasets

Our study involves conducting experiments on zero-shot translation using three

distinct datasets, OPUS [261], IWSLT [26], and Europarl [89], each comprising

7, 4, and 5 languages, respectively. For each dataset, we adopt the train, valid,

and test splits following Zhang et al. [261], Wu et al. [236], and Liu et al. [108].

Table 7.1 presents each dataset’s overall statistics. The training and validation

data exclusively contains English-centric sentence pairs, indicating the centric

language is English in all the experiments, leading to 12, 6, and 8 supervised

directions, and 30, 6, and 12 zero-shot directions for each dataset. Jieba5 is used

4To derive HI(Y ), it is necessary to feed the target sentence to both the encoder and inter-

lingua encoder layers, which can potentially result in increased computational requirements.
5https://github.com/fxsjy/jieba
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to segment Chinese while Moses6 [90] is utilized to tokenize other languages. We

employ BPE [190] with 50, 000, 40, 000, and 50, 000 merge operations to create

a joint vocabulary for each dataset, resulting in the vocabulary sizes of 66, 158,

40, 100, and 50, 363, respectively.

7.3.2 Overall Training and Evaluation Details

For the OPUS and IWSLT datasets, we utilize a Transformer-base model, while

for Europarl, we employ a Transformer-big model, to evaluate the performance

of Transformer with both sufficient and insufficient training data. Regarding

language tag strategies to indicate the source and target languages to the model,

we adopt the method of appending the source language tag to the encoder input

and the target language tag to the decoder input [110]. This approach allows

for the creation of fully language-agnostic neural interlingua representations in

between.7 The maximum sentence length is set as 256, which indicates that K =

256 (Section 7.2.1). Our models are trained using Fairseq.8 As the data size

for each language pair is relatively similar, oversampling is not implemented for

MNMT. The dropout rate was set to 0.1, 0.4, and 0.3 for each dataset, and we use

the Adam optimizer [86] with a learning rate of 5e-4, 1e-3, and 5e-4, respectively,

employing 4, 000 warm-up steps. The Transformer-basemodel was trained using

four 32 GB V100 GPUs, and the Transformer-big model was trained using eight

32 GB V100 GPUs, with a batch size of 4, 096 tokens. To speed up training, mixed

precision training [127] is also employed. Each dataset is trained for 500, 200, and

500 epochs.

For evaluation, we choose the evaluation checkpoint based on the validation

LNMT with the lowest value. We use a beam size of 5 during inference on the

trained models to conduct inference. We report SacreBLEU [161].9

6https://github.com/moses-smt/mosesdecoder
7We do not consider employing target language tag appending on the encoder-side [81] in this

work because it would require removing both the source and target language information after

feeding the source sentence to obtain the neural interlingua representations.
8https://github.com/facebookresearch/fairseq
9We utilize the “zh” tokenization mode for Chinese, and the “13a” tokenization mode for

other languages.
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7.3.3 Baselines and Respective Training Details

To compare our variable-length neural interlingua method with previous fixed-

length neural interlingua methods, we trained the following settings:

MNMT [81] denotes the system trained with standard Transformer-base or

Transformer-big for multiple language pairs. We applied the language tag strat-

egy of source language tag for encoder input and target language tag for decoder

input.

Pivot translation [272] involves translating a source language into a pivot lan-

guage, usually English, and then translating the pivot language into the target

language. This system constitutes a robust baseline for zero-shot translation,

which we include for reference. We implement this setting by feeding the pivot

language output of the MNMT model to itself to generate the target language.

Len-fix. Uni. Intl. We follow the setting described by Zhu et al. [270], but we

remove its language-aware positional embedding to test whether a single interlin-

gua module can improve zero-shot translation. Compared to our variable-length

interlingua representations presented in Section 7.2.1, these fixed interlingua rep-

resentations have a universal lenI (Equation (7.1)) for different source sentences

and a universal E ∈ Rd×lenI for different languages and without a QI (Equa-

tion (7.4)). The fixed interlingua length is set to 17, 21, and 30, which are the

average lengths of each dataset following Zhu et al. [270] and Vázquez et al. [220].

Len-fix. LS. Intl. The only difference between this system and the “Len-fix.

Uni. Intl.” system mentioned above is the initialization of the interlingua query.

We use a language-specific El ∈ Rd×lenI for each source language l without a QI

(Equation (7.4)).

Len-vari. Intl. (ours) This refers to variable-length neural interlingua repre-

sentations proposed in Section 7.2.

For the last three neural interlingua settings, we set M and N to 3 for both

the Transformer encoder and interlingua encoder layers. The values of α, β,

and γ (Equation (7.5)) are set as 1.0, 1.0, and 0.1, respectively. We remove

the first residual connection within the first interlingua encoder layer to improve

the language-independency of the interlingua representations, inspired by Liu et

al. [108].
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Methods
Zero-shot Supervised: From en Supervised: To en

OPUS IWSLT Europarl OPUS IWSLT Europarl OPUS IWSLT Europarl

Pivot 22.0 19.9 29.5 - - - - - -

MNMT 16.5 13.1 29.0 31.2 29.6 32.9 36.8 33.5 36.1

Len-fix. Uni. Intl. 18.2 12.7 17.4 29.6 19.6 20.1 35.3 22.2 21.8

Len-fix. LS. Intl. 18.4 4.7 5.8 30.1 7.3 6.7 35.7 12.9 7.1

Len-vari. Intl. (ours) 18.9† 14.8 29.6 30.2† 26.2 32.6 34.0 27.1 33.8

Table 7.2: Overall BLEU results on OPUS, IWSLT, and Europarl. The

best result among all the settings except Pivot is in bold. We mark the results

significantly [88] better than “Len-fix. Uni. Intl.” with † for OPUS dataset.

Methods
de–fr ru–fr nl–de zh–ru zh–ar nl–ar Zero-shot

→ ← → ← → ← → ← → ← → ← Avg.

Pivot 23.4 21.2 31.0 26.0 21.8 23.6 24.8 37.9 24.0 38.9 7.4 17.4 22.0

MNMT 17.6 15.0 21.5 17.7 17.9 21.4 15.3 27.6 18.0 28.6 5.3 13.3 16.5

Len-fix. Uni. Intl. 20.1 17.0 25.0 22.4 19.5 21.3 20.3 30.9 19.6 30.4 6.1 14.4 18.2

Len-fix. LS. Intl. 20.7 17.7 25.7 21.7 19.8 21.6 19.9 31.5 20.1 31.6 6.5 14.5 18.4

Len-vari. Intl. (ours) 20.6† 18.3† 26.0† 23.4† 20.2† 22.1† 20.8 31.8† 20.0 31.9† 6.3 14.5 18.9†

Table 7.3: BLEU results of zero-shot translation on OPUS. We randomly

select six zero-shot language pairs and report the results. The best result among

all the settings except “Pivot” is in bold. We mark the results significantly [88]

better than “Len-fix. Uni. Intl.” with †.

7.4 Results and Analysis

We now present in tables 7.2, 7.3, and 7.4 the results of our variable-length inter-

lingua approach and compare them against several baselines.

7.4.1 Main results

Firstly, Tables 7.2 and 7.3 indicate that our proposed variable-length interlingua

representations outperform previous work in zero-shot directions. The severe

overfitting issue of “Len-fix. Uni. Intl.” and “Len-fix. LS. Intl.” on IWSLT

and Europarl suggests that they are limited to model size and training data size

settings, while our proposed method can converge stably on all three settings.

These results demonstrate that our flexible interlingua length can benefit zero-
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Methods
en–ar en–de en–fr en–nl en–ru en–zh Supervised Avg.

→ ← → ← → ← → ← → ← → ← From en To en

MNMT 23.9 37.8 30.8 34.6 33.9 35.5 27.8 31.5 29.4 35.1 41.2 46.4 31.2 36.8

Len-fix. Uni. Intl. 22.6 36.6 28.9 33.0 31.7 33.5 27.4 30.1 28.4 34.0 38.8 44.6 29.6 35.3

Len-fix. LS. Intl. 22.9 36.8 29.0 33.8 32.3 33.9 27.7 30.6 28.9 34.3 39.5 44.8 30.1 35.7

Len-vari. Intl. (ours) 23.3† 33.8 30.1† 32.3 32.9† 32.6 27.3 27.9 29.5† 32.2 38.0 45.3† 30.2† 34.0

Table 7.4: BLEU results of supervised translation on OPUS. The best

result among all the settings is in bold. We mark the results significantly [88]

better than “Len-fix. Uni. Intl.” with †.
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Figure 7.3: Validation NMT loss curve on OPUS.

shot translation more effectively. Secondly, our proposed method performs better

than previous work in “from en” supervised directions as shown in Tables 7.2

and 7.4, but still falls short of the MNMT baseline. This may be attributed

to the interlingua module’s weak source-target awareness. Thirdly, our variable-

length neural interlingua representations perform significantly worse on “to en”

directions than “Len-fix.” methods on OPUS and MNMT on all datasets. We

provide analysis of this phenomenon next.

7.4.2 Validation NMT Loss

We investigate why variable-length neural interlingua representations perform

poorly in “to en” supervised directions by analyzing the validation NMT loss,



7.4. RESULTS AND ANALYSIS 141

ar de fr nl ru zh Avg.

Acc. of Len. Pre. 20.6 26.5 17.6 19.3 21.1 13.8 19.8

Avg. of | Len. Pre. − gold | 2.4 3.4 3.8 3.1 3.3 3.9 3.3

BLEU w/ Len. Pre. 33.8 32.3 32.6 27.9 32.2 45.3 34.0

BLEU w/ gold 35.5† 33.4† 33.3† 29.4† 33.4† 46.0† 35.2†

Table 7.5: Accuracy of the interlingua length predictor, averaged ab-

solute difference between predicted length and gold length, and “to

en” BLEU scores of each non-English source language on OPUS. “w/

Len. Pre.” and “w/ gold” indicate using the predicted interlingua length and the

correct interlingua length (length of the English translation), respectively. Accu-

racy of the length predictor and average abosulute difference are evaluated using

OPUS’s test set. We mark the results significantly [88] better than “BLEU w/

Len. Pre.” with †.

an approximate measure of NMT performance on the validation set. Figure 7.3

displays the validation NMT loss for all settings on OPUS. We observe that

variable-length interlingua representations can converge well, even smaller than

the validation loss of “Len-fix. Uni. Intl.” and “Len-fix. LS. Intl.” However,

the interlingua length predictor was teacher-forced during training, indicating

the validation NMT loss was calculated with a 100% accurate interlingua length

predictor. As a result, the inaccurate interlingua length predictor is likely the

primary cause of our method’s inferior performance in “to en” directions, despite

its well-converged validation NMT loss.

7.4.3 Impact of the Interlingua Length Predictor

We analyze the interlingua length predictor and identify the reason for the subpar

performance in “to en” translations. We input the source sentences of the test set

in non-English languages into the model and check whether the predicted length

in interlingua is identical to the length of its English reference. We present the ac-

curacy on the OPUS dataset in Table 7.5. The results show that the accuracy for

each language is approximately 20.0%, which can result in error propagation when
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translating from those languages. To further understand the impact of the length

predictor quality on translation performance, we attempt to provide the model

with the correct interlingua length instead of relying on the length predictor. As

shown in Table 7.5, the results reveal significant BLEU improvements when the

correct interlingua length is applied. This suggests that the performance issue en-

countered when translating from a non-centric source language can be addressed

by upgrading the interlingua length predictor’s accuracy. Furthermore, we can

also enhance zero-shot translation performance if we have a better length predic-

tor. Nevertheless, we observe that even with a low length prediction accuracy

of approximately 20.0%, we can still achieve solid BLEU performance, averag-

ing 34.0 BLEU points. This indicates that an incorrectly predicted length with

just a trivial difference, as shown in Table 7.5, will not result in the enormous

information loss required for translation.

7.5 Summary of This Chapter

This study introduced a novel variable-length neural interlingua approach that

improved zero-shot translation results while providing a more stable model than

previous fixed-length interlingua methods. Although our analysis revealed a per-

formance downgrade in “to en” directions, we have identified the problematic

model component and plan to address it in future studies.
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Exploring the Impact of Layer

Normalization for Zero-shot

Neural Machine Translation

Multilingual neural machine translation (MNMT) enables translation between

unseen language pairs, i.e., zero-shot translation (ZST) [81, 56]. Prior studies

have explored techniques such as language tags [236], residual connections [108],

and novel training objectives [4, 155, 7, 64, 270, 261, 228, 246, 125] for improv-

ing ZST. They primarily used the Transformer architecture [219], which has two

variations depending on the position of layer normalization (LayerNorm) [14],

namely, PreNorm (applied at the input of layers) [15] and PostNorm (applied

after residual connections), as shown in Figure 8.1. As previous studies showed

that PreNorm can result in more stable training and faster convergence compared

to PostNorm for MNMT [237], most ZST works [155, 236, 108] use PreNorm

as the default setting following those MNMT studies. However, Xu et al. [240]

revealed that PreNorm carries the risk of overfitting the training data. We thus

hypothesize that in a multilingual scenario, PreNorm may overfit supervised di-

rections and have poor ZST generalizability. We systematically explore PreNorm

and PostNorm’s effect on ZST to verify this.

Using the OPUS, IWSLT, and Europarl datasets and a total of 54 ZST di-

143
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SA FFNNorm Norm

PostNorm

SA FFNNorm Norm

PreNorm

SA FFNNorm Norm

SANorm

An unraveled view of PreNorm

Figure 8.1: PostNorm, PreNorm, and an unraveled view of PreNorm in

a Transformer encoder layer. “Norm,” “SA,” and “FFN” denote LayerNorm,

self-attention, and feed-forward network. ⊕ is residual connection. Paths with

different colors in the unraveled view of PreNorm indicate respective sub-networks.

rections, we show that PostNorm consistently outperforms PreNorm by up to

12.3 BLEU points. Following previous work, we also evaluate different language

tag [236] and residual connection [108] settings, as they have been shown to im-

pact ZST but we observe that PostNorm continues to be superior thereby lending

credibility to our hypothesis.

To better understand the performance differences, we introduce a novel anal-

ysis approach called layer-wise language recognition (LLR), which tracks

the off-target rates for each encoder and decoder layer by training token-level

classifiers to recognize the source or target language. This analysis shows that

PreNorm is more sensitive to language tag settings than PostNorm, negatively

impacting ZST performance. Additionally, by examining the unraveled view of

PreNorm (Figure 8.1) inspired by Veit et al. [221], we reveal structural flaws in

PreNorm for ZST. Our analysis demonstrates that the order of LayerNorm and

self-attention/feed-forward network in PreNorm is the main factor affecting its
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ZST performance.

Given the prevalent use of PreNorm as the default setting in ZST baselines and

frameworks such as Fairseq [146]1 and Tensor2Tensor [218], our study emphasizes

the importance of careful consideration in the LayerNorm setting for ZST.

8.1 Background: LayerNorm

LayerNorm [14] normalizes the input x by zero-centering and scaling to have a unit

standard deviation, followed by an additional trainable transformation, including

a gain and bias adjustment. Specifically, it is formulated as:

LayerNorm(x) =
x−E(x)√

V(x)
· g + b, (8.1)

where g and b are trainable gain and bias. E and V indicate expectation and

variance. LayerNorm is commonly used in two positions in the Transformer, as

shown in Figure 8.1. PostNorm, which is the originally proposed setting of the

Transformer [219], involves applying LayerNorm after each sub-module (i.e., self-

attention or feed-forward network) and residual connections. PreNorm [15], on

the other hand, involves applying LayerNorm directly before each sub-module

and is known to stabilize Transformer training. While variants of Transformer

LayerNorm like RMSNorm [260] have been proposed, the vanilla PreNorm and

PostNorm are still the most widely adopted settings in current multilingual NMT

literature. Therefore, we only focus on PreNorm and PostNorm in this work.

Nguyen and Salazar [143] have explored the impacts of normalization and

initialization choices on supervised low-resource NMT settings, however, we delve

deeper and focus on the significance of the positioning of LayerNorm for zero-

shot NMT. We expect this to complete the understanding of LayerNorm’s role in

multilingualism, particularly in the context of zero-shot translation.

1https://github.com/facebookresearch/fairseq/tree/main/examples/multilingual
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Datasets Languages Nzero Strain Arch.

OPUS
ar, de, en,

30 12.00M base
fr, nl, ru, zh

IWSLT en, it, nl, ro 6 1.38M base

Europarl de, en, es, fr, nl 12 15.78M big

Table 8.1: Statistics of the training data. Nzero and Strain denote number

of the ZST directions and size of the training data, respectively. base and big

indicate Transformer-base and Transformer-big.

8.2 Experiments and Results

We evaluate the performance of PreNorm and PostNorm for ZST on various

datasets and language pairs. We then analyze the off-target rates and struc-

tural discrepancies between PreNorm and PostNorm to understand performance

differences.

8.2.1 Experimental Settings

Datasets We perform ZST experiments on three datasets, respectively. They are

OPUS [261], IWSLT [26], and Europarl [89]. The statistics of the datasets are

summarized in Table 8.1. We include 7, 4, and 5 languages for each dataset. The

training data consists of only English-centric sentence pairs, resulting in 30, 6,

and 12 ZST directions for each dataset. The total number of parallel sentences

for each dataset is 12.00M, 1.38M, and 15.78M, respectively. We apply BPE [190]

with merge operations of 50k, 40k, and 50k to create a joint vocabulary for each

dataset.

Training We employ Transformer-base model for OPUS and IWSLT, and

Transformer-big for Europarl, in accordance with the distinct sizes of training

data. We consider the following settings:

(1) PreNorm or PostNorm: PreNorm involves LayerNorm directly before

each sub-module (i.e., self-attention or feed-forward network), while PostNorm

applies LayerNorm after each sub-module and residual connections, as shown in
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Figure 8.1.2

(2) S-ENC-T-DEC or T-ENC: Source language tag on the encoder-side and

target language tag on the decoder-side; or only target language tag on the

encoder-side. Wu et al. [236] showed that this setting impacts ZST for Trans-

former with PreNorm.

(3) w/ or w/o Res.: With the residual connection for self-attention in the middle

(4th) encoder layer or not. Liu et al. [108] revealed that “w/o Res.” improves

ZST for the model trained with PreNorm. We experiment this with different

LayerNorm settings as this may reduce the potential of overfitting on supervised

directions, then further impacts ZST, which aligns with our hypothesis.

The settings above lead to eight different combinations, shown in Table 8.2

(#1 - #8). For data preprocessing, we utilize jieba3 for Chinese segmentation and

Moses4 [90] for tokenization of other languages. After applying BPE, we obtain

vocabularies with sizes of 66, 158, 40, 100, and 50, 363 for OPUS, IWSLT, and

Europarl, respectively. For multilingual training, we do not apply oversampling as

the data size for each language pair is comparable. The maximum sentence length

is set to 256. We train Transformer models using Fairseq5 and set the dropout

rate to 0.1, 0.4, and 0.3 for each dataset. Adam [86] is used as the optimizer with

a learning rate of 5e-4, 1e-3, and 5e-4 for each dataset, and 4, 000 warm-up steps

are employed. We train the Transformer-base model using 4 32G V100 GPUs and

the Transformer-big model using 8 32G V100 GPUs with the batch size of 4, 096

tokens. Additionally, we employ mixed precision training [127] to accelerate the

training process. We train each dataset for 200, 100, and 400 epochs, respectively.

8.2.2 Main Results

We evaluate ZST systems using SacreBLEU [161] and off-target rates. We report

in Table 8.2 BLEU scores for both zero-shot and supervised directions. For ZST,

we also present pivot-based translation results as a reference. For OPUS, we use

2We also experiment with the setting of LayerNorm without trainable parameters [240] in

Appendix E.3.
3https://github.com/fxsjy/jieba
4https://github.com/moses-smt/mosesdecoder
5https://github.com/facebookresearch/fairseq
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#
Layer Language

Res.
Zero-shot Supervised

Norm Tag OPUS IWSLT Europarl OPUS IWSLT Europarl

0 Pivot 21.8 20.0 29.5 - - -

1 PreNorm S-ENC-T-DEC w/ 10.1 (42.19%) 4.9 (64.84%) 24.9 (07.73%) 33.7 31.5 34.3

2 PostNorm S-ENC-T-DEC w/ 16.8 (08.59%) 12.4 (10.61%) 29.2 (00.34%) 33.9 31.5 34.5

3 PreNorm T-ENC w/ 13.3 (22.99%) 13.7 (03.98%) 29.5 (00.23%) 33.7 31.6 34.4

4 PostNorm T-ENC w/ 14.0 (22.86%) 15.5 (04.59%) 30.8 (00.11%) 34.1 31.5 34.5

5 PreNorm S-ENC-T-DEC w/o 14.3 (20.67%) 8.0 (50.16%) 16.7 (41.87%) 33.6 30.9 34.3

6 PostNorm S-ENC-T-DEC w/o 16.0 (15.27%) 17.4 (01.83%) 29.0 (00.41%) 33.8 30.7 34.4

7 PreNorm T-ENC w/o 13.4 (27.15%) 16.2 (01.54%) 29.9 (02.15%) 33.5 30.9 34.3

8 PostNorm T-ENC w/o 13.9 (26.68%) 17.8 (01.50%) 30.8 (00.13%) 33.9 30.6 34.4

Table 8.2: BLEU scores and off-target rates (shown in brackets). We

report the average score of three seeds; refer to Appendix E.5 for BLEU score

of each translation direction and seed. “Res.” indicates the residual connection

of self-attention in the 4th encoder layer. We mark lower off-target rates and

significantly higher BLEU scores [88] between PreNorm and PostNorm in bold

for ZST.

the test sets following Zhang et al. [261], while for IWSLT and Europarl, we choose

the test sets following Wu et al. [236]. We select the checkpoint with the lowest

validation loss for evaluation. The inference is performed on the trained models

using a beam size of 5. For calculating SacreBLEU,6 we utilize the “zh” tokeniza-

tion mode for Chinese, and the “13a” tokenization mode for other languages. We

use the model of setting #47 (Table 8.2) for pivot-based translation. To calculate

the off-target rates, we utilize the language identification tool provided by Fast-

Text [83].8 Our experiment has revealed that this tool is slightly more accurate

than another tool called “langdetect,”9 as it can achieve an accuracy of 98% when

decoding reference English sentences in the test set, whereas “langdetect” only

achieves accuracy of around 92%. Our findings are as follows:

PreNorm vs. PostNorm: We find that PostNorm consistently yields better

BLEU scores than PreNorm for ZST across various language tag and residual con-

6https://github.com/mjpost/sacrebleu
7We use this setting as it achieves the best performance for supervised directions, as shown

in Table 8.2.
8https://fasttext.cc/docs/en/language-identification.html
9https://github.com/Mimino666/langdetect
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nection settings, while their performance is comparable for supervised directions.

Impact of Language Tag and Residual Connection: We observe that using

the “T-ENC” language tag and “w/ Res.” improves ZST performance for IWSLT,

which aligns with the findings of Wu et al. [236] and Liu et al. [108]. Nevertheless,

the best performance is achieved using “w/ Res.” for PostNorm with “S-ENC-

T-DEC” and “T-ENC” tags for OPUS and Europarl, respectively (#2 and #4).

Given that Wu et al. [236] and Liu et al. [108] used PreNorm as the default setting

(#2, #4, #6 and #8 are unreported results in their work), our results emphasize

the need to consider PostNorm as the default setting for ZST, while the language

tag and residual connection settings have less impact.

Off-target Rates: Off-target rates help understand the different BLEU score

gaps between PreNorm and PostNorm, which ranges from 0.5 to 12.3 BLEU

points. For PreNorm and PostNorm with the “T-ENC” language tag (#3, #4,

#7, and #8), they have similar off-target rates, with a discrepancy ranging from

−0.61% to 2.02%, which results in narrow BLEU score gaps, ranging from 0.5

to 1.8 points. However, for PreNorm and PostNorm with the “S-ENC-T-DEC”

language tag (#1, #2, #5, and #6), the off-target rates show a more considerable

discrepancy, ranging from 5.40% to 54.23%, resulting in BLEU score gaps from 1.7

to 12.3 points. Further analysis of the nature of Transformer hidden states in the

next section explores the reason for these different off-target rates in translations.

8.2.3 Tracking Off-targets within Transformer

We probe the language independence of hidden states to track off-targets within

Transformer and reveal the differences between PreNorm and PostNorm. In previ-

ous work, language independence was primarily analyzed using either SVCCA [168]

or language classification accuracy (LCA) [108]. However, we provide evidence in

Appendix E.1 that SVCCA, which measures the cosine similarity between hidden

states, are not suitable for ZST systems. Instead, LCA trains a classifier to inspect

the hidden states on top of the encoder, but it does not simulate the training of

a ZST system, which may introduce bias in the analysis for ZST.10 In this work,

10Liu et al. [108] regulate the output language via a decoder-side language tag, hence analyz-

ing only the encoder states poses no issues as the target language tag does not impact them.
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Figure 8.2: The LLR results of #1 and #2 (Table 8.2) for both ZST and

supervised directions for each dataset. We report the average accuracy of

three seeds and all the supervised or zero-shot directions. “Pre-Src” and “Pre-

Tgt” indicate the layer-wise source and target language recognition for a PreNorm

system (#1), while “Post-Src” and “Post-Tgt” denote similary for a PostNorm

system (#2). “L1” to “L6” are 6 encoder layers and “L7” to “L12” are 6 decoder

layers. We present the figures of other systems (#3 - #8) in Appendix E.4.

Nevertheless, with other language tag settings such as S-ENC-T-DEC and T-ENC, employed in

this study, we require a method to obtain hidden states properly, given their impact on hidden

states.
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we propose a novel approach for ZST based on LCA:

LLR tailors classifiers for each layer to recognize the source or target language.

We train a token-level linear classifier for each layer to utilize hidden states in

each layer as features to identify the source or target language. We use hidden

states obtained by feeding sentence pairs in supervised directions to simulate the

training of ZST. We then test each layer’s classifer’s ability to recognize the source

or target language for supervised or zero-shot directions. This approach enables

the trained classifier to best represent the language recognition ability of hidden

states in a ZST system.

We train two types of linear classifiers for each encoder and decoder layer. One

is for recognizing the source language, and the other is for the target language.

Each linear classifier is a linear transformation from the dimension of the hidden

states (512 or 1, 024) to the number of source or target languages (e.g., 7 for

OPUS). We use the validation set of all supervised directions to obtain the hidden

state of each token in each layer and set their source language tag or target

language tag as the gold labels. Note that the decoder hidden state of each token

in each layer is obtained auto-regressively without teacher-forcing. We train each

classifier for 3 epochs11 with a learning rate of 1e-3 and a batch size of 64 sentences.

For inference, we utilize the test sets of all supervised or zero-shot directions for

computing the LLR results for corresponding directions, respectively.

The LLR results for #1 and #2 in Table 8.2 are presented in Figure 8.2.

First, we find that the encoder and decoder hidden states are highly correlated

with the target and source languages, respectively, for supervised directions (L1 to

L6 of Pre/Post-Tgt and L7 to L12 of Pre/Post-Src of 3 upper sub-figures), which

may impact the generalizability for ZST. Second, we see that the encoder hidden

states of PostNorm are less dependent on the source language than PreNorm (L6

of Pre/Post-Src of 3 lower sub-figures). Third, we observe that the hidden states

in all the decoder layers of PostNorm are more dependent on the target language

and less on the source language than PreNorm (L7 to L12 of 3 lower sub-figures).

The latter two points contribute to the observed gaps in off-target rates between

11The classifier can fully converge within 3 epochs as the classifier is lightweight that only

contains a small number of parameters.
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Figure 8.3: BLEU scores of systems with “S-ENC-T-DEC” for ZST. We

report the mean of three seeds.

PreNorm and PostNorm. Conclusions for #5 and #6 with the “S-ENC-T-DEC”

tag are identical (Appendix E.5).

For systems using “T-ENC,” we find that the LLR are similar between PreNorm

and PostNorm (Appendix E.5) and attribute the BLEU score gaps to translation

quality (i.e., adequacy and fluency).

8.2.4 Unraveling Structural Flaws of PreNorm

We investigate the structural differences between PreNorm and PostNorm to ex-

plain the observed differences in hidden states for models trained with the “S-

ENC-T-DEC” tag. Inspired by Veit et al. [221], we present an “unraveled view”

for PreNorm, which decomposes the residual connections by the summation of

several sub-networks, as shown in Figure 8.1 (paths with different colors indicate

sub-networks). However, this is not applicable to PostNorm, as LayerNorm is

located after residual connections. Based on this analysis, the structural charac-

teristic of PreNorm is:

(1) Shallow Sub-network Nature: PreNorm includes shallow sub-networks,

such as the embedding layer output fed through encoder layers without any op-

eration except for the final LayerNorm (red path in Figure 8.1), but PostNorm
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does not.

(2) LayerNorm Before SA/FFN: In PreNorm, LayerNorm is placed directly

before the self-attention (SA) or feed-forward module (FFN) within the residual

connection module.

To analyze the impact of these structural characteristics on the generalizability

of PreNorm in ZST, we swap the order of LayerNorm and SA/FFN within the

residual connection module (Swap-PreNorm), while keeping the shallow sub-

network nature of PreNorm. Refer to Appendix E.2 for specific illustrations of

Swap-PreNorm. The results, presented in Fig 8.3, show that PreNorm can be

significantly improved through Swap-PreNorm, with Swap-PreNorm approaching

the performance of PostNorm. This demonstrates that ZST is more sensitive to

the position of LayerNorm in PreNorm than its shallow sub-network nature.

8.3 Summary of This Chapter

In this study, we comprehensively explored the effects of LayerNorm on ZST

performance. Our results demonstrate that PostNorm consistently outperforms

PreNorm for ZST, regardless of the language tag and residual connection settings

used. Through in-depth analysis of off-target rates and structural flaws in the

PreNorm model, we were able to identify the underlying factors that contribute

to the performance discrepancy. Our study suggests that care should be taken

when selecting the LayerNorm setting for ZST in future research.



Chapter 9

Conclusion

9.1 Summary

This thesis has embarked on a comprehensive exploration of multilingual rep-

resentation learning, addressing the three identified challenges and contributing

novel solutions within this domain, with a specific focus on sentence alignment

and translation tasks. These tasks are essential in the broader context of multilin-

gual NLP, enabling machines to understand and translate across diverse human

languages with increased proficiency and efficiency.

Chapter 2 introduced EMS, a method for MSE learning that efficiently ad-

dresses high computational demands. To balance training efficiency against data

and computational needs while maintaining MSE quality, we developed an inno-

vative approach to concurrently train “XTR” generative and sentence-level con-

trastive objectives. The effectiveness of EMS was validated through empirical

evaluations on four cross-lingual sentence retrieval tasks and three cross-lingual

sentence classification tasks. Future research directions include utilizing LLMs

for initial model training to enhance sentence embeddings and refining the model

structure via knowledge distillation for faster inference.

Chapter 3 introduced LEALLA, a streamlined model designed to produce

compact MSE, addressing the issue of computational intensity during inference.

The experimental outcomes indicated that LEALLA, after distilling knowledge

from LaBSE, achieved robust performance across 109 languages. Future research

154
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could concentrate on diminishing LaBSE’s vocabulary size to further compress the

model and investigate the potential of lightweight model pre-training in parallel

sentence alignment tasks.

Chapter 4 introduced JASS and ENSS, novel pre-training methods that in-

corporate syntactic structures of sentences, based on language-agnostic schemes

like MASS, to address data scarcity in low-resource languages for NMT. Uti-

lizing abundant monolingual data and syntactic analysis, these methods enhance

language-specific structure awareness during pre-training. Experiments on various

language pairs showed that JASS and ENSS surpass MASS and similar methods

in low-resource contexts, highlighting the value of language-specific inputs and

multi-task pre-training. They significantly improved translation adequacy and

fluency, as confirmed by LASER metrics, human evaluations, and case studies.

Future work will extend linguistically-aware pre-training to more languages while

exploring the applicability of these sequence-to-sequence tasks to a broader range

of NLP tasks.

In Chapter 5, we introduced a word-level contrastive learning approach for

multilingual NMT to tackle the challenge of data scarcity in low-resource lan-

guages. Our experiments demonstrated notable improvements in translation qual-

ity across various language pairs, further elucidated by analysis linking BLEU

scores to the sentence retrieval capabilities of the NMT encoder. Future re-

search directions include: (1) enhancing the retrieval performance of the encoder

in many-to-many NMT setups, and (2) assessing the viability of the contrastive

objective in massively multilingual contexts.

Chapter 6 presented AlignInstruct, a method aimed at improving the fine-

tuning of LLMs for NMT in low-resource, previously unseen languages, with a fo-

cus on minimizing the need for extra training corpora to address the data scarcity

issue. The results from our multilingual and zero-shot experiments highlighted

AlignInstruct’s superiority compared to the MTInstruct baseline and other in-

struction tuning approaches. Future efforts will be directed toward leveraging

large monolingual datasets in new languages for MT and enhancing the model’s

ability to adapt to a variety of MT prompts.

In Chapter 7, we unveiled an innovative variable-length neural interlingua
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method, which not only enhanced zero-shot translation outcomes but also yielded

a more reliable model compared to earlier fixed-length interlingua techniques, ad-

dressing the issue of suboptimal model architecture for zero-shot NMT. Despite

observing a decline in performance in translations to English, our analysis pin-

pointed the specific model component responsible, setting the stage for targeted

improvements in future research.

Chapter 8 thoroughly examined the impact of LayerNorm on the performance

of zero-shot NMT, aiming to overcome issues related to suboptimal model archi-

tecture for zero-shot NMT. The findings revealed that PostNorm has a consistent

edge over PreNorm in zero-shot NMT scenarios, independent of language tag and

residual connection configurations. By analyzing off-target rates and identifying

structural weaknesses in the PreNorm model, we uncovered the reasons behind

this performance gap. The insights from our study emphasize the importance of

careful LayerNorm configuration choices in future zero-shot NMT research.

In conclusion, the research presented in this thesis marks a significant stride

in the field of multilingual NLP. It has not only provided a deeper understanding

of the challenges inherent in multilingual representation learning but also offered

innovative and practical solutions to overcome these obstacles. As the world be-

comes increasingly interconnected, the importance of effective multilingual com-

munication grows. The contributions of this thesis thus hold considerable promise

for future applications in global communication, information access, and beyond,

fostering a world where language barriers continue to diminish.

9.2 Future Prospects

Firstly, the techniques presented in this thesis hold the potential for integration

into a singular, comprehensive multilingual model, an endeavor we aim to pursue

in future research. Initially, this integration would involve combining the MSE and

multilingual NMT models within a unified Transformer encoder-decoder frame-

work. Here, sentence embeddings would be generated by the encoder, while the

decoder would produce translations. Following this, the proposed methods for

enhancing multilingual representation, particularly those aimed at increasing ef-
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ficiency and boosting performance in low-resource languages, could be combined

into a single, cohesive training phase. Additionally, the novel model architec-

tures and configurations developed for enhancing Transformer models in zero-shot

translation scenarios warrant empirical exploration to assess their compatibility

with MSE learning and low-resource translation.

Secondly, the insights obtained from this thesis could significantly contribute

to the development of robust multilingual LLMs. Our proposed training objec-

tives, which focus on word alignment and linguistic features, could effectively

facilitate better language alignment in multilingual LLMs. Moreover, the effi-

cient MSE models we introduced could enhance the retrieval-based applications

of LLMs, such as retrieval-based few-shot in-context learning. Furthermore, our

findings regarding the application of Transformer architectures in multilingual

contexts offer valuable guidance for future research into the Transformer archi-

tectures of multilingual LLMs. This knowledge could be instrumental in further

advancing the field and unlocking new possibilities in multilingual LLMs.

Last but not least, looking beyond the conclusion of this thesis, several promis-

ing avenues for future research in multilingual NLP emerge. These prospects not

only aim to broaden the scope of current methodologies but also seek to deepen

the understanding and application of multilingual representation learning.

Expanding Language Coverage

A key direction for future research is the further expansion of language coverage.

This includes a focus on low-resource languages and regional dialects, which are

often underrepresented in current NLP models. Addressing these gaps can sig-

nificantly enhance communication inclusiveness and preserve linguistic diversity.

Efforts here may involve developing more sophisticated models and algorithms

capable of learning from limited data and adapting to linguistic variations.

Integration with Multimodal Data

Secondly, integrating multilingual NLP with multimodal data presents an exciting

frontier. Using images and videos as universal pivots can offer innovative ways

to bridge language barriers. This approach can leverage the universal nature of



158 CHAPTER 9. CONCLUSION

visual and auditory information to complement and enhance language alignment

and translation. Future research in this area could explore the development of

integrated models that process and interpret multimodal data, which benefits the

alignment across languages.

Cross-Cultural Understanding

Finally, it is critical to enhance cross-cultural understanding. This involves de-

tecting and addressing cultural nuances in language use, which is crucial for accu-

rate and sensitive communication across different societies. Future research could

develop models that are not only linguistically adept but also culturally aware,

capable of interpreting and respecting the subtle cultural contexts embedded in

languages.

In summary, the future of multilingual NLP holds immense potential for fur-

ther exploration and development. By integrating current multilingual techniques

on LLMs, expanding language coverage, deepening cross-cultural understanding,

and integrating with multimodal data, we can look forward to more inclusive, ac-

curate, and diverse language technologies. These advancements will not only push

the boundaries of NLP but also play a vital role in fostering global communication

and understanding.



Appendix A

Supplementary Materials of

LEALLA

A.1 Discussion about Feature Distillation

We additionally investigate another two patterns for feature distillation. As il-

lustrated in Figure A.1, “Distillation-first” modifies the position for computing

the MSE loss compared with Lfd of Equation 3.3. The [CLS] pooler within the

LEALLA encoder is used to generate 768-d embeddings first. A dense layer is em-

ployed to transform the 768-d embeddings to low-dimension after calculating the

MSE loss. “Synchronized” transforms the LaBSE embeddings to low-dimension,

then the MSE loss is constructed between two low-dimensional embeddings. As

the MSE loss is computed simultaneously with the AMS loss, it is denoted as

“Synchronized”. For “Synchronized”, it requires a fixed dense layer to conduct

the dimension reduction for the LaBSE embeddings, for which we utilize the pre-

trained model introduced in Section 3.2.2. We denote these two patterns of feature

distillation as Ldf and Lsyn.
As reported in Table A.1, Lams + Lfd (Lfd is feature distillation introduced

in the main text) consistently outperforms Lams + Ldf and Lams + Lsyn in all

the three LEALLA models. Lams + Ldf and Lams + Lsyn perform comparably

on Tatoeba with the models trained without distillation loss. Lams +Ldf obtains

performance gains for high-resource languages on UN and BUCC compared with

159
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Figure A.1: Another two patterns of feature distillation.

Lams, but still underperforms Lams + Lfd.
Ldf forces the lightweight model to approximate the teacher embeddings first in

the intermediate part of the model, on top of which the low-dimensional sentence

embeddings are generated for computing the AMS loss, while Lfd (Equation 3.3)

is calculated after computing the AMS loss. As the AMS loss directly indicates the

evaluation tasks, we suppose Lfd is a more flexible objective for feature distillation.

In addition, Lsyn is not beneficial because it depends on a dimension-reduced

LaBSE, which is a less robust teacher compared with LaBSE.

A.2 Results of Dimension-reduction Experiments

We report all the results of Section 3.2.2 in Table A.2.

A.3 Results of All Thin-deep Architectures

Table A.3 presents the detailed results of each architecture we explored in Sec-

tion 3.2.3. Besides showing the results for each language on UN and BUCC for



A.4. RESULTS OF ABLATION STUDY 161

Model Tatoeba
UN BUCC

es fr ru zh avg. de fr ru zh avg.

LEALLA-small

Lams 80.3 88.1 85.2 88.0 83.9 86.3 93.0 89.7 90.6 88.3 90.4

Lams + Lfd 80.6 89.3 86.8 88.0 84.0 87.0 93.9 90.6 91.4 89.7 91.4

Lams + Ldf 80.0 89.4 86.3 88.1 83.9 86.9 93.8 90.1 91.1 88.9 91.0

Lams + Lsyn 80.2 88.5 85.0 87.1 82.8 85.9 93.6 89.9 90.9 88.7 90.8

LEALLA-base

Lams 81.7 89.8 85.9 88.6 85.4 87.4 94.2 91.0 91.3 91.1 91.9

Lams + Lfd 82.2 90.2 87.5 89.4 86.8 88.5 95.0 91.6 91.7 91.0 92.3

Lams + Ldf 81.8 90.0 87.3 89.2 86.3 88.2 94.7 91.4 91.7 90.9 92.2

Lams + Lsyn 81.9 89.7 86.7 88.8 85.9 87.8 94.5 91.1 91.7 90.3 91.9

LEALLA-large

Lams 82.9 90.1 87.1 89.3 87.4 88.5 94.6 91.2 91.5 91.4 92.2

Lams + Lfd 83.4 90.6 88.4 89.8 87.7 89.1 95.3 92.0 92.0 92.0 92.8

Lams + Ldf 83.0 90.3 87.6 89.7 87.2 88.7 95.3 91.9 92.0 91.7 92.7

Lams + Lsyn 83.0 90.0 87.4 89.7 86.8 88.5 94.9 91.7 91.8 91.4 92.5

Table A.1: Results of comparisons among three feature distillation objectives. Ldf
and Lsyn indicate “Distillation-first” and “Synchronized” objectives in Figure A.1.

models #0 - #8, we provide the results of a further smaller thin-deep architec-

ture (#9) and MobileBERT-like [207] thin-deep architectures (#10 - #12). The

64-d thin-deep architecture contains only 33M parameters. However, its perfor-

mance on three evaluation benchmarks downgrades by up to 7.4 points compared

with #5 - #8, which demonstrates that 128-d may be a lower bound as universal

sentence embeddings for aligning parallel sentences for 109 languages. Moreover,

#10 - #12 show the results of MobileBERT-like architectures whose feed-forward

hidden size is identical to hidden size. They have fewer parameters than #5 - #8,

but they perform worse than #5 - #8, respectively (e.g., compare #10 with #6).

Therefore, we did not employ MobileBERT-like architectures for LEALLA.

A.4 Results of Ablation Study

We report all the results of the ablation study (Section 3.3.2) in Table A.4.
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Dimension Tatoeba
UN BUCC

es fr ru zh avg. de fr ru zh avg.

768 (LaBSE) 83.7 90.8 89.0 90.4 88.3 89.6 95.5 92.3 92.2 92.5 93.1

512 83.7 90.1 88.1 89.7 87.4 88.8 95.4 92.1 92.0 92.4 93.0

384 83.7 90.1 88.1 89.6 87.4 88.8 95.5 92.0 92.0 92.6 93.0

256 83.6 90.3 87.9 89.2 87.4 88.7 95.3 92.0 92.1 92.2 92.9

192 83.4 89.8 87.5 89.5 87.0 88.5 95.2 91.9 91.9 92.2 92.8

128 83.1 89.2 86.9 88.6 85.9 87.7 95.1 91.4 91.8 91.6 92.5

64 81.8 88.4 84.4 87.3 83.8 86.0 93.9 89.8 90.7 88.9 90.8

32 78.4 82.7 74.8 80.4 73.7 77.9 87.1 81.5 84.1 75.5 82.1

Table A.2: Results of the dimension-reduced LaBSE embeddings.

# L dh dff H P PE Tatoeba
UN BUCC

es fr ru zh avg. de fr ru zh avg.

LaBSE

0 12 768 3072 12 471M 85M 83.7 90.8 89.0 90.4 88.3 89.6 95.5 92.3 92.2 92.5 93.1

Fewer Layers

1 6 768 3072 12 428M 42M 82.9 90.2 87.4 89.2 87.4 88.6 94.3 90.9 91.2 91.1 91.9

2 3 768 3072 12 407M 21M 82.2 89.4 86.1 88.0 86.5 87.5 93.7 90.1 90.8 90.1 91.2

Smaller Hidden Size

3 12 384 1536 12 214M 21M 82.6 90.1 86.9 89.6 87.0 88.4 94.4 91.2 91.4 91.3 92.1

4 12 192 768 12 102M 6M 81.0 89.4 85.6 88.1 85.0 87.0 93.6 90.4 91.1 89.9 91.3

Thin-deep Architecture

5 24 384 1536 12 235M 42M 83.2 90.6 87.3 89.2 87.4 88.6 94.7 91.5 91.6 91.9 92.4

6 24 256 1024 8 147M 19M 82.9 90.1 87.1 89.3 87.4 88.5 94.6 91.2 91.5 91.4 92.2

7 24 192 768 12 107M 11M 81.7 89.8 85.9 88.6 85.4 87.4 94.2 91.0 91.3 91.1 91.9

8 24 128 512 8 69M 5M 80.3 88.1 85.2 88.0 83.9 86.3 93.0 89.7 90.6 88.3 90.4

9 24 64 256 8 33M 1M 75.2 83.7 78.6 83.0 72.1 79.4 87.9 83.0 86.0 75.1 83.0

MobileBERT-like Thin-deep Architecture

10 24 256 256 4 138M 10M 82.1 89.4 86.5 88.4 86.5 87.7 94.1 91.0 91.0 91.7 92.0

11 24 192 192 4 102M 6M 81.0 89.0 85.4 88.5 85.3 87.1 93.8 90.3 91.0 89.9 91.3

12 24 128 128 4 66M 2M 79.7 88.1 84.1 87.6 83.3 85.8 92.6 88.8 90.4 87.6 89.9

Table A.3: Results of thin-deep and MobileBERT-like architectures. L, dh, dff ,

H, P, and PE indicate the number of layers, dimension of hidden states, dimen-

sion of feed-forward hidden states, number of attention heads, number of model

parameters, and number of encoder parameters (except for the word embedding

layer).
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Model Tatoeba
UN BUCC

es fr ru zh avg. de fr ru zh avg.

LEALLA-small

Lams 80.3 88.1 85.2 88.0 83.9 86.3 93.0 89.7 90.6 88.3 90.4

Lfd 78.2 89.0 84.6 87.5 79.6 85.2 94.2 90.5 91.2 88.9 91.2

Lld 75.1 1.5 1.1 0.9 5.6 2.3 0.1 0.0 0.1 0.0 0.1

Lams + Lfd 80.6 89.3 86.8 88.0 84.0 87.0 93.9 90.6 91.4 89.7 91.4

Lams + Lld 80.6 89.6 85.8 88.6 84.4 87.1 94.1 90.3 91.2 90.0 91.4

Lams + Lfd + Lld 80.7 89.4 86.0 88.7 84.9 87.3 94.0 90.6 91.2 90.3 91.5

LEALLA-base

Lams 81.7 89.8 85.9 88.6 85.4 87.4 94.2 91.0 91.3 91.1 91.9

Lfd 81.1 90.2 87.3 89.4 85.5 88.1 95.0 91.6 91.8 91.3 92.4

Lld 80.6 66.3 49.4 51.0 85.7 63.1 57.5 80.1 60.6 88.6 71.7

Lams + Lfd 82.2 90.2 87.5 89.4 86.8 88.5 95.0 91.6 91.7 91.0 92.3

Lams + Lld 82.3 90.0 87.5 89.2 86.8 88.4 94.8 91.3 91.6 91.4 92.3

Lams + Lfd + Lld 82.4 90.3 87.4 89.8 87.2 88.7 94.9 91.4 91.8 91.4 92.4

LEALLA-large

Lams 82.9 90.1 87.1 89.3 87.4 88.5 94.6 91.2 91.5 91.4 92.2

Lfd 82.4 89.8 87.2 89.4 86.1 88.1 95.3 91.8 92.0 92.2 92.8

Lld 82.3 87.2 78.8 83.3 86.9 84.1 88.4 87.4 86.9 91.8 88.6

Lams + Lfd 83.4 90.6 88.4 89.8 87.7 89.1 95.3 92.0 92.0 92.0 92.8

Lams + Lld 83.4 90.6 87.9 90.0 87.7 89.1 95.3 91.8 91.7 92.4 92.8

Lams + Lfd + Lld 83.5 90.8 88.5 89.9 87.9 89.3 95.3 92.0 92.1 91.9 92.8

Table A.4: Results of LEALLA with different loss functions and loss combinations.
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B.1 Algorithms for PMASS

In this section, we introduce Algorithms 1 and 2 for PMASS.S and PMASS.P

respectively. We utilize the HPSG parsing result (Figure 4.5 (left)) to detect

phrase spans to be masked. For PMASS.S, we can rapidly detect an entire phrase

span to be masked. For PMASS.P, we start from the root of the HPSG parsing

tree and stochastically mask the left child or the right child; then shift to the

unmasked child node to find the next masking candidate. We implement this in

a recursive manner.

B.2 Hyperparameters for Optimized Transformer

Following Araabi and Monz [6], we use the hyperparameter settings shown in Ta-

ble B.1 for training optimized Transformer on different parallel data settings. Al-

though optimized hyperparameter settings can significantly improve low-resource

NMT, they require laborious grid search for the optimal setting while fine-tuning

NMT based on pre-trained models do not.
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Algorithm 1: Algorithm for determining masked phrase spans for

PMASS.S.
Input: Length of the sentence L, tree of HPSG parsing result for the

sentence T.

Output: Token List M consisting of all the tokens on N. (to be masked)

1 Initialize Current Node N by ROOT of T ;

2 while number of tokens on N > int(L/2) do

3 if number of tokens on left child of N > number of tokens on right

child of N then

4 N ← left child of N ;

5 else

6 N ← right child of N ;

7 end

8 end

B.3 Results of Combining BART with Ours

In Table B.2, B.3 and B.4, we report the results of combining BART and our

proposed methods for Japanese–English and Japanese–Chinese translations. We

observe that BART (text infilling) can not further improve our proposed methods,

which indicates that BART (text infilling) does not have a complement nature

with our linguistically-driven multi-task pre-training methods.
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Algorithm 2: Algorithm for determining masked phrase spans for

PMASS.P.
Input: Length of the sentence L, tree of HPSG parsing result for the sentence T.

Output: Pmass(N=ROOT of T, L, l=0, M=empty list) (tokens to be masked)

1 Function Pmass(N , L, l, M):

2 if tag of N is sentence then

3 return Pmass(child of N, L, l, M )

4 else if tag of N is tok then

5 if int(L/2)− l > 0 then

6 M.append(token on N)

7 return M

8 else if N only has one child and N.tag is cons then

9 return Pmass(child of N, L, l, M )

10 else

11 ll ← number of tokens on the left child of N ;

12 lr ← number of tokens on the right child of N ;

13 if ll is 1 and lr is 1 then

14 if int(L/2)− l > 1 then

15 M.append(token on N)

16 return M

17 else if int(L/2) <= l then

18 return M

19 else if ll <= int(L/2)− l and lr > int(L/2)− l then

20 if random p < 0.5 then

21 M ← M+ tokens on the left child of N ;

22 l ← l + ll;

23 return Pmass(right child of N, L, l, M )

24 else

25 return Pmass(right child of N, L, l, M )

26 end
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27

28

29 else if lr <= int(L/2)− l and ll > int(L/2)− l then

30 if random p < 0.5 then

31 M ← M+ tokens on the right child of N ;

32 l ← l + lr;

33 return Pmass(left child of N, L, l, M )

34 else

35 return Pmass(left child of N, L, l, M )

36 end

37 else if ll > int(L/2)− l and lr > int(L/2)− l then

38 if random p < 0.5 then

39 return Pmass(left child of N, L, l, M )

40 else

41 return Pmass(right child of N, L, l, M )

42 end

43 else

44 M ← M+ tokens on the left child of N ;

45 l ← l + ll;

46 return Pmass(right child of N, L, l, M )

47 end

48 Initialize Current Node N by ROOT of T, Empty Token List M ;

49 l ← 0 ;

50 Pmass(N, L, l, M )
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Hyperparameters Default 3k 10k 20k 50k 94k

BPE operations 30k 5k 10k 10k 12k 15k

Encoder/decoder layers 6 2 2 2 2 2

Attention heads 16 2 2 2 2 2

Embedding dimension 1024 512 512 512 512 512

Feed forward dimension 4096 512 1024 1024 2048 2048

Dropout 0.3 0.3 0.3 0.3 0.3 0.3

Label smoothing 0.1 0.6 0.5 0.5 0.5 0.4

Batch size 4096 4096 4096 4096 4096 8192

Table B.1: Hyperparameters for optimized Transformer. “Default” denotes the

setting of Transformer-big. For English-Japanese, BPE operations for “Vanilla

Transformer-big” is 40k.

Model
Ja-En En-Ja

3k 10k 20k 50k 3k 10k 20k 50k

MASS 8.8 13.8 17.2 21.2 9.1 16.0 20.6 25.0

ENSS 11.2† 16.7† 19.0† 22.1† 11.7† 18.7† 22.5† 27.0†

BART (text infilling) 3.1 11.1 15.5 20.7 5.6 14.9 19.8 25.6†

BART + ENSS 10.7† 15.8† 18.9† 22.4† 10.6† 17.6† 21.2† 27.2†

Table B.2: BLEU scores compared with BART for simulated low/high-resource

settings for Japanese–English ASPEC translation using from 3k to 50k parallel

sentences for fine-tuning. Results better than MASS with statistical significance

p < 0.05 are marked in †.
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Model
Ja-Zh Zh-Ja

3k 10k 20k 50k 3k 10k 20k 50k

MASS 15.7 20.3 22.4 24.7 19.4 25.9 29.4 32.9

JASS 17.1† 22.2† 23.2† 25.2† 21.6† 27.5† 30.4† 33.6†

BART (text infilling) 13.5 19.0 21.3 24.4 20.3† 25.8 29.1 33.0

BART + JASS 17.1† 21.3† 23.1† 25.0 21.9† 27.5† 30.4† 33.6†

Table B.3: BLEU scores compared with BART for simulated low-resource settings

for Japanese–Chinese ASPEC translation using 3k to 50k parallel sentences for

fine-tuning. Results better than MASS with statistical significance p < 0.05 are

marked in †.

Model
Ja-Zh Zh-Ja

3k 10k 20k 50k 3k 10k 20k 50k

MASS 7.7 15.4 18.3 23.4 9.6 17.6 23.3 27.1

JASS 12.0† 17.0† 20.1† 25.0† 16.6† 21.2† 26.5† 29.2†

BART (text infilling) 5.9 14.0 18.0 21.8 8.7 17.8 24.2† 28.5†

BART + JASS 11.4† 16.5† 19.4† 24.3† 16.2† 22.5† 26.2† 30.0†

Table B.4: BLEU scores compared with BART for simulated low-resource set-

tings for Japanese–Chinese Wikipedia translation using from 3k to 50k parallel

sentences for fine-tuning. Results better than MASS with statistical significance

p < 0.05 are marked in †.
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C.1 BLEU Scores

We report all the BLEU results of 222 en-ja, 626 en-it-ja-nl-tr-vi, and 626 en-tr-

ro-et-my-kk in Table C.1, C.2 and C.3, respectively.

C.2 Sentence Retrieval Precision

We report the sentence retrieval precision for all the systems in Tables C.4, C.5

and C.6. The sentence retrieval previsions are evaluated by using the validation

dataset of each language pair. The mean pooled encoder output is used as the

sentence embedding. We use cosine similarity to conduct the retrieval task, and

report the average retrieval precision of both directions of each language pair.

C.3 Word Retrieval Precision

We report the word retrieval precision for all the systems in Tables C.7, C.8,

and C.9. The word retrieval precision are computed by using the validation

dataset and the word2word alignments on it. The mean pooled encoder out-

put on corresponding positions is used as the contextualized word embedding.
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Methods en-ja ja-en

MLSC 15.9 11.9

+align 16.3 11.5

+w2w (ours) 16.0 11.7

+FA (ours) 15.6 11.0

mBART FT 19.8 18.0

+align 19.6 17.5

+w2w (ours) 19.4 18.2

+FA (ours) 19.5 17.8

Table C.1: BLEU scores of 222 en-ja system. Significantly better scores are

in cyan, and marginal improvements are in lightcyan. The significance test is done

with Koehn [88].

Methods
en-ja en-vi en-it en-nl en-tr

Avg.
→ ← → ← → ← → ← → ←

MLSC 15.4 11.8 29.6 28.6 27.5 32.7 29.1 36.4 11.6 14.9 23.76

+align 15.1 11.4 29.4 28.3 27.7 33.0 28.9 36.0 11.8 15.1 23.67

+w2w (ours) 15.3 11.6 29.7 28.2 27.6 32.4 28.6 35.8 10.8 14.4 23.44

+FA (ours) 15.5 11.6 29.6 28.0 27.8 33.2 29.1 35.9 11.2 14.9 23.68

+sent 15.1 11.6 29.6 28.3 27.3 32.7 28.1 36.6 11.3 14.7 23.53

mBART FT 17.8 17.0 34.1 35.7 32.5 38.0 32.6 41.6 18.7 23.1 29.11

+align 17.6 16.7 33.7 35.6 32.0 37.7 32.5 41.3 18.7 22.9 28.87

+w2w (ours) 17.6 17.2 34.2 35.7 32.5 38.2 32.1 41.7 18.7 22.9 29.08

+FA (ours) 17.5 17.7 34.0 35.2 32.4 37.9 32.3 41.4 18.6 23.1 29.01

+sent 17.8 16.5 33.7 35.6 32.2 38.1 32.5 41.2 18.1 22.9 28.86

Table C.2: BLEU scores of 626 en-it-ja-nl-tr-vi system. Significantly better

scores are in cyan, and marginal improvements are in lightcyan. The significance

test is done with Koehn [88].

We use cosine similarity to implement the retrieval for word pairs in a batch, and

present the average in-batch retrieval precision of both directions of each language
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Methods
en-tr en-ro en-et en-kk en-my Avg.

→ ← → ← → ← → ← → ←

MLSC 9.3 12.6 25.0 26.2 10.8 15.1 0.5 5.3 15.1 15.6 13.55

+align 9.0 12.4 24.6 26.5 10.7 14.6 0.4 5.4 15.0 15.3 13.39

+w2w (ours) 9.4 12.6 24.8 26.8 10.8 15.1 0.5 5.8 15.2 15.9 13.69

+FA (ours) 9.1 12.2 24.8 26.7 10.7 14.8 0.3 5.6 15.0 15.6 13.48

+sent 8.7 12.1 24.5 26.0 10.4 14.5 0.4 5.3 13.8 14.6 13.03

mBART FT 17.7 22.2 33.8 37.1 14.5 24.3 1.8 14.1 17.8 23.1 20.64

+align 17.5 21.9 33.8 36.7 15.2 24.3 1.8 14.0 16.9 22.1 20.42

+w2w (ours) 17.6 22.2 34.2 37.5 15.0 25.0 1.2 14.1 18.3 23.8 20.89

+FA (ours) 17.5 22.2 34.3 37.5 14.9 25.1 1.3 14.4 17.9 23.6 20.87

+sent 17.2 22.1 34.2 37.0 14.2 24.1 1.6 14.0 17.7 23.4 20.55

Table C.3: BLEU scores of 626 en-tr-ro-et-my-kk system. Significantly

better scores are in cyan, and marginal improvements are in lightcyan. The sig-

nificance test is done with Koehn [88].

pair. Batch size is set as 512 tokens.
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Methods en-ja

MLSC 3.3

+align 3.5

+w2w (ours) 73.5

+FA (ours) 69.6

mBART FT 88.9

+align 87.4

+w2w (ours) 85.2

+FA (ours) 84.8

Table C.4: Sentence retrieval P@1 on the validation set for 222 en-ja.

Methods en-ja en-vi en-it en-nl en-tr Avg.

MLSC 52.7 84.6 91.0 85.7 89.7 80.9

+align 53.5 82.8 91.2 86.4 88.9 80.6

+w2w (ours) 73.4 85.7 91.4 84.7 83.1 83.7

+FA (ours) 71.3 84.9 91.3 83.8 82.0 82.7

+sent 87.2 84.7 91.1 87.7 86.6 87.5

mBART FT 87.1 96.2 97.3 94.6 98.5 94.7

+align 85.1 95.8 97.3 94.2 98.5 94.2

+w2w (ours) 81.6 91.4 94.7 90.8 89.6 89.6

+FA (ours) 82.6 92.3 95.0 91.7 90.4 90.4

+sent 76.2 88.3 93.6 88.7 89.8 87.3

Table C.5: Sentence retrieval P@1 on the validation set for 626 en-it-ja-

nl-tr-vi.
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Methods en-tr en-ro en-et en-kk en-my Avg.

MLSC 86.2 84.0 85.4 64.4 72.4 78.5

+align 85.9 82.4 84.0 61.3 61.8 75.1

+w2w (ours) 79.6 88.1 76.8 77.4 83.7 81.1

+FA (ours) 77.0 86.1 69.8 75.7 73.4 76.4

+sent 76.3 77.6 55.2 63.8 71.4 68.9

mBART FT 98.0 92.7 96.0 92.9 94.7 94.9

+align 97.4 92.5 97.0 92.1 93.7 94.5

+w2w (ours) 94.3 95.6 96.8 86.0 96.2 93.8

+FA (ours) 94.3 96.3 97.3 87.9 96.2 94.4

+sent 94.6 97.3 95.4 93.1 95.7 95.2

Table C.6: Sentence retrieval P@1 on the validation set for 626 en-tr-

ro-et-my-kk.

Methods en-ja

MLSC 20.1

+align 22.5

+w2w (ours) 68.3

+FA (ours) 67.6

mBART FT 65.2

+align 64.3

+w2w (ours) 71.5

+FA (ours) 70.7

Table C.7: Word retrieval P@1 on the validation set for 222 en-ja.
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Methods en-ja en-vi en-it en-nl en-tr Avg.

MLSC 61.8 54.6 42.8 42.1 42.7 48.8

+align 61.9 54.1 43.7 42.0 42.3 48.8

+w2w (ours) 64.0 64.7 55.8 57.7 52.8 59.0

+FA (ours) 58.2 65.2 59.2 60.1 48.1 58.2

mBART FT 64.5 57.2 47.4 45.9 47.2 52.4

+align 64.0 56.8 47.3 45.7 46.8 52.1

+w2w (ours) 71.3 70.1 60.6 62.9 57.8 64.5

+FA (ours) 68.6 69.4 63.2 64.7 57.4 64.7

Table C.8: Word retrieval P@1 on the validation set for 626 en-it-ja-nl-

tr-vi.

Methods en-tr en-ro en-et en-kk en-my Avg.

MLSC 41.9 63.2 64.4 63.4 65.8 59.7

+align 40.9 63.2 63.9 63.4 66.2 59.5

+w2w (ours) 50.1 66.5 67.6 68.8 71.3 64.9

+FA (ours) 47.2 66.7 65.7 65.4 66.3 62.3

mBART FT 46.8 66.1 68.0 68.7 71.7 64.3

+align 46.4 65.9 67.8 68.5 71.1 63.9

+w2w (ours) 55.6 70.3 72.8 74.7 74.4 69.6

+FA (ours) 55.3 70.1 73.0 74.0 74.0 69.3

Table C.9: Word retrieval P@1 on the validation set for 626 en-tr-ro-et-

my-kk.
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D.1 Results of MT+Align+Hint+Revise for models

of BLOOMZ+3

We present the results in Table D.1. Co-referencing the results in Table 6.6, com-

pared with MT+Align, a clear advantage for the MT+Align+Hint+Revise setting

in supervised directions involving English (en→seen and seen→en) in the ar-fr-de-

nl-ru-zh setting was observed. This result suggested that AlignInstruct’s variants

played a crucial role in preserving the BLOOMZ’s capabilities for supported lan-

guages. However, in all other scenarios, AlignInstruct alone proved sufficient to

enhance the performance beyond the MTInstruct baseline, but hard to achieve

further improvements with additional instructions.

D.2 Representation Change of BLOOMZ+3

The representation change observed in de-nl-ru was consistent with the findings

presented in Section 6.4.5, which highlighted an initial increase in cross-lingual

alignment in the early layers, followed by a decrease in the final layers. When

mixing fine-tuning data with supported languages, the changes exhibited more

intricate patterns. As illustrated by ar-fr-zh in ar-de-fr-nl-ru-zh in Figure D.1,
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Languages
Zero-shot Directions Supervised Directions

Directions BLEU chrF++ COMET Directions BLEU chrF++ COMET

de-nl-ru

overall 8.94 23.53 60.67
en→xx 16.70 31.83 68.98

xx→en 25.18 45.00 76.45

seen→seen 14.00 27.58 70.59 en→seen 15.97 28.53 72.69

seen→unseen 6.49 23.01 54.92 en→unseen 17.43 35.13 65.27

unseen→seen 9.50 21.90 64.69 seen→en 25.33 46.70 77.51

unseen→unseen 6.73 22.70 53.34 unseen→en 25.03 43.30 75.39

ar-de-fr-nl-ru-zh

overall 12.07 26.67 63.13
en→xx 21.62 36.12 70.94

xx→en 28.92 48.60 77.50

seen→seen 23.52 36.13 76.62 en→seen 26.87 38.40 78.40

seen→unseen 7.16 24.48 55.02 en→unseen 16.37 33.83 63.49

unseen→seen 12.91 25.23 68.91 seen→en 32.57 53.70 80.06

unseen→unseen 6.73 22.65 53.12 unseen→en 25.27 43.50 74.93

Table D.1: Results of BLOOMZ+3 with MT+Align+Hint+Revise. Co-

referencing Table 6.6, scores that surpass the MTInstruct baseline are marked in

bold.

sentence alignment declined after MTInstruct fine-tuning but elevated after fur-

ther combining with AlignInstruct. We leave the interpretation of this nuanced

behavior in future work.

D.3 Inference using Different MT Prompts

We investigated the performance of fine-tuned models when using various MT

prompts during inference, aiming to understand models’ generalization capabili-

ties with different test prompts. We examined five MT prompts for the fine-tuned

models of BLOOMZ-7b1, following Zhang et al. [259], which are presented in Ta-

ble D.2. The results, showcased in Table D.3, revealed that in comparison to the

default prompt used during fine-tuning, the translation performance tended to

decline when using other MT prompts. We observed that MT+Align consistently

surpasses MTInstruct for xx→en translations, though the results were mixed for

en→xx directions. Certain prompts, such as PROMPT-3 and PROMPT-4, ex-

hibited a minor performance drop, while others significantly impacted translation

quality. These findings underscored the need for enhancing the models’ ability
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Figure D.1: Differences in cosine similarity of layer-wise embeddings for

BLOOMZ+3. ∆1 represents the changes from the unmodified BLOOMZ to the

one on MTInstruct, and ∆2 from MTInstruct to MT+Align.

to generalize across diverse MT prompts, potentially by incorporating a range of

MT prompt templates during the fine-tuning process, as stated in the Limitations

section.

D.4 Zero-shot Translation using English as Pivot

Pivot translation serves as a robust technique for zero-shot translation, especially

given that we used English-centric data during fine-tuning. In Table D.4, we

present results that utilize English as an intermediary pivot for translations be-

tween non-English language pairs. Our findings indicated that employing the

English pivot typically yielded an enhancement of approximately 1.1 - 1.2 BLEU

points compared to direct translations in zero-shot directions when fine-tuning

BLOOMZ. When contrasting the MTInstruct baseline with our proposed method,

MT+Align, we observed that combining AlignInstruct consistently boosted per-

formance in pivot translation scenarios.
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Prompt Definition

PROMPT-default

Translate from Y to X.

Y : y1y2 . . . yM .

X:

PROMPT-1
Y : y1y2 . . . yM .

X:

PROMPT-2
y1y2 . . . yM .

X:

PROMPT-3

Translate to X.

Y : y1y2 . . . yM .

X:

PROMPT-4

Translate from Y to X.

y1y2 . . . yM .

X:

PROMPT-5

Translate to X.

y1y2 . . . yM .

X:

Table D.2: MT prompt variants investigated for fine-tuned models. These

MT prompts are following the design in Zhang et al. [259].

D.5 Result Details of BLOOMZ+24 and BLOOMZ+3

We present per language detailed results of original BLOOMZ-7b1 and fine-tuned

BLOOMZ-7b1 models in Tables D.5, D.6, D.7, D.8, D.9, D.10, D.11, D.12, respec-

tively for the BLOOMZ+24 and BLOOMZ+3 settings.
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Prompt Objective
en→xx xx→en

BLEU chrF++ COMET BLEU chrF++ COMET

PROMPT-default
MTInstruct 11.54 25.33 64.68 18.59 33.25 68.75

MT+Align 12.28 26.17 65.28 18.72 34.02 69.75

PROMPT-1
MTInstruct 5.29 11.31 50.74 7.87 20.08 57.10

MT+Align 5.30 11.38 51.29 8.93 20.77 58.01

PROMPT-2
MTInstruct 2.20 6.68 45.78 7.15 19.08 57.03

MT+Align 1.91 5.35 43.92 7.61 18.80 56.40

PROMPT-3
MTInstruct 10.59 22.69 62.77 15.85 29.93 66.64

MT+Align 9.20 20.80 61.45 16.17 30.58 67.75

PROMPT-4
MTInstruct 8.67 20.73 61.32 15.20 28.95 65.51

MT+Align 8.91 20.53 61.55 16.25 30.67 67.06

PROMPT-5
MTInstruct 6.61 14.55 55.93 10.88 22.41 60.48

MT+Align 6.02 12.28 52.72 11.83 23.85 61.28

Table D.3: Results of using different MT prompts for BLOOMZ-7b1 fine-

tuned models during inference. Refer to Table D.2 for details about defini-

tions of different MT prompts. We report the average results for the BLOOMZ+24

setting. Results better than the MTInstruct baseline are marked in bold.

MTInstruct BLEU chrF++ COMET MT+Align BLEU chrF++ COMET

overall 11.79 26.36 63.22 overall 12.13 26.65 63.23

seen→seen 22.68 35.32 76.39 seen→seen 23.67 36.53 76.89

seen→unseen 7.10 24.50 55.18 seen→unseen 7.27 24.32 54.96

unseen→seen 12.56 24.74 68.83 unseen→seen 12.92 25.29 69.10

unseen→unseen 6.78 22.62 53.69 unseen→unseen 6.68 22.30 53.19

MTInstruct with English pivot BLEU chrF++ COMET MT+Align with English pivot BLEU chrF++ COMET

overall 12.99 28.01 65.38 overall 13.25 28.30 65.57

seen→seen 23.10 35.30 76.30 seen→seen 23.48 35.57 76.43

seen→unseen 9.00 27.67 59.54 seen→unseen 9.28 28.03 59.73

unseen→seen 13.18 24.98 68.77 unseen→seen 13.36 25.22 68.94

unseen→unseen 8.57 25.77 58.17 unseen→unseen 8.83 26.07 58.42

Table D.4: Results of BLOOMZ+3 using English as a pivot language

for zero-shot translation evaluation. Results of MT+Align surpassing corre-

sponding those of MTInstruct are marked in bold.
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Language
OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en

BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

af 3.8 13.2 56.38 7.6 22.0 59.14 2.6 14.9 33.60 20.1 38.0 65.61

am 0.1 0.3 33.17 0.5 8.3 43.57 0.3 0.6 30.65 1.9 12.6 46.24

be 4.2 5.1 47.26 7.3 17.5 48.57 0.4 3.3 31.58 4.2 22.3 49.27

cy 2.7 10.5 53.21 6.2 16.0 53.25 1.2 11.2 34.17 6.0 20.3 53.45

ga 1.2 10.6 42.85 4.0 16.4 46.05 1.2 11.6 33.94 5.5 19.6 46.97

gd 9.3 16.0 51.40 47.6 55.9 59.30 1.2 11.2 36.28 4.2 18.8 43.73

gl 4.5 25.6 64.93 17.2 36.7 66.07 13.4 38.5 74.77 51.0 67.8 85.77

ha 0.1 5.4 38.42 0.3 11.2 42.58 1.5 10.2 35.77 6.9 18.9 47.37

ka 0.3 1.9 31.97 0.6 9.2 44.48 0.4 1.4 28.81 2.4 17.0 47.57

kk 4.3 4.9 50.51 5.1 14.2 51.51 0.5 1.6 33.66 5.1 19.8 51.40

km 2.8 4.5 51.68 3.9 11.1 50.40 0.8 2.9 39.56 5.6 16.2 50.42

ky 10.0 10.6 54.23 10.3 24.0 55.99 0.6 1.6 30.19 3.8 17.9 48.05

li 6.6 16.2 61.39 5.9 24.8 61.65 2.0 14.9 41.01 9.8 29.8 46.92

my 1.8 2.4 45.44 3.0 5.0 48.33 0.4 0.8 29.58 1.0 3.7 44.15

nb 5.8 18.2 57.01 13.9 33.0 56.37 3.9 19.3 46.74 19.8 40.3 63.56

nn 6.3 18.6 62.33 8.9 25.3 56.28 3.7 19.7 41.75 16.9 37.5 62.37

oc 6.0 13.6 60.16 5.1 18.6 58.51 9.6 33.6 67.22 53.0 68.5 79.57

si 0.6 2.0 41.84 1.6 9.4 48.58 0.5 1.4 28.08 1.6 9.1 42.67

tg 0.4 1.4 36.26 1.1 11.8 43.54 0.4 1.5 26.63 3.3 18.0 43.79

tk 7.9 10.6 55.34 5.3 13.0 47.33 0.7 8.7 31.94 4.2 20.1 45.05

tt 0.0 1.0 28.98 0.2 13.3 42.85 0.3 1.4 27.86 4.2 20.2 48.15

ug 0.0 0.4 32.44 0.3 11.2 45.69 0.3 0.9 31.34 3.0 16.5 48.99

uz 0.7 2.1 35.94 1.0 12.8 41.86 1.5 11.5 40.65 3.1 18.7 49.43

yi 7.3 16.5 57.47 4.0 23.0 63.91 0.7 1.7 33.22 2.1 15.6 41.87

avg. 3.61 8.82 47.94 6.70 18.49 51.49 2.00 9.35 37.04 9.95 24.47 52.18

Table D.5: Detailed results of BLOOMZ-7b1 without fine-tuning.



182 APPENDIX D. SUPPLEMENTARY MATERIALS OF ALIGNINSTRUCT

Language
OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en

BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

af 25.0 41.4 71.05 38.5 52.3 78.94 10.1 31.0 45.42 33.9 51.1 72.66

am 3.0 12.8 59.55 3.4 19.8 59.71 0.2 5.2 42.97 1.4 16.0 49.47

be 8.9 14.9 55.16 14.0 24.9 62.37 0.7 12.3 30.90 3.7 21.0 49.99

cy 20.2 38.0 71.55 33.2 49.3 77.72 5.0 20.3 38.38 13.1 30.2 57.47

ga 15.6 37.1 63.87 29.2 49.1 75.94 3.7 21.2 39.17 12.5 30.3 57.53

gd 13.1 24.7 62.14 66.0 69.6 77.70 2.2 19.6 40.75 7.1 22.3 50.05

gl 16.9 37.6 70.62 24.7 43.6 75.62 21.9 45.2 77.26 46.6 64.5 86.86

ha 12.3 32.7 71.75 10.0 29.8 64.51 1.9 17.1 49.24 6.8 22.1 48.81

ka 4.6 18.1 67.39 10.0 24.3 60.50 0.3 6.8 27.46 1.5 14.9 46.10

kk 12.6 19.5 66.07 14.6 28.2 71.80 0.8 13.0 35.76 3.9 19.7 52.24

km 19.7 25.2 63.24 13.9 32.1 75.02 0.5 12.3 35.60 6.2 22.4 56.45

ky 16.0 20.5 66.27 21.1 33.8 73.06 0.9 12.7 36.10 3.0 17.5 50.40

li 13.5 32.8 70.97 21.3 35.7 67.20 3.3 19.9 42.21 14.6 31.4 55.94

my 6.2 14.3 58.04 5.2 15.6 63.65 0.2 12.9 40.37 1.3 12.7 48.38

nb 12.7 30.4 63.27 22.2 42.1 76.74 7.9 28.4 44.15 25.6 44.3 72.56

nn 18.3 38.0 77.18 27.1 47.7 81.80 7.3 25.7 45.35 24.3 42.9 70.06

oc 10.0 20.0 63.31 13.4 27.1 69.89 8.0 27.5 51.48 46.9 63.5 79.64

si 5.2 21.4 68.16 11.5 26.4 70.79 0.9 12.9 41.73 3.7 19.2 57.41

tg 5.5 22.0 66.08 8.0 25.9 60.54 1.1 15.8 65.14 3.1 19.6 45.06

tk 24.4 26.7 65.53 30.4 37.8 70.39 0.7 10.8 42.36 3.9 18.8 46.23

tt 1.9 17.6 60.01 3.6 19.6 54.99 0.4 13.7 50.78 1.6 14.3 42.58

ug 1.2 19.7 49.76 4.2 21.2 61.34 0.4 12.9 35.88 1.7 16.7 50.29

uz 3.1 18.2 62.12 5.7 22.0 61.12 0.5 3.6 34.67 3.9 18.8 50.32

yi 7.1 24.3 59.13 14.9 20.2 58.66 0.3 9.5 29.77 2.5 17.2 43.27

avg. 11.54 25.33 64.68 18.6 33.25 68.75 3.30 17.10 42.62 11.37 27.14 55.82

Table D.6: Detailed results of BLOOMZ-7b1 fine-tuned with MTInstruct for

BLOOMZ+24.
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Language
OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en

BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

af 25.0 41.9 70.72 36.9 52.2 78.68 10.6 31.9 45.84 33.5 51.1 72.84

am 3.4 13.2 60.62 4.9 22.8 62.43 0.3 5.4 44.20 1.4 16.4 51.05

be 8.3 14.5 55.23 13.9 25.1 62.72 0.8 12.5 30.93 3.6 20.6 49.14

cy 20.6 39.0 71.73 33.8 49.4 77.55 4.7 20.3 38.70 14.6 31.5 58.34

ga 17.6 39.3 65.76 32.6 52.7 77.49 3.4 21.4 39.99 13.6 31.6 58.73

gd 15.6 27.2 62.09 48.1 55.4 75.90 2.3 20.3 40.81 7.4 22.0 49.99

gl 17.1 37.2 70.85 24.4 43.3 75.90 21.7 44.9 77.09 45.6 63.5 86.60

ha 14.6 35.0 73.34 11.4 31.3 65.69 1.9 17.3 50.88 7.4 22.5 49.57

ka 4.9 18.9 67.54 10.5 25.3 61.27 0.3 6.9 27.61 2.1 16.0 47.04

kk 12.3 19.3 65.73 15.6 28.0 71.01 0.9 13.0 35.86 4.1 19.8 52.43

km 20.4 26.5 63.38 14.4 35.2 75.62 0.6 12.5 35.44 7.1 22.9 57.81

ky 15.8 19.6 64.74 23.3 35.8 74.70 0.9 13.3 36.71 2.9 17.4 50.06

li 13.2 29.4 65.18 22.3 38.2 71.93 3.1 19.7 42.58 12.5 28.7 54.60

my 7.6 15.4 58.84 6.3 18.0 66.45 0.3 13.3 40.97 1.2 14.4 50.79

nb 13.5 31.4 64.08 24.2 44.2 77.58 7.9 28.7 44.12 25.5 44.9 72.72

nn 19.0 38.0 77.61 28.5 47.7 81.68 7.0 26.7 46.14 25.8 44.1 70.55

oc 9.1 19.3 63.25 13.5 27.5 70.13 7.5 25.9 50.48 47.3 63.8 79.39

si 5.1 22.1 69.60 13.9 29.1 72.51 1.1 13.1 43.01 5.6 22.7 61.89

tg 6.6 23.7 66.31 8.8 27.2 61.52 0.9 15.6 65.51 3.4 19.9 45.45

tk 27.2 26.2 66.11 31.2 38.7 70.47 0.7 11.4 43.64 3.8 18.2 45.87

tt 2.1 18.6 60.75 5.0 21.5 56.95 0.4 13.3 50.64 1.5 13.7 42.76

ug 1.1 20.7 51.12 5.5 23.4 63.42 0.4 13.8 37.51 2.1 16.3 50.45

uz 3.5 18.6 62.09 7.4 23.3 62.01 0.2 1.9 34.50 3.7 18.2 50.09

yi 11.1 33.1 70.13 12.8 21.2 60.47 0.4 9.8 30.08 2.6 17.0 42.57

avg. 12.28 26.17 65.28 18.72 34.02 69.75 3.26 17.20 43.05 11.60 27.38 56.28

Table D.7: Detailed results of BLOOMZ-7b1 fine-tuned with MT+Align for

BLOOMZ+24.
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Zero-shot BLEU chrF++ COMET Supervised BLEU chrF++ COMET

ar-de 1.4 14.8 56.19 en-ar 11.1 32.4 75.66

ar-fr 21.9 46.1 74.19 en-de 12.2 29.2 59.16

ar-nl 0.6 11.2 56.59 en-fr 26.8 49.2 77.42

ar-ru 3.1 6.2 48.41 en-nl 2.0 16.0 46.52

ar-zh 18.4 14.4 73.65 en-ru 5.7 16.1 49.00

de-ar 2.0 17.8 64.91 en-zh 22.5 17.0 77.90

de-fr 12.0 33.4 63.45 avg. 13.38 26.65 64.28

de-nl 3.7 17.9 47.30

de-ru 1.3 11.8 45.53

de-zh 8.9 7.6 61.52

fr-ar 11.2 33.4 74.20 BLEU chrF++ COMET

fr-de 4.6 23.4 48.83 ar-en 26.7 48.4 78.12

fr-nl 2.8 17.2 52.14 de-en 21.1 38.5 71.99

fr-ru 3.1 10.4 45.12 fr-en 27.7 49.8 79.46

fr-zh 20.9 17.0 76.20 nl-en 12.3 31.1 61.29

nl-ar 1.3 13.2 59.46 ru-en 17.9 36.6 68.40

nl-de 5.9 22.8 46.49 zh-en 24.5 47.9 77.08

nl-fr 9.6 29.6 58.30 avg. 21.70 42.05 72.72

nl-ru 0.8 9.0 42.83

nl-zh 3.3 3.7 53.96

ru-ar 6.5 25.3 68.38

ru-de 2.0 17.0 48.06

ru-fr 15.7 38.7 67.54

ru-nl 0.5 10.5 46.14

ru-zh 10.7 11.3 67.18

zh-ar 8.6 29.7 73.47

zh-de 1.6 17.6 49.90

zh-fr 20.7 44.1 75.79

zh-nl 0.6 10.4 48.53

zh-ru 2.9 8.6 44.13

avg. 6.89 19.14 57.95

seen→seen 16.95 30.78 74.58 en→seen 20.13 32.87 76.99

seen→unseen 2.30 13.31 49.98 en→unseen 6.63 20.43 51.56

unseen→seen 7.78 20.07 62.74 seen→en 26.30 48.70 78.22

unseen→unseen 2.37 14.83 46.06 unseen→en 17.10 35.40 67.23

Table D.8: Detailed results of BLOOMZ-7b1 without fine-tuning.
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Zero-shot BLEU chrF++ COMET Supervised BLEU chrF++ COMET

ar-de 4.7 20.9 56.43 en-ar 9.1 27.2 71.47

ar-fr 20.8 42.5 71.47 en-de 19.8 36.1 66.53

ar-nl 7.2 22.9 58.29 en-fr 23.0 44.5 74.98

ar-ru 5.0 21.0 54.73 en-nl 15.5 36.1 64.76

ar-zh 14.0 12.4 67.94 en-ru 14.2 30.3 62.82

de-ar 2.4 16.2 64.53 en-zh 20.7 17.9 74.97

de-fr 11.9 31.2 64.44 avg. 17.05 32.02 69.26

de-nl 9.4 28.1 54.22

de-ru 5.1 19.6 55.41

de-zh 4.2 5.8 55.26

fr-ar 10.1 29.1 70.72 BLEU chrF++ COMET

fr-de 8.6 27.7 53.77 ar-en 26.5 46.9 76.92

fr-nl 10.3 30.1 57.55 de-en 27.0 44.0 76.97

fr-ru 7.9 26.0 56.82 fr-en 27.5 49.0 78.80

fr-zh 18.1 18.5 72.24 nl-en 21.8 41.3 73.99

nl-ar 2.0 15.1 63.73 ru-en 24.8 43.6 74.23

nl-de 9.7 28.1 52.58 zh-en 23.2 45.3 76.83

nl-fr 13.2 32.3 65.17 avg. 25.13 45.02 76.29

nl-ru 5.1 18.6 55.13

nl-zh 3.0 5.4 54.34

ru-ar 5.9 15.0 60.36

ru-de 5.6 23.8 52.66

ru-fr 17.9 38.4 68.66

ru-nl 6.2 22.5 54.41

ru-zh 7.5 13.6 61.40

zh-ar 6.7 22.1 67.48

zh-de 3.3 19.6 51.75

zh-fr 17.4 38.9 73.00

zh-nl 4.8 19.3 54.41

zh-ru 3.5 17.9 49.02

avg. 8.38 22.75 59.93

seen→seen 14.52 27.25 70.48 en→seen 17.60 29.87 73.81

seen→unseen 6.14 22.82 54.75 en→unseen 16.50 34.17 64.70

unseen→seen 7.56 19.22 61.99 seen→en 25.73 47.07 77.52

unseen→unseen 6.85 23.45 54.07 unseen→en 24.53 42.97 75.06

Table D.9: Detailed results of BLOOMZ-7b1 fine-tuned with MTInstruct for

BLOOMZ+3 de-nl-ru.
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Zero-shot BLEU chrF++ COMET Supervised BLEU chrF++ COMET

ar-de 5.1 20.8 55.25 en-ar 8.4 26.0 70.45

ar-fr 20.3 42.5 71.78 en-de 21.1 36.7 67.15

ar-nl 6.4 21.6 57.48 en-fr 22.9 44.4 74.67

ar-ru 5.2 21.5 55.51 en-nl 16.1 36.8 65.26

ar-zh 16.0 14.1 69.55 en-ru 15.2 31.5 63.30

de-ar 2.4 16.3 64.01 en-zh 16.1 15.0 71.93

de-fr 13.5 34.3 66.25 avg. 16.63 31.73 68.79

de-nl 9.7 28.0 55.00

de-ru 5.3 19.6 55.61

de-zh 7.2 7.3 60.64

fr-ar 10.0 28.2 69.86 BLEU chrF++ COMET

fr-de 9.2 27.8 54.03 ar-en 27.1 47.0 76.54

fr-nl 10.8 31.0 58.50 de-en 27.8 44.4 77.57

fr-ru 8.6 26.7 57.07 fr-en 27.1 48.7 78.82

fr-zh 15.9 15.8 70.78 nl-en 22.6 42.2 74.25

nl-ar 2.2 15.4 63.47 ru-en 25.6 44.2 74.46

nl-de 10.2 28.5 53.65 zh-en 23.5 45.7 77.04

nl-fr 14.4 34.4 66.55 avg. 25.62 45.37 76.45

nl-ru 5.3 19.3 55.53

nl-zh 5.5 6.2 58.77

ru-ar 6.5 16.0 62.69

ru-de 6.1 24.3 52.89

ru-fr 18.2 39.0 69.95

ru-nl 6.3 22.5 54.36

ru-zh 7.6 13.3 61.94

zh-ar 8.7 26.5 70.88

zh-de 3.0 19.5 50.82

zh-fr 17.7 39.7 73.56

zh-nl 4.4 19.3 54.20

zh-ru 4.1 19.5 50.47

avg. 8.86 23.30 60.70

seen→seen 14.77 27.80 71.07 en→seen 15.80 28.47 72.35

seen→unseen 6.31 23.08 54.81 en→unseen 17.47 35.00 65.24

unseen→seen 8.61 20.24 63.81 seen→en 25.90 47.13 77.47

unseen→unseen 7.15 23.70 54.51 unseen→en 25.33 43.60 75.43

Table D.10: Detailed results of BLOOMZ-7b1 fine-tuned with MT+Align for

BLOOMZ+3 de-nl-ru.
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Zero-shot BLEU chrF++ COMET Supervised BLEU chrF++ COMET

ar-de 6.9 24.7 58.10 en-ar 14.6 35.6 76.70

ar-fr 26.2 48.2 74.96 en-de 20.4 36.0 65.96

ar-nl 8.8 24.7 59.53 en-fr 27.9 50.0 77.65

ar-ru 6.5 22.7 55.33 en-nl 14.8 34.8 63.11

ar-zh 28.6 22.3 77.64 en-ru 13.3 29.0 61.43

de-ar 3.3 19.8 68.27 en-zh 36.1 27.7 80.31

de-fr 15.2 35.8 67.05 avg. 21.18 35.52 70.86

de-nl 8.2 26.0 53.35

de-ru 4.4 17.9 54.79

de-zh 12.0 9.9 65.20

fr-ar 14.2 35.2 74.84 BLEU chrF++ COMET

fr-de 8.9 28.4 53.81 ar-en 33.7 53.5 79.81

fr-nl 10.1 29.9 56.92 de-en 27.1 43.9 77.04

fr-ru 8.1 26.0 55.96 fr-en 29.6 51.0 79.60

fr-zh 30.2 25.6 79.43 nl-en 22.0 41.4 73.54

nl-ar 3.1 18.2 67.72 ru-en 25.1 43.9 74.05

nl-de 10.4 27.7 52.67 zh-en 32.6 54.3 79.75

nl-fr 16.9 37.3 68.46 avg. 28.35 48.00 77.30

nl-ru 4.8 17.8 54.71

nl-zh 8.1 7.0 63.96

ru-ar 11.9 31.5 72.45

ru-de 6.1 23.7 52.74

ru-fr 21.2 42.5 71.71

ru-nl 6.8 22.6 53.91

ru-zh 21.3 20.7 74.63

zh-ar 13.1 34.1 74.92

zh-de 4.1 22.3 52.13

zh-fr 23.8 46.5 76.54

zh-nl 4.8 19.9 54.26

zh-ru 5.7 21.9 50.60

avg. 11.79 26.36 63.22

seen→seen 22.68 35.32 76.39 en→seen 26.20 37.77 78.22

seen→unseen 7.10 24.50 55.18 en→unseen 16.17 33.27 63.50

unseen→seen 12.56 24.74 68.83 seen→en 31.97 52.93 79.72

unseen→unseen 6.78 22.62 53.69 unseen→en 24.73 43.07 74.88

Table D.11: Detailed results of BLOOMZ-7b1 fine-tuned with MTInstruct for

BLOOMZ+3 ar-de-fr-nl-ru-zh.



188 APPENDIX D. SUPPLEMENTARY MATERIALS OF ALIGNINSTRUCT

Zero-shot BLEU chrF++ COMET Supervised BLEU chrF++ COMET

ar-de 6.7 24.2 57.45 en-ar 15.1 35.8 76.76

ar-fr 27.5 49.2 75.21 en-de 20.6 35.9 65.88

ar-nl 8.7 24.8 59.14 en-fr 27.5 49.4 77.46

ar-ru 6.7 21.6 55.04 en-nl 15.0 35.6 63.70

ar-zh 30.1 24.4 78.54 en-ru 13.5 29.5 61.62

de-ar 3.5 19.7 68.39 en-zh 36.3 27.7 80.52

de-fr 15.4 35.8 67.81 avg. 21.33 35.65 70.99

de-nl 9.6 27.3 53.74

de-ru 4.7 17.9 54.23

de-zh 12.0 9.9 65.40

fr-ar 14.9 36.3 74.98 BLEU chrF++ COMET

fr-de 9.2 28.3 52.96 ar-en 33.9 53.7 79.74

fr-nl 11.3 31.1 57.62 de-en 27.1 43.6 77.13

fr-ru 8.8 26.2 56.31 fr-en 29.7 51.0 80.03

fr-zh 31.1 26.9 79.93 nl-en 22.6 42.3 73.94

nl-ar 3.3 18.5 68.02 ru-en 25.8 44.5 74.07

nl-de 9.4 26.5 52.33 zh-en 32.5 54.5 80.01

nl-fr 17.2 37.3 68.38 avg. 28.60 48.27 77.49

nl-ru 4.4 17.1 53.63

nl-zh 8.3 7.0 64.08

ru-ar 12.4 32.1 72.40

ru-de 5.7 22.9 51.90

ru-fr 21.5 42.7 72.08

ru-nl 6.3 22.1 53.32

ru-zh 22.7 24.6 75.36

zh-ar 13.9 35.4 75.68

zh-de 3.6 21.3 51.32

zh-fr 24.5 47.0 76.98

zh-nl 4.9 20.3 54.30

zh-ru 5.5 21.1 50.49

avg. 12.13 26.65 63.23

seen→seen 23.67 36.53 76.89 en→seen 26.30 37.63 78.25

seen→unseen 7.27 24.32 54.96 en→unseen 16.37 33.67 63.73

unseen→seen 12.92 25.29 69.10 seen→en 32.03 53.07 79.93

unseen→unseen 6.68 22.30 53.19 unseen→en 25.17 43.47 75.05

Table D.12: Detailed results of BLOOMZ-7b1 fine-tuned with MT+Align for

BLOOMZ+3 ar-de-fr-nl-ru-zh.
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E.1 Discussion about SVCCA score

In previous work [236, 108], the SVCCA score [168], a cosine similarity measure

between the hidden states of neural models, was used to compare two ZST models.

However, we demonstrate that this method is unsuitable for comparing different

ZST systems through an experiment. We removed the final LayerNorm from the

PreNorm encoder, denoting it as “PreNorm w/o Enc-Last.” We then evaluated

the BLEU scores of PreNorm, PostNorm, and “PreNorm w/o Enc-Last” on the

OPUS dataset, as reported in Table E.1. We subsequently calculated the encoder

layer-wise SVCCA score for each LayerNorm setting using the mean-pooled hidden

states of each encoder layer. The average SVCCA score between all the “en-xx”

and “xx-en” directions is reported in Figure E.1. When comparing Figure E.1 with

Table E.1, we observe that PostNorm has a higher SVCCA score on top of the

encoder (L6) than PreNorm, which suggests that the encoder of PostNorm is more

language-agnostic and thus has a higher ZST BLEU score in Table E.1, aligning

with the results found in Wu et al. [236] and Liu et al. [108]. However, “PreNorm

w/o Enc-Last” shows an extremely high SVCCA score on top of the encoder,

whereas its ZST BLEU performance is significantly lower than PostNorm by 6.3

BLEU points. This reveals the significant inconsistency between the SVCCA score

189
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Zero-shot Supervised

PreNorm 9.8 33.8

PostNorm 17.5 33.8

PreNorm w/o Enc-Last 11.2 33.7

Table E.1: BLEU scores of PreNorm, PostNorm, and “PreNorm w/o

Enc-Last” on OPUS. They are trained with the “S-ENC-T-DEC” tag, “Res.,”

and the random seed of 10. We report the mean of all the translation directions.

#
LayerNorm- Language

Res.
Zero-shot Supervised

simple Tag OPUS IWSLT Europarl OPUS IWSLT Europarl

1 PreNorm-simple S-ENC-T-DEC w/ 10.1 (+0.0) 5.9 (+1.0) 25.0 (+0.1) 33.9 (+0.2) 31.9 (+0.4) 34.4 (+0.1)

2 PostNorm-simple S-ENC-T-DEC w/ 15.8 (-1.0) 11.5 (-0.9) 28.7 (-0.5) 34.1 (+0.2) 32.1 (+0.6) 34.5 (+0.0)

3 PreNorm-simple T-ENC w/ 13.7 (+0.4) 14.5 (+0.8) 29.4 (-0.1) 33.9 (+0.2) 31.9 (+0.3) 34.4 (+0.0)

4 PostNorm-simple T-ENC w/ 14.9 (+0.9) 15.4 (-0.1) 30.8 (+0.0) 34.0 (-0.1) 31.9 (+0.4) 34.6 (+0.1)

5 PreNorm-simple S-ENC-T-DEC w/o 15.4 (+1.1) 7.8 (-0.2) 19.4 (+2.7) 33.7 (+0.1) 31.3 (+0.4) 34.1 (-0.2)

6 PostNorm-simple S-ENC-T-DEC w/o 16.4 (+0.4) 16.0 (-1.4) 29.2 (+0.2) 33.9 (+0.1) 31.3 (+0.6) 34.4 (+0.0)

7 PreNorm-simple T-ENC w/o 13.1 (-0.3) 16.8 (+0.6) 28.7 (-1.2) 33.7 (+0.2) 31.4 (+0.5) 34.3 (+0.0)

8 PostNorm-simple T-ENC w/o 14.0 (+0.1) 17.9 (+0.1) 31.0 (+0.2) 33.7 (-0.2) 31.1 (+0.5) 34.4 (+0.0)

Table E.2: BLEU scores of LayerNorm-simple. We report the average score

of three seeds. “Res.” indicates the residual connection of self-attention in the 4th

encoder layer. We mark better scores between PreNorm-simple and PostNorm-

simple in bold. For each setting, significantly better or worse BLEU scores [88]

compared with the results in Table 8.2 are marked in blue or red.

and the performance of ZST models. Therefore, it is crucial to carefully consider

how to leverage SVCCA for ZST analysis in the future.

On the other hand, our proposed LLR score is consistent with the ZST BLEU

score, as shown in Figure E.2. Specifically, we observe the lowest LLR score on top

of the encoder of PostNorm for the source language and the highest LLR scores

in all the decoder layers, which aligns with its best ZST performance among the

three systems.
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Figure E.1: Encoder layer-wise SVCCA scores of PreNorm, PostNorm,

and “PreNorm w/o Enc-Last” between “en-xx” and “xx-en” transla-

tion directions. We report the mean of all the direction pairs.

E.2 Swap-PreNorm

Figure E.3 illustrates the implementation of Swap-PreNorm, which incorporates

LayerNorm following the SA/FFN layers within the residual connection block.

Compared with PostNorm, Swap-PreNorm alters the order of LayerNorm and

residual connections. As depicted in the unraveled view of Swap-PreNorm in

Figure E.3, it preserves the shallow sub-network characteristics of PreNorm, which

is the main difference compared with PostNorm.

E.3 LayerNorm without Trainable Parameters

Xu et al. [240] demonstrated that the overfitting issue of PreNorm can be alle-

viated by removing the trainable parameters of LayerNorm (LayerNorm-simple).

We apply this technique to our ZST experimental settings to investigate the over-

fitting state of PreNorm and PostNorm. PreNorm and PostNorm after applying

this technique are denoted as PreNorm-simple and PostNorm-simple. As reported

in Table E.2, the results indicate that PreNorm-simple and PostNorm-simple out-

perform their respective original versions in supervised directions, which aligns
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Figure E.2: The LLR results of PreNorm, PostNorm, and “PreNorm

w/o Enc-Last.” We report the mean of all the ZST directions. “-Src” and

“-Tgt” indicate the LLR results for the source and target languages, respectively.

“L1” to “L6” are 6 encoder layers and “L7” to “L12” are 6 decoder layers.

with the findings of Xu et al. [240]. Additionally, we observe comparable or

better BLEU scores for PreNorm-simple than PreNorm (except for #7 on Eu-

roparl), indicating that the original PreNorm had low generalizability for ZST.

For PostNorm-simple, we observe significant improvement only for #4 on OPUS,

which suggests the superior generalizability of the original PostNorm for ZST.

Despite this improvement, PreNorm-simple still underperforms PostNorm, high-

lighting the severe overfitting problem of the original PreNorm.

E.4 Details of the LLR Results

We show the LLR results of #3 - #8 (Table 8.2) for ZST and supervised directions

in Figure E.4.
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SA FFNNorm Norm

Swap-PreNorm

SA FFNNorm Norm

SA Norm

An unraveled view of Swap-PreNorm

Figure E.3: Swap-PreNorm, and an unraveled view of Swap-PreNorm in

a Transformer encoder layer. “Norm,” “SA,” and “FFN” denote LayerNorm,

self-attention, and feed-forward network. ⊕ is residual connection. Paths with

different colors in the unraveled view of PreNorm indicate respective sub-networks.

E.5 Details of the Main Results

We report the specific BLEU score for each translation direction and each ran-

dom seed in Tables E.3, E.4, E.5, E.6, E.7, and E.8.1 In addition to BLEU scores,

we present model-based evaluation results obtained using BLEURT [185]2 in Ta-

ble E.9. The results trend is consistent with those obtained from BLEU scores.

1Refer to details of setting random seeds in PyTorch at https://pytorch.org/docs/stable/

notes/randomness.html.
2https://github.com/google-research/bleurt
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Figure E.4: The LLR results of #3 - #8 (Table 8.2) for both ZST and

supervised directions for each dataset. “Pre-Src” and “Pre-Tgt” indicate

the layer-wise source and target language recognition for a PreNorm system (#3,

#5, or #7), while “Post-Src” and “Post-Tgt” denote similary for a PostNorm

system (#4, #6, or #8).
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Layer
Direction

S-ENC-T-DEC w/ Res. T-ENC w/ Res. S-ENC-T-DEC w/o Res. T-ENC w/o Res.

Norm 1 10 20 avg. 1 10 20 avg. 1 10 20 avg. 1 10 20 avg.

Pre.

ar-de 5.3 5.9 5.2 5.5 10.0 11.0 10.0 10.3 9.8 8.4 9.5 9.2 11.4 8.3 10.8 10.2

ar-fr 17.5 16.1 17.2 16.9 16.3 19.9 18.3 18.2 19.9 20.3 20.8 20.3 20.9 18.6 20.4 20.0

ar-nl 8.6 6.3 7.9 7.6 13.2 13.1 12.6 13.0 13.3 14.0 12.2 13.2 13.5 12.8 13.6 13.3

ar-ru 8.1 9.1 9.5 8.9 14.8 16.2 15.9 15.6 13.0 10.9 13.0 12.3 19.6 17.8 19.6 19.0

ar-zh 12.7 13.4 13.8 13.3 28.1 28.1 27.3 27.8 25.1 19.8 24.4 23.1 31.2 31.0 31.3 31.2

de-ar 3.6 3.3 2.5 3.1 5.6 5.0 3.9 4.8 6.9 6.4 5.6 6.3 6.4 5.1 3.3 4.9

de-fr 15.5 16.0 16.2 15.9 5.1 5.7 3.8 4.9 18.8 17.6 18.9 18.4 5.9 4.7 5.2 5.3

de-nl 19.4 15.9 18.8 18.0 12.4 8.9 8.6 10.0 21.4 20.4 20.7 20.8 9.1 7.1 7.7 8.0

de-ru 6.0 6.1 5.8 6.0 5.0 5.6 3.7 4.8 9.4 9.2 9.0 9.2 6.4 4.5 3.8 4.9

de-zh 7.6 9.5 8.8 8.6 15.6 12.4 11.9 13.3 14.4 12.8 13.2 13.5 16.4 4.1 6.0 8.8

fr-ar 9.5 7.5 8.5 8.5 15.5 16.2 13.2 15.0 15.4 13.1 14.4 14.3 18.5 16.5 15.8 16.9

fr-de 10.4 10.6 11.6 10.9 6.3 7.2 4.9 6.1 14.1 11.0 15.2 13.4 4.5 4.6 4.0 4.4

fr-nl 17.5 13.7 18.0 16.4 16.0 12.5 13.2 13.9 20.5 19.9 20.2 20.2 11.1 9.1 8.6 9.6

fr-ru 8.8 8.4 9.3 8.8 12.1 12.8 10.9 11.9 13.3 9.2 12.0 11.5 16.5 7.4 8.4 10.8

fr-zh 14.3 13.1 15.3 14.2 31.2 30.0 28.0 29.7 27.9 21.0 25.8 24.9 34.1 16.0 27.9 26.0

nl-ar 2.6 2.0 1.7 2.1 5.2 5.6 5.3 5.4 4.3 5.8 4.2 4.8 5.5 5.0 5.0 5.2

nl-de 14.3 14.4 13.9 14.2 12.8 13.9 11.3 12.7 16.9 14.8 18.3 16.7 13.8 6.9 10.9 10.5

nl-fr 18.3 17.4 18.5 18.1 13.1 16.1 12.4 13.9 21.5 19.9 22.3 21.2 15.0 7.1 13.8 12.0

nl-ru 4.2 4.4 3.4 4.0 9.5 9.8 8.6 9.3 7.2 6.5 7.3 7.0 10.3 6.6 7.3 8.1

nl-zh 2.2 3.2 3.0 2.8 10.8 10.0 10.4 10.4 7.0 8.0 6.3 7.1 11.1 7.5 10.0 9.5

ru-ar 9.7 7.6 7.6 8.3 15.6 16.1 14.6 15.4 15.9 13.3 14.0 14.4 18.6 19.1 18.0 18.6

ru-de 7.7 9.1 7.2 8.0 8.5 10.0 6.0 8.2 10.5 10.0 10.9 10.5 8.4 5.6 6.8 6.9

ru-fr 18.1 17.5 17.4 17.7 18.1 20.5 17.6 18.7 19.9 19.5 20.7 20.0 22.4 17.4 21.1 20.3

ru-nl 10.2 8.6 9.9 9.6 11.5 11.7 9.5 10.9 13.0 13.1 12.4 12.8 12.7 8.2 10.1 10.3

ru-zh 11.3 11.6 12.5 11.8 28.4 28.3 27.6 28.1 25.3 17.7 21.6 21.5 31.9 20.0 30.7 27.5

zh-ar 9.1 7.6 7.2 8.0 15.2 16.6 14.5 15.4 15.6 12.7 15.1 14.5 18.4 18.8 18.7 18.6

zh-fr 16.7 15.6 16.4 16.2 20.1 21.4 18.4 20.0 20.9 19.3 20.6 20.3 23.5 23.3 23.7 23.5

zh-de 4.7 5.8 5.4 5.3 7.8 8.1 7.0 7.6 7.5 6.9 7.1 7.2 8.6 8.6 8.8 8.7

zh-nl 6.9 5.4 6.0 6.1 8.6 8.6 8.2 8.5 8.5 8.0 8.0 8.2 9.1 9.2 8.8 9.0

zh-ru 6.9 8.2 7.8 7.6 13.7 15.7 12.9 14.1 12.8 10.0 11.8 11.5 18.7 19.8 19.7 19.4

avg. 10.3 9.8 10.2 10.1 13.5 13.9 12.4 13.3 15.0 13.3 14.5 14.3 15.1 11.7 13.3 13.4

Post.

ar-de 11.4 11.0 10.3 10.9 10.1 10.4 9.9 10.1 10.1 11.9 9.9 10.6 11.0 11.0 10.0 10.7

ar-fr 20.7 23.2 20.3 21.4 16.2 18.7 19.3 18.1 20.7 24.0 19.2 21.3 20.4 21.8 15.9 19.4

ar-nl 13.3 13.7 12.5 13.2 12.8 13.5 13.3 13.2 13.4 14.4 12.5 13.4 13.2 13.9 13.0 13.4

ar-ru 16.9 18.7 16.1 17.2 17.4 17.2 18.6 17.7 13.5 19.1 14.7 15.8 20.4 20.7 18.7 19.9

ar-zh 28.6 29.4 29.2 29.1 29.2 30.4 30.3 30.0 26.1 30.7 27.4 28.1 32.9 32.9 31.9 32.6

de-ar 7.2 7.2 6.6 7.0 5.7 5.6 5.8 5.7 6.9 7.6 7.6 7.4 4.4 4.1 3.1 3.9

de-fr 17.6 19.3 18.2 18.4 5.1 6.6 5.8 5.8 17.3 20.3 17.3 18.3 5.4 7.9 4.1 5.8

de-nl 21.4 21.8 20.4 21.2 9.1 9.5 7.9 8.8 20.0 22.3 20.5 20.9 9.7 11.9 7.1 9.6

de-ru 12.3 13.8 12.8 13.0 6.0 6.3 7.2 6.5 10.1 13.3 10.5 11.3 5.2 4.0 3.7 4.3

de-zh 16.1 16.9 16.5 16.5 8.9 15.3 15.0 13.1 11.2 16.9 13.5 13.9 14.1 11.1 3.1 9.4

fr-ar 17.9 17.8 18.9 18.2 16.4 17.1 16.4 16.6 14.6 19.5 16.3 16.8 16.4 16.6 14.8 15.9

fr-de 15.0 17.3 17.0 16.4 5.4 6.7 6.5 6.2 13.1 17.0 13.5 14.5 4.9 7.0 4.8 5.6

fr-nl 21.4 21.8 20.3 21.2 11.3 13.3 11.6 12.1 20.6 22.7 20.5 21.3 11.6 14.1 10.1 11.9

fr-ru 17.7 19.5 15.9 17.7 16.7 13.3 18.5 16.2 12.9 20.7 13.3 15.6 10.9 15.5 13.3 13.2

fr-zh 30.5 32.0 31.8 31.4 29.8 32.0 31.4 31.1 25.9 32.5 28.4 28.9 31.7 32.0 30.3 31.3

nl-ar 5.3 5.9 5.6 5.6 6.0 5.3 5.8 5.7 5.2 6.1 6.4 5.9 5.0 5.2 4.5 4.9

nl-de 17.9 19.7 19.1 18.9 10.9 12.8 10.5 11.4 16.5 19.8 17.1 17.8 9.0 10.4 10.4 9.9

nl-fr 21.1 22.5 21.2 21.6 13.8 13.4 13.0 13.4 21.2 22.9 19.6 21.2 10.1 12.6 9.5 10.7

nl-ru 10.0 11.2 10.2 10.5 9.7 9.1 8.8 9.2 8.4 10.9 8.6 9.3 8.6 7.6 8.2 8.1

nl-zh 9.6 11.1 9.6 10.1 10.2 10.4 10.0 10.2 5.4 11.1 7.3 7.9 9.9 9.9 7.5 9.1

ru-ar 18.7 18.7 18.2 18.5 16.9 17.9 17.5 17.4 14.8 19.7 16.2 16.9 17.9 18.9 17.0 17.9

ru-de 12.9 12.9 12.9 12.9 8.7 8.1 9.0 8.6 10.8 13.3 10.5 11.5 8.6 9.2 7.9 8.6

ru-fr 21.5 24.0 21.2 22.2 19.4 17.9 19.0 18.8 20.1 24.8 19.0 21.3 16.8 22.0 13.8 17.5

ru-nl 13.0 13.6 12.7 13.1 10.9 11.8 12.4 11.7 13.3 14.2 13.0 13.5 11.0 12.0 9.7 10.9

ru-zh 27.6 29.8 28.6 28.7 30.1 30.4 30.6 30.4 23.6 30.2 24.6 26.1 32.5 32.2 29.0 31.2

zh-ar 18.0 17.4 17.3 17.6 16.9 17.5 17.1 17.2 16.3 19.3 17.0 17.5 19.1 19.8 19.4 19.4

zh-fr 20.2 21.3 20.2 20.6 21.4 22.3 21.5 21.7 20.5 24.1 18.3 21.0 23.1 24.4 24.5 24.0

zh-de 8.6 9.1 8.8 8.8 7.3 7.4 7.1 7.3 8.3 9.9 7.5 8.6 8.7 8.5 8.0 8.4

zh-nl 8.7 8.5 8.1 8.4 8.9 8.7 8.4 8.7 8.9 9.0 8.1 8.7 8.9 9.3 9.0 9.1

zh-ru 15.3 15.8 14.1 15.1 16.7 17.3 17.6 17.2 13.3 17.8 12.8 14.6 20.2 20.5 20.2 20.3

avg. 16.5 17.5 16.5 16.8 13.6 14.2 14.2 14.0 14.8 18.2 15.0 16.0 14.1 14.9 12.8 13.9

Table E.3: BLEU scores of OPUS in ZST directions. Scores in bold are the

results reported in Table 8.2. “1,” “10,” and “20” indicates three random seeds.

“Res.” indicates the residual connection of self-attention in the 4th encoder layer.
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Layer
Direction

S-ENC-T-DEC w/ Res. T-ENC w/ Res. S-ENC-T-DEC w/o Res. T-ENC w/o Res.

Norm 1 10 20 avg. 1 10 20 avg. 1 10 20 avg. 1 10 20 avg.

Pre.

en-ar 23.6 24.1 23.2 23.6 23.7 23.9 24.1 23.9 24.0 23.2 23.1 23.4 22.8 23.8 23.8 23.5

ar-en 37.6 37.1 37.3 37.3 37.5 37.1 37.5 37.4 37.4 37.2 36.9 37.2 36.4 36.7 37.0 36.7

en-de 29.7 30.1 30.4 30.1 30.4 29.6 30.4 30.1 30.1 30.1 30.1 30.1 30.3 30.5 30.7 30.5

de-en 34.3 34.5 34.2 34.3 34.5 34.1 34.3 34.3 35.0 34.7 34.3 34.7 33.8 34.1 34.4 34.1

en-fr 33.5 33.7 33.6 33.6 33.4 33.8 33.6 33.6 33.7 33.1 33.8 33.5 33.0 33.6 33.1 33.2

fr-en 35.6 35.4 35.3 35.4 35.0 35.0 35.5 35.2 35.6 35.2 35.1 35.3 34.4 35.2 35.0 34.9

en-nl 27.7 28.4 28.2 28.1 28.4 27.9 28.3 28.2 27.6 28.0 27.9 27.8 28.1 28.1 28.0 28.1

nl-en 31.3 30.8 31.2 31.1 30.9 30.7 30.8 30.8 31.0 30.8 31.0 30.9 30.4 30.9 30.5 30.6

en-ru 29.2 29.7 29.6 29.5 29.4 29.8 29.8 29.7 29.5 29.1 29.6 29.4 29.4 29.9 29.2 29.5

ru-en 35.2 34.6 35.0 34.9 34.7 34.6 35.0 34.8 35.2 34.8 35.1 35.0 34.3 34.8 34.7 34.6

en-zh 40.7 40.8 40.9 40.8 40.6 40.3 40.7 40.5 40.7 40.4 40.6 40.6 39.6 40.7 40.6 40.3

zh-en 46.2 46.1 45.9 46.1 46.1 46.1 46.2 46.1 46.2 45.9 45.8 46.0 45.6 46.4 46.3 46.1

avg. 33.7 33.8 33.7 33.7 33.7 33.6 33.9 33.7 33.8 33.5 33.6 33.7 33.2 33.7 33.6 33.5

Post.

en-ar 23.9 23.4 23.7 23.7 24.6 24.4 24.3 24.4 23.7 23.8 23.8 23.8 24.0 23.8 24.0 23.9

ar-en 37.8 37.3 37.5 37.5 37.8 37.5 37.2 37.5 37.7 37.2 37.6 37.5 37.8 37.3 37.7 37.6

en-de 30.8 31.0 29.3 30.4 31.2 29.9 31.2 30.8 31.1 30.5 31.2 30.9 31.1 30.5 31.5 31.0

de-en 34.6 34.6 34.8 34.7 34.9 34.6 34.7 34.7 34.8 34.6 34.7 34.7 34.4 34.6 34.4 34.5

en-fr 33.9 33.4 34.1 33.8 34.1 33.8 33.9 33.9 33.5 33.5 33.2 33.4 33.7 33.8 33.6 33.7

fr-en 35.5 35.6 35.4 35.5 35.6 35.7 35.4 35.6 35.0 35.5 35.2 35.2 35.3 35.3 35.5 35.4

en-nl 27.8 28.4 28.2 28.1 27.9 28.8 28.3 28.3 28.0 27.9 28.3 28.1 27.7 27.9 28.4 28.0

nl-en 31.5 30.9 31.2 31.2 31.3 30.9 31.4 31.2 30.8 30.8 30.7 30.8 31.1 31.1 30.9 31.0

en-ru 29.4 29.6 29.9 29.6 30.1 29.8 30.0 30.0 29.9 30.0 29.2 29.7 30.0 29.5 29.5 29.7

ru-en 35.1 34.6 35.1 34.9 34.9 34.9 35.2 35.0 34.8 34.9 35.2 35.0 34.8 34.8 35.0 34.9

en-zh 41.2 40.9 40.9 41.0 41.2 40.9 40.8 41.0 40.8 40.5 40.7 40.7 40.7 40.7 41.0 40.8

zh-en 46.4 46.0 46.1 46.2 46.7 46.3 46.2 46.4 46.1 46.3 46.1 46.2 46.7 46.6 46.0 46.4

avg. 34.0 33.8 33.9 33.9 34.2 34.0 34.1 34.1 33.9 33.8 33.8 33.8 33.9 33.8 34.0 33.9

Table E.4: BLEU scores of OPUS in supervised directions. Scores in bold

are the results reported in Table 8.2. “1,” “10,” and “20” indicates three random

seeds. “Res.” indicates the residual connection of self-attention in the 4th encoder

layer.
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Layer
Direction

S-ENC-T-DEC w/ Res. T-ENC w/ Res. S-ENC-T-DEC w/o Res. T-ENC w/o Res.

Norm 1 10 20 avg. 1 10 20 avg. 1 10 20 avg. 1 10 20 avg.

Pre.

it-nl 5.2 3.7 4.3 4.4 13.4 14.4 14.0 13.9 6.4 3.6 13.8 7.9 16.3 17.7 17.2 17.1

nl-it 5.5 4.3 4.3 4.7 13.9 14.7 14.4 14.3 6.1 4.6 10.8 7.2 15.5 17.0 17.1 16.5

it-ro 5.5 5.7 5.1 5.4 13.4 13.5 14.4 13.8 7.8 7.4 14.2 9.8 16.0 16.6 16.9 16.5

ro-it 7.2 5.5 5.3 6.0 14.9 15.1 15.4 15.1 7.1 4.3 11.4 7.6 17.8 18.1 18.4 18.1

nl-ro 4.5 4.9 4.2 4.5 12.1 12.5 12.4 12.3 6.1 7.1 11.8 8.3 12.8 14.1 14.1 13.7

ro-nl 4.4 4.3 3.9 4.2 12.1 13.4 12.5 12.7 5.6 3.1 12.4 7.0 15.1 16.1 15.6 15.6

avg. 5.4 4.7 4.5 4.9 13.3 13.9 13.9 13.7 6.5 5.0 12.4 8.0 15.6 16.6 16.6 16.2

Post.

it-nl 13.7 11.8 13.1 12.9 15.9 16.3 17.0 16.4 17.7 18.3 17.4 17.8 18.4 18.0 18.6 18.3

nl-it 14.5 12.8 12.2 13.2 15.7 17.0 16.1 16.3 18.0 18.5 18.4 18.3 17.9 18.3 18.3 18.2

it-ro 12.3 11.2 12.4 12.0 14.8 14.3 15.8 15.0 17.0 17.3 17.0 17.1 17.9 17.8 18.2 18.0

ro-it 14.6 13.7 13.0 13.8 17.2 16.8 17.5 17.2 19.5 20.0 20.0 19.8 19.2 19.8 20.8 19.9

nl-ro 11.1 10.4 10.2 10.6 13.5 13.4 13.6 13.5 14.9 14.9 14.7 14.8 15.4 15.2 15.5 15.4

ro-nl 12.3 10.9 12.2 11.8 14.5 15.0 15.2 14.9 16.5 16.6 16.0 16.4 16.9 16.2 17.1 16.7

avg. 13.1 11.8 12.2 12.4 15.3 15.5 15.9 15.5 17.3 17.6 17.3 17.4 17.6 17.6 18.1 17.8

Table E.5: BLEU scores of IWSLT in ZST directions. Scores in bold are the

results reported in Table 8.2. “1,” “10,” and “20” indicates three random seeds.

“Res.” indicates the residual connection of self-attention in the 4th encoder layer.

Layer
Direction

S-ENC-T-DEC w/ Res. T-ENC w/ Res. S-ENC-T-DEC w/o Res. T-ENC w/o Res.

Norm 1 10 20 avg. 1 10 20 avg. 1 10 20 avg. 1 10 20 avg.

Pre.

en-it 33.9 33.8 33.6 33.8 33.7 33.4 33.7 33.6 33.6 32.9 33.3 33.3 32.4 33.3 33.4 33.0

it-en 37.5 37.1 37.1 37.2 37.4 37.2 37.0 37.2 35.8 36.3 36.5 36.2 35.8 36.7 36.5 36.3

en-nl 29.6 29.5 29.4 29.5 29.6 29.5 29.6 29.6 29.2 29.7 29.5 29.5 29.0 29.2 29.2 29.1

nl-en 31.9 32.4 32.0 32.1 32.0 32.1 31.9 32.0 30.9 31.3 31.7 31.3 31.2 31.5 31.5 31.4

en-ro 24.4 25.1 25.1 24.9 25.2 25.1 25.4 25.2 24.4 24.6 24.4 24.5 24.6 24.7 24.6 24.6

ro-en 31.3 31.6 31.3 31.4 32.1 31.6 31.4 31.7 30.3 30.7 30.9 30.6 30.3 31.2 31.2 30.9

avg. 31.4 31.6 31.4 31.5 31.7 31.5 31.5 31.6 30.7 30.9 31.1 30.9 30.6 31.1 31.1 30.9

Post.

en-it 33.9 33.3 33.5 33.6 33.8 34.0 33.5 33.8 33.1 33.2 32.6 33.0 32.4 32.6 33.4 32.8

it-en 37.1 36.9 37.0 37.0 37.1 37.1 36.9 37.0 35.7 35.4 36.1 35.7 36.4 35.7 35.8 36.0

en-nl 29.6 30.1 30.1 29.9 30.4 30.4 30.0 30.3 29.2 29.0 29.0 29.1 29.2 29.0 29.5 29.2

nl-en 31.9 32.0 31.6 31.8 31.3 31.9 31.8 31.7 31.0 31.1 31.7 31.3 30.9 30.7 31.3 31.0

en-ro 25.4 25.2 24.6 25.1 25.3 25.2 25.5 25.3 24.7 25.0 24.6 24.8 24.4 24.4 25.0 24.6

ro-en 31.5 31.6 31.6 31.6 30.8 31.4 31.1 31.1 30.4 29.6 30.8 30.3 30.4 30.1 30.4 30.3

avg. 31.6 31.5 31.4 31.5 31.5 31.7 31.5 31.5 30.7 30.6 30.8 30.7 30.6 30.4 30.9 30.6

Table E.6: BLEU scores of IWSLT in supervised directions. Scores in

bold are the results reported in Table 8.2. “1,” “10,” and “20” indicates three

random seeds. “Res.” indicates the residual connection of self-attention in the

4th encoder layer.
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Layer
Direction

S-ENC-T-DEC w/ Res. T-ENC w/ Res. S-ENC-T-DEC w/o Res. T-ENC w/o Res.

Norm 1 10 20 avg. 1 10 20 avg. 1 10 20 avg. 1 10 20 avg.

Pre.

es-de 23.2 22.0 16.1 20.4 26.7 26.9 27.3 27.0 6.2 14.1 11.2 10.5 24.9 28.5 28.3 27.2

de-es 30.3 30.0 27.6 29.3 32.4 32.0 32.3 32.2 15.5 25.7 18.7 20.0 32.9 33.1 33.4 33.1

es-fr 35.0 35.6 34.0 34.9 38.8 38.8 39.3 39.0 27.8 29.8 28.2 28.6 39.9 39.8 39.9 39.9

fr-es 36.0 35.5 32.8 34.8 38.6 38.7 38.7 38.7 18.7 30.7 22.3 23.9 39.7 39.7 40.0 39.8

es-nl 22.7 23.0 14.2 20.0 26.4 26.3 26.3 26.3 7.0 12.8 15.0 11.6 23.2 27.7 27.5 26.1

nl-es 27.2 27.1 24.9 26.4 29.1 29.1 29.1 29.1 13.9 23.0 16.9 17.9 29.6 29.7 29.8 29.7

de-fr 28.6 28.1 26.9 27.9 31.4 31.3 31.7 31.5 21.9 23.0 22.5 22.5 31.9 32.3 32.2 32.1

fr-de 23.5 22.0 15.9 20.5 26.3 26.5 26.8 26.5 6.3 14.3 11.5 10.7 25.0 28.1 28.2 27.1

de-nl 23.2 23.4 15.0 20.5 26.3 26.2 26.0 26.2 7.0 12.8 16.2 12.0 22.5 27.5 27.2 25.7

nl-de 21.4 20.3 14.3 18.7 23.2 23.8 23.5 23.5 6.4 13.3 11.9 10.5 21.6 24.6 24.6 23.6

fr-nl 22.9 23.3 14.1 20.1 26.0 25.9 25.8 25.9 6.8 12.2 15.3 11.4 21.6 27.4 27.1 25.4

nl-fr 26.0 25.9 25.0 25.6 28.1 28.3 28.2 28.2 19.9 20.9 19.9 20.2 28.9 28.8 28.7 28.8

avg. 26.7 26.4 21.7 24.9 29.4 29.5 29.6 29.5 13.1 19.4 17.5 16.7 28.5 30.6 30.6 29.9

Post.

es-de 26.0 26.9 26.8 26.6 28.2 28.4 28.7 28.4 26.1 26.3 26.1 26.2 28.7 28.7 28.7 28.7

de-es 32.3 32.6 32.1 32.3 33.2 33.7 33.5 33.5 32.7 31.9 32.1 32.2 33.5 33.3 33.5 33.4

es-fr 37.7 38.8 37.5 38.0 40.2 40.0 40.1 40.1 37.9 37.8 37.7 37.8 40.1 39.9 40.5 40.2

fr-es 37.8 38.5 38.2 38.2 40.0 39.9 40.1 40.0 38.4 37.7 38.0 38.0 39.7 39.7 40.1 39.8

es-nl 25.6 26.0 26.2 25.9 27.9 27.7 27.8 27.8 26.0 25.7 25.5 25.7 27.8 28.0 27.9 27.9

nl-es 29.3 29.3 29.1 29.2 29.8 30.0 29.6 29.8 29.4 29.0 29.2 29.2 29.7 29.8 29.8 29.8

de-fr 30.6 31.7 30.8 31.0 32.8 32.8 33.1 32.9 31.0 30.7 30.8 30.8 32.9 32.4 33.3 32.9

fr-de 25.9 26.4 26.6 26.3 27.8 28.6 28.8 28.4 26.3 26.0 25.1 25.8 28.2 28.5 28.3 28.3

de-nl 25.8 26.0 25.9 25.9 27.5 27.7 27.5 27.6 25.7 25.6 25.5 25.6 27.8 27.6 27.5 27.6

nl-de 23.5 23.4 23.9 23.6 24.2 24.6 24.4 24.4 23.6 23.5 23.2 23.4 24.4 24.5 24.5 24.5

fr-nl 25.3 25.8 25.6 25.6 27.4 27.4 27.3 27.4 25.5 25.5 25.3 25.4 27.8 27.6 27.5 27.6

nl-fr 28.1 28.4 27.9 28.1 29.3 29.0 29.3 29.2 28.3 28.0 27.9 28.1 29.2 29.1 29.3 29.2

avg. 29.0 29.5 29.2 29.2 30.7 30.8 30.9 30.8 29.2 29.0 28.9 29.0 30.8 30.8 30.9 30.8

Table E.7: BLEU scores of Europarl in ZST directions. Scores in bold

are the results reported in Table 8.2. “1,” “10,” and “20” indicates three random

seeds. “Res.” indicates the residual connection of self-attention in the 4th encoder

layer.
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Layer
Direction

S-ENC-T-DEC w/ Res. T-ENC w/ Res. S-ENC-T-DEC w/o Res. T-ENC w/o Res.

Norm 1 10 20 avg. 1 10 20 avg. 1 10 20 avg. 1 10 20 avg.

Pre.

en-de 28.0 28.0 28.3 28.1 28.2 28.2 28.4 28.3 28.0 28.1 28.4 28.2 28.5 28.5 28.3 28.4

de-en 35.2 35.1 35.3 35.2 35.1 35.0 35.1 35.1 34.9 35.0 35.0 35.0 34.8 35.1 35.0 35.0

en-es 37.6 37.4 37.4 37.5 37.5 37.4 37.7 37.5 37.5 37.5 37.4 37.5 37.5 37.5 37.3 37.4

es-en 39.3 38.9 39.0 39.1 39.0 39.0 38.9 39.0 38.8 39.0 39.1 39.0 38.6 39.0 38.9 38.8

en-fr 36.2 36.6 36.5 36.4 36.5 36.4 36.8 36.6 36.3 36.4 36.5 36.4 36.7 36.7 36.2 36.5

fr-en 38.2 38.2 38.0 38.1 38.0 38.2 38.0 38.1 38.0 37.9 38.2 38.0 37.8 38.2 38.0 38.0

en-nl 28.5 28.8 28.7 28.7 28.8 28.7 28.6 28.7 28.5 28.6 28.6 28.6 28.3 28.6 28.3 28.4

nl-en 31.7 31.6 31.5 31.6 31.5 31.7 31.9 31.7 31.6 31.3 31.6 31.5 31.3 31.7 31.6 31.5

avg. 34.3 34.3 34.3 34.3 34.3 34.3 34.4 34.4 34.2 34.2 34.4 34.3 34.2 34.4 34.2 34.3

Post.

en-de 28.4 28.4 28.7 28.5 28.6 28.7 29.0 28.8 28.5 28.2 28.4 28.4 28.7 28.5 28.3 28.5

de-en 35.2 35.0 35.5 35.2 34.8 35.1 34.9 34.9 35.2 35.2 35.0 35.1 35.1 35.1 34.7 35.0

en-es 37.6 37.8 37.5 37.6 37.6 37.7 37.6 37.6 37.6 37.5 37.6 37.6 37.3 37.4 37.5 37.4

es-en 39.4 39.0 39.0 39.1 39.0 39.3 38.8 39.0 39.2 38.9 39.1 39.1 39.0 39.1 39.1 39.1

en-fr 36.8 36.8 36.4 36.7 36.8 36.7 37.0 36.8 36.6 36.5 37.1 36.7 36.9 36.8 36.7 36.8

fr-en 38.3 38.2 38.4 38.3 38.2 38.2 38.4 38.3 38.2 38.1 38.2 38.2 38.1 38.3 37.9 38.1

en-nl 28.8 28.8 28.6 28.7 28.7 28.7 28.9 28.8 28.6 28.6 28.9 28.7 28.7 28.7 28.5 28.6

nl-en 31.5 31.6 31.7 31.6 32.1 31.7 31.7 31.8 31.7 31.9 31.5 31.7 31.7 31.4 31.4 31.5

avg. 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.5 34.4 34.5 34.4 34.4 34.4 34.3 34.4

Table E.8: BLEU scores of Europarl supervised directions. Scores in bold

are the results reported in Table 8.2. “1,” “10,” and “20” indicates three random

seeds. “Res.” indicates the residual connection of self-attention in the 4th encoder

layer.

#
Layer Language

Res.
Zero-shot Supervised

Norm Tag OPUS IWSLT Europarl OPUS IWSLT Europarl

0 Pivot 55.8 64.6 73.8 - - -

1 PreNorm S-ENC-T-DEC w/ 35.9 34.6 66.5 63.8 70.6 74.9

2 PostNorm S-ENC-T-DEC w/ 49.1 51.2 73.0 64.1 70.6 75.0

3 PreNorm T-ENC w/ 42.5 53.0 73.0 63.7 70.6 74.9

4 PostNorm T-ENC w/ 43.8 56.0 73.8 64.0 70.7 75.0

5 PreNorm S-ENC-T-DEC w/o 44.5 41.7 50.3 63.7 70.0 74.8

6 PostNorm S-ENC-T-DEC w/o 47.6 60.8 72.9 64.0 69.7 74.9

7 PreNorm T-ENC w/o 42.5 57.1 72.5 63.6 69.9 74.8

8 PostNorm T-ENC w/o 43.1 60.2 73.8 64.0 69.7 74.9

Table E.9: BLEURT scores. We report the mean of three seeds and all the

translation directions. “Res.” indicates the residual connection of self-attention

in the 4th encoder layer. We mark better scores between PreNorm and PostNorm

in bold for ZST.
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K. Yoshino, and C. Federmann. Overview of the IWSLT 2017 evaluation

campaign. In Proceedings of the 14th International Conference on Spoken

Language Translation, pages 2–14, Tokyo, Japan, Dec. 14-15 2017. Interna-

tional Workshop on Spoken Language Translation.

[27] T. Chen, S. Kornblith, M. Norouzi, and G. E. Hinton. A simple frame-

work for contrastive learning of visual representations. In Proceedings of

the 37th International Conference on Machine Learning, ICML 2020, 13-18

July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning

Research, pages 1597–1607. PMLR, 2020.

[28] Q. Cheng, X. Yang, T. Sun, L. Li, and X. Qiu. Improving contrastive learn-

ing of sentence embeddings from AI feedback. In Findings of the Association

for Computational Linguistics: ACL 2023, pages 11122–11138, 2023.

[29] M. Chidambaram, Y. Yang, D. Cer, S. Yuan, Y. Sung, B. Strope, and

R. Kurzweil. Learning cross-lingual sentence representations via a multi-task

dual-encoder model. In Proceedings of the 4th Workshop on Representation

Learning for NLP, pages 250–259, 2019.

[30] Y. J. Choe, K. Park, and D. Kim. word2word: A collection of bilingual

lexicons for 3,564 language pairs. In Proceedings of the Twelfth Language

Resources and Evaluation Conference, pages 3036–3045, Marseille, France,

May 2020. European Language Resources Association.

[31] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts,

P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi,

S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer,

V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury,

J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghe-

mawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus,

D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepa-

ssi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat,

A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang,



BIBLIOGRAPHY 205

B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck,

J. Dean, S. Petrov, and N. Fiedel. Palm: Scaling language modeling with

pathways. J. Mach. Learn. Res., 24:240:1–240:113, 2023.

[32] C. Christodoulopoulos and M. Steedman. A massively parallel corpus: the

bible in 100 languages. Lang. Resour. Evaluation, 49(2):375–395, 2015.

[33] C. Chu, R. Dabre, and S. Kurohashi. An empirical comparison of domain

adaptation methods for neural machine translation. In Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics (Vol-

ume 2: Short Papers), pages 385–391, Vancouver, Canada, July 2017. As-

sociation for Computational Linguistics.

[34] C. Chu, T. Nakazawa, and S. Kurohashi. Constructing a Chinese—Japanese

parallel corpus from Wikipedia. In Proceedings of the Ninth International

Conference on Language Resources and Evaluation (LREC’14), pages 642–

647, Reykjavik, Iceland, May 2014. European Language Resources Associ-

ation (ELRA).

[35] C. Chu, T. Nakazawa, and S. Kurohashi. Integrated parallel sentence and

fragment extraction from comparable corpora: A case study on chinese-

japanese wikipedia. ACM Trans. Asian Low Resour. Lang. Inf. Process.,

15(2):10:1–10:22, 2016.

[36] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li,

X. Wang, M. Dehghani, S. Brahma, A. Webson, S. S. Gu, Z. Dai, M. Suz-

gun, X. Chen, A. Chowdhery, S. Narang, G. Mishra, A. Yu, V. Y. Zhao,

Y. Huang, A. M. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean, J. Devlin,

A. Roberts, D. Zhou, Q. V. Le, and J. Wei. Scaling instruction-finetuned

language models. CoRR, abs/2210.11416, 2022.

[37] K. Clark, M. Luong, Q. V. Le, and C. D. Manning. ELECTRA: pre-training

text encoders as discriminators rather than generators. In 8th Interna-

tional Conference on Learning Representations, ICLR 2020, Addis Ababa,

Ethiopia, April 26-30, 2020. OpenReview.net, 2020.



206 BIBLIOGRAPHY

[38] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek,

F. Guzmán, E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov. Unsu-

pervised cross-lingual representation learning at scale. In Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics,

pages 8440–8451, Online, July 2020. Association for Computational Lin-

guistics.

[39] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes. Supervised

learning of universal sentence representations from natural language infer-

ence data. In Proceedings of the 2017 Conference on Empirical Methods in

Natural Language Processing, pages 670–680, 2017.

[40] A. Conneau and G. Lample. Cross-lingual language model pretraining. In

Advances in Neural Information Processing Systems 32: Annual Conference

on Neural Information Processing Systems 2019, NeurIPS 2019, December

8-14, 2019, Vancouver, BC, Canada, pages 7057–7067, 2019.

[41] A. Conneau, R. Rinott, G. Lample, A. Williams, S. R. Bowman, H. Schwenk,

and V. Stoyanov. XNLI: evaluating cross-lingual sentence representations.

In Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, pages 2475–2485, 2018.
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