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Abstract

In a world rich with diverse ideas and cultures, humans are isolated into islands of

distinct languages. Machine translation (MT) serves as a bridge, facilitating infor-

mation access and cross-lingual communication. Evolved from rule-based systems

and statistical models, neural machine translation (NMT) is the state-of-the-art

paradigm. While achieving near-human performance in high-resource languages,

it is important to note that the majority of 7,100+ languages in the world are low-

resource and have not benefitted significantly from the advancements in machine

translation, leading to a substantial disparity among languages.

We improve the existing NMT systems to enhance the translation quality,

especially for low-resource scenarios. In a conventional NMT framework, the em-

bedding layer first converts tokens in the source language into embedding vectors,

acting as a gate from the discrete natural language data to the continuous rep-

resentation used in the neural model. The encoder then provides context-aware

representations for the decoder, which then generates probability distribution for

each next token and selects the token with the highest probability step by step,

converting internal representations into a sentence in the target language. Though

word or character is a more natural definition of the minimal input unit in the

embedding layer, using subword is the default way because subwords better han-

dle unseen words by segmenting them into seen subwords given a vocabulary of

limited size, and bring higher efficiency than using characters by shorter input

sequences. However, the artificial nature of subwords introduces new challenges

in the segmentation, encoding, and decoding phases.

This thesis attempts to develop subword-based neural machine translation sys-

tems by answering three questions. 1) One word can be segmented into different
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subword segmentations. How do we determine the best one or best-k segmenta-

tion? 2) The encoder converts subwords into contextual representations. How

do we leverage multiple subword segmentations to capture the multi-perspective

information of one word? 3) The decoder generates a sequence of subwords in the

target language as the translation. However, probability information from other

subword segmentations that form the same word is underutilized. How do we

incorporate subword segmentations that form the same word during decoding?

In Chapter 1, we provide an overview of the subword-based NMT model,

including its structure, mechanism, and how subwords are used in the model. We

emphasize the advantages together with the challenges brought by using subwords.

In Chapter 2, we propose SelfSeg, a neural subword segmenter that yields lin-

guistically intuitive segmentation and is faster during training and decoding com-

pared to previous neural methods. SelfSeg takes a word in the form of a partially

masked character sequence as input, optimizes the word generation probability,

and generates the segmentation with the maximum posterior probability, which is

calculated using a dynamic programming algorithm. Additionally, we propose a

regularization mechanism that allows the segmenter to generate best-k segmenta-

tions for one word. Moreover, it is trained in a self-supervised way that relies on

only monolingual word-level data, making it applicable to low-resource languages

without large-scale parallel resources.

In Chapter 3, we propose a BERT-based subword segmenter that generates

subword segmentation that utilizes the contextualized semantic embeddings of

words from the BERT model. During training, it maximizes the marginal proba-

bility from all possible segmentations of one word using a dynamic programming

algorithm. During inference, it selects the one with the highest probability. Fur-

thermore, we propose a probability-based regularization method that enables the

segmenter to produce multiple segmentations for one word to improve the ro-

bustness of neural machine translation systems. Based on a pre-trained BERT

encoder, it only requires little training data to achieve reasonable segmentations,

making it especially applicable in low-resource scenarios.

In Chapter 4, we propose DiverSeg to exploit diverse segmentations from mul-

tiple subword segmenters that capture the various perspectives of each word in
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the encoder. In DiverSeg, multiple segmentations are encoded using a subword

lattice input, a subword-relation-aware attention mechanism integrates relations

among subwords, and a cross-granularity embedding alignment objective enhances

the similarity across different segmentations of a word. We found incorporating

information from multiple aspects enhances the performance of neural machine

translation, especially in low-resource scenarios.

In Chapter 5, we propose SubMerge, a decoding algorithm that merges the

probabilities of multiple subword segmentations that form the same word, which

we call equivalent segmentations. This is specially designed for the subword reg-

ularized NMT model. It leverages multiple subword segmentations of one target

sentence during training as a data augmentation method, which is effective for

low-resource scenarios. SubMerge is a nested search algorithm where the outer

beam search treats the word as the minimal unit, and the inner beam search

provides a list of word candidates and their probabilities, merging subword seg-

mentations that form the equivalent word. It estimates the probability of the

next word more precisely, providing better guidance during inference. We show it

consistently outperforms the beam search algorithm in several low-resource MT

datasets in terms of BLEU scores.

The methods proposed in this thesis have effectively addressed the issues in

the subword-based NMT systems and significantly enhanced the translation per-

formance especially in low-resource scenarios. In Chapter 6, we summarize the

thesis and outline the possible directions for future work.
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Chapter 1

Introduction

1.1 Background

Translation serves to acquire, disseminate, and exchange information across dif-

ferent languages. For instance, in a tourist city like Kyoto, millions of foreign

travelers acquire information written in Japanese and communicate with locals

when navigating thousands of places of interest. While human translation is lim-

ited by its availability and cost, machine translation applications [88],1 on the

other hand, offer instant, easily accessible and low-cost solutions.

State-of-the-art neural machine translation achieves near-human performance

in high-resource directions, such as English to Chinese. However, the performance

is still unsatisfactory for translation directions involving low-resource languages.

Moreover, the majority of 7,100+ languages in the world are low-resource lan-

guages that have not benefitted significantly from the advancements in machine

translation. This leads to a substantial disparity of information acquisition and

dissemination ability among languages, which further results in the disparity in

regional development.

Subword-based neural machine translation systems use subwords as the mini-

mal input and output unit. They show higher translation quality than word-based

ones and higher efficiency than character-based ones [66], thus becoming the dom-

inant paradigm. Despite the advantages, using subwords introduces challenges in

1voicetra.nict.go.jp and mt-auto-minhon-mlt.ucri.jgn-x.jp

1
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the segmentation, encoding, and decoding phases in low-resource scenarios.

This thesis aims to tackle challenges within neural machine translation systems

that use subwords, thereby enhancing translation quality, particularly in low-

resource scenarios. The rest of this section begins with a brief history of machine

translation from rule-based, statistical to neural systems, and machine translation

in the large language model era. We then explain the architecture of the default

subword-based neural machine translation system, the challenges brought by using

subwords, and how we address them. Finally, we show the outline of this thesis.

1.2 History of Machine Translation

This section offers a brief history of machine translation and their ability in low-

resource scenarios, including early rule-based systems, statistical machine trans-

lation systems and recent neural models. Additionally, we provide a perspective

of how large language models further advance machine translation.

1.2.1 Early Rule-based Machine Translation Systems

Machine translation, defined as a system intended to perform translation by com-

puter without human intervention, has been one of the central research topics

in the natural language processing (NLP) field owing to its wide range of appli-

cations. The initial decade of machine translation was marked by high interest

and support in the 1950s, driven by the goal of achieving high-speed and high-

quality translation of texts. Notable early projects included Georgetown’s GAT

(Georgetown Automatic Translation) [95], which is one of the earliest machine

translation projects developed by linguists and programmers. In the 1970s, SYS-

TRAN [133] emerged as one of the first marketed machine translation systems. It

replaced earlier systems in various government agencies. Meanwhile, a machine

translation system for science was developed in the 1960s in Japan that trans-

lates English titles of scientific and technical papers into Japanese [96, 97]. As

a high-level application, the machine translation process involves knowledge of

both the source language and the target language, including synonyms for words

and phrases, grammar, and semantic knowledge. These early approaches usually
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require significant effort using bilingual experts to craft the rules into programs.

However, because of the complexity of language, it is nearly impossible to rep-

resent all linguistical phenomenons into a limited number of rules. These systems

are difficult to construct and only successful in several high-resource language

pairs such as Russian→English and English→Japanese.

1.2.2 Statistical Machine Translation

Data-driven statistical approaches make it possible to learn knowledge from par-

allel bilingual text. In the early 1990s, Brown et al. [8] built a statistical machine

translation (SMT) system that estimates the translation probability from one

word in the source language into any particular word in the target language,

with parameters in the model learned from parallel corpora. This system ex-

ceeded commercial-level translation quality between high-resource directions such

as French and English at that time. With the development of statistical machine

translation techniques, the translation quality keeps increasing and more low-

resource language pairs are covered through the progress of multilingual parallel

corpora construction [34].

However, a typical SMT system contains separate components, such as word

aligners, translation rule extractors, and feature extractors, making it hard to

locate the performance bottleneck and optimize the model automatically.

1.2.3 Neural Machine Translation

Neural machine translation (NMT) has shown state-of-the-art performance for a

large number of language pairs and become the dominant paradigm for machine

translation. It consists of tightly integrated Embedding Layer, Encoder and De-

coder components, making end-to-end training possible through back-propagation

optimization. Recurrent neural networks [36], long short-term memory [46] and

gated recurrent [18] neural networks generate the hidden states of each input token

computed from previous input tokens. Transformer architecture [135] leverages

attention mechanisms [5] to enable high parallelization and achieves high-speed

training and inference as well as high translation quality. It thus becomes the

default architecture in machine translation and other NLP tasks.
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Low-resource NMT is challenging because NMT models require substantial

data and struggle with learning from sparse data. In this thesis, we define low-

resource as those pairs with less than 100k parallel sentences and very-low-resource

as those with less than 10k parallel sentences. In these scenarios, it requires careful

tuning of hyper-parameters such as vocabulary size, dropout rate, batch size and

so on to match the performance with statistical MT systems [114]. Other meth-

ods to improve low-resource NMT performance include incorporating linguistic

feature [14, 13], exploiting multilingualism [22], pre-training leveraging monolin-

gual data [78] or data from related languages as transfer learning [48, 120, 21], or

simply creating high-quality corpora for the desired pairs or domains [109, 25].

1.2.4 Large Language Model for Machine Translation

Large-scale generative language models (LLMs) such as GPT-4 [99] and Llama

2 [134] have greatly propelled the research and application of natural language

processing. It shows a high generalization ability to a large range of NLP tasks,

including but not limited to machine translation, dialogue, question answering,

and summarization [68, 141, 77]. However, these LLMs are biased towards En-

glish. When applied to the machine translation tasks, the translation quality

for high-resource translation directions containing English is comparable to NMT

models utilizing prompting techniques [151, 137]. However, the translation qual-

ity involving low-resource language is far from satisfactory compared to that of

NMT models due to the imbalanced training data [94].

Prompting empowers LLM with great potential besides traditional fine-tuning

or aligning [107] methods. Few-shot in-context learning [9] allows the model to

quickly adapt to a new task or a new domain by showing several examples that are

fixed or retrieved from a dataset by similarity. Chain-of-thought prompting [146]

enables reasoning ability, which is crucial for complex tasks or samples. LLMs can

also learn using tools to solve the domain-specific tasks [111] or collaborate with

other LLM agnents [102]. With these, LLMs may achieve comparable performance

with the traditional NMT paradigm and become the new paradigm in the future.
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1.3 Subword-based Neural Machine Translation

1.3.1 Motivation of Using Subwords

Subwords refer to smaller units of language that are larger than individual char-

acters but smaller than whole words, which is created by subword segmenter as

shown in Figure 1.1. Different from word or character, subword is an artificial

definition. This results in the ambiguity of subword segmentation, where one

word can yield multiple different subword segmentations. For example, another

subword segmentation of watching is wat + ching.

Words
watching
languages
unknown
seaside

abnormally
savers

watch + ing
language + s
un + know + n
sea + side

ab + normal + ly
save + r + s

Subword
Segmenter

Subwords

Figure 1.1: Words are segmented into subwords through subword segmenter.

Subword-based NMT is the dominant paradigm of NMT systems, where the

minimal unit of input and output are subwords instead of words or characters.

This is because using subwords brings advantages over using words or charac-

ters. Initial works on NMT used word-level vocabularies. As the vocabulary size

significantly increases the parameter numbers in the embedding layers and com-

putational cost in the softmax layer, the vocabulary size is usually constrained to

tens of thousands. Therefore, the word vocabulary could only represent the most

frequent words, leading to the out-of-vocabulary (OOV) problem [126]. Character-

based approaches solve the OOV problem; however, they introduce higher com-

putational complexity and translation latency because they generate longer se-

quences and require deeper-stacked models [39, 72, 16]. Using subwords in the

vocabulary and embedding layers addresses both the OOV and the computational

cost problems, thus becoming the default [116, 106, 61]. In this thesis, we pri-



6 CHAPTER 1. INTRODUCTION

marily use and improve the subword-based NMT architecture for low-resource

NMT.

1.3.2 Overview of Subword-based Neural Machine Translation

Architecture

Sentence He is watching animals intently.

Subword Segmenter

_He _is _wat ching s_animal _intent ly .Subword

Embedding Layer

Self-Attention

Add & Norm

Feed Forward

Add & Norm

𝑁×

Encoder

Decoder

Masked 
Self-Attention

Add & Norm

Cross-Attention

Add & Norm

𝑁×

Feed Forward

Add & Norm

Embedding Layer

Linear

Softmax

Subword Probabilities
あ か は _動物 a z 9

_彼は

Figure 1.2: Overview of the Subword-based Neural Machine Translation Archi-

tecture. This shows the inference process. During training, the sentences in the

target language is also segmented into subword sequences as supervision.

Figure 1.2 provides a general overview of the Subword-based NMT system.

First, the subword segmenter converts input text into subwords as a pre-processing

procedure. It is done for both the source sentence and target sentence during

training and only done for the source sentence during inference. After that, each

subword is converted into continuous embedding through an embedding layer.
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The encoder then provides contextual embeddings for the decoder to predict the

probabilities of each next subword in the target language, conditioned on all pre-

viously generated tokens. We can simply select the subword with the highest

probability, as the greedy search does, or enlarge the searching space by consid-

ering multiple paths as in the beam search during inference. Finally, there is a

simple post-editing procedure to combine the generated sequences of subwords

into the output sentence.

1.3.3 Subword Segmentation and Embedding

A subword segmenter converts discrete textual data in natural language into a

sequence of subwords. The embedding layer then converts each subword into a

continuous embedding that the neural model can handle.

Let x1:T denote a word that comprises T characters, that is x1:T = (x1, ..., xT ).

Let a1:τa denote one segmentation of x1:T that comprises τa subwords, that is

a1:τa = (a1, ..., aτa). For each subword ai in a1:τa , it is non-empty substrings of

x1:T and in a predefined finite size subword vocabulary V , that is ai ∈ V . The

set of all valid segmentations for a word is represented as Sx, where ∀a,a ∈ Sx.

A deterministic segmenter such as byte-pair encoding (BPE) [116] is an injective

function that maps x1:T to a specific a1:τa whereas a stochastic segmenter such

as BPE-dropout [106] is a multivalued function that maps one word to a set

of segmentations. The subword vocabulary contains characters and subwords.

Therefore, the subword-based method handles rare words better by segmenting

them into known subwords.

Subwords convert into embeddings in the embedding layers of the encoder and

decoder. The embedding layer serves as a crucial component that bridges the gap

between discrete textual data and continuous representations. Each subword ai in

the segmentation a1:τa is mapped to a high-dimensional vector ei. This mapping is

accomplished through a lookup table where each unique subword in the vocabulary

V has a corresponding vector. The vectors are typically initialized randomly and

then learned and adjusted during the training process. The embedding layer in

the encoder side also provides positional information through absolute positional

encoding [135] or relative positional encoding [118].
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1.3.4 Subword Encoding

The encoder maps individual subword representations to contextual representa-

tions. The input to the encoder is a sequence of subword representations e and

the output is a sequence of contextual representations z. For each layer l in the

encoder, the transformation is defined as:

zl = EncoderLayer(zl−1) (1.1)

where z0 = x.

The attention mechanism is the key component in the encoder and decoder.

In its simplest form, attention can be described as mapping a query and a set

of key-value pairs to an output, calculated as a weighted sum of the values. The

weight assigned to each value is computed by a compatibility function of the query

with the corresponding key.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1.2)

This formulation allows the model to focus on different parts of the input sequence,

which is essential for tasks like translation, where the relevance of input elements

can vary.

1.3.5 Subword Decoding

Sentence in the target language is generated from the decoder utilizing a decoding

algorithm.

The decoder takes the final state of the encoder as the initial input, which

encapsulates the semantical information from the sentence in the source language.

In each step t, the decoder is auto-regressive, consuming the previously generated

symbols as additional input. The transformation in each decoder layer l (L layers

in total) can be described as:

yl
t = DecoderLayer(yl−1

t , z) (1.3)

where y0
t is the embedding of the t-th symbol of the output sequence and z is

the output of the encoder. Following the final decoder layer, the output yL
t is
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converted to vt through a linear layer that maps the decoder’s high-dimensional

space to the size of the target subword vocabulary. Subsequently, a softmax layer

converts it into a probability distribution over the subword vocabulary pt.

The decoding algorithm decides how to generate the translated output. The

algorithm takes the probability distribution of each subword in the target vocab-

ulary pt as input. We briefly describe two primary strategies: greedy search and

beam search. (1) Greedy search selects the subword with the highest probabil-

ity as the next output token at each step. Let y1:t−1 be the sequence of subwords

generated so far, and P (yt|y1:t−1) be the probability of a subword a being the

next subword. The next subword yt in the sequence is chosen by:

yt = argmax
a∈V

P (a|y1:t−1) (1.4)

This process is repeated until a special end-of-sequence token is generated or a

maximum length is reached. While greedy search is computationally efficient,

it may not always yield the best possible translations given the limited searching

space. (2) Beam search, as illustrated in Figure 1.3, considers multiple potential

translations at each step by keeping track of a fixed number of the best partial

translations named beams. Let B be the beam size. At each step, it expands

each of the B sequences by considering all possible next subwords. For each

partial sequence, it calculates the total score (the sum of log probabilities) for

each possible extension and keeps only the B sequences with the highest total

scores. Formally, given a partial sequence y1:t−1 and its score S(y1:t−1), the score

for an extended sequence y1:t = (y1:t−1, a) with a new subword a is:

S(y1:t) = S(y1:t−1) + logP (a|y1:t−1) (1.5)

Beam search continues until each beam produces an end-of-sequence token or

reaches the maximum sequence length. The final output is the sequence among the

B candidates with the highest overall score. This algorithm enlarges the searching

space and usually can improve the translation quality compared to greedy search.
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ing
EOSwatch animals

EOS

context
ed

look
ing at

at animal EOS

Figure 1.3: Beam search decoding algorithm. Context represents previously gen-

erated subwords. EOS is a special token denoting the end of generation. The

dashed line shows the boundary of each step. The pink path shows the output

subword sequence with the highest conditional probability.

1.4 Challenges and Proposed Methods

Despite the advantages over using words or characters, using subwords in NMT

brings three new challenges in the segmentation, encoding, and decoding phases,

especially in low-resource scenarios. 1) One word can be segmented into different

subword segmentations. How do we determine the best one or best-k segmenta-

tion? 2) Current architecture encodes one segmentation of one word. How do we

leverage multiple subword segmentations to capture the multi-perspective infor-

mation of one word? 3) Current decoding algorithm generates one subword in

each step, resulting in one segmentation for a word. However, there are multiple

possible subword segmentations that form the same word. How do we incorpo-

rate them during decoding? The following paragraphs detail each problem and

introduce how we address them.

In the subword segmentation phase, one word can be segmented into differ-

ent subword segmentations, and the way of segmentation will largely affect the

downstream tasks. Although for high-resource languages, there are dictionaries

with stem information that can be leveraged for segmentation [7], for low-resource

languages and long-tailed words of high-resource languages, such dictionaries are
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scarce or nonexistent. Therefore, the first challenge is to determine the optimal

subword segmentation in a data-driven way. For a deterministic segmenter, we

would like to obtain the segmentation with the highest probability. One step

further, we would like to calculate the probabilities of all possible segmentations

a ∈ Sx for a stochastic segmenter. Previous frequency-based methods [116, 61]

result in suboptimal segmentations, which are non-linguistically-motivated and

show low translation quality, especially for low-resource scenarios. We propose two

neural methods: SelfSeg which is based on self-supervised training and BERTSeg

which is based on semantic embedding from the BERT model. They are trained

to maximize the marginal likelihood of one word by maximizing the probabilities

of all possible segmentations. Therefore, the segmenter generates segmentations

with corresponding probabilities; thus, we can select the highest one or top-n

candidates.

In the encoding phase, the previous method [135] usually encodes one segmen-

tation to represent a given sentence. However, each type of subword segmenter

captures a unique aspect of the input text. The byte-pair encoding (BPE) seg-

menter [116] based on the byte-pair encoding compression algorithm [31] repre-

sents the input text in a highly compressed token sequence [32]. The neural sub-

word segmenter BERTSeg [121] is tuned on pre-trained BERT models and enables

the use of semantic meaning and the ability to segment words into linguistically

motivated subwords. However, NMT models based on a single segmenter cannot

capture various aspects of the input text. This is especially essential in a low-

resource scenario where we should make maximum use of the available data. To

address this, we propose DiverSeg to exploit diverse segmentations from multiple

subword segmenters that capture the various perspectives of each word in the

encoder.

In the decoding phase, the previous greedy search or beam search [36] de-

coding algorithm selects one segmentation, which leads to the underutilization

of knowledge learned about multiple tokenizations. As there are subword seg-

mentations that form equivalent words, we propose the SubMerge algorithm to

rescue the ignored probabilities by merging the equivalent ones. SubMerge is a

nested search algorithm where the outer beam search treats the word as the min-
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imal unit, and the inner beam search provides a list of word candidates and their

probabilities, merging equivalent subword tokenizations. SubMerge estimates the

probability of the next word more precisely, providing better guidance during in-

ference. This algorithm is applicable to subword regularized models, which show

large improvements in low-resource scenarios.

1.5 Thesis Outline

The rest of this thesis is structured as follows, shown in Figure 1.4.

In Chapter 2, we propose SelfSeg, a neural subword segmenter that yields

linguistically intuitive segmentation and is faster during training and decoding

compared to previous neural methods. SelfSeg takes as input a word in the form

of a partially masked character sequence, optimizes the word generation proba-

bility and generates the segmentation with the maximum posterior probability,

which is calculated using a dynamic programming algorithm. Additionally, we

propose a regularization mechanism that allows the segmenter to generate various

segmentations for one word. Moreover, it is trained in a self-supervised way that

relies on only monolingual word-level data, making it applicable to low-resource

languages without large-scale parallel resources.

In Chapter 3, we propose a BERT-based subword segmenter that generates

subword segmentation that utilizes the contextualized semantic embeddings of

words from the BERT model. During training, it maximizes the marginal proba-

bility from all possible segmentations of one word using a dynamic programming

algorithm. During inference, it selects the one with the highest probability. Fur-

thermore, we propose a probability-based regularization method that enables the

segmenter to produce multiple segmentations for one word to improve the robust-

ness of NMT systems. Based on a pre-trained BERT encoder, it only requires little

training data to achieve reasonable segmentations, making it especially applicable

in low-resource scenarios.

In Chapter 4, we propose DiverSeg to exploit diverse segmentations from mul-

tiple subword segmenters that capture the various perspectives of each word in

the encoder. In DiverSeg, multiple segmentations are encoded using a subword
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lattice input, a subword-relation-aware attention mechanism integrates relations

among subwords, and a cross-granularity embedding alignment objective enhances

the similarity across different segmentations of a word. We found incorporating

information from multiple aspects enhances the performance of NMT, especially

in low-resource scenarios.

In Chapter 5, we propose SubMerge, a decoding algorithm that merges the

probabilities of multiple subword segmentations that form the same word, which

we call equivalent segmentations. This is specially designed for the subword reg-

ularized NMT model. It leverages multiple subword segmentations of one target

sentence during training as a data augmentation method, which is effective for

low-resource scenarios. SubMerge is a nested search algorithm where the outer

beam search treats the word as the minimal unit, and the inner beam search

provides a list of word candidates and their probabilities, merging subword seg-

mentations that form the equivalent word. It estimates the probability of the

next word more precisely, providing better guidance during inference. We show it

consistently outperforms the beam search algorithm in several low-resource MT

datasets in terms of BLEU scores.

The methods proposed in this thesis have effectively addressed the issues in

the subword-based NMT systems and significantly enhanced the translation per-

formance, especially in low-resource scenarios. In Chapter 6, we summarize the

thesis and outline the possible directions for future work.
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Chapter 2

SelfSeg: A Self-supervised

Subword Segmentation Method

for Low-Resource Neural

Machine Translation

NMT is the most prevalent approach for machine translation [126, 4, 135, 33]

due to its end-to-end nature and its ability to achieve state-of-the-art transla-

tions [1]. Early NMT methods consider words as the minimal input unit and

use a vocabulary to hold frequent words [126, 4, 73, 50]. However, they face the

out-of-vocabulary (OOV) problem due to the limited size of the vocabulary and

the unlimited variety of words in the test data. Even with a very large vocabu-

lary that covers most words in the train set, for morphologically rich languages

such as German, there are still 3% of new types of words that appear in the test

set [49]. This largely hinders the translation quality of sentences with many rare

words [126, 4].

Subword segmentation is dedicated to addressing the OOV problem by seg-

menting rare words into subwords or characters that are present in a vocabulary.

Frequency-based methods first use a monolingual corpus to build a subword vo-

cabulary that contains characters, high-frequency subword fragments and com-

15
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mon words. During decoding, for each word or sentence, it recursively combines

an adjacent fragment pair that occurs most frequently according to the subword

vocabulary, starting from characters [116, 62]. The main limitation is that these

segmentation methods are not optimized for downstream tasks, such as NMT.

DPE [41], a recently proposed neural subword segmentation approach, views the

target sentence as a latent variable whose probability is the sum of the probability

of all possible segmentations. The probability of each segmentation is calculated

by a transformer model conditioned on the source sentence. It optimizes the tar-

get sentence probability in the training phase and outputs the segmentation with

maximum posterior probability in the decoding phase. The DPE work also shows

the importance of optimizing subword segmentation for the MT task. Different

from BPE [116], it uses parallel data and deploys a neural sequence-to-sequence

model for the segmentation. This is a double-edged sword: on one hand, using

a sequence-to-sequence neural model enables the segmentation to be aware of all

past tokens where BPE does not. Because the NMT decoder is also aware of all

past tokens, this segmentation approach may be optimal; on the other hand, it is

not practical neither in low-resource scenarios where large parallel corpora are not

available, nor in high-resource scenarios where training and decoding take hours

to days.

Leveraging existing large-scale monolingual data through self-supervised learn-

ing methods significantly reduces the need for parallel corpora, which is essential

for low-resource scenarios. Predicting masked tokens is a promising task to provide

training signals for an encoder that could be fine-tuned for a variety of down-

stream tasks [24, 78], or an encoder-decoder model which could boost the MT

tasks [123]. Although relying on monolingual data obviates the need for parallel

corpora, the DPE method will still be slow as entire sequences have to be pro-

cessed. In order to speed up the model, we propose that words be used instead of

sentences. The motivation comes from the examples in Figures 2.1(a) and 2.1(b).

In Figure 2.1(a), for a Japanese word segmentation task, the sentence will be con-

sistently segmented in different document-level contexts. It is similar for subword

segmentation as presented in Figure 2.1(b), where we don’t need sentence-level

information. For example, the word “watching” should be consistently segmented
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今⽇/は/いい/天気/です/ね
It's nice weather today.

Let’s take a walk.
Let’s go traveling.
I want to go hiking.

Take a look out the window.
I can see well until the mountain.
Unlike yesterday’s rain,

Context Word Segmentation Context

(a) Japanese word segmentation task. The sentence is consistently segmented with

different document-level contexts. For the context we show the translated English

references only.

watch/ing
TV at home.
animals intently.
a group of wagons.

I’m
Alex is
He stopped,

Context Subword Segmentation Context

(b) English subword segmentation task. The word is consistently segmented with

different sentence-level contexts.

Figure 2.1: Segmentation is a self-contained task where context information is not

required.

into “watch+ing” no matter which sentence the word is in. This insight can help

us go from sentence-level data to word-level data to train the subword segmenter,

which significantly improves the training and decoding speed, because the train-

ing requires only word-level data and one type of word needs to be decoded only

once.

Based on these observations, we propose SelfSeg, a subword segmenter that

trained on monolingual word-level data. It uses a neural model to optimize the

word generation probability conditioned on partially masked words, and outputs

the segmentation with the maximum posterior probability. The decoding is fast

because it only needs to decode each unique word once. To speed up the training

phase, we propose a word frequency normalization method that adjusts the fre-

quencies for frequent and rare words. Furthermore, motivated by Provilkov et al.

[106] we also implement a regularization method on top of SelfSeg which pro-

vides multiple segmentations of the same word. We conduct experiments for low-,

middle- and high-resource language pairs using the corpora from Asian Language

Treebank (ALT), IWSLT and WMT. We show that SelfSeg yields segmentations

that achieve better translation quality of up to 1.1-1.3 BLEU compared to exist-
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𝑝(𝑤𝑜𝑟𝑑) 𝑝(𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛) 𝑝(𝑠𝑒𝑔𝑚𝑒𝑛𝑡)

𝑝(watching) 𝑝(watch/ing) 𝑝(watch)

𝑝(ing|watch)

𝑝(wat)

𝑝(ching|wat)
𝑝(wat/ching)

Σ Π

Π

(a) During the training phase model maxi-

mizes the probability of one word.

𝑜𝑢𝑡𝑝𝑢𝑡 𝑝(𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛) 𝑝(𝑠𝑒𝑔𝑚𝑒𝑛𝑡)

watch/ing 𝑝(watch/ing) 𝑝(watch)

𝑝(ing|watch)

𝑝(wat)

𝑝(ching|wat)
𝑝(wat/ching)

𝑎𝑟𝑔𝑚𝑎𝑥 Π

Π

(b) During the decoding phase model seeks

the segmentation with the highest probabil-

ity.

Figure 2.2: The training and decoding steps for subword segmentation.

ing approaches such as BPE [116], SentencePiece [61], DPE [41] and VOLT [150].

Additionally, we show that in low-resource settings regularized SelfSeg not only

outperforms BPE by 4.3 BLEU but also BPE-dropout [106] by 1.2 BLEU. We

also provide analyses exploring various aspects of SelfSeg. Our contributions are

as follows:

• We propose SelfSeg, a neural subword segmentation method that relies

on only monolingual word-level data with masking strategies, together with

word-frequency normalization strategies to speed up the training, and a

regularization mechanism.

• Experimental results show significant BLEU score improvements

over existing works in low-resource scenarios, as well as a significant increase

in training and decoding speed compared to neural approaches such as DPE.

• We provide extensive analysis, including the effect of different masking

methods and normalization methods, and why monolingual word-level data

is enough to train SelfSeg.

2.1 Related Work

In this section, we introduce two categories of subword segmentation methods,

namely, non-neural and neural methods. In addition, we introduce the prevalent

self-supervised learning paradigm.
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2.1.1 Non-Neural Subword Segmentation

Initial works on NMT used word-level vocabularies that could only represent the

most frequent words, leading to the OOV problem [126]. Character-based or byte-

based approaches solve the OOV problem, however, they introduce higher com-

putational complexity and thus translation latency because they generate longer

sequences and require deeper-stacked models (often equipped with pre-layer nor-

malization) [39, 53, 20, 69, 72, 16, 117]. Fully character-based NMT systems show

higher translation quality compared with word-based systems, especially for mor-

phologically rich languages [53, 20, 69], while a hybrid word-character model shows

a larger improvement [72]. A recent study further represents every computerized

text as a sequence of bytes via UTF-8 [117].

Subword segmentation methods address both the OOV problem and the com-

putational cost of the character-based methods, thus becoming an indispensable

pre-processing step for modern NMT models [116, 106, 142, 112, 62, 61]. Sen-

nrich et al. [116] adapt BPE compression algorithm [31] to the task of subword

segmentation (in this paper, we use the name BPE to refer specifically to BPE

for subword segmentation). BPE detects repeated patterns in the text and com-

presses them into one subword. Specifically, it initializes a vocabulary of all types

of characters in the training corpora, and adds frequent fragments and words into

it. During decoding, a greedy algorithm recursively combines the most frequent

adjacent fragment pair in the vocabulary, starting from words that are split into

characters. Although not linguistically motivated, the effectiveness may come

from the ability of generating shorter sequences [32]. There are several variants

of the BPE method, BPE-dropout [106] is a stochastic or regularized version of

BPE where words can be segmented in different ways causing a sentence to have

multiple-segmented forms leading to a robust translation model. Subword regu-

larization [60] is a regularized version of SentencePiece [61] based on a non-neural

network unigram language model. VOLT [150] finds the best BPE token dictio-

nary with a proper size. Byte-level BPE (BBPE) [142] uses bytes as the minimal

unit, thus generating a compact vocabulary. WordPiece (WPM) [112] is similar

to BPE where it chooses the adjacent fragment pair that maximizes the likeli-

hood of the training data rather than based on word frequency. Different from
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BPE which treats space as a special token and thus needs a tokenizer for data in

different languages, SentencePiece (SPM) [62] is a language-independent method

that treats the input as a raw input stream where space is not a special token.

SentencePiece regularization [61] is the stochastic version of SPM where it draws

multiple segmentations from one sentence to improve the robustness of the model.

The frequency-based methods however are not linguistically motivated, for ex-

ample, the word “moments” will be segmented as “mom+ents” rather than “mo-

ment+s”. Attempts to use a morphological analyzer for subword segmentation

cannot achieve consistently translation quality improvements [154, 47]. Further-

more, this method cannot be applied to low-resource languages which lack high-

quality morphological analyzers. A recent survey [90] also covers other non-neural

methods such as language-specific methods [57], bayesian language models [130],

and marginalization over multiple possible segmentations [15].

2.1.2 Neural Subword Segmentation

Frequency-based methods, such as BPE and SPM, are simple forms of data com-

pression [31] to reduce entropy, which makes the corpus easy to learn and pre-

dict [2]. While we can optimize the choice of vocabulary to further reduce the

entropy [150], it is more straightforward to find the segmentation that directly

reduces the entropy of a neural model.

Segmentations can be optimized for a neural model to learn and generate by

the sequence modeling via segmentations method [143]. In the training phase, it

optimizes the sequence generation probability calculated by the sum of probabil-

ities of all its possible segmentations. In the decoding phase, the segmentation

with maximum a posteriori (MAP) is considered the optimal segmentation for

each sentence. The sequence modeling via segmentation idea is applied to multi-

ple NLP tasks including word segmentation [52, 125, 28], language modeling [35],

NMT [59], and speech recognition [143]. During the inference of the language

model, utilizing the marginal likelihood with multiple segmentations shows more

robust results than one-best-segmentation [11]. DPE [41] method has applied

this sequence modeling and optimization idea to the subword segmentation task.

They proposed a mixed character-subword transformer and apply the dynamic
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programming (DP) algorithm to accelerate the calculation of sequence model-

ing. However, segmentation is performed at the sentence-level and conditioned

on a sentence in another language. DPE’s parallel corpus requirement makes it

unattractive, especially in low-resource settings [119], which motivated us to rely

only on monolingual corpora. However, the mixed character-subword transformer

is indispensable to our method.

2.1.3 Self-supervised Machine Learning

Self-supervised methods are becoming popular in machine learning. The advan-

tage of this approach is that it requires only unlabeled (and often monolingual)

data, which exists in large quantities. In the NLP field, using monolingual data

with denoising objectives has led to significant performance gains in multiple

tasks including NMT, question answering (QA) and Multi-Genre Natural Lan-

guage Inference (MultiNLI) tasks [24, 123, 108, 9, 70, 71, 65, 120, 140, 82, 83, 84].

However, to the best of our knowledge, this approach has not been seriously ap-

plied to the subword segmentation task yet. Furthermore, the self-supervised

method is prevalent in the field of computer vision. There are many works that

use unlabeled images to pre-train models [42, 138, 103, 26, 153, 92, 145, 139, 37].

2.2 Methods

We first describe the sequence modeling via segmentation for the subword seg-

mentation task as background in Section 2.2.1. We then describe the proposed

segmenter with several masking strategies in Section 2.2.2, word frequency nor-

malization strategies to accelerate the training speed in Section 2.2.3, and a reg-

ularization mechanism to increase the variety of the generated subwords in Sec-

tion 2.2.4.

2.2.1 Background: Word Modeling via Subword Segmentations

This section describes the word modeling via subword segmentation, which is the

theoretical foundation of the proposed method.
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Let x1:T denote a word that comprises T characters, that is x1:T = (x1, ..., xT ).

Let a1:τa denote one segmentation of x1:T that comprises τa subwords, that is

a1:τa = (a1, ..., aτa). For each subword (or segment) ai in a segmentation a1:τa , it

is non-empty substrings of x1:T and in a predefined finite size subword vocabulary

V , that is ai ∈ V . The set of all valid segmentations for a word is represented

as Sx, where ∀a,a ∈ Sx. Because the subword segmentation of one word is not

known in advance, the probability of generating one word x1:T can be defined as

the sum of the probability from all subword segmentations in Sx:

p(x1:T ) =
∑

Pθ(Y |X)̸=Pθ(y|x)a1:τa∈Sx

p(a1:τa)

=
∑

a1:τa∈Sx

τa∏
i=1

p(ai|a1, ..., ai−1),

(2.1)

where p(x1:T ) is the probability of the word, p(a1:τa) is the probability of one seg-

mentation and p(ai|a1, ..., ai−1) is the probability of one segment in the segmen-

tation a1:τa , conditioned on previous segments, which is calculated using neural

networks such as RNN or Transformer models.

However, for a sequence of length T , there are approximately 2T types of

segmentations. Without using approximation algorithms the time complexity of

calculating Eq. (2.1) will be exponential (O(2T )), which makes the algorithm too

slow thus impractical. To address this, we adopt the mixed character-subword

transformer model [41] which takes characters as input and generates subwords

as output. The model represent the history information by prefix characters

x1, ..., xj instead of subwords a1, ..., ai−1, where j = index(ai)− 1. Therefore, we

have an approximate word probability:

p(x1:T ) =
∑

a1:τa∈Sx

τa∏
i=1

p(ai|x1, ..., xj) (2.2)

In this way, we can calculate the word probability in the time complexity

O(T 2), because there are only T types prefixes as history states, from x1, x1x2 to

x1...xT , and only maximum T types of possible next segments from xi, xixi+1 to

xi...xT , suppose the current index is i. This is a DP algorithm and helps speed

up the segmentation process.
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In the training phase, the generation probability of the model for the un-

segmented sequences is optimized. Figure 2.2 provides an example. During the

training phase, we can obtain the probability of the word “watching” by sum-

ming the probabilities of all possible subword segmentations such as “watch+ing”

and “wat+ching,” where the probability of each segmentation is the product of

the probability of all its segments following the chain rule, calculated by a neu-

ral model. The training objective for this unsupervised task is to maximize the

generation probability of all words:
∑

x1:T∈D logP (x1:T ) where D is the training

corpus consisting of the words. For one word x the marginalization P (x1:T ) is the

sum of probabilities of all possible segmentations, calculated through Eq. (2.2).

The gradient is calculated automatically through PyTorch and then propagated.

The detailed calculation process can be found in Section 3.1 of the sequence mod-

eling work [143]. In the decoding phase, we calculate the probabilities of all

segmentations and then trace the one with maximum probability as the optimal

segmentation.

2.2.2 SelfSeg: Self-supervised Subword Segmentation Method

We propose a self-supervised method to train a subword segmenter. Given a

masked version of one word, the segmenter maximizes the likelihood of all seg-

mentations of the word during training, and selects one segmentation with the

highest likelihood during decoding.

The masked version of the word is denoted by xM . And we maximize the

generation probability of word x1:T during training by the following objective:

log p(x1:T |xM ) = log
∑

a1:τa∈Sx

τa∏
i=1

p(ai|xM , x1, ..., xj) (2.3)

We propose the charMASS to generate xM :

• charMASS: character-level MAsked Sequence-to-Sequence pre-training (char-

MASS), where half of the consecutive characters in one word are masked.

We select the start position of the span from the indexes of the first half of

the characters.
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In addition, we consider three alternatives:

• subwordMASS: subword level MAsked Sequence-to-Sequence pre-training

(MASS), where half of the consecutive subword segments in one word are

masked. We select the start position of the span from the indexes of the

first half of the subwords.

• subwordMASK: strategy used in the MASKed language model, where

every subword segment is individually masked with a certain probability.

We set it to 15% following the BERT paper [24].

• w/o masking: where we set xM to the original word x without any masks.

Figure 2.3 illustrates the charMASS method. We directly mask characters in

charMASS. However, we generate an initial segmentation using existing subword

segmentation methods such as BPE [116], and mask part of the subwords. We

generate the next subword possibilities for each position. The training objective

is to maximize the possibility of all paths and in the decoding phase we retrace

the optimal path. We create the word-level data by splitting sentence-level data

into one word per line format. During decoding, we decode each type of word

once which accelerates the decoding phase.

2.2.3 Word Frequency Normalization

We propose frequency normalization methods to speed up the training phase. The

motivation is the observation that high-frequency words make up a large part of

the training set, such as the words “the” and “is”. However, they can not provide

sufficient training signals because most of them are short and non-compound

words and tend to stay unsegmented.

Suppose word wi occures qi times in the corpus. And freq is a function that

maps wi into qi. We propose normalizing function norm acting on the func-

tion freq and generate normalized frequency nqi for each word, that is norm ◦
freq(wi) = nqi.

We propose the Threshold as norm
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Transformer Encoder

Embedding

Transformer Decoder

Embedding

w a t c M M M M w a t c h i n g<s>

gnihctaw

inhichatwat

ingchingatchwatch

Softmax

Optimal Path

Figure 2.3: Mixed character-subword transformer. The input of the encoder

is one word with masks. The output of the decoder is the possibilities of the next

subwords in each position. We optimize all paths during training and retrace the

optimal path during decoding.

• Threshold: threshold(x) = ⌊x/d⌋, where we remove words with frequency

lower than a threshold d and reduce the frequency for other words. We set

d to 10.

In addition, we consider three alternatives:

• Sqrt: sqrt(x) = ⌊
√
x⌋, in this way we reserve all types of words while

especially reduce the frequency of high-frequency words.

• Log: log(x) = ⌊log2 x⌋, where we also reserve all types of words and cuts

the frequency of high-frequency words more strongly.

• One: One(x) = 1, where we retain only the type information and removes

the frequency information.

We create the training data by 1) obtaining a word-frequency table from the

corpus, 2) applying the normalizing function and obtaining the normalized word-
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frequency table, and 3) copying each word wi by nqi times and then shuffle the

dataset.

2.2.4 SelfSeg Regularization

Algorithm 1 shows the proposed SelfSeg-Regularization algorithm that is to in-

crease the variety of the generated subwords. At each position i of word x during

decoding, we calculate the scores βj of choosing the subword xj:i. Instead of se-

lecting the index j with the highest score, we perform weighted random sampling

to draw the next subword. As shown in Line 5, the weights are calculated by

feeding the probability of each index j to a softmax function with temperature t

to control the diversity. We save the idxi and retrace the segmentation z for each

run. During decoding, for each type of word, we run the algorithm N times to

generate a list of N segmentations.

Algorithm 1: SelfSeg-Regularization

Input: x is a word containing T characters, V is a subword vocabulary, t

is the temperature hyperparameter.

Output: Segmentation z

1 for i← 1 to T do

2 for j ← 1 to i do

3 if xj:i ∈ V then

4 βj ← αj−1 + logP (xj:i|x1, .., xj−1);

5 idxi ← randomChoice([1, ..., i], weights = softmax(β/t));

6 αi ← βidxi
;

7 z ← retrace(idx);

8 return z;
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2.3 Experimental Settings

2.3.1 Datasets

We experimented with low-resource, middle-resource, and high-resource MT set-

tings. The datasets are listed in Table 2.1, where the size of the vocabulary is

set for both the segmenters1 and NMT models for all methods, if not otherwise

specified. We applied Juman++ [132] for Japanese, Stanford-tokenizer [75] for

Chinese and Moses tokenizer [58] to data of all the other languages. We normal-

ized Romanian data and removed diacritics following previous work [115].

Dataset Train Valid Test Vocab

ALT Asian Langs-En 18k 1, 000 1, 018 8k

IWSLT15 Vi-En 133k 1, 553 1, 268 8k

WMT16 Ro-En 612k 1, 999 1, 999 8k

WMT15 Fi-En 1.8M 1, 500 1, 370 8k

WMT14 De-En 4.5M 45, 781 3, 003 8k

WMT14 Fr-En 10.0M 26, 875 3, 003 8k

Table 2.1: Statistics of the corpora used in the NMT experiments.

Low-resource Setting We used the ALT multi-way parallel dataset [131].

We used English and 6 Asian languages: Filipino (Fil), Indonesian (Id), Japanese

(Ja), Malay (Ms), Vietnamese (Vi), and simplified Chinese (Zh). The SelfSeg

segmenter is applied to only the target language side. Therefore, we train one

SelfSeg segmenter using 50, 000 randomly selected English sentences from news

commentary corpus2 for all the Asian language to English directions. We trained a

Japanese SelfSeg segmenter using 98k Japanese sentences from KFTT dataset [98]

for English to Japanese direction and an Indonesian SelfSeg segmenter using 62k

Indonesian sentences from the Indonesian news commentary corpus for English to

Indonesian direction. We trained one DPE [41] segmenter for each language pair

in ALT using the corresponding 18, 088 parallel sentences. We trained BPE [116],

1We keep in line with SPM’s definition of vocabulary size.
2http://data.statmt.org/news-commentary/v14/
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BPE-dropout [106] and VOLT [150] segmenters using the 18, 088 monolingual

sentences in ALT for the corresponding languages.

Middle- and High- Resource Setting We used the IWSLT’15 Vietnamese-

English, WMT’16 Romanian-English, WMT’15 Finnish-English, WMT’14 German-

English,3 and WMT’14 French-English4 corpora. We use the first 10.0 million par-

allel sentence pairs in the WMT’14 French-English train set in our experiments.

We used English monolingual sentences from the training set of each corpus as

the training data for all methods except DPE. For the DPE method, we used the

parallel sentences from the train sets following the official implementation,5 where

the input of the encoder is the sentence in the source language, and the predicted

output is the sentence in the target language.

2.3.2 Segmenter Model Settings

BPE, SentencePiece, VOLT, and BPE-dropout For BPE [116], we used

a widely adopted toolkit6 with model type as BPE. For SentencePiece, we use

unigram language model implemented in the toolkit. For VOLT [150], we used

the default setting in the official implementation.7 For BPE-dropout [106], we

apply dynamic dropout for each epoch and with a drop rate of 0.1 (0.05 for

English→Japanese) selected by hyperparameter tunning.

SelfSeg and DPE For SelfSeg, we used charMASS as the masking strat-

egy and Threshold as the word frequency normalization strategy in Section 2.4.

Detailed analysis of the masking strategies and frequency normalization strate-

gies are shown in Section 2.5. For the SelfSeg and DPE, we used the mixed

character-subword transformer model with DP algorithm, where the transformer

architecture is of 4 encoder layers and 4 decoder layers, dropout of 0.3, inverse sqrt

learning rate scheduler with 4, 000 warmup steps, and the dynamic programming

3https://github.com/facebookresearch/fairseq/blob/main/examples/translation/

prepare-wmt14en2de.sh
4https://github.com/facebookresearch/fairseq/blob/main/examples/translation/

prepare-wmt14en2fr.sh
5https://github.com/xlhex/dpe
6https://github.com/google/sentencepiece
7https://github.com/Jingjing-NLP/VOLT
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cross-entropy criterion as described in the DPE method. We set the number of

training epochs to 50, which is large enough for convergence. Additionally, for the

mixed character-subword transformer model, the vocabulary V should contain all

characters to prevent OOV problems and commonly used subwords. Here we used

a subword vocabulary generated by the BPE algorithm [116], which satisfies the

two conditions, following previous work [41].

SelfSeg-Regularization We set N to 10 and t to 10 (t to 3 for English to

Japanese) in Algorithm 1. In the MT experiments, at each epoch, we dynamically

generate a segmentation for each sentence in the dataset. For each word in the

sentence, we randomly select one of the N segmentations.

Note that DPE, SelfSeg, and SelfSeg-Regularization are used to segment only

the target side in the MT experiments. The source-side simply uses BPE data for

SelfSeg and BPE-dropout data for the SelfSeg-Regularization. This is because the

loss function of the segmenter is to maximize the generation probability. There-

fore, these segmentations are effective for the target sentence. This is also studied

in the DPE work [41].

2.3.3 NMT Settings

We used the fairseq framework [100] with the Transformer [135] architecture with

6 layer encoder (except for Filipino where 4 encoder layers were sufficient), 6

layer decoder and 1 attention head, decided through hyperparameter tuning as

suggested by Rubino et al. [110]. Dropout of 0.1 and label smoothing of 0.1 is

used. We used layer normalization [64] for both the encoder and decoder. We used

a vocabulary size of 8, 000 for the NMT models. Batch-size is set to 1, 024 tokens.

We used the ADAM optimizer [55] with betas (0.9, 0.98), warm-up of 4, 000 steps

followed by decay, and performed early stopping based on the validation set BLEU.

We used a beam size of 12 and a length penalty of 1.4 for decoding. We reported

sacreBLEU [105], METEOR [6], and BLEURT [113] on detokenized outputs.
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Fil→En Id→En Ja→En Ms→En Vi→En Zh→En Avg ∆

w/o Regularization

BPE [116] 23.09 25.70 9.42 28.19 19.94 12.21 19.76 0.00

SentencePiece [61] 23.71 25.49 9.94 27.72 18.58 11.74 19.53 −0.23

VOLT [150] 22.99 25.05 10.56 27.91 21.64 11.31 19.91 0.15

DPE [41] 24.04 26.66 9.93 27.89 20.06 10.72 19.88 0.13

SelfSeg 25.20* 27.10* 11.39* 28.15 22.44* 12.03 21.05 1.29

With Regularization

BPE-dropout [106] 28.18 28.02 12.84 31.59 23.67 13.91 23.04 3.13

SelfSeg-Regularization 29.94* 29.34* 15.23* 32.31* 23.93* 13.64* 24.07 4.31

Table 2.2: Low-resource Asian languages to English MT results. The

numbers in the table indicate the sacreBLEU scores. We show the average BLEU

scores (Avg) and the improvements (∆) over the BPE method. Methods are

separated into without regularization and with regularization. Statistical signifi-

cance [56] is indicated by * (p < 0.001) between the BPE baseline and the proposed

methods in each direction.

2.4 Results

We report the performance of NMT as well as the training/decoding speed of our

methods compared with existing works in this section.

2.4.1 MT Results

Low-Resource Scenario Tables 2.2 and 2.3 show low-resource Asian language

to English NMT results. SelfSeg-Regularization achieves the highest BLEU scores

among all methods in almost all directions, outperforming the BPE method by

4.31 BLEU scores on average. Among methods without regularization, proposed

SelfSeg outperforms not only frequency-based methods but also neural method

DPE. However, we observed that for the Ms→En and Zh→En directions, the pro-

posed SelfSeg method is slightly worse (which is not significant) than the BPE

method. In particular, we find that both neural methods (DPE and SelfSeg)

perform relatively poorly in the Zh→En direction. Actually, for all directions
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Fil→En Id→En Ja→En Ms→En Vi→En Zh→En Avg ∆

w/o Regularization

BPE [116] 29.1/45.0 31.1/49.2 20.1/32.4 32.7/52.0 27.6/44.6 22.9/36.9 27.2/43.3 0.0/0.0

SentencePiece [61] 29.7/46.1 31.2/48.9 21.0/33.8 32.2/51.0 26.6/42.4 21.6/34.2 27.0/42.7 -0.2/-0.6

VOLT [150] 29.2/45.2 31.0/48.8 21.2/34.2 32.5/51.1 28.4/46.6 22.2/35.5 27.4/43.6 0.2/0.2

DPE [41] 29.7/46.5 31.8/50.5 21.1/34.4 32.5/51.6 26.9/43.9 21.5/35.3 27.3/43.7 0.0/0.3

SelfSeg 30.2/47.3 32.0/51.3 21.5/35.3 32.6/52.3 28.4/46.3 22.4/36.5 27.9/44.8 0.6/1.5

With Regularization

BPE-dropout [106] 32.0/51.1 33.0/52.2 22.8/36.9 34.8/55.8 29.1/48.3 23.6/38.8 29.2/47.2 2.0/3.8

SelfSeg-Regularization 33.2/52.6 33.5/53.9 24.4/40.1 35.0/56.5 29.7/48.7 23.0/38.8 29.8/48.4 2.6/5.1

Table 2.3: Low-resource Asian languages to English MT results. The

numbers in the table indicate the METEOR [6]/BLEURT [113] scores. We show

the average scores and the improvements (∆) over the BPE method.

SelfSeg are better (or worse) than BPE, DPE is also better (or worse) than BPE.

Therefore, we assume that for segmentations generated by neural segmenters, the

performance does have a correlation with the source language. We will leave the

in-depth exploration of this question as future work. We found that adding regu-

larization yields significant BLEU score improvement in the low-resource situation.

The SelfSeg-Regularization method substantially improves over BPE. Results of

the METEOR and BLEURT evaluation metrics also show similar trends.

Tables 2.4 and 2.5 show English to Japanese and Indonesian NMT results of

the ALT dataset, English to Romanian results of the WMT16 Ro-En dataset,

and the English to Finnish results of the WMT15 Fi-En dataset. In English to

Indonesian direction, the SelfSeg-Regularization outperforms all baseline methods

substantially. For the English to Japanese direction, the improvement is limited

because the average length of the Japanese words in the ALT dataset is short,

only 1.87, resulting in less variety in word segmentation. As a comparison, the

average length of English words is 4.54 and the average length of Indonesian

words is 5.50. This may explain why regularization brings more improvement for

English→Indonesian than English→Japanese. For the En→Ro and En→Fi trans-

lation directions, we observed that the SelfSeg performs best among the w/o regu-
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En→Ja En→Id En→Ro En→Fi

w/o Regularization

BPE [116] 12.69 28.08 33.62 15.54

SentencePiece [61] 12.58 26.01 33.17 15.75

VOLT [150] 13.11 28.46 33.13 15.24

DPE [41] 13.46 29.29 33.71 15.27

SelfSeg 13.26 29.00 33.72 15.85

With Regularization

BPE-dropout [106] 14.97 30.74 35.48 17.04

SelfSeg-Regularization 14.31* 33.77* 35.47* 16.93*

Table 2.4: En→Other language results. En→Ja and En→Id directions are from

the ALT dataset, En→Ro direction is from the WMT16 Ro-En dataset and

En→Fi direction is from the WMT15 Fi-En dataset. Statistical significance [56]

is indicated by * (p < 0.001) between the BPE baseline and the proposed methods

in each direction.

larization methods whereas the results of BPE-dropout and SelfSeg-regularization

are comparable in terms of the BLEU, METEOR and BLEURT metrics.

Middle- and High-Resource Scenario The results for the middle- and

high-resource scenarios are presented in Tables 2.6 and 2.7. The proposed methods

show up to 1.9 BLEU score improvement, 1.0 METEOR score improvement and

1.4 BLEURT score improvement compared with BPE and outperform other base-

line methods for all datasets except the high-resource settings WMT14 De→En

and WMT14 Fr→En. Additionally, the neural methods (DPE and SelfSeg) out-

perform non-neural methods (BPE and SentencePiece) in most settings.

We find that the effect of subword segmentation on performance becomes

marginal as the training data becomes larger. For the WMT14 De→En and

WMT14 Fr→En directions, we found no improvement over BPE. Additionally,

two methods with regularization didn’t show better results than methods without
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En→Ja En→Id En→Ro En→Fi

w/o Regularization

BPE [116] 24.87/17.94 30.13/46.66 31.19/66.92 19.84/62.02

SentencePiece [61] 23.91/17.50 29.29/45.99 31.20/66.38 20.31/63.16

VOLT [150] 25.10/18.45 30.31/46.70 31.12/66.02 19.79/61.86

DPE [41] 25.24/18.39 30.76/48.00 31.42/66.69 19.94/62.86

SelfSeg 25.24/18.45 30.59/47.97 31.08/67.30 19.98/62.71

With Regularization

BPE-dropout [106] 26.00/20.84 31.56/48.66 32.10/69.59 20.90/65.20

SelfSeg-Regularization 25.47/20.65 33.07/50.72 32.04/69.44 21.05/65.61

Table 2.5: En→Other language results. En→Ja and En→Id directions are from

the ALT dataset, En→Ro direction is from the WMT16 Ro-En dataset and

En→Fi direction is from the WMT15 Fi-En dataset. The numbers in the ta-

ble indicate the METEOR [6]/BLEURT [113] scores.

regularization. This is also shown in the DPE work [41] where the improvement

is marginal, and the BPE-dropout work [106] where the dropout hurts the per-

formance for larger datasets. Therefore, one of the limitations of our approach

is the small to medium sized MT dataset. Note that we didn’t conduct DPE

experiments on the WMT14 De→En and WMT14 Fr→En datasets because of

excessive computational resource consumption as shown in Section 2.4.2.

2.4.2 Training and Decoding Speeds

Figure 2.4 provides the training speeds and decoding speeds of SelfSeg, BPE and

DPE. The training speed of SelfSeg is 17.8x faster than the DPE method on the

WMT’16 Ro-En dataset and 18.7x faster on the ALT dataset. Although the speed

is not as fast as the BPE method, the training process can finish in approximately

one hour for a 612k size dataset, which is much more acceptable than the DPE

method which requires more than one day.
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IWSLT15 Vi→En WMT16 Ro→En WMT15 Fi→En WMT14 De→En WMT14 Fr→En

w/o Regularization

BPE [116] 27.09 32.54 17.45 31.00 34.97

SentencePiece [61] 26.58 31.48 17.74 30.62 34.92

VOLT [150] 27.16 31.89 17.25 31.24 35.60

DPE [41] 27.40 33.05 17.51 - -

SelfSeg 28.19 32.59 18.00 30.82 34.91

With Regularization

BPE-dropout [106] 28.76 33.59 18.89 30.56 34.38

SelfSeg-Regularization 29.01* 34.01* 19.01* 30.59 34.39

Table 2.6: Middle- and high-resource MT results with BLEU scores. Statistical

significance [56] is indicated by * (p < 0.001) between the BPE baseline and the

proposed methods in each direction.

IWSLT15 Vi→En WMT16 Ro→En WMT15 Fi→En WMT14 De→En WMT14 Fr→En

w/o Regularization

BPE [116] 31.16/57.75 35.18/61.99 27.06/55.83 34.09/64.66 36.24/67.04

SentencePiece [61] 30.63/56.42 34.43/60.64 27.32/56.45 33.49/63.68 36.74/67.46

VOLT [150] 30.90/57.13 34.90/61.28 26.73/55.44 34.04/64.60 37.00/67.80

DPE [41] 31.07/57.61 35.47/62.28 27.38/55.96 - -

SelfSeg 31.46/58.50 35.26/62.44 27.45/56.67 33.54/64.42 36.17/67.31

With Regularization

BPE-dropout [106] 32.09/59.07 35.73/63.38 28.39/58.43 33.59/64.18 35.95/66.88

SelfSeg-Regularization 32.15/59.17 35.84/63.35 28.11/57.87 33.55/63.72 36.41/66.77

Table 2.7: Middle- and high-resource MT results. The numbers in the table

indicate the METEOR [6]/BLEURT [113] scores.

The decoding speed of SelfSeg is 5.9x on a smaller ALT dataset and 36.8x

on a larger WMT16 Ro-En dataset compared with the DPE method. This is

because, according to Zipf’s law, the number of distinct words in a document

increases much slower compared with the increment of the total number of words

in the document, i.e ∆O(#distinct words)≪ ∆O(#total number of words). As

shown in Table 2.8, for the smaller ALT dataset, DPE needs to decode 14.3x more

tokens than SelfSeg, however, for the larger WMT’16 Ro-En dataset, DPE needs

to decode 186.5x more tokens than SelfSeg. Therefore, the advantage of SelfSeg

becomes greater when the corpus becomes bigger because it only needs to decode
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Figure 2.4: The training and decoding speeds of BPE, DPE, and SelfSeg methods

on two datasets.

each distinct word once in the corpus.

The SelfSeg-Regularization method is only applied in the decoding phase,

therefore the training time is the same as SelfSeg. During decoding, it generates N

segmentations for one word, therefore, the time consumption is N times compared

with SelfSeg. When we set N to 10, the decoding time will still be less than that

of DPE.

The speed improvement is important because, in a latency-sensitive scenario,

it is important to minimize as many computations as possible. Given that SelfSeg

can lead to more intuitive segmentations (as seen in Section 2.5.6) and better

translation than BPE while being significantly faster than DPE, which indicates

that the proposed method can be very reliable in a low-latency scenario.
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ALT WMT16 Ro-En

DPE 478k 16M

SelfSeg 33k 70k

Table 2.8: Number of tokens DPE and SelfSeg methods require to decode for each

dataset.

ALT
Asian Langs→En

IWSLT15
Vi→En

WMT16
Ro→En

WMT15
Fi→En

WMT14
De→En

WMT14
Fr→En

w/o Regularization

BPE [116] 34.04 24.80 30.40 26.63 35.41 35.33

SentencePiece [61] 41.00 28.15 35.30 29.39 35.79 35.15

VOLT [150] 34.04 25.14 29.60 26.03 32.88 32.74

DPE [41] 34.17 24.62 27.44 25.67 - -

Selfseg 40.31 25.92 34.23 29.19 36.18 36.74

With Regularization

BPE-dropout [106] 47.20 32.69 44.36 38.82 47.51 49.29

Selfseg-regularization 44.51 32.18 43.50 38.00 46.67 49.25

Table 2.9: The average number of subwords in each English sentence by different

segmenters.

As a supplement, we provide statistics on how many subwords each sentence

contains. As shown in Table 2.9, there is no significant difference in the number

of subwords in the sentence using different segmentation methods. For the with-

out regularization group, the order from high to low is SentencePiece, SelfSeg,

BPE, VOLT, DPE. For the with regularization group, BPE-dropout, Selfseg-

regularization. This shows that the number of subwords is not a key reason for

the speed difference.
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2.5 Analysis

2.5.1 Masking Strategies

Table 2.10 shows the performance of using different masking strategies. The

charMASS method shows the highest performance, while the performance of sub-

wordMASS is also higher than w/o masking, whereas subwordMASK is slightly

worse than w/o masking. This is because the subwordMASK objective is not

very suitable for the generation task. Second, charMASS shows higher BLEU

scores than subwordMASS. This is because the number of characters in the word

is more than the number of subwords. During training, charMASS can generate

more variants of the masked source inputs, which provides more training signals.

Furthermore, results of using 1) different masking ratios and 2) consecutive or

non-consecutive masking strategies for charMASS on the Vi→En direction of the

IWSLT15 dataset are shown in Figure 2.5. We mask ⌊ratio ∗ #chars⌋ charac-

ters in each word. For the consecutive strategy, we choose the start point of the

masking span from the possible start points randomly. For the non-consecutive

strategy, we shuffle a list containing 0s with the number of masking characters

and 1s with the number of non-masking characters to obtain the masking posi-

tions. We found that for both consecutive masking and non-consecutive masking

methods, 0.5 is the best ratio for all settings except SelfSeg-Regularization with

consecutive masking, and the performance drops if the masking ratio is very high

(0.9) or very low (0.1). Additionally, there is no significant difference between

using consecutive masking and non-consecutive masking strategies.

Fil→En Id→En Ja→En Ms→En Vi→En Zh→En Avg

charMASS 25.20 27.10 11.39 28.15 22.44 12.03 21.05

subwordMASS 24.51 26.42 11.17 28.60 21.15 10.97 20.47

subwordMASK 23.79 25.35 10.26 28.34 21.37 12.00 20.19

w/o mask 24.11 26.45 10.23 28.12 21.20 11.85 20.33

Table 2.10: The BLEU scores of SelfSeg with different masking strategies.
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Figure 2.5: Performance of using different masking ratios and strategies for char-

MASS. Left: Consecutive masking strategy. Right: Non-consecutive masking

strategy. Tested on the Vi→En direction of the IWSLT15 dataset.

2.5.2 Word Frequency Normalization Strategies

Table 2.11 presents the performance of SelfSeg using different word frequency nor-

malization strategies. We found that 1) using word frequency normalization shows

comparable BLEU scores with w/o Norm, and 2) all strategies yield similar results

except One, which may come from the large difference in frequency distribution

between training and real data. We used subwordMASS strategy here.

Fil→En Id→En Ja→En Ms→En Vi→En Zh→En Avg

w/o Norm 24.51 26.42 11.17 28.60 21.15 10.97 20.47

Threshold 24.74 25.86 10.42 28.82 20.90 12.06 20.47

Sqrt 23.48 25.95 10.64 28.31 20.64 12.04 20.18

Log 24.80 26.03 11.67 28.21 20.67 12.71 20.68

One 22.89 24.80 10.25 26.82 19.87 11.56 19.37

Table 2.11: BLEU scores of SelfSeg with different normalization strategies.
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2.5.3 Types of Training Data

We demonstrate that parallel or sentence-level training data is unnecessary and

monolingual word-level data is sufficient by both subword segmentation results

and MT results.

Metrics The MT performance is measured by BLEU scores, and we measure

the difference in subword segmentation generated by two segmenters on a given

dataset through the following metric.

For each word, we define the Word Difference Rate (DIFword) by Eq. (2.4),

where S1 and S2 are sets of subword segmentations for the given word generated

by two segmenters. |S| is the size of S, nword is the frequency of word in the

corpus.

DIFword (S1 ,S2 ,word) =

∑|S1|
i=1

∑|S2|
j=1(seg i ̸= segj)

nword2
(2.4)

We define Corpus Different Rate (DIFcorpus) based on DIFword in Eq. (2.5),

where W is a set containing all types of words wordi for the given corpus, |W | is

the size of W .

DIFcorpus(S1 ,S2 ,W ) =

∑|W |
i=1 DIFword (S1 ,S2 ,wordi) ∗ nword i∑|W |

i=1 nword i

(2.5)

Additionally, if S1 = S2, DIFword and DIFcorpus measure the consistency of

segmentation of the same word in different sentences by the segmenter.

Settings We calculate DIFcorpus among BPE, DPE, SelfSeg-Sentence (using

sentence-level data), and SelfSeg on the English part of the IWSLT’15 Vi-En

dataset. All four methods use the same vocabulary. The input of SelfSeg-Sentence

is a monolingual sentence instead of word during both training and decoding.

subwordMASS is used for SelfSeg and SelfSeg-Sentence.

Parallel Data is Not Necessary Tables 2.12 and 2.13 present the MT

results where using monolingual sentence-level data achieved higher BLEU scores

than using parallel data. Figure 2.6 shows the DIFcorpus results. SelfSeg-Sentence

gives more consistent segmentations compared with DPE (0.17% vs. 0.5%).

Sentence-level Data is Not Necessary Comparing SelfSeg-Sentence (DPE)

and SelfSeg, we can find that SelfSeg using word-level data achieves higher MT
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performance, showing that word-level data is enough for MT. The DPE work [41]

used sentence-level data based on the assumption that one word will be segmented

differently in different contexts. We found the DIFcorpus (DPE,DPE, IWSLT15)

is only 0.5%, showing that this assumption is not valid. Furthermore, we divided

the words occurring in the dataset into two sets, Whigh containing high-frequency

words (nword > 5) and Wlow containing low-frequency words (nword <= 5). We

found DIFcorpus(DPE,DPE,Whigh) is only 0.40%, on the other hand, we found

DIFcorpus(DPE,DPE,Wlow) is 6.14%. Even for the Wlow with high DIFcorpus,

one word should be segmented consistently. For example, DPE segments word

jumbled into ju+mble+d and j+umb+led, and word mended into me+nded and

m+ended, whereas the SelfSeg generates j+umb+l+ed and m+end+ed.

Figure 2.6: DIFcorpus among different segmentation methods on the IWSLT’15

Vi-En dataset.

2.5.4 Sizes of Training Data for SelfSeg

In this section, we investigate the impact of the amount of monolingual data used

in the segmenter training. The results are represented in Table 2.14. The amount

of English data to train the SelfSeg segmenter varies from 18k to 10M , where the

18k setting used the ALT English data, the 50k and 532k setting used the news

commentary corpus, the 4.5M setting used the English side of the WMT14 De-En
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Fil→En Id→En Ja→En Ms→En Vi→En Zh→En Avg

BPE [116] 23.09 25.70 9.42 28.19 19.94 12.21 19.76

DPE [41] 24.04 26.66 9.93 27.89 20.06 10.72 19.88

SelfSeg-Sentence 24.28 25.37 10.74 28.25 21.36 12.11 20.35

SelfSeg 24.51 26.42 11.17 28.60 21.15 10.97 20.47

Table 2.12: BLEU scores on the ALT dataset using segmenters trained on differ-

ent types of data. DPE uses parallel sentence-level data, SelfSeg-Sentence uses

monolingual sentence-level data, and SelfSeg uses monolingual word-level data.

IWSLT15 Vi→En

BPE [116] 27.09

DPE [41] 27.40

SelfSeg-Sentence 27.79

SelfSeg 28.19

Table 2.13: BLEU scores on IWSLT15 Vi→En dataset with segmenters trained

on different types of data.

dataset and the 10.0M setting used the English side of the WMT14 Fr-En dataset.

We find that using more monolingual data brings performance improvement. Es-

pecially with 10M monolingual sentences from WMT14 Fr-En, the improvement

reached 1.7 BLEU score compared with SelfSeg using 18k monolingual sentences.

Although with more data, the performance of using BPE also improves, the im-

provement is small compared with that of SelfSeg.

2.5.5 Lightweight SelfSeg Model

We examine a lightweight segmenter model SelfSeg-Light, given that the training

data is word-level and on a small scale. The architecture of SelfSeg-Light is

a single-layer transformer encoder and a single-layer transformer decoder. As

illustrated in Table 2.15, the performance of SelfSeg-Light is comparable with

SelfSeg, which indicates that maybe there is no need to use a large model.
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Fil→En Id→En Ja→En Ms→En Vi→En Zh→En Avg

Size: 18k

BPE [116] 23.09 25.70 9.42 28.19 19.94 12.21 19.76

DPE [41] 24.04 26.66 9.93 27.89 20.06 10.72 19.88

SelfSeg 24.11 25.85 11.11 28.73 20.68 10.46 20.16

Size: 50k

BPE [116] 23.90 25.62 10.54 28.62 19.99 11.51 20.03

SelfSeg 24.51 26.42 11.17 28.60 21.15 10.97 20.47

Size: 532k

BPE [116] 23.71 25.68 10.59 28.53 21.57 11.04 20.19

SelfSeg 23.96 26.40 9.93 28.01 20.92 11.66 20.15

Size: 4.5M

BPE [116] 23.77 26.43 10.64 27.75 22.11 11.37 20.35

SelfSeg 25.60 26.45 10.09 28.57 20.23 12.22 20.53

Size: 10.0M

BPE [116] 24.53 25.69 10.59 28.14 21.45 11.92 20.39

SelfSeg 26.49 27.37 11.84 29.47 23.10 12.90 21.86

Table 2.14: Performance of the segmenter model trained on different sizes of the

training data. We only have DPE 18k because it uses ALT parallel data.

2.5.6 Segmentation Case Study

In this section, we analyze the segmentation and show why the segmentation

generated by our method leads to better performance on the downstream MT

task.

Table 2.16 shows examples of words with different segmentations between the

BPE and SelfSeg method on the ALT dataset. We can observe that the BPE

method tends to generate high-frequency subwords, due to the greedy strategy,

whereas our SelfSeg, powered by the DP algorithm, tends to generate linguistically

intuitive combinations of subwords for not only frequent words but also rare words.

This observation is similar to that by [41]. Additionally, Table 2.17 provides some

examples of subword segmentations by BPE-dropout [106] and proposed SelfSeg-

Regularization. Both methods yield high diversity of segmentations while the

proposed method generates more linguistically intuitive subwords.
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Fil→En Id→En Ja→En Ms→En Vi→En Zh→En Avg

SelfSeg 25.20 27.10 11.39 28.15 22.44 12.03 21.05

SelfSeg-Light 25.26 26.07 11.34 29.10 20.64 12.05 20.74

Table 2.15: BLEU scores of transformers with 4- and 1-layer. With charMASS

strategy.

To verify whether our segmentation looks intuitive for the neural models, we

trained neural word language models with Transformerbase architecture,8 the

same used in the MT experiments, and checked the decoding perplexity. For

each segmentation method, we train an English neural word language model on

the ALT-train set and test on the ALT-test set segmented by that method. As

presented in Table 2.18, the decoding perplexity of DPE and SelfSeg methods

are much lower than that of the BPE method, which we assume is due to the

optimization of the log marginal likelihood of the DPE method. From the results

of neural LMs, we can infer that when applying our segmentations to MT tasks,

the decoder tends to be more certain, as indicated by the low entropy.

2.6 Conclusion and Future Work

We proposed a novel method SelfSeg for neural subword segmentation to improve

the performance of NMT and only requires monolingual word-level data. It mod-

els the word generation probability through all segmentations and chooses the

segmentation with MAP. We propose masking strategies to train the model in

a self-supervised manner, word-frequency normalization methods to improve the

training speed, and a regularization mechanism that helps to generate segmen-

tations with more variety. Experimental results show that NMT using proposed

SelfSeg methods is either comparable to or better than NMT using BPE and

DPE in low-resource to high-resource settings. And the regularization mecha-

nism achieves a large improvement over baseline methods.

Furthermore, both the training speed and testing speed are more than ten

8https://github.com/pytorch/examples/tree/master/word\_language\_model
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BPE [116] SelfSeg BPE [116] SelfSeg

frequent words rare words

dam + aged damage + d d + raf + ting d + raft + ing

com + ments comment + s murd + ered murder + ed

hous + es house + s Net + w + orks Net + work + s

subsequ + ently subsequent + ly aut + h + ored author + ed

wat + ching watch + ing disag + reed disagree + d

sec + retary secret + ary one-shot words

un + k + n + own un + know + n reinfor + ces reinforce + s

refere + es refer + ee + s sub + stit + utions sub + stitution + s

langu + ages language + s trad + em + ar + ks trade + mark + s

you + n + gest young + est ris + king risk + ing

mom + ents moment + s Somet + hing Some + thing

Table 2.16: Examples of subword segmentations by different approaches.

The frequency of rare words are < 5, and one-shot words appear only once in the

ALT training data.

times faster than those of DPE. Analyses show the context-agnostic property of

the subword segmentation, therefore sentence-level training data is not required.

Moreover, the segmentations given by the proposed method are more linguistically

intuitive as well as easier for the neural decoder to generate as indicated by the

low entropy.

Our future work will focus on several directions. First, we are implement-

ing the pre-trained encoder such as BERT/mBERT/BART/mBART on the seg-

menter. The charMASS method only captures the lexical information and in-

volving semantic information may further improve the quality. Second, we will

try to extend the model to multilingual settings. In this way, we only need to

train one model to pre-process data of all languages instead of training multiple
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BPE-dropout [106] SelfSeg-Regularization

frequent words

sub + sequ + ently subsequent + ly

subsequ + ently subsequ + ent + ly

s + ub + sequ + ent + l + y subsequent + l + y

sub + sequ + ently subsequent + ly

subsequently subsequ + en + t + ly

rare words

disag + reed disagree + d

d + is + ag + reed disag + r + e + ed

disag + re + ed disag + re + e +d

disag + reed dis + ag + r + e + ed

d + is + ag + reed disagree + d

one-shot words

rein + for + ces reinforce + s

re + in + f + or + ces reinfor + ces

re + in + for + ces reinforce + s

rein + for + ces reinforce + s

re + in + for + ces reinfor + c + e + s

Table 2.17: Examples of subword segmentations by BPE-dropout and SelfSeg-

Regularization on the ALT dataset.

models for different languages, which can drastically reduce the training time and

increase the efficiency of the application. Third, the direction of joint training

of the segmenter and the downstream tasks model is also promising, where the

segmenter will be aware of the downstream tasks explicitly and be optimized to

improve the performance of downstream tasks. Finally, optimizing the vocabulary

for sequence generation is necessary. Although the segmentations are optimized
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PPL per line PPL per token # tokens per line

BPE [116] 29,688.2 799.4 37.1

DPE [41] 28,498.7 816.1 34.9

SelfSeg 28,714.0 772.2 37.2

Table 2.18: The perplexity of neural LMs. SelfSeg uses subwordMASS strategy.

for the neural model to generate the word, the possible segments themselves are

generated by BPE, which are not optimized for sequence generation.



Chapter 3

BERTSeg: BERT-based

Unsupervised Subword

Segmentation for Low-Resource

Neural Machine Translation

Subword segmentation is the task of splitting a word into smaller n-gram character

units called subwords [112]. It alleviates the out-of-vocabulary (OOV) problem in

neural machine translation (NMT) [126, 4, 135] by enabling an NMT system

to have a fixed-size vocabulary while being able to handle all possible words

regardless of their frequencies.

Studies in subword segmentation fall into two categories: frequency-based ap-

proaches and neural network-based approaches. Frequency-based approaches [116,

62, 61, 106] adopt a greedy algorithm that generates the vocabulary with fre-

quent subword fragments in the corpus during training and merges adjacent high-

frequency fragments starting from characters recursively during inference. Among

these methods, BPE-dropout [106] and SentencePiece with regularization [61] gen-

erate multiple segmentations by random sampling. Frequency-based approaches

do not consider semantic information of the subwords, therefore the generated

segmentation is not linguistically motivated. For example, the word “fellow-

47
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BERTSeg
Segmentation

watch/ing un/break/able

leak/ed wave/length/s

stress/ful share/holding/s

employ/er/s ab/normal/ly

Table 3.1: BERTSeg produces linguistically intuitive subword semgnetations.

BERTSeg-Regularization
Segmentation

represent/ed represented

represent/e/d re/presented

re/presented re/present/e/d

Table 3.2: BERTSeg-Regularization samples multiple segmentations from one

word.

ships” is segmented into “fell/ows/hip/s” by BPE whereas “fellow/ships” is a

more linguistically motivated segmentation. Neural approaches such as DPE [41]

implicitly considers the contextual semantic information of subwords by maximiz-

ing the generation probabilities of the target language sentences conditioned on

the source language sentences. However, it trains on parallel sentences, which

poses a problem for low-resource languages. DPE is slow because it calculates

the probabilities of all possible sentence segmentations, therefore, not practical in

high-resource scenarios.

We propose BERTSeg, an unsupervised neural subword segmenter that lever-

ages contextualized word representations from the pre-trained model, character-

BERT [29]. It combines the advantages of frequency-based and neural approaches

by 1) leveraging word-level monolingual data and 2) capturing semantic informa-

tion explicitly. The semantic information is provided by characterBERT, which
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He leaned closer as well, watching.

Especially watching my son.

She had someone watching him.

w a t c h i n g

watching watching watching

watching

average

embedding

hidden state

CharacterBERT

Embedding

Transformer Decoder

w a t c h i n g
wat at ch hi in
watch atch ching ing

optimal path

Softmax

<s>

next subword table

Figure 3.1: BERTSeg Architecture. The encoder is a characterBERT that

generates average embeddings for one word in different contexts. The transformer

decoder takes characters as input and generates probabilities of the next subword.

During training, the objective is to maximize the probabilities of all possible

segmentations. During inference, the model retraces the optimal segmentation.

has been shown to be helpful for natural language understanding tasks. In our

task, this enables the model to generate linguistically intuitive segmentations

rather than high-frequency fragments, as shown in Table 3.1.

Furthermore, we propose a subword regularization method named BERTSeg-

Regularization which enables the model to produce multiple segmentations based

on segmentation probabilities to improve the robustness of NMT, as represented

in Table 3.2.

Experimental results on the low-resource ALT and high-resource IWSLT and

WMT datasets show approximately 5 and 2 BLEU points improvement over BPE

with statistical significance p < 0.001 and outperforms all other baseline meth-

ods. Moreover, our method is efficient because of leveraging the word-level data.

BERTSeg requires up to 5 minutes to train, whereas DPE requires hours to days

to train and VOLT also costs 30 minutes to generate the optimal vocabulary.

Finally, analysis shows high generalizability on unseen words.
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3.1 Related Work

Early NMT studies apply word-level vocabulary to represent only frequent words,

which causes the out-of-vocabulary (OOV) problem [126]. To address this, character-

based [53, 20, 69], hybrid word-character based [72], or UTF-8 based [117] NMT

models were proposed. However, the resultant long input/output sequences in-

crease the model and computational complexity.

Subword segmentation methods address the OOV problem by segmenting

words into subwords that are in a fixed vocabulary of character n-grams. BPE [116,

31] generates the subword vocabulary by first splitting all the sentences into char-

acters, then iteratively saving the most frequent adjacent pairs into the vocab-

ulary and merging them, until reaching the desired size. Each test sentence is

segmented similarly. WordPiece [112] and SentencePiece [62] are another two

widely-used subword methods.

Among the subword methods, BPE [116] does not model the input sequence

whereas SentencePiece [62] applies a unigram model to output probabilities of

each segmentation. Based on sequence modeling via segmentations theory [143],

the generation probability of a target sentence can be calculated by the sum of

probabilities of all its possible segmentations. DPE [41] models the whole target

sentence conditioned on the source sentence. However, we show that modeling

words conditioned on their semantic embedding is a more efficient way.

Regularization as data augmentation can boost performance. BPE-dropout [106]

randomly drops subword merge operation. SPM-regularization [61] generates

multiple segmentations with their probabilities. Leveraging the dynamic pro-

gramming algorithm, we retrace the global best-n segmentations with the highest

probabilities in polynomial time.

3.2 Methodology

We aim to obtain the optimal subword segmentation with the highest genera-

tion probability by neural models. First, we introduce the relationship between

word probability and subword segmentation probability. Second, we propose a

model to maximize the marginal word probability and retrace the optimal seg-
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mentation. Additionally, we propose a regularization method to retrace multiple

segmentations for one word.

3.2.1 Background: Word Modeling

We define a word as a single distinct meaningful element of writing. Techni-

cally, we split words in sentences with tools for different languages as described

in Section 3.3. Let x1:T denote a word containing T characters. a1:τa is one

segmentation of x that comprises τa subwords ai. S(x) is the set of all possible

segmentations of x. The generation probability x can be defined as the sum of

the probabilities of all segmentations shown in Eq. (2.1).

p(x1:T ) =
∑

a1:τa∈S(x)

p(a1:τa)

=
∑

a1:τa∈S(x)

τa∏
i=1

p(ai|a1, ..., ai−1)

(3.1)

3.2.2 Proposed Method: BERTSeg

As shown in Figure 3.1, the proposed BERTSeg contains a characterBERT en-

coder [29] and a mixed character-subword transformer decoder [41]. The mixed

character-subword transformer takes characters as input and generates sub-words

as output. The model represents the history information by prefix characters

x1, ..., xj instead of previous subwords a1, ..., ai−1, where j is the index of the last

character in ai−1.

Let ex denote the average-pooled contextualized word embeddings by charac-

terBERT from all sentences containing word x. The generation probability can

be calculated by Eq. (3.2).

log p(x1:T |ex) =

log
∑

a1:τa∈S(x)

τa∏
i=1

p(ai|ex;x1, ..., xj)
(3.2)

During training, we calculate the log p(x1:T |ex) in polynomial time by dynamic

programming (DP) [41] and use − log p(x1:T |ex) as the loss. During inference, we
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retrace the optimal segmentation a through Eq. (3.3).

a = arg max
a1:τa∈S(x)

τa∏
i=1

p(ai|ex;x1, ..., xj) (3.3)

3.2.3 Probability Based Regularization

We propose BERTSeg-Regularization which performs subword regularization based

on the probability distribution during inference. For segmentation ai with p(ai),

the sampling probability psample(ai) is shown in Eq. (3.4), where t is a temperature

hyperparameter.

psample(ai) =
elog p(ai)/t∑

ai∈S(x) e
log p(ai)/t

(3.4)

The time complexity for generating the best N segmentations is O(N logNT 2)

through DP.

3.3 Experimental Settings

Datasets Table 3.3 summarizes MT datasets from low- to high-resource. We use

the English words of each dataset to train BERTSeg. We applied Juman++ [132]

to Japanese sentences, Stanford-segmenter [75] to Chinese sentences, and Moses

tokenizer [58] to sentences in other languages. We removed diacritics in Romanian

sentences. We set the subword vocabulary size to 8k for all segmentation methods

and NMT models.

Dataset Train Valid Test

ALT Asian Langs-En 18k 1, 000 1, 018

IWSLT15 Vi-En 133k 1, 553 1, 268

WMT16 Ro-En 612k 1, 999 1, 999

WMT15 Fi-En 1.8M 1, 500 1, 370

Table 3.3: Statistics of the corpora (# sentences).
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Segmenter Settings For BERTSeg, we used the characterBERT model [29]

trained on English Wikipedia data as encoder, and pre-processed the English

data of each dataset to obtain word embeddings. Our transformer decoder was

4-layer with 1 attention head. All hidden sizes in the model were 768. The

vocabulary of possible subwords used a BPE vocabulary obtained from the English

part of each dataset. To prevent overfitting, we set the gradient clip to 1.0 and

trained the model until the loss of 7k high-frequency words was stable. BERTSeg-

Regularization generated 10 segmentations with the highest probability for each

word and t was set to 5. We generated data of each epoch dynamically. Our

method was applied to the English sentences, whereas sentences in the other

languages used BPE or BPE-dropout.

Baseline methods are BPE, VOLT, DPE, and BPE-dropout. We used the

official implementations with default settings of each method for sentences in

both source and target languages.

NMT Settings We used the transformer base architecture [135] and the fairseq

framework [100]. We trained the model until no BLEU score improvement for

10 epochs on the validation set. During inference, beam size was 12 and length

penalty was 1.4. We report sacreBLEU [105] and METEOR [6] on detokenized

outputs.

3.4 Results and Analysis

MT Results Tables 3.4, 3.5, 3.6, and 3.7 compare the proposed methods with

baseline methods. First, BERTSeg-Regularization achieves the best performance

in all directions, significantly boosting BLEU scores up to 8 points and METEOR

scores up to 5 points over BPE. Second, regularization is effective: methods with

regularization show higher BLEU scores. Among methods w/o regularization,

BERTSeg yields the highest BLEU and METEOR scores in most directions. Fi-

nally, we found the proposed method especially effective in low-resource scenarios

with the help of the pre-trained model trained on large-scale data. As the train

set grows, BPE and DPE gradually learn good segmentations, making the gap
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Fil→En Id→En Ja→En Ms→En Vi→En Zh→En Avg

w/o Regularization

BPE [116] 23.09 25.70 9.42 28.19 19.94 12.21 19.76

VOLT [150] 22.99 25.05 10.56 27.91 21.64 11.31 19.91

DPE [41] 24.04 26.66 9.93 27.89 20.06 10.72 19.88

BERTSeg 24.84*+1.8 25.84+0.1 10.97*◦+1.6 29.52*◦+1.3 20.86+0.9 12.20◦−0.0 20.71+1.0

With Regularization

BPE-dropout [106] 28.18 28.02 12.84 31.59 23.67 13.91 23.04

BERTSeg-Regularization 31.09*◦+8.0 28.86*◦+3.2 15.56*◦+6.1 32.97*◦+4.8 24.58*◦+4.6 15.03*◦+2.8 24.68+4.9

Table 3.4: Low-resource Asian languages→English MT BLEU score re-

sults. BERTSeg-Regularization consistently improves over all baselines. Statisti-

cal significance p < 0.001 is indicated by * against BPE and by ◦ against DPE.

Subscript values denote the BLEU score differences from BPE.

Fil→En Id→En Ja→En Ms→En Vi→En Zh→En Avg

w/o Regularization

BPE [116] 29.05 31.05 20.12 32.74 27.64 22.85 27.24

VOLT [150] 29.16 30.98 21.24 32.50 28.37 22.22 27.41

DPE [41] 29.72 31.79 21.13 32.50 26.94 21.46 27.26

BERTSeg 30.28+1.2 31.25+0.2 21.04+0.9 33.34+0.6 27.38−0.3 22.57−0.3 27.64+0.4

With Regularization

BPE-dropout [106] 31.96 32.99 22.83 34.81 29.05 23.56 29.20

BERTSeg-Regularization 34.35+5.3 33.38+2.3 25.14+5.0 36.13+3.4 30.40+2.8 24.57+1.7 30.66+3.4

Table 3.5: Low-resource Asian languages→English MT METEOR score

results. BERTSeg-Regularization consistently improves over all baselines. Sub-

script values denote the BLEU score differences from BPE.

between BERTSeg smaller.

Training Speeds As presented in Table 3.8, the training speed of BERTSeg

is substantially faster than the previous neural method DPE because it trains

on word-level data. According to Zipf’s law, the number of distinct words in a

document increases much slower than the increment of the total number of words.

The speed is comparable to non-neural approaches, BPE, and faster than VOLT.

Size of Training Data With the pre-trained encoder, we can train a high-

quality segmenter with a tiny train set. We train BERTSeg on words from 500k

English sentences in the news commentary dataset and apply it to the ALT English
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IWSLT15
Vi→En

WMT16
Ro→En

WMT15
Fi→En

w/o Regularization

BPE [116] 27.09 32.54 17.45

VOLT [150] 27.16 31.89 17.25

DPE [41] 27.40 29.95 16.14

BERTSeg 27.80+0.7 32.33◦−0.2 17.54◦+0.1

With Regularization

BPE-dropout [106] 28.76 33.59 18.50

BERTSeg-Regularization 30.09*◦
+3.0 33.82*◦

+1.3 18.46*◦
+1.0

Table 3.6: High-resource MT BLEU score results. Statistical significance

p < 0.001 is indicated by * against BPE and by ◦ against DPE. Subscript values

denote the BLEU score differences from BPE.

words. The averaged BLEU score for MT is 24.45 whereas using only 18k ALT

English data to train BERTSeg achieved 24.68 points, which are almost the same.

Subword Frequency Distribution Figure 3.2 shows the distribution of sub-

word frequency in the decoded ALT train set of different methods with the same

BPE vocabulary. Compared with BPE, BERTSeg generates more high-frequency

(> 1000) subwords such as ed and ing. At the same time, more subwords in the

vocabulary are not used during inference (with frequency 0). This phenomenon

is also present in the comparison of BERTSeg-Regularization and BPE-dropout.

Based on this observation, it is possible to use a smaller vocabulary for BERT-

Seg. Additionally, we found the total subwords frequency of BERTSeg is higher

because sometimes it also segments high-frequency words into subwords such as

years into year/s whereas BPE keeps it as years.

Zero-shot Word Segmentations Table 3.9 demonstrates the strong general-

ization ability on unseen words in the test set. Different from BPE which prefers
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IWSLT15
Vi→En

WMT16
Ro→En

WMT15
Fi→En

w/o Regularization

BPE [116] 31.16 35.18 27.06

VOLT [150] 30.90 34.90 26.73

DPE [41] 31.07 30.15 26.00

BERTSeg 31.36+0.2 35.16−0.0 27.32+0.3

With Regularization

BPE-dropout [106] 32.09 35.73 28.39

BERTSeg-Regularization 32.37+1.2 36.29 +1.1 28.61+1.6

Table 3.7: High-resource MT METEOR score results. Subscript values

denote the BLEU score differences from BPE.

high frequency pieces such as fell and hip in the word fellowships, BERTSeg iden-

tifies meaningful fragments fellow and ships.

Evaluation on Segmentations This section provides a direct evaluation of

the subword segmentation itself. We use a large-scale morphological database

that provides pairs of words and segmentations [7], where several English word

examples from this database are shown in Table 3.10. We compared the segmen-

ALT WMT16 Ro-En

†BPE [116] 4 13

†VOLT [150] 960 1, 747

♢DPE [41] 3, 477 68, 334

♠BERTSeg 58 391

Table 3.8: Training speeds (seconds). †: trained on CPU, ♢: on 8 32GB GPUs,

♠ on 1 12GB GPU.
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Figure 3.2: Subword frequency distributions of BPE, BPE-dropout, BERTSeg,

and BERTSeg-Regularization.

tations by BERTSeg, BPE with those in the MorphyNet database. We found that

the exact matching rate of the suffix subword is 50.8% by BERTSeg and 23.3% by

BPE, showing that BERTSeg segmentation is more linguistically motivated. The

BERTSeg and BPE segmenters are trained on the English data of the WMT’15

Fi–En dataset, and the exact rates of the whole segmentations are low because of

the limitation of the subword vocabulary.

We also compared with segmentations in the Oxford Advanced Learner’s Dic-

tionary by manually collecting 100 subword segmentations (named word division

in the dictionary). We found that the subword matching rate of BERTSeg with
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BERTSeg BPE [116]

fellow/ships fell/ows/hip/s

re/creation/al rec/re/ational

dis/claim/er/s discl/aim/ers

post/season pos/ts/e/ason

re/fresh/ed ref/res/hed

worse/n/s wor/s/ens

Table 3.9: BERTSeg and BPE tested on unseen words.

the dictionary is 81.6% and that of BPE with the dictionary is 53.9%. Some ex-

amples are shown in Table 3.11. Only prototypes are contained in the dictionary.

Word MorphyNet BERTSeg BPE

nearer near/er near/er ne/arer

nearest near/est near/est ne/are/st

stonewalling stonewall/ing stone/wall/ing st/one/w/alling

stonewalled stonewall/ed stone/wall/ed st/one/w/alled

foredoors foredoor/s fore/doors fore/d/o/ors

denyings denying/s deny/ing/s deny/ings

missignaled missignal/ed mis/signal/ed miss/ign/al/ed

Table 3.10: Comparing with the annotated MorphyNet segmentations.

3.5 Conclusion and Future Work

We proposed BERTSeg, an unsupervised neural subword segmenter for NMT,

together with a regularization algorithm. MT results showed significant improve-

ment over frequency-based and neural network-based methods. The training is ef-

ficient even compared with non-neural methods. To address the limitations shown
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Word Dictionary BERTSeg BPE

livestock live/stock live/stock li/vest/ock

retouch re/touch re/touch ret/ouch

recall re/call re/call rec/all

massively mas/sive/ly massive/ly mass/ively

abuser ab/user abuse/r ab/us/er

officer of/fi/cer office/r offic/er

Table 3.11: Comparing with segmentations in the Oxford Advanced Learner’s

Dictionary.

in Appendix A.1, future works include eliminating the dependency on the BPE

vocabulary, extending to a multilingual segmenter with mBERT [24] embeddings,

and applying it to other generation tasks.
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DiverSeg: Leveraging Diverse

Segmentations for

Low-Resource Neural Machine

Translation

A subword segmenter is a crucial preprocessing component in modern neural ma-

chine translation (NMT) models [147, 30]. The subword segmenter can address

the out-of-vocabulary (OOV) problem [116, 62] as well as enhance the quality of

translations compared with non-subword methods [51, 41, 121, 122].

Each type of subword segmenter captures a unique aspect of the input text.

The byte-pair encoding (BPE) segmenter [116] based on the byte-pair encoding

compression algorithm [31] represents the input text in a highly compressed token

sequence [32]. The SentencePiece (SPM) subword segmenter, which is equipped

with a unigram language model, captures contextual information to a certain

extent [62]. The neural subword segmenter BERTSeg [121] is tuned on pre-trained

BERT models and enables the use of semantic meaning and the ability to segment

words into linguistically motivated subwords. However, NMT models based on a

single segmenter cannot capture various aspects of the input text. This ability

is especially important for low-resource NMT because we must make maximum

60
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(b) Flattened Subword Lattice.

Figure 4.1: Subword Lattice and Flattened Lattice. The flattened version is

suitable for the input of the transformer model where each subword is accompanied

by (start, end) positional information.

usage of limited data.

To overcome this limitation, one approach is to use BPE segmenters of vary-

ing vocabulary sizes to generate multiple segmentations and input them into a

lattice-aware transformer encoder [148]. This method demonstrates that high di-

versity in segmentations can improve MT performance. However, this approach

uses only one type of segmenter; thus, multi-view information of the input text

cannot be captured effectively, and the relations between subwords are incom-

plete. Another approach uses BPE and SPM segmenters to generate more diverse

segmentations for each sentence in the dataset [51], which is compatible with all

NMT models because it performs only data-level augmentation. However, it uses

the vanilla transformer model [135] which is not aware of any connections between

the different segmentations of one word. Moreover, these two approaches lack ex-

plicit information sharing among multiple segmentations in the training objective,

which results in the embeddings of multiple segmentations of the same word far

apart in the embedding space.

In this study, we proposed DiverSeg to address these three problems using

three key components: 1) a subword lattice input that contains character, BPE

subwords, and BERTSeg subwords with positional information as shown in Fig-
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ure 4.1; 2) a subword-relation-aware attention mechanism with fine-grained rela-

tion types calculated from the relative position information; 3) a cross-granularity

alignment objective that maximizes the cosine similarity among various subword

segmentations.

We evaluated the proposed DiverSeg approach on five datasets, including

Asian Language Treebank (ALT) [131], IWSLT’15 Vietnamese–English, WMT’16

Romanian–English, WMT’15 Finnish–English, and WMT’14 German–English.

Experimental results demonstrate that the proposed approach outperforms base-

line methods by approximately two BLEU points. Furthermore, we performed

ablation studies to examine the improvement over non-subword methods, contri-

bution of each component, effect of different subword-relation mechanisms in the

subword-relation-aware attention, effect of using various similarity measurement

metrics in the cross-granularity embedding alignment loss, and selection of the

combination of subword segmenters.

The contributions of this study are as follows.

• DiverSeg, a method that leverages diverse segmentations from multiple sub-

word segmenters (Section 4.3), consists of a subword lattice input (Sec-

tion 4.3.1), a subword-relation-aware attention mechanism (Section 4.3.2),

and a cross-granularity embedding alignment objective (Section 4.3.3).

• Experimental results on five datasets that demonstrate the effectiveness of

DiverSeg (Section 4.5.1).

• Analysis of how DiverSeg leads to performance improvements (Sections 4.5.3,

4.5.4, 4.5.5, and 4.5.6).

4.1 Related Work

Subword Segmenters. Sennrich et al. [116] proposed BPE for subword seg-

mentation to solve the OOV problem [126]. Word Piece Model (WPM) [112] is

a method similar to BPE, but with the distinction that WPM selects the sym-

bol pairs that maximize the likelihood of training data, whereas BPE selects the

most frequent pairs. Kudo and Richardson [62] proposed SentencePiece, which
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supports a unigram language model and can handle multiple languages, including

those without whitespace word boundaries, such as Chinese or Japanese. Byte-

level BPE (BBPE) [142] is a variant of BPE that operates on bytes rather than on

characters. In VOLT [150], the optimal size of the subword vocabulary is calcu-

lated based on the optimal transport algorithm. A survey provided information on

non-neural segmentation methods and their limitations [90]. Dynamic program-

ming encoding (DPE) [41] and bilingual subword segmentation [23] have been

proposed for NMT. In these methods, both target and source languages are con-

sidered. Bilingual subword segmentation is based on a unigram language model,

whereas the DPE is based on a transformer model. The BERTSeg [121] and Self-

Seg [122] segmenters obtain subword segmentations that maximize the generation

likelihood, where they require only word-level monolingual data for training and

inference, rendering the model highly efficient. In addition to general-purpose

subword segmentation, task-specific subword segmentation methods [44, 45] aim

to obtain appropriate tokenizations based on the loss of downstream tasks.

Stochastic subword segmentation (or subword regularization) is an efficient

method for improving the robustness of the NMT models. BPE-dropout [106]

is a stochastic version of BPE [116] where the merge operations of subwords are

randomly dropped during decoding, resulting in various segmentations for each

word. SentencePiece regularization [61] is a stochastic version of the SPM [62],

which provides multiple segmentations with probabilities for each sentence from

a unigram language model. However, these stochastic methods are based on

BPE or SPM; therefore, they cannot capture linguistical information, such as

BERTSeg [121] or DPE [41] does. The proposed DiverSeg framework combines

information from multiple subword segmenters.

Lattice Models. Lattice-aware models are widely used in numerous natural

language processing (NLP) tasks such as speech translation [152], machine trans-

lation [148], language modeling [10], Chinese Named Entity Recognition (NER)

[67], and pre-trained BERT or GPT models [63, 38]. The manner in which mod-

els interpret the lattice inputs differ largely according to the target tasks. For

the Chinese NER task, using relative position representations [148], which are

the difference of positions between any two subwords, achieves comparable per-
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formance compared with using pre-defined subword relations [67]. However, for

the MT task, using pre-defined subword relations, which are calculated using the

start and end positions, can achieve a better performance than using the rela-

tive position representations [148]. We improve from the coarse-grained seven

types of relations [148] to fine-grained 20 types by 1) separating the many-to-one

mappings, where multiple position relationships are mapped into one subword re-

lation type, into one-to-one mappings, and 2) adding new types considering word

boundary information.

NMT with Multiple Segmentations. Hierarchical subword features based

on BPE with various vocabulary sizes have been incorporated into RNN-based

models [93]. Kambhatla et al. [51] proposed combining multiple subword seg-

mentations in the training set by copying sentences segmented from various seg-

menters. Xiao et al. [148] proposed using BPE with different vocabulary sizes to

generate multiple segmentations and Takase et al. [128] proposed leveraging mul-

tiple subword segmentations for subword-regularized models as a model ensemble

approach. In contrast to previous models, the proposed subword-relation-aware

attention mechanism leverages multiple relation matrices to improve its ability of

the model to capture complex subword-level relationships. The proposed cross-

granularity alignment explicitly enhances the information sharing between differ-

ent segmentations.

4.2 Preliminary

This section provides an overview of the standard transformer-encoder architec-

ture [135] that is the basis for our model. The subsequent section details the

components in DiverSeg.

Let x = (x1, x2, ..., xn) be the input sequence of subword tokens, where n is

the sequence length. The embedding layer maps each token xi to a vector ei ∈ Rd,

where d is the embedding dimension. The positional encoding (PE) layer [135]
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adds a vector pi ∈ Rd to each embedding ei, where pi is computed as follows:

pi,2j = sin

(
i

100002j/d

)
(4.1a)

pi,2j+1 = cos

(
i

100002j/d

)
(4.1b)

where j = 0, 1, ..., d2 − 1 and the input of the transformer encoder is Z0 =

(z0,1, z0,2, ..., z0,n), where z0,i = ei + pi.

The transformer encoder consists of L encoder layers with identical structures

and non-sharing parameters, where each encoder layer consists of two sub-layers:

a multi-head self-attention layer and a feed-forward layer. The multi-head self-

attention layer computes the weighted sum of the input vectors, where the weights

are determined by the similarity between the input vectors. The similarity is

measured by the dot product of the input vectors and scaled by the square root

of the dimension. The input vectors are also projected onto various subspaces

using linear transformations to allow the model to attend to different aspects of

the input. Each head in one layer performs the following computations:

Q = Zl−1W
Q (4.2)

K = Zl−1W
K (4.3)

V = Zl−1W
V (4.4)

Aweight = softmax(
QK⊤√
d/h

) (4.5)

Avalue = AweightV (4.6)

where h is the number of heads, d/h is the dimension of each head, WQ,WK, and

WV ∈ Rd×d/h are the projection matrices to generate the query, key, and value

matrices Q,K,V ∈ Rn×d/h.

The output of the lth encoder layer Zl ∈ Rn×d is then obtained by con-

catenating the Avalue of all heads and multiplying the output projection matrix

WO ∈ Rd×d and fed into a feed-forward layer. The output of the transformer

encoder is ZL, where L denotes the number of encoder layers. Each sub-layer is

with residual connection [40] and layer normalization [3].
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Figure 4.2: Model Overview. 1) Segmentations from multiple segmenters are

concatenated and accompanied by positions. 2) Relation matrices are generated

from positions and provided to the subword-relation-aware attention mechanism.

3) Different segmentations of each word are aligned. Only two segmenters are

presented for simplicity.

4.3 Method

DiverSeg contains three parts that differ from the conventional transformer model

[135]: 1) the subword lattice input with the subword-relation matrix represents

diverse segmentations (Section 4.3.1), 2) the subword-relation-aware attention

mechanism captures the relations between any two subwords (Section 4.3.2), and

3) the cross-granularity alignment objective explicitly aligns multiple segmenta-

tions (Section 4.3.3).

4.3.1 Multiple Segmentation Representations

We use diverse subword segmentation methods, including character-level segmen-

tation, BPE [116] and BERTSeg [121], to generate multiple segmentations in Di-
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Type pwi , p
w
j psi , p

s
j psi , p

e
j pei , p

s
j pei , p

e
j Type pwi , p

w
j psi , p

s
j psi , p

e
j pei , p

s
j pei , p

e
j

1 < < < < < 11 = = < > >

2 = < < < < 12 = = = = =

3 = < < = < 13 = = = > >

4 = < < = = 14 = > < > <

5 = < < > < 15 = > < > =

6 = < < > = 16 = > < > >

7 = < < > > 17 = > = > =

8 = = < = < 18 = > = > >

9 = = < > < 19 = > > > >

10 = = < > = 20 > > > > >

Table 4.1: Subword Relations. Relation of two subwords is calculated by the

orders of word index pw, start index ps, and end index pe of two subwords xi and

xj .

verSeg and represent them by pre-defined 20 fine-grained subword relation types,

where previous work [148] only used BPE segmenter and used seven coarse-grained

subword relation types.

In the implementation of DiverSeg, we use absolute positional encoding [135]

to encode the positional information of each subword and a variant of relative

positional encoding [118] to encode the information between any two subwords,

which is saved in a subword-relation matrix.

Absolute Positional Encoding. A subword lattice structure (Figure 4.1) is

used to represent a word with multiple segmentations. Each edge represents a

subword in the lattice (formally, a directed acyclic graph). We convert the lattice

structure into a sequence structure to fit the input format of the transformer

encoder. We flatten the lattice by concatenating multiple segmentations and

assign each subword an absolute position denoted by its start position, which is

calculated using Eq. (4.1).

Relative Positional Encoding. In addition to the start position, each sub-

word carries two other types of positional information, the end position and word

position, with all indices starting from 0, as shown in Figure 4.2.

• word position pwi , the index of the word that the subword belongs to.
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• start position psi , the index of the character that the subword starts with.

• end position pei , the index of the character that the subword ends with.

Subword-relation Matrix represents the relative relation between two sub-

words, which is generated from five simple types of relative positional relations of

any two subword pairs.

• word–word relation ri,jww = ORF(pwi , p
w
j )

• start–start relation ri,jss = ORF(psi , p
s
j)

• start–end relation ri,jse = ORF(psi , p
e
j)

• end–start relation ri,jes = ORF(pei , p
s
j)

• end–end relation ri,jee = ORF(pei , p
e
j)

where the order relation function (ORF(·, ·)) returns the order relation of the

first input to the second input ∈ {<,=, >}. We generate the subword relation of

two subwords xi and xj through Table 4.1, which is a look-up table that maps five

positional relations to one relation type. We then obtain subword-relation matrix

R ∈ {1, ..., 20}n×n. Comparing with previous work [148], we involve word bound-

ary information in Type 1 and Type 20. We also separate the coarse-grained

many-to-one conditions into fine-grained one-to-one conditions. For instance, re-

lation inc (psi ≤ psj < pej ≤ pei ) in the previous work [148] is separated into Type

6, Type 7, Type 10, Type 11 in our definition.

4.3.2 Subword-relation-aware Attention

DiverSeg uses the same relation-aware self-attention architecture as in Shaw et al.

[118]. However, DiverSeg uses fine-grained subword relations as shown in Table 4.1

whereas clipped relative position is used in Shaw et al. [118] and coarse-grained

subword relation is used in Xiao et al. [148].

The proposed DiverSeg model leverages the subword-relation matrix R through

a subword-relation-aware attention mechanism, as illustrated in Figure 4.3, where
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Figure 4.3: Computational Graph. This shows the subword-relation-aware

attention in each head where all calculation modules are colored. The graph is

symmetric, where the self-attention mechanism is on the left and the subword-

relation-aware attention mechanism is on the right. Variables in the middle are

generated jointly by two attention mechanisms. The embedding and dropout

layers are omitted for simplicity.

R provides an additional attention weight matrix Arel
weight and value matrix Arel

value.

The calculation in each head per layer is as follows:

Dimensional Transformation. To obtain input vectors with the required di-

mension in the attention head, we transform input Zl−1 to Q, K, V and R to

KR, VR. Eq. (4.10) maps the matrix of discrete types R into a matrix in the
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continuous vecter space Re ∈ Rn×n×d.

Q = Zl−1W
Q (4.7)

K = Zl−1W
K (4.8)

V = Zl−1W
V (4.9)

Re = Emb(R) (4.10)

KR = ReW
K
R (4.11)

VR = ReW
V
R (4.12)

Attention Weight Matrix The attention weight matrix Aweight ∈ Rn×n is

from the self-attention weight and the subword-relation-aware attention weight,

as expressed in Eq. (4.15). Here, Aself
weight is the conventional self-attention weight

matrix. Eq. (4.14) calculates the subword-relation-aware attention weight matrix

given the query Q and subword-relation-aware key KR. The calculation process

differs from those in Eq. (4.13) because the shapes of K ∈ Rn×d/h and KR ∈
Rn×n×d/h differs. We used the Einstein summation (einsum) operation to sum

over along the desired indices, where Arel
weight(i,j)

=
∑

k Q(i,k)KR(i,j,k)
.

Aself
weight =

QK⊤√
d/h

(4.13)

Arel
weight =

einsum(′ik, ijk → ij′,Q,KR)√
d/h

(4.14)

Aweight = softmax(Aself
weight + Arel

weight) (4.15)

Attention Value Matrix. Eq. (4.16) calculates the attention value Avalue from

the self-attention value AweightV and the subword-relation-aware value Arel
value =

einsum(′ik, ikj → ij′,Aweight,VR), where each element in it is calculated by

Arel
value(i,j)

=
∑

k Aweight(i,k)VR(i,k,j)
. The order of indices differs from that in

Eq. (4.14).

Avalue = AweightV + einsum(′ik, ikj → ij′,Aweight,VR) (4.16)

All heads in one layer share WK
R ∈ Rd×d/h and WV

R ∈ Rd×d/h. Therefore,

KR ∈ Rn×n×d/n, VR ∈ Rn×n×d/n, and the subword-relation-aware relative atten-

tion weight matrix RelAttnw are shared across all heads. The remaining parts
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such as the concatenation of multiple heads, feed-forward, residual connection,

and layer normalization keep the same as the traditional transformer encoder.

4.3.3 Cross-granularity Alignment Objective

To address the lack of explicit information sharing among multiple segmentations

in previous studies [148, 51], we propose a cross-granularity embedding alignment

loss LAlign that enables information sharing among various types of segmentations

of one word.

As presented in 1) Subword & Positions in Figure 4.2, the input subword

sequences x are generated by concatenating segmentations from s segmenters.

Therefore, s spans of consecutive subwords represent one segmentation of word w.

As shown in the 3) Cross-granularity Alignment in Figure 4.2, the representation

of one segmentation E is calculated by averaging the embeddings of the subwords

in that span, where each subword embedding is from the last encoder layer.

We define LwAlign for word w by the average of cosine similarities (cos⟨·, ·⟩)
between each two segmentation representations as follows:

LwAlign = − 1

s2

s∑
i=1

s∑
j=1

cos⟨Ei,Ej⟩ (4.17)

and LAlign for one sentence containing n words by summing the losses of each

word wk:

LAlign =

n∑
k=1

Lwk
Align (4.18)

The overall L can be expressed as a summation for the alignment loss and the

cross-entropy loss of the translation task LCE with a weight ratio α with 1 as the

default setting:

L = LAlign + αLCE (4.19)
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4.4 Experiment Settings

4.4.1 Datasets

In the NMT experiments, we used the ALT [131], IWSLT’15 English–Vietnamese

(En–Vi), WMT’16 English–Romanian (En–Ro), WMT’15 English–Finnish (En–

Fi), and WMT’14 English–German (En–De) datasets. The details of the datasets

are presented in Table 4.2, which contains the sizes of the datasets and type-token

ratios, calculated by #word types
#words .

ALT is a multi-way parallel dataset that contains data in English and multiple

Asian languages. We experimented with Filipino (Fil), Indonesian (Id), Japanese

(Ja), Malay (Ms), Vietnamese (Vi), and simplified Chinese (Zh). We used the

ALT-standard-split tool1 to split the dataset into training, validation, and test

sets. For the WMT’16 English–Romanian dataset, we performed normalization

to the Romanian-side data and removed diacritics following previous work [115].

We prepared the WMT’14 English–German dataset using a data clean and nor-

malization tool in Fairseq.2

We performed tokenization on all data. We applied Juman++ [132] to Japanese

data, the Stanford-tokenizer [75] to Chinese data, and the Moses tokenizer [58] to

data in other languages.

4.4.2 DiverSeg Settings

DiverSeg leverages multiple segmenters on the source side. Because our focus was

on the encoder side, we applied the widely used BPE segmenter to the data in

the target language, including baselines. For English→the other language trans-

lation direction, DiverSeg uses the character-level segmenter, BPE, and BERT-

Seg, where the latter two are trained on English data in the training set of each

dataset. For the other language→English translation direction, DiverSeg uses

the character-level segmenter, BPE, and SentencePiece with a unigram language

model, where the latter two are trained on data in the other language in the

1Provided here: www2.nict.go.jp/astrec-att/member/mutiyama/ALT
2https://github.com/facebookresearch/fairseq/blob/main/examples/translation/

prepare-wmt14en2de.sh
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Dataset Train Valid Test En TTR XX TTR

ALT En–Asian Langs 18, 088 1, 000 1, 018 6.35% 3.90%

IWSLT’15 En–Vi 133, 166 1, 553 1, 268 2.00% 0.77%

WMT’16 En–Ro 612, 422 1, 999 1, 999 0.56% 0.79%

WMT’15 En–Fi 1, 754, 754 1, 500 1, 370 0.27% 2.23%

WMT’14 En–De 4, 532, 411 45, 781 3, 003 0.72% 0.56%

Table 4.2: Statistics of the MT datasets. Numbers indicate parallel sentences

in each set of each dataset. En TTR and XX TTR indicate the type-token ratios

for data in English data and data in the other language (averaged in ALT) in each

dataset.

training set of each dataset. We used SentencePiece rather than BERTSeg in

the other language→English direction because BERTSeg, which is based on the

English characterBERT currently only supports English.

The BPE, BERTSeg, and SentencePiece segmenters share the same vocabulary

in the same direction in each dataset. We limited the sizes of both the source

and target vocabularies for all models to 8, 000, which are near the optimal sizes

provided by the VOLT algorithm [150] shown in Appendix B.1.

4.4.3 NMT Settings

We implemented DiverSeg using the fairseq framework.3 The model architectures

for the ALT dataset were determined through parameter searching on the number

of encoder layers, decoder layers, and attention heads. The optimal settings were

six encoder layers, six decoder layers, and one attention head. For other datasets,

we used a standard Transformer Base architecture with six encoder layers, six

decoder layers, and eight attention heads. We used the default pre-normalization

in fairseq instead of post-normalization in the original transformer paper [135]

because pre-normalization exhibits faster training [149, 86]. The dropout and

3github.com/facebookresearch/fairseq
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attention dropout rates were set to 0.1.

During training, each batch in one GPU contains 3, 072 tokens in the source

language. We used eight GPUs in all experiments, resulting in approximately

25k source tokens per training batch. We used the Adam optimizer [54], with

β1 = 0.9, β2 = 0.98, and ϵ = 10−9. We used warmup and decay strategy for the

learning rate following Vaswani et al. [135], with warmup steps of 4, 000, initial

learning rate to 1.7 ∗ 10−7 and learning rate to 0.0005. We used label smoothing

for the cross-entropy loss with ϵls = 0.1 [127]. We calculated the loss in the

validation step after each epoch and applied early stopping when no improvement

was observed after 10 epochs.

During inference, we used the checkpoint with the best loss on the validation

set. We used beam search with a beam size of 12 and length penalty α = 1.4.

We evaluated the translation quality through BLEU [101], BLEURT [113], ME-

TEOR [6] scores and performed significant test [56] against all baselines.

4.4.4 Baseline Settings

We compared DiverSeg o with three types of baseline methods: 1) models using

data segmented by one type of subword segmenter, 2) models using data seg-

mented by multiple types of segmenters, and 3) models using stochastic subword

segmenter.

Single-segmenter Methods We compared the proposed model to the BPE [116],

SentencePiece [62], VOLT [150], DPE [41], and BERTSeg [121] methods. BERT-

Seg and DPE were applied only to English data.

Multiple-segmenter Methods We compared with 1) using multiple segmen-

tations for each source sentence in the dataset [51], where we used character-

level segmentation, BPE, and BERTSeg in English→the other language direc-

tion and use character-level segmentation, BPE and SentencePiece in the other

language→English direction, keeping the same with DiverSeg. During inference,

we tested the input sentences segmented by each segmenter and reported the av-

erage scores. Detailed results are reported in Table B.2 in Appendix B.2. 2) using

the BPE segmenter with multiple vocabulary sizes, where we used character-level
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segmentation, BPE with vocabulary sizes of 8k and 16k [148].4

Stochastic Subword Segmentation Method We present results of the BPE-

dropout method [106]. We applied the algorithm with a default dropout rate

of 0.1 to the training set of each dataset except for the high-resource WMT’14

En–De dataset, where the dropout was set to a lower value 0.05 that achieved a

better performance on the validation set.

We compared DiverSeg with each subword segmenter it used and with multiple-

segmenter methods that used the same subword segmenters. Furthermore, we ver-

ified using BPE-dropout as one of the segmenters in DiverSeg. For this setting, we

applied the combination of character-level segmentation and BPE-dropout. An

analysis of using different segmenter combinations is presented in Section 4.5.6.

4.5 Experimental Results

Section 4.5.1 presents results of the translation quality evaluation, Section 4.5.2

compares with non-subword methods, Section 4.5.3 conducts an ablation study

on the three proposed modules, Section 4.5.4 explores various representations of

subword relations, Section 4.5.5 examines different alignment loss choices, and

Section 4.5.6 analyzes results from various segmenter combinations.

4.5.1 Main Results

We compared DiverSeg with the single- and multiple-segmenter baselines. The

BLEU scores of DiverSeg and the baselines are reported in Tables 4.3 and 4.4.

DiverSeg outperformed baseline models in most translation directions across all

datasets. Specifically, when using the combination of character-level data, BPE

and BERTSeg, DiverSeg, DiverSeg achieves 3.59 and 4.52 BLEU score compared

with the best multiple-segmenter method [148] and the BPE baseline, respectively,

on average across the ALT dataset in the English→Asian languages translation

directions. When using the combination of character-level data, BPE, and Sen-

4Because the code is not public [148], we implemented the method by ourselves, where we use

richer subword relations from Table 4.1 (except types 1 and 20, which require word boundary

information) than in their paper.
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IWSLT’15 En–Vi WMT’16 En–Ro WMT’15 En–Fi WMT’14 En–De

→ ← → ← → ← → ←

Single-Segmenter

BPE 26.23 22.36 32.48 31.93 14.94 17.10 25.13 30.27

SentencePiece 26.60 22.68 32.10 32.24 14.97 17.45 25.30 30.00

VOLT 25.87 22.28 31.82 31.54 14.27 17.06 25.35 30.56

DPE 26.45 23.78 32.07 31.89 14.67 17.44 25.30 30.55

BERTSeg 26.83 23.10 32.36 32.24 15.07 17.83 24.74 29.71

Multiple-Segmenter

Kambhatla et al. [51] 27.14 23.89 32.52 32.34 15.04 17.79 24.96 30.33

Xiao et al. [148] 28.67 24.91 32.08 31.29 13.73 16.44 25.26 30.07

DiverSeg ♠29.19 ♠25.78 32.68 32.47 14.89 17.85 25.58 30.36

Stochastic Method

BPE-dropout 30.29 28.06 34.91 34.76 16.32 19.05 24.93 30.39

DiverSeg w/ BPE-dropout ♠30.84 28.03 34.62 34.07 15.97 18.94 - -

Table 4.4: BLEU results on the IWSLT’15 and WMT datasets. The

highest score in each group is highlighted in bold. Statistical significance is

assessed for each individual direction, with a significance level of p < 0.05 denoted

by ♠. We compare DiverSeg to the best-performing method in each direction and

also contrast DiverSeg w/ BPE-dropout with BPE-dropout.
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ALT En–Langs IWSLT’15 En–Vi WMT’16 En–Ro WMT’15 En–Fi WMT’14 En–De

→ ← → ← → ← → ← → ←

Single-Segmenter

BPE 33.91 38.37 51.31 54.09 66.23 61.91 61.74 56.05 60.30 64.56

SentencePiece 33.29 37.80 51.67 53.98 66.09 62.29 62.35 56.58 60.17 64.41

VOLT 33.89 38.20 50.93 53.68 65.27 61.11 60.30 55.43 60.31 65.08

DPE 34.29 39.02 51.23 54.73 65.92 62.37 62.57 56.36 60.19 64.68

BERTSeg 34.32 39.61 51.71 55.03 65.78 62.13 62.53 55.98 59.38 64.33

Multiple-Segmenter

Kambhatla et al. [51] 27.82 32.21 51.92 53.94 66.85 62.67 63.54 57.81 59.79 64.64

Xiao et al. [148] 34.87 39.10 55.28 56.06 66.43 61.36 60.57 54.80 60.35 64.81

DiverSeg 37.44 40.57 56.20 56.24 66.94 62.90 62.85 56.62 61.09 64.48

Stochastic Method

BPE-dropout 43.29 46.64 57.11 59.52 70.02 65.24 65.15 58.96 59.42 64.82

DiverSeg w/ BPE-dropout 46.68 49.97 58.57 59.18 69.26 64.98 64.36 57.97 - -

Table 4.5: BLEURT Results. The best result in each group is in highlighted in

bold.

ALT En–Langs IWSLT’15 En–Vi WMT’16 En–Ro WMT’15 En–Fi WMT’14 En–De

→ ← → ← → ← → ← → ←

Single-Segmenter

BPE 26.25 24.45 32.09 29.49 31.17 35.11 19.79 27.08 28.33 33.81

SentencePiece 25.85 24.28 32.35 29.26 31.10 35.20 19.99 27.42 28.34 33.57

VOLT 26.15 24.42 32.83 28.93 30.75 34.94 19.27 26.78 28.46 33.87

DPE 26.45 24.65 32.46 29.65 31.02 35.33 19.69 27.62 28.28 33.76

BERTSeg 26.21 24.51 32.70 29.83 30.90 35.33 19.86 27.31 28.05 33.54

Multiple-Segmenter

Kambhatla et al. [51] 21.26 20.18 32.56 29.19 31.15 35.36 19.91 27.83 28.15 33.89

Xiao et al. [148] 25.93 24.62 33.44 30.51 30.87 34.67 19.05 26.29 28.14 34.30

DiverSeg 26.51 25.34 33.78 30.41 31.09 35.50 19.74 27.50 28.28 34.05

Stochastic Method

BPE-dropout 29.16 28.83 34.14 32.08 32.39 36.74 20.91 28.92 26.91 33.99

DiverSeg w/ BPE-dropout 30.98 30.86 34.36 32.01 32.15 36.35 20.71 28.29 - -

Table 4.6: METEOR Results. The best result in each group is in highlighted

in bold.
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tencePiece, the improvement brought by the DiverSeg becomes smaller than when

involving BERTSeg, while still better than all baselines on the ALT dataset in the

Asian languages→English translation direction. For the MultiSub method [51], we

report the average scores using input sentences segmented by each segmenter and

provide a detailed analysis in Table B.2 in Appendix B.2. However, the improve-

ment of DiverSeg over other methods on larger datasets, such as WMT’15 En–Fi

and WMT’14 En-De, was not as significant as that on small datasets. The gap

between all the segmentation methods decreased for large datasets. We hypothe-

sized that this phenomenon could occur because multiple segmentation methods

increase the number of times each subword is trained as a data augmentation

method, and on large datasets, each subword is trained sufficiently. Additionally,

we observed that for source languages with higher type-token ratios (as shown

in Table 4.2), DiverSeg yielded more significant BLEU score improvements. For

example, for the IWSLT’15 En–Vi dataset, where the type-token ratio of the En-

glish data is higher, we observe a more considerable improvement in the En→Vi

direction. For the WMT’15 En–Fi dataset, we can observe a more considerable

improvement in the Fi→En direction because Finnish is a morphologically rich

language, and the type-token ratio is higher than that of English.

We also present the results of using the stochastic subword segmentation

method BPE-dropout [106], as well as the stochastic version of DiverSeg, where we

incorporated both character-level segmentation and BPE-dropout segmentation.

In low-resource scenarios, BPE-dropout showed impressive performance, and Di-

verSeg with BPE-dropout showed even better results, achieving +3 BLEU scores.

Conversely, in high-resource scenarios, the performances of the two stochastic

methods were comparable. We abstained from experiments on the WMT14

dataset because the BPE-dropout method did not surpass BPE, and we were

constrained by computational resources.

We used truecase data during both training and inference. When we con-

verted the generated output and reference to lowercase, the BLEU scores for BPE-

dropout reached 26.20 and 32.50 for the En→De and De→En directions, respec-

tively. These results are close to those reported in the BPE-dropout study [106],

which used lowercase data for both training and inference. Although they pro-
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vided results using truecase data for small datasets, they did not report the results

using truecase data for large datasets. Moreover, our results indicated a negligible

improvement in both directions of the WMT’14 En–De dataset when contrasting

BPE-dropout with BPE. Provilkov et al. [106] reported similar results for a larger

dataset with 16M lowercase training samples. We hypothesized that when us-

ing truecase data, the threshold for the amount of training data decreases. This

is based on the result that improvement decreases when using truecase data, as

shown in the Appendix of Provilkov et al. [106]. The BLEURT results are pre-

sented in Table 4.5, and the METEOR results are presented in Table 4.6, where

a similar tendency to the BLEU results can be observed.

4.5.2 Comparison with Non-subword Methods

We evaluated DiverSeg against non-subword approaches on the IWSLT’15 En–Vi

and WMT’16 En–Ro datasets. As presented in Table 4.7, the results indicate that

the proposed method considerably outperforms non-subword approaches in terms

of the BLEU scores. This finding is consistent with previous research, which has

shown that subword methods such as BPE and SentencePiece often outperform

character- or word-level approaches for source sentences [144].

IWSLT’15 En–Vi WMT’16 En–Ro

→ ← → ←

Character 27.04 24.72 29.82 30.49

Word 25.24 21.40 25.67 26.33

DiverSeg 29.19 25.78 32.68 32.47

Table 4.7: Comparison to Non-subword Methods. We report BLEU scores,

and the best result is in bold.

4.5.3 Ablation Study of Proposed Modules

Table 4.8 present results of an ablation study assessing the effectiveness of the

three proposed modules: 1) the lattice positional encoding (PE) that provides ab-
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ID Lattice PE Subword Attn LAlign BLEU BLEURT METEOR

1 3 3 3 29.19 56.20 33.78

2 3 3 7 28.81 55.44 33.51

3 3 7 3 28.31 55.11 33.23

4 3 7 7 28.45 54.40 33.49

5 7 3 3 28.26 55.61 32.97

6 7 3 7 27.52 54.11 32.77

7 7 7 3 12.48 35.84 24.79

8 7 7 7 13.85 37.64 26.04

Table 4.8: Ablation of Components. 3 indicates using the component and 7

indicates not using it. Tested on the En→Vi direction of the IWSLT’15 dataset

and the best result is in bold. Default settings of DiverSeg are marked in purple.

solute positional information; 2) the subword-relation-aware attention mechanism

that provides relative positional information; 3) the cross-granularity embedding

alignment objective LAlign. Comparison of ID 1 to 2, 3, and 5 indicates that

each individual module contributes to the final result. Comparison of ID 5 and 6

reveals that LAlign is essential for the relative PE and significantly increases the

BLEU score by 0.74. Additionally, at least one of the absolute position or the

relative position is required (ID 7 and 8), otherwise, the model input degenerates

into a bag-of-words input, leading to low performance. All ablation studies were

conducted in the IWSLT’15 En→Vi direction, which is representative because of

the moderate size of IWSLT’15.

4.5.4 Choice of Representing Subword Relations

We compared the choice of representing subword relations with previous methods:

1) Xiao et al. [148] did not utilize word information rww
5, 2) used the distance

to represent the relative position between two subwords [118], and 3) did not use

5we use the remaining 18 types of relations instead of 7 types of relations in their paper
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relative PE.

Table 4.9 shows that using relative information can substantially improve all

three metrics compared to the model without relative PE. Moreover, using pre-

defined relations like word boundary information and finer-grained relations (e.g.,

adjacency) in our proposed model outperformed the distance-based method pro-

posed by Shaw et al. [118]. Word boundary information improves all three metrics.

BLEU BLEURT METEOR

Proposed (Table 4.1) 29.19 56.20 33.78

Proposed w/o rww 29.18 56.15 33.64

Relative PE [118] 28.93 55.37 33.43

w/o relative PE 28.31 55.11 33.23

Table 4.9: Ablation of Subword Relations. Test on the En→Vi direction of

the IWSLT’15 dataset.

4.5.5 Choice of Metrics and Weight Ratio in Alignment Loss

We examined the metrics and weight ratios used to align various segmentations

of one word. In addition to maximizing the cosine similarity of the embeddings

as expressed in Eq. (4.17), we attempted to minimize the L1 or L2 distance. We

also examined various weight ratios as shown in Eq. (4.19).

The results of using various metrics are presented in Table 4.10, which reveals

that minimizing the distance causes the training to fail. The reason for this is

illustrated in Figure 4.4: 1) During maximizing the cosine similarity, the norms of

embeddings remain the same; 2) however, while minimizing the L1 or L2 distance,

the embeddings drift toward the origin because embeddings with small norms tend

to have a small distance. We alleviated this problem by embedding normalization

En = E
norm(E) and labeled them as Norm L1 and Norm L2 distances. The normed

versions exhibited superior performance; however, their performance was poorer

than those using cosine similarity. This result can be attributed to the “curse
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of dimensionality,” where the distance between any two embeddings tends to be

similar and their differences cannot be captured meaningfully [124].

BLEU BLEURT METEOR

Cosine Similarity 29.19 56.20 33.78

L1 distance 0.81 20.30 10.97

L2 distance 21.67 45.28 30.23

Norm L1 distance 24.35 48.86 31.40

Norm L2 distance 28.57 55.61 33.69

Table 4.10: Ablation of Similarity Measurements. Test on IWSLT’15

En→Vi. The best result is in bold.

dim1

dim2 Before Alignment

After Alignment

Shifting Direction

Before Alignment

After Alignment

Shifting Direction

dim1

dim2

Figure 4.4: Embedding Shifting Visualization. The shifting of hidden rep-

resentations by left: maximizing cosine similarity, and right: minimizing L2

distance in the cross-granularity alignment loss function.

The results of using various weight ratios are presented in Figure 4.5, showing

ratio as 1 or 2 is the optimal setting for the IWSLT’15 En→Vi direction. We can

observe that it is an unimodal function in terms of BLUE score where setting the

weight ratio too low or too high negatively impacts performance.

4.5.6 Choice of Segmenter Combinations

Table 4.11 presents a comparison of the various combinations of segmenters. The

combination of character-level, BPE, and BERTSeg delivered the highest trans-

lation performance, as indicated by the BLEU score within the Non-stochastic
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Figure 4.5: Ablation of Alignment Loss Weight Ratios. Test on IWSLT’15

En→Vi.

Method group. Furthermore, the combination of character-level and BPE-dropout

outperformed the combination of character-level, BPE, and BERTSeg. Based on

this finding, we suggest not combining dynamic segmentation with fixed segmen-

tation because dynamic segmentation may cover fixed segmentation in certain

epochs, except for character-level segmentation which provides positional infor-

mation.

Moreover, the diversity of the segmenters in a combination is a crucial factor.

We define the segmentation difference rate using the proportion of words in the

corpus that are segmented differently by two segmenters, where each type of word

counts only once. Figure 4.6 illustrates that the difference rates between BPE and

BERTSeg, and between BPE and SentencePiece were high. Therefore, combining

BPE and BERTSeg (SentencePiece) provides diverse perspectives of the word in

the source language and a dense input lattice, resulting in excellent translation

quality. We found a low difference rate between BPE and DPE, which may explain

the low translation quality when combining them.

4.6 Analysis

In this section, we present several analyses that investigate the effectiveness of

DiverSeg. We provide translated examples in Section 4.6.1, introduce a new metric

called target word accuracy in Section 4.6.2, visualize the attention mechanism in

Section 4.6.3, and visualize embedding in Section 4.6.4 to gain insights into how
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BLEU BLEURT METEOR

Char+BPE+BERTSeg 29.19 56.20 33.78

Char+BPE+DPE 28.56 55.88 33.17

Char+BPE+SentencePiece 28.98 56.22 33.57

Char+BERTSeg+DPE 28.84 55.74 33.64

Stochastic Method

Char+BPE Dropout 30.84 58.57 34.36

Char+BPE Dropout+BERTSeg 30.29 57.86 34.12

Table 4.11: Ablation of Segmenter Combinations. Test on the En→Vi di-

rection of the IWSLT’15 dataset. The best result among each group is in bold.

BPE SPM DPE
BERTSeg

BPE

SPM

DPE

BERTSeg

0.0 72.9 26.0 67.8

72.9 0.0 68.0 71.3

25.7 67.9 0.0 63.0

67.8 71.3 63.1 0.0

Segmentation Difference

0

20

40

60

80

Figure 4.6: Segmentation Difference Rate. Numbers indicate the percentage

of words where two segmenters provided distinct segmentations.

DiverSeg improves translation quality.

4.6.1 Translated Examples

We present an example in Table 4.12 and demonstrate how DiverSeg produces

the correct translation as evidenced by the attention heatmap in Figure 4.7. In

the example, the Vietnamese word “nói” should be translated into “speak” in En-



86 CHAPTER 4. DiverSeg

glish as in the reference. However, both BPE and BERTSeg produced incorrect

translations “say” and “talk,” respectively. The translation generated by BERT-

Seg exhibited a higher semantic similarity with the reference, and only DiverSeg

correctly translated the word. The attention heatmap in Figure 4.7 reveals that

when generating the correct English word “speak,” DiverSeg attends to various

segmentations of the corresponding Vietnamese word “tập nói” (learn to speak).

Method Sentence BLEURT

Source (Vi) Ý tôi là, thử nghĩ mất bao lâu để một đứa trẻ tập nói. -

Reference I mean, just think how long it takes a child to learn to speak. -

BPE I mean, I think it’s going to take a child to say. 37.63

BERTSeg I mean, let’s take a long time to get a kid talk. 44.98

DiverSeg I mean, it took a long time for a child to speak. 73.91

Table 4.12: Translation Example. The proposed DiverSeg method correctly

translates the source word to the target word “speak.” From the IWSLT’15 Vi–

En dataset.

Figure 4.7: Attention Heatmap. In the DiverSeg model from the target sen-

tence to the source sentence.

4.6.2 Target Word Accuracy with Different Frequency Ranges

Table 4.13 presents a comparison of the accuracy of translating the target words

with varying frequencies. Accuracy was calculated by extracting each Vietnamese

word from the reference sentence, determining its frequency in the training set, and

evaluating whether it appeared in the translation. The proposed DiverSeg outper-
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formed all other methods in almost all frequency bins, demonstrating its effective-

ness and robustness. However, although the character-based NMT model achieved

high accuracy for low-frequency words, primarily because of its copying ability,

DiverSeg did not completely integrate this ability. Information from BERTSeg

interferes with the generation process, whereas BERTSeg performs poorly on low-

frequency target words but well on high-frequency words.

Frequency [0, 10] [11, 50] [51, 100] [101, 200] [201, 500] [501, 1000] [1001, ∞)

Percentage 1.41% 1.77% 1.33% 2.36% 5.16% 6.66% 81.30%

Char 31.76 28.41 38.41 39.05 44.50 49.25 66.15

BPE 14.18 24.18 38.21 40.30 45.55 49.38 67.72

SentencePiece 7.37 26.53 37.60 41.18 46.76 52.16 67.85

VOLT 13.61 27.47 39.23 40.30 45.61 49.98 68.89

DPE 11.34 27.00 40.24 42.30 47.34 51.39 68.16

BERTSeg 8.88 27.00 39.23 42.43 48.45 52.68 68.38

DiverSeg 13.04 31.55 44.72 44.31 52.03 54.48 70.04

Table 4.13: Word Translation Accuracy. Translation accuracy comparison on

target words of varying frequency evaluated in the IWSLT’15 En→Vi translation

direction.

4.6.3 Visualization of Subword-relation-aware Attention

We demonstrated the roles of self-attention and subword-relation-aware atten-

tion through visualization using the BertViz tool [136]. The self-attention was

extracted using Eq. (4.13) and subword-relation-aware attention was extracted

using Eq. (4.14) from the last layer of the transformer encoder and averaged for

all heads. As illustrated in Figure 4.8, in contrast to self-attention, which attends

to all subwords, subword-relation-aware attention can overlook information from

subwords belonging to multiple segmentations of the same word, indicating its

ability to identify word boundaries.
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Ex.1: Self-AttnEx.1: Subword-Relation-AttnEx.2: Self-AttnEx.2: Subword-Relation-Attn

Figure 4.8: Attention Visualization. Two examples showing the difference

between the self-attention mechanism and the proposed subword-relation-aware

attention mechanism.

4.6.4 Visualization of Segmentation Embeddings

We investigated the effectiveness of the cross-granularity embedding alignment

objective by comparing the word embeddings DiverSeg models with and without

the alignment objective (ID 2 in Table 4.8). We generated the English word em-

beddings from a randomly selected sentence in the IWSLT’15 En→Vi direction

during inference. Each point in Figure 4.9 represents the word embeddings cal-

culated by averaging the embeddings of the subwords it contains. Subsequently,

the subword embeddings were extracted from the final encoder layer. We only

preserved words containing more than one BPE or BERTSeg subwords in the sen-

tence and applied t-SNE [74] and principal component analysis (PCA) methods

to map them to 2D points. The results revealed that with the alignment objec-

tive, different segmentations of a word tended to remain close, whereas without

the alignment objective, the embeddings of the same word obtained by different

segmentation methods were widely dispersed. For the t-SNE results, we observed
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that with alignment, only three word embeddings calculated from character-level

segmentation (Cameron, walking, and client) were not close to the word embed-

dings calculated from the corresponding BPE and BERTSeg segmentations. In

the without-alignment method, word embeddings from character-level segmenta-

tion form an isolated cluster. This is more pronounced in PCA results, where,

without alignment, embeddings from character-level segmentations are entirely

distinct from other embeddings. This finding provides evidence that the proposed

cross-granularity alignment objective successfully aligned the semantic meanings

of multiple subword segmentations.

4.6.5 Efficiency

Time Efficiency. Methods that use a single segmenter take approximately 0.44

minutes to complete one epoch of training. This includes subword-based methods,

such as BPE, SentencePiece, and BERTSeg. The character-based method takes

1.56 minutes for each epoch, primarily because of the longer input sequence. The

method that employs multiple segmenters based on Transformer Base model [51]

requires an average of 5.67 minutes to complete one epoch owning to the use of

more data. The method of Xiao et al. [148] takes approximately 12.38 minutes,6

while DiverSeg takes 16.56 minutes per epoch. This demonstrates a moderate

efficiency reduction when compared to other methods that utilize multiple seg-

mentations.

Parameters. The model parameters are listed in Table 4.14. DiverSeg is param-

eter efficient, where it uses only 6% more parameters compared with the model

using BPE segmentation. Among the 2.3M extra parameters, only 0.2M parame-

ters are from the subword-relation-aware attention module, and 2.1M parameters

are from the larger look-up table in the encoder embedding layer because it covers

both the BPE and BERTSeg vocabularies. Among the multi-segmenter methods,

DiverSeg is almost as parameter efficient as the data mixing method [51]. In con-

trast, there are more parameters in Xiao et al. [148] because the look-up table

covers more tokens in multiple BPE vocabularies, whose size is up to 16k.

6This is presumably because the training speed of their model is 0.46 times that of the base

model.
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Figure 4.9: Word embedding visualization of one sentence using t-SNE (above)

and PCA (below), where the left column shows embeddings with the cross-

granularity alignment objective and the right column shows embeddings without

the alignment objective. Word embedding is obtained by averaging all subword

embeddings in that word, where | represents the subword boundary and colors

represent the segmentation method for that embedding.

4.7 Conclusion and Future Work

In this study, we introduced DiverSeg to leverage diverse subword segmentations

and capture the multiple perspectives of each input sentence. DiverSeg contains a

lattice input module, a subword-relation-aware attention mechanism, and a cross-
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Model #Parameters

Single-Segmenter

BPE 37.4M

SPM 37.5M

VOLT 35.9M

DPE 37.3M

BERTSeg 38.6M

Multiple-Segmenter

Kambhatla et al. [51] 39.5M

Xiao et al. [148] 41.3M

DiverSeg 39.7M

Table 4.14: Model parameters. Obtained by actual measurement from models

in the IWSLT’15 En→Vi translation direction.

granularity embedding alignment objective. We conducted extensive experiments

on multiple machine translation datasets, and the results demonstrated that Di-

verSeg can be used to effectively exploit the potential of multiple segmentations

to improve NMT performance. Ablation studies and analyses were performed to

evaluate the contribution of each proposed module.

In the future, we will focus on designing a decoder architecture to enable learn-

ing from target sentences with multiple subword segmentations during training

and exploring a decoding algorithm that combines the probabilities of multiple

subword paths of a single word during inference. Additionally, the training speed

is a limitation of DiverSeg. One potential method to expedite the training process

is to optimize the computation of the cross-granularity loss.



Chapter 5

SubMerge: Merging Equivalent

Subword Tokenizations for

Subword Regularized Models

in Neural Machine Translation

Despite the end-to-end nature that makes neural machine translation (NMT) [126,

4, 135, 33] the most prevalent and convenient approach for machine translation

(MT), subword tokenization (or subword segmentation) [116, 106, 62, 61] remains

an indispensable pre-processing step for most NMT systems. Subword vocabular-

ies address the out-of-vocabulary problem of word-based NMT systems [50, 4, 73]

by reducing new words to known subwords, while avoiding the high computational

cost of character-based NMT systems [39, 53, 20, 69, 16] by enabling much shorter

input and output sequences.

Deterministic segmenters like Byte-Pair Encoding (BPE) [116] and Senten-

cePiece [61] are widely used due to their simplicity and effectiveness. They are

determinisitic in the sense that they consistently generate the same tokenization

for a given sentence. NMT models trained on consistent subword tokenizations

typically allocate the majority of a sentence’s true probability (considering all po-

tential tokenizations by marginalizing over them) to its specific tokenization [12],

92
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except for out-of-domain data [17]. Therefore, the probability of the sentence

approximately equals the probability of the tokenization.

During Training

During Inference
Previous: Choose argmax	𝑃!(subword|context)

Context

▁watch ing

▁wat ching

▁w chingat

▁watched

0.2
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❌

▁watch ing

▁wat ching

▁w chingat

Encoder Decoder

を⾒ている … …
watching

Context
watching

watched

0.5
Proposed: Choose argmax	𝑃! word context after merging

0.3

Figure 5.1: Subword regularized models suffer from discrepancies between train-

ing and inference, where they are trained on multiple target tokenizations and

generate one. We propose to merge equivalent subword tokenizations that com-

pose the same word with different conditional probabilities during the inference.

Subword regularization methods [106, 61] are stochastic segmenters - they pro-

duce multiple tokenizations of a given sentence during training, as shown in Fig-

ure 5.1. As a data augmentation method, models trained on regularized data usu-

ally outperform those trained on non-regularized data, especially in low-resource

scenarios. However, this causes a discrepancy between training and inference.

During training, the model learns to generate multiple target tokenizations for

each source sentence. During inference, greedy or beam search approximates the

single highest probability tokenization. This is the source of the discrepancy -

the probability of a target tokenization diverges drastically from the probability

of a target sentence marginalized over different tokenizations, because the model

learns to distribute the probability of a target sentence across all the tokeniza-

tions it is exposed to during training. This inaccurate probability estimation of
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the next word during inference leads to a degradation in translation quality. One

way to overcome this is to incorporate the marginal likelihood of the next words

during decoding for subword regularized models.

We propose SubMerge, a decoding algorithm that aggregates probabilities

from exponentially many tokenizations for a sentence by merging equivalent sub-

word tokenizations of words. The algorithm is based on the property of BPE-

dropout [106] where each word is individually segmented. It is a nested beam

search approach. In the outer beam search, we hide the detail of possible subword

tokenizations of the word, treating words as minimal units. This ensures that the

outer beam is unaware of and unaffected by the subword tokenizer. In the inner

beam search, we limit the search space within the word boundary. The inner

beam search finds the n-best tokenizations, merges equivalent ones, and returns

a list of words and the corresponding probabilities.

Previous attempts to estimate marginal likelihood over tokenizations include

summing over n-best tokenizations [12] and using importance sampling [17]. How-

ever, these algorithms focus on perplexity estimation, assuming the output is al-

ready in hand. In our approach, we perform marginal likelihood estimation for the

next words during inference, aiming to improve not only the estimation precision

but also the translation quality. In a nutshell, our contributions are as follows:

1. We proposed SubMerge, a nested beam search algorithm for generating text

with subword regularized models. It merges equivalent subword tokenizations for

the next words, thereby enhancing probability estimation accuracy and transla-

tion quality.

2. Experimental results on five machine translation datasets demonstrate

significant improvements in estimating the underlying word perplexity computa-

tion for a model and its translation quality.

3. We provide analyses on using various beam sizes, the selection of the inner

searching function, and the impact of hyperparameters.
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5.1 Related Work

SubMerge is designed for decoding with text generation models for which likely

tokenization probabilities diverge drastically from sentence probabilities. In other

words, there are multiple tokenizations for one target sentence, and the proba-

bility distribution is splintered among them. Although we only experimented on

models trained on data segmented by BPE-dropout [106], it also works for Sen-

tencePiece Regularization [61], MaxMatch-Dropout [43] and NMT models with

multiple subword segmenters [51]. On the other hand, NMT models trained on

sentences segmented by deterministic segmenter only benefit from marginal like-

lihood estimation in out-of-domain data or long words [12, 17]. Deterministic

subword segmentation includes not only subword-level methods such as Word-

Piece [112], BPE [116], SentencePiece [62], Dynamic Programming Encoding [41],

BERTSeg [121], but also byte-level [117], character-level [129], word-level [91],

and hybrid word-character methods [72].

Marginal likelihood estimation can be implemented through two ways, sam-

pling and dynamic programming. Sampling methods include summing over n-best

tokenizations [12] or important tokenizations [17]. Sampling can be easily applied

to any generation model. However, a manageable number of tokenizations can-

not precisely estimate the probability of sentences with an exponentially large

number of tokenizations, which is the case during the inference of the subword

regularized models. On the other hand, dynamic programming can handle an ex-

ponentially large number of tokenizations by merging the same historical states,

as introduced in sequence modeling via segmentations [143] and applied in the

mixed-character-subword models [41, 89]. However, they merge the historical

states by approximating the previous output by character-level data. That is,

after the decoder generates one subword, it is split into characters and fed to the

decoder. This is not applicable to pure subword models. Based on the property

that each word is individually segmented in BPE-dropout [106], we obtain n-best

tokenizations within a small search space and treat the best tokenization of each

word the historical state, taking advantage of both marginal likelihood estimation

methods.
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5.2 Preliminaries

This section formulates the objective of the inference process for NMT models,

highlights the distinction introduced by subword regularized models, and how we

address it.

The inference objective of an NMT model with parameters θ is to obtain

arg max
Y

Pθ(Y |X) where X and Y are the source and target sentences in plain

text form. For subword-based NMT models, we tokenize X into a sequence of

tokens during both training and inference. We tokenize Y during the training

and try to predict a sequence of tokens that compose Y during inference. We

use two tokenizers τS(X) = x, where x = (x1, ..., xn) and τT (Y ) = y, where

y = (y1, ..., ym). Each subword xi or yi is a non-empty substring of the text X or

Y in a finite-size subword vocabulary predefined by the source or target tokenizer.

In theory,

Pθ(Y |X) ̸= Pθ(y|x), (5.1)

because there are multiple tokenizations of X and Y (besides x and y) that the

model Pθ would assign non-zero probabilities to [12].

For non-regularized models using deterministic tokenizers such as BPE [116],

since τ(·) is a bijective function, we can approximate the objective using one

tokenization with a gap less than 0.5% [17]:

Pθ(Y |X) ≈ Pθ(y|x). (5.2)

Therefore, we can use arg max
y

Pθ(y|x) to approximate arg max
Y

Pθ(Y |X) with

greedy or beam search in inference. This allows us to identify the next tokens

with high conditional probabilities without concern for the discrepancy between

the probability of raw text Y and of the particular tokenization y.

For subword regularization methods [106], however, the tokenizer τ stochas-

tically yields multiple tokenizations for one sentence. That is τS(X) = x ∈ VS(X )

where x ∼ PτS (x|X). Similar for Y . In this case, the size of possible segmenta-

tion VS(X ) increases exponentially according to the length of X, which deviates
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Pθ(y|x) drastically from Pθ(Y |X), thus it requires marginalization over all possi-

ble tokenizations:

Pθ(Y |X) =
∑

x∈VS(X)

∑
y∈VT (Y )

Pθ(y|x)PτS (x|X). (5.3)

This study focuses on better estimating the marginal likelihood of the target

side, so we simplify Eq. (5.3) by using the most probable source tokenization

arg max
x∈VS(X)

PτS(·)(x|X) and remove the effect of the source tokenizer, resulting in:

Pθ(Y |X) ≈
∑

y∈VT (Y )

Pθ(y|x). (5.4)

We propose SubMerge to approximates Eq. (5.4) by introducing an in-

termediate variable, word tokenizations w = (w1, ..., wn), generated by a word

tokenizer τW (·) which is a bijective function.1 The problem is simplified as:

Pθ(Y |x) = Pθ(w|x) =
n∏

i=1

Pθ(wi|w<i,x). (5.5)

We estimate Pθ(wi|w<i,x) by summing over probabilities of subword tokeniza-

tions for one word wi where the search space is much smaller compared to the

search space of tokenizations of a whole sentence in Eq. (5.4):

Pθ(wi|w<i,x) ≈
∑

y′∈VT (wi)

Pθ(y
′|w<i,x). (5.6)

In practice, since the decoder only takes subword as input, we feed the best sub-

word tokenization of the next word wi, which is arg max
y′∈VT (wi)

Pθ(y
′|w<i).

In this way, the probability of the target sentence is accurately calculated through

a deterministic word tokenization as shown in Eq. (5.5), where the probability esti-

mation of each word is precisely estimated through marginal likelihood estimation

shown in Eq. (5.6). We implement Eq. (5.5) with the outer beam search as intro-

duced in Section 5.3.2 and Eq. (5.6) with our inner beam search as introduced in

Section 5.3.3.
1That is τW (Y ) = w. Note that word tokenizer is not a bijective function for languages such

as Japanese or Chinese. For these languages, we can use specific word segmentaters such as

Jumanpp or Stanford Word Segmenter, which are bijective.
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Figure 5.2: Overview of SubMerge. It contains an outer beam search that views

words as minimal units. The candidate words and their probabilities are obtained

from merging subword tokenizations in the n-best list of the inner beam search.

5.3 Methodology

5.3.1 Overview of SubMerge

An overview of the SubMerge algorithm is shown in Figure 5.2. It is a nested

beam search decoding algorithm that contains an outer beam search as explained

in Section 5.3.2 and an inner beam search with subword merging post-processing

as explained in Section 5.3.3. The outer beam search selects from a list of words

considering the conditional probability in each step and estimates the most prob-

able sentence arg max
Y

Pθ(Y |X). The inner beam estimates the conditional prob-

ability of words in Eq. (5.6) by merging the probabilities of different subword

tokenizations of the same words.
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5.3.2 Outer Beam Search

The outer beam search algorithm is shown in Algorithm 2. It follows the standard

beam search approach, with words serving as the basic units. The candidates of

the next words are obtained from a call to the inner beam search rather than the

probability distribution generated by the decoder. Each state in the outer beam

search queue contains the probability of the generation, the previous words, and

their most probable tokens. Each state s′ from the inner beam search contains the

probability of the possible next word, the next word itself, and the most probable

subword tokenization of that word.

In practice, we take the logarithm (log(·)) of the probabilities for computa-

tional accuracy. We implemented early stopping after all sequences reach the

special end-of-sentence (¡eos¿) token.

5.3.3 Inner Beam Search

The inner beam search is shown in Algorithm 3. It consists of two parts: a

token-level beam search within the word boundary and post-processing to merge

probabilities from equivalent subword tokenizations that compose the same word.

The inner search stops exploring a sequence of subwords when it reaches the

start of the next word (with the start-of-word indicator ’ ’ Unicode U+2581) or

the ¡eos¿ token. This stopping token will not be added to the token list. We

remove special tokens and spaces during the detokenization of a token list to form

the word and return a list of words with their probabilities. The time complexity

of SubMerge is O(T ·K3), where T is the sentence length and K is the beam size.

The derivation is presented in Appendix C.1.

5.4 Experimental Setup

We introduce the MT datasets used in our experiments, as well as our pre-

processing settings, including subword tokenization in Section 5.4.1. In Sec-

tion 5.4.2, we provide details around the training and inference of our models,

and in Section 5.4.3, we present our evaluation setup.
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Algorithm 2: OuterBeamSearch

Data: Beam width K, max length T

Result: Best sequence of states

1 Initialization:

2 B0 ← {(0, [], [])};
3 for t← 1 to T do

4 Bt ← ∅;
5 foreach s ∈ Bt−1 do

6 if s reaches < eos > then

7 Bt.append(s);

8 continue;

9 foreach s′ ∈ InnerBS(s[2]) do

10 score, word, toks = s′;

11 score← s[0] + score;

12 words← s[1] + words;

13 toks← s[2] + toks;

14 Bt.append((score, words, toks));

15 Sort Bt by scores in descending order.;

16 Bt ← Bt[: K]

17 return BT
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Algorithm 3: InnerBeamSearch

Data: Beam width K, max length T , toks

Result: Next word list

1 Initialization:

2 B0 ← {(0, toks)};
3 for t← 1 to T do

4 Bt ← ∅;
5 foreach s ∈ Bt−1 do

6 if s reaches or < eos > then

7 Bt.append(s);

8 continue;

9 foreach s′ ∈ Decoder(s[1]) do

10 score, toks = s′;

11 score← s[0] + score;

12 toks← s[1] + toks;

13 Bt.append((score, toks));

14 Sort Bt by scores in descending order.;

15 Bt ← Bt[: K]

16 W = {};
17 foreach s ∈ BT do

18 score, toks = s;

19 word = detokenize(toks);

20 if word /∈W then

21 W [word] = (score, toks)

22 else

23 W [word][0]+ = score

24 return list(W.items())
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5.4.1 Data and Pre-processing

Dataset Train Valid Test

ALT Asian Langs–En 18k 1, 000 1, 018

IWSLT’15 Vi–En 133k 1, 553 1, 268

WMT’16 Ro–En 612k 1, 999 1, 999

WMT’15 Fi–En 1.8M 1, 500 1, 370

WMT’14 De–En 4.5M 45, 781 3, 003

Table 5.1: Statistics of the datasets.

Datasets We conducted experiments in low- to high-resource MT settings with

datasets listed in Table 5.1, including Asian Language Treebank (ALT), IWSLT’15

English–Vietnamese (En–Vi), WMT’16 English–Romanian (En–Ro), WMT’15

English–Finnish (En–Fi), and WMT’14 English–German (En–De) datasets. ALT

is a multi-way parallel dataset containing data in English and other Asian lan-

guages including Filipino (Fil), Indonesian (Id), Japanese (Ja), Malay (Ms), Viet-

namese (Vi), and simplified Chinese (Zh). We used the ALT-standard-split tool2

to split the dataset into train, validation, and test sets.

Data Pre-processing We performed word tokenization on all data. We ap-

plied Juman++ [132] to data in Japanese, Stanford-tokenizer [75] to data in

Chinese, and Moses tokenizer [58] to data in other languages. We normalized Ro-

manian data and removed diacritics following previous work [115]. We prepared

the WMT’14 English–German dataset using a data cleaning and normalization

tool from Fairseq.3

We applied subword tokenization to each translation direction separately. For

source or target language, we trained a subword tokenizer with a subword vo-

2www2.nict.go.jp/astrec-att/member/mutiyama/ALT
3github.com/facebookresearch/fairseq/blob/main/examples/translation/

prepare-wmt14en2de.sh
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cabulary of 8k on the monolingual corpus. We applied a widely adopted toolkit4

to train BPE-dropout tokenizers with a dropout rate of 0.2 for the generation

of subword-regularized data and train BPE tokenizers for the generation of non-

regularized data.

5.4.2 NMT Settings

Model We conducted MT experiments using the Fairseq framework [100] with

the base architecture of the Transformer model [135]. We set dropout and at-

tention dropout rates to 0.1. We applied layer normalization [64] for both the

encoder and decoder.

Training We set the batch size to 3, 072 tokens in the source language and

used eight GPUs, resulting in 25k source tokens per batch. We used the Adam

optimizer [54] with β1 = 0.9 , β2 = 0.98, and ϵ = 10−9. We used warmup and

linear decay for the learning rate following Vaswani et al. [135], with 4k warm-up

steps, an initial learning rate of 1.7∗10−7 and a final learning rate of 5×10−4. We

used label smoothing for the cross entropy loss with ϵls = 0.1 [127]. We calculated

the loss on the validation set after each epoch and applied early stopping when

no improvement was observed for 10 epochs.

Inference We selected the checkpoint with the best loss on the validation set.

We used beam search and SubMerge with a beam size of 4 without additional

normalization techniques, such as length penalty or temperature sampling [27].

5.4.3 Evaluation Metrics

We report word perplexity on generated translations to compare the probabilities

assigned to generations by models. To evaluate translation quality, we report

BLEU using sacreBLEU [105]5 and chrF++ [104]6, performing paired bootstrap

resampling for statistical significance tests [56].

4github.com/google/sentencepiece
5BLEU+c.mixed+l.en-lang+#.1+s.exp+tok.13a+v.1.5.1
6github.com/m-popovic/chrF with c6w2F0.4
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The word perplexity is calculated as follows. We first evaluate the negative

log probability of the generated sentences for models using SubMerge by:

sscore = −
∑
i

logPθ(wordi), (5.7)

and models with beam search by:

sscore = −
∑
i

logPθ(toki). (5.8)

We evaluated the word perplexity by

wppl = exp(
1

N
sscore), (5.9)

where N is the number of words. We evaluate the word perplexity on the generated

hypothesis, rather than on the reference. This reflects the actual scenario in

generation tasks where we dynamically generate the next token (word) conditioned

on what the model has generated instead of on the ground truth. Nevertheless,

word perplexity is a conditional probability that is dependent on not only the input

but also the parameters in the model. Therefore, the perplexity results always

need to be considered along with model-independent metrics such as BLEU scores.

5.5 Main Results

The results for subword regularized models are shown in Table 5.2. SubMerge led

to better word-level perplexities than traditional beam search and higher BLEU

and chrF++ scores, often achieving statistically significant improvements.

Word perplexity results improved substantially in the regularized models in

contrast to the tiny gap (0.5%) reported in the non-regularized models [17] and

in our analysis shown in Section 5.6.5. This is due to the fact that multiple tok-

enizations for one word appeared during training, which acts as a label-smoothing

function on multiple correct next tokens. Therefore, the probability weight is dis-

tributed across multiple subwords thus, it becomes necessary to incorporate the

marginal likelihood. It is worth noting that here word perplexity represents the

accuracy of probability estimation rather than fluency or quality of the output.
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Word Perplexity ↓ BLEU ↑ chrF++↑

Beam Search SubMerge Beam Search SubMerge Beam Search SubMerge

Low-resource Scenario

ALT Fil→En 12.68 4.59 31.10 31.82*+0.7 57.98 59.17+1.2

ALT En→Fil 9.56 4.14 30.20 31.14*+0.9 59.64 60.14+0.5

ALT Id→En 17.91 5.91 27.35 28.73*+1.4 53.61 56.39+2.8

ALT En→Id 16.44 4.91 33.63 34.19 +0.6 63.14 63.89+0.8

ALT Ja→En 24.90 7.79 15.07 15.26*+0.2 45.07 45.46+0.4

ALT En→Ja 6.55 3.69 14.38 14.59 +0.2 27.92 29.02+1.1

ALT Ms→En 11.28 4.33 31.86 32.16*+0.3 59.01 60.09+1.1

ALT En→Ms 12.82 4.18 38.83 39.28 +0.5 66.25 66.91+0.7

ALT Vi→En 17.21 6.14 23.64 24.97*+1.3 52.32 52.93+0.6

ALT En→Vi 8.64 3.52 27.35 27.64 +0.3 53.66 53.82+0.2

ALT Zh→En 23.11 7.81 13.92 14.31*+0.4 43.54 44.43+0.9

ALT En→Zh 13.61 6.76 9.03 9.87*+0.8 22.76 23.25+0.5

Middle- and High- Resource Scenario

IWSLT’15 Vi→En 14.41 5.62 27.87 28.43*+0.6 48.62 50.59+2.0

IWSLT’15 En→Vi 7.98 3.39 28.08 28.16 +0.1 49.27 50.18+0.9

WMT’16 Ro→En 7.44 3.22 33.85 33.77 −0.1 58.75 59.07+0.3

WMT’16 En→Ro 6.78 3.11 34.35 34.50 +0.1 58.66 58.89+0.2

WMT’15 Fi→En 11.27 4.27 18.95 18.88 −0.1 47.24 47.55+0.3

WMT’15 En→Fi 22.52 7.81 16.51 16.65 +0.1 47.66 47.97+0.3

WMT’14 De→En 10.33 3.90 28.85 28.94 +0.1 55.99 56.52+0.5

WMT’14 En→De 12.74 4.64 24.69 24.83 +0.1 52.68 52.77+0.1

Table 5.2: Results of Subword Regularized Models. Statistical significance

p < 0.01 is indicated by * against Beam Search. SubMerge consistently improves

over the Beam Search baseline in most directions. Word perplexity results repre-

sent the ability to accurately estimate sentence probability rather than fluency.

Translation quality is also improved, especially in low-resource scenarios where

the average BLEU score improvement is 0.6, whereas in the middle- to high-

resource scenarios, it is 0.3. We also observed consistent improvement in the

chrF++ score. While only one translation direction among middle- and high-
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resource directions is statistically significant, 8 out of 12 low-resource directions

see statistically significant improvements.

5.6 Analysis

We investigate the effect of different beam sizes on the algorithm in Section 5.6.1.

Section 5.6.2 explores using a sampling algorithm as the inner search algorithm.

Section 5.6.3 and Section 5.6.4 respectively analyze the impact of the training set

size and the dropout rate. Section 5.6.5 show conditions in which SubMerge is

effective.

5.6.1 Assessing Beam Sizes Variants

1 2 4 6 8 10
Beam Size

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

W
or

d 
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WMT'15 En->Fi

BPE w/ Beam Search
BPE w/ SubMerge
BPE-dropout w/ Beam Search
BPE-dropout w/ SubMerge

Figure 5.3: Word perplexity results using different beam sizes on the WMT’15

En→Fi direction.

Figures 5.3 and 5.4 show the word perplexities and BLEU scores of using dif-

ferent beam sizes for both non-regularized models and subword regularized mod-

els, comparing beam search and SubMerge. We observed that as we increased
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Figure 5.4: BLEU results using different beam sizes on the WMT’15 En→Fi

direction.

the beam size, the word perplexity dropped sharply for BPE-dropout with Sub-

Merge. When using a large beam size such as 10, it achieved comparable results to

non-regularized models trained on one-best tokenization. Nevertheless, SubMerge

does not yet accumulate as large a proportion of the probability distribution as

using a non-regularized model. Since the training is on multiple segmentations,

it certainly comes closer than when using beam search. For non-regularized mod-

els, combining equivalent paths for perplexity estimation also proved to be effec-

tive. We also observed that increasing beam size can lead to translation quality

improvement for the SubMerge method. However, this is not the case for all

directions as reported in Cohen and Beck [19].

5.6.2 Inner Search Algorithm Variants

We replaced the inner beam search with the sampling algorithm as shown in Ap-

pendix C.2 and compared word perplexity results in Figure 5.5. For the sampling

algorithm, we sampled n2 tokenizations (where n is the beam size) in the inner loop
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Figure 5.5: Word perplexity results comparing BPE-dropout with beam search to

two variants of SubMerge - using either sampling as the inner search function or

beam search as before.

and for each path, we started with the same historical information and selected

the next subword according to the probability distribution until we reached the

beginning of the next word. We then perform the same merging post-processing.

However, we observed that the perplexity was higher than n-best tokenizations.

This is because the sampling process could easily get lost at some step by selecting

a token in the long tail with a very low probability.

5.6.3 Assessing Training Set Sizes

SubMerge is effective in extremely low-resource scenarios, as shown in Figure 5.6.

We report BLEU scores using beam search and SubMerge during decoding for

models trained on 1k to 18k parallel sentences. SubMerge consistently outper-

formed beam search across training set sizes. Moreover, the BLEU improvement

reached approximately 3.4 using only 1k data. This observation reveals the po-

tential of SubMerge to be used in domain adaptation scenarios with limited data.

5.6.4 Impact of Dropout Rates

Using a smaller dropout rate in BPE-dropout yielded lower word perplexity and

higher BLEU scores in high-resource scenarios, as shown in Table 5.3. When the
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Figure 5.6: Translation quality using different sizes of training data. The x-axis

is logarithmized.

dropout rate is low, the randomness of subword segmentation for a given word also

decreases, leading to reduced variability in the training data and, concurrently,

a diminished range of choices during the inference process. In the context of

low-resource scenarios, reduced variability implies diminished data augmentation,

which can adversely affect the model’s generalization capability. Conversely, in

high-resource settings, decreased variability signifies reduced noise, potentially

enhancing model performance.

5.6.5 Does SubMerge Work on Non-regularized Models?

In short, No. We explored whether the proposed SubMerge method is appli-

cable to non-regularized models using deterministic BPE tokenization. Table 5.4

presents word perplexities and BLEU scores on non-regularized models using beam

search or SubMerge as the decoding algorithm.

We observed lower word perplexity using SubMerge compared to using beam

search. However, the improvement is not as significant (approximately 6%) as
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Word PPL ↓ BLEU ↑

Dropout Rate 0.1 0.2 0.1 0.2

ALT Others→En 4.69 6.10 22.06 24.54

ALT En→Others 4.16 4.53 24.75 26.12

IWSLT’15 Vi→En 3.09 5.62 30.03 28.43

IWSLT’15 En→Vi 2.56 3.39 29.61 28.16

WMT’16 Ro→En 2.34 3.22 34.75 33.77

WMT’16 En→Ro 2.21 3.11 35.39 34.50

WMT’15 Fi→En 3.25 4.27 18.87 18.88

WMT’15 En→Fi 4.94 7.81 16.64 16.65

WMT’14 De→En 2.86 3.90 29.70 28.94

WMT’14 En→De 3.15 4.64 24.94 24.83

Table 5.3: Results of SubMerge for models trained on BPE-dropout data with

different dropout rates.

the improvement achieved by SubMerge for subword regularized models. This is

consistent with our expectations. The model is trained on a single tokenization for

each training word, so there is only one tokenization that accumulates most of the

probability weight. For the non-regularized model, results show the translation

quality of SubMerge is not as good as beam search. Therefore, the proposed

SubMerge method is only applicable to subword regularized models in the NMT

task.

For other tasks, such as question answering, the word perplexity is greater

because the task is less structured than MT, where the source sentence is a highly

limiting constraint. For less constrained tasks, it is possible that SubMerge will

improve the performance of even non-regularized models. We leave this for future

work to explore.
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Word PPL ↓ BLEU ↑

BeamSearch Ours BeamSearch Ours

ALT Others→En 6.02 5.60 15.73 15.40

ALT En→Others 4.90 4.77 18.06 17.82

IWSLT’15 Vi→En 2.95 2.79 24.34 25.63

IWSLT’15 En→Vi 2.43 2.42 25.09 24.86

WMT’16 Ro→En 2.14 2.11 32.05 31.70

WMT’16 En→Ro 2.00 1.98 32.98 32.85

WMT’15 Fi→En 2.85 2.76 17.08 16.94

WMT’15 En→Fi 4.03 3.79 15.30 15.06

WMT’14 De→En 2.39 2.40 30.18 30.04

WMT’14 En→De 2.45 2.36 25.88 25.71

Table 5.4: Results of Non-regularized Models. We show the averaged results

in En→ XX and XX→ En directions for the ALT dataset.

5.7 Conclusion and Future Work

We propose SubMerge to estimate the marginal likelihood of the next word by

merging equivalent subword tokenizations during the inference of subword regu-

larized models. Results demonstrate a significant improvement in word perplexity

estimation and translation quality improvement in terms of BLEU and chrF++

scores, especially in low-resource scenarios.

Current inference algorithms are mostly based on conditional probability,

which is a short-term value function. For future work of inference, we suggest

aligning the value function towards evaluation metrics and human preference

through reinforcement learning, where models are more aware of longer-term re-

wards.
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5.8 Limitations

We did not experiment with common techniques in the beam search and Sub-

Merge, such as length penalty. This is because we use a nested beam search, and

the way to define the length (whether to use the number of tokens or the number

of words) may differ from the definition in a traditional beam search. However,

combining SubMerge with such techniques could be valuable for further work.

Additionally, the implementation of beam search in Fairseq is not the standard

one but an optimized one. For example, it uses twice the beam size during search-

ing to prevent half of the candidates from reaching the end. As a result, setting

the beam size to 1 should make beam search identical to greedy search, but it

shows a better result as shown in Figure 5.4.

The word perplexity results reported in this paper are on the generated texts

rather than on reference texts. They do not correlate with fluency or translation

quality, and we only use them to report how much of the probability weight of a

model is being used during decoding, which is still useful.

We use the SentencePiece tool for the current implementation of BPE and

BPE-dropout algorithms. Therefore, the SubMerge implementation is also based

on the format of this specific tool, which uses ” ” (U+2581) to represent the begin-

ning of a new word. However, other tools may use ”@@” at the end of a subword to

indicate that the current word has not ended yet. Therefore, the implementation

of SubMerge may be slightly different in terms of ending conditions in the inner

beam search.

We trained NMT models by ourselves without any hyperparameter fine-tuning

because we did not find any available checkpoints of subword regularized NMT

models. There is a small gap between our results and the SOTA results. However,

we believe the observations still hold for models with fine-tuned hyperparameters.
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Conclusion

This chapter first summarizes the thesis and provides the best practice. Then, we

provide future directions for building a universal subword segmenter and using it

in large language models.

6.1 Summary

In this thesis, we propose methods to address three challenges in the subword-

based neural machine translation system in the segmentation, encoding, and de-

coding phases. The proposed methods improve the machine translation quality

especially in low-resource scenarios.

Chapters 2 and 3 provide solutions for the optimal segmentation question. In

Chapter 2, we propose SelfSeg, a fast neural subword segmenter based on masked

pre-training. It defines the optimal segmentation(s) by the generation probability.

During training, it maximizes the probabilities of all possible segmentations while

during inference it yields one or multiple optimal segmentations according to their

probabilities. Therefore, when the subword segmentations are used on the target

side, they are easy for the NMT models to generate which results in improved

translation quality. Moreover, it relies on monolingual word-level data, making

it applicable to low-resource languages without large-scale parallel resources. In

Chapter 3, we propose a BERT-based subword segmenter that generates subword

segmentation that utilizes the contextualized semantic embeddings of words from

113
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the BERT model. The segmentations better capture the semantic meaning of

the word and show better performance on low-resource scenarios. Moreover, the

pre-trained BERT encoder enables faster training than SelfSeg.

Chapter 4 provides solutions to encoding multiple subword segmentations of

each word in the source language. In DiverSeg, multiple segmentations are en-

coded using a subword lattice input, a subword-relation-aware attention mech-

anism integrates relations among subwords, and a cross-granularity embedding

alignment objective enhances the similarity across different segmentations of a

word. We found incorporating information from multiple aspects enhances the

performance of NMT, especially in low-resource scenarios.

In Chapter 5, we propose SubMerge, an algorithm that improves the word-

probability estimation accuracy during decoding. It merges the probabilities of

multiple subword segmentations that form the same word, which we call equiv-

alent segmentations. This is specially designed for subword regularized NMT

models, which leverage multiple subword segmentations of one target sentence

during training. SubMerge is a nested search algorithm where the outer beam

search treats the word as the minimal unit, and the inner beam search provides

a list of word candidates and their probabilities, merging subword segmentations

that form the equivalent word. It estimates the probability of the next word more

precisely, providing better guidance during inference. We show it consistently

outperforms the beam search algorithm in several machine translation datasets.

As for the best practice, in low-resource scenarios, we suggest to actively using

data augmentation techniques including DiverSeg in the source side, BERTSeg-

regularization in the target side, and SubMerge during decoding. In high-resource

scenarios, considering the high computational cost and marginal improvement,

applying SelfSeg-regularization on the target side is preferred.

6.2 Future Prospects

6.2.1 Universal Subword Segmenter

In this thesis, we train one subword segmenter for one particular language. How-

ever, a universal subword segmenter that can handle hundreds of languages will
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be more practical in the application of multilingual machine translation systems

where input and output sentences are possible to be any of the given languages.

Moreover, though BERT-based subword segmenter showed higher training and

decoding speeds compared to previous neural segmenters, the speeds are still not

satisfactory, given that frequency-based methods can process millions of sentences

in seconds. Utilizing a look-up table or lightweight neural architecture are possible

ways to achieve faster speeds.

6.2.2 Subwords in Large Language Models

In this thesis, the proposed methods enhanced translation quality especially for

low-resource languages. LLMs, considered as universal solutions for NLP tasks,

handle more than one hundred languages and many of them are low-resource

ones. Since LLMs also use subwords as the minimal input and output unit and

face the same challenges brought by subwords, the proposed methods also possible

to improve the performance of LLMs when the questions or answers are in low-

resource languages.
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Supplementary Materials of

BERTSeg

A.1 Limitations

Despite the effectiveness and efficiency, the proposed method has the following

methodological and experimental limitations ranked in order of importance. We

also provide directions to solve them as future works.

Dependency on BPE Vocabulary BERTSeg is a model to learn optimal

segmentations for words but not paired with a vocabulary generation algorithm.

Currently, the vocabulary is generated by BPE, therefore, many subwords in the

vocabulary are not used, as shown in Figure 3.2. It is possible to address this

by first generating a large vocabulary and then shrinking it iteratively, saving the

commonly used subwords only, motivated by the SentencePiece work [62].

Target Side Only The goal of BERTSeg is to maximize the generation prob-

ability as shown in Eq. (2.2), therefore, can only apply to the target side data in

generation tasks. Applying BERTSeg to the source side data will not improve the

MT performance in our preliminary experiments, which is also reported in the

DPE work [41]. To address this, a dual segmenter model is needed to optimize

both the target segmentations and source segmentations.
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English Subword Segmenter Only Currently we only train the subword

segmenter for English due to there is only an English characterBERT model.

However, we believe using embeddings from BERT or mBERT will not affect the

performance, although it adds a dependency on the BERT tokenizer. To extend

BERTSeg to mBERTSeg, a multilingual characterBERT is needed. This will

especially help low-resource or multilingual MT and NLP tasks [87, 80, 76, 79,

81, 85] where high-quality segmenters are not available.

Definition of Good Segmentation The definition of good subword segmen-

tation is beyond the scope of this paper, and we use the BLEU score as the metric

to measure downstream tasks performance. However, measuring the segmentation

quality is a more direct way. To achieve this, crowd-sourcing is a promising way

to obtain a supervised subword segmentation dataset, at least for frequent words.

A.2 Example: Segmentations

We provide examples comparing the proposed method with BPE including high-

frequency words, rare words and unseen words as shown in Table A.1. We have

the following observations:

• For frequent words, BERTSeg sometimes segment them into subwords

even the word is in the vocabulary such as official/s and use/d. Additionally,

the model can discriminate the ambiguous situations very well. For example,

the model can extract the prototype challenge from the word challenged.

• For rare words with frequency < 5 in the training set, BERTSeg gives

much better segmentations than BPE, because BPE is a frequency-based

method and thus handles rare words poorly.

• For unseen words, although the BERTSeg model gives better segmenta-

tions than BPE, we found that sometimes it oversegments words such as

M/a/d/a/m/e. We guess it’s due to the low-quality word embedding from

characterBERT, and we do not know the impact of this on the MT results.
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A.3 Implementation Details of Baselines

This section aims to help to reproduce the results in the paper more easily. In

the meantime, we provide some observations from the experiments.

A.3.1 BPE

Vocabulary Size Vocabulary size is a very important hyperparameter for the

NMT experiments. For the ALT dataset, we did hyperparameter searching and

8, 000 gave the highest BLEU scores averaged in all directions. For the IWSLT15

Vi-En, WMT16 Ro-En and WMT15 Fi-En datasets, we have tried two settings:

8, 000 and 32, 000, where using 8, 000 gave a higher performance.

The Size of Monolingual Data In low-resource scenarios, using a larger

monolingual dataset in the same domain to generate the BPE vocabulary gives

better performance. We have used 500k English monolingual data from the news

commentary dataset, and it gives 0.4 BLUE score improvements over using 18k

ALT data to generate the BPE vocabulary.

Comparison with SentencePiece We used BPE as the baseline method be-

cause it gave higher performance (about 0.2 BLEU scores) than SentencePiece in

low-resource scenarios. We assume that in the situation where the sentence is to-

kenized into words, the performance of BPE will be higher because the subwords

in the BPE vocabulary do not contain spaces.

A.3.2 VOLT

Table A.2 illustrates the optimal sizes of BPE vocabularies of each dataset cal-

culated by the VOLT algorithm. The optimal numbers are very similar to the

results we got from hyperparameter searching, showing the effectiveness of the

VOLT algorithm.
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A.3.3 BPE-dropout

We have tried BPE-dropout rates of 0.05 and 0.1, where 0.1 gave higher BLEU

scores. Note that statical BPE-dropout is not helpful, it is necessary to segment

the train set for each epoch.

A.3.4 DPE

We basically followed the official implementations. The training requires 8 32GB

GPUs to train for about one week for large datasets.



120 APPENDIX A. SUPPLEMENTARY MATERIALS OF BERTSEG

BERTSeg BPE

Frequent words

official/s officials

edit/ion edition

use/d used

farm/er/s far/mers

normal/ly norm/ally

seven/th sevent/h

challenge/d challeng/ed

over/night o/vern/ight

Rare words

inter/face/s inter/f/aces

sea/side se/as/ide

ab/normal/ly ab/n/orm/ally

dis/comfort disc/om/fort

un/warrant/ed un/w/arr/anted

in/definitely ind/ef/in/itely

Unseen words

stable/d st/ab/led

save/r/s sa/vers

Free/way Fre/ew/ay

M/i/s/behavior M/is/be/hav/ior

m/o/u/r/n/ed m/our/ned

Table A.1: BERTSeg and BPE segmentations on frequent words, rare words and

unseen words.
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Dataset Language Size

ALT En/Id/Ja 8k

ALT Ms 6k

ALT Vi 7k

ALT Fil/Zh 9k

IWSLT15 Vi-En En/Vi 7k

WMT16 Ro-En En 10k

WMT16 Ro-En Ro 11k

WMT15 Fi-En En 10k

WMT15 Fi-En Fi 8k

Table A.2: Optimal BPE vocabulary sizes of languages in each dataset.
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Supplementary Materials of

DiverSeg

B.1 Vocabulary Size Selection

The optimal vocabulary sizes calculated by the VOLT algorithm [150] are pre-

sented in Table B.1.

Dataset Language Sizes

ALT Asian Langs/En [6k, 9k]/8k

IWSLT’15 Vi–En Vi/En 7k/7k

WMT’16 Ro–En Ro/En 11k/10k

WMT’15 Fi–En Fi/En 8k/10k

WMT’14 De–En De/En 11k/11k

Table B.1: Optimal BPE vocabulary sizes of languages in each dataset.
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B.2 Detailed Results of MultiSub

During training, MultiSub [51] leverages character-level data, BPE segmentation,

and BERTSeg segmentation in the English→the other language direction and

character-level data, BPE segmentation, and SentencePiece segmentation in the

other language→English direction. During inference, we test the performance us-

ing the sentence segmented by every single segmenter. As presented in Table B.2,

using the character-level input data achieved a very low performance, whereas

using BPE or BERTSeg improved performance.

DiverSeg enhanced the connection between the three segmentations through

the subword-relation-aware attention mechanism in the model and the cross-

granularity embedding alignment during the training process. Therefore, the

performance was considerably higher than using the same three segmenters.

En–Fil En–Id En–Ja En–Ms En–Vi En–Zh Avg

→ ← → ← → ← → ← → ← → ← → ←

MultiSub

Char 5.54 3.82 4.94 5.19 2.55 4.37 7.41 7.24 3.73 6.87 1.02 5.84 4.20 5.56

BPE 17.81 14.53 20.51 17.41 9.77 6.31 24.83 19.59 19.94 13.42 5.30 7.29 16.36 13.09

BERTSeg/SPM 17.28 14.83 19.52 16.89 9.58 6.06 24.14 18.89 19.20 12.09 5.21 7.74 15.82 12.75

Avg 13.54 11.06 14.99 13.16 7.30 5.58 18.79 15.24 14.29 10.79 3.84 6.96 12.13 10.47

DiverSeg 22.89 18.28 25.22 20.80 10.72 7.73 30.51 26.28 24.02 16.49 8.60 8.52 20.33 16.35

Table B.2: BLEU results on the ALT dataset using input by each segmenter in

the MultiSub method.
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SubMerge

C.1 Derivation Process for Time Complexity

In the Outer Beam Search Algorithm 2, the loop from Line 3 contains at most

T steps, and the loop in Line 5 contains at most K steps because we limited

the size in Line 16. Therefore, the time complexity of the outer beam search is

O(T ·K) ·O(InnerBeamSearch())).

In the Inner Beam Search Algorithm 3, the loop from Line 3 contains at most

T steps, the loop from Line 5 contains at most K steps and the loop from Line

9 contains at most K steps because each beam yields at most K candidates by

selecting tokens with top-K highest probability. Therefore, the time complexity

of the inner beam search is O(T ·K ·K).

Since the max length limitation T is actually performed on the sentence level,

where T >=
∑

i |wi|, we do not need to count T twice. The overall time complex-

ity is O(T ·K3).

C.2 Sampling as Inner Seach Function

We can replace the inner beam search algorithm with a sampling algorithm as

shown in Algorithm 4, where we select the next token for each sample by the
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probability distribution of subwords in the target vocabulary. We call this pure

sampling because we did not add sampling temperature, top-k or top-p filtering.

We perform the merging post-processing the same as the inner beam search.
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Algorithm 4: InnerSampling

Data: Sample times K, max length T , toks

Result: Next word list

1 Initialization:

2 s0 ← {(0, toks)};
3 Q← ∅;
4 for i← 1 to K do

5 s← s0;

6 for j ← 1 to T do

7 if s reaches or < eos > then

8 Q.append(s);

9 break;

10 Sample s′ from Decoder(s[1]);

11 s = s′;

12 Sort Q by scores in descending order.;

13 W = {};
14 foreach s ∈ Q do

15 score, toks = s′;

16 word = detokenize(toks);

17 if word /∈W then

18 W [word] = (score, toks)

19 else

20 W [word][0]+ = score

21 return list(W.items())
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