
Interpreting Instructional Texts

Towards Robot Execution

Keisuke Shirai

© Copyright by Keisuke Shirai 2024

All Rights Reserved

ii

Abstract

Procedural text provides concrete steps to reach a specific goal. Research on proce-

dural texts has long been addressed in natural language processing, multimedia, and

robotics. We are interested in building intelligent robot systems that interpret and

act on procedural texts. Our ultimate goal is to build a robot system that works on

procedural texts in the real world. We consider that such robots must be equipped

with various capabilities: interpreting the workflow of procedural texts, predicting

the post-action states of objects, making plans interpretable by robots, and execut-

ing actions based on them. This thesis consists of research works contributing the

realization of the first three capabilities with a primary focus on the cooking domain.

Chapter 2 focuses on the problem of predicting the post-action visual states of

objects in the cooking domain. The prediction is performed based on the current

state of the object, and this requires interpreting the workflow of the cooking recipe.

In addition to this, capturing the visual state changes of objects requires annotations

of pre-action and post-action visual states of objects. In this direction of research, no

dataset with the above features has been proposed. To this end, we create the Visual

Recipe Flow (VRF) dataset, a new multimodal cooking dataset. We describe the data

collection process, annotation procedure, statistics, and the quality of the annotations

in order. Finally, a multimodal retrieval experiment assesses the importance of textual

and visual annotations for predicting the post-action states of objects.

Chapter 3 focuses on the problem of converting linguistic instructions into plans

interpretable by robots. Recently, an approach of using large language models (LLMs)

to convert the instructions into plans directly has attracted attention. However, there

are two issues with this approach. One is that the conversion is performed end-to-end,

iii

and it lacks interpretability, which is an essential factor for the continued develop-

ment of a method. The other is that the obtained plans are not necessarily correct

because LLMs do not consider the feasibility of the plans. To tackle this problem,

we develop a Vision-Language Interpreter that generates problem descriptions and

drives a symbolic planner to find valid plans based on the descriptions. The problem

descriptions provide task specifications written in formal language, which are inter-

pretable by humans. In addition to this, the plans obtained through the symbolic

planner are guaranteed to be logically correct. To evaluate the performance of ViLaIn,

we constructed the Problem Description Generation (ProDG) dataset. Experimental

results show that ViLaIn can generate logically correct problem descriptions and find

valid plans with high accuracy.

Chapter 4 focuses on the problem of interpreting the workflow of procedural texts.

In the cooking domain, previous work proposed a recipe flow graph representation

(r-FG) that represents cooking recipes as flow graphs. The r-FG captures the de-

pendencies of actions in the text, which is vital information for robots that work on

procedural texts. Extending the r-FG to handle procedural texts in non-cooking do-

mains has various benefits. Thus, we propose an extended representation of the r-FG.

Concretely, we focus on wikiHow articles and propose a wikiHow flow graph (w-FG)

representation. To investigate flow graph prediction performance in non-cooking do-

mains, we create the w-FG corpus, a new flow graph corpus from wikiHow articles. In

experiments, we assume a low-resource setting given the high annotation cost of flow

graphs. We use the domain adaptation from the existing r-FG corpus to the w-FG

corpus to address this problem. Experimental results show that the domain adap-

tation model significantly improves flow graph prediction performance in the target

domains compared to baseline models.

iv

Acknowledgments

First of all, I would like to express my gratitude to my supervisor, Professor Shinsuke

Mori. This thesis could never have been completed without his support. In my

graduate school life, I was very fortunate to have had the opportunity to learn about

his research philosophy and his approach to solving problems.

I would like to thank Professor Hisashi Kashima and Professor Yuichi Nakamura

for joining my PhD committee and checking my thesis. Their thoughtful advice

helped me to make my thesis more coherent.

I wish to thank Assistant Professor Hirotaka Kameko, who has been a great help

to me throughout my graduate student life. I have discussed with him a great deal of

research topics, but I have always been amazed by his quick thinking. I am thankful

to Taichi Nishimura for providing me with many insightful and helpful comments on

research. I am grateful to Secretary Asuka Kimura. I am indebted to her for her

help with paperwork related to my research. I would like to additionally thank all

the other laboratory members.

I would like to express my sincere gratitude to Atsushi Hashimoto at OMRON

SINIC X Corporation (OSX). During my PhD, he has been supported me with exten-

sive guidance as practically the second supervisor. I am grateful to Yoshitaka Ushiku

at OSX for his many insightful comments on research. I am also thankful to Cristian

C. Beltran-Hernandez, Masashi Hamaya, Shohei Tanaka, and Kazutoshi Tanaka at

OSX and Kento Kawaharazuka at the University of Tokyo for having fruitful discus-

sions on my joint research project. I have really enjoyed my research internship at

OSX thanks to many people, and I extend my thanks to them.

I would like to express my deepest gratitude to Professor Takashi Ninomiya at

v

Ehime University, my undergraduate supervisor. When I was an undergraduate stu-

dent, I was fortunate to have the opportunity to learn how to think in academia

from him. I would like to thank Kazuma Hashimoto at Google Research and Akiko

Eriguchi at Microsoft Research. When I was a master’s student, I had the oppor-

tunity to collaborate with them on machine translation research, but I was always

impressed by their thoughtfulness in research. I would like to thank Shuhei Kurita at

the RIKEN Center for Advanced Intelligence Project for his appropriate comments

on research. I would additionally thank Zhao Tianyu and Kei Sawada at rinna Co.,

Ltd for their help during my internship at rinna.

Finally, I want to thank my family for supporting me throughout my graduate

school life.

vi

Contents

Abstract iii

Acknowledgments v

1 Introduction 1

1.1 Background . 3

1.1.1 Workflow interpretation of procedural texts 3

1.1.2 Tracking and recognizing the state changes of objects 5

1.1.3 Converting linguistic instructions into actionable representations 6

1.2 Problems of Interest . 7

1.2.1 Prediction of post-action visual states of objects in cooking recipes 7

1.2.2 Converting steps to plans interpretable by robots 7

1.2.3 Workflow interpretation of procedural texts beyond the cooking

domain . 8

1.3 Contributions . 9

1.3.1 Constructing the Visual Recipe Flow dataset 9

1.3.2 Proposing Vision-Language Interpreter 9

1.3.3 Proposing a generalized flow graph representation 10

1.4 Thesis Outline . 10

2 Visual Recipe Flow: A Dataset for Learning Visual State Changes

of Objects with Recipe Flows 13

2.1 Introduction . 13

2.2 Visual Recipe Flow Dataset . 16

vii

2.2.1 Recipe flow graph (r-FG) . 16

2.2.2 Visual annotation . 16

2.3 Annotation standards . 17

2.3.1 r-NE annotation . 18

2.3.2 r-FG annotation . 18

2.3.3 Visual annotation . 20

2.4 Annotation results . 20

2.4.1 Annotation procedure . 21

2.4.2 Statistics . 22

2.4.3 Annotation quality . 23

2.4.4 Experiments . 23

2.5 Application . 28

2.5.1 Multimodal commonsense reasoning 29

2.5.2 Procedural text generation . 29

2.6 Conclusion . 29

3 Vision-Language Interpreter for Robot Task Planning 31

3.1 Introduction . 31

3.2 Related work . 34

3.2.1 Planning from natural language 35

3.2.2 Symbolic planning with PDDL 35

3.2.3 Scene recognition for planning problem specification 36

3.3 Problem statement . 36

3.4 Vision-Language Interpreter . 37

3.4.1 Object Estimator . 37

3.4.2 Initial State Estimator . 39

3.4.3 Goal Estimator . 40

3.4.4 Corrective re-prompting . 40

3.5 Dataset . 42

3.5.1 Evaluation metrics . 43

3.6 Experiments . 44

viii

3.6.1 Generation settings of ViLaIn 44

3.6.2 Evaluation of generation results by ViLaIn 45

3.6.3 Generating the whole problem at once 46

3.6.4 Generating PDs without CR and CoT 46

3.7 Conclusion . 47

4 Flow Graph Prediction of Open-Domain Procedural Texts 49

4.1 Introduction . 49

4.2 Recipe flow graph . 52

4.2.1 Flow graph representation . 52

4.2.2 Flow graph prediction . 53

4.3 wikiHow flow graph representation 53

4.3.1 Flow graph prediction . 54

4.3.2 Task definition . 54

4.3.3 Data augmentation . 55

4.4 w-FG corpus . 56

4.4.1 Data collection . 56

4.4.2 Annotation procedure . 57

4.4.3 Statistics . 58

4.4.4 Inter-annotator agreement . 60

4.5 Node prediction . 61

4.5.1 Experimental settings . 61

4.5.2 Experimental results . 62

4.5.3 Tag-level prediction performance 63

4.6 Edge prediction . 64

4.6.1 Experimental settings . 64

4.6.2 Experimental results . 65

4.6.3 Pipeline experiments . 66

4.6.4 Further experiments . 67

4.7 Related work . 68

4.8 Conclusion . 70

ix

5 Conclusion 71

5.1 Summary . 71

5.2 Future Work . 72

Bibliography 91

Authored Works 92

x

List of Figures

1.1 Illustration of our ultimate goal and position of each chapter in this

thesis. 2

1.2 Example of a Japanese r-FG representation (Mori et al., 2014) (left)

and an English r-FG representation (Yamakata et al., 2020) (right).

Both recipes provide semantically the same steps. 4

2.1 Example of predicting cooking action results by a cooking robot. The

agent predicts the result of the second action “place.” 14

2.2 Example of annotation. The image pairs represent pre-action and post-

action observations of objects. These image pairs are connected to

cooking actions in the instruction list. In the instruction list, the de-

pendencies of cooking actions are represented by r-FG. 15

2.3 Illustration of annotation steps. Each step is performed based on the

annotation result of the previous step. 17

2.4 Example of r-NE and r-FG annotation for an ingredient and instruction

list. 20

2.5 Illustration of the retrieval task. The model retrieves the correct post-

action image ipost from the action verb a, object o, and pre-action

image ipre. In this example, the image surrounded by the red square is

the correct image. 23

xi

3.1 Overview of our approach. The vision-language interpreter (ViLaIn)

generates a problem description from a linguistic instruction and scene

observation. The symbolic planner finds an optimal plan from the

generated problem description. 32

3.2 The open-vocabulary object detector detects objects from the obser-

vation. The text query is provided by the domain knowledge. The

detected objects are converted into a PDDL format in a rule-based way. 38

3.3 The captioning model generates captions for each object. The LLM

generates the PDDL initial state from the bounding boxes and the

captions using few-shot prompting. 39

3.4 The LLM directly generates the PDDL goal specification from the

instruction and the PDDL objects and initial state using few-shot

prompting. 40

3.5 ViLaIn can refine the generated problem description via an error mes-

sage from the planner. 41

3.6 Examples of scene observations and linguistic instructions. 42

3.7 ViLaInwhole generates the whole problem description at once. 46

4.1 Example of flow graph annotation. The left shows the annotation in

the English r-FG corpus, while the right shows the annotation in the

w-FG corpus (Hobbies and Crafts). 50

4.2 Example of swapping steps. 55

4.3 The top 10 high frequent expressions for Ae, I, and T. 59

xii

List of Tables

2.1 r-NE tags with their meaning and the number of annotations in the

VRF dataset. 18

2.2 r-FG labels with their meaning and the number of annotations in the

VRF dataset. 19

2.3 Statistics of the visual annotation. 22

2.4 Inter-annotatotor agreements. 22

2.5 Results . The checkmark symbol ✓indicates the used input for both

training and evaluation. 28

3.1 Differences between previous studies and ours. 34

3.2 Defined object types, predicates, and actions in the domain descriptions. 42

3.3 Performance on the ProDG dataset. 45

3.4 Generating the whole problem descriptions at once. 46

3.5 Performance without CR and CoT. 47

4.1 Named entity tags and their meanings. The inside of the parenthesis

represents a tag and its meaning in English-FG. 51

4.2 Dependency labels and their meanings. The inside of the parenthesis

represents a label and its meaning in English-FG. 51

4.3 Examples of article titles for each domain. 57

4.4 Statistics of the w-FG corpus. 57

4.5 The number of annotations for each named entity tag. 58

4.6 The number of annotations for each dependency label. 60

4.7 Inter-annotator agreements. 60

xiii

4.8 Results of the node prediction. The checkmark ✓ represents the used

data augmentation technique. 63

4.9 Node prediction performance for Ae，I，and T. The overlap ratio rep-

resents the overlap of expressions between the English r-FG corpus and

the target domain data of the wikiHow-FG corpus. 64

4.10 Results of the edge prediction. The checkmark ✓ represents the used

data augmentation technique. 66

4.11 Results of the pipeline experiments. The value inside the parenthesis

represents the difference from Table 4.10. 67

4.12 Edge prediction results on the English r-FG corpus when varying the

language model. 67

4.13 Edge prediction results on the wikiHow-FG corpus when varying the

language model. 69

xiv

Chapter 1

Introduction

Natural language is a communication tool for humans. We use natural language texts

to record and convey information such as knowledge and skills to future generations.

The natural language texts include news articles, encyclopedia pages, and academic

papers. Among them, procedural text, such as cooking recipes and furniture assem-

bly instructions, is unique in that it consists of multiple steps to achieve a specific

goal. The steps are linguistic instructions that describe concrete actions to be taken.

Research on instructional texts, including procedural texts and linguistic instructions,

has long been conducted in natural language processing, multimedia, and robotics.

We are interested in building intelligent robot systems that interpret and act on

procedural texts by integrating these lines of research. Our ultimate goal is to build

a robot system that actually works based on procedural texts in the real world. We

consider that such a robot must be equipped with various capabilities: (i) interpreting

the workflow of procedural texts (Mori et al., 2014; Maeta et al., 2015; Kiddon et al.,

2015), (ii) predicting the post-action visual states of objects (Souček et al., 2022,

2023), (iii) making plans interpretable by robots (MacMahon et al., 2006; Matuszek

et al., 2010; Lin et al., 2023), and (iv) executing actions based on them. As illus-

trated in Figure 1.1, our system integrates these capabilities to interpret and execute

procedural texts. Realizing such systems is of great significance in that it leads to the

realization of robotic assistants for human activities (Hamada et al., 2005; Hashimoto

et al., 2008) and robots executing complicated procedures instead of humans (Bollini

1

CHAPTER 1. INTRODUCTION 2

Procedural Text
(Cooking Recipe)

Workflow Interpretation of cooking recipes (Chapter 2)

Execution by robotPrediction of post-action visual
states of objects (Chapter 2)

Slice the cabbage

Slice the carrot

Slice the cabbage and carrot .

Combine the olive oil , vinegar , and salt and pepper in the bowl .

Place the sliced cabbage and carrots in the bowl .

…

(place cabbage
cutting_board)

(hold knife)

(slice cabbage
knife)

…
Robot

Planning (Chapter 3) Execution

Procedural Text

Workflow Interpretation of procedural texts in non-cooking domains
(Chapter 4)

Cut a soap base into chunks .

Place the cut soap base into a bowl .

Heat and stir the soap constantly.

Cooking domain

Non-cooking domains

Generalization to non-cooking domains

Figure 1.1: Illustration of our ultimate goal and position of each chapter in this thesis.

CHAPTER 1. INTRODUCTION 3

et al., 2013; Yoshikawa et al., 2023).

Towards the realization of this grand goal, this thesis summarizes three research

works contributing to the realization of (i), (ii), and (iii) in the above capabilities,

with a primary focus on the cooking domain. The first work tackles (i) and (ii) in

the cooking domain, while the second work focuses on (iii) in the cooking domain.

The third work addresses (i) to generalize the target domain from the cooking to

non-cooking domains.

1.1 Background

This section briefly overviews three research topics that are particularly relevant to

this thesis: workflow interpretation of procedural texts, tracking and recognition of

object state changes, and conversion of linguistic instructions into actionable repre-

sentations by robots.

1.1.1 Workflow interpretation of procedural texts

Procedural texts contain actions, objects, and other information about procedures.

Each action is performed on an object and produces an intermediate product that will

be used in later actions. This flow of actions forms a complex workflow throughout the

text, making machine interpretation of the workflow of procedural texts challenging.

In natural language processing (NLP), various approaches have been proposed to

represent the workflow of procedural texts by particularly focusing on the cooking

domain.

The early work by Momouchi (1980) proposed the PT-chart that represents the

control structure of Japanese cooking recipes. Hamada et al. (2000) and Hamada et al.

(2005) proposed to make flow graphs from cooking recipes through structural analysis

using domain-specific constraints and knowledge. Tasse and Smith (2008) presented

the SOUR CREAM system that aims to perform semantic parsing on cooking recipes.

Mori et al. (2012) introduced the first machine learning approach for structural anal-

ysis of cooking recipes that extracts predicate-argument structures from a cooking

CHAPTER 1. INTRODUCTION 4

Melt the butter in a large saucepan .

Fry the onion in butter .

Add the parsnips , garlic and curry powder .

Ac F St T

Ac F

Ac

other-mod

Dest
Targ

F-eqTarg

Targ
TargTarg

Dest F

F F F

Ac: Action by chef,
F: Food, T: Tool, St: State of tool

Targ: Action target, Dest: Action destination,
F-eq: Food equality, other-mod: other relationships

Named entity tags Dependency labels

バター を ⼤きめ の フライパン で 溶か す ．

⽟ねぎ を バター で 炒め る .

パースニップ , ニンニク , カレー 粉 を 加え る .

(Butter) (Large) (Saucepan)

(Onion) (Butter) (Fry)

(Parsnips) (Garlic) (Curry
powder)

(Fry)

Dest
Targ

other-mod

F

F F

F F F Ac

Ac

Ac

St T
Targ

Targ Targ Targ

Dest

F-eq DestDest

Japanese r-FG English r-FG

Figure 1.2: Example of a Japanese r-FG representation (Mori et al., 2014) (left) and
an English r-FG representation (Yamakata et al., 2020) (right). Both recipes provide
semantically the same steps.

step. After that, Mori et al. (2014) proposed a recipe flow graph (r-FG) representa-

tion for Japanese cooking recipes. On the other hand, Kiddon et al. (2015) built an

unsupervised algorithm to interpret recipes as flow graphs, and Jermsurawong and

Habash (2015) presented an approach to represent recipes with food ingredients as a

dependency tree data structure.

Recipe flow graph (r-FG) Among these approaches, the r-FG (Mori et al., 2014)

is particularly important to this thesis. As shown in the left of Figure 1.2, the r-

FG by Mori et al. (2014) represents a Japanese cooking recipe as a directed acyclic

graph (DAG). Here, nodes represent expressions relevant to procedures using tags,

and edges represent the dependencies between the nodes using labels. Maeta et al.

(2015) built an automatic prediction framework for the r-FG, in which an r-FG is

predicted in two steps: node prediction and edge prediction. Yamakata et al. (2017,

2020) presented an r-FG representation for English recipes, which we refer to as an

English r-FG, as shown in the right of Figure 1.2. Mori et al. (2014) provided an

r-FG corpus of 266 Japanese recipes, while Yamakata et al. (2020) provided a corpus

of 300 English recipes.

CHAPTER 1. INTRODUCTION 5

1.1.2 Tracking and recognizing the state changes of objects

Actions in instructional texts are performed on target objects, and they change the

states of the objects to varying degrees. Recognizing the state changes and predicting

the post-action state of an object are both essential abilities for intelligent agents.

Realizing these abilities requires knowledge of the world and a reasoning capability

about the action and object based on the current state.

In NLP, there exist works focusing on procedural texts. Early work by Henaff et al.

(2017) and Ji et al. (2017) developed model architectures that maintain and update

the state of entities. Henaff et al. (2017) evaluated their model by predicting the lo-

cations of agents in a grid world environment, while Ji et al. (2017) used the InScript

corpus (Modi et al., 2017) for evaluation. Inspired by these works, Bosselut et al.

(2018) proposed Neural Process Networks (NPNs) that predict states of ingredients

after executing cooking steps. Nishimura et al. (2021) applied this idea to proce-

dural text generation from videos. Dalvi et al. (2018) created the ProPara dataset

for tracking state changes focusing on scientific processes (e.g., photosynthesis and

erosion). Different from the works by Bosselut et al. (2018) and Dalvi et al. (2018),

which considered a closed set of state changes, Tandon et al. (2020) constructed the

OPENPI dataset for tracking an unrestricted set of state changes.

In computer vision, this direction of research goes back to early works on object

attribute recognition (Ferrari and Zisserman, 2007; Farhadi et al., 2009; Parikh and

Grauman, 2011). Fathi and Rehg (2013) modeled actions based on environment state

changes and improved action recognition performance. Isola et al. (2015) focused on

the state changes of objects for the first time and proposed to learn the changes

from an image collection. Alayrac et al. (2017) proposed to discover object states

from carefully curated videos based on actions on them. More recent works intro-

duced two large-scale datasets, the Ego4D dataset (Grauman et al., 2022) and the

ChangeIt dataset (Souček et al., 2022) dataset, which contain annotations of object

state changes and state-modifying actions. Based on the ChangeIt dataset, Souček

et al. (2023) proposed GenHowTo that takes images of an initial state and textual

prompt and generates images of the final state after the action. On the other hand,

CHAPTER 1. INTRODUCTION 6

Saini et al. (2022) focused on the compositions of objects and proposed to learn dis-

entangled features for object attributes. Saini et al. (2023) proposed the ChopNLearn

dataset to recognize unseen compositions of objects focusing on the task of cutting

vegetables.

1.1.3 Converting linguistic instructions into actionable rep-

resentations

Research on converting linguistic instructions into representations interpretable and

executable by robots has been tackled in NLP and robotics (Tellex et al., 2020).

The early work by MacMahon et al. (2006) considered a virtual indoor environ-

ment and proposed to convert route instructions into simple actions such as Turn

and Travel via syntactic parsing on the instructions. Branavan et al. (2009) used

reinforcement learning to realize mapping instructions to system commands in Win-

dows troubleshooting guides. Chen and Mooney (2011) introduced a framework that

learns to map navigation instructions into machine-interpretable plans. Matuszek

et al. (2010) proposed to use a statistical machine translation system to learn to trans-

late linguistic instructions into machine-interpretable ones. More recent works (Singh

et al., 2023; Lin et al., 2023) used large language models (Brown et al., 2020; Ope-

nAI, 2023) to convert linguistic instructions into plans executable by robots without

learning.

In works targeted cooking recipes, Beetz et al. (2011) proposed to interpret pan-

cake recipes on the web through reasoning about cooking actions. Bollini et al. (2013)

presented the BakeBot that converts cooking recipes for baking cookies into plans of

symbolic actions such as (pour butter mbowl) and (mix mbowl).

CHAPTER 1. INTRODUCTION 7

1.2 Problems of Interest

1.2.1 Prediction of post-action visual states of objects in

cooking recipes

The state of objects appearing in procedural texts dynamically changes by executing

actions. Predicting the post-action states of objects based on the current states would

help the robot execute the actions. For example, the predicted states can be used as

the goal states of the actions. The prediction can take the form of text and images.

Here, we consider prediction by image because such visual information could provide

qualitative information such as color and shape, which are not described in text. In

support of this, approaches that execute actions based on predicted visual states are

gaining attention in the field of robotics (Nair et al., 2018; Kapelyukh et al., 2023).

We tackle this problem in the cooking domain.

Realizing a model that predicts the post-action visual states of objects based on

the current states requires visual annotations of pre-action and post-action states

of objects. On the other hand, cooking is a sequential process, and objects would

be subject to multiple actions throughout the procedure and integrated into the

final dish. Thus, to capture this sequential nature, an annotation of the cooking

workflow (e.g., by recipe flow graph (Mori et al., 2014)) is also required. Although

previous work has proposed datasets with cooking workflow representation and visual

annotation (Nishimura et al., 2020; Pan et al., 2020), a dataset with all of the above

annotations has never been proposed. Therefore, we start by constructing a dataset

to address this problem.

1.2.2 Converting steps to plans interpretable by robots

Executing a procedural text requires converting steps into plans interpretable by

robots. The plans usually consist of sequences of symbolic actions such as pick(a)

(pick a) or place(a, b) (place a on b). A single step can be converted into multiple

symbolic actions. For example, a step of “slice the carrot and place them in a bowl.”

can be converted into a sequence of symbolic actions: pick(carrot, left hand)

CHAPTER 1. INTRODUCTION 8

(pick up the carrot with a left hand), place(carrot, cutting board) (place the

carrot on the cutting board), hold(knife, right hand) (hold a knife with a right

hand), slice(carrot, right hand) (slice the carrot with the knife), etc.

In recent years, works using large language models (LLMs) to convert linguistic

instructions into plans directly have actively been addressed (Huang et al., 2022;

Singh et al., 2023; Lin et al., 2023). These approaches are attractive in that they

can utilize the linguistic knowledge of the LLMs and use the LLMs in a zero-shot

manner by using a few-shot prompting technique. However, there are two issues

with the approach. One is that they perform the conversion end-to-end, which lacks

interpretability. Interpretability is a crucial factor for the continued development of

a method. The other is that the obtained plans are not necessarily correct because

LLMs do not have a mechanism to check the correctness of the plans. These issues

would likely be more severe when considering executing the entire procedure. On

the other hand, in the field of classical planning, a symbolic planner (Helmert, 2006)

is used to find plans. The planner requires a problem description, which is a task

specification file written in formal language, as input, and the obtained plans are

guaranteed to be logically correct. The above two types of approaches have their own

attractive strengths. Here, we attempt to develop a framework that combines the

best of both words.

1.2.3 Workflow interpretation of procedural texts beyond

the cooking domain

A recipe flow graph (r-FG) (Mori et al., 2014) is a representation that represents cook-

ing recipes as flow graphs. The r-FG captures the dependencies of actions throughout

the text, which is an essential feature for realizing robots that work on procedural

texts. An automatic r-FG prediction framework by Maeta et al. (2015) predicts an

r-FG in two steps: node prediction and edge prediction. Previous work has proposed

r-FG corpora of Japanese recipes (Mori et al., 2014) and English recipes (Yamakata

et al., 2017, 2020). More recently, Nishimura et al. (2020) introduced a visual anno-

tation of r-FG.

CHAPTER 1. INTRODUCTION 9

While these developments have been made, the r-FG has only been applied to

cooking recipes. Developing a generalized flow graph representation that handles non-

cooking domains would have various benefits. For example, it enables the sharing of

knowledge about procedures between domains. It is also expected to contribute to

the realization of robust robot systems that execute procedural texts regardless of the

domain. To this end, we attempt to extend the r-FG to represent procedural texts in

non-cooking domains as flow graphs.

1.3 Contributions

The contributions of this thesis are summarized as follows. Figure 1.1 illustrates the

relationship between these contributions.

1.3.1 Constructing the Visual Recipe Flow dataset

We have constructed the Visual Recipe Flow (VRF) dataset, a new multimodal

dataset that aims to predict post-action visual states of objects. The VRF dataset

consists of two types of annotations: the workflow representation of cooking recipes by

r-FG and visual annotations of pre-action and post-action visual states of objects. The

visual annotations are connected to cooking actions in the r-FG, which form a cross-

modal relationship. We have measured inter-annotator agreements and confirmed

that the VRF dataset consists of high-quality annotations. Through multimodal re-

trieval experiments, we have confirmed that both textual and visual annotations play

an important role in predicting post-action visual states of objects.

1.3.2 Proposing Vision-Language Interpreter

We have proposed Vision-Language Interpreter (ViLaIn), a novel framework that

converts linguistic instructions and scene observations into problem descriptions. Vi-

LaIn drives a symbolic planner and finds valid plans based on the predicted de-

scriptions. ViLaIn uses a few-shot prompting and predicts the descriptions from a

few input/output examples without additional training. We have also proposed the

CHAPTER 1. INTRODUCTION 10

problem description generation (ProDG) dataset, a new dataset to evaluate the per-

formance of ViLaIn with new evaluation metrics. We have experimentally confirmed

that ViLaIn can generate syntactically correct problem descriptions and find valid

plans with high accuracy.

1.3.3 Proposing a generalized flow graph representation

We have focused on wikiHow articles and proposed a wikiHow flow graph (w-FG)

representation, an extension of the r-FG to represent procedural texts in non-cooking

domains. We have created the w-FG corpus that covers 4 wikiHow top categories

and contains 30 annotated articles for each domain. In experiments, we assumed a

low-resource setting where the amount of available training data is small in the target

domain and proposed using the existing r-FG corpus as additional training data. We

have experimentally shown that domain adaptation from the r-FG to w-FG corpus

significantly improved performance on both node prediction and edge prediction.

1.4 Thesis Outline

This thesis consists of five chapters as follows:

• In Chapter 2, we present the VRF dataset. This chapter first overviews the

characteristics of the dataset. Then, the annotation standards, data collection,

and annotation procedures are described in order. The annotation results, in-

cluding the statistics and inter-annotator agreements, are introduced. After

that, the multimodal retrieval experiments and their results are explained. Fi-

nally, possible applications of the VRF dataset are mentioned.

In Chapter 3, we present ViLaIn and the ProDG dataset. This chapter first

explains a problem statement and then introduces ViLaIn with the three mod-

ules that comprise it. Then, the ProDG dataset and evaluation metrics are then

introduced. Finally, experimental results on the ProDG dataset are discussed.

In Chapter 4, we present a w-FG representation and the w-FG corpus. This

chapter first briefly reviews the r-FG and then introduces the w-FG. After that,

CHAPTER 1. INTRODUCTION 11

the w-FG corpus is then introduced with its data collection process, annotation

procedure, and statistics. In experiments, results on node prediction and edge

prediction are discussed. Finally, related work to this work is described.

• In Chapter 5, we conclude this thesis and discuss possible future directions of

research.

CHAPTER 1. INTRODUCTION 12

Chapter 2

Visual Recipe Flow: A Dataset for

Learning Visual State Changes of

Objects with Recipe Flows

2.1 Introduction

Prediction is an innate ability of humans. In our daily lives, we make various predic-

tions and act based on them. In cooking, for example, we first predict the state of

foods after cooking actions and then act on the predictions. This requires (i) specific

knowledge about actions and target objects and (ii) an interpretation of the work-

flow of the entire procedure. Therefore, building robots that follow cooking recipes

requires realizing these two capabilities, as illustrated in Figure 2.1. In this example,

the robot is predicting an observation after the second action while identifying the

required food for the action.

Previous studies in this direction have annotated cooking procedures with vi-

sual annotations (Nishimura et al., 2020; Pan et al., 2020). (Nishimura et al., 2020)

targeted pairs of images and cooking instructions and annotated the images with

bounding boxes corresponding to expressions of actions and foods in the instructions.

(Pan et al., 2020) annotated the cooking procedures with a frame sequence extracted

from the attached cooking videos. Their datasets are meaningful in that they provide

13

CHAPTER 2. VISUAL RECIPE FLOW DATASET 14

Cooking Instruction
1. Shred the cabbage. 2. Place 1 in the bowl.

Visual Observation

Required at 1 Required at 2

Result of 2Result of 1,
Required at 2

Prediction

Figure 2.1: Example of predicting cooking action results by a cooking robot. The
agent predicts the result of the second action “place.”

cross-modal annotations by connecting visual information to cooking instructions.

However, more fine-grained annotations at the action level rather than the instruc-

tion level are required for our goal. For example, an instruction “slice tomatoes and

place them in a bowl.” contains two cooking actions, “cutting” and “putting,” but

the annotations in the previous studies cannot handle them separately. Therefore,

in order to predict the results of cooking actions, annotations at the cooking action

level are necessary.

We propose the Visual Recipe Flow (VRF) dataset, a new dataset for predicting

the post-action visual states of objects1 in cooking recipes. As shown in Figure 2.2,

the VRF dataset consists of (i) visual state changes of objects by cooking actions

and (ii) representations of the entire recipe workflow. The visual state changes are

represented as pairs of visual observations before and after cooking actions. The

recipe workflow is represented as a recipe flow graph (r-FG) (Mori et al., 2014). Here,

the observation pairs are associated with the cooking actions in r-FG, which allows

1In this chapter, an object refers to either a food or a tool.

CHAPTER 2. VISUAL RECIPE FLOW DATASET 15

１ ． キャベツ 、 にんじん は 細切り に し ま す 。

２ ． ボウル に １ を ⼊れ ま す 。

F

Instruction List

.....

F Sf Ac

AcFT

Before After Before After

Before After Before After

Targ
Targ

Targ
F-setDest

other-mod

Visual Observations

Ac : Action by chef
Sf : State of food

F : Food T : Tool
r-NE Tags

Targ : Action target
Dest : Action destination
F-set : Food set
other-mod : Other relationships

r-FG Labels

(Cabbage) (Carrot) (Shred) (Do)

(Bowl) (1) (Place)

Figure 2.2: Example of annotation. The image pairs represent pre-action and post-
action observations of objects. These image pairs are connected to cooking actions
in the instruction list. In the instruction list, the dependencies of cooking actions are
represented by r-FG.

us to handle cross-modal relationships between the real world and text. We provide

our annotation and a script to construct the VRF dataset by downloading cooking

recipes and videos from the website.2

Previous studies related to ours include tracking state changes of objects on

texts (Dalvi et al., 2018; Bosselut et al., 2018; Tandon et al., 2020). These stud-

ies aim to understand procedural texts by predicting procedures’ effects on objects

as symbols in the real world. A recent work extended the framework (Bosselut et al.,

2018) to handle visual information and applied it to video captioning (Nishimura

et al., 2021). Our work follows this trend of research, and a key difference from these

works is that ours focuses on predicting objects’ states as images. Images are ex-

pected to provide richer information about the real world than symbols because they

can handle information about objects’ appearances (Isola et al., 2015; Zhang et al.,

2021) that are difficult to describe in detail in text. In addition, the sequential nature

of cooking would evaluate the document comprehension capability of large language

models (Srivastava et al., 2022) and the learning capability of vision-language models

in few-shot learning settings (Alayrac et al., 2022).

2https://github.com/kskshr/Visual-Recipe-Flow

https://github.com/kskshr/Visual-Recipe-Flow

CHAPTER 2. VISUAL RECIPE FLOW DATASET 16

2.2 Visual Recipe Flow Dataset

The Visual Recipe Flow (VRF) dataset represents the pre-action and post-action

states of objects in a recipe using visual annotations. In the VRF dataset, expres-

sions such as objects and cooking actions are identified using the recipe named entity

(r-NE) (Mori et al., 2014). The recipe workflow is represented as dependencies be-

tween these r-NEs using a recipe flow graph (r-FG) (Mori et al., 2014). This section

overviews the characteristics of the r-FG and visual annotation in the VRF dataset.

2.2.1 Recipe flow graph (r-FG)

The r-FG is defined as an acyclic directed graph (DAG) as shown in Figure 2.2. In

r-FG, a node refers to an expression identified by r-NE, and an edge represents a

dependency between two r-NEs with a label. One of the features of r-FG is that it

can identify objects that are required for the actions. For example, in Figure 2.2,

the object “1” targeted by the action “place” is the product of the first instruction,

which is shredded cabbage and carrot, and this relationship is identified by tracing

the edge of r-FG. In addition, the VRF dataset provides annotations of dependencies

from the ingredient list to the cooking instructions, unlike the previous study (Mori

et al., 2014; Yamakata et al., 2020). This feature enables us to consider the workflow

of cooking recipes associating them with ingredient lists, similar to previous work by

Jermsurawong and Habash (2015).

2.2.2 Visual annotation

The visual annotation represents the visual state changes of objects by cooking ac-

tions. The state changes are represented as pairs of images corresponding to the

pre-action and post-action states. Here, each pair of images is associated with a

cooking action expression in the r-FG, which forms cross-modal annotation. In the

case that a cooking action targets multiple objects, a separate pair of images is pro-

vided for each object, as in Figure 2.2. This allows us to capture the state changes

of objects even when a single action targets multiple objects.

CHAPTER 2. VISUAL RECIPE FLOW DATASET 17

キャベツ 、 にんじん は 細切り に し ま す 。
(Cabbage) (Carrot) (Shredded) (do)

(Shred the cabbage and carrot)

Step-0: Unannotated text

Ac : cooking action Sf : state of foodF : food

キャベツ 、 にんじん は 細切り に し ま す 。
F(Cabbage) (Carrot) (Shredded) (do)F Sf Ac

Step-1: r-NE annotation

Step-2: r-FG annotation

Step-3: Image annotation

キャベツ 、 にんじん は 細切り に し ま す 。
(Cabbage) (Carrot) (Shredded) (do)Sf Ac

Targ Targ other-mod

F F

Before After Before After
Sampled images

Targ : action target other-mod : other relationships

キャベツ 、 にんじん は 細切り に し ま す 。
(Cabbage) (Carrot) (Shredded) (do)Sf Ac

Targ Targ other-mod

F F

Figure 2.3: Illustration of annotation steps. Each step is performed based on the
annotation result of the previous step.

2.3 Annotation standards

The VRF dataset consists of textual and visual annotations. The textual annotation

is also divided into recipe named entity (r-NE) and recipe flow graph (r-FG). This

section describes the annotation standards for these three types of annotations. Each

recipe is assumed to be written in Japanese, to have an ingredient list and instruction

CHAPTER 2. VISUAL RECIPE FLOW DATASET 18

Tag Meaning Annotation examples
of

annotations

F Foods にんじん (carrot), 根本 (root), １ (1) 5,098

T Tools ボウル (bowl), ラップ (wrap) 758

D Duration 5分程 (about 5 minutes), １０分 (10 minutes) 129

Q Quantity 残り (the rest), 大さじ１ (1 tablespoon) 1,778

Ac Action by chef 切 (cut), 入れ (put), 切り落と (cut off) 2,532

Af Action by food 馴染 (blend), 取れ (remove), 沸騰 (boil) 353

Sf State of food 一口大 (bite-size pieces), 薄切り (slices), 半分 (half) 971

St State of tool ６００Ｗ (600W), 中火 (medium heat) 67

Total — — 11,686

Table 2.1: r-NE tags with their meaning and the number of annotations in the VRF
dataset.

list, and to have an attached cooking video. Figure 2.3 illustrates an annotation

example.

2.3.1 r-NE annotation

The r-NE annotation assigns r-NE tags to word sequences in the ingredient lists

and instruction lists. Sentences are assumed to be segmented into words by using

KyTea (Neubig et al., 2011), a Japanese word segmentation tool. A word is assigned

with one tag at most. There are nine r-NE tags and their definitions are based on the

previous work (Mori et al., 2014). Table 2.1 shows the list of r-NE tags. In the tags,

Ac (action by chef), F (foods; F), and T (tools; T) are especially important in our

study because they are directly related to cooking actions. For cooking actions that

appeared in the ingredient lists, such as “boiled” and “sliced,” we annotated with Sf

(the state of foods) instead of Ac, assuming that such actions are already completed

before the beginning of the cooking.

2.3.2 r-FG annotation

The r-FG annotation creates a DAG by treating the r-NEs as nodes and by annotating

labeled directed edges between the nodes. There are 13 types of labels, and their

definitions are based on the previous work (Maeta et al., 2015). Table 2.2 shows

CHAPTER 2. VISUAL RECIPE FLOW DATASET 19

Label Meaning Example (Starting node → Ending node)
of

annotations

Agent Action agent
盛り付け (serve) → 完成 (complete),

330
味 (flavor) → 馴染(ませる) (season)

Targ Action target
キャベツ (cabbage) → 切(る) (cut),

2,961
１ (1) → 入れ(る) (place)

Dest
Action 器 (plate) → 盛り付け(る) (serve),

1,025
destination 耐熱ボウル (heatproof bowl) → 入れ(る) (place)

T-comp Tool
電子レンジ (microwave) → 加熱(する) (heat),

157
フォーク (fork) → 潰(す) (mash)

F-comp Food
水 (water) → さら(す) (let),

20
塩コショウ (salt and pepper) → 調え(る) (season)

F-eq Food equality
にんじん (carrot) → にんじん (carrot),

2,397
切(る) (cut) → ２ (2)

F-part-of Food part-of
にんじん (carrot) → 皮 (skin),

330
ミニトマト (mini tomato) → ヘタ (stem)

F-set Food set
酢 (vinegar) → Ａ (A),

987
ドレッシング (dressing) → 材料 (ingredients)

T-eq Tool equality
加熱 (head) → 耐熱ボウル (heat-resistant bowl),

4
フライパン (pan) → フライパン (pan), · · ·

T-part-of Tool part-of — 0

A-eq Action equality な(り) (do) → 乳化(する) (emulsify) 1

V-tm
Head of clause 馴染(んだら) (season) → 盛り付け(る) (serve),

112
for timing しんなり (soften) → 加熱(する) (heat), · · ·

other-mod
Other 薄切り (slice) → し (do)

2,967
relationships 半分 (half) → 切(る) (cut)

Total — — 11,291

Table 2.2: r-FG labels with their meaning and the number of annotations in the VRF
dataset.

the list of labels. In the labels, Targ (action target) and Dest (action direction)

are especially important in this work because they describe the relationships among

actions (Ac), foods (F), and tools (T). Figure 2.4 illustrates an annotation example

of r-NE and r-FG for an ingredient list and instruction list.

CHAPTER 2. VISUAL RECIPE FLOW DATASET 20

・ キャベツ 100 ｇ

・ きゅうり 80 ｇ

・ (A) オリーブ オイル ⼤さじ 1

・ (A) 酢 ⼤さじ 1

・ (A) 塩 ひと つまみ

1. キャベツ 、 きゅうり は 千切り に し ま す 。

2. A を ボウル に ⼊れ て 混ぜ 合わせ ま す 。

3. 1 を ⼊れ て 混ぜ ま す 。

4. 器 に 盛り付け た ら 完成 で す 。

F Q

Q

Q

Q

Q

F

F

F

F

F

F

F

F F

F

F

Ac

AcAc

Ac Ac

AcT

T

Sf

Af

other-mod

other-modother-mod

other-mod other-mod

other-modother-mod

other-mod

F-eq

F-eq

F-set

F-set

F-set

Targ
Targ other-mod

F-eqTarg
Dest

Targ

Dest
Targ Targ

Dest
Targ Agent

Ingredient List Instruction List

Figure 2.4: Example of r-NE and r-FG annotation for an ingredient and instruction
list.

2.3.3 Visual annotation

The visual annotation assigns visual state changes of objects to cooking actions. The

state changes are represented as pairs of images corresponding to pre-action and

post-action states, and the images are extracted from attached cooking videos at 3

FPS. If a single cooking action targets multiple objects, each object is separately

annotated with an image pair. If there are multiple image candidates for annotation,

the one that best captures the target object is selected. In cases where the cooking

action is not recorded in the video, or most of the objects in the images are covered

by hands or tools, no annotation is performed, and the missing values are recorded

instead. Therefore, it should be noted that not all state changes are annotated with

two images.

2.4 Annotation results

This section first describes the data collection and annotation procedure. Then, the

statistics of the dataset and its inter-annotator agreements are introduced. Finally, we

CHAPTER 2. VISUAL RECIPE FLOW DATASET 21

conduct multimodal retrieval experiments to evaluate the annotations of the dataset

and discuss the results.

2.4.1 Annotation procedure

The dataset construction started by collecting recipes from scratch because recipes

in the existing flow graph corpus (Mori et al., 2014) were not attached to cooking

videos. We collected 200 recipes written in Japanese with cooking videos performed

based on them from Kurashiru.3 The cooking videos are taken by a fixed camera;

thus, it is possible to annotate visual state changes of objects from a fixed viewpoint.

As described in Section 2.1, the goal of this research is to realize robots that interpret

cooking recipes as input and execute actions in the real world. Towards this goal,

we targeted the category of salads and collected salad recipes in order to start with

recipes, including relatively simple processes.

The annotation for the VRF dataset requires an annotator with experience in

natural language processing annotation and cooking. Hence, we requested one such

annotator to annotate all the collected recipes. The annotator training was performed

by annotating 20 recipes randomly collected from the r-FG corpus (Mori et al., 2014).

The training continued until the agreement with the ground-truth annotations of r-

NE and r-FG exceeds 80%. The training for the visual annotation was conducted

by using 50 recipes out of the total 200 recipes to be annotated, checking the results

after every 10, 20, and 50 annotations, and giving detailed instructions when the

annotation result differs from an annotation specification. During the annotator

training, we revised the annotation specification as necessary.

In the previous study (Mori et al., 2014), the annotation was done by filling a

spreadsheet. A potential problem with this way of annotation is that it is costly

and may cause unexpected annotation errors due to manual work. Therefore, we

developed an annotation tool that covers all three annotation steps required for our

dataset. The implementation of the tool is already available on the web.4 The

annotation with this tool for all of the 200 recipes took 120 hours in total.

3https://www.kurashiru.com, accessed on December 14, 2021.
4https://github.com/kskshr/Flow-Graph-Annotation-Tool

https://www.kurashiru.com
https://github.com/kskshr/Flow-Graph-Annotation-Tool

CHAPTER 2. VISUAL RECIPE FLOW DATASET 22

Annotated image
of visual state
changes of objectsPre-action state Post-action state

597
✓ 72

✓ 485
✓ ✓ 2,551

Total 3,705

Table 2.3: Statistics of the visual annotation.

Annotation Precision Recall F1

r-NE 97.93 98.88 98.40
r-FG 86.18 86.04 86.11
Image 75.13 70.60 72.80

Table 2.4: Inter-annotatotor agreements.

2.4.2 Statistics

There were 1, 701 ingredients and 1, 077 instructions in the collected data. In addition,

they contained 89 types of cooking action verbs and 275 types of food ingredient

expressions. The r-NE annotation results in 11, 686 r-NE tags, as shown in Table 2.1.

The table also shows that Ac, F, and T appears frequently in the dataset, accounting

for 81% of the total. The r-FG annotation results in 11, 291 r-FG labels, as shown in

Table 2.2. The table also shows that Targ, Dest, F-eq, and other-mod are frequently

appeared in the dataset, accounting for 83% of the total.

The visual annotation results are shown in Table 2.3. This annotation step results

in 3, 705 visual state changes in total. The table shows that 2, 551 state changes

were annotated with both pre-action and post-action states, 485 state changes were

annotated with post-action states only, and 72 state changes were annotated with

pre-action states only. The remaining 597 state changes could not be annotated with

any image. The annotation used 5, 659 images in total (3, 824 without duplicates).

The reason for the duplicates is that performing multiple actions on the same object

in succession can cause a case where the same image is used for the state after the

action and the state before the next action.

CHAPTER 2. VISUAL RECIPE FLOW DATASET 23

切る
キャベツ ✚

テキスト 動作前画像
モデル

...

候補の画像
𝑖 𝑖 𝑖 𝑖 𝑖 𝑖

𝑎

𝑜

Shred

Cabbage ✚

Text Pre-action image
Model

...

Candidate post-action images
𝑖 𝑖 𝑖 𝑖 𝑖 𝑖

𝑎

𝑜

Figure 2.5: Illustration of the retrieval task. The model retrieves the correct post-
action image ipost from the action verb a, object o, and pre-action image ipre. In this
example, the image surrounded by the red square is the correct image.

2.4.3 Annotation quality

To investigate the quality of the annotations, we requested another annotator with

experience in natural language processing annotation and cooking to annotate 10

recipes (5% of the total) randomly collected from the dataset.5 The annotators were

trained using the same procedure as in Section 2.4.1 for all three annotation steps.

Table 2.4 shows the inter-annotator agreements between the annotations obtained

in Section 2.4.1 and this subsection. Here, we consider the annotations in Section

2.4.1 as the ground-truth data and calculated the accuracy, recall, and F1 value,

following (Yamakata et al., 2020). The r-NE and r-FG annotations obtained very high

agreement rates of 98.40% and 86.11%, respectively. As for the image annotations, the

agreement rate was 72.80%, which is lower than those of the previous annotation steps.

However, given the influence of the annotation errors from the previous stages and

the fact that multiple images can be strong candidates during the visual annotation,

we consider that this score would be reasonable.

2.4.4 Experiments

Task definition. We evaluated the annotations of the VRF dataset by considering

a new multimodal retrieval task and by conducting experiments. Given the textual

expression of a verb a and an object o and a pre-action image ipre that corresponds

to the text, this task aims to select the corresponding post-action image ipost from a

set of candidate images i1, i2, · · · , in. Figure 2.5 shows an example.

5The extracted 10 recipes contained 623 r-NE tags, 616 r-FG labels, and 199 visual state changes.

CHAPTER 2. VISUAL RECIPE FLOW DATASET 24

Model architecture. We solve this task by retrieval via a shared embedding

space (Miech et al., 2019). Our method learns two neural networks; one for en-

coding the post-action image candidates into vectors on the embedding space and the

other for estimating a vector corresponding to ipost from a, o, and ipre. The estimated

vector is used to retrieve the vector for ipost. The following describes these two neural

networks.

The first network estimates the vector corresponding to ipost from a, o, and ipre.

a and o are encoded into dv-dimensional vectors ha and ho using Bidirectional Long

Short-Term Memory (BiLSTM) (Lample et al., 2016). ha and ho are obtained by

encoding the whole recipe by BiLSTM and by selecting the vectors corresponding to

a and o. When a or o consists of multiple tokens, the vector is obtained as an average

of those vectors. ipre is encoded into a dt-dimensional vector hpre
i using a pre-trained

convolutional neural network (CNN) as follows:

hpre
i = W pre

1 CNN(ipre) + bpre1 ,

where W pre
1 ∈ Rdt×di and bpre1 ∈ Rdt are learnable parameters. Based on ha, ho, and

hpre
i , we compute h̃pre as follows:

h̃pre = W pre
3 (ReLU(W pre

2 [ha;ho;h
pre
i] + bpre2)) + bpre3 ,

where ; represents to the concatenation, W pre
2 ∈ R3dt×3dt , W pre

3 ∈ Rdt×3dt , bpre2 ∈ R3dt ,

bpre3 ∈ Rdt are all learnable. Finally, we obtain a vector ĥpre that corresponds to the

correct post-action image on the shared embedding space as follows:

ĥpre =
f(h̃pre)

||f(h̃pre)||2
,

where

f(h) = (W pre
4 h+ bpre4) ◦ σ(W pre

5 (W pre
4 h+ bpre4) + bpre5),

following the previous work (Miech et al., 2018). Here, σ and ◦ refers to the sigmoid

function and element-wise multiplication, respectively. W pre
4 ∈ Rde×dt , W pre

5 ∈ Rde×de ,

CHAPTER 2. VISUAL RECIPE FLOW DATASET 25

bpre4 , bpre5 ∈ Rde are also learnable.

The second network encodes post-action image candidates, including ipost, into dt-

dimensional vectors on the shared embedding space. ipost is converted into a vector

using a pre-trained CNN as follows:

h̃post
i = W post

2 (ReLU(W post
1 CNN(ipost) + bpost1)) + bpost2 ,

where W post
1 ,W post

2 ∈ Rdi×di , and bpost1 , bpost2 ∈ Rdi are learnable. The vector on the

shared embedding space ĥpost is obtained as:

ĥpost =
g(h̃post)

||g(h̃post)||2
,

where

g(h) = (W post
3 h+ bpost3) ◦ σ(W post

4 (W post
3 h+ bpost3) + bpost4),

where W post
3 ∈ Rde×di , W post

4 ∈ Rde×de , and bpost3 , b textpost
4 ∈ Rde are also learnable.

Other post-action candidate images are similarly encoded into the embedding space

through the above computations.

Loss function. The training of the two networks is performed by minimizing the

following triplet loss (Balntas et al., 2016):

L =
1

n

n∑
i=1

{max(Di,i −Di,j + δ, 0) + max(Di,i −Dk,i + δ, 0)}, (2.1)

where Di,j represents the distance between ĥpre
i and ĥpost

j) calculated as:

D(ĥpre, ĥpost) = ||ĥpre − ĥpost||2.

δ refers to the margin. Di,i denotes the distance between the i-th positive example

vectors in a minibatch. Di,j denotes the distance when the post-action image vector

is replaced by a negative example hpost
j , and Dk,i denotes the distance when the pre-

action image vector is replaced by a negative example hpre
k . The model parameters

CHAPTER 2. VISUAL RECIPE FLOW DATASET 26

are optimized to make the difference between Di,i and Di,j, Dk,i are greater than δ.

In the experiments, we sample negative examples randomly from the minibatch.

Data splits. We used 2, 551 visual state changes of objects that both pre-action

and post-action states were annotated. The total 200 recipes were divided into 10

splits, 1 split (20 recipe) was used as the test data, and the remaining 9 splits (180

recipe in total) were merged and used as the training data. By changing the split

corresponding to the test data, we realized the 10-fold cross-validation. In the above

splits, the average number of training and testing examples were 2296.8 and 255.2,

respectively.

The pre-action and post-action images that are annotated for the visual state

changes were used as ipre and ipost. The cooking action a corresponding to the state

change is identified from the annotation because all state changes are associated with

a certain cooking action of Ac, as explained in Section 2.2. The object o targeted by

a is automatically identified by tracing the edge(s) of the r-FG. We used the object

with F that can be identified by tracing edges of Targ or Dest from the node of Ac

and are closest to the node as o.

Model parameters. We used a 1-layer BiLSTM of 256 dimensions for encoding

recipe texts. The number of dimensions was set to (dv, dt, di, de) = (496, 512, 2048, 128).

The pre-trained ResNet-152 (He et al., 2016) was used as the CNN by freezing its

parameters. All the images were converted into 2048-dimensional feature vectors by

using the CNN.

Optimization. AdamW (Loshchilov and Hutter, 2019) was used as the optimiza-

tion method with an initial learning rate of 1.0 × 10−5. Models were trained for

350 epochs, and each training step optimizes the parameters using a mini-batch of 4

recipes. The δ of Equation 2.1 was determined as 0.1 from a preliminary experiment

on the validation data.

Evaluation metrics. In the evaluation step, the model calculates the similarity

between ĥpre and the vectors of candidate post-action images on the embedding space,

CHAPTER 2. VISUAL RECIPE FLOW DATASET 27

including ĥpost, by cosine similarity. The post-action image vectors are then sorted by

the similarity in descending order. The evaluation is performed by using the rank of

the correct post-action image vector in the order. For this purpose, Recall@5 (R@5)

and Median rank (MedR) were used as evaluation metrics. R@5 calculates the ratio of

correct post-action image vectors appearing in the top five ranks, and MedR computes

the rank of correct image vectors among the candidates, respectively. These metrics

have been used in previous studies to evaluate model performance on cross-modal

retrieval tasks (Socher et al., 2014; Salvador et al., 2017; Miech et al., 2019).

Experimental results. To investigate the importance of the textual and visual

information for predicting the state changes of objects, we conducted experiments by

training and testing the model without using the textual information, the pre-action

image, or both. This is done by using zero vectors as ha, ho, or h
pre
i .

Table 2.5 shows the experimental results. The first line represents a random

baseline that does not use either textual or visual information. The comparison

between the second and third lines shows that the use of visual information is more

effective than the use of textual information, showing 33.77 of R@5 and 12.60 of

MedR. The comparison between these results and the fourth line shows that the use

of both textual and visual information further improves the performance by achieving

37.01 of R@5 and 10.40 of MeR. These results indicate the following two findings.

First, the visual modality provides stronger information than the textual modality

for improving performance. Second, using both modalities achieves the best result,

demonstrating that the textual and visual information provide different cues to solve

the task.

Discussion. The remaining issues in this task are (i) cases in which little visual

state changes occurred by the action and (ii) cases in which analyzing the history

of actions is required to predict the post-action image for the current action. An

instruction “add ingredients for dressing to a bowl.” exemplifies (i). In this example,

the ingredients, such as “oil” and “salt” change little in appearance before and after

CHAPTER 2. VISUAL RECIPE FLOW DATASET 28

Input
R@5 (↑) MedR (↓)

Text (a and o) Pre-action image (ipre)

2.37 149.00
✓ 21.24 26.70

✓ 33.77 12.60
✓ ✓ 37.01 10.40

Table 2.5: Results . The checkmark symbol ✓indicates the used input for both
training and evaluation.

the action. In fact, we have seen that the model struggles to identify the correct post-

action images for these cases. A possible solution for this is to prepare appearance

information of the food ingredients beforehand and use them when calculating ĥpre

to consider possible visual state changes.

Cases in which the object expressions refer to the previously conducted action

expressions exemplify (ii). For example, “1” in an instruction “add 1 to the bowl.”

refers to the result of the first instruction, and “cut” in an instruction “cut the carrot

and place them in the bowl.” is an action but is also the object of the next action

“place” in r-FG. A possible solution to handle these cases is to consider the history of

actions by tracing the edges of an r-FG. In this case, tracing the edges along with r-NE

information enables the model to identify the role of the nodes in the recipe. Another

solution is to track food state changes through cooking actions using a method such

as Neural Process Networks (Bosselut et al., 2018; Nishimura et al., 2021).

In addition to these issues, further performance improvement could be achieved by

using information from r-NE tags and r-FG labels that are not used in this experiment.

For example, the r-NE tag of Sf provides the state of foods or actions, and the r-FG

label of other-mod bridges such expressions and actions. Since these tags and labels

provide finer information about the actions, using them is expected to further improve

the performance.

2.5 Application

This section describe possible applications of the VRF dataset.

CHAPTER 2. VISUAL RECIPE FLOW DATASET 29

2.5.1 Multimodal commonsense reasoning

Reasoning about procedures in procedures texts with multimodal information is one

of the recent trends (Zellers et al., 2019a; Yagcioglu et al., 2018; Alikhani et al., 2019).

In the cooking domain, previous work (Bosselut et al., 2018) proposed to simulate

state changes of food ingredients by cooking actions at the step level, and a more

recent work (Nishimura et al., 2021) applied this idea to video captioning. In this

direction of research, our dataset can be used to track the finer state changes of food

ingredients at the action level than the instruction level.

2.5.2 Procedural text generation

The generation of procedures from images or videos is an essential direction of re-

search to improve the reproducibility of work Ushiku et al. (2017); Nishimura et al.

(2019, 2021). Properly reproducing the procedures requires the generated procedures

to be consistent throughout the process. The r-FG expresses the dependencies of ac-

tions and objects in the entire recipe. Thus, we consider that generating procedural

texts while predicting the r-FG on the currently generated procedure would prevent

inconsistent text generation and improve performance in the task.

2.6 Conclusion

This chapter has proposed the Visual Recipe Flow dataset to address the problem

of predicting the post-action visual states of objects in cooking recipes. We have

described the data collection and annotation procedure and have investigated the

quality of the dataset by measuring the inter-annotator agreements. To evaluate

the importance of textual and visual information for the task, we have proposed a

new multimodal retrieval task and have conducted experiments. Finally, possible

applications of this dataset have explained.

CHAPTER 2. VISUAL RECIPE FLOW DATASET 30

Chapter 3

Vision-Language Interpreter for

Robot Task Planning

3.1 Introduction

Natural language is a prospective interface for non-experts to instruct robots intu-

itively (Hatori et al., 2018; Tellex et al., 2020; Liang et al., 2023). Earlier studies

have used recurrent neural networks (Hochreiter and Schmidhuber, 1997; Cho et al.,

2014) to map abstract linguistic instructions to representations for robots (Arumugam

et al., 2017; Hatori et al., 2018; Paxton et al., 2019). Here, the linguistic instructions

represent desired goal conditions. More recent studies use large language models

(LLMs) (Touvron et al., 2023; OpenAI, 2023; Anil et al., 2023) to directly generate

robot plans from the instructions (Huang et al., 2022; Raman et al., 2022; Lin et al.,

2023; Singh et al., 2023). These language-guided planners utilize few-shot prompting

to solve tasks without training (Brown et al., 2020). The plans are a sequence of

discrete symbolic actions (e.g., pick(a) and place(a, b)) that complete the task.

We aim to strengthen the language-guided planners in terms of the improvement of

interpretability.1 Interpretability is essential to gain the trust of the user and provide

1We define interpretability as a mechanism to provide insights into the inner workings of the
system.

31

CHAPTER 3. VISION-LANGUAGE INTERPRETER 32

“Slice the carrot and

place it in the bowl.”

Scene Observation

<<problem.pddl>>
1. objects
2. initial state
3. goals

Linguistic Instruction

Domain Knowledge
- Object characteristics
- Input/output examples

Problem Description

LLM

Vision-Language

Interpreter
 (ViLaIn)

Valid
plan

Err. Msg.

re-prompting

or

Textual Scene
description

In
pu

t
O

ut
pu

t
P

ro
po

se
d

Fr
am

ew
or

k V&L models

Sy
m

b
o

lic

Pl
an

n
er

“Slice the carrot and

place it in the bowl.”

Scene Observation

<<problem.pddl>>
1. objects
2. initial state
3. goal

Linguistic Instruction

Domain Knowledge
- Object characteristics
- Input/output examples

Problem Description

LLM

Vision-Language

Interpreter
 (ViLaIn)

Valid
plan

Err. Msg.

re-prompting

or

Textual Scene
description

In
pu

t
O

ut
pu

t
P

ro
po

se
d

Fr
am

ew
or

k V&L models

Sy
m

b
o

lic

Pl
an

n
er

Figure 3.1: Overview of our approach. The vision-language interpreter (ViLaIn)
generates a problem description from a linguistic instruction and scene observation.
The symbolic planner finds an optimal plan from the generated problem description.

insights into the robot’s decision-making process (Gilpin et al., 2018). For exam-

ple, the identification of failure causes through interpretation leads to continuous

improvement of overall performance.

Robot task planning has traditionally been solved using symbolic planning (Karpas

and Magazzeni, 2020). Modern symbolic planners use the Planning Domain Defini-

tion Language (PDDL) to describe planning problems. In PDDL, a planning problem

is defined in two parts: the domain that defines the state of variables and actions,

CHAPTER 3. VISION-LANGUAGE INTERPRETER 33

and a problem description (PD) that defines the objects of interest, their initial state,

and the desired goal state (Haslum et al., 2019; Fox and Long, 2003). The domain

and problem are inputs to the planner to find an optimal plan, a sequence of symbolic

actions.

Symbolic planners offer several benefits. The domain and problem descriptions are

human-readable, especially when variable names are chosen intuitively. Moreover, the

obtained plans are guaranteed to be logically correct. Considering these advantages,

combining symbolic planning and language-guided planning is a promising research

direction to realize interpretable robots. To that end, we proposed generating the PDs

from natural language instructions. Since the linguistic instructions only represent the

goal conditions, additional information about the environment is required to generate

the initial state (e.g., an image representing the current environment). We refer to

this additional information as scene observations.

We tackle the multimodal planning problem specification task, a new task for

transforming linguistic instructions and scene observations into logically and seman-

tically correct PDs. The PDs have to be executable by the symbolic planners. This

chapter investigates how accurately we can generate such PDs with a state-of-the-art

LLM (OpenAI, 2023) and vision-language model (Liu et al., 2023a; Li et al., 2023)

without additional training. We propose a Vision-Language Interpreter (ViLaIn), a

new framework to solve the PD generation task, illustrated in Figure 3.1. ViLaIn

consists of three modules that generate each part of the PDs. The complete PD is as-

sembled by concatenating these parts. Furthermore, ViLaIn can refine the generated

PDs via error feedback from the symbolic planner. The planner uses a pair of the

generated PD and the domain description to find a plan. We use the state-of-the-art

symbolic planner called Fast Downward (Helmert, 2006) throughout this chapter.

To evaluate ViLaIn, we introduce a novel dataset called the problem description

generation (ProDG) dataset. The ProDG dataset consists of linguistic instructions,

scene observations, and domain and problem descriptions. The descriptions are writ-

ten in PDDL (Fox and Long, 2003). This dataset covers three domains: cooking as

a practical robot domain, and the blocks world and the tower of Hanoi as classical

planning domains. We propose four new evaluation metrics to evaluate ViLaIn from

CHAPTER 3. VISION-LANGUAGE INTERPRETER 34

Approach
Input other than

Output
linguistic instruction

Huang et al. Huang et al. (2022) — Symbolic action
Raman et al. Raman et al. (2022) — Symbolic action
Text2Motion Lin et al. (2023) PDDL scene desc. Symbolic action
SayCan Ahn et al. (2022) Image Pre-defined skill
RT-2 Brohan et al. (2023) Image Low-level action
ProgPrompt Singh et al. (2023) — Program code
Code as Policies Liang et al. (2023) Image Program code
LLM+P Liu et al. (2023b) Linguistic scene desc. Problem desc.
ViLaIn (ours) Image Problem desc.

Table 3.1: Differences between previous studies and ours.

multiple perspectives.

The main contributions of this work are three-fold:

• Multimodal planning problem specification, a new task to bridge the language-

guided planning and symbolic planners with scene observations.

• Vision-Language Interpreter (ViLaIn), a new framework consisting of a state-

of-the-art LLM and vision-language model. ViLaIn can refine erroneous PDs

by using error messages from the symbolic planner.

• The problem description generation (ProDG) dataset, a new dataset that covers

three domains: the cooking domain, the blocks world, and the tower of Hanoi.

The dataset comes with new metrics that evaluate ViLaIn from multiple per-

spectives.

3.2 Related work

This section describes previous work on language-guided planning, symbolic plan-

ning, and scene recognition in computer vision. Table 3.1 summarizes the difference

between several studies mentioned here and ViLaIn.

CHAPTER 3. VISION-LANGUAGE INTERPRETER 35

3.2.1 Planning from natural language

Task planning from natural language has been actively studied (Huang et al., 2022;

Ahn et al., 2022; Liu et al., 2023a). Converting linguistic instructions into sym-

bolic actions via neural networks is a typical approach (Paxton et al., 2019; Sharma

et al., 2022). More recent studies (Huang et al., 2022; Raman et al., 2022; Lin et al.,

2023; Singh et al., 2023) use LLMs and directly generate plans with few-shot prompt-

ing (Brown et al., 2020). However, these language-guided planners have two issues.

First, their systems hide the inner workings by generating plans end-to-end. Sec-

ond, the obtained plans are not guaranteed to be logically correct. ViLaIn resolves

these issues by converting instructions into human-readable PDs and driving symbolic

planners to find plans with the generated PDs. A recent study uses LLMs to con-

vert linguistic instructions and images into programs to complete robot tasks (Liang

et al., 2023). PDs describe tasks more specifically, and their logical correctness is au-

tomatically verifiable. In other words, ViLaIn has the potential to deliver validated

machine-readable information to other language-guided planners as an auxiliary in-

put.

More recent studies have used LLMs to convert natural language inputs to PDs (Liu

et al., 2023b; Xie et al., 2023). However, one study (Liu et al., 2023b) assumes that

scene descriptions (the objects and initial state) are provided in natural language,

which is not practical for real applications. Another work (Xie et al., 2023) focuses

on only generating the goal specifications. Contrary to these studies, ViLaIn uses

images for scene descriptions and generates the whole PDs, including the objects and

initial states.

3.2.2 Symbolic planning with PDDL

Symbolic planning (automated planning) has been used to solve robotic tasks (Karpas

and Magazzeni, 2020). Symbolic planners (Bonet and Geffner, 2001; Helmert, 2006)

use domain and problem descriptions to find plans, which are sequences of (symbolic)

actions that alter the environment from its initial state to a goal state. The de-

scriptions are written in formal languages, such as PDDL (Fox and Long, 2003) and

CHAPTER 3. VISION-LANGUAGE INTERPRETER 36

PDDLStream (Garrett et al., 2020). Robots execute low-level actions based on the

found high-level plans of PDDL (Ahmadzadeh et al., 2015; Wang et al., 2021; Silver

et al., 2021). This framework enables robots to solve various problems but assumes a

preparation of corresponding PD for each problem. ViLaIn is designed to collaborate

with those PDDL-based planning frameworks by translating linguistic instructions

into PDs.

3.2.3 Scene recognition for planning problem specification

The generation of the objects and initial state in PD is related to research in computer

vision. This section briefly overviews such previous work.

The object part of PDs lists objects required for the task. This work generates the

objects from scene observations. This can be viewed as object detection in computer

vision. Classical object detectors (Ren et al., 2015; Redmon et al., 2016) have been

developed focusing on a fixed number of classes (e.g., person and dog). However, our

task handles objects not included in the classes. Hence, we use an open-vocabulary

object detector (Zareian et al., 2021; Liu et al., 2023a). These detectors have recently

gained attention because they can detect arbitrary objects using text queries.

The initial state represents object relationships and their states. Detecting such

scene descriptions from images has been addressed on visual relationship detection (Lu

et al., 2016; Inayoshi et al., 2020) or scene graph generation (Xu et al., 2017; Yang

et al., 2022). Previous work trained a model with PDDL predicates and demonstrated

it in real robot domains (Migimatsu and Bohg, 2022). We use a state-of-the-art LLM

and vision-language model to generate the initial state.

3.3 Problem statement

We focus on multimodal planning problem specification, a new task for bridging

language-guided planning and symbolic planning. The input is a quadruple (L, S,DD, DK);

a linguistic instruction L, a scene observation S, a domain description DD, and do-

main knowledge DK . L is a sequence of words describing the task. S is an RGB

CHAPTER 3. VISION-LANGUAGE INTERPRETER 37

image describing the initial state of the environment. DD defines parts common to

all problems: object types (e.g., location and tool), predicates (e.g., at and clear),

and symbolic actions (e.g., slice and pick). DK supports DD by providing more

specific information on each problem, such as object characteristics (e.g., the cutting

board is round, the counter is black) and actual input/output examples. Note that

the examples in DK use the object types and predicates defined in DD.

The output is a PD P consisting of (O, I,G): the objects O, the initial state I,

and the goal specification G. O consists of objects required for the task completion

(e.g., carrot and knife). I consists of a set of propositions that represent the ini-

tial state of the environment (e.g., (at carrot counter)). A proposition is formed

by providing a predicate with arguments. For example, providing a predicate (at

?a1 ?a2) with (a1, a2) = (carrot, cutting board) forms a proposition (at carrot

cutting board) meaning ”the carrot is at the cutting board.” G consists of a set

of propositions that represent the desired goal condition of the environment. For

example, (and (at carrot bowl) (is-sliced carrot)) represents the goal con-

dition that ”the carrot should be sliced and should be at the bowl.” P and DD are

written in PDDL (Fox and Long, 2003), following previous work (Liu et al., 2023b;

Xie et al., 2023). We refer to O, I, or G with PDDL (e.g., the PDDL objects). The

goal of this task is obtaining a function M : (L, S,DD, DK) → (O, I,G). P must be

machine-readable and executable by the symbolic planner.

3.4 Vision-Language Interpreter

ViLaIn consists of three modules: the object estimator, the initial state estimator,

and the goal estimator. We describe these modules in this section.

3.4.1 Object Estimator

The PDDL objects O list objects of interest in the scene observations S. However,

the observed objects vary greatly from domain to domain. Further, it must recognize

various objects that classical object detectors cannot handle. For this reason, we

CHAPTER 3. VISION-LANGUAGE INTERPRETER 38

(:objects
 carrot - vegetable
 bowl - location
 cutting_board - location
 counter - location
 knife - tool
 robot1 - robot
 robot2 - robot)

PDDL objects

Robot

Knife

Robot

Bowl Carrot

Counter

Cutting board

Rule-based
formatting

Domain knowledge DK

carrot, white_bowl,
round_cutting_board,

kitchen_knife, …

Open-Vocabulary Object Detector

Visual Observation V

(:objects
 carrot - vegetable
 bowl - location
 cutting_board - location
 counter - location
 knife - tool
 robot1 - robot
 robot2 - robot)

PDDL objects O

Robot

Knife

Robot

Bowl Carrot

Counter

Cutting board

Rule-based
formatting

Domain knowledge DK

carrot, white_bowl,
round_cutting_board,

kitchen_knife, …

Open-Vocabulary Object Detector

Scene Observation S

Figure 3.2: The open-vocabulary object detector detects objects from the observation.
The text query is provided by the domain knowledge. The detected objects are
converted into a PDDL format in a rule-based way.

use Grounding-DINO (Liu et al., 2023a), a state-of-the-art open-vocabulary object

detector. Figure 3.2 illustrates the estimator. We assume that the list of objects for

the task is known. The object list can be used as the text query. However, we found

from preliminary experiments that simply using the object list fails to detect several

objects. To address this issue, we elaborate the query using the domain knowledge

(e.g., ”cutting board” → ”round cutting board” and ”knife” → ”kitchen knife”). In

our setting, these elaborated queries are included in the domain knowledge DK . The

detected objects are converted into a PDDL format by rules.

CHAPTER 3. VISION-LANGUAGE INTERPRETER 39

bowl:
 [61, 349, 205, 477]
cutting_board:
 [202, 169, 332, 229]
…

(:init
 (available carrot)
 (is-whole carrot)
 (is-workspace
 cutting_board)
 (free a_bot)
 (carry b_bot knife)
 (can-cut knife)
 (at carrot counter))

Large
Language
Model

Image Captioning

PDDL initial state I

Input/Output
Examples

Domain knowledge DK

“it is a bowl.”

“it is a wooden
cutting board.”

Predicted
PDDL

Objects O

￼

Figure 3.3: The captioning model generates captions for each object. The LLM
generates the PDDL initial state from the bounding boxes and the captions using
few-shot prompting.

3.4.2 Initial State Estimator

The PDDL initial states I must specify the initial state of the environment using

propositions. Here, different predicates from DD should be used for different domains

to represent the propositions. In addition, omitting a single proposition could cause

an invalid PD by making reaching the goal from the initial state impossible. We

implement the initial state estimator with a combination of an LLM and image cap-

tioning model. Figure 3.3 shows the estimator. We use BLIP-2 (Li et al., 2023) as

the captioning model and GPT-4 (OpenAI, 2023) as the LLM. Given the objects’

CHAPTER 3. VISION-LANGUAGE INTERPRETER 40

Large
Language
Model

PDDL goal specification GDomain knowledge DK

Input/Output
examples

“Slice the carrot and
place it in the bowl.”

Linguistic Instruction L
Predicted
PDDL objects O

Predicted
PDDL initial states I

 (:goal (and
 (at carrot bowl)
 (is-sliced carrot)
))

Figure 3.4: The LLM directly generates the PDDL goal specification from the in-
struction and the PDDL objects and initial state using few-shot prompting.

bounding boxes, BLIP-2 generates captions for each object with a prompt of ”Q:

what does this object describe? A: .” GPT-4 generates the PDDL initial state I from

the bounding boxes and captions. GPT-4 uses few-shot prompting and leverages

input/output examples in DD to derive available predicates.

3.4.3 Goal Estimator

The PDDL goal specifications G must represent the desired goal conditions specified

by the linguistic instructions L. Generating G requires O to refer to the object list

and I to consider the relationships of the objects. We implement the goal estimator

with an LLM, following previous work (Lin et al., 2023; Xie et al., 2023). Figure 3.4

shows the estimator. We use GPT-4 to generate G from L, O, and I. Similarly to

Section 3.4.2, GPT-4 uses few-shot prompting with DK .

3.4.4 Corrective re-prompting

Generated PDs are used by the planner to find plans. The planning might fail in

the following two cases. One is when the PDs are syntactically incorrect. Generating

propositions with undefined objects in O or undefined predicates in DD results in

such PDs (e.g., create (at cucumber counter), but cucumber is not listed in O).

CHAPTER 3. VISION-LANGUAGE INTERPRETER 41

ViLaIn <<problem.pddl>>

Input

Valid
Plan

Error message

Generate Symbolic
Planner

Re-prompt Return error

Find plan

Figure 3.5: ViLaIn can refine the generated problem description via an error message
from the planner.

The other is when the generated O is unreachable from the generated I. Contra-

dictory propositions create such a PD (e.g., both of a proposition (on red block

blue block) and the opposite one (on blue block red block) exist in I). In both

cases, the planner stops planning and returns an error message, a clue to refine the

erroneous parts. It is ideal if the system automatically refines the PDs via the error

messages. ViLaIn has such a mechanism, and we describe it in this section.

When the planning fails, ViLaIn creates a prompt and re-prompts GPT-4 to

refine the PD. We refer to this technique as Corrective Re-prompting (CR), following

previous work (Raman et al., 2022). Figure 3.5 shows ViLaIn with CR. The prompt

consists of input/output examples in DK , the current input (L and S), the generated

problem P , and the error message.

Chain-of-Thought prompting We use Chain-of-thought (CoT) prompting (Wei

et al., 2022; Kojima et al., 2022; Zhou et al., 2023a) to further strengthen CR. CoT

is a technique for solving complex reasoning tasks by LLMs. CoT introduces an

intermediate reasoning step before generating the final output. With CoT, GPT-4

generates an explanation of the error message with a prompt template of “What part

of the PDDL problem do you think is causing this error?.” GPT-4 then generates

the refined problem with the explanation. CR with CoT can be repeated as often as

necessary until the planner returns error messages. In the rest of this chapter, ViLaIn

generates the PDs using CR with CoT unless otherwise specified. Note that ViLaIn

performs CR with CoT only if the planner returns an error message.

CHAPTER 3. VISION-LANGUAGE INTERPRETER 42

Domain Object types Predicates Actions

Cooking
vegetable, location,

tool, robot

available, is-whole,
is-sliced, free, carry,

can-cut, at, at-workspace
pick, place, slice

Blocksworld block, robot
on, ontable, clear,

handempty, handfull, holding
pick-up, put-down,
stack, unstack

Hanoi disk, peg clear, on, smaller, move move

Table 3.2: Defined object types, predicates, and actions in the domain descriptions.

Cooking Blocksworld Hanoi

“Slice the cucumber and
place the sliced cucumbers
in a bowl.”

“Create two stacks of blocks:
yellow over green over pink,
and red over purple.”

“Move all disks to the
rightmost peg while
keeping a rule that
larger disks are below.”

Figure 3.6: Examples of scene observations and linguistic instructions.

3.5 Dataset

The ProDG dataset consists of three domains: cooking, the blocks world (Blocksworld),

and the tower of Hanoi (Hanoi).

Cooking is a simplified task of making a salad. Planning is simpler than the other

two domains because it only considers slicing vegetables and placing them in the

bowl. Cooking actions are supposed to be performed by two robot arms installed on

both sides of the environment. The left and right robot arms are named a bot and

b bot, respectively, in O. This domain handles a greater variety of objects than the

other domains. G represents the vegetable state and location.

Blocksworld is a classical planning domain (Gupta and Nau, 1992). Fewer types

of objects than the cooking appear, but a longer horizon planning is required. Seven

colored blocks without duplicates are used for each problem. A robot arm does not

CHAPTER 3. VISION-LANGUAGE INTERPRETER 43

always grab anything at first. G specifies the relationships of the blocks.

Hanoi is a classical planning domain (Alford et al., 2009). Similarly to Blocksworld,

a longer horizon planning with fewer types of objects than the cooking domain is re-

quired. Ten disks with six colors and three pegs are used. Disks of the same color are

named by the number in order of increasing width (e.g., blue disk1 and blue disk2).

The three pegs are named by the number from left to right (e.g., peg1, peg2, and

peg3). I and G specify the positions of the disks. Completing this task requires

correctly recognizing the disk sizes since L only instructs the rule of the task, “larger

disks are below,” but mentions no concrete objects.

Each domain has one domain description and ten PDs. Table 3.2 shows object

types, predicates, and actions in the domain descriptions. Each problem has one lin-

guistic instruction and one scene observation. Figure 3.6 shows examples of linguistic

instructions L and scene observations S. For the Hanoi domain, L is identical through

all problems. This aims to investigate whether ViLaIn can generate different G based

on O and I. The descriptions for the cooking domain were created from scratch, while

those for the Blocksworld and Hanoi domains were created based on the PDDL files

in pddlgym (Silver and Chitnis, 2020). We confirmed that all the created PDs are

syntactically correct and have solutions using Fast Downward (Helmert, 2006) and

VAL, a plan validation software.2

3.5.1 Evaluation metrics

In PD generation, previously proposed metrics roughly calculate the planning success

rate or are domain-specific ones (Liu et al., 2023b; Xie et al., 2023). It would be ideal

to have metrics that evaluate PDs from multiple perspectives regardless of domain. To

this end, we introduce a new suite of metrics: Rsyntax and Rplan for logical correctness

and Rpart and Rall for semantic correctness. We describe these metrics below.

Rsyntax PDs must be syntactically correct. Rsyntax calculates the ratio of such PDs.

A PD is considered to be syntactically correct if VAL returns no warnings and exit

2https://github.com/KCL-Planning/VAL

https://github.com/KCL-Planning/VAL

CHAPTER 3. VISION-LANGUAGE INTERPRETER 44

codes for a pair of the domain and the generated PD.

Rplan Even if the PDs are syntactically correct, they might not have valid plans

due to incorrect objects in O and incorrect or contradictory propositions in I and G.

Rplan calculates the ratio of the PDs having valid plans. The plans are obtained using

Fast Downward (Helmert, 2006). A plan is considered to be valid if VAL returns no

error messages.

Rpart and Rall The above two metrics ignore whether the PDs are written about

our intended tasks. For example, the PD might be about an unintended task while it

is syntactically correct and has a valid plan. Rpart evaluates how close the generated

problems are to the ground truth ones. Rpart calculates the recall of the problem

parts between the ground truth and generated ones. Rpart is independently computed

for O, I, and G. The recall of object labels is calculated for O, while the recall

of propositions is computed for I and G. Unlike Rpart, Rall calculates the ratio of

problems containing all the ground truth object labels and propositions. Thus, Rall

can be viewed as a harder metric than Rpart.

3.6 Experiments

We conduct experiments to investigate how accurately ViLaIn can generate PDs on

the ProDG dataset. This section first describes the generation settings of ViLaIn and

then discusses experimental results.

3.6.1 Generation settings of ViLaIn

GPT-4 used few-shot prompting with three input/output examples in the same do-

main as the current task. ViLaIn can refine erroneous PDs by CR n times. PDs with

corrected grammatical errors can still have semantic errors, causing no valid solutions.

In such cases, CR should be performed at least twice. Thus, we set n to two. For

evaluation, we generated ten PDs per problem by varying the example combinations.

The resulting 100 problems per domain are used to evaluate ViLaIn.

CHAPTER 3. VISION-LANGUAGE INTERPRETER 45

Domain Rsyntax Rplan
Rpart RallO I G

Cooking 0.99 0.99 1.00 0.93 0.93 0.71
Blocksworld 0.99 0.94 0.98 0.79 0.89 0.36
Hanoi 1.00 0.58 0.89 0.46 0.33 0.12

Table 3.3: Performance on the ProDG dataset.

3.6.2 Evaluation of generation results by ViLaIn

Table 3.3 shows the results. The Rsyntax scores are more than 99% in all the three

domains. This means that ViLaIn can generate syntactically correct PDs for these

domains utilizing the three input/output examples. The Rplan scores indicate that

94% or more PDs have valid plans in the cooking and Blocksworld domains. However,

in the Hanoi domain, the Rplan score is only 58% due to its challenging setting. We

found from the outputs that ViLaIn tends to omit some propositions in this domain,

making the PDs invalid.

For Rpart, the scores on I and G are smaller than those on O. This implies

that generating I and G is more challenging than O. We found that mistakenly

detected objects cause this. Predicates such as on or at take two objects as ar-

guments. Propositions created with the predicates and mistakenly detected objects

affect other propositions. For example, (on red block blue block) can be (on

red block green block) (on green block blue block) with a mistakenly detected

green block, making them all incorrect propositions. We consider that generating

these incorrect propositions causes such results.

Finally, the Rall score is 71% in the cooking domain, 36% in the Blocksworld do-

main, and 12% in the Hanoi domain. The scores in the cooking and Hanoi domains

make sense considering the Rplan and Rpart scores. However, the score is unexpect-

edly low in the Blocksworld domain. We found that PDs in the Blocksworld domain

tend to contain a few incorrect propositions of block relationships. In some cases,

the block positioning is mistakenly reversed (e.g., (on blue block red block) (on

red block green block) is reversed to (on green block red block) (on red block

blue block)). We consider that these lead to the low Rall score in this domain.

CHAPTER 3. VISION-LANGUAGE INTERPRETER 46

Open-Vocabulary
Object Detector

Captioning Model
Large

Language
Model

(define
 (problem problem1)
 (:domain cooking)
 {Objects}
 {Initial state}
 {Goal specification}
)

“Slice the carrot and
place it in the bowl.”

PDDL problem P

Figure 3.7: ViLaInwhole generates the whole problem description at once.

Domain Rsyntax Rplan Rall

Cooking 1.00 (+0.01) 1.00 (+0.01) 0.54 (-0.17)
Blocksworld 0.99 (+0.00) 0.99 (+0.05) 0.13 (-0.23)
Hanoi 1.00 (+0.00) 0.94 (+0.36) 0.21 (+0.09)

Table 3.4: Generating the whole problem descriptions at once.

3.6.3 Generating the whole problem at once

ViLaIn generates the parts of PDs using different modules. If a single module can

generate the whole problem at once, it greatly simplifies the system. Here, we consider

a variant of ViLaIn generating the whole PD at once, as illustrated in Figure 3.7.

We refer to this model as ViLaInwhole. The generation is performed with few-shot

prompting as the original model.

Table 3.4 shows the results with Rsyntax, Rplan, and Rall. Values inside parenthesis

indicate gains from ViLaIn. In the cooking and Blocksworld domains, ViLaInwhole

slightly improves Rplan but worsens Rall. This means that using three modules is

more effective for these domains. In the Hanoi domain, ViLaInwhole outperforms

ViLaIn in both Rplan and Rall. When considered with Section 3.6.2, this means that

ViLaInwhole generates more correct propositions than ViLaIn. Generating the whole

PDs makes the distance between tokens of O and I or G closer. We consider that

this might work effectively and result in these improvements.

3.6.4 Generating PDs without CR and CoT

ViLaIn uses corrective re-prompting (CR) and chain-of-thought (CoT) prompting.

The CR is performed twice at most as described in Section 3.6.1. Since all the PDs

CHAPTER 3. VISION-LANGUAGE INTERPRETER 47

CR configurations
Rsyntax Rplan RallCR (n times) CoT

2 ✓ 0.99 0.99 0.71
1 ✓ 0.99 0.94 0.68
1 0.97 0.85 0.59
0 0.60 0.18 0.09

Table 3.5: Performance without CR and CoT.

so far are generated using CR with CoT, the impact of CR on performance is still

unknown. Here, we investigate performance without CR and CoT, considering the

following configurations: (i) CR with CoT (n = 1 in Section 3.6.1), (ii) CR without

CoT (n = 1), and (iii) without CR (n = 0).

Table 3.5 shows the results in the cooking domain. The first line is the same result

in Table 3.3. First, performing CR with CoT only once (the first line) slightly drops

Rplan and Rall, meaning that repeating CR is effective. Next, removing CoT (the third

line) worsens all the scores. This demonstrates that the introduced intermediate

reasoning step by CoT has a large impact on performance. Finally, removing CR

(the fourth line) degrades the scores significantly. This model tends to suffer from

hallucinations (Maynez et al., 2020)3, such as propositions with undefined objects

(e.g., (at cucumber counter) in I while the cucumber is not defined in O). We

found that CR effectively refines these incorrect propositions and makes the PDs

consistent.

3.7 Conclusion

This chapter has tackled multimodal planning problem specification, a new task

for connecting language-guided planning and symbolic planner. We have proposed

Vision-language interpreter (ViLaIn) that generates problem descriptions (PDs) from

linguistic instructions and scene observations. A novel dataset called the problem

description generation (ProDG) dataset has proposed with new metrics to evaluate

3Also referred to as confabulations. Generating factually incorrect texts by LLMs is a common
problem in natural language processing.

CHAPTER 3. VISION-LANGUAGE INTERPRETER 48

ViLaIn. The experimental results show that ViLaIn can generate syntactically correct

PDs, and more than half of the PDs have valid plans.

Chapter 4

Flow Graph Prediction of

Open-Domain Procedural Texts

4.1 Introduction

Procedural texts provide a list of steps to perform a variety of tasks, such as cooking

or assembling furniture. Each step is a linguistic instruction to achieve a subgoal,

which can include multiple actions and target objects. In recent years, research on

understanding procedural texts has been gaining a lot of attention (Mori et al., 2014;

Kiddon et al., 2015; Bosselut et al., 2018; Dalvi et al., 2018; Tandon et al., 2020).

Among these studies, understanding the workflow of the whole procedural text (Mori

et al., 2014; Kiddon et al., 2015) is particularly important for reasoning about the

relationships between the steps (Zhang et al., 2020a) or automating work by robots

based on the procedural texts (Bollini et al., 2013).

In this direction of research, previous work have proposed a recipe flow graph

(r-FG) as a representation for the understanding of cooking recipes together with

corpora (Mori et al., 2014; Yamakata et al., 2020). As shown in the left figure of

Figure 4.1, the r-FG forms a directed acyclic graph (DAG). Here, nodes represent

expressions related to the procedures in a cooking recipe, while edges represent the

relationships between the nodes. The r-FG captures the dependencies between the

procedures at the document level. Previous work has proposed a framework for

49

CHAPTER 4. WIKIHOW FLOW GRAPH 50

Ae I T

Targ

Dest
Targ

Dest
Ae Si I T

I-eq
other-mod

Cut a soap base into chunks .

Place the cut soap base into a bowl .

Heat and stir the soap constantly.
I-eqTarg

Targ

Melt the butter in a large saucepan .

Fry the onion in butter .

Add the parsnips , garlic and curry powder .

Ae (Ac) I (F) St T

Ae (Ac) I (F)

Ae (Ac)

other-mod
Dest

Targ

I-eq (F-eq)Targ

Targ
TargTarg

Dest I (F)

I (F) I (F) I (F)

Ae: Action by expert (Ac: Action by chef),
I: Ingredient (F: Food), T: Tool,
Si: State of ingredient, St: State of tool

Targ: Action target, Dest: Action destination,
I-eq: Ingredient equality (F-eq: Food equality),
other-mod: other relationships

English r-FG corpus (Cooking) w-FG corpus (Hobbies and Crafts)

Named entity tags Dependency labels

Ae Ae I

Figure 4.1: Example of flow graph annotation. The left shows the annotation in
the English r-FG corpus, while the right shows the annotation in the w-FG corpus
(Hobbies and Crafts).

automatic prediction of r-FG (Maeta et al., 2015). This framework predicts an r-FG

in two stages: node prediction and edge prediction. While these developments have

been made, the r-FG has not yet been applied to procedural texts in other domains

because the representation is designed for the cooking domain. The development

of a generalized flow graph representation would be a promising direction to realize

procedural text understanding systems beyond the cooking domain.

This chapter proposes to extend the r-FG representation to handle non-cooking

domains. Specifically, we focus on English articles from wikiHow, a website providing

user-generated procedural texts in a wide range of domains, and propose a wikiHow

flow graph (w-FG) representation. The w-FG extends the r-FG by treating foods in

cooking recipes as ingredients of the final product. The w-FG is compatible with the

r-FG, and the existing cooking annotations in r-FG can automatically be converted

into annotations in w-FG. With this generalized representation, we investigate the

flow graph prediction performance of English procedural texts in domains other than

cooking. To predict flow graph performance in such domains, we introduce the w-

FG corpus, a new flow graph corpus from articles on wikiHow. The w-FG corpus

CHAPTER 4. WIKIHOW FLOW GRAPH 51

Named entity tag Meaning

I (F) Ingredient (Food)
T Tool
D Duration
Q Quantity
Ae (Ac) Action by expert (chef)
Ae2 (Ac2) Discontinuous Ae (Ac)
Ai (Af) Action by ingredient (food)
At Action by tool
Si (Sf) State of ingredient (food)
St State of tool

Table 4.1: Named entity tags and their meanings. The inside of the parenthesis
represents a tag and its meaning in English-FG.

Dependency label Meaning

Agent Action agent
Targ Action target
Dest Action destination
T-comp Tool complement
I-comp (F-comp) Ingredient (Food) complement
I-eq (F-eq) Ingredient (Food) equality
I-part-of (F-part-of) Ingredient (Food) part-of
I-set (F-set) Ingredient (Food) set
T-eq Tool equality
T-part-of Tool part-of
A-eq Action equality
V-tm Head of clause for timing
other-mod Other relationships

Table 4.2: Dependency labels and their meanings. The inside of the parenthesis
represents a label and its meaning in English-FG.

targets four domains selected from wikiHow’s top categories: Food and Entertaining,

Hobbies and Crafts, Home and Garden, and Cars & Other Vehicles. This corpus

provides annotations of 30 articles for each domain. The w-FG corpus is available on

the web.1.

One common issue for r-FG-based representation is that its annotation procedure

is dense and complicated. This means that obtaining large-scale annotations in new

1https://github.com/kskshr/wikiHow-FG-Corpus

https://github.com/kskshr/wikiHow-FG-Corpus

CHAPTER 4. WIKIHOW FLOW GRAPH 52

domains is practically unrealistic. A possible solution to this issue is to utilize the

existing annotations in the cooking domain as an additional resource. Based on this

idea, we consider domain adaptation of models by first training on the existing r-

FG corpus (Yamakata et al., 2020), which we call the English r-FG corpus in this

chapter, and then fine-tuning on the target domain data of the w-FG corpus. The flow

graph prediction is performed in the node and edge predictions, following previous

work (Maeta et al., 2015). We experimentally show that the domain adaptation

significantly improves performance compared with models trained only on the English

r-FG or w-FG corpus.

4.2 Recipe flow graph

This section briefly explains the r-FG representation and the framework for automatic

r-FG prediction.

4.2.1 Flow graph representation

As shown in the left figure of Figure 4.1, an r-FG is defined as a directed acyclic

graph G(V,E), consisting of a set of nodes V and a set of edges E. V is a set

of representations related to procedures such as foods and tools, and E is a set of

labeled edges representing dependencies between the nodes. The graph is connected,

and there is a special root node corresponding to the final product. In previous

work (Yamakata et al., 2020), the cooking action representation (Ac) that appeared

last is used as the root node. Currently, the Japanese r-FG corpus (Mori et al., 2014)

and the English r-FG corpus (Yamakata et al., 2020) are provided. Here, the English

r-FG (Yamakata et al., 2020) adds a few new tags and labels to handle English-

specific expressions. As shown in Table 4.1 and Table 4.2, the English r-FG uses 10

types of named entity tags and 13 types of dependency labels. Since this chapter

focuses on English procedural texts, our proposed w-FG is based on the English r-FG

representation.

CHAPTER 4. WIKIHOW FLOW GRAPH 53

4.2.2 Flow graph prediction

A framework proposed by previous work (Maeta et al., 2015) predicts an r-FG in two

stages of node and edge prediction.

The node prediction identifies expressions corresponding to the nodes with r-FG

tags. This is formulated as a sequence labeling problem, and prediction is performed

using a named entity recognizer (NER). While it is common to perform named entity

recognition at the sentence level (Lample et al., 2016), previous work performed

prediction at the article level (Yamakata et al., 2020). Following the previous work,

this chapter performs node prediction at the article level.2

The edge prediction predicts dependencies between the nodes with labels. This is

formulated as a problem of finding a maximum spanning tree as follows:

Ĝ = argmax
G∈G

∑
(u,v,l)

s(u, v, l), (4.1)

where s(u, v, l) represents the score for a directed edge from the node u to v with

the label l. This is solved using the Chu-Liu-Edmonds algorithm (Chu and Liu,

1965; Edmonds, 1967). The score for labeled edges is computed using a graph-based

dependency parser (McDonald et al., 2005).

4.3 wikiHow flow graph representation

A wikiHow flow graph (w-FG) is a flow graph representation based on the English

r-FG. Table 4.1 and Table 4.2 show the named entity tags and dependency labels in

the w-FG. In the r-FG, food ingredients and intermediate products of a procedure

are treated as food (F), and they are incorporated into the final product of the recipe.

For example, in a salad recipe, foods such as lettuce and dressing are treated as the

ingredients of the salad, the final product of the recipe. The w-FG generalizes the

r-FG by treating all materials incorporated into the final product, including foods, as

ingredients (I) and handles procedural texts other than cooking recipes. For example,

2Our preliminary experiments have shown that prediction at the article level can improve accuracy
by up to 10% compared to the sentence level.

CHAPTER 4. WIKIHOW FLOW GRAPH 54

in a desk assembly manual, materials such as desk legs and screws are treated as

the ingredients of the desk, the final product of the procedural text. In the w-FG,

the named entity tag of food (F) is changed to ingredient (I), and other tags and

labels related to foods are replaced with those related to ingredients (e.g., State of

foods (Sf) → State of ingredients (Si), Food equality (F-eq) → Ingredient equality

(I-eq)). The w-FG is compatible with the r-FG, and the annotations in the r-FG can

automatically be converted into those in the w-FG.

4.3.1 Flow graph prediction

As in previous work (Maeta et al., 2015; Yamakata et al., 2020), the flow graph

prediction is performed in two stages: node prediction and edge prediction. The

prediction model is obtained by training on w-FG annotations. We assume that only

a small amount of the target domain data is available for training, considering the huge

annotation cost of the w-FG. To remedy this issue, we consider domain adaptation

from the existing r-FG corpus to the target domain data, as mentioned in Section

4.1. Here, the domain adaptation is performed by first training a model on the r-FG

corpus and then by fine-tuning it on the target domain data. The remainder of this

section describes task definition in Section 4.3.2 and data augmentation techniques

to further address the low-resource problem in Section 4.3.3.

4.3.2 Task definition

Given N examples of flow graph (V C
1 , EC

1), · · · , (V C
N , EC

N) in the cooking domain and

M examples of flow graph (V T
1 , ET

1), · · · , (V T
M , ET

M), the goal of this task is to max-

imize the prediction performance of the node prediction model FNode and the edge

prediction model FEdge in the target domain. Here, we assume that

FNode : D → V, (4.2)

FEdge : (D, V) → E, (4.3)

CHAPTER 4. WIKIHOW FLOW GRAPH 55

Cut the potatoes.

Heat the pan .

Add the potatoes to the pan.

Cut the potatoes.

Heat the pan .

Add the potatoes to the pan.

Swap steps
After augmentationBefore augmentation

Heat the oil in a saucepan .

Add the onion and cook for 7-8 minutes .

Stir in the celery and carrot .

Node prediction Edge prediction

Heat the oil in a saucepan .
Ac F T

Targ

Targ
other-mod

Dest

Dest Targ

at the oil in a saucepan .

r in the celery and carrot .

dd the onion and cook for 7-8 minutes .

Ac (調理者の動作)
F (⾷材)

Figure 4.2: Example of swapping steps.

where D is a procedural text. M is a small number in this setting (namely, M = 5

in the experiment), and this task can be regarded as a low-resource domain adap-

tation (Xu et al., 2021) task. In addition, if the data in the cooking domain or the

target domain is not used, it can be regarded as a few-shot or zero-shot setting.

4.3.3 Data augmentation

Data augmentation is a promising approach to improve performance in low-resource

settings (Fadaee et al., 2017; Ding et al., 2020). In this study, we consider two types

of data augmentation techniques: step swapping and word replacement.

Step swapping augments an example by replacing two arbitrary steps in an article

as illustrated in Figure 4.2. However, randomly choosing and swapping two steps

might break their causal relationship. For example, the two steps of “1. Cut the

potatoes.” and “2. Add the potatoes to the pan.” in Figure 4.2 cannot be swapped.

In this work, we augment examples while keeping this constraint by using flow graph

annotations.3

word replacement augments an example by replacing a word in the procedural

text with an arbitrary word. For example, “heat the pan.” is augmented by replacing

“pan” with “cooking pan.” However, replacing a word with unrelated words may

3In fact, the duration between the steps should be considered. For example, the two steps of “1.
Heat the pan.” and “2. Add the potatoes to the pan.” might not be swapped because leaving the
heated pan for a long time affects the next step. In this chapter, we ignore such implicit constraints
and focus only on explicit constraints provided by the flow graph.

CHAPTER 4. WIKIHOW FLOW GRAPH 56

significantly change the meaning of the procedure. Therefore, we use WordNet (Dai

and Adel, 2020) and replace words with their synonyms. Each word is replaced with

a probability of p(0 ≤ p ≤ 1), where p is a hyperparameter. While the word may have

multiple synonyms, in which case one is randomly selected from all the synonyms.

This chapter targets only words annotated with the named entity tags of Ae, I, or T

for augmentation.

4.4 w-FG corpus

The w-FG corpus is a novel flow graph corpus of articles from wikiHow.4 wikiHow

provides more than 230,000 procedural texts and has been widely used as a lan-

guage resource of procedural texts in recent years (Zhou et al., 2019; Zellers et al.,

2019b; Zhang et al., 2020a; Zhou et al., 2022; Lin et al., 2022). In the following, the

data collection, annotation procedure, statistics, and inter-annotator agreements are

described in order.

4.4.1 Data collection

Four target domains were selected from the top wikiHow categories: Food and En-

tertaining, Hobbies and Crafts, Home and Garden, Cars & Other Vehicles. Food and

Entertaining mostly targets cooking, and thus, the included procedures are relatively

close to those in the English r-FG corpus. Hobbies and Crafts mainly targets craft-

ing, which is different from cooking in that inedible materials are used, but have in

common that a final product is obtained by assembling ingredients. The other two

domains of Home and Garden and Cars & Other Vehicles contain procedural texts

for gardening and vehicle maintenance, respectively. The procedures used in these

domains are more diverse than the other two domains, including non-assembly tasks.

30 wikiHow articles for each domain were collected from the wikiHow corpus (Zhang

et al., 2020a). Table 4.3 shows examples of article titles for each domain. During the

data collection, we filtered low-quality articles by collecting those that (i) had at least

4https://www.wikihow.com, accessed on December 20, 2022.

https://www.wikihow.com

CHAPTER 4. WIKIHOW FLOW GRAPH 57

Domain Article titles

Food and Entertaining
Cooking acorn squash, Making lavender tea,
Baking a cherry pie

Hobbies and Crafts
Making a bar soap, Making a duct tape bow,
Making a paper box

Home and Garden
Cleaning a mattress pad, Installing a microwave,
Making a scented candle

Cars & Other Vehicles
Fixing a slipped bike chain, Cleaning car window,
Cleaning tail lights

Table 4.3: Examples of article titles for each domain.

Domain # characters # words # steps # tags # labels

Food and Entertaining 10,167 2,761 224 1,123 1,127
Hobbies and Crafts 9,407 2,556 247 1,048 1,059
Home and Garden 7,700 2,010 205 887 882
Cars & Other Vehicles 6,432 1,622 173 613 609

Table 4.4: Statistics of the w-FG corpus.

25 words in the article and (ii) were rated at least 50% by users. We also manually

excluded articles for which the task was ambiguous or the final product was not a

physical object. In this study, paragraph headings are used as steps, following previ-

ous work (Zhang et al., 2020a; Zhou et al., 2022). All the steps were segmented into

words by using Stanza (Qi et al., 2020) before the annotation.

4.4.2 Annotation procedure

The annotation of the wikiHow articles was done by requesting a human annotator.

The annotator was trained by annotating 10 recipes randomly collected from the En-

glish r-FG corpus with annotation instructions until the agreement with the existing

annotations exceeded 80%. We then instructed the annotator with more detailed an-

notation standards and requested them to annotate the 120 articles. The annotation

was performed by using the flow graph annotation tool (Shirai et al., 2022). The

annotation took 40 hours in total.

CHAPTER 4. WIKIHOW FLOW GRAPH 58

Named entity tag
Food and Hobbies and Home and Cars & Other

Entertaining Crafts Garden Vehicles

I 380 419 250 218
T 136 56 186 91
D 41 9 17 4
Q 73 46 32 14
Ae 315 310 270 202
Ae2 15 38 19 23
Ai 28 22 17 11
At 0 0 0 0
Si 84 147 42 35
St 60 15 61 27

Total 1,132 1,062 894 625

Table 4.5: The number of annotations for each named entity tag.

4.4.3 Statistics

Table 4.4 shows the statistics of the w-FG corpus. We can see that each article

consists of an average of 7.1 steps, and each step consists of an average of 10.5 words.

It also shows that each article is annotated with an average of 30.6 named entity tags

and 30.6 dependency labels. The number of words included in Food and Entertaining

and Hobbies and Crafts are fewer than the other two domains, and the number of

annotated tags and labels for the former two domains are also smaller than the other

two domains.

Table 4.5 shows the number of annotations for each tag. We can see that Ae, I, and

T are frequently appeared across the domains. Among the tags, At did not appear in

this annotation, but it also has a very low frequency of 15 in the English r-FG corpus.

Considering the number of articles in Food and Entertaining is 30, one-tenth the size

of the English r-FG corpus (300 articles), this value is reasonable.

Figure 4.3 shows the frequency distribution of the top 10 expressions annotated

with Ae, I, and T for each domain. For Ae, add and cut frequently appear in Food

and Entertaining and Hobbies and Crafts, while remove and use are more used in Home

and Garden and Cars & Other Vehicles. These verbs characterize the procedures used

in these procedures. It should be noted that expressions used as I in certain domains

can be used as T in other domains (e.g., water is frequently used as I in Food and

CHAPTER 4. WIKIHOW FLOW GRAPH 59

ad
d

po
ur

se
rv

e le
t

st
ir

co
ok cu

t
he

at
ba

ke
pl

ac
e0

10
Fo

od
 a

nd
 E

nt
er

ta
in

in
g

Ae

it
wa

te
r

sa
lt

bu
tte

r
on

io
ns

do
ug

h
su

ga
r

in
gr

ed
ie

nt
s

m
ilk

po
ta

to
es

0
20

I

sk
ille

t
bo

wl
he

at
ov

en pa
n

co
nt

ai
ne

r
bl

en
de

r
po

t
ba

ki
ng

 d
ish

fre
ez

er

0
10

T
fo

ld cu
t

m
ak

e
ad

d
us

e
m

ix
dr

aw fli
p

ge
t

le
t0

20
Ho

bb
ie

s a
nd

 C
ra

fts

Ae

pa
pe

r it
ya

rn
fa

br
ic

ce
nt

er
ba

llo
on

so
ap

sli
m

e
pi

pe
 c

le
an

er
co

rn
er

0
20

I

bo
wl

ov
en

m
ix

in
g

bo
wl

co
nt

ai
ne

r
ha

nd
s

sp
oo

n
ru

le
r

bu
bb

le
 w

an
d

cu
tti

ng
 m

at
do

we
l0

5

T

re
m

ov
e

rin
se us
e

us
in

g le
t

so
ak fil

l
wa

sh
ap

pl
y

m
ix

0
20

Ho
m

e
an

d
Ga

rd
en Ae

it
wa

x
st

ai
n

fa
br

ic
wa

te
r

cu
p

qu
ar

te
r

te
ap

ot
cu

sh
io

n
co

ve
r

sh
ow

er
he

ad

0
10

I

wa
te

r
clo

th
vi

ne
ga

r
ba

ki
ng

 so
da tu
b

to
we

l
sp

ra
y

bo
ttl

e
po

t
m

icr
of

ib
er

 c
lo

th
so

ap

0
20

T

us
e

re
m

ov
e

wi
pe

cle
an

sp
ra

y
pu

ll
di

sc
on

ne
ct

ap
pl

y
pu

sh
lo

os
en

0
10

Ca
rs

 &
 O

th
er

 V
eh

icl
es

Ae

wh
ee

l it
tir

es ca
r

ba
tte

ry
ta

il
lig

ht
gr

ip
ca

tc
h

ca
n

bi
ke

wi
nd

ow

0
5

I
to

we
l

cle
an

er
wa

te
r

clo
th

le
at

he
r c

le
an

er
cle

an
in

g
so

lu
tio

n
ho

se
lit

te
r

co
nt

ai
ne

r
va

lv
e

st
em

 to
ol

0
5

T

Figure 4.3: The top 10 high frequent expressions for Ae, I, and T.

Entertaining, while it tends to be used as T in Home and Garden and Cars & Other

Vehicles).

Table 4.6 shows the number of annotations for each label. It can be seen that

Targ, Dest, I-eq, and other-mod have high frequencies across all domains. In addition,

the frequency of T-comp is high in Home and Garden and Cars & Other Vehicles,

indicating that actions using tools are especially common in these domains. Further,

the frequency of I-part-of is higher in Hobbies and Crafts than in the other three

domains, suggesting that actions on the part of the ingredients frequently appear in

this domain.

CHAPTER 4. WIKIHOW FLOW GRAPH 60

Dependency label
Food and Hobbies and Home and Cars & Other

Entertaining Crafts Garden Vehicles

Agent 46 49 25 20
Targ 396 341 301 231
Dest 151 145 100 47
T-comp 25 19 64 42
I-comp 7 4 3 3
I-eq 146 149 110 68
I-part-of 29 124 63 76
Set 8 7 0 2
T-eq 21 8 18 10
T-part-of 5 3 16 6
A-eq 4 6 2 6
V-tm 32 9 2 2
other-mod 254 212 182 109

Total 1,124 1,076 886 622

Table 4.6: The number of annotations for each dependency label.

Annotation type Agreement

Node annotation 89.68%
Edge annotation 68.79%

Table 4.7: Inter-annotator agreements.

4.4.4 Inter-annotator agreement

To evaluate the quality of the annotations, we asked another annotator to re-annotate

3 articles for each domain and then calculated the inter-annotator agreement by F1.

Here, the annotator was trained in the same way as explained in Section 4.4.2. Table

4.7 shows the results. The agreement on the node annotation and edge annotation

were was 89.68% and 68.79%, respectively. Given the complexity of flow graph anno-

tation and the number of domains handled in this work, we consider that these scores

of over 68% would be acceptable to build machine-learning models on them.

CHAPTER 4. WIKIHOW FLOW GRAPH 61

4.5 Node prediction

As explained in Section 4.3, the flow graph prediction is performed in the two stages

of the node prediction and the edge prediction. This section evaluates the node

prediction performance on the w-FG corpus. We use a neural network-based NER

model to predict nodes. This section first explains experimental settings and then

shows the experimental results. After that, the node prediction performance at the

tag level is investigated as an ablation study.

4.5.1 Experimental settings

Model. We used a BiLSTM-CRF model as the named entity recognizer (Lample

et al., 2016). As an encoder, we used the pre-trained DeBERTa (He et al., 2021)

instead of BiLSTM or BERT (Devlin et al., 2019).5 The total number of parameters

of this node prediction model was 140M.

Training. The domain adaptation was performed by first training the model on the

English r-FG corpus and then by fine-tuning it on the target domain data of the w-FG

corpus. We also trained the model without training on the English r-FG corpus or

the w-FG corpus to investigate the effect of the domain adaptation. During training,

all parameters, including the pre-trained DeBERTa, were tuned.

The model parameters were tuned by using AdamW (Loshchilov and Hutter, 2019)

with an initial learning rate of 5.0 × 10−5 and the weight decay of 1.0 × 10−5. The

learning rate schedule was performed with the warmup for Sw steps and the cosine-

annealing (Loshchilov and Hutter, 2019) for Sd steps. The minibatch was created

from B articles. We set (B, Sw, Sd) = (5, 500, 4500) for the training on the English

r-FG corpus and (B, Sw, Sd) = (3, 100, 900) for training on the w-FG corpus. These

hyperparameters were adjusted using the development data. The data augmentation

described in Section 4.3.3 was performed only for training the domain adaptation

model. The step swapping was performed to augment 5 articles for each article, and

5In our preliminary experiments, we confirmed that using DeBERTa instead of BERT improves
the accuracy by 0.47% on the English r-FG corpus.

CHAPTER 4. WIKIHOW FLOW GRAPH 62

the word replacement was performed to augment 10 articles for each 1 article, setting

p = 0.5.

Evaluation. The English r-FG corpus was split into 80% for the train data, 10%

for the development data, and the remaining 10% for the test data. The w-FG corpus

was split into 6 splits, in which each split contains 5 articles. We used a 1 split for the

train data, another 1 split for the development data, and the remaining 4 splits for

the test data. To obtain more reliable results, we performed 6-fold cross-validation

by varying the choice of the split for the test data. Precision, recall, and F1 were

used as evaluation metrics, following previous work (Maeta et al., 2015).

Model configuration. In the following, we refer to models that perform domain

adaptation as DA, models trained only on the English r-FG corpus as COOK, and

models trained only on the w-FG corpus as TGT, respectively.

4.5.2 Experimental results

Table 4.8 shows the results. The scores of the TGT model show that it can predict

nodes with 66.9% or more F1 values using only 5 annotated articles as the training

data. The COOK model results show that training on the English r-FG corpus

achieves competitive scores as TGT. In Food and Entertaining, the COOK model

outperforms TGT by a large margin of 10.3% F1, but this is because these domains

mainly deal with the same domain of cooking. The DA models achieve the best

scores in all domains. In the three domains other than Food and Entertaining, the

DA model improves F1 by more than 9.6%. This indicates that pre-training on the

English r-FG corpus is effective in this setting.

For the results of the data augmentation, the step swapping shows a small im-

provement of 0.4% and 0.3% in the two domains of Food and Entertaining and Home

and Garden, respectively. The word replacement did not achieve any improvements in

all domains. These results indicate that the proposed data augmentation techniques

are not effective in the node prediction.

CHAPTER 4. WIKIHOW FLOW GRAPH 63

Domain Model
Data augmentation

Precision Recall F1Step Word
swap. replace.

Food and Entertaining

TGT 0.770 0.784 0.777
COOK 0.884 0.877 0.880
DA 0.890 0.892 0.891
DA ✓ 0.894 0.895 0.895
DA ✓ 0.885 0.891 0.888

Hobbies and Crafts

TGT 0.698 0.707 0.702
COOK 0.703 0.684 0.693
DA 0.794 0.805 0.799
DA ✓ 0.784 0.795 0.789
DA ✓ 0.781 0.790 0.785

Home and Garden

TGT 0.663 0.676 0.669
COOK 0.734 0.742 0.738
DA 0.780 0.786 0.783
DA ✓ 0.787 0.791 0.786
DA ✓ 0.765 0.773 0.769

Cars & Other Vehicles

TGT 0.650 0.690 0.669
COOK 0.646 0.695 0.670
DA 0.748 0.784 0.765
DA ✓ 0.734 0.784 0.761
DA ✓ 0.729 0.772 0.750

Table 4.8: Results of the node prediction. The checkmark ✓ represents the used data
augmentation technique.

4.5.3 Tag-level prediction performance

The expressions corresponding to named entity tags differ significantly across do-

mains. Thus, we can expect that the lower the overlap of expressions between the

English r-FG corpus and the w-FG corpus, the more domain-dependent expressions

are learned during fine-tuning, and thus the larger improvement from the COOK to

DA model is achieved. To investigate this, we calculated the overlap ratio of expres-

sions for each tag across the corpora and evaluated the prediction performance at

the tag level. Here, we evaluated the performance by F1 and targeted only the most

frequently appearing tags of Ae, C, and T.

Table 4.9 shows the results. For Ae, unlike expected, the improvement from

COOK to DA is small, regardless of the overlap rate between corpora. This implies

that human action expressions can easily be identified regardless of the training data

CHAPTER 4. WIKIHOW FLOW GRAPH 64

Domain
Ae I T

Overlap
F1

Overlap
F1

Overlap
F1

COOK DA COOK DA COOK DA
Food and Entertaining 92.06% 0.941 0.952 72.11% 0.932 0.933 77.94% 0.896 0.882
Hobbies and Crafts 69.03% 0.943 0.951 10.33% 0.717 0.833 51.79% 0.398 0.588
Home and Garden 65.19% 0.954 0.961 18.40% 0.716 0.795 43.55% 0.567 0.678
Cars & Other Vehicles 46.04% 0.905 0.919 6.88% 0.666 0.805 27.47% 0.459 0.557

Table 4.9: Node prediction performance for Ae，I，and T. The overlap ratio rep-
resents the overlap of expressions between the English r-FG corpus and the target
domain data of the wikiHow-FG corpus.

domain. For C and T, we can see significant performance improvement by domain

adaptation in all domains except for Food and Entertaining. The overlap ratio in

these three domains is lower than that in Food and Entertaining, indicating that the

fine-tuning has a larger impact on the prediction performance of the C and T tags.

4.6 Edge prediction

After the node prediction, the edge prediction is performed to predict dependencies

between the nodes as labeled edges. We use a graph-based dependency parser as

the edge prediction model. Following the previous work (Yamakata et al., 2020),

the action expression (Ae) that appeared last in a procedural text is used as the root

node. This section describes experimental settings and results when the ground-truth

nodes are provided. Then, the results of the pipeline experiment that predicts the

edges based on the predicted nodes are provided.

4.6.1 Experimental settings

Model. We used a biaffine dependency parser (Dozat and Manning, 2018) as the

dependency parser.6 This model uses different modules for edge and label prediction,

and the loss function is designed as a weighted sum of the losses in each module as

6Previous work used a liner model to perform the edge prediction (Yamakata et al., 2020). In
our preliminary experiment, we confirmed that the biaffine dependency parser can achieve higher
performance on the English r-FG corpus. The results of this preliminary experiment are provided
in Section 4.6.4.

CHAPTER 4. WIKIHOW FLOW GRAPH 65

follows:

l = λlEdge + (1− λ)lLabel, (4.4)

where λ controls the strength of each loss, and we set to 0.5. We used the pre-trained

DeBERTa (He et al., 2021) instead of the BiLSTM as the language encoder.7. The

total number of parameters for this model was 1.49M.

Training. Similarly to Section 4.5.1, we trained models trained by domain adap-

tation and those trained only on the English r-FG corpus or the w-FG corpus. The

model parameters were optimized using AdamW (Loshchilov and Hutter, 2019), and

the learning rate schedule consisting of the warmup and cosine-annealing was per-

formed. For these hyperparameters, we used the same values as in Section 4.5.1.

Evaluation. We used the same splits for the English r-FG corpus and w-FG corpus

in Section 4.5.1. Similarly to the node prediction experiments, we performed the 6-

fold cross-validation. Evaluation metrics of precision, recall, and F1 were calculated

based on labeled edges (u, v, l), where u, v, and l are the starting node, ending node,

and dependency label, respectively.

Model configuration. As with Section 4.5, we refer to each model by COOK,

TGT, and DA.

4.6.2 Experimental results

Table 4.10 shows the edge prediction results based on the ground-truth nodes. Unlike

the node prediction experiments, we can see that the scores of the TGT models are

33.8% or lower F1 in all domains. On the other hand, the score of the COOK model

is 58.7% or more in all domains, doubling the scores of the TGT model in each

domain. These results suggest that the edge prediction model requires more training

data than the node prediction model to outperform the COOK model, which is

trained on the cooking domain data. The DA model outperforms both the TGT

7Section 4.6.4 provides the results by varying the language encoder.

CHAPTER 4. WIKIHOW FLOW GRAPH 66

Domain Model
Data augmentation

Precision Recall F1Step Word
swap. replace.

Food and Entertaining

TGT 0.335 0.338 0.337
COOK 0.725 0.731 0.728
DA 0.750 0.756 0.753
DA ✓ 0.747 0.752 0.750
DA ✓ 0.761 0.752 0.749

Hobbies and Crafts

TGT 0.285 0.281 0.283
COOK 0.613 0.605 0.609
DA 0.649 0.640 0.644
DA ✓ 0.646 0.638 0.642
DA ✓ 0.653 0.644 0.648

Home and Garden

TGT 0.229 0.232 0.231
COOK 0.644 0.649 0.646
DA 0.659 0.665 0.662
DA ✓ 0.656 0.662 0.659
DA ✓ 0.674 0.680 0.677

Cars & Other Vehicles

TGT 0.154 0.155 0.154
COOK 0.587 0.590 0.587
DA 0.607 0.610 0.609
DA ✓ 0.607 0.610 0.608
DA ✓ 0.617 0.620 0.618

Table 4.10: Results of the edge prediction. The checkmark ✓ represents the used
data augmentation technique.

and COOK models in all domains, achieving the best scores. This indicates that

the domain adaptation from the English r-FG corpus to the target domain is as

effective as the node prediction. In addition, for the data augmentation results, the

word replacement slightly improves the scores by up to 0.15% in all domains except

for Food and Entertaining. This implies that data augmentation by replacing node

expressions might have a positive effect on training.

4.6.3 Pipeline experiments

In more practical settings, flow graph prediction must be performed on raw procedural

texts. In this scenario, the edge prediction model needs to predict the edges based

on the predicted nodes. In this case, the edge prediction performance is expected

to be lower than the results in Section 4.6.2, propagating the errors from the node

CHAPTER 4. WIKIHOW FLOW GRAPH 67

Domain F1

Food and Entertaining 0.679 (-9.8%)
Hobbies and Crafts 0.501 (-22.2%)
Home and Garden 0.494 (-25.4%)
Cars & Other Vehicles 0.449 (-26.3%)

Table 4.11: Results of the pipeline experiments. The value inside the parenthesis
represents the difference from Table 4.10.

prediction step. To investigate the prediction performance in this setting, we perform

edge prediction based on the predicted nodes provided in Table 4.5.2. The evaluation

was performed by calculating the F1 based on tuples of (u, v, l, nu, nv), where nu and

nv are named entity tags for the starting and ending nodes u and v, respectively.

Table 4.11 shows the edge prediction results based on the predicted nodes. These

scores indicate that edges can be predicted with F1 ranging from 44.9% to 67.9% in

this setting. The performance drop from Table 4.10 was 9.8% for Food and Enter-

taining and 24.6% or larger in the other three domains. The difference of F1 scores

between Food and Entertaining (89.1%) and the other three domains (between 76.5%

and 79.9%) is 9.2% or larger, and this difference seems to lead to the performance

difference in Table 4.11.

4.6.4 Further experiments

Language model Precision Recall F1

(Yamakata et al., 2020) 0.737 0.686 0.711

BERT 0.737 0.703 0.720
RoBERTa 0.754 0.719 0.736
Longformer 0.751 0.716 0.733
ALBERT 0.744 0.710 0.727
DeBERTa 0.756 0.721 0.738

Table 4.12: Edge prediction results on the English r-FG corpus when varying the
language model.

Edge prediction performance on the English-FG corpus. We compared the

performance of edge prediction with the previous work (Yamakata et al., 2020) in

CHAPTER 4. WIKIHOW FLOW GRAPH 68

the previous work. In order to match the experimental setting with the previous

work, we performed a 10-fold cross-validation by using 80% of the entire corpus for

the training data, 10% for the development data, and the remaining 10% for the

test data. In addition, we investigated the performance when using the pre-trained

BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019), DeBERTa (He et al., 2021),

Longformer (Beltagy et al., 2020), and ALBERT (Lan et al., 2020) as the language

encoder.

The results are shown in Table 4.12. This indicates that a neural network-based

architecture with a pre-trained language encoder always outperforms the linear model

used in the previous work. In addition, we can also see that using DeBERTa achieves

the best result.

Comparison of language models for edge prediction on the w-FG corpus.

We compared the edge prediction performance on the w-FG corpus when using dif-

ferent language models as the language encoder. The choice of the language encoder

is selected from BERT, RoBERTa, Longformer, ALBERT, and DeBERTa.

Table 4.13 shows the results of the DA model. The models using BERT and

ALBERT achieve the best F1 in Home and Garden and Cars & Other Vehicles. In

the other two domains, the model using DeBERTa works best.

4.7 Related work

In addition to the textual annotations for the r-FG (Mori et al., 2014; Yamakata et al.,

2020), recent work provided cross-modal annotations for the r-FG corpus (Nishimura

et al., 2020; Shirai et al., 2022). Nishimura et al. (2020) annotated cooking steps with

images with bounding boxes that indicate the location of textual expressions in the

steps, such as foods and actions. Shirai et al. (2022) annotated cooking actions in the

steps with image pairs representing pre-action and post-action states of objects. Since

the steps of wikiHow articles are paired with visual illustrations, the w-FG corpus

can be extended to have cross-modal annotations as in previous work.

CHAPTER 4. WIKIHOW FLOW GRAPH 69

Domain Language model F1

Food and Entertaining

BERT 0.729
RoBERTa 0.736
Longformer 0.735
ALBERT 0.725
DeBERTa 0.753

Hobbies and Crafts

BERT 0.637
RoBERTa 0.644
Longformer 0.631
ALBERT 0.603
DeBERTa 0.644

Home and Garden

BERT 0.672
RoBERTa 0.665
Longformer 0.662
ALBERT 0.627
DeBERTa 0.662

Cars & Other Vehicles

BERT 0.611
RoBERTa 0.610
Longformer 0.600
ALBERT 0.623
DeBERTa 0.609

Table 4.13: Edge prediction results on the wikiHow-FG corpus when varying the
language model.

Other than the r-FG and w-FG, there are several studies that represent proce-

dural texts as a graph structure. In the cooking domain, Kiddon et al. (2015) pro-

posed to acquire graph representations of cooking recipes using unsupervised learn-

ing. Some previous work provided human-annotated graph representations of cooking

recipes (Pan et al., 2020; Papadopoulos et al., 2022), similarly to the r-FG. In the

biochemistry domain, an approach to transform protocols into graph representations

was proposed for automating experiments (Kulkarni et al., 2018; Tamari et al., 2021).

In the material science domain, a corpus representing synthesis procedures as a di-

rected acyclic graph was proposed for analyzing synthesis processes in the scientific

literature (Mysore et al., 2019; Kuniyoshi et al., 2020). Since the procedures in the

biochemistry and material science domains are performed on physical objects, these

procedural texts are also possible to represent in the w-FG.

wikiHow has widely been used as a language resource, providing knowledge of

CHAPTER 4. WIKIHOW FLOW GRAPH 70

diverse procedures in previous work. Zhou et al. (2019) and Zhou et al. (2022)

used a knowledge base of procedures. Zellers et al. (2019b) created a dataset for

commonsense reasoning based on wikiHow articles. Zhang et al. (2020a) and Zhang

et al. (2020b) proposed a task of inferring goals from procedures on wikiHow articles.

Lin et al. (2022) and Zhou et al. (2023b) utilized procedural knowledge from wikiHow

for understanding procedures in working videos. This work followed this research

trend and created a dataset based on wikiHow articles.

4.8 Conclusion

This chapter has proposed a wikiHow flow graph (w-FG) based on the English recipe

flow graph to represent procedural texts in non-cooking domains as flow graphs. To

evaluate flow graph prediction performance in non-cooking domains, we have newly

created the w-FG corpus based on wikiHow articles. In experiments, we have assumed

a low-resource setting and performed domain adaptation from the existing cooking

corpus to the target domain data of the w-FG corpus. We have experimentally

shown that the domain adaptation approach effectively works to predict the nodes

and labeled edges of the flow graph in a low-resource setting.

Chapter 5

Conclusion

5.1 Summary

We have described our contributions towards realizing intelligent robots that interpret

and act on procedural texts.

In Chapter 2, we have proposed the Visual Recipe Flow (VRF) dataset, a new

multimodal cooking dataset for predicting post-action visual states of objects. The

data collection, annotation procedure, statistics, and the quality of the annotations by

inter-annotator agreements have been explained in order. The results of multimodal

retrieval experiments have shown that textual and visual annotations both play an

important role in predicting the post-action states of objects.

In Chapter 3, we have proposed a Vision-Language Interpreter (ViLaIn), a novel

framework that converts linguistic instructions and scene observations into problem

descriptions and drives a symbolic planner to find logically correct plans of symbolic

actions. We have created the Problem Description Generation (ProDG) dataset, a

new dataset for the evaluation of ViLaIn. We have experimentally shown that ViLaIn

can generate syntactically correct problem descriptions and find valid plans with high

accuracy.

In Chapter 4, we have extended a recipe flow graph representation and proposed

a wikiHow flow graph (w-FG) to handle procedural texts in non-cooking domains.

We have constructed the w-FG corpus from 120 wikiHow articles in 4 domains to

71

CHAPTER 5. CONCLUSION 72

investigate flow graph prediction performance in non-cooking domains. We have ex-

perimentally shown that domain adaptation from the r-FG corpus to the w-FG corpus

significantly improves performance both on node prediction and edge prediction in a

low-resource setting.

5.2 Future Work

Building models that predict post-action visual states of objects Based on

the VRF dataset proposed in this thesis, the next step in this direction would be to

build models that predict the post-action visual states of objects. To achieve our goal,

we need to develop a conditional generative model that predicts the post-action image

based on the pre-action image and step. Recent developments in image generation

models (Ho et al., 2020; Rombach et al., 2022; Zhang et al., 2023) have significantly

decreased the difficulty of realizing models that predict in pixel space. Similarly to

our interest, Brooks et al. (2023) developed a model that edits an image based on

an instruction, and Souček et al. (2023) proposed GenHowTo that generates a post-

action image based on the pre-action image and a text prompt. In order to apply

these models to our study, we need to provide information on the cooking workflow.

We believe that the annotations of the VRF dataset would be useful for this purpose.

Converting whole procedural texts into plans In this thesis, we have eval-

uated ViLaIn with single instructions. However, actual cooking recipes consist of

more instructions with complex dependencies of actions. We leave the investigation

of whether ViLaIn can capture those dependencies and find valid plans for future

work. In addition, cooking recipes provide quantitative information not considered

in this thesis, such as duration of actions and quantity of foods. We may tackle these

problems by using PDDLs that include such numerical information. Further, cook-

ing instructions written for humans are often ambiguous or lack some information

for execution, and these also make robot execution of cooking recipes challenging.

Handling such tacit knowledge by machines is a challenging but interesting theme.

Bibliography

Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, and Tetsuro Sasada. Flow graph

corpus from recipe texts. In Proceedings of the Ninth International Conference on

Language Resources and Evaluation, pages 2370–2377, 2014.

Yoko Yamakata, Shinsuke Mori, and John A Carroll. English recipe flow graph corpus.

In Proceedings of the 12th Language Resources and Evaluation Conference, pages

5187–5194, 2020.

Hirokuni Maeta, Tetsuro Sasada, and Shinsuke Mori. A framework for procedural

text understanding. In Proceedings of the 14th International Conference on Parsing

Technologies, pages 50–60, 2015.

Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke Zettlemoyer, and Yejin Choi. Mise

en place: Unsupervised interpretation of instructional recipes. In Proceedings of

the 2015 Conference on Empirical Methods in Natural Language Processing, pages

982–992, 2015.

Tomáš Souček, Jean-Baptiste Alayrac, Antoine Miech, Ivan Laptev, and Josef Sivic.

Look for the change: Learning object states and state-modifying actions from

untrimmed web videos. arXiv preprint arXiv:2203.11637, 2022.

Tomáš Souček, Dima Damen, Michael Wray, Ivan Laptev, and Josef Sivic. Genhowto:

Learning to generate actions and state transformations from instructional videos.

arXiv preprint arXiv:2312.07322, 2023.

Matt MacMahon, Brian Stankiewicz, and Benjamin Kuipers. Walk the talk: con-

necting language, knowledge, and action in route instructions. In Proceedings of

73

BIBLIOGRAPHY 74

the 21st National Conference on Artificial Intelligence - Volume 2, AAAI’06, page

1475–1482. AAAI Press, 2006.

Cynthia Matuszek, Dieter Fox, and Karl Koscher. Following directions using statisti-

cal machine translation. In Proceedings of the 2010 5th ACM/IEEE International

Conference on Human-Robot Interaction (HRI), pages 251–258, 2010.

Kevin Lin, Christopher Agia, Toki Migimatsu, Marco Pavone, and Jeannette Bohg.

Text2Motion: From natural language instructions to feasible plans. arXiv preprint

arXiv:2303.12153, 2023.

Reiko Hamada, Jun Okabe, Ichiro Ide, Shin’ichi Satoh, Shuichi Sakai, and Hidehiko

Tanaka. Cooking navi: Assistant for daily cooking in kitchen. In Proceedings

of the 13th Annual ACM International Conference on Multimedia, page 371–374.

Association for Computing Machinery, 2005.

Atsushi Hashimoto, Naoyuki Mori, Takuya Funatomi, Yoko Yamakata, Koh Kakusho,

and Michihiko Minoh. Smart kitchen: A user centric cooking support system. In

Proceedings of the 12th Information Processing and Management of Uncertainty in

Knowledge-Based Systems, volume 8, pages 848–854, 2008.

Mario Bollini, Stefanie Tellex, Tyler Thompson, Nicholas Roy, and Daniela Rus.

Interpreting and executing recipes with a cooking robot. In Experimental Robotics,

pages 481–495. Springer, 2013.

Naruki Yoshikawa, Marta Skreta, Kourosh Darvish, Sebastian Arellano-Rubach, Zhi

Ji, Lasse Bjørn Kristensen, Andrew Zou Li, Yuchi Zhao, Haoping Xu, Artur Ku-

ramshin, et al. Large language models for chemistry robotics. Autonomous Robots,

pages 1–30, 2023.

Yoshio Momouchi. Control structures for actions in procedural texts and PT-chart.

In Proceedings of the 8th International Conference on Computational Linguistics,

1980.

BIBLIOGRAPHY 75

Reiko Hamada, Ichiro Ide, Shuichi Sakai, and Hidehiko Tanaka. Structural analy-

sis of cooking preparation steps in japanese. In Proceedings of the Fifth Interna-

tional Workshop on on Information Retrieval with Asian Languages, IRAL ’00,

page 157–164. Association for Computing Machinery, 2000.

Dan Tasse and Noah A Smith. Sour cream: Toward semantic processing of recipes.

Tech. Rep. CMU-LTI-08-005, 2008.

Shinsuke Mori, Tetsuro Sasada, Yoko Yamakata, and Koichiro Yoshino. A machine

learning approach to recipe text processing. In Proceedings of the 1st Cooking with

Computer Workshop, pages 29–34, 2012.

Jermsak Jermsurawong and Nizar Habash. Predicting the structure of cooking recipes.

In Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing, pages 781–786. Association for Computational Linguistics, 2015.

Yoko Yamakata, John Carroll, and Shinsuke Mori. A comparison of cooking recipe

named entities between japanese and english. In Proceedings of the 9th Workshop

on Multimedia for Cooking and Eating Activities in Conjunction with The 2017

International Joint Conference on Artificial Intelligence, CEA2017, page 7–12. As-

sociation for Computing Machinery, 2017.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun.

Tracking the world state with recurrent entity networks. In Proceedings of the

2017 International Conference on Learning Representations, 2017.

Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin Choi, and Noah A. Smith. Dy-

namic entity representations in neural language models. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, pages 1830–

1839. Association for Computational Linguistics, 2017.

Ashutosh Modi, Ivan Titov, Vera Demberg, Asad Sayeed, and Manfred Pinkal. Mod-

eling semantic expectation: Using script knowledge for referent prediction. Trans-

actions of the Association for Computational Linguistics, 5:31–44, 2017.

BIBLIOGRAPHY 76

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin Ennis, Dieter Fox, and Yejin

Choi. Simulating action dynamics with neural process networks. In Proceedings of

the 6th International Conference on Learning Representations, 2018.

Taichi Nishimura, Atsushi Hashimoto, Yoshitaka Ushiku, Hirotaka Kameko, and Shin-

suke Mori. State-Aware Video Procedural Captioning, page 1766–1774. Association

for Computing Machinery, New York, NY, USA, 2021.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau Yih, and Peter Clark. Tracking

state changes in procedural text: a challenge dataset and models for process para-

graph comprehension. In Proceedings of the 2018 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies, Volume 1 (Long Papers), pages 1595–1604, 2018.

Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi, Dheeraj Rajagopal, Peter Clark,

Michal Guerquin, Kyle Richardson, and Eduard Hovy. A dataset for tracking

entities in open domain procedural text. In Proceedings of the 2020 Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 6408–6417,

2020.

Vittorio Ferrari and Andrew Zisserman. Learning visual attributes. In Proceedings of

the 2007 Advances in Neural Information Processing Systems, volume 20. Curran

Associates, Inc., 2007.

Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing objects by

their attributes. In Proceedings of the 2009 IEEE Conference on Computer Vision

and Pattern Recognition, pages 1778–1785, 2009.

Devi Parikh and Kristen Grauman. Relative attributes. In Proceedings of the 2011

International Conference on Computer Vision, pages 503–510, 2011.

Alireza Fathi and James M. Rehg. Modeling actions through state changes. In Pro-

ceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2013.

BIBLIOGRAPHY 77

Phillip Isola, Joseph J. Lim, and Edward H. Adelson. Discovering states and transfor-

mations in image collections. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015.

Jean-Baptiste Alayrac, Ivan Laptev, Josef Sivic, and Simon Lacoste-Julien. Joint

discovery of object states and manipulation actions. In Proceedings of the 2017

IEEE International Conference on Computer Vision (ICCV), 2017.

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino

Furnari, Rohit Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu,

et al. Ego4d: Around the world in 3,000 hours of egocentric video. In Proceedings

of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 18995–19012, June 2022.

Tomáš Souček, Jean-Baptiste Alayrac, Antoine Miech, Ivan Laptev, and Josef Sivic.

Look for the change: Learning object states and state-modifying actions from

untrimmed web videos. In Proceedings of the 2022 IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 13956–13966, June 2022.

Nirat Saini, Khoi Pham, and Abhinav Shrivastava. Disentangling visual embeddings

for attributes and objects. In Proceedings of the 2022 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 13658–13667, June 2022.

Nirat Saini, Hanyu Wang, Archana Swaminathan, Vinoj Jayasundara, Bo He, Ka-

mal Gupta, and Abhinav Shrivastava. Chop & learn: Recognizing and generating

object-state compositions. In Proceedings of the 2023 IEEE/CVF International

Conference on Computer Vision (ICCV), pages 20247–20258, October 2023.

Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit, and Cynthia Matuszek. Robots

that use language. Annual Review of Control, Robotics, and Autonomous Systems,

3:25–55, 2020.

S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and Regina Barzilay. Reinforcement

learning for mapping instructions to actions. In Proceedings of the Joint Conference

BIBLIOGRAPHY 78

of the 47th Annual Meeting of the ACL and the 4th International Joint Conference

on Natural Language Processing of the AFNLP, pages 82–90. Association for Com-

putational Linguistics, 2009.

David Chen and Raymond Mooney. Learning to interpret natural language naviga-

tion instructions from observations. Proceedings of the 2011 AAAI Conference on

Artificial Intelligence, 25(1):859–865, Aug. 2011.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan

Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Gener-

ating situated robot task plans using large language models. In Proceedings of the

2023 IEEE International Conference on Robotics and Automation (ICRA), pages

11523–11530, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,

Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario

Amodei. Language models are few-shot learners. In Proceedings of the 2020 Ad-

vances in Neural Information Processing Systems, volume 33, pages 1877–1901,

2020.

OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis Maldonado, Lorenz Mösenlechner,

Dejan Pangercic, Thomas Rühr, and Moritz Tenorth. Robotic roommates making

pancakes. In Proceedings of the 2011 11th IEEE-RAS International Conference on

Humanoid Robots, pages 529–536, 2011.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey

Levine. Visual reinforcement learning with imagined goals. In Proceedings of the

BIBLIOGRAPHY 79

2018 Advances in Neural Information Processing Systems, volume 31. Curran As-

sociates, Inc., 2018.

Ivan Kapelyukh, Vitalis Vosylius, and Edward Johns. Dall-e-bot: Introducing web-

scale diffusion models to robotics. IEEE Robotics and Automation Letters, 8(7):

3956–3963, 2023.

Taichi Nishimura, Suzushi Tomori, Hayato Hashimoto, Atsushi Hashimoto, Yoko Ya-

makata, Jun Harashima, Yoshitaka Ushiku, and Shinsuke Mori. Visual grounding

annotation of recipe flow graph. In Proceedings of the 12th Language Resources

and Evaluation Conference, pages 4275–4284, 2020.

Liang-Ming Pan, Jingjing Chen, Jianlong Wu, Shaoteng Liu, Chong-Wah Ngo, Min-

Yen Kan, Yugang Jiang, and Tat-Seng Chua. Multi-Modal Cooking Workflow Con-

struction for Food Recipes, page 1132–1141. Association for Computing Machinery,

2020.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language mod-

els as zero-shot planners: Extracting actionable knowledge for embodied agents. In

Proceedings of the 39th International Conference on Machine Learning, volume 162

of Proceedings of the 2022 International Conference on Machine Learning (ICML),

pages 9118–9147, 2022.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence

Research, 26:191–246, 2006.

Yixin Zhang, Yoko Yamakata, and Keishi Tajima. Mirecipe: A recipe dataset for

stage-aware recognition of changes in appearance of ingredients. In Proceedings of

the 3rd ACM International Conference on Multimedia in Asia, pages 1–7. Associ-

ation for Computing Machinery, 2021.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar

Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-

Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the

capabilities of language models. arXiv preprint arXiv:2206.04615, 2022.

BIBLIOGRAPHY 80

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr,

Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds,

et al. Flamingo: a visual language model for few-shot learning. arXiv preprint

arXiv:2204.14198, 2022.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori. Pointwise prediction for ro-

bust, adaptable japanese morphological analysis. In Proceedings of the 49th An-

nual Meeting of the Association for Computational Linguistics: Human Language

Technologies, pages 529–533, 2011.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan

Laptev, and Josef Sivic. Howto100m: Learning a text-video embedding by watching

hundred million narrated video clips. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2630–2640, 2019.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,

and Chris Dyer. Neural architectures for named entity recognition. In Proceedings

of the 2016 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, pages 260–270. Association

for Computational Linguistics, 2016.

Antoine Miech, Ivan Laptev, and Josef Sivic. Learning a text-video embedding from

incomplete and heterogeneous data. arXiv preprint arXiv:1804.02516, 2018.

Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learning

local feature descriptors with triplets and shallow convolutional neural networks. In

Proceedings of the British Machine Vision Conference, pages 119.1–119.11, Septem-

ber 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 770–778, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In Pro-

ceedings of the 7th International Conference on Learning Representations, 2019.

BIBLIOGRAPHY 81

Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D Manning, and An-

drew Y Ng. Grounded compositional semantics for finding and describing images

with sentences. Transactions of the Association for Computational Linguistics,

pages 207–218, 2014.

Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier Marin, Ferda Ofli, Ingmar

Weber, and Antonio Torralba. Learning cross-modal embeddings for cooking recipes

and food images. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2017.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin Choi. From recognition to

cognition: Visual commonsense reasoning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, June 2019a.

Semih Yagcioglu, Aykut Erdem, Erkut Erdem, and Nazli Ikizler-Cinbis. RecipeQA: A

challenge dataset for multimodal comprehension of cooking recipes. In Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing,

pages 1358–1368, 2018.

Malihe Alikhani, Sreyasi Nag Chowdhury, Gerard de Melo, and Matthew Stone.

CITE: A corpus of image-text discourse relations. In Proceedings of the 2019 Con-

ference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages

570–575, 2019.

Atsushi Ushiku, Hayato Hashimoto, Atsushi Hashimoto, and Shinsuke Mori. Pro-

cedural text generation from an execution video. In Proceedings of the Eighth

International Joint Conference on Natural Language Processing (Volume 1: Long

Papers), pages 326–335, 2017.

Taichi Nishimura, Atsushi Hashimoto, and Shinsuke Mori. Procedural text generation

from a photo sequence. In Proceedings of the 12th International Conference on

Natural Language Generation, pages 409–414, 2019.

BIBLIOGRAPHY 82

Jun Hatori, Yuta Kikuchi, Sosuke Kobayashi, Kuniyuki Takahashi, Yuta Tsuboi,

Yuya Unno, Wilson Ko, and Jethro Tan. Interactively picking real-world objects

with unconstrained spoken language instructions. In Proceedings of the 2018 IEEE

International Conference on Robotics and Automation (ICRA), pages 3774–3781,

2018.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete

Florence, and Andy Zeng. Code as policies: Language model programs for embod-

ied control. In Proceedings of the 2023 IEEE International Conference on Robotics

and Automation (ICRA), pages 9493–9500, 2023.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations us-

ing RNN encoder–decoder for statistical machine translation. In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),

pages 1724–1734. Association for Computational Linguistics, 2014.

Dilip Arumugam, Siddharth Karamcheti, Nakul Gopalan, Lawson Wong, and Stefanie

Tellex. Accurately and efficiently interpreting human-robot instructions of varying

granularities. In Proceedings of the 2017 Robotics: Science and Systems (RSS),

2017.

Chris Paxton, Yonatan Bisk, Jesse Thomason, Arunkumar Byravan, and Dieter Foxl.

Prospection: Interpretable plans from language by predicting the future. In Pro-

ceedings of the 2019 International Conference on Robotics and Automation (ICRA),

pages 6942–6948, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne

Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal

Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint

arXiv:2302.13971, 2023.

BIBLIOGRAPHY 83

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexan-

dre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al.

PaLM 2 technical report. arXiv preprint arXiv:2305.10403, 2023.

Shreyas Sundara Raman, Vanya Cohen, Eric Rosen, Ifrah Idrees, David Paulius, and

Stefanie Tellex. Planning with large language models via corrective re-prompting.

In NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022.

Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and

Lalana Kagal. Explaining explanations: An approach to evaluating interpretability

of machine learning. arXiv preprint arXiv:1806.00069, page 118, 2018.

Erez Karpas and Daniele Magazzeni. Automated planning for robotics. Annual

Review of Control, Robotics, and Autonomous Systems, 3(1):417–439, 2020.

Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, Christian Muise, Ronald Brach-

man, Francesca Rossi, and Peter Stone. An introduction to the planning domain

definition language, volume 13. Springer, 2019.

Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing temporal

planning domains. Journal of artificial intelligence research, 20:61–124, 2003.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chun-

yuan Li, Jianwei Yang, Hang Su, Jun Zhu, et al. Grounding DINO: Marrying

DINO with grounded pre-training for open-set object detection. arXiv preprint

arXiv:2303.05499, 2023a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping

language-image pre-training with frozen image encoders and large language models.

In Proceedings of the 2023 International Conference on Machine Learning (ICML),

volume 202 of Proceedings of Machine Learning Research, pages 19730–19742, 2023.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron

David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman,

BIBLIOGRAPHY 84

et al. Do as I can, not as I say: Grounding language in robotic affordances. arXiv

preprint arXiv:2204.01691, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen,

Krzysztof Choromanski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn,

et al. RT-2: Vision-language-action models transfer web knowledge to robotic

control. arXiv preprint arXiv:2307.15818, 2023.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and

Peter Stone. LLM+P: Empowering large language models with optimal planning

proficiency. arXiv preprint arXiv:2304.11477, 2023b.

Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill induction and plan-

ning with latent language. In Proceedings of the 2022 Annual Meeting of the As-

sociation for Computational Linguistics (ACL), pages 1713–1726. Association for

Computational Linguistics, 2022.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating

natural language to planning goals with large-language models. arXiv preprint

arXiv:2302.05128, 2023.

Blai Bonet and Héctor Geffner. Planning as heuristic search. Artificial Intelligence,

129(1):5–33, 2001.

Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. PDDLStream:

Integrating symbolic planners and blackbox samplers via optimistic adaptive plan-

ning. Proceedings of the 2020 International Conference on Automated Planning

and Scheduling (ICAPS), 30(1):440–448, 2020.

Seyed Reza Ahmadzadeh, Ali Paikan, Fulvio Mastrogiovanni, Lorenzo Natale, Petar

Kormushev, and Darwin G. Caldwell. Learning symbolic representations of ac-

tions from human demonstrations. In Proceedings of the 2015 IEEE International

Conference on Robotics and Automation (ICRA), pages 3801–3808, 2015.

BIBLIOGRAPHY 85

Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomás Lozano-Pérez.

Learning compositional models of robot skills for task and motion planning. The

International Journal of Robotics Research, 40(6-7):866–894, 2021.

Tom Silver, Rohan Chitnis, Joshua Tenenbaum, Leslie Pack Kaelbling, and Tomás

Lozano-Pérez. Learning symbolic operators for task and motion planning. In

Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pages 3182–3189, 2021.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards

real-time object detection with region proposal networks. In Proceedings of the

2015 Advances in Neural Information Processing Systems (NeurIPS), volume 28,

2015.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:

Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016.

Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-Fu Chang. Open-

vocabulary object detection using captions. In Proceedings of the 2021 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages 14393–

14402, 2021.

Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual relationship

detection with language priors. In Proceedings of the 2016 European Conference on

Computer Vision (ECCV), pages 852–869. Springer, 2016.

Sho Inayoshi, Keita Otani, Antonio Tejero-de Pablos, and Tatsuya Harada. Bounding-

box channels for visual relationship detection. In Proceedings of the 2020 European

Conference on Computer Vision (ECCV), pages 682–697. Springer, 2020.

Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. Scene graph generation

by iterative message passing. In Proceedings of the 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR)), pages 5410–5419, 2017.

BIBLIOGRAPHY 86

Jingkang Yang, Yi Zhe Ang, Zujin Guo, Kaiyang Zhou, Wayne Zhang, and Ziwei Liu.

Panoptic scene graph generation. In Proceedings of the 2022 European Conference

on Computer Vision (ECCV), pages 178–196. Springer, 2022.

Toki Migimatsu and Jeannette Bohg. Grounding predicates through actions. In Pro-

ceedings of the 2022 International Conference on Robotics and Automation (ICRA),

pages 3498–3504. IEEE, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,

Ed Chi, Quoc V Le, and Denny Zhou. Chain-of-thought prompting elicits rea-

soning in large language models. In Proceedings of the 2022 Advances in Neural

Information Processing Systems (NeurIPS), volume 35, pages 24824–24837. Curran

Associates, Inc., 2022.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke

Iwasawa. Large language models are zero-shot reasoners. In Proceedings of the

2022 Advances in Neural Information Processing Systems (NeurIPS), volume 35,

pages 22199–22213. Curran Associates, Inc., 2022.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,

Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most

prompting enables complex reasoning in large language models. In Proceedings of

the 2023 International Conference on Learning Representations (ICLR), 2023a.

Naresh Gupta and Dana S Nau. On the complexity of blocks-world planning. Artificial

intelligence, 56(2-3):223–254, 1992.

Ronald Alford, Ugur Kuter, and Dana S Nau. Translating HTNs to PDDL: A small

amount of domain knowledge can go a long way. In Proceedings of the 2009 In-

ternational Joint Conference on Artificial Intelligence (IJCAI), volume 9, pages

1629–1634, 2009.

Tom Silver and Rohan Chitnis. PDDLGym: Gym environments from PDDL prob-

lems. In Proceedings of the 2020 International Conference on Automated Planning

and Scheduling (ICAPS) PRL Workshop, 2020.

BIBLIOGRAPHY 87

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness

and factuality in abstractive summarization. In Proceedings of the 2020 Annual

Meeting of the Association for Computational Linguistics (ACL), pages 1906–1919.

Association for Computational Linguistics, 2020.

Li Zhang, Qing Lyu, and Chris Callison-Burch. Reasoning about goals, steps, and

temporal ordering with WikiHow. In Proceedings of the 2020 Conference on Em-

pirical Methods in Natural Language Processing, pages 4630–4639. Association for

Computational Linguistics, 2020a.

Yoeng-Jin Chu and Tseng-Hong Liu. On the shortest arborescence of a directed

graph. Science Sinica, 14:1396–1400, 1965.

Jack Edmonds. Optimum branchings. Journal of Research of the National Bureau of

Standards: Mathematics and mathematical physics. B, 71:233–240, 1967.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-projective

dependency parsing using spanning tree algorithms. In Proceedings of Human Lan-

guage Technology Conference and Conference on Empirical Methods in Natural

Language Processing, pages 523–530. Association for Computational Linguistics,

2005.

Haoran Xu, Seth Ebner, Mahsa Yarmohammadi, Aaron Steven White, Benjamin

Van Durme, and Kenton Murray. Gradual fine-tuning for low-resource domain

adaptation. In Proceedings of the Second Workshop on Domain Adaptation for

NLP, pages 214–221. Association for Computational Linguistics, 2021.

Marzieh Fadaee, Arianna Bisazza, and Christof Monz. Data augmentation for low-

resource neural machine translation. In Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics (Volume 2: Short Papers), pages

567–573. Association for Computational Linguistics, 2017.

Bosheng Ding, Linlin Liu, Lidong Bing, Canasai Kruengkrai, Thien Hai Nguyen,

BIBLIOGRAPHY 88

Shafiq Joty, Luo Si, and Chunyan Miao. DAGA: Data augmentation with a gen-

eration approach for low-resource tagging tasks. In Proceedings of the 2020 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP), pages

6045–6057. Association for Computational Linguistics, 2020.

Xiang Dai and Heike Adel. An analysis of simple data augmentation for named

entity recognition. In Proceedings of the 28th International Conference on Compu-

tational Linguistics, pages 3861–3867. International Committee on Computational

Linguistics, 2020.

Yilun Zhou, Julie Shah, and Steven Schockaert. Learning household task knowledge

from WikiHow descriptions. In Proceedings of the 5th Workshop on Semantic Deep

Learning (SemDeep-5), pages 50–56. Association for Computational Linguistics,

2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag:

Can a machine really finish your sentence? In Proceedings of the 57th Annual Meet-

ing of the Association for Computational Linguistics, pages 4791–4800. Association

for Computational Linguistics, 2019b.

Shuyan Zhou, Li Zhang, Yue Yang, Qing Lyu, Pengcheng Yin, Chris Callison-Burch,

and Graham Neubig. Show me more details: Discovering hierarchies of procedures

from semi-structured web data. In Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 2998–

3012. Association for Computational Linguistics, 2022.

Xudong Lin, Fabio Petroni, Gedas Bertasius, Marcus Rohrbach, Shih-Fu Chang,

and Lorenzo Torresani. Learning to recognize procedural activities with distant

supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 13853–13863, June 2022.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and Christopher D. Manning.

Stanza: A python natural language processing toolkit for many human languages.

In Proceedings of the 58th Annual Meeting of the Association for Computational

BIBLIOGRAPHY 89

Linguistics: System Demonstrations, pages 101–108. Association for Computa-

tional Linguistics, 2020.

Keisuke Shirai, Atsushi Hashimoto, Taichi Nishimura, Hirotaka Kameko, Shuhei Ku-

rita, Yoshitaka Ushiku, and Shinsuke Mori. Visual recipe flow: A dataset for

learning visual state changes of objects with recipe flows. In Proceedings of the

29th International Conference on Computational Linguistics, pages 3570–3577. In-

ternational Committee on Computational Linguistics, 2022.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: decoding-

enhanced bert with disentangled attention. In 9th International Conference on

Learning Representations, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In Proceed-

ings of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies (Volume 1: Long and

Short Papers), pages 4171–4186. Association for Computational Linguistics, 2019.

Timothy Dozat and Christopher D. Manning. Simpler but more accurate semantic de-

pendency parsing. In Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), pages 484–490. Association

for Computational Linguistics, 2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly

optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document

transformer. arXiv preprint arXiv:2004.05150, 2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,

and Radu Soricut. Albert: A lite bert for self-supervised learning of language

representations. In Proceedings of the 8th International Conference on Learning

Representations, 2020.

BIBLIOGRAPHY 90

Dim P Papadopoulos, Enrique Mora, Nadiia Chepurko, Kuan Wei Huang, Ferda

Ofli, and Antonio Torralba. Learning program representations for food images and

cooking recipes. arXiv preprint arXiv:2203.16071, 2022.

Chaitanya Kulkarni, Wei Xu, Alan Ritter, and Raghu Machiraju. An annotated cor-

pus for machine reading of instructions in wet lab protocols. In Proceedings of the

2018 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages

97–106. Association for Computational Linguistics, 2018.

Ronen Tamari, Fan Bai, Alan Ritter, and Gabriel Stanovsky. Process-level represen-

tation of scientific protocols with interactive annotation. In Proceedings of the 16th

Conference of the European Chapter of the Association for Computational Linguis-

tics: Main Volume, pages 2190–2202. Association for Computational Linguistics,

2021.

Sheshera Mysore, Zachary Jensen, Edward Kim, Kevin Huang, Haw-Shiuan Chang,

Emma Strubell, Jeffrey Flanigan, Andrew McCallum, and Elsa Olivetti. The ma-

terials science procedural text corpus: Annotating materials synthesis procedures

with shallow semantic structures. In Proceedings of the 13th Linguistic Annotation

Workshop, pages 56–64. Association for Computational Linguistics, 2019.

Fusataka Kuniyoshi, Kohei Makino, Jun Ozawa, and Makoto Miwa. Annotating and

extracting synthesis process of all-solid-state batteries from scientific literature. In

Proceedings of the Twelfth Language Resources and Evaluation Conference, pages

1941–1950. European Language Resources Association, 2020.

Li Zhang, Qing Lyu, and Chris Callison-Burch. Intent detection with WikiHow. In

Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for

Computational Linguistics and the 10th International Joint Conference on Natural

Language Processing, pages 328–333. Association for Computational Linguistics,

2020b.

Honglu Zhou, Roberto Mart́ın-Mart́ın, Mubbasir Kapadia, Silvio Savarese, and

BIBLIOGRAPHY 91

Juan Carlos Niebles. Procedure-aware pretraining for instructional video under-

standing. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 10727–10738, June 2023b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.

In Proceedings of the 2020 Advances in Neural Information Processing Systems,

volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Om-

mer. High-resolution image synthesis with latent diffusion models. In Proceedings

of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 10684–10695, June 2022.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-

to-image diffusion models. In Proceedings of the 2023 IEEE/CVF International

Conference on Computer Vision (ICCV), pages 3836–3847, October 2023.

Tim Brooks, Aleksander Holynski, and Alexei A. Efros. Instructpix2pix: Learning to

follow image editing instructions. In Proceedings of the 2023 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 18392–18402, June

2023.

Authored Works

Chapter 2

1. Keisuke Shirai, Atsushi Hashimoto, Taichi Nishimura, Hirotaka Kameko, Shuhei

Kurita, Yoshitaka Ushiku, and Shinsuke Mori (2022). “Visual Recipe Flow: A

Dataset for Learning Visual State Changes of Objects with Recipe Flows.” In

Proceedings of the 29th International Conference on Computational Linguistics

(COLING), pp. 3570–3577.

2. Keisuke Shirai, Atushi Hashimoto, Taichi Nishimura, Hirotaka Kameko, Shuhei

Kurita, and Shinsuke Mori (2023). “Constructing and Evaluating the Visual

Recipe Flow Dataset for Predicting Visual Observations After Cooking Ac-

tions.” In Journal of Natural Language Processing, 2023, Volume 30, Issue 3,

pp. 1042-1060.

Chapter 3

1. Keisuke Shirai, Cristian C. Beltran-Hernandez, Masashi Hamaya, Atsushi Hashimoto,

Shohei Tanaka, Kento Kawaharazuka, Kazutoshi Tanaka, Yoshitaka Ushiku,

and Shinsuke Mori (2024). “Vision-Language Interpreter for Robot Task Plan-

ning.” To appear at the 2024 IEEE International Conference on Robotics and

Automation (ICRA).

92

BIBLIOGRAPHY 93

Chapter 4

1. Keisuke Shirai, Hirotaka Kameko, and Shinsuke Mori (2023). “Towards Flow

Graph Prediction of Open-Domain Procedural Texts.” In Proceedings of the 8th

Workshop on Representation Learning for NLP (RepL4NLP 2023), pp. 87–96.

2. Keisuke Shirai, Hirotaka Kameko, and Shinsuke Mori (2024). “Flow Graph

Prediction of Open-Domain Procedural Texts.” Under review at Journal of

Natural Language Processing.

Others

1. Keisuke Shirai, Kazuma Hashimoto, Akiko Eriguchi, Takashi Ninomiya, and

Shinsuke Mori (2020). “Neural Text Generation with Artificial Negative Exam-

ples.” In arXiv preprint, arXiv:2012.14124.

2. Keisuke Shirai, Kazuma Hashimoto, Akiko Eriguchi, Takashi Ninomiya, and

Shinsuke Mori (2021). “Neural Text Generation with Artificial Negative Ex-

amples to Address Repeating and Dropping Errors.” In Journal of Natural

Language Processing, 2021, Volume 28, Issue 3, pp. 751-777.

3. Keisuke Shirai, Masato Matsuzaki, Shinsuke Mori, and Makoto Goto (2022).

“Knowledge Extraction from a Biographical Dictionary.” In IPSJ Journal,

2022, Volume 63, No. 2, pp. 293-301.

4. Kento Tanaka, Taichi Nishimura, Hiroaki Nanjo, Keisuke Shirai, Hirotaka Kameko,

and Masatake Dantsuji (2022). “Image Description Dataset for Language Learn-

ers.” In Proceedings of the Thirteenth Language Resources and Evaluation Con-

ference (LREC), pp. 6814–6821.

	Abstract
	Acknowledgments
	Introduction
	Background
	Workflow interpretation of procedural texts
	Tracking and recognizing the state changes of objects
	Converting linguistic instructions into actionable representations

	Problems of Interest
	Prediction of post-action visual states of objects in cooking recipes
	Converting steps to plans interpretable by robots
	Workflow interpretation of procedural texts beyond the cooking domain

	Contributions
	Constructing the Visual Recipe Flow dataset
	Proposing Vision-Language Interpreter
	Proposing a generalized flow graph representation

	Thesis Outline

	Visual Recipe Flow: A Dataset for Learning Visual State Changes of Objects with Recipe Flows
	Introduction
	Visual Recipe Flow Dataset
	Recipe flow graph (r-FG)
	Visual annotation

	Annotation standards
	r-NE annotation
	r-FG annotation
	Visual annotation

	Annotation results
	Annotation procedure
	Statistics
	Annotation quality
	Experiments

	Application
	Multimodal commonsense reasoning
	Procedural text generation

	Conclusion

	Vision-Language Interpreter for Robot Task Planning
	Introduction
	Related work
	Planning from natural language
	Symbolic planning with PDDL
	Scene recognition for planning problem specification

	Problem statement
	Vision-Language Interpreter
	Object Estimator
	Initial State Estimator
	Goal Estimator
	Corrective re-prompting

	Dataset
	Evaluation metrics

	Experiments
	Generation settings of ViLaIn
	Evaluation of generation results by ViLaIn
	Generating the whole problem at once
	Generating PDs without CR and CoT

	Conclusion

	Flow Graph Prediction of Open-Domain Procedural Texts
	Introduction
	Recipe flow graph
	Flow graph representation
	Flow graph prediction

	wikiHow flow graph representation
	Flow graph prediction
	Task definition
	Data augmentation

	w-FG corpus
	Data collection
	Annotation procedure
	Statistics
	Inter-annotator agreement

	Node prediction
	Experimental settings
	Experimental results
	Tag-level prediction performance

	Edge prediction
	Experimental settings
	Experimental results
	Pipeline experiments
	Further experiments

	Related work
	Conclusion

	Conclusion
	Summary
	Future Work

	Bibliography
	Authored Works

