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A Study on

Private and Secure Federated Learning∗

Fumiyuki Kato

Abstract

Federated Learning (FL) has emerged as a promising new machine learning

paradigm for collaborative learning with privacy considerations among different

parties such as different institutions, devices, etc. The basic scheme includes a

single central server that orchestrates the whole training process and many clients

who have their personal or private data as training data. We cooperatively train

a single global model according to distributed optimization algorithms without

directly sharing the training data. In FL, only gradient information used in the

optimization process is shared in place of raw training data itself, thereby freeing

the party training the model from the cost of managing private data. With

the growing concerns about privacy regulations for large-scale data analysis, as

exemplified by GDPR, FL has attracted significant attention from both academia

and industry.

However, FL has various privacy risks due to its distributed architecture, even

though it is supposed to be a privacy-aware machine learning scheme. Specifically,

there is no strict privacy guarantee for the trained model itself even if we use FL,

and the trained model once released can leak sensitive information about the

training data. Additionally, private information can be leaked from the gradient

information exchanged between the distributed parties in the training phase.

Furthermore, in addition to the privacy leaks, there are security risks. Due to

the distributed nature of the scheme, the clients may not trust the server and

the clients also could be untrusted. They may deviate from established protocols

and improperly control the behavior of the model. In other words, FL is an

inadequate scheme in terms of privacy and security.
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Therefore, in this thesis, towards realizing the private and secure FL, we aim to

comprehensively overcome these imperfections by examining advanced privacy-

preservation techniques, with a particular focus on Differential Privacy (DP) and

Trusted Execution Environment (TEE). The goal of this thesis is to answer the

following main research question: To enhance privacy and security in Federated

Learning, how can advanced privacy-preservation techniques such as Differential

Privacy and Trusted Execution Environment be effectively integrated into Feder-

ated Learning? To answer this question, we pick out the key privacy/security

properties in FL from existing studies and from use cases and clarify what needs

to be done. Then, we design the following three novel FL/FA frameworks Uldp-

FL (Chapter 3), Olive (Chapter 4) and Vldp (Chapter 5), utilizing DP and/or

TEE, or alternative MPC techniques, to overcome the weakness of security and

privacy aspects of FL.

In Chapter 3, we examine rigorous privacy protection for models trained in FL

with DP. In particular, we target the general setting of cross-silo FL, where each

participating client corresponds to an institution of a certain size, with user-level

DP guarantees. User-level DP is a practical definition of DP, which guarantees

indistinguishability for all records held by the user instead of a single record in

the original DP. Under this setting, we show that existing algorithms can only

achieve impractical privacy guarantees and propose algorithms that offer better

privacy-utility tradeoffs. Our proposed method directly guarantees user-level DP

by applying per-user weighted clipping to the existing de facto DP-FedAVG.

Furthermore, we propose a utility-boosting weighting method and develop an

MPC protocol to achieve it under a more stringent trust model.

In Chapter 4, we focus on the server-side TEE in FL, which enables the guar-

anteeing of the privacy of the shared gradients to the central untrusted server and

to provide better utility of differentially private FL. While TEE provides another

level of security for FL, TEE itself is known to have a fundamental vulnerability:

memory access leaks. Through analysis of memory access patterns for FL ag-

gregation operations, we discover the possibility of privacy risks when sparsified

gradients are used. Using the observable memory access pattern information, we

design a novel attack that reveals private data and show the effectiveness through

experiments using real-world data. To defend against this attack, we design an

oblivious algorithm such that the memory access patterns resulting from FL ag-

gregation operations are independent of the input data. Finally, we evaluate the

ii



proposed oblivious algorithm on a real data scale and show its efficiency.

In Chapter 5, we address the defense against malicious clients who deviate from

the supposed protocol to control the behavior of the output of federated analytics

tasks. In particular, to begin the initial research on this type of attack, we focus

on a simple Federated Analytics task, i.e., a frequency estimation under local

differential privacy (LDP). Because LDP requires perturbation of data on the

client side, the central server does not have complete control over this protocol,

allowing a malicious client to control the final estimates on server side. We

show that the attack can be partially prevented by developing a verifiable LDP

protocol that targets simple LDP protocols. We believe this type of client-side

verifiability that we propose in this method can be extended to prevent attacks

in more complicated federated tasks including FL in the future.

Finally, in Chapter 6, we discuss the profound social impact of our comprehen-

sive studies produced in this thesis. Furthermore, we argue the specific benefits

on the some fields where the real-world FL applications have been studied. We

believe the research presented in this thesis will make a significant contribu-

tion to operationalizing privacy-preserving FL as a production-level application.

As an overall conclusion, we present state-of-the-art methodologies that com-

bine advanced privacy-preserving technologies to address the privacy and security

challenges in FL, by resolving fundamental issues such as lack of strict privacy

guarantees, protection against vulnerabilities, and the hardness of establishing a

reliable defense mechanism.

Additionally, in Appendices A and B, we present our independent studies on

DP and TEE, respectively. We consider these two techniques to be important

because they are the core of this thesis from a technical perspective.

Keywords: Privacy-preserving Machine Learining, Federated Learning,

Federated Analytics, Differential Privacy, Trusted Execution Environment
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CHAPTER 1

Introduction

1.1 Background

In the Big Data era, personal data has been of great value in this decade, leading

to its description as ”Personal data is the new oil of the internet and the new

currency of the digital world.” [1]. The use of personal data has been very suc-

cessful from commercial e-commerce services to medical services, and a variety of

data analysis tasks have attracted attention, ranging from simple statistical data

collection to the recent overwhelming success of machine learning (ML). On the

other hand, there have been growing concerns about the privacy of personal data.

In particular, the European General Data Protection Regulation (GDPR) [2] has

been enforced in the European Union since 2018, and the California Consumer

Privacy Act (CCPA) [3] has been enforced in California since 2020. GDPR has

already imposed huge fines on some companies (e.g., Amazon [4] and Google [5])

and has had a very large impact on practitioners. Moreover, the damage from

data breaches to responsible institutions is increasing year by year [6], which

means the cost for institutions to manage personal data continues to increase.

These facts and trends underscore the importance of Federated Learning (FL).

FL is an innovative paradigm of privacy-preserving ML that was first introduced

by [7]. FL is one of the collaborative machine learning schemes with a single

central server, that orchestrates the whole training process, and many clients,
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Figure 1.1: Overview of Federated Learning (FL) architecture. A central server

(top) that orchestrates the whole training process and many clients (bottom) who

have their personal or private data as training data collaboratively train a single

global model with local model update for each client. The red balloons indicate

the privacy and security risks in FL.

who have their personal or private data as training data, and trains a global

model with specific distributed optimization algorithms [8]. Typically, in FL,

the server does not need to collect raw data from clients (we use participants

and users interchangeably in this thesis)—it only collects gradients (or model

parameters delta) trained on the local data of clients during each round of model

training. The server then aggregates the collected gradients from the clients and

optimizes the global model with the aggregated updates for each round. Figure

1.1 shows the overview of the typical FL architecture. Thus, FL is expected

to enable data analyzers to avoid the expenses and privacy risks of collecting

and managing training data containing personal and sensitive information. In

addition, by not sharing raw data, it could be possible to analyze data beyond

legal and regulatory barriers at the company level [9], hospital level [10], and even

at the national level [11, 12]. Therefore, FL has recently attracted a great deal

of attention not only from academia but also from industry [13, 14, 15, 16, 17].

Stimulated by the emergence of FL, the term Federated Analytics (FA) [18, 19]
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has also appeared recently. This refers to a more general and simple data analysis

such as collecting telemetry in a federated manner. The term essentially refers

to centralized data analysis techniques performed in a distributed setting and

without sharing raw data owned by edge clients as well as FL.

Overall, due to its characteristics, FL is one of the promising privacy-enhancing

technologies for today’s society with high demands for privacy protection.

1.1.1 Privacy and Security problems in FL

FL was originally designed to have higher privacy considerations at the cost of

a little degradation of utility due to distributed optimizations. However, many

studies have highlighted that the privacy protection of FL is not fully sufficient.

On the contrary, being a distributed system, FL has unique security risks com-

pared to traditional centralized ML. Overall, the privacy risk is caused by a semi-

honest attacker (including server, clients, and 3rd party) who tries to obtain extra

private information while following the established protocols. The security risk,

which is described next, is caused by a malicious attacker who deviates from the

established protocols. In Figure 1.1, the red balloons indicate these privacy and

security risks.

Privacy. There are three main privacy risks: privacy can be leaked from (1)

gradient information shared to the untrusted server, (2) in-training models shared

to the untrusted clients, and (3) trained models released to the untrusted third

party.

(1) Gradient information, which is shared from the client to the server for op-

timization in each training round, is known to be sufficient to leak private infor-

mation of the client’s training data [20, 21, 22, 23, 24]. The gradient information

is computed directly from the training data, and it is intuitively understood that

it has a strong correlation with the training data. Zhu et al. [20] propose an

algorithm called DLG (deep leakage from gradients) to reconstruct the original

training data effectively from the shared gradient information, which is the type

of attacks called reconstruction attacks (a.k.a., model inversion attacks). Addi-

tionally, many works such as [23, 24] propose inference attacks to reveal sensitive

attributes of the target client training data from the gradient information. These

results clearly highlight that sharing gradient information performed in FL in-

stead of sharing raw data is in itself far from protecting privacy. This privacy
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risk becomes apparent when there are untrusted servers that have access to the

raw gradient information.

(2)(3) Regardless of the FL or centralized ML, the trained models memorize

training data in their parameters, especially in neural networks [25]. This directly

means that a privacy attack is possible if the trained model is accessible by

untrusted parties, by membership inference attacks [26, 27] and model inversion

attacks [28, 29]. Membership inference attacks infer samples based on the output

of the ML model and attempt to identify whether they are included in the original

training data set. For example, by identifying the fact that a clinical record used

to train a model is associated with a particular disease, an attacker can infer

that the owner of the clinical record has a high probability of suffering from that

disease. Model inversion attacks attempt to reconstruct the original training data

from the trained model [28]. This privacy risk can also be seen in conventional

centralized ML, however, FL is more vulnerable against the risk because many

distributed entities can have white-box access to the model in the training phase

[27]. Moreover, in a typical application, the trained model will be deployed on

the end user’s edge device [30, 31], which increases the privacy risk to untrusted

3rd parties. The goal of collaborative learning among multiple organizations can

be to share and use the trained model across the organizations [12].

Security. Security risk is not just a violation of the privacy of training data,

but rather a subversion of the FL training process that seriously impairs the

utility of the trained model or maliciously controls the behavior of the model.

The distributed architecture of FL requires multi-party coordination, which is

different from the traditional centralized ML scenario, and hence may create

FL-specific security risks. The security risks would not be ignored in most cases

because untrusted parties can always be present in FL scenarios due to the privacy

protection motive. Security risk occurs primarily during model training, by (4)

malicious server and (5) malicious clients participating in the training.

(4) In most cases, attacks by the server are limited to the aforementioned pri-

vacy risks. This is because the server (here, we do not consider external attacker

in outsourced cloud environments and so on) has an incentive to train an accurate

and well-behaved model, and will not deviate from the correct protocol. Never-

theless, malicious servers can cause tremendous damage, for example, a malicious

server may be able to effortlessly replace a final trained model with another mali-

ciously tuned model. It is not easy for FL participants to always trust the server,

4



1. Introduction

especially when the orchestrator of the FL is another competing company with

conflicting interests. Additionally, it has been reported that the server can inten-

tionally control weights and client sampling to achieve more accurate inference

attacks against participating clients [32].

(5) Therefore, malicious clients may be more important. They can implant a

backdoor into models in FL. The purpose of the backdoor attack is to corrupt

the performance of the trained model in certain subtasks (e.g., classifying green

cars as frogs). This type of attack is completed through data poisoning [33, 34]

or model poisoning [35]. Wang et al. [34] shows poisoning attacks can bypass

the defense mechanism such as a truth discovery-based method (e.g., Krum [36])

and effectively succeed in the backdoor attack in FL. Model poisoning has been

shown to possibly be more effective than data poisoning [37]. This is also true

in FA such as a private frequency estimation task [38, 39, 40]. An attacker can

effectively control the output of server-side estimations by bringing some of the

clients under his control. This is also known as Byzantine Attacks where an

attacker injects some fake clients among the participants and also executable in

FL [41].

1.2 Differential Privacy

Differential Privacy (DP) [42] is a rigorous mathematical privacy definition that

quantitatively evaluates the degree of privacy protection when publishing statisti-

cal outputs such as ML models. The basic principle is to provide indistinguishabil-

ity to the input database by appropriately randomizing the output (e.g., adding

Laplace noise to the histogram, etc.). DP has become the de facto standard

for statistical privacy protection methods because it provides worst-case privacy

guarantees against arbitrary attacks, which differs from classical anonymization-

based methods, including k-anonymity. Over the past few years, DP has also

attracted industry attention [43, 44, 45, 46] and has been used at the US Census

[47].

An important recent application of DP is ML. DP-SGD, proposed by Abadi et

al. [48], allows general trained models to be differentially private by interspersing

gradient randomization into the optimization step. This results in ML models

with interpretable and quantifiable privacy guarantees. The differentially private

ML technique is important in scenarios where the trained models, including only
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access to the model inference, are released to untrusted parties different from

the owner of the training data. The technique has been progressively successful

with a tight analysis of privacy loss bounds [49, 50, 51] and has also been tested

empirically against practical privacy attacks [52, 53].

DP is often combined with FL, which is called differentially private FL (DP-

FL) [54, 55, 56, 57]. Researchers have explored several DP-FL variants, such as

using central DP (CDP-FL) [58], local DP (LDP-FL) [56], and Shuffle DP (Shuffle

DP-FL) [57], to strike a good balance between privacy and utility. Note that they

have different trust models. In CDP, which is the original DP definition, data

owners trust the server, and the server acts as a data curator to collect the raw

data. On the other hand, in LDP, data owners do not need to trust the server

since the data must be randomized on the client side before being collected. This

is more advantageous than CDP in terms of the trust model; however, it requires

even stronger perturbation and sacrifices utility significantly. To overcome the

weakness of the utility of LDP by privacy amplification, a method using the

shuffler model has been proposed recently [59, 60, 61], which is called Shuffle DP.

And it has been applied to FL [57].

1.3 Trusted Execution Environment

Trusted Execution Environment (TEE), as defined formally in [62]a, creates an

isolated execution environment within untrusted computers (e.g., cloud VMs),

which enables securing computation that can ensure data confidentiality and/or

integrity throughout the whole computation against potential attackers. The gen-

eral TEE security model provides security against privileged software, including

operating systems and hypervisors, by using special hardware as a root-of-trust.

In addition to guarantees of confidentiality and integrity, the important features

of TEE are the ability to perform arbitrary computation and native-like per-

formance. These are because TEE decrypts encrypted data and executes CPU

instructions on plain text within the trusted CPU packages. Because of these ap-

pealing characteristics, TEE has attracted attention as a next-generation security

technology.

TEE can be seen as an alternative to other software-based Multi Party Compu-

aThere can be a similar but another popular definition, e.g., by the Global Platform [63],

which focuses more on the system aspects.
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tation (MPC) techniques. For example, cryptographic techniques such as Homo-

morphic Encryption (HE) [64], Oblivious Transfer (OT) [65], or Secure Aggrega-

tion (SA) [66] may achieve equivalent functionality without the special hardware

assumption of TEE. For example, the recent paper [67] categorized TEE as one

of the methods of SA, and [68] consider server-side verifiability with binding com-

mitments. However, they are vastly inferior in terms of efficiency due to the heavy

computation costs. In other words, it can be interpreted that there is a trade-off

between hardware requirements and efficiency to achieve security. The general

acceptance of having special hardware is a subtle issue. Currently, one answer

could be the use of TEE on the server side is acceptable [69], but on the client

side (e.g., mobile devices) would be a somewhat stronger assumption, especially

for powerful TEE such as Intel SGX [70]. Therefore, it may be necessary to

consider the implementation of conventional MPC techniques instead of simply

using TEE, particularly on the client side.

Enhancing FL using TEE is a promising approach to achieve private and secure

FL, which has garnered significant academic attention in recent years [71, 72,

73, 74, 75]. TEE provides confidentiality, integrity, and functionalities such as

Remote Attestation for verifiability, fully justifying its use on the untrusted server

side in FL [72, 76, 74]. After the first verification of the remote TEE, the shared

gradients can be transmitted to the TEE via a secure channel and computed

securely in a confidential, verifiable, and arbitrary manner, thereby eliminating

some of the aforementioned attack surfaces on the server side.

1.4 Integration into FL

DP and TEE are very important techniques in the next-generation privacy-

preserving data analysis from the statistical and cryptographic approaches, re-

spectively. The belief is that these technologies can be the key to solving the

privacy and security problems in FL as described in Section 1.1.1. Therefore, the

goal of this thesis is to answer the following research question: To enhance privacy

and security in FL, how can the advanced privacy-preservation techniques such

as DP and TEE be effectively integrated into FL? To this end, a set of appropri-

ately abstracted key privacy/security properties covering all the risks mentioned

earlier, i.e., (1)-(5) in Figure 1.1, is established.

The following five important privacy/security properties A-E in FL correspond
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to the above-mentioned risks (1)-(5), respectively:

A. Privacy against Central Server: the privacy risk for semi-honest central

server who can access the intermediate information.

B. Privacy against Clients: the privacy risk for semi-honest clients who

have access to the in-training model in training rounds.

C. Privacy against 3rd Party: the privacy risk for semi-honest external

users who have access to the final trained model.

D. Security against Central Server: the security risk for malicious server

who can control the training process and manipulate the intermediate model.

(Note that, in many cases, the server is the same as the FL administrator

and therefore has no motivation to deviate from the established FL protocol,

and this may not be as serious in practice.)

E. Security against Client: the security risk for malicious client who can

access and control the in-training model locally in the training rounds.

The need for each of these privacy/security properties depends entirely on

the trust model assumed by the target use cases. While B is specific to FL, the

remaining properties are found in existing common data analysis among untrusted

parties. To facilitate understanding, several real-world scenarios are illustrated

with examples as shown in Table 1.1.

(a) The first scenario is census, where governments must meet both the obliga-

tion to release statistical information to the public and the obligation to protect

the privacy of people providing the personal data. While the statistical infor-

mation will be publicly available and thus needs to be properly privatized (i.e.,

C), a large number of malicious clients who provide faked information may in-

tentionally manipulate the estimated statistics (i.e., E) because, for example,

government budget allocations or other critical decisions are made based on the

census results.

(b) The second scenario is internal data analytics of an E-commerce site, where

the EC site operator wants to analyze the individual history data to design the

marketing strategy or improve the service. Analytical results will not be released

to the public but could be seen by the service provider. Therefore, conservative

clients may not allow their individual-level behavior, such as purchase history, to

be known to the service provider (i.e., A). (c) The item recommendation results

often displayed on EC sites are public information. If the predictive model is
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Table 1.1: Privacy and security properties that can be required by the different

example use cases. (✓: Required)
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(a) Census - - ✓ - ✓

(b) EC site (Internal data analytics) ✓ - - - -

(c) EC site (Recommendation page) ✓ - ✓ ✓ ✓

(d) MLaaS (Inference API) ✓ - - ✓ -

(e) Sticker recommendation with FL ✓ ✓ ✓ ✓ ✓

trained from the user’s personal data, in the worst case, the information based

on the inference results may lead to a violation of training data privacy (i.e., C).

Also, users may not want the server to know their personal data used for training

the predictor (i.e., A). Servers may intentionally post false ranking results while

claiming fairness and to be based on correct collected data (i.e., D). For some

interests, external attackers may intentionally generate false behavioral history

data to control the results of the result (i.e., E), for example, a company wants

to make sure that many of its items are recommended.

(d) Considering ML as a Service (MLaaS), which hosts trained models and

opens the inference interface, a user with private input data would send the input

to the server and get only inference results. (Also, there could be fine-tuning.) At

this point, the user may want to hide the sensitive input data from the untrusted

service provider (i.e., A), and the service provider may deliberately not compute

the inference correctly (i.e., D), e.g., for saving resources.

(e) Based on the above, lastly, let’s look at some examples of FL already in
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industrial operation. There is already an example of FL in actual use for stamp

recommendation in a messaging application [15]. This is a typical example of a

scenario in which end-users of the application participate in FL as clients, and

FL trains a global model that recommends stamps to be used in messages based

on the context of the message. The more a stamp is used, the more the creator

receives an incentive. After the model training, the global model is distributed

to each end user’s device and used on the edge devices. Here, the users want to

hide their data from the server since their private message information is used in

the model (i.e., A). The model will be accessible to the end user during and after

training, creating a privacy risk against other participants (i.e., B, C). Since the

model is trained on the end-user’s device using the end-user’s local data, end-

users who want to increase their stamp sales have an incentive to intentionally

tamper with the process to get their stamps recommended (i.e., E). Similarly,

the server may have an incentive to intentionally tamper with the model training

process so that a particular stamp is highly recommended (i.e., D).

Relationships with FL. Table 1.2 shows the relationships between FL and

the two important privacy-preserving technologies, DP and TEE, and our pro-

posed three federated frameworks in terms of the privacy/security properties. All

of the privacy/security properties are missing from plain FL (top of the Table).

The following descriptions focus primarily on how each property lacked in FL is

complemented by DP, TEE, and the alternative methods.

A. Privacy against Central Server: Server-side TEE or MPC and LDP can

be used to hide the intermediate information of FL (e.g., gradient, model

parameters delta) from the semi-honest central server to prevent privacy

leaks.

B. Privacy against Clients: DP can be used to privatize the in-training

model to prevent privacy leaks.

C. Privacy against 3rd Party: DP can complement FL to privatize the

final output of the whole data analysis process (estimated statistics, trained

model) with formal privacy guarantees. It enables the release of the output

to third parties.

D. Security against Central Server: Server-side TEE can prevent the ma-

licious central server from manipulating the training process and model

behavior directly.
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Table 1.2: The relationship between FL and two important privacy-preserving

technologies, DP and TEE (blue colored), and the proposed frameworks (red

colored) in terms of privacy/security properties. (✓: Satisfy, ◗: Partial, ✗: Not)
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FL ✗ ✗ ✗ ✗ ✗

DP

(e.g., [77])

CDP ✗

LDP ✓
✓ ✓ ✗ ✗

TEE (or MPC)

(e.g., [78])
✓ ✗ ✗ ✓ ✓

ULDP-FL [79]

(FL+DP(+MPC))

✗

(+MPC ✓)
✓ ✓ ✗ ✗

OLIVE [24]

(FL+TEE(+DP))
✓

✗

(+DP ✓)

✗

(+DP ✓)
✓ ✗

Verifiable LDP [40]

(FA+LDP+MPC)
✓ ✓ ✓ ✗ ◗

E. Security against Client: Client-side TEE or MPC can protect FL train-

ing processes from poisoning attacks by malicious clients to control and/or

downgrade model behavior.

Thus, it can be seen that DP and TEE or alternative MPC can partially comple-

ment the properties that are missing in the plain FL. The need for each of these

five properties depends fully on the actual FL application scenario. The next sec-

tion outlines our three proposed privacy-security enhanced FL frameworks that

work for each specific scenario.

11
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1.5 Contributions

Therefore, FL applications have different requirements depending on the sce-

nario. In this thesis, we studied the following three proposed frameworks that

can integrate DP and/or TEE or alternative MPC into FL to satisfy different

requirements for different purposes, as shown in Table 1.2. We solve cutting-edge

challenges specific to each scenario in each of the following works, as outlined in

Sections 1.5.1, 1.5.2 and 1.5.3. Finally, we discuss the social impact of the pro-

posed private and secure FL frameworks by showing the real-world FL application

scenarios.

1.5.1 Across-silo User-level DP in cross-silo FL

In Chapter 3, we focus on practical DP-FL which has garnered attention [54] to

train a theoretically private model in FL. The model with guaranteed DP achieves

B and C. The original definition of DP assumes a single record as the unit of

privacy, which does not give meaningful privacy in a general setting with multiple

records that belong to a single user. It motivates the definition of user-level DP

[80, 81, 82, 83], which guarantees indistinguishability for all records held by a

user instead of a single record. However, it is still unclear how user-level DP can

be guaranteed in a general cross-silo FL setting where a single user’s data exists

across silos.

We present Uldp-FL, a novel FL framework designed to guarantee user-level

DP in cross-silo FL where a single user’s data may belong to multiple silos. Our

proposed algorithm directly ensures user-level DP through per-user weighted clip-

ping, departing from group-privacy approaches. We provide a theoretical analysis

of the algorithm’s privacy and utility. Additionally, we enhance the algorithm’s

utility by optimized weighting method and showcase its private implementa-

tion using cryptographic building blocks. Empirical experiments on real-world

datasets show substantial improvements in our methods in privacy-utility trade-

offs under user-level DP compared to group-privacy-based baseline methods. To

the best of our knowledge, our work is the first FL framework that effectively

provides user-level DP in the general cross-silo FL setting.

12
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1.5.2 FL on TEE against the risk of sparsification

In Chapter 4, we consider combining FL with a server-side TEE, which is a

promising approach for realizing privacy-security enhanced FL complementing A

and D. This combination has garnered significant academic attention in recent

years [71, 72, 73, 74, 75]. Implementing the TEE on the server side enables each

round of FL to proceed without exposing the client’s gradient information to

untrusted servers. This addresses usability gaps in existing secure aggregation

schemes [66] as well as utility gaps in DP-FL [57]. However, to address the

issue using a TEE, the vulnerabilities of server-side TEEs that reveal memory

access patterns [84, 85, 86] need to be considered — this has not been sufficiently

investigated in the context of FL.

The main technical contribution of this study is the analysis of the vulnera-

bilities of server-side TEE in FL and its defense. First, we theoretically analyze

the leakage of memory access patterns, revealing the risk of sparsified gradients,

which are commonly used in FL to enhance communication efficiency and model

accuracy. Second, we devise an inference attack to link memory access patterns

to sensitive information in the training dataset. Finally, we propose an efficient

yet oblivious ([87]) aggregation algorithm to prevent memory access pattern leak-

age. The experiments on real-world data demonstrate that the proposed method

functions efficiently in practical scales.

1.5.3 Verifiable LDP protocol against Untrusted Client

In Chapter 5, as a first step in defending against malicious clients in FL, i.e., E,

we begin the initial research with one of the simplest federated analytics settings,

frequency estimation under LDP. Basic LDP algorithms such as Randomized Re-

sponse have been well studied with a focus on improving the utility. However, re-

cent studies show that LDP is generally vulnerable to malicious data providers in

nature [39, 38] as well as FL. Because a data collector has to estimate background

data distribution only from already randomized data, malicious data providers

can manipulate their output before sending, i.e., randomization would provide

them plausible deniability. Attackers can skew the estimations effectively since

the calculation assumes that there is a randomization for LDP which can be used

as leverage for attacks, and can even control the estimations.

We show how to prevent malicious attackers from compromising LDP protocol.

13
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Our approach is to utilize a verifiable randomization mechanism. The data collec-

tor can verify the completeness of executing an agreed randomization mechanism

for every data provider. The proposed method completely protects the LDP pro-

tocol from output-manipulations, and significantly mitigates the expected damage

from attacks. We describe the secure version of three state-of-the-art LDP pro-

tocols and empirically show they cause acceptable overheads according to several

parameters. We believe this type of client-side verifiability that we propose in

this method can be extended to prevent attacks in more complicated federated

tasks including FL in the future.
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CHAPTER 2

Literature Review

2.1 Federated Learning

Federated learning (FL) [7, 88] is a recent ML scheme based on distributed opti-

mization with a single central aggregation server and many participants who have

their own private training data. The basic FL algorithm, called FedAVG [7, 89],

trains models by repeating model optimization steps in the local environment of

the participants and updating the global model by aggregating the parameters

of the locally trained models. FedSGD [7] exchanges locally updated gradients

based on distributed stochastic gradient descent. Overall, users are not required

to share their training data with the server, which represents a major advantage

over traditional centralized ML.

In each round, the server aggregates models from all participants and then

redistributes the aggregated models. Each participant u ∈ U optimizes a local

model fu, which is the expectation of a loss function F (x; ξ) that may be non-

convex, where x ∈ Rd denotes the model parameters with d model dimension

and ξ denotes the data sample, and the expectation is taken over local data

distribution Du. We optimize this global model parameter cooperatively across all

participants. Formally, the overarching goal in FL can be formulated as follows:

min
x

{
f(x) :=

1

|U |
∑
u∈U

fu(x)

}
, fu(x) := Eξ∼DuF (x; ξ). (2.1)
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Algorithm 1 FedAVG [7, 89]

Input: U : participants, q: sampling rate, ηl, ηg: learning rate for local and global, E:

#local epochs

1: procedure Train(U , q, ηl, ηg)

2: Initialize model x0

3: for each round t = 0, 1, 2, . . . do

4: Qt ← poisson sub-sampling users from U for round t with sampling rate q

▷ Participant Selection: select participants for round t

5: for each user u ∈ Qt in parallel do

6: ∆t
u ← Client(xt, ηl, E) ▷ Broad Cast and Local Training: Participant

u downloads the global model and computes parameter delta

7: end for

8: ∆̃t = 1
q|U |

∑
u∈Qt ∆t

u ▷ Aggregation: average model parameter delta

9: xt+1 ← xt + ηg∆̄
t ▷ Model Update: update global model

10: end for

11: end procedure

12: procedure Client(xt, η, E)

13: x← xt

14: for each epoch e = 0, 1, 2, . . . , E do

15: G ← user i’s local data split into batches

16: for batch g ∈ G do

17: x← x− η∇F (x; g) ▷ Stochastic gradient descent (SGD)

18: end for

19: end for

20: ∆← x− xt ▷ Compute model parameter delta

21: return ∆

22: end procedure

In round t ∈ [T ] in FL, the global model parameter is denoted as xt. The

algorithm description of FedAVG is shown in Algorithm 1, which includes mainly

repeated five steps: participant selection, broadcast, local training, aggregation,

and model update. Compared to conventional simple distributed SGD such as

FedSGD, which exchanges a one-time stochastic gradient, FedAVG exchanges

differences in the parameters of models that are trained by some local epoch

(Lines 14 - 20), resulting in faster convergence [89] and reducing communication

costs, which is likely to be a practical bottleneck in FL [90, 91, 92].
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In FL, model training is only one part of the whole, with many steps of the ML

pipeline including model design, hyperparameter tuning, building the training

infrastructure, evaluating the model, and deploying the model [93]. These often

include FL-specific challenges [17]. For example, the cost of tuning for model

architectures and hyperparameters is often prohibitively high [94], and the lack

of access to raw data during model evaluation makes it difficult to detect bias in

the training data set, such as outliers [95].

General Research Points

The main research points of FL are as follows:

• Privacy and Security: As described in Section 1.1.1, FL lacks in pri-

vacy against semi-honest attacker and in security against malicious attacker,

which causes privacy risks even without sharing raw data, which is crucial

given the main goal of FL and we mainly focus on in this thesis. In par-

ticular, Secure Aggregation (SA) [67] is a popular parameter aggregation

method in private FL for concealing individual parameters. It is based on

the lightweight pairwise-masking method [96, 66, 97], homomorphic encryp-

tion [98, 99] or TEE [74, 71].

• Utility: There is a significant degradation of model performance and con-

vergence speed [89, 100], which can be studied mainly in the context of

distributed optimization for heterogeneous data distribution (non-iid) [101,

102].

• Communication Efficiency: Communication costs tend to be a bottle-

neck in FL systems because model parameters, which may be deep models,

need to be exchanged many times [90, 91, 92]. Hence, parameter sparsifi-

cation is important in a practical scenario [97, 103].

• Developability: Compared to centralized ML, FL requires a considerably

more complicated infrastructure due to its decentralized setup, especially

in security, availability, and device heterogeneity aspects, which can be

an obstacle for practitioners. Several popular implementations have been

developed, such as Google TensorFlow Federated (TFF), FedML [104], and

PySyft [105], etc.
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Cross-device and Cross-silo FL

There are two variants of FL, called cross-device FL and cross-silo FL, depending

on whether the participants are individual edge devices (such as smartphones) or

organizations (such as hospitals), respectively [93]. Typically, in cross-device FL

[7, 54, 96], the number of participants is large (e.g., up to 1010), and the partic-

ipants are probabilistically selected to participate in each round of training. On

the other hand, in cross-silo FL [106, 102, 107, 108], the number of participants is

small (e.g., 2-100), and all participants participate in all rounds of training. Also,

they differ in various aspects such as accessible computing resources, communi-

cation infrastructure, data distribution and partitioning (horizontal or vertical),

trust models, and incentive designs.

Real-world deployment

FL has recently attracted a great deal of attention not only from academia but

also from industry. For example, it has been continuously tested in Google’s

productions [31, 30, 109, 13]. Recently, platformers such as Meta [14], Apple

[17], and LinkedIn [16] have followed Google’s early research and focused their

efforts. Additionally, in Japan, LINE has deployed a model trained using FL

for sticker recommendation in its app [15]. However, even formal legal rules for

privacy have not yet been fully developed, and it is likely that these are only a

trial introduction for the purpose of testing technical perspectives.

2.2 Differential Privacy

Differential Privacy (DP) [42] is a rigorous mathematical privacy definition that

quantitatively evaluates the degree of privacy protection when outputs are pub-

lished. The importance of DP is underscored by the fact that the US census

announced ’2020 Census results will be protected using “differential privacy”,

the new gold standard in data privacy protection’ [47]. As shown in the following

definition, in DP, the degree of privacy is parameterized by ϵ. This is also referred

to as the privacy budget : the larger the ϵ, the looser the privacy bounds allowed,

and the smaller the ϵ, the stronger the privacy protection. δ represents the failure

probability of the privacy guarantee, which usually needs to be small enough to

be proportional to the database size.
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Definition 1 ((ϵ, δ)-DP). A randomized mechanismM : D → Z satisfies (ϵ, δ)-

DP if, for any two input databases D,D′ ∈ D s.t. D′ differs from D in at most

one record and any subset of outputs Z ⊆ Z, it holds that

Pr[M(D) ∈ Z] ≤ exp(ϵ) Pr[M(D′) ∈ Z] + δ. (2.2)

In the special case where δ = 0, it is simply called ϵ-DP and in cases where

δ > 0, it is sometimes referred to as approximate DP. Databases D and D′

are called neighboring databases. The maximum difference in the output for

any neighboring database is referred to as sensitivity, as defined in Definition

2. Practically, we employ a randomized mechanism M that ensures DP for a

function f . The mechanismM perturbs the output of f to cover f ’s sensitivity.

Definition 2 (Sensitivity). The sensitivity of a function f for any two neighbor-

ing inputs D,D′ ∈ D is:

∆f = sup
D,D′∈D

∥f(D)− f(D′)∥.

where ∥·∥ is a norm function defined in f ’s output domain.

Given a statistical query f , we can create a DP mechanismM by analyzing the

sensitivity ∆f of the query f and designing the randomization accordingly. For

example, the Laplace mechanism [42] is well-known as a standard approach for

randomizing numerical outputs such as counting queries, which satisfies ϵ-DP.

Definition 3 (Laplace Mechanism). For function f : D → Rn, the Laplace

mechanism adds noise to f(D) as:

f(D) + Lap(∆f/ϵ)
n. (2.3)

where Lap(λ)n denotes a vector of n independent samples from a Laplace distri-

bution Lap(λ) with mean 0 and scale λ.

Quantifying the privacy of differentially private mechanisms over multiple re-

leases is essential for releasing multiple outputs. This is called composition for

privacy consumption and is one of the most important properties of DP. Se-

quential composition and parallel composition are standard privacy accounting

methods for multiple releases.
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Theorem 1 (Sequential Composition [42]). LetM1, . . . ,Mk be mechanisms sat-

isfying ϵ1-, . . . , ϵk-DP. Then, a mechanism sequentially applying M1, . . . ,Mk

satisfies (
∑

i∈[k] ϵi)-DP.

Theorem 2 (Parallel Composition [110]). Let M1, . . . ,Mk be mechanisms sat-

isfying ϵ1-, . . . , ϵk-DP. Then, a mechanism applying M1, . . . ,Mk to disjoint

databases D1, . . . , Dk in parallel satisfies (maxi∈[k] ϵi)-DP.

However, recent works have developed many tighter composition theorems on

approximate DP by using basic probability theory techniques to bound the sum of

probability distributions of the outputs of the DP mechanisms, such as Advanced

Composition [111] and R’enyi DP (RDP) [50, 49], etc.

RDP is a variant of approximate DP based on R’enyi divergence. It is preferred

over other composition theorems because it is easy to use for the Gaussian mech-

anism [50] and has a tighter bound than the standard composition theorems. The

following lemmas give the bounds of the RDP for a typical mechanism and are

used to further convert it to an original DP bound, which we use in this thesis. In

particular, as described in Lemma 4, applying random sub-sampling to the input

data before applying the supposed randomized mechanism can greatly improve

the privacy bound. This is called privacy amplification by sub-sampling.

Definition 4 ((α, ρ)-RDP [50]). Given a real number α ∈ (1,∞) and privacy

parameter ρ ≥ 0, a randomized mechanismM satisfies (α, ρ)-RDP if for any two

neighboring datasets D,D′ ∈ D s.t. D′ differs from D in at most one record,

we have that Dα(M(D)||M(D′)) ≤ ρ where Dα(M(D)||M(D′)) is the Rényi

divergence betweenM(D) andM(D′) and is given by

Dα(M(D)||M(D′)) :=
1

α− 1
logE

[(
M(D)

M(D′)

)α]
≤ ρ,

where the expectation is taken over the output ofM(D).

Lemma 1 (RDP composition [50]). IfM1 satisfies (α, ρ1)-RDP andM2 satisfies

(α, ρ2), then their compositionM1 ◦M2 satisfies (α, ρ1 + ρ2)-RDP.

Lemma 2 (RDP to DP conversion [112]). IfM satisfies (α, ρ)-RDP, then it also

satisfies (ρ′, δ)-DP for any 0 < δ < 1 such that

ρ′ = ρ+ log
α− 1

α
− log δ + logα

α− 1
.
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Lemma 3 (RDP Gaussian mechanism [50]). If f : D → Rd has ℓ2-sensitivity ∆f ,

then the Gaussian mechanism Gf (·) := f(·) + N (0, Iσ2∆2
f ) is (α, α/2σ2)-RDP

for any α > 1.

Lemma 4 (RDP for sub-sampled Gaussian mechanism [49]). Let α ∈ N with

α ≥ 2 and 0 < q < 1 be a sub-sampling ratio of sub-sampling operation Sampq.

Let G′
f (·) := Gf ◦ Sampq(·) be a sub-sampled Gaussian mechanism. Then, G′

f is

(α, ρ′(α, σ))-RDP where

ρ′(α, σ) ≤
1

α− 1
log

(
1 + 2q2

(
α

2

)
min {2(e1/σ2 − 1), e1/σ

2}

+
α∑

j=3

2qj
(
α

j

)
ej(j−1)/2σ2

)
.

In general, we can compute tighter numerical bounds for these bounds, in addition

to the closed-form upper bounds described above [49, 51].

Fundamental researches. Thanks to these attractive properties, DP has

been applied to a wide range of private data analysis tasks, from releasing range

counting queries [113, 114, 77] to machine learning [48, 37].

Private counting queries, such as observing the histogram of the private data, is

a fundamental and important task in private data analysis. In [77], we study how

to construct an explorable privacy-preserving materialized view under DP, which

can release unlimited range counting queries. No existing state-of-the-art meth-

ods simultaneously satisfy the following essential properties in data exploration:

workload independence, analytical reliability (i.e., providing error bound for each

search query), applicability to high-dimensional data, and space efficiency. To

solve the above issues, we propose HDPView, which creates a differentially

private materialized view by well-designed recursive bisected partitioning on an

original data cube, i.e., count tensor. The proposed method searches for block

partitioning to minimize the error for the counting query, in addition to random-

izing the convergence, by choosing the effective cutting points in a differentially

private way, resulting in a less noisy and compact view. Details of this work are

presented in the Appendix A.

Differentially private ML is a promising approach to protect privacy in ML.

The most significant breakthrough is DP-SGD (shown in Algorithm 2) and its

privacy accounting moments accountant [48]. This method guarantees DP for

the trained model by adding Gaussian noise on the stochastic gradient in the
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Algorithm 2 DP-SGD [48]

Input: C: clipping bound, σ: noise multiplier, q: sampling rate, N : #data, η: learning

rate

1: procedure Train(C, q, η)

2: Initialize model x0

3: for each iteration t = 0, 1, 2, . . . do

4: Take a random sample (data) Lt with sampling rate q

5: for each sample i ∈ Lt do
6: Compute stochastic gradients gt,i ▷ E[gt,i] = ∇F (xt, i)

7: g̃t,i ← gt,i ·min
(
1, C

∥gt,i∥2

)
▷ clipping with C

8: end for

9: g̃t =
1
qN

(∑
i∈Lt gt,i +N (0, Iσ2C2)

)
▷ Noise addition

10: xt+1 ← xt − ηg̃t ▷ Gradient Descent

11: end for

12: Output final xT ▷ T may be given or determined by privacy budget

consumption or model convgergence

13: end procedure

optimization step (Line 9). The important point is that each stochastic gradient

is computed for each sample and clipped by given clipping bound to bound the

sensitivity of the gradient (Line 7). In addition, sub-sampling of the data (Line

5) leads to a tighter privacy bound by privacy amplification by sub-sampling [49].

The combination of DP and ML has been extensively studied in terms of privacy

attacks on trained models [37, 26] and in terms of differentially private generative

models that synthesize private data [115, 116, 117].

2.2.1 Differentially Private Federated Learning

Differentially private FL (DP-FL) [58, 54] has garnered significant attention due

to its capacity to alleviate privacy concerns by ensuring DP. Researchers have

explored various DP-FL techniques to strike a good balance between trust models

and utility, as shown in Table 2.1.

In central DP FL (CDP-FL) [58, 54, 118, 55], a trusted server collects raw

participants’ data and takes responsibility for privatizing the global model. Typ-

ically, cross-device FL often considers client-level DP [54] rather than the original

record-level DP because each client (device) can have multiple records. (Client-
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Table 2.1: Comparison with different schemes of DP-FL in terms of trust model

and utility.

Trust model Utility

CDP-FL [58, 54, 118, 55] Trusted server Good

LDP-FL [56, 119, 120, 121] Untrusted server Limited

Shuffle DP-FL [122, 123, 57] Untrusted server + Shuffler ≤ CDP-FL

CDP-FL with TEE [24] Untrusted Server with TEE = CDP-FL

level) CDP-FL guarantees that it is probabilistically indistinguishable whether a

client is participating in the training or not. It is defined as follows:

Definition 5 ((client-level) (ϵ, δ)-DP [54]). A randomized mechanismM : D →
Z satisfies (ϵ, δ)-DP if, for any two neighboring datasets D,D′ ∈ D such that D′

differs from D in at most one client’s record set and any subset of outputs Z ⊆ Z,
it holds that

Pr[M(D) ∈ Z] ≤ exp(ϵ) Pr[M(D′) ∈ Z] + δ.

Where Z corresponds to the final trained model and M(D) corresponds to the

training algorithm with perturbation (e.g., DP-SGD) that uses input client D’s

training data to learn. In general, CDP-FL provides a good trade-off between

privacy and utility (e.g., model accuracy) of differentially private models even at

practical model scales [54, 118]. Uldp-FL [79] has studied the methodology for

deploying this client-level CDP guarantee in a general cross-silo FL setting where

a single user’s multiple records can exist across silos, as introduced in Chapter

3. However, CDP-FL requires the server to access raw gradients, which leads to

major privacy concerns on the server as the original data can be reconstructed

even from the raw gradients [20, 21].

In LDP-FL [56, 119, 120, 121], the clients perturb the gradients before sharing

with an untrusted server, guaranteeing formal privacy against both malicious

third parties and the untrusted server. LDP-FL does not require a trustful server

unlike CDP-FL. However, LDP-FL suffers from poor privacy-utility trade-offs,

especially when the number of users is not sufficient (i.e., the signal is drowned in

noise) or the number of model parameters is large (i.e., more noise is needed for

achieving the same level of DP). Unfortunately, it is limited to models with an

extremely small number of parameters or companies with a huge user base (e.g.,

10 million).
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To overcome the weakness of the utility of LDP by privacy amplification, a

method using the shuffler model [124, 59], has been proposed [122], i.e., Shuffle

DP-FL. This method introduces a trusted shuffler instead of trusting the server

and achieves some level of utility. However, it cannot outperform CDP in utility

because we can simulate the shuffling mechanism on a trusted server. The privacy

amplification of the shuffler also has weaknesses, such as the need for a large

number of participants and small parameter size due to the underlying LDP

limitation. This is clearly highlighted in Table 12 of [57] a. Hence, there is still a

utility gap between CDP-FL and the state-of-the-art Shuffle DP-FL.

To fill this gap, our proposed Olive [24] employs TEE to ensure secure model

aggregation on an untrusted server so that only differentially private models are

observable by the untrusted server or any third parties. The details of Olive

are presented in Chapter 4. As shown in Table 2.1, the utility of Olive is

exactly the same as the conventional CDP-FL as the computation inside TEE

can be implemented for arbitrary algorithms. Note that there are differences

from the pairwise-masking secure aggregation, which has limitations on the DP

mechanism. For example, it requires discretizing the parameters and noises and

adding noises in a distributed manner [96, 125].

2.2.2 Differentially Private Federated Analytics

In addition to FL, Federated Analytics (FA) [19] basically use LDP, allowing

federated and private analysis of relatively simple statistics [126, 127]. Although

FA with DP is a promising approach to privacy-preserving data analysis [19], it

is still in its infancy and has not been fully investigated in terms of security. For

example, they are not intended for malicious clients. Recent works [39, 38] have

suggested that the LDP protocol used in the FA can increase gains of the malicious

client-side attackers, and defensive measures against this need to be considered.

To fill this defensive gap, we propose a verifiable randomization mechanism to

prevent the manipulation of LDP protocols by malicious clients [40] as introduced

in Chapter 5.

aWe can reproduce a similar result with our code https://github.com/FumiyukiKato/FL-

TEE/blob/master/src/eval-ldp-sgd.py.
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2.3 Trusted Execution Environment

Trusted Execution Environment (TEE) uses special hardware features to cre-

ate a secure execution environment in an untrusted remote machine, guaran-

teeing confidentiality, integrity, and verifiability [62]. Simply put, TEEs enable

secure computation externally while avoiding computationally expensive encryp-

tion methods such as Homomorphic Encryption (HE) [64], Oblivious Transfer

(OT) [65], and others. Several implementations of TEE have been announced by

industry (e.g., Intel SGX [70], Arm TrustZone [128], and AMD SEV [129]) and

academia (e.g., Sanctum [130], KeyStone [131]). They have different CPU modes

and instruction sets.

We focus on a well-known TEE implementation—Intel SGX [70], which is cur-

rently the most prominent and commercially available choice of TEE. In partic-

ular, SGX supports production-ready Remote Attestation service [132]. SGX is

an extended instruction set for Intel x86 processors, enabling the creation of an

isolated memory region called an enclave. The enclave resides in an encrypted

and protected memory region called an EPC. The data and programs in the EPC

are transparently encrypted outside the CPU package by the Memory Encryption

Engine, enabling performance comparable to native performance. SGX assumes

the CPU package to be the trust boundary—everything beyond it is considered

untrusted—and prohibits access to the enclave by any untrusted software, includ-

ing the OS/hypervisor. Note that for design reasons, the user-available size of

the EPC is limited to approximately 96 MB for most current machines. When

memory is allocated beyond this limit, SGX with Linux provides a special paging

mechanism. This incurs significant overhead for encryption and integrity checks,

resulting in poor performance [78, 133, 134].

Attestation. SGX supports Remote Attestation (RA), which can verify the

correct initial state and genuineness of an enclave. This prevents malicious at-

tackers from tampering with the predefined process. On requesting RA, a report

with measurements based on the hash of the initial enclave state generated by the

trusted processor is received. This facilitates the identification of the program

and completes the memory layout. Intel EPID [132] signs this measurement, and

the Intel Attestation Service verifies the correctness of the signature as a trusted

third party. Consequently, verifiable and secure computations are performed in

a remote enclave. Simultaneously, a secure key exchange is performed between
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the enclave and the remote client within this RA protocol. Therefore, after per-

forming RA, communication with a remote enclave can be initiated over a secure

channel using AES-GCM and so on.

Fundamental Research. As mentioned above, TEE can process conven-

tional encryption methods more flexibly and efficiently. For example, in [78],

we propose PCT-TEE, an efficient and secure trajectory-based private contact

tracing (PCT) system using TEE, which overcomes the weak points of existing

Bluetooth-based PCT systems [135]. The use of TEE enables private contact

tracing using trajectory data directly, thereby making it possible to detect indi-

rect contact, which has been difficult in the existing approach. We formalize the

trajectory-based private contact tracing problem as spatio-temporal private set

intersection to be efficiently computed with TEE. The major challenge is how to

design algorithms for a spatiotemporal private set intersection under the limited

secure memory of the TEE. To this end, we design a TEE-based system with

flexible trajectory data encoding algorithms. The experiments on real-world data

show that the proposed system can process hundreds of PCT queries on tens of

millions of records of trajectory data within a few seconds. The details of this

work are presented in Appendix B.

On the other hand, while TEE has the attractive features described above,

many studies have pointed out the vulnerabilities of TEE. In particular, memo-

ry/page access patterns or instruction traces can be exposed irrespective of the

use of a TEE through side-channel attacks [84, 85, 136, 137, 86]. Note that the

data itself is encrypted and cannot be viewed in enclaves, and an attacker can

only see access patterns. This may lead to sensitive information being stolen from

enclaves [136]. For example, cacheline-level access pattern leakage occurs when

a malicious OS injects page faults [84] or uses page-table-based threats [85, 86].

Moreover, if a physical machine is accessible, probes may be attached to the

memory bus directly. Designing effective and efficient defense methods against

these attacks remains an important challenge in this context.

2.3.1 Federated Learning with TEE

Using TEE in FL is a promising approach [73, 74, 138, 72, 139]. In particular,

TEE provides confidentiality, integrity, and functionalities such as Remote Attes-

tation for verifiability, fully justifying its use on the untrusted server side in FL
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[72, 76, 74]. After the first verification of the remote TEE, the shared gradients

can be transmitted to the TEE via a secure channel and computed securely in a

confidential, verifiable and arbitrary manner on the server side. PPFL [73] uses

a TEE to hide parameters to prevent semi-honest client and server attacks on

a global model. Citadel [72] addressed the important goal of making the design

of models confidential in collaborative ML using TEE. However, side-channel at-

tacks were not covered. In [74] and [138], the gradient aggregation step was taken

to be hierarchical and/or partitioned using multiple servers such that the gradi-

ent information could only be partially observed by each server. Flatee [139] uses

the combination of server-side TEE and DP in FL. These works did not provide

any analysis and solution for the privacy leakages via memory access patterns

that can be observable through side-channels. Olive [24] (introduced in Chap-

ter 4) includes an analysis of access patterns in the aggregation procedure of FL

and the design and demonstration of attack methods to motivate a proposed de-

fense mechanism thoroughly in addition to specific solutions that lead to stronger

security than any other method in FL on a single central TEE.

The major difference from centralized ML using TEE [140, 76] is that the

training data are not shared with the server and are not centralized in the latter

case, which can be critical because of privacy or contractual/regulatory reasons or

for practical reasons, i.e., big and fast data at multiple edges. It is also important

to outsource heavy computations required for ML training from TEE’s limited

computational resources to external clients.
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CHAPTER 3

ULDP-FL: Federated Learning

with Across Silo User-Level

Differential Privacy

As shown in Table 1.2, a typical way to satisfy B and C is through DP-FL,

which guarantees the DP of the trained model. Here, to apply DP-FL in practical

scenarios, we point out that there is a critical gap in current DP-FL methodologies

and study a method to improve it.

3.1 Introduction

Although DP is the de facto standard for privacy protection in ML, it has theo-

retical limitations. The standard DP definition [42] considers a single record as

a unit of privacy. This can easily break down in realistic settings where one user

may provide multiple records, potentially deteriorating the privacy loss bound of

DP. To address this, the notion of user-level DP has been studied [80, 81, 82, 83].

In user-level DP, all records belonging to a single user are considered as a unit of

privacy, which is a stricter definition than standard DP. We distinguish user-level

DP from group-privacy [141], which considers any k records as privacy units.

User-level DP has also been studied in the FL context [57, 58, 142, 143, 96] as

28



3. ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy

Figure 3.1: In cross-silo FL, in general, records belonging to the same user can

exist across silos, e.g., a user can use several credit card companies. In this study,

we investigate how to train models satisfying user-level DP in this setting.

client-level DP. However, these studies focus on the cross-device FL setting, where

one user’s data belongs to a single device only.

Cross-silo FL [106, 107, 144, 108] is a practical variant of FL in which a rela-

tively small number of silos (e.g., hospitals or credit card companies) participate

in training rounds. In cross-silo FL, unlike in cross-device FL, a single user can

have multiple records across silos, as shown in Figure 3.1. Existing cross-silo DP-

FL studies [107, 144, 108] have focused on record-level DP for each silo; user-level

DP across silos has not been studied. Therefore, an important research question

arises: How do we design an FL framework that guarantees user-level DP across

silos in cross-silo FL?

A naive design for an algorithm that guarantees user-level DP combines bound-

ing user contributions (number of records) as in [82, 83] and group-privacy prop-

erty of DP [141]. Group-privacy simply extends the indistinguishability of record-

level DP to multiple records. We can convert any DP algorithm to its group-

privacy version of DP (Lemma 5, 6), which we formally define as Group DP

(GDP) later in Definition 6. However, this approach can be impractical due to

the super-linear privacy bound degradation of conversion to GDP (as shown in

Figure 3.2) and the need to appropriately limit the maximum number of user
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records (group size) in a distributed environment. In particular, the former issue

is a fundamental limitation for DP and highlights the need to develop algorithms

that directly satisfy user-level DP without requiring conversion to GDP.

In this study, we present a novel cross-silo and differentially private FL frame-

work named Uldp-FL, designed to directly guarantee user-level DP through the

incorporation of per-user weighted clipping. The contributions of this work are

summarized as follows:

• We introduce a problem setting for cross-silo FL under user-level DP across

silos, as illustrated in Figure 3.1.

• We propose the Uldp-FL framework and design baseline algorithms capa-

ble of achieving user-level DP across silos. The baseline algorithms combine

limiting the maximum number of records per user and using group-privacy

with DP-SGD [48] for each silo.

• Our algorithm ULDP-AVG/SGD directly satisfies user-level DP by imple-

menting user-level weighted clipping within each silo, effectively bounding

user-level sensitivity for an unlimited number of a single user’s records across

silos. We provide theoretical analysis on ULDP-AVG, showing a user-level

DP bound and a convergence analysis.

• We evaluate the proposed method and baseline approaches through compre-

hensive experiments on various real-world datasets. The results underscore

that our method yields superior trade-offs between privacy and utility com-

pared to the baseline approaches.

• We further design an effective method by refining the weighting strategy

for user-level clipping bounds. Since this approach may lead to additional

privacy leakage of the training data, we develop a private protocol employing

cryptographic techniques. We evaluate the extra computational overhead

of the proposed private protocol using real-world benchmark scenarios.
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3.2 Background & Preliminaries

3.2.1 Cross-silo Federated learning

In this work, we consider the following general cross-silo FL scenario. We have

a central aggregation server and a set of silos S participating in all rounds. In

cross-silo FL, we optimize the global model parameter cooperatively across all

silos. Formally, the goal can be formulated for silo s ∈ S as follows, as in Eq.

(2.1),

min
x

{
f(x) :=

1

|S|
∑
s∈S

fs(x)

}
, fs(x) := Eξ∼DsF (x; ξ). (3.1)

Additionally, we have a user set U across all datasets in silos, where each record

belongs to one user u ∈ U , and each user may have multiple records in one

silo and across multiple silos. Each silo s has local objectives for each user u,

fs,u := Eξ∼Ds,uF (x; ξ), where Ds,u is the data distribution of s and u. In round

t ∈ [T ] in FL, the global model parameter is denoted as xt.

Note that this modeling is clearly different from cross-device FL in that there

is no constraint that one user should belong to one device [58, 54]. Records from

one user can belong to multiple silos. For example, the same customer may use

several credit card companies. Additionally, all silos participate in all training

rounds, unlike the probabilistic participation in cross-device FL [143], and the

number of silos |S| is small, around 2 to 100.

3.2.2 Differential Privacy for Multiple Records

Here are some notes on DP in this study. We label the original definition as

record-level DP because the neighboring databases differ in only one record. In

the privacy accounting of this study, we use Rényi DP (RDP) [50] because of

the tightness of the analysis of the privacy composition. The definitions and

lemmas of RDP are the original definitions for record-level neighboring databases

(as in Definition 4), but are the same for user-level neighboring databases. We

consider the ℓ2-norm (∥·∥2) as the ℓ2-sensitivity for following analysis due to

adding Gaussian noise.

To extend privacy guarantees of DP to multiple records, group-privacy [141]

has been explored as a solution. We refer to the group-privacy version of DP as
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Group DP (GDP) and define it as follows:

Definition 6 ((k, ϵ, δ)-GDP). A randomized mechanism M : D → Z satisfies

(k, ϵ, δ)-GDP if, for any two input databases D,D′ ∈ D, s.t. D′ differs from D

in at most k records and any subset of outputs Z ⊆ Z, Eq. (2.2) holds.

GDP is a versatile privacy definition, as it can be applied to existing DP mech-

anisms without modification. To convert (ϵ, δ)-DP to (k, ϵ, δ)-GDP, it is known

that any (ϵ, 0)-DP mechanism satisfies (k, kϵ, 0)-GDP [141]. However, in the case

of any δ > 0, δ increases super-linearly [145], leading to a much larger ϵ (Lemma

5).

Lemma 5 (Group Privacy Conversion (Record-level DP to GDP) [145]). If f is

(ϵ, δ)-DP, for any two input databases D,D′ ∈ D s.t. D′ differs from D in at

most k records and any subset of outputs Z ⊆ Z, it holds that

Pr[f(D) ∈ Z] ≤ exp(kϵ) Pr[f(D′) ∈ Z] + ke(k−1)ϵδ.

It means when f is (ϵ, δ)-DP, f satisfies (k, kϵ, k exp(k−1)ϵ δ)-GDP.

Also, we can compute GDP using group-privacy property of Rényi DP [50].

First, we calculate the RDP of the algorithm, then convert it to group version of

RDP, and subsequently to GDP (Lemma 6).

Lemma 6 (Group-Privacy of RDP (Record-level DP to GDP) [50]). If f : D →
Rd is (α, ρ)-RDP, g : D′ → D is k-stable and α ≥ 2k+1, then f ◦ g is (α/2k, 3kρ)-

RDP.

Here, group-privacy property is defined using a notion of k-stable transformation

[110]. g : D′ → D is k-stable if g(A) and g(B) are neighboring in D implies

that there exists a sequence of length c + 1 so that D0 = A, ..., Dc = B and all

(Di, Di+1) are neighboring in D′. This privacy notion corresponds to (k, ·, ·)-GDP

in Definition 6.

Here, to highlight the significant privacy degradation of GDP, we conduct a

pre-experiment and show the converted privacy bounds for increasing group sizes.

Figure 3.2 illustrates a numerical comparison of the group-privacy conversion

from DP to GDP with normal DP (Lemma 5) and RDP (Lemma 6). To com-

pute the final GDP privacy bounds, we repeatedly run the Gaussian mechanism

with σ = 5.0 and a sampling rate of 0.01 for 105 iterations, emulating a typi-

cal DP-SGD execution setup. We use a fixed δ = 10−5 and vary the group size

32



3. ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy

Figure 3.2: Group-privacy conversion results.

k = 1, 2, 4, 8, 16, 32, 64. To compute GDP, RDP for sub-sampled Gaussian mecha-

nisms is calculated according to [49]. We then compute GDP using group-privacy

of RDP by Lemma 6. For normal DP, the computed RDP is converted to normal

DP by Lemma 2, and then to GDP by Lemma 5.

When converting from normal DP to GDP, computing the final ϵ at a fixed δ

is challenging. In Lemma 2, the output ϵ (denoted as ϵ2) depends on the input

δ (denoted as δ2), and the final δ (denoted as δ5) output by Lemma 5 depends

on both ϵ2 and δ2. Therefore, we repeatedly select δ2 in a binary search manner,

compute ϵ2 and δ2, and finally report the ϵ when the difference between δ2 and

δ = 10−5 is sufficiently small (accuracy by 10−8) as the ϵ of GDP a. Note that

this method does not guarantee achieving the optimal ϵ for the given δ, but it

finds a reasonable ϵ.

In the figure, we plot various group sizes, k, on the x-axis and ϵ of GDP at a

fixed δ = 10−5 on the y-axis. Significantly, the results indicate that as the group

size k increases, ϵ grows rapidly, highlighting a considerable degradation in the

privacy bound of GDP. For instance, with ϵ = 2.85 at record-level (k = 1), the

value reaches 2100 for only k = 32, and 11400 at k = 64. While there may be

some looseness in the group-privacy conversion of RDP compared to normal DP

for some small group sizes, the difference is relatively minor (roughly three times

aThe implementation is in the function get normal group privacy spent() in https://

github.com/FumiyukiKato/uldp-fl/blob/main/src/noise_utils.py
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at most). Moreover, the RDP conversion is easier to compute with a fixed δ.

Hence, we utilize RDP conversion in our experiments.

3.2.3 DP-FL in Cross-silo Setting

DP has been applied to the FL paradigm, with the goal of ensuring that the

trained model satisfies DP. A popular DP variant in the context of cross-device

FL is user-level DP (also known as client-level DP) [58, 146, 96]. Informally, this

definition ensures indistinguishability for device participation and has demon-

strated a favorable privacy-utility trade-off even with large-scale models [143].

These studies often employ secure aggregation [66, 147] to mitigate the need for

trust in other parties during FL model training. This is achieved by allowing the

server and other silos to only access appropriately perturbed models after aggre-

gation, often referred to as Distributed DP [96, 148]. In particular, shuffling-based

variants have recently gained attention [148, 61, 60] and are being deployed in

FL [123], which also provides user-level DP. All of these studies assume that a

single device holds all records for a single user, i.e., cross-device FL. However, in

a cross-silo setting, this definition does not extend meaningful privacy protection

to individual users when they possess multiple records across silos.

Another DP definition in cross-silo FL offers record-level DP within each silo

[107, 144, 108], referred to as Silo-specific sample-level or Inter-silo record-level

DP. These studies suggest that record-level DP can guarantee user-level DP

through group-privacy [141]. However, they cannot account for settings where a

single user may have records across multiple silos. To the best of our knowledge,

no method exists for training models that satisfy user-level DP in cross-silo FL

where a single user’s records may extend across multiple silos.

3.3 ULDP-FL Framework

3.3.1 Trust Model and Assumptions

We assume that all (two or more) silos and aggregation servers are semi-honest,

meaning they observe the information but do not deviate from the protocol.

This is a typical assumption in prior works [66, 149]. In our study, aggregation

is performed using secure aggregation to ensure that the server only gains access
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to the model after aggregation [96]. All communications between the server and

silos are encrypted with SSL/TLS, and third parties with the ability to snoop

on communications cannot access any information except for the final trained

model. We assume that there is no collusion, which is reasonable given that

silos are socially separate institutions (such as different hospitals or companies).

Additionally, in our scenario, we assume that record linkage [150] across silos

has already been completed, resulting in shared common user IDs. Both the

server and the silos are aware of the total number of users |U | with at least

one record and the number of silos |S|. When sub-sampling is employed for DP

amplification, only the server is permitted to know the sub-sampling results for

each round [96, 146]. It is important to note that all these assumptions do not

affect the privacy guarantees for external users.

3.3.2 Privacy Definition

In contrast to GDP, which offers indistinguishability for any k records, user-level

DP [81, 58] provides a more reasonable user-level indistinguishability. While [58]

focuses solely on a cross-device FL context, we re-establish user-level DP (ULDP)

in the cross-silo setting as follows:

Definition 7 ((ϵ, δ)-ULDP). A randomized mechanism M : D → Z satisfies

(ϵ, δ)-ULDP if, for any two input databases across silos D,D′ ∈ D, s.t. D′

differs from D in at most one user’s records, and any Z ⊆ Z, Eq. (2.2) holds.

The fundamental difference from record-level DP lies in the definition of the neigh-

boring databases, which inherently defines user-level sensitivity. Additionally, it

is important to emphasize that the input database D represents the comprehen-

sive database spanning across silos.

If the number of records per user in the database is less than or equal to k, it is

clear that GDP is a generalization of ULDP, and the following proposition holds.

Proposition 1. If a randomized mechanismM is (k, ϵ, δ)-GDP with input database

D in which any user has at most k records, the mechanismM with input database

D also satisfies (ϵ, δ)-ULDP.

One drawback of GDP is the challenge of determining the appropriate value for

k. Setting k to the maximum number of records associated with any individual
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user could lead to introducing excessive noise to achieve the desired privacy pro-

tection level. On the other hand, if a smaller k is chosen, the data of users with

more than k records must be excluded from the dataset, potentially introducing

bias and compromising model utility. In this context, while several studies have

analyzed the theoretical utility for a given k [80, 81] and theoretical considera-

tions for determining k have been partially explored in [83], it still remains an

open problem. In contrast, ULDP does not necessitate the determination of k.

Instead, it requires designing a specific ULDP algorithm.

3.3.3 Baseline Methods: ULDP-NAIVE/GROUP-k

We begin by describing two baseline methods. The first method is ULDP-NAIVE

(described in Algorithm 3), a straightforward approach using substantial noise. It

extends DP-FedAVG [143], where each silo locally optimizes with multiple epochs,

computes the model delta, clips by C, and adds Gaussian noise with variance

σ2C2. However, in ULDP-NAIVE, since a single user may contribute to the model

delta of all silos, the sensitivity across silos is |C| ∗ S for the aggregated model

delta (Line 15). Compared to DP-FedAVG, which focuses on cross-device FL,

the number of model delta samples (number of silos as opposed to the number of

devices) is very small, resulting in larger variance. Thus, ULDP-NAIVE satisfies

ULDP but at a significant sacrifice in utility. The aggregation is performed using

secure aggregation and is assumed to be so in the following algorithms.

Theorem 3. For any 0 < δ < 1 and α > 1, given noise multiplier σ, ULDP-

NAIVE satisfies (ϵ = Tα
2σ2 + log ((α− 1)/α) − (log δ + logα)/(α − 1), δ)-ULDP

after T rounds. (The actual value of ϵ is numerically calculated by selecting the

optimal α so that ϵ is minimized.)

Proof. At each round t, due to the clipping operation (Line 14 in Algorithm 3),

for each silo s ∈ S, any user’s contribution to ∆s
t (Line 6) is limited to at most

C (regardless of the number of user records). Since a single user may exist in

any silo, they contribute at most |S|C to
∑

s∈S ∆
s
t , which means the user-level

sensitivity is |S|C. Therefore, when each silo adds Gaussian noise with variance

σ2C2|S|, the aggregate
∑

s∈S ∆
s
t includes Gaussian noise with variance σ2C2|S|2.

Then, by Lemma 3, it satisfies (α, α
2σ2 )-RDP for α > 1. And after T rounds, it

satisfies (α, Tα
2σ2 )-RDP by Lemma 1. Finally, by Lemma 2, we obtain the final

result.
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Algorithm 3 ULDP-NAIVE

Input: S: silo set (silo s ∈ S), ηl: local learning rate, ηg: global learning rate,

σ: noise parameter, C: clipping bound, T : total round, Q: #local epochs

1: procedure Server

2: Initialize model x0

3: for each round t = 0, 1, . . . , T − 1 do

4: for each silo s ∈ S do

5: ∆s
t ← Client(xt, C, σ, ηl)

6: end for

7: xt+1 ← xt + ηg
1
|S|
∑

s∈S ∆
s
t

8: end for

9: end procedure

10: procedure Client(xt, C, σ, ηl)

11: xs ← xt

12: for epoch q = 0, 1, . . . , Q− 1 do

13: Compute stochastic gradients g
(s)
t,q

14: ▷ E[g(s)t,q ] = ∇fs(xs)

15: xs ← xs − ηlg
(s)
t,q

16: end for

17: ∆t ← xt − xs

18: ∆̃t ← ∆t ·min
(
1, C

∥∆t∥2

)
▷ clipping with C

19: ∆′
t ← ∆̃t +N (0, Iσ2C2|S|) ▷ huge noise based on user-level sensitivity

20: return ∆′
t

21: end procedure

Secondly, we introduce the baseline algorithm ULDP-GROUP-k (described in

Algorithm 4), which combines the constraint of limiting each user’s records to a

given k while satisfying (k, ϵ, δ)-GDP. As Proposition 1 implies, this ensures (ϵ, δ)-

ULDP. The algorithm achieves GDP by implementing DP-SGD [48] within each

silo. The core principle of the algorithm is similar to that of [107], except for the

global setting of a single privacy budget across silos. Before executing DP-SGD,

we constrain the number of records per user to k (Line 8). This is accomplished

by employing flags, denoted as B, which indicate the records to be used for

training (i.e., bsu, i = 1), with a total of k records for each user across all silos

(i.e., ∀u,
∑

s,i b
s
u,i ≤ k). These flags must be consistent across all rounds to ensure
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Algorithm 4 ULDP-GROUP-k

Input: S: silo set (silo s ∈ S), ηl: local learning rate, ηg: global learning rate, σ:

noise parameter, Ds: training dataset of silo s, C: clipping bound, T : total

round, Q: #local epochs, k: group size, γ: sampling rate, B: flags for limit

contribution s.t. for each matrix bs ∈ B if bsu,i = 1 the user u’s i-th record in

silo s is used in training dataset, otherwise the record is excluded

1: procedure Server

2: Initialize model x0

3: for each round t = 0, 1, . . . , T − 1 do

4: for each silo s ∈ S do

5: ∆s
t ← Client(xt, C, σ, ηl, γ,b

s)

6: end for

7: θt+1 ← θt + ηg
1
|S|
∑

s∈S ∆
s
t

8: end for

9: end procedure

10: procedure Client(xt, C, σ, ηl, γ,b
s)

11: D′
s ← filter Ds by bs

12: xQ
t ←DP-SGD(θt, D

′
s, C, σ, ηl, γ, Q)

13: ▷ Algorithm 1 in [48]

14: ∆t+1 ← xQ
t − xt

15: return ∆t+1

16: end procedure

privacy. We disregard the privacy concerns in generating these flags as this is a

baseline method. We then perform DP-SGD to satisfy record-level DP (Line 9),

which is subsequently converted to GDP.

Theorem 4. For any 0 < δ < 1, any integer k to the power of 2 and α > 2k+1,

ULDP-GROUP-k satisfies (3kρ+ log (( α
2k
− 1)/ α

2k
)− (log δ + log α

2k
)/( α

2k
− 1), δ)-

ULDP where ρ = maxs∈S ρs s.t. for each silo s ∈ S, DP-SGD of local subroutine

satisfies (α, ρs)-RDP.

Proof. In each silo s ∈ S, by performing DP-SGD with Q epochs and T rounds,

we achieve record-level (α, ρs = ρ(σ, γ,QT ))-RDP. The actual value of ρs is cal-

culated numerically as described in [51]. RDP is known to satisfy parallel com-

position [151]. That is, for disjoint databases D1 and D2, their combined release
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(M1(D1),M2(D2)) where M1 is (α, ρ1)-RDP and M2 is (α, ρ2)-RDP satisfies

(α,max{ρ1, ρ2})-RDP. Since input databases Ds for any silo s ∈ S are disjoint

from others, after T rounds, the trained model satisfies (α, ρ = maxs∈S ρs)-RDP

for the entire cross-silo database D = D1 ⊕ ...⊕D|S|. Then, by applying Lemma

6 and Lemma 2, for any integer k that is a power of 2 and any α ≥ 2k+1, it also

satisfies (k, 3kρ+log (( α
2k
− 1)/ α

2k
)− (log δ+log α

2k
)/( α

2k
−1), δ)-GDP. By filtering

with B, we ensure that any user has at most k records in D. The final result is

obtained by Proposition 1. (An alternative method to compute ϵ is to use Lemma

5 instead of Lemma 6.)

While ULDP-GROUP shares algorithmic similarities with existing record-level

DP cross-silo FL frameworks [107], it presents weaknesses from several perspec-

tives: (1) Significant degradation of privacy bounds due to the group-privacy

conversion (DP to GDP). (2) The challenge of determining an appropriate group

size k [83], which requires substantial insights into data distribution across si-

los and might breach the trust model. The determination of the flags B can

also be problematic. (3) The use of group-privacy to guarantee ULDP neces-

sitates removing records from the training dataset, potentially introducing bias

and causing utility degradation [83, 152]. Our next proposed method aims to

address these challenges.

3.3.4 Advanced methods: ULDP-AVG/SGD

To directly satisfy ULDP without using group-privacy, we designed ULDP-AVG

(Algorithm 5) and ULDP-SGD (Algorithm 6). These can be seen as variants

of DP-FedAVG and DP-FedSGD [143]. In most cases, DP-FedAVG is preferred

in terms of privacy-utility trade-off and communication cost, while DP-FedSGD

might be preferable only when we have fast networks [143], which is also the case

for ULDP-AVG and ULDP-SGD. In the following analysis, we focus on ULDP-

AVG.

Intuitively, ULDP-AVG limits each user’s contribution to the model by training

the model for each user in each silo and performing per-user per-silo clipping

across all silos with globally prepared clipping weights. In each round, ULDP-

AVG computes parameter deltas using a per-user dataset in each silo to achieve

ULDP: selecting a user (Line 8), training local model withQ epochs using only the

selected user’s data (Lines 10-13), calculating model delta (Line 14) and clipping
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Algorithm 5 ULDP-AVG

Input: U : user set (user u ∈ U), S: silo set (silo s ∈ S), ηl: local learning rate,

ηg: global learning rate, σ: noise parameter, C: clipping bound, T : total

round, Q: #local epochs, W = (w1, ...,w|S|): matrix with weight for user u

and silo s, and ∀u ∈ U , ws,u ∈ ws and
∑

s∈S ws,u = 1

1: procedure Server

2: Initialize model x0

3: for each round t = 0, 1, . . . , T − 1 do

4: for each silo s ∈ S do

5: ∆s
t ← Client(xt,ws, C, σ, ηl)

6: end for

7: xt+1 ← xt + ηg
1

|U ||S|
∑

s∈S ∆
s
t

8: end for

9: end procedure

10: procedure Client(xt,ws, C, σ, ηl)

11: for user u ∈ U do ▷ per-user training with Ds,u

12: xs,u
t ← xt

13: for epoch q = 0, 1, . . . , Q− 1 do

14: Compute stochastic gradients gs,ut,q

15: ▷ E[gs,ut,q ] = ∇fs,u(x
s,u
t )

16: xs,u
t ← xs,u

t − ηlg
s,u
t,q

17: end for

18: ∆s,u
t ← xs,u

t − xt

19: ∆̃s,u
t ← ws,u ·∆s,u

t ·min
(
1, C

∥∆s,u
t ∥2

)
▷ per-user weighted clipping

20: end for

21: ∆s
t ←

∑
u∈U ∆̃s,u

t +N (0, Iσ2C2/|S|)
22: return ∆s

t

23: end procedure

the delta (Line 15). These clipped deltas ∆s,u
t are then weighted by ws,u (Line 15)

and summed for all users (Line 16). As long as the weights ws,u satisfy constraints

∀u ∈ U , ws,u > 0 and
∑

s∈S ws,u = 1, each user’s contribution, or sensitivity, to

the delta aggregation
∑

s∈S ∆
s
t is limited to C at most. This allows ULDP-AVG

to provide user-level privacy. We will discuss better ways to determine W later,

but a simple way is to set ws,u = 1/|S|. Compared to DP-FedAVG, ULDP-AVG
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Algorithm 6 ULDP-SGD

Input: U : user set (user u ∈ U), S: silo set (silo s ∈ S), ηg: global learning rate,

σ: noise parameter, C: clipping bound, T : total round, W = (w1, ...,w|S|):

matrix with weight for user u and silo s, and ∀u ∈ U , ws,u ∈ ws and∑
s∈S w

(u)
s = 1

1: procedure Server

2: Initialize model x0

3: for each round t = 0, 1, . . . , T − 1 do

4: for each silo s ∈ S do

5: gst ← Client(xt,ws, C, σ)

6: end for

7: xt+1 ← xt − ηg
1

|U ||S|
∑

s∈S g
s
t

8: end for

9: end procedure

10: procedure Client(xt,ws, C, σ)

11: for user u ∈ U do ▷ per-user training

12: Compute stochastic gradients gs,ut

13: ▷ E[gs,ut ] = ∇fs,u(xs)

14: g̃s,ut ← ws,u · gs,ut ·min
(
1, C

∥gs,ut ∥2

)
15: end for

16: gst ←
∑

u∈U g̃s,ut +N (0, Iσ2C2/|S|)
17: return gst
18: end procedure

increases computational cost due to per-user local training iteration but keeps

communication costs the same, which is likely acceptable in the cross-silo FL

setting.

Theorem 5. For any 0 < δ < 1 and α > 1, given noise multiplier σ, ULDP-

AVG satisfies (ϵ = Tα
2σ2 + log ((α− 1)/α)− (log δ + logα)/(α− 1), δ)-ULDP after

T rounds.

Proof. For any round t, due to the clipping operation (Line 15), for each silo s ∈ S

any user’s contribution to ∆s
t (Line 6) is limited to at most ws,uC (regardless

of the number of user records). Therefore, for
∑

s∈S ∆
s
t (Line 6), any user’s

contribution is at most
∑

s∈S ws,uC = C since
∑

s∈S ws,u = 1. That means
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Algorithm 7 ULDP-AVG with user-level sub-sampling

Input: U : user set (user u ∈ U), S: silo set (silo s ∈ S), ηl: local learning rate, ηg:

global learning rate, σ: noise parameter, C: clipping bound, T : total round, Q:

#local epochs, W = (w1, ...,w|S|): matrix with weight for user u and silo s, and

∀u ∈ U , ws,u ∈ ws and
∑

s∈S ws,u = 1, q: user-level sub-sampling probability

1: procedure Server

2: Initialize model x0

3: for each round t = 0, 1, . . . , T − 1 do

4: Ut ← Poisson sampling from U with probability q

5: for each silo u ∈ Ut do

6: for each silo s ∈ S do

7: ws,u ← 0

8: end for

9: end for

10: for each silo s ∈ S do

11: ∆s
t ← Client(xt,ws, C, σ, ηl) ▷ Client is the same as Algorithm 5

12: end for

13: xt+1 ← xt + ηg
1

q|U ||S|
∑

s∈S ∆s
t

14: end for

15: end procedure

the user-level sensitivity is just C. Since each silo adds Gaussian noise with

variance σ2C2/|S|,
∑

s∈S ∆
s
t includes Gaussian noise with variance σ2C2. Then,

by Lemma 3, it satisfies (α, α
2σ2 )-RDP for α > 1 in a user-level manner. And after

T rounds, it satisfies (α, Tα
2σ2 )-RDP by Lemma 1. Finally, by Lemma 2, we obtain

the result.

Remark 1. For further privacy amplification, we introduce user-level sub-sampling,

which can make RDP smaller according to the sub-sampled amplification theo-

rem (Lemma 4) [49]. User-level sub-sampling must be done globally across silos.

This sub-sampling can be implemented in the central server by controlling the

weight W for each round, i.e., all users not sub-sampled are set to 0 as shown

in Algorithm 7. This may violate privacy against the server but does not affect

the DP when the final model is provided externally as discussed in C.3 of [146].

We have detailed algorithms and experimental results to show the effectiveness

of user-level sub-sampling in our experiments.
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Figure 3.3: An intuitive illustration of the difference between ULDP-NAIVE and

ULDP-AVG. In ULDP-NAIVE, every single user can contribute to all model

deltas. On the other hand, in ULDP-AVG, one user’s contribution is limited to

a small portion, i.e., 1/|U | of the whole model delta. This reduces sensitivity.

When |U | is large, which often happens in cross-silo FL, it can be a particular

advantage.

Comparison to Baselines. Compared to ULDP-GROUP, ULDP-AVG sat-

isfies ULDP without group-privacy, thus avoiding the large privacy bound caused

by group-privacy conversion, the need to choose a group size k, and removing

records. ULDP-AVG can be used for an arbitrary number of records per user.

Also, we illustrate the intuitive difference between ULDP-NAIVE and ULDP-

AVG in Figure 3.3. Fundamentally, per-user clipping can be viewed as cross-user

FL (instead of cross-silo FL), ensuring that each user contributes only to their

user-specific portion of the aggregated model updates (i.e.,
∑

s∈S ∆̃
s,u
t ) instead of

the entire aggregated update (i.e.,
∑

s∈S ∆
s
t), thereby reducing sensitivity (as il-

lustrated in Figure 3.3). The user contributes only 1/|U | of the entire aggregated
model update, which is especially effective when |U | is large, as in cross-silo FL

(i.e., |S| ≪ |U |). Moreover, computing the model delta at the user level leads

to lower Gaussian noise variances due to large |U |, while it also introduces new

biases. The overhead due to such biases can also be seen in the convergence

analysis, motivating a better weighting strategy to reduce this overhead.

43



3. ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy

Convergence Analysis

Here, we theoretically analyze our proposed algorithm and provide a convergence

analysis to compare it with existing methods. To this end, we use the following

assumptions. Each of these is a standard assumption in non-convex optimization.

In particular, the second assumption, σg, quantifies the heterogeneity of non-i.i.d.

data between silos in FL and is used in many previous studies. σg = 0 corresponds

to the i.i.d. setting. For each s ∈ S and u ∈ U , we assume access to an unbiased

stochastic gradient gs,ut,q of the true local gradient ∇fs,u(x) for s and u.

Assumption 1 (Lipschitz Gradient). The function fs,u is L-smooth for all silo

s ∈ S and user u ∈ U , i.e., ∥∇fs,u(x)−∇fs,u(y)∥ ≤ L∥x− y∥, for all x, y ∈ Rd.

Assumption 2 (Bounded Local and Global Variance). The function fs,u is σl-

locally-bounded, i.e., the variance of each local gradient estimator is bounded as

E[∥gs,ut,q − ∇fs,u(x
s,u
t,q )∥2] ≤ σ2

l for all s, u and t, q. And the functions are σg-

globally-bounded, i.e., the global gradient variance is bounded as ∥∇fs,u(xt) −
f(xt)∥2 ≤ σ2

g for all s, u, t.

Assumption 3 (Globally Bounded Gradients). For all s, u, t, q, gradient is G-

bounded, i.e., ∥gs,ut,q ∥ ≤ G.

Theorem 6 (Convergence analysis on ULDP-AVG). For ULDP-AVG, with as-

sumptions 1, 2 and 3 and minx f(x) ≥ f ∗, let local and global learning rates ηl,

ηg be chosen as s.t. ηgηl ≤ 1
3QLᾱt

and ηl <
1√

30QL
, we have,

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
≤

1

cTηgηlQ|S|

(
E
[
f(x0)

C

]
− E

[
f ∗

C̄

])
+

5

2c
L2Qη2l (σ

2
l + 6Qσ2

g) +
3C̄Lηgηlσ

2
l

2c|S|2|U |
+

Lηgσ
2C2d

2cCηlQ|S||U |2

+A1

T−1∑
t=0

E

[∑
s∈S

∑
u∈U

(|αs,u
t − α̃s,u

t |+ |α̃
s,u
t − ᾱt|)

]

+A2

T−1∑
t=0

E

[∑
s∈S

∑
u∈U

(
|αs,u

t − α̃s,u
t |

2 + |α̃s,u
t − ᾱt|2

)]
(3.2)
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where c > 0, C̄ := max
s,u,t

(
C

max (C,ηl∥E[
∑

q∈[Q] g
s,u
t,q ]∥)

)
, C := min

s,u,t

(
C

max (C,ηl∥E[
∑

q∈[Q] g
s,u
t,q ]∥)

)
,

αs,u
t := ws,uC

max (C,ηl∥
∑

q∈[Q] g
s,u
t,q ∥) , α̃

s,u
t := ws,uC

max (C,ηl∥E[
∑

q∈[Q] g
s,u
t,q ]∥)

, ᾱt :=
1

|S||U |
∑

s∈S
∑

u∈U α̃s,u
t ,

A1 :=
G2

cC|U |T
and A2 :=

3LηgηlQG2

2cC|U |T
.

Proof. The many of techniques in the following proof are seen in [89, 153, 154].
For convenience, we define following quantities:

αs,u
t :=

ws,uC

max (C, ηl∥
∑

q∈[Q] g
s,u
t,q ∥)

, α̃s,u
t :=

ws,uC

max (C, ηl∥E
[∑

q∈[Q] g
s,u
t,q

]
∥)
, ᾱt :=

1

|S||U |
∑
s∈S

∑
u∈U

α̃s,u
t ,

∆s,u
t := −ηl

∑
q∈[Q]

gs,ut,q · αs,u
t , ∆̃s,u

t := −ηl
∑

q∈[Q]

gs,ut,q · α̃s,u
t , ∆̄s,u

t := −ηl
∑

q∈[Q]

gs,ut,q · ᾱt, (3.3)

∆̆s,u
t := −ηl

∑
q∈[Q]

∇fs,u(x
s,u
t,q ) · ᾱt, ∆s

t :=
∑
u∈U

∆s,u
t , ∆̃s

t :=
∑
u∈U

∆̃s,u
t , ∆̄s

t :=
∑
u∈U

∆̄s,u
t , ∆̆s

t :=
∑
u∈U

∆̆s,u
t .

(3.4)

where expectation in α̃s,u
t is taken over all possible randomness. Due to the

smoothness in Assumption 1, we have

f(xx+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2. (3.5)

The model difference between two consecutive iterations can be represented as

xx+1 − xt = ηg
1

|S||U |
∑
s∈S

(∆s
t + zst ) (3.6)

with random noise zst ∼ N (0, Iσ2C2/|S|). Taking expectation of f(xt+1) over the
randomness at communication round t, we have:

E [f(xx+1)] ≤ f(xt) + ⟨∇f(xt),E [xt+1 − xt]⟩+
L

2
E
[
∥xt+1 − xt∥2

]
= f(xt) + ηg⟨∇f(xt),E

[
1

|S||U |
∑
s∈S

(∆s
t + zst )

]
⟩+ L

2
η2gE

∥∥∥∥∥ 1

|S||U |
∑
s∈S

(∆s
t + zst )

∥∥∥∥∥
2


= f(xt) + ηg⟨∇f(xt),E

[
1

|S||U |
∑
s∈S

∆s
t

]
⟩+ L

2
η2gE

∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆s
t

∥∥∥∥∥
2
+

L

2
η2g

1

|S|2|U |2
σ2C2d

(3.7)

where d in the last expression is dimension of xt and in the last equation we use

the fact that zst is zero mean normal distribution.
Firstly, we evaluate the first-order term of Eq. (3.7),

⟨∇f(xt),E

 1

|S||U |
∑
s∈S

∆s
t

⟩
= ⟨∇f(xt),E

 1

|S||U |
∑
s∈S

(∆s
t − ∆̃s

t )

⟩+ ⟨∇f(xt),E

 1

|S||U |
∑
s∈S

(∆̃s
t − ∆̄s

t )

⟩+ ⟨∇f(xt),E

 1

|S||U |
∑
s∈S

∆̄s
t

⟩,
(3.8)
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and the last term of Eq. (3.8) can be evaluated as follows:

⟨∇f(xt),E

 1

|S||U |
∑
s∈S

∆̄s
t

⟩
= −

ηlᾱtQ

2
∥∇f(xt)∥2 −

ηlᾱt

2Q
E

∥∥∥∥∥∥ 1

ηl|S||U |ᾱt

∑
s∈S

∆̆s
t

∥∥∥∥∥∥
2+

ηlᾱt

2
E

∥∥∥∥∥∥√Q∇f(xt) +
1

√
Qηl|S||U |ᾱt

∑
s∈S

∆̆s
t

∥∥∥∥∥∥
2 .

(3.9)

This is because E∆̄s
t = ∆̆s

t and ⟨a, b⟩ = −1
2
∥a∥2− 1

2
∥b∥2+ 1

2
∥a+b∥2 for any vector

a, b.
We further upper bound the last term of Eq. 3.9 as:

E

∥∥∥∥∥√Q∇f(xt) +
1

√
Qηl|S||U |ᾱt

∑
s∈S

∆̆s
t

∥∥∥∥∥
2
 = QE


∥∥∥∥∥∥∇f(xt) +

1

Qηl|S||U |ᾱt

∑
s∈S

(
∑
u∈U

(−ηl
∑
q∈[Q]

∇fs,u(xs,u
t,q ) · ᾱt))

∥∥∥∥∥∥
2


= QE


∥∥∥∥∥∥ 1

Q|S||U |
∑
s∈S

∑
u∈U

∑
q∈[Q]

∇fs,u(xt)−∇fs,u(xs,u
t,q )

∥∥∥∥∥∥
2


(a1)

≤ Q ·
1

Q|S||U |
E

∑
s∈S

∑
u∈U

∑
q∈[Q]

∥∇fs,u(xt)−∇fs,u(xs,u
t,q )∥2


(a2)

≤
1

|S||U |
∑
s∈S

∑
u∈U

∑
q∈[Q]

L2E
[
∥xt − xs,u

t,q ∥2
]

(a3)

≤ L25Q2η2l (σ
2
l + 6Qσ2

g) + L230Q3η2l ∥∇f(xt)∥2,
(3.10)

where we use E [∥X1 + ...+Xn∥2] ≤ nE [∥X1∥2 + ...+ ∥Xn∥2] at (a1), L-smoothness

(Assumption 1) at (a2), and Lemma 3 of [154] at (a3).
Secondly, we evaluate the second-order term in Eq. (3.7) as follows:

E

∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆s
t

∥∥∥∥∥
2


≤ 3E

∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆s
t − ∆̃s

t

∥∥∥∥∥
2
+ 3E

∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆s
t − ∆̄s

t

∥∥∥∥∥
2
+ 3E

∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆̄s
t

∥∥∥∥∥
2
 .

(3.11)

This is because (a+ b+ c)2 ≤ 3a2+3b2+3c2 holds when a = A−B, b = B−C,
c = C for all vector A,B,C. We can bound the expectation in the last term of

46



3. ULDP-FL: Federated Learning with Across Silo User-Level Differential Privacy

Eq. (3.11) as follows:

E

∥∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆̄s
t

∥∥∥∥∥∥
2 = E

∥∥∥∥∥∥ 1

|S||U |
∑
s∈S

∑
u∈U

(ηl
∑

q∈[Q]

gs,ut,q · ᾱt)

∥∥∥∥∥∥
2

(a4)
= η2l E

∥∥∥∥∥∥ 1

|S||U |
∑
s∈S

∑
u∈U

∑
q∈[Q]

∇fs,u(x
s,u
t,q ) · ᾱt

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥ 1

|S||U |
∑
s∈S

∑
u∈U

∑
q∈[Q]

(∇fs,u(x
s,u
t,q )− gs,ut,q ) · ᾱt

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆̆s
t

∥∥∥∥∥∥
2+

η2l ᾱ
2
t

|S|2|U |2
E

∥∥∥∥∥∥
∑
s∈S

∑
u∈U

∑
q∈[Q]

(∇fs,u(x
s,u
t,q )− gs,ut,q )

∥∥∥∥∥∥
2

(a5)

≤ E

∥∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆̆s
t

∥∥∥∥∥∥
2+

η2l ᾱ
2
t

|S|2|U |2
E

∑
s∈S

∑
u∈U

∑
q∈[Q]

∥∥∥∇fs,u(x
s,u
t,q )− gs,ut,q

∥∥∥2


≤ E

∥∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆̆s
t

∥∥∥∥∥∥
2+

η2l ᾱ
2
t

|S|2|U |2
∑
s∈S

∑
u∈U

∑
q∈[Q]

σ2
l

≤ E

∥∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆̆s
t

∥∥∥∥∥∥
2+

η2l ᾱ
2
t

|S||U |
Qσ2

l , (3.12)

where we use E [∥X∥2] = E [∥X − E [X]∥2]+∥E [X]∥2 at (a4), and E [∥X1 + ...+Xn∥2] ≤
E [∥X1∥2 + ...+ ∥Xn∥2] when ∀i, j, i ̸= j, Xi and Xj are independent and E [Xi] =

0 and Assumption 2 at (a5).
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Lastly, combining all of above, we have

E [f(xx+1)] ≤ f(xt) + ηg⟨∇f(xt),E

 1

|S||U |
∑
s∈S

(∆s
t − ∆̃s

t )

⟩+ ηg⟨∇f(xt),E

 1

|S||U |
∑
s∈S

(∆̃s
t − ∆̄s

t )

⟩
−

1

2
ηgηlᾱtQ∥∇f(xt)∥2 −

1

2

ηg

Q|S|2|U |2ηlᾱt
E

∥∥∥∥∥∥
∑
s∈S

∆̆s
t

∥∥∥∥∥∥
2

+
ηgηlᾱt

2

(
L25Q2η2l (σ

2
l + 6Qσ2

g) + L230Q3η2l ∥∇f(xt)∥2
)

+
3

2
Lη2gE

∥∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆s
t − ∆̃s

t

∥∥∥∥∥∥
2+

3

2
Lη2gE

∥∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆̃s
t − ∆̄s

t

∥∥∥∥∥∥
2+

3

2
Lη2g

1

|S|2|U |2
E

∥∥∥∥∥∥
∑
s∈S

∆̆s
t

∥∥∥∥∥∥
2

+
3

2

η2gη
2
l ᾱ

2
tLQσ2

l

|S||U |
+

1

2

Lη2gσ
2C2d

|S|2|U |2

= f(xt)−
(
1

2
ηlηgᾱtQ−

ηgηlᾱt

2
L230Q3η2l

)
∥∇f(xt)∥2

−
(
1

2

ηg

Q|S|2|U |2ηlᾱt
−

3

2
Lη2g

1

|S|2|U |2

)
E

∥∥∥∥∥∥
∑
s∈S

∆̆s
t

∥∥∥∥∥∥
2

+
ηgηlᾱt

2
L25Q2η2l (σ

2
l + 6Qσ2

g) +
3

2

η2gη
2
l ᾱ

2
tLQσ2

l

|S||U |
+

1

2

Lη2gσ
2C2d

|S|2|U |2

+ ηg⟨∇f(xt),E

 1

|S||U |
∑
s∈S

(∆s
t − ∆̃s

t )

⟩+ ηg⟨∇f(xt),E

 1

|S||U |
∑
s∈S

(∆̃s
t − ∆̄s

t )

⟩
︸ ︷︷ ︸

A1

+
3

2
Lη2gE

∥∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆s
t − ∆̃s

t

∥∥∥∥∥∥
2+

3

2
Lη2gE

∥∥∥∥∥∥ 1

|S||U |
∑
s∈S

∆̃s
t − ∆̄s

t

∥∥∥∥∥∥
2

︸ ︷︷ ︸
A2

(a6)

≤ f(xt)− ηlηgᾱtQ

(
1

2
− 15L2Q2η2l

)
∥∇f(xt)∥2

+
ηgηlᾱt

2
L25Q2η2l (σ

2
l + 6Qσ2

g) +
3

2

η2gη
2
l ᾱ

2
tLQσ2

l

|S||U |
+

1

2

Lη2gσ
2C2d

|S|2|U |2
+A1 +A2

(a7)

≤ f(xt)− cηlηgᾱtQ∥∇f(xt)∥2 +
ηgηlᾱt

2
L25Q2η2l (σ

2
l + 6Qσ2

g) +
3

2

η2gη
2
l ᾱ

2
tLQσ2

l

|S||U |
+

1

2

Lη2gσ
2C2d

|S|2|U |2
+A1 +A2

(3.13)

where (a6) follows from
(

1
2

ηg
Q|S|2|U |2ηlᾱt

− 3
2
Lη2g

1
|S|2|U |2

)
≥ 0 if ηgηl ≤ 1

3QLᾱt
and

replacing the last terms with A1 and A2, and (a7) holds because there exists a
constant c > 0 satisfying

(
1
2
− 15L2Q2η2l

)
> c > 0 if ηl <

1√
30QL

. Divide both

sides of (3.13) by cηlηgQᾱt, sum over t from 0 to T − 1, divide both sides by T ,
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and rearrange, we have

1

T

T−1∑
t=0

E
[
∥∇f(xt)∥2

]
≤

1

cTηgηlQ

(
E
[
f(x0)

ᾱ0

]
− E

[
f(xT )

ᾱT−1
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+
5

2c
L2Qη2l (σ

2
l + 6Qσ2
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2
l

2c|S||U |
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(3.14)

Let max
s∈S,u∈U,t∈[T ]

(
C

max (C,ηl∥E[
∑

q∈[Q] g
s,u
t,q ]∥)

)
be C̄, and min

s∈S,u∈U,t∈[T ]

(
C

max (C,ηl∥E[
∑

q∈[Q] g
s,u
t,q ]∥)

)
be C, 1

|S|C ≤ ᾱt ≤ 1
|S|C̄ since ᾱt’s definition and 1

|S|
∑

s∈S ws,u = 1
|S| . Using this,

(3.14) is evaluated as follows:
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(3.15)

B1 and B2 is upper-bounded as follows:
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∣∣),
B2

(a8)

≤
3Lηg |S|
2cCηlQ

1

T

T−1∑
t=0

E

 1

|S||U |
∑
s∈S

∑
u∈U

∣∣∣∆s,u
t − ∆̃s,u

t

∣∣∣2
+ E

 1

|S||U |
∑
s∈S

∑
u∈U

∣∣∣∆̃s,u
t − ∆̄s,u

t

∣∣∣2


≤
3LηgηlQG2

2cC|U |
1

T

T−1∑
t=0

E

∑
s∈S

∑
u∈U

(∣∣αs,u
t − α̃s,u

t

∣∣2 +
∣∣α̃s,u

t − ᾱt
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with ∣∣∣∆s,u
t − ∆̃s,u

t

∣∣∣ ≤ ηlQG |αs,u
t − α̃s,u

t | ,∣∣∣∆̃s,u
t − ∆̄s,u

t

∣∣∣ ≤ ηlQG |α̃s,u
t − ᾱt| , (3.17)

by Assumption 3 of globally bounded gradients, and we use the same technique

at (a8) as (a1).

Remark 2. The first three terms recover the standard convergence bound up

to constants for FedAVG [89] when considering participants in FL as user-silo

pairs (i.e., we have |S||U | participants). The asymptotic bound is O( 1√
|S||U |QT

+

1
T
). Theorem 6 achieves this when we choose the global and local learning rates

ηg = |S|
√
|S||U |Q and ηl =

1√
TQL

, respectively. This requires a learning rate

|S| times larger than the usual FedAVG with |S||U | participants, which can be

interpreted as coming from the constraint on the weights W . The fourth term is

the convergence overhead due to Gaussian noise addition, and the last fifth and

sixth terms are the overhead due to bias from the clippings. If both the noise

and the clipping bias are zero, the convergence rate is asymptotically the same

as the FedAVG convergence rate.

Remark 3. The fourth term, accounting for the overhead due to noise, differs

slightly from DP-FedAVG. This term is inversely proportional to |S||U |2. As high-
lighted in the previous remark, if the global learning rate is set as ηg = |S|

√
|U |Q

in ULDP-AVG, this term becomes proportional to
√
|U |/|U |2, consistent with

the case of DP-FedAVG with |U | participants.

Remark 4. The fifth and sixth terms correspond to the overhead due to the clip-

ping biases |αs,u
t − α̃s,u

t | and |α̃
s,u
t − ᾱt|, respectively. The quantity |αs,u

t − α̃s,u
t |

represents the local gradient variance across all users in all silos and can be

made zero by full-batch gradient descent. The noteworthy term is |α̃s,u
t − ᾱt|.

As discussed in the analysis of [153], this term is influenced by the structure of

the neural network and data heterogeneity. It roughly quantifies how much the

magnitudes of all gradients deviate from the global mean gradient. We may be

able to minimize these values by selecting appropriate weights W, guided by the
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following optimization problem:

min
W

∑
s∈S

∑
u∈U

|α̃s,u
t − ᾱt|, s.t., ws,u > 0, ∀u,

∑
s∈S

ws,u = 1(
=
∑
s∈S

∑
u∈U

∣∣∣∣∣ws,uCs,u −
1

|S||U |
∑
s′∈S

∑
u′∈U

ws′,u′Cs′,u′

∣∣∣∣∣
)

where Cs,u := C

max (C,ηl∥E[
∑

q∈[Q] g
s,u
t,q ]∥)

.

However, determining the optimal weights is challenging because we cannot pre-

dict the gradients’ norms in advance, which could also cause another privacy

issue.

3.4 Private weighting protocol

In considering the bias described in Remark 4, we employed uniform clipping

weights in the ULDP-AVG algorithm, i.e., for any s ∈ S and u ∈ U , we set

ws,u = 1/|S|, as a feasible solution to the problem without privacy violation.

However, for a more sophisticated solution, we propose the following weighting

strategy. We set a weight wopt
s,u for Cs,u according to the number of records,

following the heuristic that a gradient computed from a large number of records

yields a better estimation that is closely aligned with the average. This results

in smaller bias. That is, let ns,u be the number of records for user u in silo s, we

set the weight as follows:

wopt
s,u :=

ns,u∑
s∈|S| ns,u

. (3.18)

We empirically demonstrate the effectiveness of this strategy in our experiments.

However, the crucial question arises: how can this be implemented without violat-

ing privacy?

For the aforementioned better weighting strategy, a central server could aggre-

gate histograms encompassing the user population (number of records per user)

within each silo’s dataset. Subsequently, the server could compute the appropri-

ate weights for each silo and distribute these weights back to the respective silos.

However, this approach raises significant privacy concerns, leading to a privacy

breach as the silo histograms are directly shared with the server. Moreover, when

the server broadcasts the weights back to the silos, it enables an estimation of the

entire histogram of users across all the silos, posing a similar privacy risk against
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other silos. In essence, privacy protection necessitates preserving confidentiality

in both of these directions. This is challenging because additive homomorphic

encryption techniques, such as the Paillier cryptosystem, cannot handle inverses

to compute weights as in Eq. (3.18), and the raw weights are disclosed to the

party with the secret key when encrypting the weights.

To address this privacy issue, we designed a novel private weighting protocol

to securely aggregate the user histograms from silos, compute the per-user clip-

ping weight for each user in each silo, and aggregate the weighted sum from all

silos. The protocol leverages well-established cryptographic techniques, including

secure aggregation [66, 149], the Paillier cryptosystem [155], and multiplicative

blinding [156]. Intuitively, the protocol employs multiplicative blinding to hide

user histograms against the server while allowing the server to compute inverses of

blinded histograms to compute the weights (Eq. (3.18)). Subsequently, the server

employs the Paillier encryption to conceal the inverses of blinded histograms be-

cause the silo knows the blinded masks. This also enables the server and silos

to compute private weighted sum aggregation with its additive homomorphic

property.

The details of the private weighting protocol are explained in Protocol 1. The

protocol consists of a setup phase, which is executed only once during the en-

tire training process, and a weighting phase, which is executed in each round of

training. In the setup phase, as depicted in (a-c) of Protocol 1, the server gen-

erates a key-pair for Paillier encryption, while the silos establish shared random

seeds through a Diffie–Hellman (DH) key exchange via the server. Subsequently,

in steps of (d-f), the blinded inverses of the user histogram are computed. In

the weighting phase, (a) the server prepares the encrypted weights, (b) the silos

compute user-level weighted model deltas in the encrypted world, and (c) the

server recovers the aggregated value. It is important to note that in the Paillier

cryptosystem, the plaintext data x exists within the additive group modulo n,

while encrypted data (denoted as Encp(x)) belongs to the multiplicative group

modulo n2 with an order of n. The system allows for operations such as addition

of ciphertexts and scalar multiplication and addition on ciphertexts.

Note that our assumption is that the results of user-level sub-sampling are

allowed to be open to the aggregation server. This is also the case in Protocol

1, but it could be hidden by combining the two-party verifiable sampling scheme

with 1-out-of-P Oblivious Transfer as described in Chapter 5, which would cause
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Protocol 1 Private Weighting Protocol

Inputs: Silo s ∈ S that holds an dataset with ns,u records for each user u ∈ U . A is central
aggregation server. Nmax is upper bound on the number of records per user, e.g., 2000. P is
precision parameter, e.g, 10−10. λ is security parameter, e.g., 3072-bit security.

1. Setup.

(a) A generates Paillier keypairs (PK, SK) with the given security parameter λ and
sends the public key PK to all silos. All silos s generate DH keypairs (pks, sks)
with the same parameter λ and transmit their respective public key pks to A. Both
A and all silos compute CLCM, which is the least common multiple of all integers
up to Nmax. The modulus n included in PK is used for the finite field Fn by A
and all silos.

(b) After receiving all pks, A broadcasts all DH public keys pks to all s. All s compute
shared keys sks,s′ from sks and received public keys pks′ for all s

′ ∈ S.

(c) Silo 0 (∈ S) generates a random seed R and encrypts R using sk0,s′ to obtain
Enc(R) and sends Enc(R) to s′ via A for all s′. All s ∈ S \ 0 receive and decrypt
Enc(R) with sks,0 and get R as a shared random seed.

(d) All s generate multiplicative blind masks ru ∈ Fn with the same R and compute
blinded histograms as B(ns,u) ≡ runs,u (modn) for all u ∈ U .

(e) All s generate pair-wise additive masks rus,s′ ∈ Fn employing sks,s′ for all s′ and
u, with rus,s′ = rus′,s. Subsequently, they calculate the doubly blinded histogram as
B′(ns,u) ≡ B(ns,u) +

∑
s<s′ r

u
s,s′ −

∑
s>s′ r

u
s,s′ (modn). All s send B′(ns,u) to A.

A aggregates these contributions to compute B(Nu) ≡
∑

s∈S B′(ns,u) (modn) for
each u, denoting Nu =

∑
s∈S ns,u.

(f) A computes the inverse of B(Nu) as Binv(Nu) = B(Nu)
−1 for each u. This is

the multiplicative inverse on Fn, which is efficiently computed by the Extended
Euclidean algorithm.

2. Weighting for each training round t.

(a) A encrypts Binv(Nu) using Paillier’s public key PK, resulting in Encp(Binv(Nu))
for all u. If user-level sub-sampling is required, the server performs Poisson sam-
pling with a given probability q for each user before the encryption. For non-
selected users, Binv(Nu) is set to 0. If we require user-level sub-sampling, we
perform Poisson sampling with given probability q on the server for each user
before the Paillier’s encryption and set Binv(Nu) = 0 for all users not selected.
Subsequently, A broadcasts all Encp(Binv(Nu)) to all silos.

(b) In each s, following the approach of ULDP-AVG, the clipped model delta ∆̃s,u
t is

computed for each user u. The weighted clipped model delta is then calculated as
Encp(∆̃

s,u
t ) = Encode(∆̃s,u

t , P, n)ns,uruCLCMEncp(Binv(Nu)).
Let the Gaussian noise be zst , we then compute z′s = Encode(zst , P, n)CLCM.
Note that we need to approximate real number ∆̃s,u

t and zst on a finite field
using Encode (described in Algorithm 8). Lastly, we compute the summation
Encp(∆

s
t ) =

∑
u∈U Encp(∆̃

s,u
t ) + z′s.

(c) In each s, random pair-wise additive masks are generated, and secure aggre-
gation is performed on Encp(∆

s
t ) mirroring the steps in 1.(f). Then, A gets∑

s∈S Encp(∆
s
t ). A decrypts it with Paillier’s secret key SK and decodes it by

Decode(
∑

s∈S ∆s
t , P, CLCM, n) and recovers the aggregated value.

(d) Steps 2.(a) through 2.(c) are repeated for each training round.
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Algorithm 8 Encode and Decode functions in the private weighting protocol

1: procedure Encode(x, P, n) ▷ e.g., P = 10−10

2: /* to turn floating point into fixed point */

3: x← x/P ▷ compute as floating point

4: x← x as integer

5: /* to map integer Z into finite field Fn*/

6: x← x (modn)

7: return x

8: end procedure

9: procedure Decode(x, P, CLCM, n)

10: /* to map finite field Fn number into integer Z */

11: if x > n//2 then ▷ // means integer division

12: x← x− n

13: else

14: x← x

15: end if

16: /* to remove CLCM factor*/

17: x← x/CLCM ▷ compute as floating point

18: /* to recover original magnitude */

19: x← xP

20: return x

21: end procedure

extra computation costs. As an overview, for each user u, the server creates P −1

dummy data Encp(0) for Encp(Binv(Nu)) described in 2.(a) of Protocol 1. When

the client performs OT on this data, the selection probability of Encp(Binv(Nu))

is 1
P

and that of Encp(0) is P−1
P

. The selection of Encp(Binv(Nu)) means that

the user is not sampled by the user-level sub-sampling. In this way, the server

does not know which data was retrieved by the client from the OT, and the

client cannot know the sampling result due to the Paillier encryption. However,

the expressed probability is likely to be less strict because it can only represent

discrete probability distributions just like the proposed method in Chapter 5.

Next, we provide a theoretical analysis of this private weighting protocol (Pro-

tocol 1) in terms of correctness and privacy.
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3.4.1 Correctness

The protocol must compute the correct result as the same result as the non-secure

method. To this end, we consider the correctness of the aggregated data obtained

in each round. Let
∑

s∈S ∆
s
t with the non-secure method be ∆ and the one with

the Protocol 1 be ∆sec, our goal is formally stated as Pr[|∆−∆sec|∞ > P ] < negl,

where P is a precision parameter and negl signifies a negligible value.

Initially, with regards to secure aggregation, the additive pair-wise masks cancel

out as shown in [66]. For the difference, silos must participate in any rounds in

the cross-silo FL. When collecting the histogram, additive masks are canceled out

as follows:
B(Nu) =

∑
s∈S

B(ns,u)

+
∑
s<s′

(rus,s′ − rus′,s)︸ ︷︷ ︸
canceled out

−
∑
s>s′

(rus,s′ − rus′,s)︸ ︷︷ ︸
canceled out

The same applies to secure aggregation for model delta. Note that the mask is not

directly added to the ciphertext (within the multiplication group of n2); instead,

scalar addition within Fn that takes advantage of the homomorphic property of

the Paillier cryptosystem is utilized. As secure aggregation doesn’t result in any

degradation of the aggregation outcome when all terms are within Fn, our focus

shifts to other components. Note that there are errors due to the handling of

fixed-point numbers on a finite field.

From the protocol description, Encp(∆sec) is analyzed as follows:

Encp(∆sec) =
∑
s∈S

Encp(∆
s
t) =

∑
s∈S

∑
u∈U

Encp(∆̃
s,u
t ) + z′s

=
∑
s∈S

∑
u∈U

Es,u
t ns,uruCLCMEncp(Binv(Nu)) + Zs

tCLCM

(1)
= Encp(

∑
s∈S

(
∑
u∈U

(Es,u
t ns,uruCLCMBinv(Nu))) + Zs

tCLCM)

= Encp(
∑
s∈S

(
∑
u∈U

(Es,u
t ns,uruCLCM(ruNu)

−1) + Zs
tCLCM))

(2)
= Encp(

∑
s∈S

(
∑
u∈U

(Es,u
t ns,uC−Nu) + Zs

tCLCM))

where C−Nu is the result of modular multiplication between CLCM and the modu-

lar multiplicative inverse ofNu, E
s,u
t = Encode(∆̃s,u

t , P, n) and Zs
t = Encode(zst , P, n).

Equation (1) is because all of Binv, E
s,u
t , ns,u, ru and CLCM ∈ Fn. At (2), the
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modulo inverse of ru is canceled out because ru ∈ Fn and ru almost always has a

modulo inverse. However, this does not hold when ru and n are not coprime. Let

p and q be two large primes used in the Paillier cryptosystem, such that n = pq,

then the probability of a random ru ∈ Fn and n are not coprime is

n− 1− ϕ(n)

n− 1
=

n− 1− (p− 1)(q − 1)

n− 1
, (3.19)

where ϕ is Euler’s totient function. This probability is negligibly small when n

is sufficiently large. In the case of user-level sub-sampling, Binv(Nu) is set 0 and

we see that only the model delta for user u is all zeros, which produces exactly

the same result as if the unselected users did not participate in the training

round. The important condition is that if Nu ≤ Nmax and Nu is a factor of CLCM,

CLCM/Nu is always divisible on Z and the result is the same as on Fn. Also if∑
s∈S (

∑
u∈U (Es,u

t ns,uC−Nu) + Zs
tCLCM) ∈ Z is smaller than n, it yields the same

results on Z and Fn. Hence, when these conditions are satisfied, decrypted value

∆sec ∈ Fn obtains the same result on ∆sec ∈ Z. After decryption, we consider

∆sec ∈ R. The final result is decoded by Decode(∆sec, P, CLCM, n) ∈ R as

follows:
Decode(∆sec, P, CLCM, n) =

∑
s∈S

(
∑
u∈U

(
ns,u

Nu

∆̃′
s,u,t) + Z ′

s,t)

where, from Algorithm 8, ∆̃′
s,u,t is the same as the result of computing ∆̃s,u

t in

fixed-point with precision P , and Z ′
s,t is the same as zst .

Therefore, the correctness of these calculations is satisfied when two conditions

(1)Nu ≤ Nmax and (2)
∑

s∈S (
∑

u∈U (Es,u
t ns,uC−Nu) + Zs

tCLCM) < n, are satisfied.

To satisfy (1), Nmax must be sufficiently large, and a larger Nmax leads to a larger

CLCM. Hence, when we take n is large, these conditions can be satisfied unless

the parameters or noise take on unrealistic values.

For example, suppose the range of the noise and aggregated model parameters

is [−1010, 1010], P = 10−10, Nmax = 2000 and λ is 3072-bit security, we have

n > 10924 by Paillier cryptosystem, Es,u
t < 1020 , Zs

t < 1020 and CLCM < 10867.

Then,
∑

s∈S (
∑

u∈U (Es,u
t ns,uC−Nu) + Zs

tCLCM) < 10888 < n and we satisfy the

condition (2). CLCM grows exponentially with respect to Nmax. One possible

solution for this is that we can make it very small by limiting the number of records

per user to several values. For example, {101, 102, 103, 104} then CLCM = 104.
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3.4.2 Privacy

Privacy in this protocol means that both the central server and the silos do

not get more information than is available in the original ULDP-AVG while we

perform the better weighting strategy. Our approach relies on a private weighted

sum aggregation technique employing the Paillier cryptosystem [157, 107] and

secure aggregation [66]. Formal security arguments for these methodologies are

available in their respective sources. The protocol is fully compatible with these

works because all data exchanged is handled on Fn including random masks for

secure aggregation.

A different view of the server from these basic methods is B(Nu) for all u,

which is multiplicatively blinded aggregated histogram. Since B(ns,u) for s and

u is securely hidden by secure aggregation, only B(Nu) is the meaningful server

view. B(Nu) is ruNu (modn) and this is randomly distributed on Fn if ru is

uniformly distributed on Fn. Also, the inverse of Binv(Nu) is uniformly distributed

as well. This is because the multiplication operation in a finite field is closed and

bijective. Therefore, it is information-theoretically indistinguishable and private.

Such multiplicative blinding has been also used in [156]. The view of the silos is

the same as that in [107], even though the contents of the weights are sensitive,

and privacy is protected by Paillier encryption. Note that the security of the

initial DH key exchange and the security of the Paillier cryptosystem follow the

security parameter λ, which is an input to the protocol.

3.5 Experiments

3.5.1 Settings

In this section, we evaluate the privacy-utility trade-offs of the proposed meth-

ods (ULDP-AVG/SGD), along with the previously mentioned baselines (ULDP-

NAIVE/GROUP-k) and a non-private baseline (FedAVG with two-sided learning

rates [89], denoted by DEFAULT). In ULDP-AVG/SGD, we set the weights as

ws,u = 1/|S| for all s and u, the one using wopt
s,u is referred to as ULDP-AVG-w.

Regarding ULDP-GROUP-k, flags B are generated for existing records to mini-

mize waste on filtered out records, despite the potential privacy concerns. Various

values, including the maximum number of user records, the median, 2, and 8, are
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tested as group size k and we report GDP using group-privacy conversion of RDP.

In cases where k is not a power of 2, the computed ϵ is reported for the largest

power of 2 below k, showcasing the lower bound of GDP to underscore that ϵ

is large. The hyperparameters, including global and local learning rates ηg, ηl,

clipping bound C, and local epoch Q, are set individually for each method. Exe-

cution times are measured on macOS Monterey v12.1, Apple M1 Max Chip with

64GB memory with Python 3.9 and 3072-bit security. Most of the results are

averaged over 5 runs and the colored area in the graph represents the standard

deviation. All of our implementations and experimental settings are available b.

Datasets

Datasets used in the evaluation comprise real-world open datasets, including

Credicard [158], well-known image dataset MNIST and two medical datasets,

HeartDisease and TcgaBrca from [106], benchmark datasets for cross-silo FL.

Creditcard is a popular tabular dataset for credit card fraud detection from Kag-

gle. We undersample the dataset and use about 25K training data and a neural

network with about 4K parameters. For MNIST, we use a CNN model with

about 20K parameters, 60K training data and 10K evaluation data, and assign

silos and users to all of the training data. For HeartDisease and TcgaBrca, we

use the same settings such as number of silos (i.e., 4 and 6), data assignments to

the silos, models, loss functions, etc. as shown in the original paper. These two

datasets are quite small and the model has less than 100 parameters.

For all datasets, we need to link all records to each user and silo, and how to

allocate the records to users and silos is explained below.

Record allocation for MNIST and Creditcard. We designed two different

record distribution patterns, uniform and zipf, to model how user records are

scattered across silos in the MNIST and Creditcard datasets. Both distributions

take the number of users |U | and the number of silos |S|. It associates each record

with a user and a silo. (1) In uniform, every record is assigned to a user with equal

probability, and likewise, each record is assigned to a silo with equal probability.

(2) Zipf combines two types of Zipf distributions as shown in Figure 3.4a. First,

the distribution of the number of records per user follows a Zipf distribution.

Then, for each user, the numbers of records are assigned to different silos based

bhttps://github.com/FumiyukiKato/uldp-fl
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(a) MNIST and Creditcard. (b) HeartDisease and TcgaBrca.

Figure 3.4: Record distribution across users and silos.

(a) uniform. (b) zipf.

Figure 3.5: Example of record allocation on Creditcard.

on another Zipf distribution. Each of the two Zipf distributions takes a parameter

α that determines the concentration of the numbers. In the experiments, we used

α = 0.5 for the first distribution and α = 2.0 for the second distribution. This

choice is rooted in the observation that the concentration of user records is not

as high as the concentration in the silos selected by each user.

For Creditcard and MNIST, the number of silos |S| is fixed at 5. We used

100, 1000 for Creditcard as |U | and 100, 10000 for MNIST. For MNIST, we can

require each user to have only 2 labels at most in the non-i.i.d. setting. For

example, when |U | = 100 and |S| = 5, the record distribution of Creditcard

dataset is shown in Figure 3.5. The number of records is plotted for each user
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and color-coded for each silo.

Record allocation for HeartDisease and TcgaBrca. For the HeartDis-

ease and TcgaBrca datasets, we adopted the same two distributions uniform and

zipf as the above-mentioned ones. In the benchmark datasets HeartDisease and

TcgaBrca, all records are already allocated to silos and the number of records of

each silo is fixed. Therefore, the design of the user-record allocation is slightly

different. (1) In uniform, all records belong to one of the users with equal proba-

bility without allocation to silos. (2) In zipf, as shown in Figure 3.4b, the number

of records for a user is first generated according to a Zipf distribution, and 80%

of the records are assigned to one silo, and the rest to the other silos with equal

probability. The priority of the silo is chosen randomly for each user. We used

α = 0.5 for the parameter of the Zipf. In TcgaBrca, Cox-Loss is used for loss func-

tion [106], which needs more than two records for calculating valid loss and we set

more than two records for each silo and user for per-user clipping of ULDP-AVG.

Hyperparameters

All scripts used in the experiments, including hyperparameters, can be accessed
c.

3.5.2 Results

Privacy-utility trade-offs under ULDP. Figures 3.6 show the utility and

privacy evaluation results on Creditcard. The average number of records per user

(denoted as n) in entire silos and the distribution changes for each figure. All

experiments used a fixed noise parameter σ = 5.0 and δ = 10−5, utility metrics

(Accuracy for Creditcard) are displayed on the left side and accumulated privacy

consumption ϵ for ULDP are depicted on the right side. Note that the privacy

bounds for ULDP-GROUP-k are derived from the local DP-SGD and depend on

not only the group size k but also the size of the local training dataset.

Overall, the proposed method ULDP-AVG/SGD achieves competitive utility

with fast convergence and high accuracy, while achieving considerably small pri-

vacy bounds, which means significantly better privacy-utility trade-offs compared

to other baselines. We observe that the baseline method, ULDP-NAIVE, has low

chttps://github.com/FumiyukiKato/uldp-fl/blob/main/exp/script/privacy_

utility.sh
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(a) n ≈ 246 (|U | = 100), uniform, Test Accuracy and

Privacy.

(b) n ≈ 246 (|U | = 100), zipf, Test Accuracy and Pri-

vacy.

(c) n ≈ 25 (|U | = 1000), uniform, Test Accuracy and

Privacy.

(d) n ≈ 25 (|U | = 1000), zipf, Test Accuracy and Pri-

vacy.

Figure 3.6: Privacy-utility trade-offs on Cred-

itcard dataset: Accuracy (Left), Privacy

(Right).

(a) n ≈ 600 (|U | = 100), uniform.

(b) n ≈ 600 (|U | = 100), zipf, iid.

(c) n ≈ 600 (|U | = 100), zipf, non-iid.

(d) n ≈ 6 (|U | = 10000), uniform, iid.

(e) n ≈ 6 (|U | = 10000), zipf, iid.

(f) n ≈ 6 (|U | = 10000), zipf, non-iid.

Figure 3.7: Privacy-utility trade-offs on

MNIST dataset: Test Loss (Left), Accuracy

(Middle), Privacy (Right).

accuracy and that ULDP-GROUP-k requires much larger privacy budgets, which

is consistent with the analysis on the conversion of group privacy described ear-

lier. The convergence speed of ULDP-AVG is faster than that of ULDP-SGD,

which is the same as that of DP-FedAVG/SGD. Nevertheless, there is still a gap

between ULDP-AVG and the non-private method (DEFAULT) in terms of con-

vergence speed and ultimately achievable accuracy, as a price for privacy. Also, as
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(a) n ≈ 10 (|U | = 50), uniform.

(b) n ≈ 10 (|U | = 50), zipf.

(c) n ≈ 2.5 (|U | = 200), uniform.

(d) n ≈ 2.5 (|U | = 200), zipf.

Figure 3.8: HeartDisease.

(a) n ≈ 17 (|U | = 50) uniform.

(b) n ≈ 17 (|U | = 50), zipf.

(c) n ≈ 4 (|U | = 200), uniform.

(d) n ≈ 4 (|U | = 200), zipf.

Figure 3.9: TcgaBrca.

shown in Figure 3.6c, for small n (i.e., a large number of users), ULDP-GROUP-

max/median show higher accuracy than ULDP-AVG. This is likely due to the

overhead from finer datasets at user-level, which increases the bias compared to

DP-FedAVG, as seen in the theoretical convergence analysis for ULDP-AVG.

Figure 3.8, 3.9, and 3.7 show privacy-utility trade-offs on HeartDisease, Tc-

gaBrca, and MNIST, respectively. All experiments used a fixed noise parameter

(noise multiplier) σ = 5.0 and δ = 10−5, utility metrics (Accuracy for HeartDis-

ease and MNIST, C-index for TcgaBrca) are plotted on the left side, and accumu-

lated privacy consumption ϵ for ULDP are plotted on the right side. For clarity,

the test loss is shown on the left-hand side for MNIST. The average number of

records per user (denoted as n) in entire silos and the distribution (uniform/zipf)
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changes for each figure.

In all datasets, consistently, ULDP-AVG is competitive in terms of utility,

ULDP-AVG-w shows much faster convergence, and ULDP-SGD shows slower

convergence. ULDP-NAIVE achieves a low privacy bound; however, its utility

is much lower than other methods. The group-privacy methods such as ULDP-

GROUP-k show reasonably high utility, especially in settings where n is small.

This is because the records to be removed due to the number of records per user

being over group size k is small. However, the ULDP privacy bound ULDP-

GROUP-k achieves ends up being very large. Note that the privacy bounds for

ULDP-GROUP-k are derived from the local DP-SGD and depend on not only

the group size k but also the size of the local training dataset. The exceptions

are cases where the local data set size is large and the number of records per user

is very small as in Figures 3.7d, 3.7e, and 3.7f. In these cases, ULDP-GROUP-2

achieves a reasonably small privacy bound. In other words, if the number of

user records is fixed at one or two in the scenario, and the number of training

records is large (it is advantageous for ULDP-GROUP because the record-level

sub-sampling rate in DP-SGD becomes small), it could be better to use ULDP-

GROUP.

The results for the MNIST, non-i.i.d, and |U | = 100 case highlight a weak

point of ULDP-AVG. Note that non-i.i.d here is at user-level and DEFAULT and

ULDP-GROUP are less affected by non-i.i.d because they train per silo rather

than per user. As Figure 3.7c shows, the convergence of ULDP-AVG is worse

compared to other results. It suggests that ULDP-AVG may emphasize the bad

effects of user-level non-i.i.d. distribution that were not an issue with normal

cross-silo FL because the gradient is not computed at the user level as in ULDP-

AVG. On the other hand, this is less problematic when the number of users is large

as shown in Figure 3.7f. This is due to the relatively smaller effect of individual

user overfitting caused by non-i.i.d. distribution as the sample size (the number

of users) increases.

Effectiveness of the better weighting strategy. To highlight the effec-

tiveness of the better weighting strategy, Figure 3.10 shows the test losses of

the Creditcard dataset on different record distributions with ULDP-AVG and

ULDP-AVG-w. We present the results with various numbers of silos: 5, 20, and

50. The need for the better weighting strategy is emphasized by the distribution

of the records and the number of silos |S|. When there are large skews in the
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Figure 3.10: Test loss of Creditcard: Weighting method is effective, especially in

skewed distribution in many silos.

Figure 3.11: Test loss of TcgaBrca: the better weighting is effective especially in

biased distribution.

user records, as in the Zipf distribution, giving equal weights (i.e., ULDP-AVG)

results in inefficiency and opens up a large gap from ULDP-AVG-w. This trend

becomes even more significant as |S| increases because all weights become smaller

in ULDP-AVG.

Similarly, Figure 3.11 shows the effect of the better weighting strategy (i.e.,

ULDP-AVG vs ULDP-AVG-w) on the TcgaBrca dataset. Both uniform and
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Figure 3.12: In Creditcard, user-level sub-sampling achieves a more competitive

privacy-utility trade-off.

Figure 3.13: In MNIST, user-level sub-sampling achieves a more competitive

privacy-utility trade-off.

Zipf distributions have greatly improved in convergence speed with the better

weighting strategy. In particular, since the better weighting is adapted to the

distribution of the records, it also shows little variance in the results.

User-level sub-sampling effect. We evaluate the effect of user-level sub-

sampling. The details of the algorithm of ULDP-AVG with user-level sub-sampling

are shown in Algorithm 7. The differences from ULDP-AVG are highlighted

in red letters. Figure 3.12 illustrates how user-level sub-sampling affects the

privacy-utility trade-offs on the Creditcard dataset with 1000 users. We re-

port the test accuracy and ULDP privacy bounds for various sampling rates

q = 0.1, 0.3, 0.5, 0.7, 1.0. Basically, a tighter privacy bound is obtained at the

expense of utility. As the results show, the degradation of utility due to sub-
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Figure 3.14: The dominant execution time of training grows linearly with param-

eter size and/or the number of users.

sampling could be acceptable to some extent (e.g., q = 0.7) and there could be

an optimal point for each setting. Figure 3.13 illustrates how user-level sub-

sampling affects the privacy-utility trade-offs on MNIST with 10000 users, with

sampling rates q = 0.1, 0.3, 0.5, 1.0. The results show that while privacy is greatly

improved, there is less degradation in utility. This is due to the fact that there

are a sufficient number of users, i.e., 10000. In the case of a larger user base,

the effect of sub-sampling is even greater and is likely to become an important

technique.

Overhead of private weighting protocol. We evaluate the overheads of ex-

ecution time with the private weighting protocol. Figure 3.15 shows the execution

times following HeartDisease and TcgaBrca with the number of users 10 and 100,

respectively, with a skewed (zipf) distribution. These two benchmark scenarios of

cross-silo FL from [106] use small models. The left figure shows the time required

for local training in each silo, and the right figure shows the execution time for

key exchange, preparation of blinded histograms, and aggregation. As shown in

the figure, the execution time of local training is dominant and it increases with
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Figure 3.15: With a small model, the private weighting protocol has a practical

execution time.

a larger number of users. Overall, it shows realistic execution times under these

benchmark scenarios [106]. However, there is still non-negligible overhead, with

room for improvement in efficiency.

Figure 3.14 describes the execution times of our proposed private weighting

protocol (Protocol 1) with an artificial dataset with 10000 samples and a model

with 16 parameters, 20 users, and 3 silos as default. Note that these are on a

considerably small scale. The major time-consuming parts of the protocol are key

exchange, training in each silo, and aggregation on the server. The upper figure

shows the execution times on each part of the protocol with various parameter

sizes from 16 to 107 and the bottom figure shows the various number of users from

10 to 40. The execution time of local training is averaged by silos. The dominant

part is the local training part, which is considered to be an overhead due to the

computation with the Paillier encryption, which grows linearly with parameter

size and/or the number of users. The larger parameter size increases the aggre-

gation time on the server as well. Our implementation is based on the Python

3.9 library d with 3072-bit security, which itself could be made faster by software

implementation or hardware accelerators [159]. However, it can be challenging

to apply to larger models, such as DNNs, because the execution time increases

linearly on a non-negligible scale with parameter size. Therefore, extending our

proposed method to deep models with millions of parameters is a future chal-

lenge. It may be possible to replace such software-based encryption methods by

using hardware-assisted Trusted Execution Environments, which have recently

dhttps://github.com/data61/python-paillier
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attracted attention in the FL field [73, 24].

3.6 Conclusion

This study focused on the weaknesses of the privacy of FL and aimed to inte-

grate user-level DP into FL, providing practical privacy guarantees for the trained

model in general cross-silo scenarios. We proposed the first cross-silo user-level

DP FL framework where a user may have multiple records across silos and de-

signed an algorithm using per-user clipping to directly satisfy ULDP instead of

group-privacy. In addition, we developed a better weighting strategy that im-

proves the utility of our proposed method and a novel protocol that performs it

privately. Finally, we demonstrated the effectiveness of our proposed method on

several real-world datasets and showed that it performs significantly better than

existing methods. We also verified that our proposed private protocol works in

realistic time in existing cross-silo FL benchmark scenarios.

3.6.1 Future works

• In terms of the privacy aspects, our scenario and privacy definition are

fairly generalized based on real-world use cases, but in fact, they can be

generalized further. One interesting direction is to consider the case where

individual users have their own privacy preferences, i.e., different privacy

budgets. This is known as personalized DP [160] and is still an unexplored

issue in the cross-silo FL setting and across silo user-level DP.

• Since our proposed method, ULDP-AVG, causes a privacy-utility trade-off,

considering ways to improve it can be a future direction. Exploring various

strategies to enhance the balance between privacy preservation and utility

of the model will be crucial for broader adoption and effectiveness.

• Similarly, the proposed MPC (Multi-Party Computation) protocol gener-

ates a trade-off between privacy and efficiency. Our method needs to be

further improved, as considerable impracticality was observed for the scala-

bility of the model. Addressing these challenges to enhance the practicality

and scalability of our approach will be a significant focus in future work.
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CHAPTER 4

OLIVE: Oblivious Federated

Learning on Trusted Execution

Environment against the risk

of sparsification

In this chapter, our focus is on FL with server-side TEE, which is primarily

advantageous for privacy and security reasons against an untrusted aggregation

server, i.e., A and D as shown in Table 1.2.

4.1 Introduction

As described in Section 2.3.1, the utilization of server-side TEE has attracted

attention. It is advantageous from several perspectives compared to the alter-

natives such as secure aggregation (SA)a. However, pairwise-masking-based SA

[66, 97, 96, 161] sacrifices usability in several aspects. It requires time-consuming

synchronous distributed mask generation among multiple clients and lacks robust-

ness with respect to participant asynchronicity/dropouts [67], which is difficult

to handle and can impede implementation by general practitioners. Further, SA

aThe recent paper [67] categorized TEE as a method of secure aggregation in FL.
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the risk of sparsification

Figure 4.1: Olive, i.e., ObLIVious fEderated learning on TEE is the first

method of its kind to prevent privacy risks caused by the leakage of memory

access patterns during aggregation in FL rigorously. This allows, for example, to

enjoy utility of CDP-FL without requiring a trusted server like LDP-FL.

is inflexible and makes it hard to do extensions, such as Byzantine resistance [71]

and asynchrony [75]. In addition, application of gradient sparsification to FL with

SA requires either random sparsification [97] or a common sparsified index among

multiple clients [161] because of the pairwise constraints, impairing training qual-

ity. One simple and important solution to these problems is the use of TEE, even

though it requires additional special hardware. In addition to the confidential-

ity of gradients (i.e., SA functionality), TEE provides remote program integrity

and verifiability via Remote Attestation, which prevents a malicious server from

tampering with the supposed process and provides security against them.

Moreover, FL with TEE addresses the utility gap of differentially private FL

(DP-FL) [58, 54, 57] as shown in Table 2.1. The recently studied Shuffle DP-FL

[122, 123, 57], which aims to combine the best LDP-FL trust model [56, 119]

with the model utility of the CDP-FL [58, 54, 118], exhibits a gap with respect

to CDP-FL in terms of utility [57]. As depicted in Figure 4.1, TEE facilitates

secure model aggregation on an untrusted server, which ensures only differentially

private models are observable by the server. Without trust in the server, as in

LDP-FL, model utility is equivalent to that of conventional CDP-FL because any

DP mechanism can be implemented within the TEE, whereas the mechanism is

restricted when using SA [96]. This important use case, i.e., the combination of
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the proposed method with CDP-FL, is analyzed in detail in Section 4.6.

However, implementing a server-side TEE to achieve the aforementioned ben-

efits requires careful analysis of the vulnerabilities of TEE. Several serious vul-

nerabilities are known to affect TEE owing to side-channel attacks [84, 85, 86],

which can cause privacy leakage despite encryption. In particular, such attacks

can expose data-dependent memory access patterns of confidential execution and

enable attackers to steal sensitive information, such as RSA private keys and

genome information [136]. The specific information that may be stolen from

these memory access patterns is domain-specific and is not yet known for FL,

although several studies have attempted to use TEE for FL [73, 74, 138, 72, 139].

Thus, the extent of the threat of side-channel attacks against FL on a TEE and

the types of possible attacks remain critical open problems in this context.

Oblivious algorithms [87, 162, 140] are important leakage prevention techniques

that generate only data-independent memory access patterns. A general approach

involves making the RAM oblivious, e.g., oblivious RAM (ORAM). PathORAM

[162] is known to be the most efficient technique. However, it assumes a private

memory space of a certain size and is not applicable to practical TEE, such as Intel

SGX [70]. Although Zerotrace [163] addresses this issue, it still incurs significant

overhead. Therefore, the design of an algorithm-specific method to obtain an

efficient algorithm is an important problem. In this context, [140] proposed an

efficient oblivious algorithm for specific ML algorithms, and [164] studied SQL

processing. However, an efficient method for FL-specific aggregation algorithm,

which can be a vulnerable component of FL with a server-side TEE, has not yet

been proposed.

In this study, we address the aforementioned gaps; (1) we clarify privacy risks

by designing specific attacks on FL with a server-side TEE and demonstrate them

in a real-world scenario; (2) we devise a novel defense against the risks by design-

ing efficient oblivious algorithms and evaluate them empirically on a practical

scale. Our analysis reveals that parameter position information is leaked dur-

ing the execution of the FL aggregation algorithm in a sparsified environment.

Sparsification is often used in FL [90, 91, 97, 161] to reduce communication costs

and/or improve model accuracy [165]. The goal of an attacker is to infer a set of

sensitive labels included in the target user’s training data, similar to the goal de-

scribed in [23, 166]. We assume the attacker to be capable of observing memory

access patterns, accessing the dataset that covers the overall dataset distribu-
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tion, and accessing the model trained during each round. Although sparsified

index information in FL has been considered as somewhat private information

in previous studies [161, 122], unlike in our study, no specific attacks have been

investigated. After demonstrating the proposed attack on real-world datasets,

we propose efficient oblivious algorithms to prevent such attacks completely. To

this end, we carefully construct existing oblivious building blocks, such as the

oblivious sort [167] and our designed components. Our proposed method Olive,

an ObLIVious fEderated learning system based on server-side TEE, is resistant

to side-channel attacks, enabling truly privacy-preserving FL. In addition to fully

oblivious algorithms, we further investigate optimization by adjusting the data

size in the enclave, and study more efficient algorithms by relaxing the definition

of obliviousness. Finally, we conduct extensive experiments on real-world data to

demonstrate that the proposed algorithm, designed for FL aggregation, is more

efficient than the general-purpose PathORAM with SGX [163].

The contributions of this study are summarized below:

• We analyze the exposure of memory access patterns to untrusted servers

when TEE is used for model aggregation in FL. A risk is identified in the

context of sparsified gradients, which are often used in recent FL.

• We design a supervised learning-based sensitive label inference attack based

on index information observed from side-channels of sparsified gradients.

We demonstrate the attack on a real-world dataset. One of the results

reveals that when training with a CNN on CIFAR100 with top-1.25% spar-

sification, the sensitive labels of training data (each participant is assigned

2 out of 100 labels) are leaked with approximately 90% or better accuracy

(Figure 4.7).

• We propose a novel oblivious algorithm that executes model aggregation

efficiently by combining oblivious primitives, such as oblivious sort and

certain designed components. The efficiency of the proposed method is

verified via extensive experiments. In particular, it is demonstrated to be

more than 10 × faster than a PathORAM-based method and require only

a few seconds even in cases involving a million parameters (Figure 4.11).

The remainder of this chapter is organized as follows. Preliminary notions are

presented in Section 4.2. The overview of the proposed system and the problem
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setting is described in Section 4.3. Sections 4.4 and 4.5 demonstrate the proposed

attack and defense, respectively, with empirical evaluations. Section 4.6 shows

the relationship between Olive and CDP-FL. Section 4.7 discusses related works

and Section 4.8 concludes.

4.2 Preliminaries

4.2.1 Federated Learning with Sparsification

To reduce communication costs and improve model accuracy, a sparsification of

the model parameters before their transmission to the server has been extensively

studied in FL [90, 91, 97, 161, 103, 168, 92]. All of the aforementioned methods

sparsify parameters on the client side, apply an encoding that represents them

as value and index information [168], transmit them to the server, and aggregate

them into a dense global model on the server side. Exceptionally, [103, 161]

used common sparsification among all clients using common sparsified indices and

aggregated them into a sparse global model. However, as observed in [97], there is

practically little overlap among the top-k indices for each client in real-world data,

especially in the non-i.i.d. environment, which is common in FL. This highlights

one of the limitations of pairwise masking-based SA [97, 161] (see Section 4.7).

In general, top-k sparsification is the standard method. By transmitting only

the top-k parameters with large absolute gradients to the aggregation server,

communication cost is reduced by more than 1 to 3 orders of magnitude [91].

In terms of model utility, this technique outperforms the random selection of k

indices (random-k) [97], particularly when the compression ratio is smaller than

1% [91, 168, 103, 161]. Other sparsification methods, such as threshold-based [91],

top-k under LDP [120] and the recently proposed convolutional kernel [168], also

exist. However, these sparsified gradients can lead to privacy leakages through

the index. In [161, 122], the set of user-specific top-k indices was treated as

private information; however, no specific attacks were investigated.

4.2.2 Memory Access Pattern Leakage of TEE

As we introduced in Section 2.3, although the data are encrypted and cannot be

viewed in enclaves, observable memory/page access patterns from side-channels
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can reveal private information [84, 85, 136, 137, 86]. To prevent such attacks,

oblivious algorithms have been proposed to hide access patterns during the secure

execution of the process. An oblivious algorithm is defined as follows.

Definition 8 (Oblivious algorithm [169]). An algorithmM is δ-statistically obliv-

ious if, for any two input data I and I ′ of equal length and any security parameter

λ, the following relation holds:

AccessesM(λ, I)
δ(λ)
≡ AccessesM(λ, I ′)

where AccessesM(λ, I) denotes a random variable representing the ordered se-

quence of memory accesses. The algorithm M is generated upon receiving the

inputs, λ and I.
δ(λ)
≡ indicates that the statistical distance between the two dis-

tributions is at most δ(λ). The term δ is a function of λ which corresponds to

a cryptographic security parameter. When δ is negligible, we say thatM is fully

oblivious, and when δ is 1, it is not oblivious.

A typical approach for constructing an oblivious algorithm utilizes an ORAM,

such as PathORAM [162]. Although ORAMs are designed for general use as

key-value stores, several oblivious task-specific algorithms, such as ML [140] and

SQL processing [164] (see Section 4.7 for details), have been proposed from a per-

formance perspective. They are constructed based on oblivious sort [167] and/or

access to all memory (i.e., linear scan), and are distinct from ORAM at the algo-

rithmic level. Further, ORAM generally assumes that the existence of a trusted

memory space such as client storage [162], which is incompatible with the SGX as-

sumption of leaking access patterns in enclaves. Thus, only CPU registers should

be considered to be trusted memory spaces [163]. [140] implemented oblivious ML

algorithms using CMOV, which is an x86 instruction providing a conditional copy in

the CPU registers. CMOV moves data from register to register based on a condition

flag in the register, which is not observed by any memory access patterns. Using

the CMOV instruction, conditional branching can be implemented with a constant

memory access pattern that does not depend on the input, thereby removing the

leakage of subsequent code addresses. For example, Zerotrace [163] implements

PathORAM on SGX by obliviously implementing client storage based on CMOV.

We can construct and use low-level oblivious primitives, such as oblivious move

(o mov, Listing 4.1) and oblivious swap (o swap, Listing 4.2). o mov(flag,x,y)
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int o_mov(bool flag , uint64 x, uint64 y) {

/* inline assembly */

/* register mapping:

flag => ecx , x => rdx , y => r8 */

mov rax , rdx

test ecx , -1

cmovz rax , r8

return rax

}

Listing 4.1: Oblivious move based on CMOV

int o_swap(bool flag , uint64 x, uint64 y) {

/* inline assembly */

/* register mapping:

flag => rax , x => rdx , y => r8 */

test rax , rax

mov r10 , r8

mov r9 , rdx

mov r11 , r9

cmovnz r9, r10

cmovnz r10 , r11

mov rdx r9

mov r8 , r10

}

Listing 4.2: Oblivious swap based on CMOV

is a function that accepts a Boolean condition flag as its first argument and re-

turns x or y depending on the flag. Therefore, designing an appropriate oblivious

algorithm for SGX requires a combination of high-level algorithm designs, such

as the oblivious sort and low-level primitives.

We describe the detailed implementation of the oblivious primitive used in List-

ing 4.1 and 4.2. The C inline assembler-like pseudo-code is shown here. However,

the Rust implementation we actually used is available in the public repository.
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4.3 Proposed System

In this section, we first clarify our scenario and threat model, and then present

a system overview of the Olive. Finally, we analyze the details of the potential

privacy risk, followed by discussion of a specific privacy attack and evaluation in

Section 4.4.

4.3.1 Scenario

We target a typical FL scenario with a single server and clients using identical

format data (i.e., horizontal FL). The server is responsible for training orches-

tration, aggregating parameters, updating the global model, selecting clients for

each training round, and validating model quality. The server-side machine is

assumed to be placed in a public or private environment [72, 76] and is equipped

with a TEE capable of RA (e.g., Intel SGX).

Threat model. We assume an adversary to be a semi-honest server that

allows FL algorithms to run as intended, while trying to infer the sensitive infor-

mation of clients based on shared parameters. This is a compatible threat model

with those in existing studies on FL with SA [66] and even with server-side TEE

[72, 73, 74]. The semi-honest threat model is selected despite using TEE, be-

cause the assumed attack in this work does not diverge from the established

FL protocol. The goal of the adversary is not to damage the availability (e.g.,

DoS attacks) or undermine the utility of the model (e.g., data-poisoning attacks)

[66, 71, 170] as malicious attackers in FL context. Note that several side-channel

attacks against TEE require malicious (i.e., privileged) system software, which

we distinguish from an attacker and categorize as malicious in FL. Nevertheless,

[171] reported that malicious servers improve inference attacks in FL. In Section

4.5.6, we discuss the relationship between such malicious servers and the privacy

and security of the proposed system.

We assume that the server has (1) access to the trained model during each

round of FL, (2) access to the global test dataset, and (3) the capability to ob-

serve the memory access patterns of the TEE. These requirements can be justified

as follows. (1): Because the server is in charge of model validation, it makes sense

for the server to have access to the global models during all rounds. Alternatively,

attackers can easily blend in with clients to access global models. (2): Generally,
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the semi-honest server that has access to public datasets for model validation cov-

ers the overall dataset distribution, which is essential in production uses. Similar

assumptions have been made in previous studies on inference attacks [172, 103].

Subsequently, we experimentally evaluate the required dataset volume (Figure

4.9). (3): This follows the general threat assumption for TEE. The SGX ex-

cludes side-channel attacks from the scope of protection [70, 86]. Except for the

trusted hardware component (i.e., the CPU package), all other components of

the server, e.g., the system software (i.e., OS/hypervisor), main memory, and

all communication paths, are considered to be untrusted. The server can ob-

serve memory access patterns through known or unknown side-channel attacks,

as described in Section 4.2.2.

4.3.2 System Overview

The proposed system, namely the Olive (Figure 4.1), follows the basic FedAVG

algorithm with standard top-k sparsification; however, the TEE is placed on the

server side with a server-side algorithm resistant to side-channel attacks. As

an initial configuration, we provide an enclave in which each client verifies the

integrity of the processes running on the enclave via RA and exchanges shared

keys (AES-GCM). If attestation fails, the client must refuse to join the FL in this

phase. We assume that communication between the client and server is performed

over a secure channel (TLS), which the untrusted server terminates, and that the

transmitted gradientsb are doubly encrypted and can only be decrypted in the

trusted enclave.

The overall algorithm of the Olive is presented in Algorithm 9, where the

differences with respect to the basic FedAVG algorithm are highlighted in red.

The initial provisioning is omitted and a different shared key, ski, is stored in

the enclave for each user, i (∈ [N ]) (Line 1). In each round, the participants are

securely sampled in the enclave (Line 4). The selected users are memorized in

the enclave and used for client verification (Line 9) after the encrypted data are

loaded into the enclave (Line 8). On the client side, locally trained parameters

are top-k sparsified (Line 21), and then encoded and encrypted (Line 22). The

bIn FedAVG, the data shared by users are not exactly gradients—rather, they are the delta

of model weights. However, in the context of compatibility with FedSGD, we jointly refer to

model update data transmitted by users as gradients or parameters.
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encrypted data loaded into the enclave are decrypted and verified (Line 11).

Verification (Lines 9, 11) is not essential to our work; however, it prevents man-

in-the-middle attacks and biased client selection. As discussed in Section 4.3.3,

the aggregation operation (Line 12) is required to be oblivious, and we present

lower-level and detailed algorithms in Section 4.5 to this end. In accordance with

the principle that the Trusted Computing Base (TCB) should be minimized, only

the aggregation operation is performed in the enclave. Finally, the aggregated

parameters are loaded outward from the enclave (Line 13). Thus, the parameters

transmitted by all clients remain completely invisible to the server—only the

aggregated parameters are observable.
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Algorithm 9 Olive: Oblivious FL on TEE

Input: N : # participants, ηc, ηs: learning rate

1: KeyStore← Remote Attestation with all user i ▷ key-value store in enclave that

stores ski: user i’s shared key from RA in provisioning

2: procedure Train(q, ηc, ηs)

3: Initialize model θ0

4: for each round t = 0, 1, 2, . . . do

5: Qt ← (sample users from N for round t) ▷ securely in enclave

6: for each user i ∈ Qt in parallel do

7: Enc(∆t
i)← EncClient(i, θt, ηc)

8: LoadToEnclave(Enc(∆t
i))

9: check if user i is in Qt

10: ski ← KeyStore[i] ▷ retrieve user i’s shared key

11: ∆t
i ← Decrypt(Enc(∆t

i), ski)

12: end for

13: /* Obliviously performed, such as Algorithm 12 or 13 */

∆̃t = 1
|Qt|

∑
i∈Qt ∆t

i ▷ oblivious algorithm

14: LoadFromEnclave(∆̃t)

15: θt+1 ← θt + ηs∆̄
t

16: end for

17: end procedure

18: procedure EncClient(i, θt, η, C)

19: θ ← θt

20: G ← (user i’s local data split into batches)

21: for batch g ∈ G do

22: θ ← θ − η∇ℓ(θ; g)
23: end for

24: ∆← θ − θt

25: ∆ ← TopkSparse(∆) ▷ top-k sparsification on gradients

26: Enc(∆′)← Encrypt(∆, ski) ▷ Authenticated Encryption (AE) mode, such as

AES-GCM, with shared key, ski, from RA

27: return Enc(∆)

28: end procedure
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Figure 4.2: Dense gradients induce uniform access patterns.

Figure 4.3: Sparse gradients induce biased access patterns.

4.3.3 Security Analysis

Although TEE enables model training while protecting raw gradients, an un-

trusted server can observe the memory access patterns, as described in Section

4.2.2. Here, we analyze the threats that exist based on memory access patterns.

For formal modeling, let gi denote the k-dimensional gradient transmitted by

user i and let g∗ be the d-dimensional global parameter after aggregation. In the

typical case, k = d, when dense gradients are used. Let Gi and G∗ denote the

memories required to store the gradients of gi and g∗, respectively, and let the

number of clients participating in each round be n. The memory that stores the

entire gradient is denoted by G = G1 ∥ ... ∥Gn, where ∥ denotes concatenation.
A memory access, a, is represented as a triple a = (A[i], op, val), where A[i]

denotes the i-th address of the memory, A; op denotes the operation for the

memory—either read or write; and val denotes the value to be written when op

is write, and null otherwise. Therefore, the observed memory access pattern,

Accesses, can be represented as Accesses = [a1, a2, ..., am] when the length of

the memory access sequence is m.

In FL, operations performed on the server side generally consist of summing and

averaging the gradients obtained from all users. We first note that this procedure

is oblivious to dense gradients. As depicted in Figure 4.2, the summing operation

involves updating the value of the corresponding index of G∗ while performing a

linear scan on G, where memory accesses are performed in a fixed order and at

fixed addresses, irrespective of the content ofG. We refer to this general summing

part as the linear algorithm and present it in Algorithm 10 for completeness. (The
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Algorithm 10 Linear algorithm (and averaging and perturbing)

Input: G = G1 ∥ ... ∥ Gn where Gp (p ∈ [n]) is gradient from user p and k length

vector, G is nk length vector and G’s element gq (q ∈ [nk]) is composed of (index,

value)

Output: G∗: Aggregated gradient and d length vector

1: procedure Aggregation(G)

2: /* linear algorithm */

3: Initialize gradients G∗

4: for i = 1, ..., n do

5: for j = 1, ..., k do

6: G∗[G[k ∗ (i− 1) + j].index] += G[k ∗ (i− 1) + j].value

7: end for

8: end for

9: /* Averaging and Perturbing with linear access */

10: for i = 1, ..., d do

11: G∗[i] /= n

12: end for

13: for i = 1, ..., d do

14: z ← Random noise (e.g., Gaussian distribution)

15: G∗[i] += z

16: end for

17: return G∗

18: end procedure

main focus here is on which memory addresses are accessed in the operation.)

Proposition 2. The linear algorithm is fully oblivious to dense gradients.

Proof. Let the access pattern of linear algorithm for dense gradients beAccessesdense;

then, the pattern is represented as follows:

Accessesdense =

[(G[1], read, ∗), (G∗[1], read, ∗), (G∗[1], write, ∗), ...,

(G[nd], read, ∗), (G∗[d], read, ∗), (G∗[d], write, ∗)]

This means reading the sent gradients G[id+j], reading the corresponding aggre-

gated gradientsG∗[j], adding them together, and then writing them to aggregated

gradient G∗[j] again, for any i ∈ [n] and j ∈ [d]. For any two input data I, I ′
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of equal length, for any security parameter λ, Accessesdense is identical and the

statistical distance δ = 0. Finally, linear algorithm is 0-statistical oblivious.

The linear algorithm is executed in O(nd) because all the elements of the gradient

G are accessed. In addition, the averaging operation only accesses G∗ linearly in

O(d), which is obviously fully oblivious.

However, when the gradients are sparsified, which is often an important scenario

in FL, the access pattern of the linear algorithm is not oblivious, and sensitive

information may be leaked. The weights of sparse gradients are generally given

by tuples of index, which hold the location information of the parameter, and

a value, which holds the gradient value. This is irrespective of its quantization

and/or encoding because it requires calculating the sum of the original dense

gradients. Figure 4.3 depicts the access pattern when an aggregation operation

is used for sparsified gradients.

Proposition 3. The linear algorithm is not oblivious to sparsified gradients.

Proof. Linear access to G for sparsified gradients occurs when the access pattern,

Accessessparse, satisfies

Accessessparse =

[(G[1], read, ∗), (G∗[idx11], read, ∗), (G∗[idx11], write, ∗), ...,
(G[nk], read, ∗), (G∗[idxnk], read, ∗), (G∗[idxnk], write, ∗)]

where the indexes of sparsified gradients of user i are idxi1, .., idxik for all i ∈ [n].

The access pattern, Accessessparse, is deterministic and corresponds in a one-to-

one fashion with the sequence of the indexes of the input data. Considering two

input data, I and I ′, with different sequences of indexes, no overlap exists in the

output distribution. Then, the statistical distance between them is 1.

The access pattern on the aggregated gradients, G∗, reveals at least one set

of indices {idxij | j ∈ [d]} for each user i, depending on the given gradients.

Considering data-dependent sparsifications, such as top-k, which are generally

used in FL, the gradient indices of the sparsified gradients may be sensitive to

the training data. In the next section, we demonstrate that privacy leakage can

be caused on a real-world dataset.

Generality and Limitation. Let us now clarify the format and method of

sparsified gradients. Although various quantization and/or encoding methods in
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FL have been studied (e.g., [101]), quantization is irrelevant to the problem of

leakage considered in this study because it affects only the values and not the

index, and encoding is irrelevant because it is eventually decoded on the server

side. For example, in [97, 161], the index location information was encoded in

d-dimensional one-bit array, but the same problem occurred during aggregation.

As aggregation is performed on the original dense gradients, each update requires

access to a specific index of the dense gradients (G∗), resulting in identical access

patterns. It should also be noted that risk is sparsification-dependent. If the

client’s training data and observed indices are uncorrelated, then index leakage is

not considered to be a risk. For example, when random-k is adopted, as in [97],

no risk is involved. While threshold-based sparsification [91] is almost identical

to top-k, LDP-guaranteed index [120] and the recently proposed convolution-

kernel-based index [168] are still unclear. These index information can correlate

to some extent with the client’s training data, but not as much as top-k. The

scope of our study is limited to the demonstration that attacks are possible with

the standard top-k—the investigation of various other sparsifications are left for

future research.

4.4 Attack on Gradient index

4.4.1 Design

In this section, we design a server-side attack to demonstrate that privacy leakage

of the training data can occur based on the index information in the gradients.

We assume a sparsified gradient based on top-k [173, 90, 91]. The attacker is

assumed to satisfy the assumptions listed in Section 4.3.1. The proposed attacks

can be used to raise awareness of the security/privacy risks of FL on TEE, which

have not been reported in related works [139, 73, 138, 72], and also serve as an

evaluation framework for defenses.

83



4. OLIVE: Oblivious Federated Learning on Trusted Execution Environment against
the risk of sparsification

Algorithm 11 Attack on index: Jac or NN

Input: i: target user, Xl: test data with label l (l ∈ L), round: T

1: index← {} ▷ observed access patterns

2: /* Prepare teacher and target indices */

3: teacher← {} ▷ teacher access patterns to train a classifier

4: for each round t = 1, . . . , T do

5: /* Ti: rounds participated in by user i */

6: if t ∈ Ti then

7: /* A
(t)
i : observed top-k indices of user i of round t */

8: Store A
(t)
i to index[i, t]

9: for each label l ∈ L do

10: /* θt: the global model after round t */

11: /* I
(t)
l : top-k indexes training with θt and Xl */

12: Store I
(t)
l to teacher[l, t]

13: end for

14: end if

15: end for

16: /* Calculate scores for each label l */

17: S← [] ▷ form of [(label, similarity)]

18: /* If Jac: Jaccard similarity-based scoring (Sim) */

19: for each label l ∈ L do

20: Store (l, Sim(∥τ∈Tiindex[i, τ ], ∥τ∈Titeacher[l, τ ]) to S

21: end for

22: /* If NN: neural network-based scoring */

23: Train the model Mt with teacher[l, t] (l ∈ L) for each t (∈ T )

24: for each label l ∈ L do

25: Store (l, predict(M1, ...,MT , ∥τ∈Tiindex[i, τ ])) to S

26: end for

27: /* If NN-single: using single neural network */

28: Train the model M0 with ∥τ∈T teacher[l, τ ] (l ∈ L)

29: for each label l ∈ L do

30: Store (l, predict(M0, ∥τ∈T index[i, τ ])) to S

31: end for

32: /* 1D K-Means clustering Kmeans */

33: [labels, centroid] ← Kmeans(S)

34: return labels of the cluster with the largest centroid
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Figure 4.4: Overview of the proposed attack: Attacker is mainly assumed to

access global test dataset, and aggregated model of each round, and the attacker

trains classifier for each round (or all in batch) that takes parameter indices as

input and outputs the target label set, observes memory access pattern through

side-channels and extract parameter indices for each target participant and infers

target label set.

The goal of the attack is to infer the target client’s sensitive label information

based on the training data. For example, when training FL on medical image

data, such as image data on breast cancer, the label of the cancer is very sensi-

tive, and participants may not want to reveal this information. A similar attack

goal was considered in [23, 166]. Our designed attack is based on the intuition

that the top-k indices of the locally converged model parameters are correlated

with the labels of the local training data. We train a classifier that accepts the

observed index information as the input by supervised learning using a public

test dataset and the output is the sensitive label set. Access to the dataset is

justified, for example, by the need for model validation, as described in Section

4.3.1 and in previous studies on inference attacks [172, 103]. We design two basic

methods—the Jaccard similarity-based nearest neighbor approach (Jac) and a

neural network (NN). The detailed algorithm is presented in Algorithm 11. An

overview of these methods is provided below and illustrated in Figure 4.4.

1. First, the server prepares the test data Xl with label l for all l ∈ L, where L

denotes the set of all possible labels.

2. In each round t (∈ T ), an untrusted server observes the memory access patterns

through side-channels, obtains the index information of the top-k gradient
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indices index[i, t] for each user i, and stores it (Lines 4–8).

3. The server computes the gradient of the global model with θt and Xl, without

model updates for each round t (∈ T ), using the test data categorized by

labels, and obtains the top-k indices teacher[l, t] as teacher data for each

label (Lines 9–12).

4. After the completion of all rounds T , in Jac, we calculate the Jaccard similar-

ity between observed access patterns, ∥τ∈Ti
index[i, τ ] and ∥τ∈Ti

teacher[l, τ ],

for each label l (Lines 15–17). Jaccard similarity is selected because, in the

worst-case scenario, the index information transmitted by a participant is ran-

domly shuffled, rendering the sequence meaningless.

5. In NN, the attacker trains neural networks using teacher[l, t], with indices as

the features and labels as the target (Line 19). The outputs of the model are

the scores of the label. Subsequently, we use a trained model to predict the

labels included in the training data corresponding to the input, index[i]. For

this task, we design the two following NN-based methods. In the first method,

a model, Mt, is trained during each round, t, and the output scores of the

models are averaged to predict the labels (NN). In the second method, a single

model, M0, is trained using the concatenated indices of the entire round as

input and a single output is obtained (NN-single). In the experiment, both

cases involve a multilayer perceptron with three layers (described in Appendix

4.9.1 of this chapter). Note that as the model input, index information is

represented as a multi-hot vector. In the case of NN-single, each client

participates in only a proportion of the rounds—the indices of the rounds

they do not participate in are set to zero as the input to the model. Although

NN-single is expected to be able to capture the correlation over rounds better

than NN, this zeroization may reduce the accuracy. Finally, as in Jac, we

store the scores for each label obtained via model prediction (Lines 20–21).

6. If the number of labels of the target client is known, the scores are sorted in

descending order and the highest labels are returned. If the number of labels

is unknown, K-means clustering is applied to the scores to classify them into

2 classes, and the labels with the highest centroid are returned (Lines 23–24).

Finally, the information obtained from the side-channels can also be used to

design attacks for other purposes, such as additional features in reconstruction
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[174] or other inference attacks [175]. The aim of this study is simply to demon-

strate that the top-k gradient indices that can be observed on untrusted servers

contain sufficient information to cause privacy leakages; therefore, we leave the

study of attacks for different purposes to future research.

4.4.2 Evaluation Task

In our evaluation of attacks, the server performs an inference attack on any client

in the scenario detailed in Section 4.3.1. The clients have a subset of labels, and

the attacker’s goal is to infer the sensitive label set of a target client based on

their training data. The attacker selects any subset or the entire set of users and

performs an inference attack on each user. We utilize all and top-1 as accuracy

metrics for evaluating attack performance. We define all as the percentage of

clients that match the inferred labels exactly, e.g., the inferred label set is 1,3,5,

and the target client’s label set is 1,3,5. We define top-1 as the percentage of

clients that contain the highest scored inferred label, e.g., the highest scored

inferred label is five, and the target client’s label set is 4,5, which we consider

to be a minimal privacy leak. In addition, we adjust the distribution of the

label set such that the client is able to control the difficulty of the attack. The

number of labels in the set and the number of labels that are fixed or random

are configurable. In the case of a fixed label, all users exhibit the same number

of labels, which is known to the attacker. In the case of the random label, the

maximum number is assigned, and all users exhibit various numbers of labels.

Generally, random label and larger numbers of labels are more difficult to infer.

4.4.3 Empirical Analysis

Here, we demonstrate the effectiveness of the designed attack.

Setup. Table 4.1 lists the datasets and global models used in the experiments.

Details of the model, including the attacker’s NN, are provided in Appendix

4.9.1 of this chapter. In addition to the well-known image datasets, MNIST

and CIFAR 10 and 100, we also use Purchase100, which comprises tabular data

used in [52] for membership inference attacks. We train the global models using

different numbers of parameters, as listed in Table 4.1. The learning algorithm

is based on Algorithm 9, in which we provide the sparse ratio, α, instead of k in

top-k. FL’s learning parameters include the number of users, N ; the participant
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Table 4.1: Datasets and global models in the experiments.

Dataset Model (#Params) #Label #Record (Test)

MNIST MLP (50890) 10 70000 (10000)

CIFAR10
MLP (197320)

CNN (62006)
10 60000 (10000)

Purchase100 MLP (44964) 100 144000 (24000)

CIFAR100 CNN (201588) 100 60000 (10000)

Figure 4.5: Attack results on datasets with a fixed number of labels: Vulnerable,

especially when there are few labels.

sampling rate, q; the number of rounds, T . The default values are given by

(N, q, T, α) = (1000, 0.1, 3, 0.1). The attack methods are evaluated for Jac, NN,

and NN-single, as described in the previous section. T is smaller than that in

normal FL scenarios, which implies that our method requires only a few rounds

of attacks. All experimental source codes and datasets are openc.

Results. Figure 4.5 depicts the attack results for NN, NN-single, and Jac on

all datasets with a fixed number of labels, and Figure 4.6 presents the results with

a random number of labels. In CIFAR100, T = 1 is used because the model size

is large. The y-axis represents the success rate of the attacks, and the x-axis rep-

resents the number of labels possessed by each client. When the number of labels

is small, all three attacks exhibit a high probability of success. The success rate

of top-1 is high irrespective of the number of labels, whereas all decreases with

each additional label. On CIFAR10, the MLP model maintains a higher success

rate for a large number of labels compared to the CNN model. This indicates

that the complexity of the target model is directly related to the contribution of

the index information to the attack. The NN-based method is more powerful on

chttps://github.com/FumiyukiKato/FL-TEE
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Figure 4.6: Attack results on datasets with a random number of labels (more

difficult setting): When the number of labels is low, the attacker can attack the

client without knowing the exact number of labels.

Figure 4.7: Attack results w.r.t. sparse ratios: Higher the sparsity, the more

successful the attack tends to be.

MNIST, but it performs similarly to the other methods on the other datasets.

This indicates that the gradient index information is not complex and can be

attacked using simple methods, such as Jac. The results of NN and NN-single

are almost identical; therefore, there is not much effective correlation across the

rounds. When the number of class label is 100 (Purchase100, CIFAR100), the

success rate of the attack is reduced. In particular, the accuracy of CIFAR100

is low in this case. However, as shown in later, this is surprisingly improved by

using a smaller sparse rate.

Figure 4.7 depicts the relationship between the sparse ratio and attack perfor-

mance. The number of client labels is fixed to two. The results indicate that the

sparse ratio is inversely related to the success rate of the attack. This is because

the indices of label-correlated gradients become more distinguishable as the spar-

sity increases. In particular, the case of CIFAR100 demonstrates that the attack
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Figure 4.8: Cacheline-level leakage on CNN of CIFAR10: Attacks are possible

with at least slightly less accuracy.

is successful only when the sparsity ratio is low. For instance, when the sparsity

ratio is 0.3%, the success rate is almost 1.0. Thus, sparsity ratio is an important

factor in an attack.

Figure 4.8 depicts a comparison of attack performance based only on index

information observed at the cacheline granularity (64 B), which can be easily

observed against SGX [84] with CIFAR10 and CNN. The accuracies are almost

identical. The NN-based method exhibits slightly higher accuracy, whereas Jac

exhibits slightly poorer accuracy. Therefore, the attack is still possible despite

observations at the granularity of the cacheline, which indicates that the well-

known vulnerability of SGX is sufficient to complete an attack.

Figure 4.9 depicts the evaluation of the size of a dataset required by an at-

tacker to succeed in an attack. The default test dataset accessible to the attacker

is presented in Table 4.1—we randomly reduce it on this basis while maintaining

the same number of samples for each label. We evaluate the number of labels

in the fixed and random labels using the MNIST and Purchase100 datasets, re-

spectively. In MNIST, performance can be preserved even when the amount of

data is reduced, which weakens the assumption on dataset size. For example,

it is surprisingly noted that, even with 100 samples (i.e., 10 samples per label

and 1% of the original evaluation), performance is not affected significantly. On

Purchase100, the impact is small, but a meaningful attack is possible with some

reduction in data size.
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Figure 4.9: The size of data that an attacker needs to access to achieve high

success rate can be very small.

4.5 Oblivious Algorithms

In this section, we focus on an aggregation algorithm that can cause privacy

leakage, as described in the previous section, and discuss potential avenues of

attack prevention. The notation used here is identical to that in Section 4.3.3.

First, we introduce the general ORAM-based method. We initialize ORAM

with d zero values for the aggregated parameters, g∗; update the values with the

received nk gradients, g, sequentially; and finally retrieve the d values from the

ORAM. Because ORAM completely hides memory access to g∗, the algorithm

is fully oblivious. However, as established in the experimental section, even the

state-of-the-art PathORAM adapted to TEE [163] incurs a significant overhead—

thus, a task-specific algorithm is preferable.
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4.5.1 Baseline method

Full obliviousness can be simply achieved by accessing all memory addresses to

hide access to a specific address. When accessing G∗[i], a dummy access is per-

formed on G∗[j] for each j ∈ [d]. For each access, either a dummy or an updated

true value is written, and the timing of writing the true value is hidden by an

oblivious move o mov (Listing 4.1). The Baseline algorithm is described in Algo-

rithm 12. It accepts the concatenated gradients transmitted by all participants,

g (nk-dimensional vector), as input and returns the aggregated gradients, g∗ (d-

dimensional vector) as output. We make linear accesses to G∗ for a number of

times equal to the length of G. Assuming that the memory address is observable

at the granularity of the cacheline, as in a traditional attack against the SGX

[84], some optimization may be performed. When the weight is four bytes (32-bit

floating point) and cacheline is 64 bytes, a 16× acceleration can be achieved.

Irrespective of this optimization, the computational and spatial complexities are

O(nkd) and O(nk + d), respectively.

Proposition 4. Algorithm 12 is (cacheline-level) fully oblivious.

Proof. Let the access pattern observed through algorithm 12 be Accessesbaseline,

and it is as follows:

Accessesbaseline =

[(G[1], read, ∗), (G∗
c[1], write, ∗), ..., (G∗

c[d/c], write, ∗), ...,
(G[k], read, ∗), (G∗

c[1], write, ∗), ..., (G∗
c[d/c], write, ∗)]

where c is the number of gradients included in one cacheline and G∗
c is an ar-

ray with d/c cells where G∗ is divided at the granularity of a cacheline. Since

Accessesbaseline is the identical sequence for any inputs of the same length, al-

gorithm 12 is 0-statistical oblivious.

4.5.2 Advanced method

Here, we present a more advanced approach to FL aggregation. In cases with

large numbers of model parameters, k and d are significant factors and the com-

putational complexity of the Baseline method becomes extremely high because of

the product of k and d. As described in Algorithm 13, we design a more efficient
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Algorithm 12 Baseline

Input: g = g1 ∥ ... ∥ gn: concatenated gradients, nk length

Output: g∗: aggregated parameters, d length

1: initialize aggregated gradients g∗

2: for each (idx, val) ∈ g do

3: /* c is the number of weights included in one cacheline */

4: /* of ‌fset indicates the position of idx in the cacheline */

5: for each (idx∗, val∗) ∈ g∗ if idx∗ ≡ of‌fset (mod c) do

6: flag ← idx∗ == idx ▷ target index or not

7: val′ ← o mov(flag, val∗, val∗ + val) ▷ see o mov (Listing 4.1)

8: write val′ into idx∗ of g∗

9: end for

10: end for

11: return g∗

Advanced algorithm by carefully analyzing the operations on the gradients. Intu-

itively, the method is designed to compute g∗ directly from the operations on the

gradient data, g, to eliminate access to each memory address of the aggregated

gradients, g∗. This avoids the overhead incurred by dummy access to g∗, as in

the Baseline. The method is divided into four main steps: initialization on gra-

dients vector g (Line 1), oblivious sort (Line 4), oblivious folding (Line 6), and a

second oblivious sort (Line 16). For oblivious sort, we use Batcher’s Bitonic Sort

[167], which is implemented in a register-level oblivious manner using oblivious

swap o swap (Listing 4.2) to compare and swap at all comparators in the sorting

network obliviously. Figure 4.10 illustrates a running example for better under-

standing, where we show a simple example of Algorithm 13 at n = 3, k = 2 and

d = 4.

As given by Algorithm 13, we first apply an initialization to g, where we prepare

zero-valued gradients for each index between 1 and d (declared g′) and concate-

nate them with g (Lines 1–3). Thus, g has length nk+d. This process guarantees

that g has at least one weight indexed for each value between 1 and d; however,

aggregation of the concatenated g yields exactly the same result as the original

g because the added values are all zero. We then apply an oblivious sort to g

using the parameter’s index (Lines 4–5). Rather than eliminating the connection

between the client and gradient, this serves as a preparation for subsequent op-

erations to compute the per-index aggregate values. Next, the oblivious folding
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Algorithm 13 Advanced

Input: g = g1 ∥ ... ∥ gn: concatenated gradients, nk length

Output: g∗: aggregated parameters, d length

1: /* initialization: prepare zero-valued gradients for each index */

2: g′ ← {(1, 0), ..., (d, 0)} ▷ all values are zero

3: g ← g ∥ g′ ▷ concatenation

4: /* oblivious sort in O((nk + d) log2 (nk + d)) */

5: oblivious sort g by index

6: /* oblivious folding in O(nk + d) */

7: idx ← index of the first weight of g

8: val ← value of the first weight of g

9: for each (idx′, val′) ∈ g do ▷ Note: start from the second weight of g

10: flag ← idx′ == idx

11: /* M0 is a dummy index and very large integer */

12: idxprior, valprior ← o mov(flag, (idx, val), (M0, 0))

13: write (idxprior, valprior) into idx′ - 1 of g

14: idx, val ← o mov(flag, (idx′, val′), (idx, val + val′))

15: end for

16: /* oblivious sort in O((nk + d) log2 (nk + d)) */

17: oblivious sort g by index again

18: return take the first d values as g∗

routine is executed (Lines 6–14). It linearly accesses the values of g and cumu-

latively writes the sum of the values for each index in g. Starting from the first

place, it adds each value to the subsequent value if the neighboring indices are

identical, and writes a zero-valued dummy index, M0, in place of the original

one. M0 is a large integer. Otherwise, if the neighboring indices are different,

we stop adding values, and the summation of the new index is initiated anew.

Thus, we finally obtain g such that only the last weight of each index bears the

correct index and aggregated value, and all the remaining ones bear dummy in-

dices. In addition, the initialization process described above guarantees that d

distinct indices always exist. In this phase, the index change-points on g during

folding are carefully hidden. If the index change-points are exposed, the number

corresponding to each index (i.e., the histogram of the indices) is leaked, which

can cause catastrophic results. Therefore, oblivious folding employs o mov (List-

ing 4.1) to make conditional updates oblivious and hide not only the memory
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Figure 4.10: Running example of Advanced (Algorithm 13) at n = 3 (#user),

k = 2 (#sparsified dimension), d = 4 (#dimension).

access of the data, but also low-level instructions. Finally, we apply an oblivious

sort to g (Lines 15–16). After sorting, in g, weights with indices between 1 and

d are arranged individually, followed by weights with dummy indices. Finally,

taking the values of the first d weights of the sorted g, we return this as the final

aggregated gradient, g∗ (Line 17).

Proposition 5. Algorithm 13 is fully oblivious.

Proof. The access pattern,Accessesadvanced, is somewhat complicated, but obliv-

iousness can be considered using a modular approach. Our oblivious sort relies on

Batcher’s Bitonic Sort, in which sorting is completed by comparing and swapping

the data in a deterministic order, irrespective of the input data. Therefore, access

patterns generated using this method are always identical. In oblivious folding,

the gradient is linearly accessed once; thus, the generated access pattern is identi-

cal for all input data of equal length. Finally, Accessesadvanced are identical and

independent of inputs of equal length, this implies 0-statistical obliviousness.

The complexity of the entire operation is O((nk + d) log2 (nk + d)) in time

and O(nk + d) in space. The proposed algorithm relies on an oblivious sort,

which dominates the asymptotic computational complexity. We use Batcher’s

Bitonic Sort [167], which has O(n log2 n) time complexity. The Advanced is
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asymptotically better than the Baseline because of the elimination of the kd

term.

4.5.3 Optimization

In this subsection, we describe an optimization method that fits the basic SGX

memory characteristics. The current SGX comprises two major levels of memory

size optimization. The first factor is the size of the L3 cache (e.g., 8 MB). In

SGX, the acceleration is significant because the cache hit reduces not only the

memory access time but also the data-decrypting process. The second factor is

the EPC size (e.g., 96 MB). As mentioned in Section 2.3, accessing data outside

the EPC incurs serious paging overhead. Compared to the proposed methods,

the Baseline is computationally expensive; however, most memory accesses are

linear. Thus, it is greatly accelerated by the high cache hit rates and the prefetch

functionality of the CPU. However, in Advanced, the low locality of memory

accesses in Batcher’s sort reduces the cache and EPC hit rates.

Therefore, optimization is performed by introducing a function to split users

into appropriate groups before executing Advanced to keep the data processed

at one time within the EPC size. This procedure involves the following steps:

(1) divide into groups of h users each; (2) aggregate values for each group using

Advanced; (3) record the aggregated value in the enclave, and carry over the

result to the next group; and (4) only average the result when all groups have

been completed and then load them from the enclave to the untrusted area. Note

that the improvement to Advanced does not change its security characteristics.

An external attacker can only see the encrypted data, and any irregularities

in the order or content of the grouped data can be detected and aborted by

enclave. The key parameter is the number of people, h, in each group. The overall

computational complexity increases slightly to O(n/h((hk + d) log2 (hk + d))).

However, this hides the acceleration induced by cache hits and/or the overhead

incurred by repeated data loading. Basically, although lowering h improves the

benefit of cache hits, lowering it too much results in a large amount of data

loading. The optimal value of h is independent of data and can be explored

offline. Our results indicate that there exists an optimal h that achieves the

highest efficiency in the experiment.
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4.5.4 Relaxation of Obliviousness

We investigate further improvements by relaxing the condition of full oblivious-

ness to achieve better efficiency. A relaxed security definition that has recently

garnered attention is that of differentially oblivious (DO) [169, 176, 177, 178, 179].

Following the definition of Section 4.2.2, (ϵ, δ)-DO means that for any neighboring

inputs I, I ′, it holds that

Pr[AccessesM(λ, I)] ≤ eϵ Pr[AccessesM(λ, I ′)] + δ.

DO is DP applied to obliviousness. This relaxation can theoretically improve the

efficiency from full obliviousness. In practice, improvements have been reported

for RDB queries [179] whose security model, in which access pattern leakage

within the enclave is out of the scope, differs from ours.

However, DO is unlikely to work in the FL setting. DO approaches commonly

guarantee DP for the histogram of observed memory accesses. We construct a

DO algorithm based on [176, 177]. The procedure involves the following steps:

pad dummy data, perform an obvious shuffle (or sorting), and update g∗ by per-

forming linear access on G. The observed memory access pattern is equivalent to

a histogram of the indices corresponding to all gradients, and the dummy data

are required to be padded with sufficient random noise to make this histogram

DP. However, this inevitably incurs prohibitive costs in the FL setting. d The

first reason for this is that the randomization mechanism can only be imple-

mented by padding dummy data [180], which implies that only positive noise can

be added, and the algorithms covered by padding are limited (e.g., the shifted

Laplace mechanism). The second reason is critical in our case and differs from

previous studies [176, 177]. Considering that the ML model dimension, d, and

even the sparsified dimension, k, can be large, noise easily becomes significant.

For example, considering the DO guaranteed by Laplace noise, where k denotes

the sensitivity and d is the dimension of the histogram, the amount of noise is

proportional to kd and multiplied by a non-negligible constant, owing to the first

reason [176]. This produces huge array data to which oblivious operations must

be applied, resulting in a larger overhead than in the fully oblivious case.

dWe have confirmed this prohibitive cost in our preliminary experiments.
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4.5.5 Experimental results

In this section, we demonstrate the efficiency of the designed defense method

on a practical scale. Because it is obvious that the proposed algorithms provide

complete defense against our attack method, their attack performances are not

evaluated here. In addition, our previous algorithms do not degrade utility—the

only trade-off for enhanced security is computational efficiency.

Setup: We use an HP Z2 SFF G4 Workstation with an Intel Xeon E-2174G

CPU, 64 GB RAM, and 8 MB L3 cache, which supports the SGX instruction set

and has 128 MB processor reserved memory, of which 96 MB EPC is available for

user use. We use the same datasets as those in Table 4.1 and synthetic data. Note

that the proposed method is fully oblivious and its efficiency depends only on the

model size. The aggregation methods are the Non Oblivious (linear algorithm

in Section 4.3.3), the Baseline (Algorithm 12), the Advanced(Algorithm 13), and

PathORAM. We implement PathORAM based on an open-source librarye that

involves a Rust implementation of Zerotrace [163]. The stash size is fixed to 20.

In the experiments, we use execution time as an efficiency metric. We measure

the time required by an untrusted server from loading the encrypted data to the

enclave to completion of aggregation.

Results: Figure 4.11 depicts the execution time for the aggregation opera-

tion on the synthetic dataset with respect to model size. α is fixed to 0.01,

and the x-axis represents the original model parameter size, d. The proposed

Advanced is approximately one order of magnitude faster than Baseline. More-

over, it is more robust with respect to an increase in the number of parameters.

Only when the number of parameters is very small is Baseline faster than Ad-

vanced, because when the model is extremely small, Baseline’s simplicity becomes

dominant. PathORAM also incurs a large overhead. The theoretical asymptotic

complexity of the original PathORAM-based algorithm is O((nk) log (d)) because

a single update on ORAM can be performed in O(log (d)). However, this is an

ideal case and the overhead of the constant factor is large when PathORAM is

adapted to the SGX security model (i.e., ZeroTrace [163]). The overhead is pri-

marily induced by the refresh operation corresponding to each update and the

oblivious reading of the position maps. The result suggests that PathORAM ’s

superiority does not appear until the data size increases hugely. Overall, the

ehttps://github.com/mobilecoinofficial/mc-oblivious
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Figure 4.11: Performance results on a synthetic dataset w.r.t. models of various

sizes: Advanced functions efficiently. α (sparse ratio) = 0.01 and n (number of

clients per round) = 100.

results indicate that the aggregation process can be completed in a few seconds,

even if the model scale involves approximately 1M parameters.

Figure 4.12 depicts the performances on MNIST (MLP) corresponding to vari-

ous numbers of clients and low sparsity (α = 0.1). The Baseline method is more

efficient when the number of clients, N , is large (104). Firstly, the model size

d is fairly small (i.e., MNIST (MLP) consists of only 50K parameters). Hence,

the overhead of the dummy access operations of Baseline is not significant. The

second reason is that the lower sparsity and higher number of clients increases

nk, which increases the overhead for both Baseline and Advanced, but affects

Advanced more, as explained by the analysis of cache hits in Section 4.5.3. At

N = 104, the memory size required by Advanced is given by (vector to be obliv-

iously sorted) = 5089 ∗ 8 ∗ 3000 + 50890 ∗ 8 ≈ 122 MB (¿ 96 MB of EPC size)

since each cell of gradient is 8 bytes (32-bit unsigned integer for index and 32-bit

floating point for value). Batcher’s sort requires repeated accesses between two

very distant points on the vector, which could require a large number of pagings

until Advanced finishes; however, in Baseline, this hardly occurs. However, the

optimization introduced in Section 4.5.3 successfully addresses this problem.

Figure 4.13 illustrates the effects of the optimization method on Advanced. The

left figure shows the results under the same conditions as the rightmost bars in

Figure 4.12 (N = 104), indicating that Advanced is dramatically faster with an
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Figure 4.12: Performance results w.r.t. various numbers of clients (N) at low

sparsity (α = 0.1): the Advanced gradually worsens with increasing number of

clients.

Figure 4.13: The effects of optimizing the Advanced on MLP models on MNIST

(left) and CIFAR100 (right).

optimal client size. When the number of clients per group, h (represented along

the x-axis), is small, the costs of iterative loading to the enclave become dominant,

and the overhead conversely increases. However, if h is gradually increased, the

execution time decreases. Considering that the size of the L3 cache is 8 MB

and data size per user is dα = 0.04 MB, the L3 cache can accommodate up to

approximately 200 clients. The results of MNIST (MLP) indicate that the lowest
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is, approximately 10 s, at around h = 100, which is a significant improvement

compared to 290 s in the original Advanced. The small waviness of the plot

appears to be related to the L2 cache (1 MB), which does not have an impact

as large as that of the L3 cache. The efficiency decreases significantly around

h = 2000, owing to the EPC paging. The figure on the right depicts the results

on CIFAR100 (MLP) at α = 0.01 and N = 104. In this case, Advanced is initially

much faster, but there is an optimal h that can be further improved. The pre-

optimization execution time of 16 s is reduced to 5.7 s at around 150 clients.

4.5.6 Discussion

Threat assumption. Boenisch et al. [171] reported that malicious servers

improve inference attack performance beyond semi-honest. This type of attack

involves crafting global model parameters (called trap weights in [171]) and con-

trolling client selection in rounds to highlight the updates of the target user by

a malicious server. To prevent parameter tampering, [68] proposed a defense

strategy using a cryptographic commitment scheme. The Olive can adopt a

similar strategy based on a cryptographic signature. Aggregation is performed

within the enclave, and the aggregated global model is signed with the private

key in the enclave. This ensures that the model is not tampered with outside the

enclave, i.e., by a malicious server. Any client can verify this using a public key

which can be easily distributed after RA. In addition, TEE prevents malicious

client selection by securely running in the enclave. Therefore, privacy is not vi-

olated at least for this type of attack. Other possible malicious server behaviors

can influence the security of the Olive, including denial-of-service (DoS) attacks

[181], which are outside the threat model of the Olive, as well as TEE and are

difficult to prevent.

Security of SGX. Finally, we discuss the use of SGX as a security primi-

tive against known attacks. According to [86], the objectives of attacks against

SGX can be classified into the following three: (1) stealing memory/page access

patterns or instruction traces [84, 85, 136, 137], (2) reading out memory content

[182, 183], and (3) fault injection [184]. (1) is the target of the defense. The

speculative execution attacks of (2) are mostly handled by microcode patches.

Hence, the protection is usually not required in the application. However, if the

microcode is not updated, the gradient information of the enclave may be stolen
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by a malicious attacker, which is beyond the scope of this study. The fault injec-

tion of (3) is covered within the scope of microcode/hardware [86, 184] and lies

outside the security. This may cause DoS even using TEE [181].

In addition, another risk exists if malicious code is embedded in the code exe-

cuted in the enclave. This can be prevented by verifying the enclave state using

RA; however, this requires the source code to be publicly available and assessed.

Further, as discussed in [185], the SDK may involve unintended vulnerabilities.

To benefit from the security of SGX, the code of TCB must be written properly.

4.6 Relationship with DP-FL.

As discussed in Section 2.2.1, server-side TEE provides utility benefits in DP-

FL. For completeness, we explain in detail about the combination of Olive and

CDP-FL, because the combination of sparsification and CDP-FL is not such an

obvious problem in terms of differential privacy bound.

Algorithm 14 depicts the algorithm for the combination of CDP-FL andOlive.

On the client side, after computing the parameter delta, top-k sparsification is

executed (Line 21) followed by clipping (Line 22), encryption, and data transmis-

sion to the TEE on the server side. This approach just incorporates client-side

top-k sparsification into DP-FedAVG [54]. The hyperparameter q is needed for

privacy amplification through client-level sampling. σ is the noise multiplier that

determines the variance of the Gaussian noise to satisfy DP (Line 12) (which is

noise’s standard deviation divided by the clipping scale and commonly used in

DP-SGD [48] framework). And C is clipping parameter to bound ℓ2-sensitivity.

A similar procedure has been proposed in [186], although the TEE part is not

included.

The privacy analysis of Algorithm 14 is discussed in the rest of this section.

Recent works [103, 186] have investigated the combination of client-level CDP-

FL and sparsification. The privacy analysis is performed by combining existing

Renyi differential privacy (RDP) analysis techniques (or moments accountant [48]

which is equivalent to RDP analysis) as well as common CDP-FL [54].

However, one salient aspect is the treatment of sparsification (which is described

in Section 4.2.1). The crucial point is whether the indices of the parameters

selected by sparsification are common or distinct among all clients. If all clients

have common sparsified indices (k out of d indices), the Gaussian mechanism
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Algorithm 14 DP-FL in Olive

Input: N : # participants, q: sampling rate of participants, ηc, ηs: learning rate, σ:

noise parameter, T : number of rounds

1: KeyStore← Remote Attestation with all user i ▷ key-value store in enclave that

stores ski: user i’s shared key from RA in provisioning

2: procedure Train(q, ηc, ηs, σ, T )

3: Initialize model θ0, clipping bound C

4: for each round t = 0, 1, . . . , T do

5: Qt ← (sample users with probability q) ▷ securely in enclave

6: for each user i ∈ Qt in parallel do

7: Enc(∆t
i)← EncClient(i, θt, ηc, C) ▷ with AE mode

8: LoadToEnclave(Enc(∆t
i))

9: check if user i is in Qt

10: ski ← KeyStore[i] ▷ retrieve user i’s shared key

11: ∆t
i ← Decrypt(Enc(∆t

i), ski) ▷ with verification

12: end for

13: /* Obliviously performed, such as Alg. 12 or 13 */

∆̃t = 1
qN

(∑
i∈Qt ∆t

i +N (0, σ2C2Id)
)

▷ oblivious aggregation

14: LoadFromEnclave(∆̃t)

15: θt+1 ← θt + ηs∆̄
t

16: end for

17: end procedure

18: procedure EncClient(i, θt, η, C)

19: θ ← θt

20: G ← (user i’s local data split into batches)

21: for batch g ∈ G do

22: θ ← θ − η∇ℓ(θ; g)
23: end for

24: ∆← θ − θt

25: ∆ ← TopkSparse(∆) ▷ top-k sparsification

26: ∆′ ← ∆ ·min
(
1, C

||∆||2

)
▷ ℓ2 clipping

27: Enc(∆′)← Encrypt(∆′, ski) ▷ with shared key ski from RA

28: return Enc(∆′)

29: end procedure
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required for DP only needs k-dimensional noise, as only k parameters of the global

model require updating in a single round of aggregation. This results in a direct

reduction of noise by a factor of O(k/d). To this end, [103] proposes a method

for obtaining the common top-k indices among many clients for sparsification.

However, as noted in [97], in a practical setting, there is actually little overlap

in the top-k sparsified indices for each client, especially in the non-i.i.d. setting,

which is general in FL. Hence, a common top-k index appears to be impractical.

On the other hand, we consider the scenario where different sparsified indices

are chosen for different clients. This represents a standard setup in the absence

of DP. In contrast to the previous case, where all clients shared a common set

of sparsified indices, there is no reduction in Gaussian mechanism noise on the

order of O(k/d). This is due to the fact that while each client transmits sparsified

parameters of dimension k, any of the d dimensions of the global model may be

updated with the transmitted sparsified parameters. Hence, noise needs to be

added to all dimensions to ensure DP rather than only to the k dimensions.

This remains true regardless of whether the noise is added on the client or server

side, or what type of sparsification is employed as far as aiming to guarantee a

global model DP. This may have been overlooked in previous work that employed

sparsification [122].

Nevertheless, despite the above discussion, such client-specific sparsification

can improve the trade-off between privacy and utility to a certain extent. This is

because sparsification reduces the absolute value of the ℓ2-norm of the transmitted

parameters. As we formally describe later, the ℓ2-norm of the shared parameters

from each client must be bounded by the clipping parameter C to add Gaussian

noise for DP. When clipping is performed on the original dense parameters, all

parameters contribute to the ℓ2-norm. In the case of sparsification, however,

only k parameters contribute to the ℓ2-norm. Intuitively, the less important

d − k parameters are discarded and the space in the ℓ2-norm is allocated to

the more important k parameters, thus increasing their utility. Consequently,

this also means that the clipping size C can be set lower in the sparsified case,

which can lead to lower noise variance. This observation is the basis for the

sparsification proposed in [186]. To be more precise, [186] sparsifies according

to their own utility criteria, rather than selecting the top-k parameters, but the

characteristics of the privacy-utility trade-offs are the same. In general, it can be

concluded that the amount of noise required for CDP is the same in the case of
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sparsification as in the absence of sparsification.

Formal privacy statement. We now formally state the DP satisfied by

Algorithm 14 for completeness. The following definitions and lemmas are the

same as the ones stated in existing studies such as [103, 186].

We use Rényi DP (RDP) [50] because of the tightness of the privacy analysis

and the composition.

Lemma 7 (RDP to DP conversion [49]). IfM satisfies (α, ρ)-RDP, then it also

satisfies (ρ+ log (1/δ)
α−1

, δ)-DP for any 0 < δ < 1.

Here, we state the formal differential privacy guarantees provided by Alg. 14.

Theorem 7. For any ϵ < 2 log (1/δ) and 0 < δ < 1, Alg. 14 satisfies (ϵ, δ)-DP

after T communication rounds if

σ2 ≥
7q2T (ϵ+ 2 log (1/δ))

ϵ2
.

Proof. In each round t of T in Train (Line 2 of Alg. 14), let f be a summation

of delta parameters (∆t
i, Line 11), the ℓ2-sensitivity of f is C due to clipping

operation (Line 22). As explained in detail above, this is independent of the

sparsified dimension k. Hence, adding the Gaussian noise N (0, σ2C2Id), i.e., Gf ,

satisfies (α, α/2σ2)-RDP for any α > 1 by Lemma 3. Further, in the round,

the participants are sub-sampled with probability q (Line 5). Then, following

Lemma 3 of [187], if σ2 ≥ 0.7 and α ≤ 1 + (2/3)C2σ2 log 1
qα(1+σ2)

, by Lemma 4,

sub-sampled Gaussian mechanism G′
f (·) satisfies (α,

3.5q2α
σ2 )-RDP. Over T rounds,

by Lemma 1, it satisfies (α, T 3.5q2α
σ2 )-RDP. Lastly, we convert RDP guarantee

to (ϵ, δ)-DP by Lemma 7. ϵ needs to hold T 3.5q2α
σ2 + log 1/δ

α−1
≤ ϵ. Choose α =

1 + 2 log (1/δ), we obtain the final result.

4.6.1 Attack evaluation

Here, we demonstrate that the proposed attack remains viable even in the pres-

ence of DP. Firstly, we elucidate the reasons for the attack circumventing DP in

Algorithm 14. During each round of FL, the attacker is able to observe the index

prior to perturbation (Line 12 of Algorithm 14), thereby exposing the raw index

information. It should be noted that CDP-FL also employs distributed Gaussian

noise on the client side. However, it is performed after sparsification [186], which
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Figure 4.14: Attack results on datasets with a fixed number of labels with DP

(σ = 1.12).

Figure 4.15: Attack results on datasets with a random number of labels (more

difficult setting) with DP (σ = 1.12).

implies that the raw index information is still visible. Nevertheless, the random-

ization of the parameters of the global model by DP may reduce the accuracy of

the attack. This approach should be considered carefully, as the model may not

be well trained itself. In the next experiment, we see how much protection and

how much model utility is sacrificed by the DP-based approach.

The experimental setting is the same as Section 4.4.3. When the noise multi-

plier σ is set to 1.12, the attack is essentially unaffected. Figures 4.14 and 4.15

are DP versions of Figures 4.5 and 4.6. Although the success rate of attacks has

decreased somewhat, there is almost no change. Attacks are still possible.

In Figure 4.16, we show the attack results on MLP of MNIST for increasing

noise scale with fixed number of labels 3. The horizontal axis indicates noise

scale σ by DP and the left-side start points indicate no noise. Compared to the

case with no noise, increasing the noise has less effect on the attack performance.

This makes sense from our attack design, where the attacker observes the raw

index information of gradients even though the global model satisfies DP. The

blue line in the figure shows the attack success rate for oblivious algorithm (i.e.,

random inference by the attacker). Since the number of labels is fixed at 3 and

the total number of labels is 10, the success rate of this attack is 1/10C3 < 0.01.

We can see that there is a limit to the defensive performance of the DP. When

we increase the noise multiplier (σ is over 4.0), defensive performance starts to
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Figure 4.16: Attack performance with

variable noise multiplier σ. At realistic

noise scales, the attack performance re-

mains high.

Figure 4.17: Effective noise scales in

defensing do not provide sufficient util-

ity.

increase, but such noise multiplier is over-strict in practical privacy degree. This

can be seen in Figure 4.17. The figure shows the utility of the models trained with

each noise multiplier, plotting the test accuracy when training MNIST with the

MLP model. The number of training rounds are fixed at 300, which is based on

the observation that the training loss increased and did not converge with large

multipliers (Figure 4.18). The results show that models trained with large noise

multipliers are no longer useful, and that realistic noise does not protect against

attacks. These results highlight the importance of Olive even in CDP-FL.

4.7 Related works

Positioning in Security and Privacy threats. FL contains many attack

surfaces because of its decentralized and collaborative scheme. These can be

broadly classified into inference attacks by semi-honest parties [175, 23, 166] and

attacks that degrade or control the quality of the model by malicious parties

[188, 71, 170]. However, [171] demonstrated that malicious servers may enable

effective inference attacks by crafting aggregated parameters. Our target is taken

to be an inference attack by a semi-honest server. Inference attacks include

reconstruction [174, 189], membership [175], and label inferences [23, 166]. In

particular, it has been reported that shared parameters observed by a server

contain large amounts of private information [20, 21]. Our work targets gradient-

based label inference attacks, [23, 166] use the gradients themselves, focusing on

the values, and not only on the indices leaking from the side-channel, as in our
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Figure 4.18: Test losses for each noise multiplier σ.

method. To the best of our knowledge, this is the first study to demonstrate label

inference using only sparsified index information.

Relationship with SA. Secure aggregation (SA) [67] is a popular FL method

for concealing individual parameters from the server and it is based on the

lightweight pairwise-masking method [96, 66, 97], homomorphic encryption [98,

99] or TEE [74, 71]. In this study, we study SA using TEE. Recent studies have

investigated combinations of SA and sparsification, such as random-k [97] and

top-k [161]. However, these are not in harmony because they require the same

sparsified indices among clients for mask cancellation. [161] proposed generation

of common masks by taking a union set of top-k indexes among clients, which

incurs extra communication costs and strong constraints. This can be serious for

the top-k because, in fact, Ergun et al. [97] showed that the top-k indices exhibits

little overlap between clients, which is especially noticeable in the non-i.i.d. as

in FL. In [97], only a pair of users exhibited a common index; however, this was

applicable only to random-k sparsification. In the case of TEE, a common index
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or random-k is not required; but, individual indices can still be leaked through

side-channels. Therefore, our work focuses on attacks and defense strategies at

this point.

Oblivious techniques. The oblivious algorithm [87, 162, 140] is known to

induce only independent memory access patterns for the input data. Although

PathORAM [162] is the most efficient ORAM implementation, it assumes a pri-

vate memory space of a certain size (called as client storage) and is not applicable

to Intel SGX [163]. Zerotrace [163] adapted PathORAM to the SGX security

model, in which the register is only private memory. The authors used the obliv-

ious primitive proposed in [140], in which the program did not leak instruction

sequences from the CPU register, using x86 conditional instructions. Our pro-

posed algorithm also uses the low-level primitives; however, high-level algorithms

are considerably different. [164] studied oblivious SQL processing. Their pro-

posal included a group-by query, which is similar to our proposed algorithm in

concept. The aggregation algorithm computes the summed dense gradients based

on multiple sparse gradients, which can be viewed as a special case of the group-by

query. However, our method is more specialized, for instance, we first prepare

the zero-initialized dense gradients to hide the all of index set that are included

and then obliviously aggregated, which is impossible in the case of group-by. In

addition, the aforementioned algorithms are fundamentally different because they

focus on the data distributed across nodes. Further, [164] did not consider the

technique proposed by [140] for linear access, which can induce additional in-

formation leaks in the conditional code [84]. [190, 191] studied compiling and

transforming approaches from high-level source code to low-level oblivious code.

They proposed a compiler that automatically identifies non-oblivious parts of

the original source code and fixes them. However, the authors did not provide

customized high-level algorithms for specific purposes, unlike our method. The

Differentially Obliviousness (DO) [169, 176, 179] is described in detail in Section

4.5.4.

4.8 Conclusion

In this study, we focused on the integration of server-side TEE into FL as a

promising way to address the weakness of privacy and security against untrusted

server in FL. We have revealed that, in fact, a gap exists for that purpose: the
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vulnerability of TEE. We analyzed the risks of FL with server-side TEE in a

sparsified gradient setting, and designed and demonstrated a novel inference at-

tack using gradient index information that is observable from side-channels. To

mitigate these risks, we proposed an oblivious federated learning system, called

the Olive, by designing fully oblivious but efficient algorithms. The experi-

mental results demonstrated that the proposed algorithm is more efficient than

the state-of-the-art general-purpose ORAM and can serve as a practical method

on a real-world scale. We believe that our study is useful for realizing privacy-

preserving FL using a TEE.

4.8.1 Future works

• This research has only shown that attacks are possible through observation

of memory access patterns, and one future direction would be to explore

how far the assumptions and goal of the attacker can be extended, such

as if the memory access patterns contain a lot of noise, or if more critical

privacy attacks are possible beyond the sensitive label leakage.

• For a more efficient oblivious algorithm, we sought a relaxed oblivious def-

inition, DO, but very recent work suggests that fully oblivious sort may

be even faster under the assumptions of SGX based on Waksman Network

[192] instead of Bitonic sorting Network. In particular, FL would benefit

from the asymptotic speedup of oblivious sort by offline computation as

proposed in [193] because FL involves a periodic synchronous process.

• This study provides no protection against malicious clients. On the other

hand, some of the studies also consider the direction to deal with malicious

clients by introducing client-side TEE [73]. We believe that the assumption

of client-side TEE is a bit too strong, however, in Cross-silo FL, client-

side TEE may be acceptable [194]. Therefore, exploring how TEE can be

used to defend against malicious clients is an interesting direction. Also,

it would be practical and interesting to investigate the combination with

lighter cryptographic techniques would provide protection against malicious

client attacks in FL.
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4.9 Appendix

4.9.1 Model architectures

Here are some details about the neural network model we used in the experiments.

The code for all models is available from our public repository.

Table 4.2 describes the detailed design of the model used in the neural network-

based attack in section 4.4.3. Table 4.3 shows the model used as the FL’s global

model throughout all experiments.

Table 4.2: Architectures of the neural networks used in Section 4.4. d is the

number of parameters of the global model trained in FL and |L| is the number

of labels of inference target.

Name Layers Details

NN 2 Fully Connected Layers

Input: d

Hidden: 1000

Dropout: 0.5

Activation: ReLU

Output: |L|

NN-Single 2 Fully Connected Layers

Input: d

Hidden: 2000

Dropout: 0.5

Activation: ReLU

Output: |L|
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Table 4.3: Architectures of the neural networks used as global models in all

FL experiments in Sections 4.4.3 and 4.5.5. Readers can find the details

of ResNet-18 at https://github.com/weiaicunzai/pytorch-cifar100/blob/

master/models/resnet.py.

Name Layers Details

MNIST MLP 2 Fully Connected Layers

Input: 28 * 28

Hidden: 64

Dropout: 0.5

Activation: ReLU

Output: 10

CIFAR10 MLP 2 Fully Connected Layers

Input: 3 * 32 * 32

Hidden: 64

Dropout: 0.5

Activation: ReLU

Output: 10

CIFAR10 CNN Convolutional 1

Input: 3 * 32 * 32

Activation: ReLU

Maxpooling:

kernel size: 2

stride: 2

Convolutional 2

Input: 6 * 14 * 14

Activation: ReLU

Maxpooling:

kernel size: 2

stride: 2

3 Fully Connected Layers

Input: 16 * 5 * 5

Hidden1: 120

Activation: ReLU

Hidden2: 84

Activation: ReLU

Output: 10

Purchase100 MLP 2 Fully Connected Layers

Input: 600

Hidden: 64

Dropout: 0.5

Activation: ReLU

Output: 100

CIFAR100 CNN ResNet-18
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CHAPTER 5

VLDP: Preventing

Manipulation Attack in Local

Differential Privacy Using

Verifiable Randomization

Mechanism

The third framework presented in this chapter concerns malicious clients i.e., E,

which none of the previous frameworks address, as shown in Table 1.2. Research

on malicious clients in distributed computing environments is generally very dif-

ficult because we need to make sure for the integrity against untrusted remote

devices. Therefore, we focus on simpler FA rather than FL to pioneer research

on client-side security techniques. Importantly, FA with LDP and FL have the

same structure in terms of attacks by malicious clients. Both have operations

that pre-processes raw data on the client side (i.e., LDP mechanism in FA with

LDP, and local training in FL) and aggregates the pre-processed data on the

server side. As described in detail in this chapter, under this structure, the mali-

cious client has two possible attacks: one is to replace the input data itself with

maliciously crafted data, and the other is to directly fake the output data. We
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have distinguished these as input-manipulation and output-manipulation in the

context of FA with LDP, but it should be emphasized that a similar classification

exists in FL. In the context of FL, these are also known as model update poisoning

and data poisoning attacks [93]. Therefore, we believe the consideration of attack

and defense in this study could be structurally applicable to FL. Furthermore,

it should be emphasized that since it is not possible to assume a powerful TEE

with RA capabilities such as Intel SGX on the client side of the edge, we focus

on alternative MPC technologies to provide client-side verifiability, which can be

implemented in a software-based approach. Finally, our proposed defense in this

chapter is not perfect for the input-manipulation, thus, the marker in Table 1.2

is Partial (◗).

5.1 Introduction

Local differential privacy (LDP) [42] (originally [195]) is a promising privacy-

enhanced technique for collecting sensitive information without a trusted data

curator. Each client perturbs sensitive data locally by a randomized mechanism

satisfying differential privacy. A server can run analysis such as frequency estima-

tion based on the perturbed data without accessing the raw data. We can see the

effectiveness and feasibility of LDP in early production releases of the platformers

such as Google [196], Apple [197], and Microsoft [198], which all utilize LDP for

privacy-preserved data curation.

While many studies have been focusing on improving the utility of LDP pro-

tocolsa [199, 200, 201, 202, 203, 204] in the literature, recent studies [39] and [38]

report a vulnerability of LDP protocol and alert the lack of security. Specifically,

[39] and [38] show that malicious clients can manipulate the analysis, such as

frequency estimation, by sending false data to the server. Malicious clients can

skew the estimations effectively by considering that estimations are calculated by

normalizing with randomization probability defined in the LDP protocol and can

even control the estimations. Their studies significantly highlight the necessity of

a secure LDP protocol to defend against malicious clients. The problematic point

aIn this chapter, the defined interactions between clients and servers that take place in

Federated Analytics [19] that satisfy LDP are referred to as LDP protocols, such as frequency

estimation with guaranteed LDP. In a distributed setting, the server does not collect raw data

from clients, but rather collects preprocessed information and estimates statistics.
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of protecting against such an attack is that, in a general LDP protocol, others can-

not verify the integrity of results without the original data. The randomization

would provide data providers plausible deniability for their outputs.

To the best of our knowledge, no effective way in the literature can completely

prevent manipulation attacks. Although Cao et al. [39] showed some of the

countermeasures against malicious clients, their empirical results showed that

preventing against output manipulation attack is still an open problem. Among

their proposed methods, the one normalizing the estimated probability distribu-

tion was shown to be to some extent effective for input-manipulation (i.e., the

attackers can falsely manipulate the raw input data but honestly execute the

local randomized mechanism). However, the proposed countermeasures in [39]

are not very effective for output-manipulation attack (i.e., the attackers can ar-

bitrarily change the output of the local randomized mechanism). In addition,

their detection-based countermeasures are based on the assumption of specific

attack methods and may not be effective against arbitrary output-manipulation

attacks. The authors concluded the need for more robust defenses against these

attacks. Concurrently, Cheu et al. [38] also emphasize the same conclusion for

manipulation attacks they call. There is another promising direction against an

attacker who exploits the random mechanism of Differential privacy. Narayan et

al. [205] propose an interesting scheme to prove integrity for executing correct

randomization mechanisms for Differential privacy. However, their setting is dif-

ferent from ours since they focus on central DP with the data curator, who has

the sensitive data, and the analyst, who creates the proof (in this setting, the

client needs to prove their local execution).

To solve these problems, we design a novel verifiable LDP protocol based on

Multi-Party Computation (MPC) techniques in this work. Our contributions are

summarized below. First, we categorize the attacks of malicious clients into two

classes, output-manipulation and input-manipulation (formally defined in Section

5.3). For input-manipulation attacks, efficient countermeasures have been pro-

vided in [39], but existing studies cannot prevent output-manipulation wholly

and effectively. We analyze the effectiveness of output-manipulation compared

to input-manipulation, highlight the importance of output-manipulation protec-

tion, and formalize the definition of output-manipulation secure LDP protocol.

Second, we propose secure and efficient verifiable LDP protocols to prevent ma-

nipulation attack. The proposed protocols enable the server to verify the com-
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pleteness of executing an agreed randomization mechanism on the client side

without sacrificing local privacy. Specifically, we leverage Cryptographic Ran-

domized Response Technique (CRRT)[206] as a building block to convert exist-

ing state-of-the-art LDP mechanisms including kRR [199], OUE [201], and OLH

into output-manipulation secure LDP protocols with negligible utility loss. Our

proposed secure protocols do not assume any specific attack, and work effectively

against general output-manipulation, and thus are more potent than previously

proposed countermeasures. Third, we conduct intensive experiments to test the

performance of the proposed protocols. We demonstrate that the proposed meth-

ods can completely protect the LDP protocol from output manipulation attacks

with acceptable computational overhead.

The main contribution is as follows:

• Attack classification: We classify attacks of malicious clients in LDP into

two classes and suggest that different types of countermeasures are needed.

• Verifiable LDP protocol: We propose a novel verifiable LDP protocol

for three state-of-the-art randomization mechanisms, kRR, OUE, OLH. Our

proposed method completely prevents malicious clients’ output-manipulation.

• Implementation and evaluation: We implement the proposed protocol,

open the source code, and evaluate our method using the prototype.

In particular, our proposed method works for defending output-manipulation at-

tacks. We leave the countermeasures for input-manipulation as future work.

5.2 Attacks on LDP protocols

5.2.1 Local Differential Privacy

Differential privacy (DP) [42] is a rigorous mathematical privacy definition, which

quantitatively evaluates the degree of privacy protection when we publish outputs

about sensitive data in a database. DP is a central model where a trusted server

collects sensitive data and releases differentially private statistical information

to an untrusted third party. On the other hand, Local DP (LDP) is a local

model, considering an untrusted server that collects clients’ sensitive data. Clients
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perturb their data on their local environment and send only randomized data to

the server to protect privacy.

In this work, we suppose server S collects data and aggregates them, and N

clients ci (0 ≤ i ≤ N − 1) send their sensitive data in a local differentially

private manner. Each client has an item v which is categorical data, and the

items have d domains and v ∈ [0, d − 1](:= [d]). Additionally, vi denotes ci’s

item. The clients randomize their data by randomization mechanism A, and ci

sends A(vi) = yi(∈ D) to the server, where D is the output space of A. The

server estimates some statistics by F(y0, ..., yN−1). In particular of this work,

Fk corresponds to frequency estimation for item k (i.e., how many clients have

chosen item k). The formal LDP definition is as follows:

Definition 9 (ϵ-local differential privacy (ϵ-LDP)). A randomization mechanism

A satisfies ϵ-LDP, if and only if for any pair of input values v, v′ ∈ [d] and for

all randomized output y ∈ D, it holds that

Pr[A(v) ∈ y] ≤ eϵ Pr[A(v′) ∈ y].

Under a specific randomized algorithm A, we want to estimate the frequency of

any items. Wang et al. [201] introduce ”pure” LDP protocols with nice symmetric

property and a generic aggregation procedure to calculate the unbiased frequency

estimations from given randomization probabilities. Let Support be a function

that maps each possible output y to a set of input that y supports. Support

is defined for each LDP protocol, and it specifies how the estimation can be

computed under the LDP protocol. A formal definition of pure LDP is as follows:

Definition 10 (Pure LDP [201]). A protocol given by A and Support is pure if

and only if there exist two probability values p > q such that for all v1,

Pr[A(v1) ∈ {o|v1 ∈ Support(o)}] = p,

∀v2 ̸=v1 Pr[A(v2) ∈ {o|v1 ∈ Support(o)}] = q. (5.1)

where p, q are probabilities, and q must be the same for all pairs of v1 and v2.

While maximizing p and minimizing q make the LDP protocol more accurate,

under ϵ-LDP it must be p
q
≤ eϵ. The important thing is that, in pure LDP

protocol, we can simply estimate the frequency of item k as follows:

Fk =

∑
i ⊮Support(yi)(k)−Nq

p− q
(5.2)
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We can interpret that this formula normalizes observed frequencies using proba-

bilities p and q to adjust for randomization.

For frequency estimation under LDP, we introduce three state-of-the-art ran-

domization mechanisms, kRR [199], OUE [201] and OLH [201]. These mecha-

nisms includes three steps: (1) Encode is encoding function: E : v(∈ [d]) → v′(∈
[g]) , (2) Perturbation is randomized function: A : v′(∈ [g]) → y(∈ D) , (3) Ag-

gregation calculates estimations from all collected values: F : (y0, ..., yN−1)→ R.
Formal proofs that each protocol satisfies ϵ-LDP can be found in [201].

k-ary Randomized Response (kRR) is an extension of Randomized Response

[207] to meet ϵ-LDP. In particular, kRR provides accurate results in small item

domains. This mechanism does not require any special encoding, and provides

an identity mapping E(v) = v ([g] = [d]). Perturbation is as follows;

Pr[A(v) = y] =


p =

eϵ

eϵ + d− 1
, if y = v

q =
1− p

d− 1
=

1

eϵ + d− 1
, if y ̸= v

(5.3)

For aggregation, we can consider Support function as Support(v) = (v) and make

this follow pure LDP protocol (Definition 10). Therefore, aggregation follows

Eq.(5.2).

Optimized Unary Encoding (OUE) encodes item v into d-length bit vector

and encode function is defined as E(v) = [0, ..., 0, 1, 0, ..., 0] where only single bit

corresponding to v-th position is 1. Final output space is also d dimensional

bit vector {0, 1}d (e.g. y = [1, 0, 1, 1, 0]). Let i-th bit of output vector as yi,

perturbation is as follows;

Pr[yi = 1] =


p =

1

2
, if i = v

q =
1

eϵ + 1
, if i ̸= v

(5.4)

These p and q minimize the variance of the estimated frequency in similar bit

vector encoding (e.g. RAPPOR [196]). In aggregation step, we consider Support

function as Support(y) = {v|yv = 1}, and also calculate using Eq.(5.2).

Optimized Local Hashing (OLH) employs hash function for dimensional re-

duction to reduce communication costs. It picks up H from a universal hash
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function family H, and H maps v ∈ [d] to v′ ∈ [g] where 2 ≤ g < d. Therefore,

encode function is E(v) = H(v). Perturbation is the same as kRR, except that

the input/output space is [g]. Then, p and q is defined as follows;

Pr[A(x) = y] =


p =

eϵ

eϵ + g − 1
, if y = H(v)

q =
1

g
· p+

(
1−

1

g

)
·

1

eϵ + g − 1
=

1

g
, if y ̸= H(v)

(5.5)

In aggregation step, we consider Support function as Support(y) = {v|v ∈ [d] and y =

H(v)} and follow Eq.(5.2) using p and q.

5.2.2 Attacks on LDP protocols

In this subsection, we introduce two important studies suggesting caution to the

necessity of secure LDP protocols.

Targeted Attack. Cao et al. [39] focus on targeted attacks to LDP protocols,

where the attacker tries to promote the estimated frequencies of a specific item

set. Considering the attacker against the LDP protocols,M malicious clients, who

can arbitrarily control local environments and send crafted data to the server, are

injected by the attacker. (They call data poisoning attacks.) The attacker wants

to promote r target items T = {t1, ..., tr} in the frequency estimation. Cao et

al. propose three attacks: Random perturbed-value attack (RPA), Random item

attack (RIA), Maximal gain attack (MGA). The first two attacks are as baselines

and MGA is an optimized attack. In RIA, malicious clients perform uniform

random samplings of a value from the target item set. And then, following

the LDP protocol, encoding and perturbation are performed and sent to the

server. MGA is more complicated than others. It aims to maximize the attacker’s

overall gain G: sum of the expected frequency gains for the target items, G =∑
t∈T E[∆ft] where ∆ft represents the increase of estimated frequency of item t

(∀t ∈ T ) from without attack to with attack. In MGA, the output item selection

is performed according to the optimal solution maximizing the attacker’s gain

and sent to the server without perturbation.

Cao et al. describe the details of these three attacks against kRR, OUE, OLH

in the frequency estimation and give theoretical analysis. The summary of the

results is shown in Table 5.1. The table shows the overall gains of the three
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kRR OUE OLH

RPA (output-manipulation) β( rd − fT ) β(r − fT ) −βfT
RIA (input-manipulation) β(1− fT ) β(1− fT ) β(1− fT )

MGA (output-manipulation) β(1− fT ) +
β(d−r)
eϵ−1 β(2r − fT ) +

2βr
eϵ−1 β(2r − fT ) +

2βr
eϵ−1

Table 5.1: MGA can achieve the highest gains against all three protocols. β =
M

N+M
and fT =

∑
t∈T ft in the table.

attacks against kRR, OUE, and OLH. MGA can achieve the highest gains for

all protocols, clearly because MGA maximizes the gains. A notable point is

a difference, summarized in Table 5.2, showing the difference in gains between

MGA and RIA. They respectively correspond to output-manipulation and input-

manipulation (described later) in this work. Note that the difference is remark-

able, especially under the higher privacy budget.

Untargeted Attack. Albert et al. [38] analyze manipulation attacks in LDP.

Compared to Cao et al.’s work, their study mainly focuses on untargeted attacks.

The attackers aim to skew the original distribution and degrade the overall esti-

mation accuracy of the server.

They suggest for the LDP protocols that the architecture is inherently vulner-

able to malicious clients’ manipulations. They suppose a general manipulation

attack: the attacker injects M users in N clients in the LDP protocol. These in-

jected users can send arbitrary data sampled from carefully skewed distributions

to the server without supposed perturbation. We consider this attacker model

corresponds to MGA in [39] and output-manipulation (described later) in this

work. We should focus on one of their contributions: they show the general ma-

nipulation attack can skew the estimated distribution by Ω(M
√
d

ϵN
) in the frequency

estimation, which causes more significant error than input-manipulation by about

a
√
d
ϵ

factor (Table 5.2). The difference is, for example, defined as l1-norm of the

original and skewed distribution.

Summary. We summarize these notable results in Table 5.2, showing how effec-

tive output-manipulation can attack compared to input-manipulation. The above

two previous studies’ common conclusion is highlighting the great necessity of en-

forcing the correctness of users’ randomization to defend the output-manipulation

attacks.
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Targeted Attack [39]
kRR OUE OLH

+

β(d− r)

eϵ − 1

 +

β(2r−1)+
2βr

eϵ − 1

 +

β(2r−1)+
2βr

eϵ − 1



Untargeted Attack [38] ×Ω


√
d

ϵ



Table 5.2: Overall, output-manipulations are much more vulnerable than input-

manipulation. The differences of both manipulations gain are calculated by

output-manipulation gain − input-manipulation gain (resp. output-manipulation

gain / input-manipulation gain) in Targeted (resp. Untargeted) Attack.

5.3 Problem Statements

Firstly, we give some notations to LDP protocols, partially following the above-

mentioned in Section 5.2. We denote a single LDP protocol as πi, where a client

ci sends sensitive data v to server S in ϵ-LDP manner. Encode and perturba-

tion are denoted together as ϕ. ϕ is a probabilistic function (i.e., randomization

mechanism) that takes v ∈ [d] as input and output y ∈ D, such that output space

D = [d] if kRR, D = {0, 1}d if OUE, D = [g] if OLH. And we denote overall

protocol including all clients as Π = {πi|i ∈ [N ]}.

5.3.1 Overview of the goal

An attacker against Π injects compromised users into the protocol to send many

fake data to a central server. Note that such an attack results in manipulation

against a single protocol π by each compromised user. Therefore, we consider

security for π, and by protecting security for π, we can naturally protect security

for Π. As for the attacker’s capability, the attacker can access the implementation

of ϕ because this is executed on clients’ local, and he knows all parameters and

functions including ϕ, ϵ, d, D and Support(y), and employs this information to

craft effective malicious outputs. However, in fact, there is little variation in

the attacker’s behavior because the server can easily deny the protocol if output

y /∈ D. Under such conditions, as shown in Figure 5.1, we can observe that an

attacker can carry out the following two classes of attacks:
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Figure 5.1: From top to bottom, normal protocol, input-manipulation attack and

output-manipulation attack against an LDP protocol.

Input-manipulation supposes that the attacker can only select input data v ∈
[d] and cannot interfere with other parameters and functions in π (middle in

Figure 5.1). In other words, the attacker must send y = ϕ(v). But in a realistic

setting, we should consider it a too strong assumption, as it allows an attacker

to have complete control over the local system environment. For example, in

targeted attack, RIA corresponds to this class of attacks.

Output-manipulation supposes the attacker can send arbitrary outputs to the

server (bottom in Figure 5.1). This corresponds to the attacker can ignore all

parameters and functions ϵ, ϕ by manipulating outputs directly. This attack is

an entirely reasonable attack against a general LDP protocol because the server

cannot distinguish between true data or fake data. In targeted attack, it corre-

sponds to MGA or the attacks proposed in [38] for untargeted attack. Generally,

this class effectively attacks, as shown in Table 5.2.

An important observation from Section 5.2.2 is that input-manipulation is much

less effective than output-manipulation. Therefore, the natural direction is to

defend against output-manipulation and limit the attack to the range of input-

manipulation to achieve secure LDP protocols. On the other hand, it is hard to

prevent input-manipulation completely. These have been studied in the fields of

game theory [208] [209] or truth discovery [210], and we leave such a solution as
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future work.

Overall, the goal is to mitigate attacks against the LDP protocols by completely

defending output-manipulation and limiting to input-manipulation. For this pur-

pose, we consider enforcing the correct mechanism ϕ for protocol π. The key idea

is to make the protocol verifiable against malicious clients from a server. In the

rest of this chapter, we refer to this property as output-manipulation secure. (It

is also expressed simply as secure, and we call it as secure LDP protocol.)

Definition 11 (output-manipulation secure). An LDP protocol π is output-

manipulation secure if any malicious client cannot perform output-manipulation

and can only perform input-manipulation against π.

5.3.2 Security definitions

In this subsection, we clarify what we should achieve for a secure LDP protocol.

Similar to [206], security definitions of secure LDP protocol are consistent with

a traditional secure two-party computation (2PC) protocol described in [211].

It considers an ideal world where we can employ Trusted Third Party (TTP)

to execute arbitrary confidential computations indeed. And we aim to replace

the TTP with a real-world implementation of cryptographic protocol π = (c, S)

between client c and server S. The protocol’s flow when using a TTP is very

simple. The client c sends input v to the TTP, and the TTP provides y = ϕ(v)

to S. After all, c and S never receive any other information; S does not know v,

and c does not know y. (S can estimate v from y and ϕ, but c’s privacy should

be guaranteed by LDP.)

While it is seemingly apparent that this ideal world’s protocols will satisfy the

requirements, let us review possible attacks closely. Goldreich [211] summarizes

that there are just three types of attacks in malicious model 2PC against ideal

world protocols; (1) denial of participation in the protocol; (2) fake input, not the

true one; (3) aborting the protocol prematurely. We cannot hope to avoid these,

but (1) and (3) cannot influence the estimation of original data distributions in

LDP protocols. (2) is exactly input-manipulation described in the previous sub-

section. Thus, it is sufficient that the ideal world in 2PC is output-manipulation

secure (see Definition 11) in the LDP protocols.

Considering the substituted cryptographic protocol π = (c, S), let client c as

prover P and server S as verifier V and π = (P ,V). More specifically, we should
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guarantee secure LDP under the worst case that both P and V behave maliciously.

The case where P is malicious is obvious, considering output-manipulation. Still,

in the V ’s case, it is because, given the original scenario of LDP, we need to

guarantee the privacy of P . And, we assume P is a polynomial computational

adversary and V is unbounded.

Following [206], the ideal world protocol can be substituted with protocol π

if (a) for any prover algorithm P∗, V who receives ϕ(v) = y accepts only when

P∗’s secret input is surely v, or otherwise halts with negligible error; (b) for any

prover algorithm P∗, y is indistinguishable from other categories; (c) for any

verifier algorithm V∗, v is indistinguishable from other categories. Additionally,

we need to verify that the randomization function ϕ used in the protocol does

indeed satisfy ϵ-LDP.

Let viewP (resp. viewV) as the set of messages generated by the protocol

that P (resp. V) can observe And let k as a security parameter that increases

logarithmically with cryptographic strength. Then, the security definitions are

reduced as following three properties:

• Verifiability: This property corresponds to the above-mentioned (a). We

consider the protocol is verifiable if it satisfies as follows;

Pr[V does not halts |y ← ϕ(∗)] = 1 and, (5.6)

1− Pr[V halts |y ← P∗] < negl(k) (5.7)

where negl(k) is negligible function in k, y ← ϕ(∗) means y is obtained by

correct execution of ϕ and y ← P∗ means y is obtained by P∗ other than

correct ϕ(v).

• Indistinguishability: This property corresponds to (b) and (c). (b) sat-

isfies if viewP∗ has indistinguishable distributions for any input category

v ∈ [d]. Formally, we define this property as follows; for any adversary P∗,

|Pr[P∗(viewP∗ , v) = y]− Pr[P∗(v) = y]| < negl(k) (5.8)

where negl(k) is negligible function in k. This means that a malicious client

can use any information obtained from the protocol but only get negligible

information about the final output of the server side. Similarly, (c) satisfies

if, for any unbounded adversary V∗,

|Pr[V∗(viewV∗ , y) = v]− Pr[v|y]| < negl(k) (5.9)
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• Local Differential Privacy: The randomization mechanism ϕ in the given

protocol must satisfy ϵ-LDP as shown in Definition 9. The verification of

the correct execution is performed in Eq. (5.6).

5.4 Proposed Method

We design secure LDP protocols for kRR, OUE, and OLH, respectively, to com-

pletely defend against output-manipulations. In our method, a major building

block is the Cryptographic Randomized Response Technique (CRRT) [206], which

employs Pedersen’s commitment scheme [212] for secure verifiability using the

additive homomorphic property, and Naor-Pinkas 1-out-of-n Oblivious Transfer

(OT) technique [65] for tricks for a verifiable randomization mechanism. Overall,

the proof of validity is based on disjunctive proof [213]. It is a lightweight inter-

active proof protocol based on a secret sharing scheme and can perform witness-

indistinguishable [214] proofs of knowledge (similar to zero-knowledge proofs).

Combined with the security of the encryption scheme proposed in [206], it is pos-

sible to securely prove that the output value y is obtained by sampling from a

probability distribution that satisfies the ϵ-LDP, i.e., y = ϕ(v). For simplicity, we

explain several phases separately in the following protocol description (Protocol

1, 2), but they can be done simultaneously in the actual implementation.

Before explaining the protocols in detail, we introduce the following crypto-

graphic setting. Assume that p and q are sufficiently large primes such that q

divides p − 1, Zp has a unique subgroup G of order q. q is the shared security

parameter between P and V . Security parameter k is k = log2 qmax such that

qmax is the maximum value of possible q. We select g and h as a public key. They

are two generators of G, and their mutual logarithms logg h and loghg are hard

to compute. We use this public key in the following protocols.

5.4.1 Secure kRR

Protocol 1 shows the details of the secure version of kRR, an extension of CRRT

[206] to satisfy LDP for multidimensional data. As a whole, in the setup phase,

both P and V prepare the same parameters l, n, z from accuracy parameter width

and privacy budget ϵ by Algorithm 15. l, n, z identify a categorical probability

distribution that satisfies LDP, and we use it in 1-out-of-n OT for verifiable
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Algorithm 15 DecideSharedParameters

Input: ϵ, width

1: i← ⌊ eϵ

(d−1)+eϵ
⌋ ▷ as an integer

2: while i > 0 do

3: if (width− i) divides (d− 1) then

4: g ← gcd(i, width, width−i
d−1

)

5: l, n← i
g
, width

g

6: break

7: end if

8: i← i− 1

9: end while

10: z ← max([l, n−l
d−1

]) + 1

Output: l, n, z

random sampling. In mechanism phase, P creates a vector µ representing the

categorical distribution containing n data where each data µi corresponds to one

of the categories [d]. width (i.e., n) is the size of the vector and decides a trade-

off between accuracy to approximate LDP and overheads caused by the protocol.

For proof P2, we use zµi instead of µi. All z
µi is encrypted to yi by an encryption

scheme that combines Pedersen’s commitment and OT. Only the µσ, where σ

is pre-chosen by V , can be decrypted correctly. Such a trick allows us to surely

perform random sampling from vector µ representing the categorical distribution.

In the proof phase, two proofs are verified in the protocol. The first one is a

disjunctive proof for each encrypted data yi belonging to one of the categories [d]

(P1). The second one also uses a disjunctive proof that the summation of the

vector used as a categorical distribution in the OT belongs to one of the possible

values (P2). There are just d possible values for the summation of µ (4.(a)).

Here, we confirm that Protocol 1 is secure. From the protocol, the prover and

the verifier obtain viewP = {ga, gb, gab−σ−1, xi, x} and viewV = {wi, yi, com
(j)
i , c

(j)
i , h

(j)
i , comj, ci, hi}

for all i ∈ [n], j ∈ [d] respectively.

Firstly, we consider indistinguishability. The encryption scheme (e.g., µi is

encrypted to yi) is the same as the one presented in [206], which has been shown

to be sufficiently indistinguishable for P∗ and V∗. That is, it is as hard for P∗ to

know about the σ, and also hard for V∗ to guess the distribution of µ and input

v. Considering the attacker views, for P∗, calculating σ from viewP is as hard
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as the Decisional Diffie Hellman (DDH) problem. And x and xi are completely

random integers. For V∗, (wi, yi) of viewV is indistinguishable by the security

of the cryptographic scheme, and (com
(j)
i , c

(j)
i ) is also indistinguishable because

of the secret sharing scheme [213]. Verifiability is satisfied by proofs, P1 and

P2. If both P1 and P2 are verified, V itself selects one value from the verified

vector by OT. Then, for any operation by P∗, V can confirm the correctness of

the protocol. Hence, verifiability entirely depends on the protocol that proves the

P1 and P2. We use disjunctive proofs and Eq.(5.6) and Eq.(5.7) are respectively

satisfied by the completeness and soundness of the disjunctive proofs shown in

[213]. Lastly, Algorithm 15 definitely generates l, n such that l
n
≤ eϵ

(d−1)+eϵ
and

n−l
d−1
≥ 1

(d−1)+eϵ
. Hence, because random sampling from µ is equivalent to kRR

with p = l
n
, q = n−l

d−1
, at least ϵ-LDP is satisfied.
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Protocol 1 secure kRR

Client c as prover P who holds an secret input v ∈ [d] and server S as verifier V. ϵ is privacy
budget and width is a parameter representing the degree of approximation.

1. Setup phase.

(a) P and V run DecideSharedParameters(ϵ, width) and prepare l, n, z as shown
in Algorithm 15. This is an algorithm for approximating integers l, n, z for given
ϵ with as little degradation in accuracy as possible while still satisfying privacy
protection.

(b) V selects σ ∈ [n]. And P prepares a n-length random number vector µ =
(µ1, ..., µn) where for all 1 ≤ i ≤ n, µi ∈ [d], the vector satisfies #{µi|µi ∈
µ and µi = v} = l and for all {v′|v′ ∈ [d] \ {v}}, #{µi|µi = v′} = n−l

d−1 where #{·}
returns count on a set.

2. Mechanism phase.

(a) V picks random a, b← Zq and sends ga, gb and gab−σ+1 to P.
(b) For all i ∈ {1, ..., n}, P performs the following subroutine; (1) Generate (ri, si) at

random; (2) Compute wi ← gri(ga)si = gri+asi and hi ← (gb)ri(gab−σ+1gi−1)si =
g(ri+asi)b+(i−σ)si ; (3) Encrypt µi to yi as yi ← gz

µi
hi . Then, send (wi, yi) to V.

(c) V computes wb
σ where σ is what V choose at setup phase, and computes gµσ ← yσ

hwb
σ
.

And then, find µσ from the result and g. Thus, V receives µσ as a randomized
output from P.

3. Proof phase for P1.

(a) For all j ∈ [d] \ {µi}, for all i ∈ {1, ..., n}, P generates challenge c
(j)
i and response

s
(j)
i from Zq and prepares commitments com

(j)
i ← hs

(j)
i /(yi/g

zj

)c
(j)
i . For {µi} and

for all i ∈ {1, ..., n}, P generates wi ← Zq and let com
(µi)
i = hwi . Then, send

com
(j)
i to V, for all i, j.

(b) V picks xi ← Zq for all i ∈ {1, ..., n} and sends it to P.
(c) For all i ∈ {1, ..., n}, P computes c

(µi)
i = xi−

∑
j∈[d]\µi

c
(j)
i and s

(µi)
i = vic

(µi)
i +wi.

Then, send c
(j)
i and s

(j)
i for all i, j to V.

(d) Finally, V checks if hs
(j)
i = b(yi/g

zj

)c
(j)
i for all j ∈ [d] and xi =

∑
j∈[d] c

(j)
i , for all

i ∈ 1, ..., n. Otherwise halts.

4. Proof phase for P2.

(a) For all j ∈ [d]\{v}, P generates challenge cj and response sj from Zq and prepares

commitments comj ← hsj/(
∏

i∈{1,..,n}yi/g
Zj )cj where Zj = n−l

d−1

(∑
k∈[d]\{j} z

k
)
+

lzj . And P generates w ← Zq and let comv = hw. Then, send comj to V, for all
j ∈ [d].

(b) V picks x← Zq and sends it to P.

(c) P computes cv = x−
∑

j∈[d]\{v} cj and sv =
(∑

i∈1,...,n vi

)
cv + w. Then, send cj

and sj for all j to V.
(d) Finally, V checks if hsj = b(

∏
i∈{1,..,n} yi/g

Zj )cj for all j ∈ [d] and x =
∑

j∈[d] cj .
Otherwise halts.
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5.4.2 Secure OUE

We show the secure version of the OUE protocol in Protocol 2. Unlike kRR,

OUE sends a d-length bit vector where each i-th bit corresponds to the likelihood

that the client has the item i ∈ [d]. In OUE, mechanism ϕ performs random bit

flips with given constant probability independently for each bit. The Bernoulli

distributions, which determine the probabilities of each flip, are approximated by

a distribution of n-length bit vectors. As in the case of kRR, verifiable random

sampling is achieved by a trick using Pedersen’s commitment and OT. However,

there are d distribution vectors since it needs for each category.
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Protocol 2 secure OUE

P, v ∈ [d], V, width, ϵ as with Protocol 1.

1. Setup phase.

(a) P and V set l, n as ⌈ 1
1+eϵ · width⌉ and width itself respectively.

(b) V selects d random numbers σ = {σ1, ..., σd} where 1 ≤ σj ≤ n. P prepares d

n-length random bit vectors µ⃗ = (µ1, ...,µn) such that µj = (µ
(j)
1 , ..., µ

(j)
n ) where

all µ
(j)
i ∈ {0, 1}, and the vector satisfies

∑
i µ

(j)
i = n− l if j = v and

∑
i µ

(j)
i = l if

j ̸= v.

2. Mechanism phase.

(a) V picks random aj , bj ← Zq and sends gaj , gbj and gajbj−σj+1 to P for all j ∈ [d].

(b) For all j ∈ [d] and i ∈ {1, ..., n}, P performs the following subroutine; (1) Generate

(r
(j)
i , s

(j)
i ) at random; (2) Compute w

(j)
i ← gr

(j)
i (gaj )s

(j)
i = gr

(j)
i +as

(j)
i and h

(j)
i ←

(gbj )r
(j)
i (gajbj−σj+1gi−1)s

(j)
i = g(r

(j)
i +as

(j)
i )bj+(i−σj)s

(j)
i ; (3) Encrypt µ

(j)
i to y

(j)
i as

y
(j)
i ← gµ

(j)
i hh

(j)
i . Then, P sends all (w

(j)
i , y

(j)
i ) to V.

(c) For all j ∈ [d], V computes g
µ(j)
σj ← y

(j)
σj /h

(w(j)
σj

)bj
. And then, find µσj

. Thus, V
receives [µσ1

, ..., µσd
] as a randomized output from P.

3. Proof phase for P1.

(a) For all j ∈ [d], for all i ∈ {1, ..., n}, P generates challenge c
(j)

1−µ
(j)
i ,i

and response s
(j)

1−µ
(j)
i ,i

from Zq and prepares commitments com
(j)

1−µ
(j)
i ,i

←

h
s
(j)

1−µ
(j)
i

,i/(y
(j)
i /gµ

(j)
i )c

(j)
i . Generate w

(j)
i ← Zq and compute com

(j)

(µ
(j)
i ),i

← hw
(j)
i .

Then, send com
(j)
{0,1},i to V, for all i, j.

(b) V picks x
(j)
i ← Zq for all j ∈ [d] and i ∈ 1, ..., n and sends it to P.

(c) For all j ∈ [d] and i ∈ {1, ..., n}, P computes c
(j)

µ
(j)
i ,i

= x
(j)
i − c

(j)

1−µ
(j)
i ,i

and s
(j)

µ
(j)
i ,i

=

v
(j)
i c

(j)

µ
(j)
i ,i

+ w
(j)
i . Then, send c

(j)
{0,1},i and s

(j)
{0,1},i for all i, j to V.

(d) Finally, V checks if h
s
(j)

{0,1},i = b(y
(j)
i /g{0,1})

c
(j)

{0,1},i and x
(j)
i = c

(j)
0,i + c

(j)
1,i , for all

i ∈ {1, ..., n} and for all j ∈ [d]. Otherwise halts.

4. Proof phase for P2. (Simplified because it is similar to P1.)

(a) P generates and sends all com
(j)
{p,q} to V.

(b) V picks xj ← Zq for all j ∈ [d] and sends it to P.
(c) P sends c

(j)
{p,q} and s

(j)
{p,q} for all j to V

(d) V checks if hs(j)p = b(
∏

i∈1,..,n y
(j)
i /gn/2)c

(j)
p and hs(j)q = b(

∏
i∈1,..,n y

(j)
i /gl)c

(j)
q and

xj = c
(j)
p + c

(j)
q for all j ∈ [d]. Otherwise halts.

5. Proof phase for P3.

(a) P computes hsum ←
∑

i,j h
(j)
i and sends hsum to V.

(b) V checks if hhsumgn/2+l(d−1) =
∏

i,j y
(j)
i . Otherwise halts.

130



5. VLDP: Preventing Manipulation Attack in Local Differential Privacy Using
Verifiable Randomization Mechanism

In addition, each vector’s distribution is one of two types: the j-th vector such

that the secret input v = j or otherwise (i.e., p or q in Eq. (5.4)). Thus, we

perform independent OT and decide 0 or 1 for d categories and finally, get the

randomized output [µσ1 , ..., µσd
].

Then, similar to secure kRR, we must show that all Bernoulli distributions

represented by d vectors are correct. Specifically, the proofs are that all elements

of bit vectors µ⃗ are surely a bit (0 or 1) (P1) and the distribution of the vectors

are surely equivalent to either of p or q of Eq. (5.4) (P2). The number of p

and q are 1 and d − 1 respectively (P3). If all these three proofs are verified,

we can confirm the OUE protocol is simulated correctly. Like kRR’s proofs, P1

and P2 are proved by d disjunctive proofs. P3 is based on the hardness of the

discrete logarithm problem. P cannot find hsum in polynomial time without all

correct h
(j)
i that is used when encrypting y

(j)
i . While P has to release hsum, this is

information theoretically indistinguishable from V for each h
(j)
i unless n = d = 1.

Security statements for the secure OUE protocol are similar to secure kRR. For

LDP, as we can see 1.(a) in Protocol 2, we set q = l/n such that l
n
≥ 1

1+eϵ
.

5.4.3 Secure OLH

To make OLH output-manipulation secure, basically, we can use Protocol 1 except

that it requires sharing of a hash function and using reduced output category

space. As a first step, V generates and sends a seed s to P to initialize hash

function Hs : v → v′ where v ∈ [d] and v′ ∈ [g]. V and P use the same Hs as a

hash function. We can apply Protocol 1 to achieve secure OLH by using category

set [g] instead of [d] and sensitive input value v is handled as v′ = Hs(v). The

rest of the steps are almost the same as kRR.

Even if P∗, who does not use the hash function correctly, participates in the

protocol, V can easily detect it if it sends the output of a different output space,

i.e. y /∈ [g]. If the attacker does not use a different output space, the attack

can only be equivalent to input-manipulation because V verifies the correctness

of the categorical distribution used in random sampling after applying the hash

function.
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5.5 Evaluation

In this section, we evaluate and analyze the performance of the proposed proto-

cols. The code in Python is available on GitHubb.

Experimental setup. We use an HP Z2 SFF G4Workstation, with a 4-core 3.80

GHz Intel Xeon E-2174G CPU (8 threads, with 8MB cache), and 64GB RAM.

The host OS is Ubuntu 18.04 LTS. The client and server exchange byte data

serialized by pickle (from Python standard library) over TCP. We use ϵ = 1.0 and

in OLH, set g = d/2 as the hashed space instead of g = ⌊eϵ+1⌋ for demonstration.

Parameter generator. First, we analyze the approximated probability dis-

tribution generated by the proposed method. In the secure kRR protocol, we

approximate the probability distribution where we generate data to satisfy LDP

by Algorithm 15. Figure 5.2 shows how accurate the algorithm generates discrete

distribution for ϵ = (0, 5] and for width = {100, 1000}. The red curve represents

probability p for the normal mechanism, and the blue one represents the approx-

imated one. When the width is small, there is a noticeable loss of accuracy due

to approximation. However, with a sufficiently large width, the approximated p

has a sufficiently small loss. As the width increases, the performance degrades,

indicating that there is a trade-off between the accuracy of the probability ap-

proximation and the performance. This is true not only for kRR but also for OUE

and OLH. For secure OUE, in the right-side of Figure 5.2, we compare probability

q because p is constant in OUE. It is almost an exact discrete approximation with

a small width. This is due to the difference in the structure of the vectors that

form the probability distribution, with OUE having a simpler structure.

Performance. We evaluate the performances of our proposed method. Figure

5.3 shows the total bandwidths caused by communications of the entire protocol

for each of the three methods with different category sizes. Generally, as the cate-

gory size increases, the total bandwidth also increases. While it increases linearly

in OUE, there are fluctuations in kRR and OLH. This is because the probability

value that Algorithm 15 approximates may have a smaller denominator (i.e., n)

by reduction, which can make the distribution vector smaller. Overall, a larger

width generates almost linear increases in bandwidth. And for the same width,

secure OUE causes a larger communication overhead than the others. However,

as mentioned in the previous paragraph, secure OUE can approximate the proba-

bhttps://github.com/FumiyukiKato/verifiable-ldp
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Figure 5.2: In secure kRR, with a sufficiently large width, categorical distribution

by Algorithm 15 can accurately approximate the LDP distributions (left and

middle). In secure OUE, it is almost exact discrete approximation with relatively

small width. (right)

bility distribution with high accuracy using a smaller width. Hence, in particular,

when the number of categories is large, secure OUE is considered to be more ef-

ficient by using a smaller width. Figure 5.3 shows that, comparing kRR with

width = 1000 and OUE with width = 100, many categories require several times

more bandwidth. On the other hand, when the discretized probability distribu-

tion can be approximated with a small denominator by reduction, kRR and OLH

show a very small bandwidth. When comparing kRR and OLH, OLH is smaller

overall. This is due to the fact that the output space is reduced by hashing.

Figure 5.4 shows the total execution time from the time the client sends the

first request until the entire protocol is completed. Most of the characteristics are

similar to those of bandwidth. As the size of the proofs that need to be computed

increases, the execution time is also expected to increase. The only difference is

in OLH, which takes extra time to execute the hash function. However, as the

number of categories becomes larger, the influence becomes smaller.

Therefore, the overhead can be minimized by providing an optimal efficiency

privacy budget for kRR and OLH, and by using different methods for different

widths. The overhead is expected to increase as the number of categories in-

creases, but since the limit on the number of categories is determined to some

extent by the use of LDP, we do not think this is a major problem.

At the end, impressively, our method is algorithm-only, making it more feasible

than alternatives that assume secure hardware providing TEE [62, 70]. Never-

theless, overall, we believe the overhead is acceptable. This is due to the fact

that we use relatively lightweight OT techniques as a building block.
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Figure 5.3: With the same width, the communication costs of kRR and OLH

are small. However, OUE can approximate LDP accurately with small widths

(Figure 5.2).

Figure 5.4: The characteristics of runtime is similar to bandwidth. OLH takes a

little longer because of the hashing.

5.6 Conclusion

In this work, we showed how to prevent malicious clients from attacking LDP pro-

tocols. An important observation was the effectiveness of output-manipulation

and the importance of protection against it. Our approach was a verifiable ran-

domization mechanism satisfying LDP. Data collectors can verify the complete-

ness of executing an agreed randomization mechanism for every possibly malicious

data provider. The proposed method was based on only lightweight cryptogra-

phy. Hence, we believe it has high feasibility and can be implemented in various

and practical data collection scenarios.
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5.6.1 Future works

• As this work shows, client-side security in FL and/or FA is still in the early

stage and is a very difficult research topic. This study focuses on a simple

FA task. On the other hand, the studied principles of output-manipulation

and input-manipulation are more generally important. In the context of FL,

these are also known as model update poisoning and data poisoning attacks

[93]. And it is suggested that the latter has a greater capacity for attack

[37]. Therefore, extending our defense method, i.e., client-side verifiability,

to more complex operations, i.e., model optimization calculations, is an

important direction. The LDP protocol itself, which was our target, has

also received attention since our research, and improvements using zero-

knowledge proof (ZKP) [215] and blockchain [216] have been proposed.

The important point is that relatively lightweight cryptographic techniques

that were easily applicable to simple LDP protocols are not easily applicable

to complex computations such as ML optimization algorithms. Therefore,

it is necessary to consider efficient ways to prevent output-manipulation by

utilizing TEE on the client side as in [217] or by combining more practi-

cal ZKP techniques [218]. It is not clear that all calculations need to be

verifiable, and perhaps partial verifiability may be sufficient to prevent the

effective attack.

• Another direction is to prevent input-manipulation. This could be partially

addressed, for example, by using ZKP to verify that the input data is within

the expected range. However, it seems to be almost impossible to verify that

the client providing the data is providing truthful data. However, it has

been addressed partially by truth discovery-like approaches, evaluating the

shared information from clients [219, 220] or blockchain-based approaches,

verifying the integrity of training data [221, 222]. For example, Zhang

et al., [220] propose to verify the input data quality by observing model

losses for validation data. Furthermore, it may be necessary to propose a

comprehensive framework, combining various aspects including designing

incentives for FLs to participate [223].
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CHAPTER 6

Discussion

We have described our proposed frameworks Uldp-FL, Olive and Vldp in

Chapters 3, 4, and 5, respectively. In this chapter, we aim to explore the poten-

tial profound social impact of our comprehensive studies produced in this thesis,

which is committed to addressing and resolving critical, previously unsolved chal-

lenges in private and secure FL. Note that the future works from a technical point

of view on each topic are summarized at the end of each chapter.

6.1 Social Impact

We believe that our research will have a significant impact on society in terms of

promoting the implementation of privacy-preserving FL in practice.

In general, current privacy-preserving data analysis remains at the trial stage,

although the growing sense of social responsibility is increasingly compelling com-

panies to implement these privacy-preserving techniques. In particular, the in-

creasing number of privacy laws and regulations, such as GDPR, are forcing

companies to implement privacy protections. Also, it would enhance the social

credibility of companies. Nevertheless, privacy-preserving data analysis has not

gone beyond the trial stage. We believe that the bottleneck in bringing current

privacy-preserving technology into production-level is (1) the lack of sufficient

privacy protection and (2) the fact that the architecture for privacy protection
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conversely introduces additional risks.

(1) Of course, the lack of sufficient privacy protection is not an easy problem.

In today’s society, it is probably impossible for anyone to answer what privacy

protection can be claimed to be sufficient. For companies, the risk of insufficient

privacy protection is the unfortunate consequence of just sacrificing utility and

efficiency for a system that fails to provide a level of privacy guarantee deemed

valuable. Even if we consider formal privacy guarantees such as DP, these guar-

antees are often limited, for example, when they actually provide just record-level

DP guarantee or too large privacy budget and so on. In such cases, companies

often refrain from loudly proclaiming the value of the privacy protection and the

technologies. As a result, most of current privacy-preserving technologies per-

petually remain limited to trial usage or are used solely as a corporate showcase.

We believe this approach is often adopted because it allows companies to avoid

rigorous discussions about strict privacy guarantees. In other words, we would

point out that incomplete or non-confident (for the company) privacy protection

is almost worthless and never being used in production-level applications.

(2) Privacy protection architecture often necessitates a distributed system like

FL, which can introduce new security risks as described in Chapter 1. This

situation leads to a dynamic where companies are hesitant to implement privacy-

preserving technologies due to the potential for the additional risks. Furthermore,

as mentioned in (1), if the level of privacy protection cannot be assured as suffi-

cient, it will ultimately face rejection by companies. We believe while a company

may accept a slight decrease in utility or efficiency instead of privacy protection,

it is unlikely to readily accept such an increase in security risk.

This doctoral research makes a fundamental contribution to addressing the

challenge of privacy protection technologies that often remain limited to the trial

stage. We discuss the respective social impacts of our proposed three frameworks.

Uldp-FL: Cross-silo DP-FL has been proposed and studied, aiming at vari-

ous applications in industries or medical fields. However, given the record-level

DP guarantee, its justification for privacy protection is clearly insufficient, and

it will likely end up remaining in the trial stage. With our proposed Uldp-FL,

the privacy protection that can be claimed becomes significantly more accept-

able because the unit of privacy should always be a user, not a record. This

is particularly critical when companies need to justify their privacy practices to

consumers. The use case where a single user exists across silos is quite common,
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therefore, the social impact is big enough for practitioners to apply DP-FL in

production, at least from the privacy definition perspective. Many companies in

the same domain will be able to train private models in production-level applica-

tions, even if they have overlapped users. The same is true for hospitals that have

overlapped patients. Finally, let us emphasize that this was impossible without

the Uldp-FL framework.

Olive: TEE is a powerful security technology with potential significant impact

on existing systems. However, its use in real-world applications becomes hard if

clear vulnerabilities in TEE lead to privacy leakage. The situation where a TEE

is used for privacy protection but ends up being a source of privacy leakage is

highly problematic. This inability of companies to guarantee complete (or at

least confident) privacy likely keeps the technology confined to the trial stage.

Our proposed Olive framework is the first to address this issue in FL by pro-

viding a solution for privacy leakage via TEE’s vulnerability. It fully justifies the

true privacy protection provided by TEE. This development enhances the social

credibility of privacy-preserving FL technology using TEE, and companies will

be able to claim that they can clearly have confidence in the privacy protection

beyond the trial stage. Moreover, FL using TEE is quite superior in terms of

the ease of understanding of privacy protection for consumers. Remarkably, this

approach is applicable to almost all FL applications and we believe it will be of

great social significance to make this feasible.

Vldp: The existence of malicious clients in Federated Analytics creates a dy-

namic that drives companies away from deploying privacy-preserving new archi-

tectures. This indicates that the new privacy-preserving architecture, intended

as a defense mechanism, paradoxically introduces new vulnerabilities. Our pro-

posed Vldp is one of the solutions for such a dynamic, which eliminates the

side-effect security risks associated with deploying new privacy protection tech-

nologies. Olive will be a solution against a malicious server as well. We believe

that it will have the social impact of removing the negative aspects of privacy

protection technologies to implement. Such security technologies are crucial yet

often overlooked. Our work pioneered this direction and will promote the succes-

sive research for facilitating social implementation of private and secure FL.

Overall, our research significantly advances the practical application of privacy-

preserving FL, which always has been in the trial stage because of its clear im-

perfection of privacy guarantee and additional security risks. In particular, they
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will lead the entity executing the FL to declare with confidence that it truly pro-

vides privacy protection, thereby increasing confidence in the sufficiency claim of

privacy protection, which is one of the most important factors in production-level

private data analysis. Additionally, our research aids in the social adoption of

such new privacy-preserving architectures by addressing potential security risks.

6.2 Real-World FL Application

More specifically, we explore the practical application of the proposed frameworks

to real-world use cases. This includes assessing their necessity and applicability

across various real-world FL applications. We will follow the classification of FL

applications proposed by Li et al. [224], namely: Applications for mobile devices,

Applications in industrial engineering, and Applications in Healthcare.

6.2.1 Application for Mobile Devices

The most typical application for which FL has been tested in industry so far is

the prediction of smartphone keyboard input completion [30, 17, 109], including

stickers [15] and emojis [31]. It has already been deployed in several real-world

applications [17, 14, 16], some of which have announced that they guarantee DP

[109, 15, 13]. Recently, FL has been used in smart home IoT devices [225, 226, 227]

that collect physical information from the end user’s living space and respond with

AI.

These are typical cross-device FL settings, and at first glance, it seems irrele-

vant for Uldp-FL, whose primary target is cross-silo FL. However, it is conceiv-

able that even in a cross-device FL setting, different devices may have data for

a common user. For example, if there are multiple IoT devices that individually

participate in FL in a single user’s living space, user-level privacy needs to be

guaranteed across those devices. Also, even if it is a mobile phone, the data

possessed by an individual device is not restricted to that of a single user when

data tied to multiple users, such as group chats, is used for training. Thus, even

in cross-device FL, there is not necessarily a one-to-one correspondence between

devices and individual data. For this situation, Uldp-FL can provide a neces-

sary solution. Since the cross-device setting can be regarded as a special case of

cross-silo, our proposed algorithm works correctly and effectively. Additionally,
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Olive frees practitioners from the complex and constraining pairwise masking-

based secure aggregation such as [66] for these systems, allowing for a simpler

approach using TEE. It is also expected that the presence of Olive will allow

careful users to participate in FL with confidence, even for applications that han-

dle very critical information, such as home IoT devices. Also, since these mobile

device-based applications will be deployed on a large scale, the risk of contami-

nation by malicious participants is also expected to be relatively high. This may

motivate companies to hesitate to deploy FL systems. A Vldp-like protection

method will help dispel these concerns. It should also be noted that the introduc-

tion of TEE by Olive also allows for another line of defense mechanisms such as

discovering malicious parameters, which is difficult to do with conventional secure

aggregation. Overall, our research will definitely facilitate the implementation of

privacy-preserving FL in production environments for these applications.

6.2.2 Application in Industrial Engineering

FL has the potential to promote integrated data utilization when data sharing

is required between multiple corporate organizations, where data sharing is re-

stricted by law or regulation [9, 228, 229, 230, 231]. Typical applications include

training a model for detecting credit card fraud using transaction histories of data

from multiple banks [9], and training a model for performing a visual inspection

task in collaboration with multiple manufacturers [230].

This is exactly the scenario that Uldp-FL is mainly targeting. In the past,

only incomplete privacy guarantees could be provided and therefore, it was far

away from being used in production when collaborating with personal data from

multiple companies. However, now it is possible to provide meaningful privacy

guarantees with Uldp-FL. This is expected to reduce the number of companies

hesitant to adopt FL, and will help FL flourish in this field. Banks and factories

have a lot of their own private data including personal data, so facilitating these

collaborations will be of great benefit to the whole.

In such business-to-business collaboration, the assumption that the server is

trusted can often be valid. However, companies generally have large amounts of

personal data or other stakeholders who are potentially at risk for privacy leaks.

Therefore, Olive with TEE will have some value in such scenarios, which make it

easy to obtain permission from clients for using their data within TEE. Similarly,
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the risk of malicious clients may not be high, since silo is also assumed to be

trusted with strong contracts and so on. The risk against a malicious client may

be higher for critical models, such as image recognition models for automated

driving [231] or models used in large-scale production lines [229], etc. Vldp will

help to dispel these concerns.

6.2.3 Application in Healthcare

The medical domain is one of the most active areas where FL has been studied,

and the main application is to train disease prediction models by combining

patient data from different hospitals [106, 232, 233, 10, 234] and even different

countries [11, 12]. Since the in-training and trained models may be exposed to

users (e.g., other hospitals) for subsequent use, the need to guarantee DP has

been argued to protect the privacy of patient data [232, 233, 108].

In general, hospital organizations are so socially trusted that patients entrust

raw medical record data to the hospital and are not expected to commit fraud.

However, it would be important to consider when learning medical data in con-

junction with other commercial companies. For example, when training a model

in which medical data is used by an insurance agent to derive reasonable pricing,

it may be necessary to require to guarantee privacy protection for the training

data, because patients do not trust the insurance company. Then, Uldp-FL is

obviously important and should be integrated, since the patient may be seen in

more than one hospital. We would like to emphasize that our proposed method

is at least an indispensable technique to make such collaboration possible.

Olive can be applied if necessary. Although there would still be legal chal-

lenges, TEE is expected to work like a virtual secure data room which is an

isolated physical room for data analysts often used in the medical domain to an-

alyze sensitive data while prohibiting the data from leaving the room. Therefore,

this secure computation model might be easily accepted by the existing medical

domain. It is important to note that in FL applications, this is only possible

with our proposed method. A malicious client can be very critical because it

could change the predictive results of the disease. We believe this will be one of

the major factors in the acceptance of DP-FL in the medical community where

integrity is required. Vldp works as a defense if some hospitals are malicious,

though this may not likely happen.
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6. Discussion

6.3 Limitation

Finally, we conclude this chapter by discussing the limitations of this thesis and

some areas beyond its scope. The scope covered by the considered privacy/secu-

rity properties, A - E (introduced in Section 1.4), in this thesis should also be

discussed. Originally, these properties are derived from an analysis of sufficient

existing FL studies. They cover a wide range of risk types because DP and TEE

do not assume only specific attacks but are fairly general methods of defense.

However, there can be another type of risks. [235] creates the latest version of a

taxonomy for privacy risks from an AI perspective, which includes 12 high-level

privacy risks. It is difficult to pick out FL-specific issues from most of them, but

among those not covered in this thesis is, for instance, Exclusion, i.e., not in-

forming the data owner of all uses of the data. The distributed and complicated

system of FL may exacerbate the process of notifying users of their data use.

Overall, however, we believe that all high-profile attacks in FL could be covered

in this thesis.

Also note that the definition of FL could be a bit more generalized, includ-

ing vertical FL and Split Learning [93]. The FL scenarios we cover throughout

the thesis are only horizontal FL with the assumption that each client has the

same data format. Basically, in the case of a single server and several distributed

clients, our category of privacy/security properties seem to cover the attack sur-

face well, since the assumed trust model is almost the same. However, detailed

attack techniques may differ. For example, in vertical FL and Split Learning,

it is necessary to exchange more than simple model deltas as we assume in this

thesis; it is also necessary to exchange information such as table formats and

intermediate model parameters called smashed data. These may cause another

type of privacy/security risks that we do not cover.
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CHAPTER 7

Concluding Remarks

In this thesis, to answer the research question: ”To enhance privacy and security

in Federated Learning, how can Differential Privacy and Trusted Execution En-

vironment be effectively integrated into Federated Learning?”, we enumerate five

key privacy/security properties in FL (described in Table 1.2 in Section 1.4) and

studied three federated frameworks to complement them.

Chapter 2 provided comprehensive literature reviews of DP and TEE, respec-

tively. They include our independent studies about DP and TEE described in

detail in Section A and B in Appendix, respectively. The prior focused on dif-

ferentially private counting query release on a high-dimensional dataset, and the

latter targeted private contact tracing using trajectory data in TEE.

In Chapter 3, we examined rigorous privacy protection for models trained in

FL with DP. In particular, we targeted the general setting of cross-silo FL, where

each participating client corresponds to a certain size of institutions, with user-

level DP guarantees. Under this setting, we showed that existing algorithms can

only achieve impractical privacy guarantees and provided algorithms that achieve

better privacy-utility tradeoffs. The proposed method directly guarantees user-

level DP by applying per-user weighted clipping to the existing de facto DP-

FedAVG. Furthermore, we proposed a utility-boosting weighting method and

developed an MPC protocol to achieve it under a more stringent trust model.

In Chapter 4, we focused on the server-side TEE in FL, which enables guar-
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7. Concluding Remarks

anteeing the privacy of the shared gradients to the central untrusted server and

providing better utility of DP-FL. Through analysis of memory access patterns

for FL aggregation operations, we discovered the possibility of privacy risks when

sparsified gradients are used. Using the observable memory access pattern in-

formation, we designed a novel attack that reveals private data and showed the

effectiveness through experiments using real-world data. To defend against this

attack, we proposed an oblivious algorithm such that the memory access patterns

resulting from FL aggregation operations are independent of the input data. Fi-

nally, we evaluated the proposed Oblivious algorithm on a real data scale and

showed its efficiency.

In Chapter 5, we focused on malicious clients and, in particular, proposed a de-

fense against clients that deviate from the LDP protocol. This research direction

was just beginning, and our focused task was a simple Federated Analytics, i.e.,

frequency estimation with guaranteed LDP. Because LDP requires perturbation

of data on the client side, the central server does not have complete control over

this protocol, allowing a malicious client to control the estimates. We showed

that the attack can be partially prevented by developing a verifiable LDP pro-

tocol. We believe this type of client-side verifiability that we proposed in this

method can be extended to prevent attacks in more complicated federated tasks

including FL in the future.

Lastly, in Chapter 6, we discussed the profound social impact of the compre-

hensive studies produced in this thesis. We argued the specific benefits in the

fields where real-world FL applications have been studied. Also, we described the

limitations which are not covered in our proposed frameworks.

We believe that our research has made a significant contribution to the re-

alization of private and secure FL and has convincingly argued for important

directions in which to focus our efforts.
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cia Cordero, Ephraim Zimmer, Tim Grube, Kristian Kersting, and Max
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[124] Borja Balle, James Bell, Adrià Gascón, and Kobbi Nissim. The privacy

blanket of the shuffle model. In Annual International Cryptology Confer-

ence, pages 638–667. Springer, 2019.

[125] Wei-Ning Chen, Christopher A Choquette Choo, Peter Kairouz, and

Ananda Theertha Suresh. The fundamental price of secure aggregation

in differentially private federated learning. In International Conference on

Machine Learning, pages 3056–3089. PMLR, 2022.

[126] Zibo Wang, Yifei Zhu, Dan Wang, and Zhu Han. Fedfpm: A unified fed-

erated analytics framework for collaborative frequent pattern mining. In

162



References

IEEE INFOCOM 2022 - IEEE Conference on Computer Communications,

pages 61–70, 2022.

[127] Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei

Li. Federated heavy hitters discovery with differential privacy. In Interna-

tional Conference on Artificial Intelligence and Statistics, pages 3837–3847.

PMLR, 2020.

[128] Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A compre-

hensive survey. ACM computing surveys (CSUR), 51(6):1–36, 2019.

[129] David Kaplan, Jeremy Powell, and Tom Woller. Amd memory encryption.

White paper, page 13, 2016.

[130] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal

hardware extensions for strong software isolation. In 25th USENIX Security

Symposium (USENIX Security 16), pages 857–874, 2016.

[131] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn

Song. Keystone: An open framework for architecting trusted execution en-

vironments. In Proceedings of the Fifteenth European Conference on Com-

puter Systems, pages 1–16, 2020.

[132] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank

Mckeen. Intel software guard extensions: Epid provisioning and attestation

services. White Paper, 1(1-10):119, 2016.

[133] Kajetan Maliszewski, Jorge-Arnulfo Quiané-Ruiz, Jonas Traub, and Volker
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Appendix

We have completed individual in-depth studies on DP (Appendix A) and TEE

(Appendix B), respectively. Both of them are the key elemental technologies

of private and secure federated learning as we consistently argue in this thesis.

Here, we present the researches in detail and encourage readers to acquire a better

comprehension of actual application and practice of DP and TEE, which clarifies

the original motivation and significance of them.

A HDPView: differentially private materialized

view for exploring high dimensional relational

data

A.1 Introduction

In the early stage of data science workflows, exploring a database to understand

its properties in terms of multiple attributes is essential to designing the subse-

quent tasks. To understand the properties, data analysts need to issue a wide

variety of range counting queries. If the database is highly sensitive (e.g., per-

sonal healthcare records), data analysts may have little freedom to explore the

data due to privacy issues [236, 237].

How can we explore the properties of high-dimensional sensitive data while

preserving privacy? This work focuses on guaranteeing DP [42, 141] via random

noise injections. As Figure A.1 shows, we especially study how to construct a

privacy-preserving materialized view (p-view for short) of relational data, which

enables data analysts to explore arbitrary range counting queries in a differen-
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Figure A.1: Data exploration through a privacy-preserving materialized view (p-

view for short) of a multidimensional relational data. The p-view works as an

independent query system. Analysts can explore sensitive and multidimensional

data by issuing any range counting queries over the p-view before downstream

data science workflows.

Table A.1: Only the proposed method achieves all requirements in private data

exploration for high-dimensional data. Each competitor represents a baseline,

data partitioning, workload optimization, and generative model, respectively.

Identity [42] Privtree [114] HDMM [113] PrivBayes [242] HDPView (mine)

Workload independence ✓ ✓ ✓ ✓
Analytical reliability ✓ ✓ ✓ ✓
Noise resistance on high-dimensional only low-dimensional ✓ ✓ ✓
Space efficiency ✓ ✓ ✓

tial private way. Note that once a p-view is created, the privacy budget is not

consumed any more for publishing counting queries, different from interactive

differentially private query systems [46, 238, 239, 240, 241], which consume the

budget every time queries are issued. In this work, we describe the desirable prop-

erties of the p-view, especially in data exploration for high-dimensional data, and

fill the gaps of the existing methods.

Several methods for constructing a p-view have been studied in the existing

literature. The most primitive method is to add Laplace noise [42] to each cell

of the count tensor (or vector) representing the original histogram and publish

the perturbed data as a p-view. While this noisy view can answer arbitrary

range counting queries with a DP guarantee, it accumulates a large amount of
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noise. Data-aware partitioning methods [243, 244, 245, 246, 114, 247] are po-

tential solutions, but they focus only on low-dimensional data due to the high

complexity of discovering the optimal partitioning when the data have multi-

ple attributes. Additionally, these methods require exponentially large spaces as

the dimensionality of the data increases due to the count tensor representation,

which can easily make them impractical. Workload-aware optimization meth-

ods [248, 249, 113, 247] are promising techniques for releasing query answers for

high-dimensional data; however, they cannot provide query-independent p-views

needed in data exploration.

In addition, one of the most popular approaches these days is differentially

private learning of generative models [250, 251, 242, 117, 115, 252, 253, 116, 254].

Through the training of deep generative models [117, 115, 252, 254, 253] or graph-

ical models [242, 116], counting queries and/or marginal queries can be answered

directly from the model or indirectly with synthesized data via sampling. These

methods are very space efficient because the synthetic dataset or graphical model

can be used to answer arbitrary counting queries. However, these families rely on

complex optimization methods such as DP-SGD [48], and it is very difficult to

quantitatively estimate the error of counting queries using synthetic data, which

eventually leads to a lack of reliability in practical use. Unlike datasets often used

in the literature, the data collected in the practical field may be completely un-

modelable. Table A.1 summarizes a comparison between the most related works

and our method, HDPView, i.e., High-Dimensional Private materialized View.

Each method is described in more detail in Section A.2.

Our target use case is privacy-preserving data exploration on high-dimensional

data, for which the p-view should have the following four properties:

• Workload independence: Data analysts desire to issue arbitrary queries

for exploring data. These queries should not be predefined.

• Analytical reliability: For reliability in practical data exploration, it is

necessary to be able to estimate the scale of the error for arbitrary counting

queries.

• Noise resistance on high-dimensional data: Range counting queries

aIdentity adds noise to the entries of the count vector by the Laplace mechanism [42] and

cannot directly perturb high-dimensional datasets due to the domains being too large; we

measure estimated error using the method described in [113].
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Table A.2: HDPView provides low-error counting queries in average on various

workloads and datasets, and high space-efficiency of privacy-preserving material-

ized view (p-view) when ϵ = 1.0. (N/A is due to HDMM and PrivBayes do not

create p-view.)

Identity [42] Privtree [114] HDMM [113] PrivBayes [242] HDPView (ours)

Average relative RMSE 1.94× 107 7.05 35.34 3.79 1.00

Average relative size of p-view 4.59× 1017 5578.27 N/A N/A 1.00

compute the sum over the range and accumulate the noise injected for DP.

This noise accumulation makes the query answers useless. To avoid this

issue, we need a robust mechanism even for high-dimensional data.

• Space efficiency: It is necessary to generate spatially efficient views even

for count tensors with a large number of total domains on various datasets.

Our proposal. To satisfy all the above requirements, we propose a simple yet

effective recursive bisection method on a high-dimensional count tensor, HD-

PView. The proposed method has the same principle as [245, 248, 114] of first

partitioning a database into small blocks and then averaging over each block with

noise. Unlike the existing methods, HDPView can efficiently perform error-

minimizing partitioning even on multidimensional count tensors instead of con-

ventional 1D count vectors. HDPView recursively partitions multidimensional

blocks at a cutting point chosen in a differentially private manner while aiming to

minimize the sum of aggregation error (AE) and perturbation error (PE). Com-

pared to Privtree [114], our proposed method provides a more data-aware flexible

cutting strategy and proper convergence of block partitioning, which results in

smaller errors in private counting queries and much better spatial efficiency of

the generated p-views. Our method provides a powerful and practical solution

for constructing a p-view under the DP constraint. More importantly, the p-view

generated by HDPView can work as a query processing system and expose the

estimated error bound at runtime for any counting query without further privacy

consumption. This error information ensures reliable analysis for data explorers.

Contributions. Our contributions are threefold. First, we design a p-view and

formalize the segmentation for a multidimensional count tensor to find an effective

p-view as error minimizing optimization problem. P-view can be widely used for

data exploration process on multidimensional data and is a differentially private
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approximation of a multidimensional histogram that can release counting queries

with analytical reliability. Second, we propose HDPView described above to

find a desirable solution to the optimization problem. Our algorithm is more

effective than conventional algorithms due to finding flexible partitions and more

efficient due to making appropriate convergence decisions. Third, we conduct

extensive experiments, whose source code and dataset are open, and show that

HDPView has the following merits. (1) Effectiveness: HDPView demonstrates

smaller errors for various range counting queries and outperforms the existing

methods [42, 114, 248, 113, 242] on multi-dimensional real-world datasets. (2)

Space efficiency: HDPView generates a much more compact representation of

the p-view than the state-of-the-art (i.e., Privtree [114]) in the experiment.

Preview of result. We present a summary previewing of the experimental

results. Table A.2 shows the average relative root mean squared error against

(RMSE) of HDPView in eight types of range counting queries on eight real-

world datasets and the average relative size of the p-view generated by the al-

gorithms. With Identity, we obtain a p-view by making each cell of the original

count tensor a converged block. a HDPView yields the smallest error score on

average. Several algorithms show better results than HDPView in some queries,

butHDPView is the best on average. This is a desirable property for data explo-

rations. Furthermore, compared to that of Privtree [114], the p-view generated

by HDPView is more space efficient.

We believe that our proposed method could help data analysts explore sensitive

data in the early stages of data mining pipelines while preserving data utility and

privacy. Therefore, in a practical data science workflow, our proposed method

is useful to design the workload in-house, before applying the workload-aware

query processing to release the private results. Furthermore, the advantage that

our method can release an unlimited number of arbitrary queries without addi-

tional privacy budget is useful for providing an interface for interactive queries to

third parties. Most of existing DP-query engines [46, 241, 238] consider privacy

consumption by sequential composition or advanced sub-linear composition [240],

which results in restricting data explorations.

aNote, the scores of DAWA and Identity are only on low-dimensional datasets.
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A.2 Related Works

In the last decade, several works have proposed differentially private methods for

exploring sensitive data. Here, we describe the state-of-the-arts related to our

work.

Data-aware partitioning. Data-aware partitioning is a conventional method

that aims to directly randomize and expose the entire histogram for all domains

(e.g., count vector, count tensor); thereby, it can immediately compose a p-view

that answers all counting queries. A näıve approach to constructing a differen-

tially private view is adding Laplace noise [42] to all values of a count vector; this

is called the Identity mechanism. This näıve approach results in prohibitive noise

on query answers through the accumulation of noise over the grouped bins used

by queries. DAWA [248] and AHP [243] take data-aware partitioning approaches

to reduce the amount of noise. The partitioning-based approaches first split a

raw count vector into bins and then craft differentially private aggregates by av-

eraging each bin and injecting a single unit of noise in each bin. However, these

approaches work only for very low (e.g., one or two) -dimensional data due to the

high complexity of discovering the optimal solution when the data have multiple

attributes. DPCube [245] is a two-step multidimensional data-aware partition-

ing method, but the first step, obtaining an accurate approximate histogram, is

difficult on high-dimensional data with small counts in each cell.

Privtree [114] and [255] perform multidimensional data-aware partitioning on

count tensors, mainly targeting the spatial decomposition task for spatial data.

Unlike our method, this method uses a fixed quadtree as the block partitioning

strategy, which leads to an increase in unnecessary block partitioning as the

dimensionality increases. As a result, it downgrades the spatial efficiency and

incurs larger perturbation noise. In addition, this method aims to partition the

blocks such that the count value is below a certain threshold, while our proposed

method aims to minimize the AE of the blocks and reduce count query noise.

Optimization of given workloads. Another well-established approach is the

optimization for a given workload. Li et al. [249] introduced a matrix mech-

anism (MM) that crafts queries and outputs optimized for a given workload.

The high-dimensional MM (HDMM) [113] is a workload-aware data processing

method extending the MM to be robust against noise for high-dimensional data.

PrivateSQL [247] selects the view to optimize from pregiven workloads. In the
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data exploration process, it is not practical to assume a predefined workload,

and these methods are characterized by a loss of accuracy when optimized for a

workload of wide variety of queries.

Private data synthesis. Private data synthesis, which builds a privacy-preserving

generative model of sensitive data and generates synthetic records from the model,

is also useful for data exploration. Note that synthesized dataset can work as a

p-view by itself. PrivBayes [242] can heuristically learn a Bayesian network of

data distribution in a differentially private manner. DPPro [256], Priview [250]

and PrivSyn [116] represent distribution by approximation with several smaller

marginal tables. While these methods provide a partial utility guarantee based

on randomized mechanisms such as Laplace mechanisms or random projections,

they face difficulties in providing an error bound for arbitrary counting queries

on the synthesized data. Differentially private deep generative models have also

attracted attention [257, 117, 115, 252], but most of the works focus on the re-

construction of image datasets. Fan et al. [253] studied how to build a good gen-

erative model based on generative adversarial nets (GAN) for tabular datasets.

Their experimental results showed that the utility of differentially private GAN

was lower than that of PrivBayes for tabular data. [258] provides a solution for

high-dimensional data in a local DP setting.

As mentioned in Section A.1, the accuracy of these methods has improved

greatly in recent years, but it is difficult to guarantee their utility for analysis

using counting queries, and there are large gaps in practice. DPPro [256] utilizes

a random projection [259] that preserve L2-distance to the original data in an

analyzable form to give a utility guarantee, but this is different from the guarantee

for each counting query. CSM [260] gives a utility analysis for queries, however,

their analysis ignores the effect of information loss due to compression, which

may not be accurate. Also, as shown in their experiments, they apply intense

preprocessing to the domain size and do not show the effectiveness for high-

dimensional data. Our proposed method provides an end-to-end error analysis

for arbitrary counting queries by directly constructing p-views from histograms

without any intermediate generative model.

Querying and programming framework. PrivateSQL [247] is a differentially

private relational database system for multirelational tables, where for each table,

it applies an existing noise-reducing method such as DAWA. Unlike our method,

PrivateSQL needs a given workload to design private views to release. Flex [46],
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Google’s work [239] and APEx [238] are SQL processing frameworks under DP.

They issue queries to the raw data, which can consume an infinite amount of

the privacy budgets. Hence, we believe that these DP-query processing engines

are not suitable for data exploration tasks where many instances of trial and

error may be possible. Our method generates p-view, which can be used as

a differentially private query system that allows any number of range counting

queries to be issued.

A.3 Preliminaries

This section introduces essential knowledge for understanding our proposal. We

first describe notations this work uses. Then, we briefly explain DP.

Notation

Let X be the input database with n records consisting of an attribute set A that

has d attributes A = {a1, . . . , ad}. The domain dom(a) of an attribute a has

a finite ordered set of discrete values, and the size of the domain is denoted as

|dom(a)|. The overall domain size of A is |dom(A)| =
∏

i∈[d] |dom(ai)|, where
[d] = {1, . . . , d}. In the case where attribute a is continuous, we transform the

domain into a discrete domain by binning, and in the case where attribute a

is categorical, we transform it into an ordered domain. Then, dom(a) can be

represented as a range r[sa, ea] where for all pa ∈ dom(a), sa ≤ pa ≤ ea. For

ranges r1, r2, |r1 ∩ r2| means the number of value pa satisfies sa ≤ pa ≤ ea.

We consider transforming the database X into the d-mode count tensor X ,
where given d ranges r1, . . . , rd, X [r1, . . . , rd] represents the number of records

where (a1(∈ r1), . . . , ad(∈ rd)) ∈ X. We utilize x (∈ X ) as a count value in X ;
this corresponds to a cell of the count tensor. We denote a subtensor of X as

block B ⊆ X . B is also a d-mode count tensor, but its domain in each dimension

is smaller than or equal to that of the original count tensor X ; i.e., each attribute

ai (i ∈ [d]), r[sai , eai ] of B and r[s′ai , e
′
ai
] of X satisfy s′ai ≤ sai and eai ≤ e′ai . We

denote the domain size of B as |B|.
Last, we denote q as a counting query and W as a workload. W is a set of

|W| counting queries, where W = {q1, ..., q|W|}, and q(X ) returns the counting

query results for count tensor X .
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Basic DP Mechanisms

The Laplace mechanism and exponential mechanism are well-known as standard

approaches to satisfy DP. The Laplace mechanism can be used for randomizing

numerical data as shown in Definition 3. Releasing the histogram is a typical

use case of this mechanism. The exponential mechanism is the random selection

algorithm. The selection probability is weighted based on a score in a quality

metric for each item.

Definition 12 (Exponential Mechanism). Let q be the quality metric for choosing

an item y ∈ Y in the database D. The exponential mechanism randomly samples

y from Y with weighted sampling probability defined as follows:

Pr[y] ∼ exp(
ϵq(D, y)

2∆q

). (7.1)

A.4 Problem Formulation

Segmentation as Optimization

This section describes the foundation of multidimensional data-aware segmenta-

tion that seeks a solution for the differentially private view X̃ from the input

count tensor X . Every count x̃ ∈ X̃ is sanitized to satisfy DP. We formulate

multidimensional block segmentation as an optimization problem.

Foundation. Given a count tensor X , we consider partitioning X into m blocks

π = {B1, ...,Bm}. The blocks satisfy Bi ∩ Bj = ∅ where i, j ∈ [m], j ̸= i and

B1 ∪ · · · ∪ Bm = X . We denote the sum over Bi as Si =
∑

x′∈Bi
x′ and its

perturbed output as S̃i = Si + zi. We can sample zi with the Laplace mechanism

Lap(1/ϵ) and craft the ϵ-differentially private sum in Bi.
For any count x in the block Bi, we have two types of errors: Perturbation Error

(PE) and Aggregation Error (AE). Assuming that we replace any count x ∈ Bi
with x̄i = (Si + zi)/|Bi|, the absolute error between x and x̄i can be computed as

|x− x̄i| =
∣∣∣∣(x− Si

|Bi|

)
− zi
|Bi|

∣∣∣∣ ≤ ∣∣∣∣x− Si

|Bi|

∣∣∣∣+ ∣∣∣∣ zi|Bi|
∣∣∣∣ . (7.2)

Therefore, the total error over block Bi, namely, the segmentation error (SE), can

be given by:

SE(Bi) =
∑
x∈Bi

|x− x̄i| ≤ AE(Bi) + PE(Bi) (7.3)
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where

AE(Bi) :=
∑
x∈Bi

∣∣∣∣x− Si

|Bi|

∣∣∣∣ , (7.4)

PE(Bi) := |zi| . (7.5)

(7.4) and (7.5) represent the AE and the PE, respectively.

Problem. The partitioning makes the PE of each block 1
|Bi| times smaller than

those of the original counts with Laplace noise. Furthermore, we consider the

expectation of the SE

E

∑
i∈[m]

SE(Bi)

 ≤ E

∑
i∈[m]

AE(Bi)

+ E

∑
i∈[m]

PE(Bi)


=
∑
i∈[m]

AE(Bi) +
∑
i∈[m]

E [PE(Bi)]

=
∑
i∈[m]

AE(Bi) +m · 1
ϵ
.

(7.6)

Thus, to discover the optimal partition π, we need to minimize Eq. (7.6). The

optimization problem is denoted as follows:

minimize
π

∑
Bi∈π

(
AE(Bi) +

1

ϵ

)
subject to Bi ∩ Bj ̸=i = ∅, Bi,Bj ∈ π⋃

Bi∈π

Bi = X

(7.7)

Challenges. It is not easy to discover the optimal partition π. This problem

is an instance of the set partitioning problem [261], which is known to be NP-

complete, where the objective function is computed by brute-force searching for

every combination of candidate blocks. It is hard to solve since the search space

is basically a very large scale due to large |dom(A)|. Therefore, this work seeks

an efficient heuristic solution with a good balance between utility (i.e., smaller

errors) and privacy.

P-view Definition

Our proposed p-view has a simple structure. The p-view consists of a set of blocks,

each of which has a range for each attribute and an appropriately randomized
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Figure A.2: HDPView efficiently discovers blocks (i.e., groups of count cells)

with smaller AEs (black arrow) and averages over each block with injected noise

(red arrow). The p-view stores the randomized counts in a blockwise way.

count value, as shown in Figure A.1. Formally, we define the p-view as follows.

p-view X̃ = {B1, ...,Bm},
for i ∈ [m],Bi = ({r[s(i)a1

, e(i)a1
], ..., r[s(i)ad

, e(i)ad
]}, S̃i)

(7.8)

Thus, each block Bi has this d-dimensional domain and the sanitized sum of count

values S̃i.

In the range counting query processing, a counting query q needs to have

the range condition cq = {r[s(q)a1 , e
(q)
a1 ], ..., r[s

(q)
ad , e

(q)
ad ]}. Let the ranges of Bi be

{r[s(i)a1 , e
(i)
a1 ], ..., r[s

(i)
ad , e

(i)
ad ]}, and we calculate the intersection of cq and the block

and add the count value according to the size of the intersection. Hence, the

result can be calculated as follows.

q(X̃ ) =
∑

i=1,...,m

( ∏
l=1,...,d

(∣∣r[s(q)al
, e(q)al

] ∩ r[s(i)al
, e(i)al

]
∣∣) ∗ S̃i

|Bi|

)
(7.9)

The number of intersection calculations is proportional to the number of blocks,

and the complexity of the query processing is O(md).

A.5 Proposed Algorithm

This section introduces our proposed solution. Our solution constructs a p-view

of the input relational data while preserving utility and privacy with analytical

reliability to estimate errors in the arbitrary counting queries against the p-view

(Eq.(7.9)).

Overview

The challenge is to devise a simple yet effective algorithm that enables us to

efficiently search a block partitioning with small total errors and DP guarantees.

As a realization of the algorithm, we propose HDPView.
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Figure A.2 illustrates an overview of our proposed algorithm. First, HDPView

creates the initial block B(0) that covers the whole count tensor X . Second, we

recursively bisect a block B (initially B = B(0)) into two disjoint blocks BL and BR.
Before bisecting B, we check whether the AE over B is sufficiently small. If the

result of the check is positive, we stop the recursive bisection for B. Otherwise,

we continue to split B. We pick a splitting point p ∈ dom(a) (a ∈ A) for

splitting B into BL and BR which have smaller AEs. Although splitting does not

always result in smaller total AEs, proper cut point obviously makes AEs much

smaller. Third, HDPView recursively executes these steps separately for BL and

BR. After convergence is met for all blocks, HDPView generates a randomized

aggregate by Si+zi where zi ∼ Lap(1/ϵ) for each block Bi. Finally, for all x ∈ Bi,
we obtain the randomized count x̃ = (Si + zi)/|Bi|.
The above-mentioned algorithm can discover blocks that heuristically reduce

the AEs, and is efficient due to its simplicity. However, the question is how

can we make the above algorithm differentially private?. To solve this question,

we introduce two mechanisms, random converge (Section A.5) and random cut

(Section A.5). Random converge determines the convergence of the recursive

bisection, and random cut determines the effective single cutting point. These

provide reasonable partitioning strategy to reduce the total errors with small

privacy budget consumption.

The overall algorithm of HDPView are described in Algorithm 16. Let ϵb =

ϵr + ϵp be the total privacy budget for HDPView, where ϵr is the budget for

the recursive bisection and ϵp is the budget for the perturbation. HDPView

utilizes γϵr for random converge and (1−γ)ϵr for random cut (0 ≤ γ ≤ 1). α is a

hyperparameter that determines the size of λ and δ, where λ corresponds to the

Laplace noise scale of random converge (Lines 8, 17) and δ is a bias term for AE

(Lines 9, 16). These are, sketchily, tricks for performing random converge with

depth-independent scales, which are explained in Section A.5 and a detailed proof

of DP is given in Section A.5. The algorithm runs recursively (Lines 10, 32, 33),

alternating between random converge (Lines 15-19) and random cut (Lines 21-

30). The random converge stops when the AE becomes small enough, consuming

a total budget of γϵr independent of the number of depth. The random cut

consumes a budget of (1− γ)ϵr/κ for each cutting point selection until the depth

exceeds κ. κ is set as κ = β log2 n̄, where β > 0 is hyperparameter and n̄ is the

total domain size of the data. As we see later in Theorem 9, AE is not increased
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by splitting, so if the depth is greater than κ, we split randomly without any

privacy consumption until convergence. After the recursive bisection converges,

HDPView perturbs the count by adding the Laplace noise while consuming ϵp.

Random Converge

AE decreases by properly splitting the blocks, however unnecessary block splitting

leads to an increase in PE as mentioned above. To stop the recursive bisection

at the appropriate depth, we need to obtain the exact AE of the block, which

is a data-dependent output, therefore we need to provide a DP guarantee. One

approach is to publish differential private AE so that making the decision for

the stop is also DP by the post-processing property. In other words, the stop is

determined by AE(B)+Lap(λ) ≤ θ where θ is a threshold indicating AE is small

enough. However, this method consumes privacy budget every time the AE is

published, and the budget cannot be allocated unless the depth of the partition is

decided in advance. Therefore, we utilize the observation for the privacy loss of

Laplace mechanism-based threshold query [114] and design the biased AE (BAE)

of the block B instead of AE(B): BAE(B) = max(θ+2−δ, AE(B)−kδ), where k is

the current depth of bisection, δ (> 0) is a bias parameter, i.e., we determine the

convergence by BAE(B)+Lap(λ) ≤ θ. Intuitively, the BAE is designed to tightly

bound the privacy loss of the any number of Laplace mechanism-based threshold

queries with constant noise scale λ. When the value is sufficiently larger than the

threshold, this privacy loss decreases exponentially [114]. Then, it can be easily

bounded by an infinite series regardless of the number of queries. Conversely,

when the value is small compared to the threshold, each threshold query consumes

a constant budget. To limit the number of such budget consumptions, a bias δ is

used to force a decrease in the value for each threshold query (i.e., each depth)

because BAE has a minimum and if the value is guaranteed to be less than the

minimum for adjacent databases, the privacy loss is zero. The design of our BAE

allows for two constant budget consumptions at most, with the remainder being

bounded by an infinite series. We give a detailed proof in Section A.5. As a whole,

since BAE is basically close to AE, AEs are expected to become sufficiently small

overall.

Then, we consider about θ where if θ is too large, block partitioning will not

sufficiently proceed, causing large AEs, and if it is too small, more blocks will be

generated, leading to increase in total PEs. To prevent unwanted splitting, it is
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Algorithm 16 HDPView

Input: initial block B(0), privacy budget ϵb, recursive bisection budget ratio ϵr/ϵb, hyperpa-

rameters α, β, γ

Output: p-view X̃
1: procedure HDPView(B(0), ϵb, ϵr/ϵb, α, β, γ)
2: ϵr ← ϵb · (ϵr/ϵb); ϵp ← ϵb · (1− ϵr/ϵb)

3: ñ← TotalDomainSizeOf(X )
4: κ← β log2 ñ // maximum depth of random cut

5: π ← {}; k ← 1 // converged blocks; current depth

6: θ ← 1/ϵp // threshold

7: ϵcut ← (1− γ)ϵr/κ // privacy budget for random cut

8: λ←
(

2α−1
α−1 + 1

)
·
(

2
γϵr

)
// noise scale for random converge

9: δ ← λ logα // bias parameter

10: RecursiveBisection(B(0), π, ϵcut, k, κ, θ, λ, δ)
11: X̃ ← Perturbation(π, ϵp)

12: return X̃
13: end procedure

14: procedure RecursiveBisection(B, π, ϵcut, k, κ, θ, λ, δ)
15: /* Random Converge */

16: BAE(B)← max(θ + 2− δ, AE(B)− kδ)

17: if BAE(B) + Lap(λ) ≤ θ then

18: π ← π
⋃
B

19: return

20: end if

21: /* Random Cut */

22: if k ≤ κ then

23: for all i ∈ [d], j ∈ [|dom(ai)|] do
24: quality[i, j]← Q(B, aij)

25: end for

26: (i∗, j∗)←WeightedSampling(ϵcut, quality)

27: else

28: (i∗, j∗)← RandomSampling([d], [|dom(ai)|])
29: end if

30: (BL,BR)← Split(i∗, j∗)

31: /* Repeat Recursively */

32: RecursiveBisection(BL, π, ϵcut, k + 1, κ, θ, λ, δ)

33: RecursiveBisection(BR, π, ϵcut, k + 1, κ, θ, λ, δ)

34: return

35: end procedure
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appropriate to stop when the increase in PE is greater than the decrease in AE.

We design the threshold θ as 1/ϵp which is the standard deviation of the Laplace

noise to be perturbed. Considering the each bisection increases the total PE by

1/ϵp, when the AE becomes less than the PE, the division will increase the error

at least. Hence, it is reasonable to stop under this condition.

Random Cut

Here, the primary question is how to pick a reasonable cutting point from all

attribute values in a block B under DP. The intuition is that a good cutting

point results in smaller AEs in the two split blocks. We design random cut by

combining an exponential mechanism with scoring based on the total AE after

splitting.

Let B(p)
L and B(p)

R be the blocks split from B by the cutting point p, and the

quality function Q of p in B is defined as follows:

Q(B, p) = −(AE(B(p)
L ) + AE(B(p)

R )). (7.10)

Then, we compute the score for all attribute values p ∈ dom(a), a ∈ A , and

satisfies |B(p)
L | ≥ 1 and |B(p)

R | ≥ 1. Note that the number of candidates for p

is proportional to the sum of the domains for each attribute
∑

i∈[d] |dom(ai)|,
not to the total domains

∏
i∈[d] |dom(ai)|. We employ weighted sampling via an

exponential mechanism to choose one cutting point p∗. The sampling probability

of p is proportional to

Pr[p∗ = p] ∼ exp

(
ϵQ(B, p)

2∆Q

)
(7.11)

where ∆Q is the L1-sensitivity of the quality metric Q. We denote the L1-

sensitivity of AE as ∆AE, and we can easily find ∆Q = 2∆AE because Q is

the sum of two AEs. Thus, each time a cut point p is published according to such

weighted sampling, a privacy budget of ϵ is consumed. We set ϵ as the budget

allocated to random cut (i.e., (1−γ)ϵr) divided by κ. If the cutting depth exceeds

κ, we switch to random sampling (Line 28 in Algorithm 16). Hence, cutting will

not stop regardless of the depth or budget.

Compared to Privtree [114], for a d-dimensional block, at each cut, HDPView

generates just 2 blocks with this random cut while Privtree generates 2d blocks

with fixed cutting points. Privtree’s heuristics prioritizes finer partitioning, which

204



Appendix

sufficiently works in low-dimensional data because AEs become very small and

the total PEs is not so large. In high-dimensional data, however, it causes un-

necessary block splitting resulting in too much PEs. HDPView carefully splits

blocks one by one, thus suppressing unnecessary block partitioning and reducing

the number of blocks i.e., smaller PEs. It also enables flexibly shaped multidimen-

sional block partitioning. Moreover, while whole design of HDPView including

convergence decision logic and cutting strategy are based on an error optimiza-

tion problem as described in Section A.4, Privtree has no such background. This

allows HDPView to provide effective block partitioning rather than simply fewer

blocks, which we empirically confirm in Section A.6.

Privacy Accounting

For privacy consumption accounting, since HDPView recursively splits a block

into two disjoint blocks, we only have to trace a path toward convergence. In other

words, becauseHDPViewmanipulates all the blocks separately, we can track the

total privacy consumption by the parallel composition for each converged block.

The information published by the recursive bisection is the result of segmentation;

however, note that since there is a constraint on the cutting method for the block,

it must be divided into two parts; in the worst case, the published blocks may

expose all the cutting points. For a given converged block B, we denote the series
of cutting points by SB = [p1, ....pk], and Bpi as the block after being divided into

two parts at cutting point pi. To show the DP guarantee, let D and D′ be the

neighboring databases, and let Pr[SB|D] be the probability that SB is generated

from D. We need to show that for any D, D′, and SB that∣∣∣∣ Pr[SB|D]

Pr[SB|D′]

∣∣∣∣ ≤ eϵ (7.12)

to show that the recursive bisection satisfies ϵ-DP.

The block with the largest
∣∣∣ Pr[SB|D]
Pr[SB|D′]

∣∣∣ of the converged disjoint blocks is B∗,

which has the longest SB∗ and contains different data betweenD andD′. Random
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converge and random cut are represented as follows.∣∣∣∣∣ Pr[SB∗ |D]

Pr[SB∗|D′]

∣∣∣∣∣ = Pr[BAE(Bp0) + Lap(λ) > θ]

Pr[BAE(B′
p0
) + Lap(λ) > θ]

·
Pr[p∗ = p1|D]

Pr[p∗ = p1|D′]
·
Pr[BAE(Bp1) + Lap(λ) > θ]

Pr[BAE(B′
p1
) + Lap(λ) > θ]

· · · · ·
Pr[p∗ = pk|D]

Pr[p∗ = pk|D′]
·
Pr[BAE(Bpk) + Lap(λ) ≤ θ]

Pr[BAE(B′
pk
) + Lap(λ) ≤ θ]

(7.13)

where Bp0 is the initial count tensor and for all i, B′
pi

indicates a neighboring
block for Bpi . Taking the logarithm,

ln

(
Pr[SB∗ |D]

Pr[SB∗ |D′]

)
=

k∑
i=1

ln

(
Pr[p∗ = pi|D]

Pr[p∗ = pi|D′]

)
︸ ︷︷ ︸

(∗1) : for random cut

+

k∑
i=0

ln

(
Pr[BAE(Bpi

) + Lap(λ) > θ]

Pr[BAE(B′pi
) + Lap(λ) > θ]

)
+ ln

(
Pr[BAE(Bpk

) + Lap(λ) ≤ θ|D]

Pr[BAE(B′pk
) + Lap(λ) ≤ θ|D′]

)
︸ ︷︷ ︸

(∗2) : for random converge

. (7.14)

and let the first item of the right-hand of Eq.(7.14) be (∗1), and the other items

be (∗2).
(∗1) corresponds to the privacy of the random cut, with each probability fol-

lowing Eq.(7.11). Given ϵ = ϵcut, for any k, the following holds from sequential

composition. ∣∣∣∣∣
k∑

i=1

ln

(
Pr[p∗ = pi|D]

Pr[p∗ = pi|D′]

)∣∣∣∣∣ ≤ κϵcut = (1− γ)ϵr. (7.15)

The following are privacy guarantees for the other part, (∗2), based on the

observations presented in [114]. First, we consider the sensitivity of AE ∆AE.

Theorem 8. The L1-sensitivity of the AE is 2(1− 1/|B|).

Proof. Let B′ be the block that differs by only one count from B. The AE(B′)

can be computed as follows:

AE(B′) =
∑

i ̸=j∈[|B|]

∣∣∣∣xi −
S + 1

|B|

∣∣∣∣+ ∣∣∣∣xj + 1− S + 1

|B|

∣∣∣∣ .
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Finally, the L1-sensitivity of AE can be derived as:

∆AE = (|B| − 1)
1

|B|
+ 1− 1

|B|
= 2(1− 1/n)

Thus, we also obtain |BAE(B)− BAE(B′)| ≤ 2, and

(∗2) ≤
k−1∑
i=0

ln

(
Pr[BAE(Bpi) + Lap(λ) > θ]

Pr[BAE(Bpi)− 2 + Lap(λ) > θ]

)

+ ln

(
Pr[BAE(Bpk) + Lap(λ) ≤ θ]

Pr[BAE(Bpk) + 2 + Lap(λ) ≤ θ]

)
. (7.16)

Furthermore, from the proof in the Appendix in [114], when we have f(x) =

ln
(

Pr[x+Lap(λ)>θ]
Pr[x−2+Lap(λ)>θ]

)
, thenf(x) ≤ 2

λ
, (θ − x+ 2 > 0)

f(x) ≤ 2
λ
exp

(
θ−x+2

λ

)
, (θ − x+ 2 ≤ 0)

(7.17)

Next, we show the monotonic decreasing property of AE for block partitioning.

Theorem 9. For any i = 0, ..., k − 1, AE(Bpi) ≥ AE(Bpi+1
).

Proof. We show that when B+ is an arbitrary block B with an arbitrary element

x (> 0) added to it, the AEs always satisfy AE(B) ≤ AE(B+). Let the elements

in B be x1, ..., xk, and let B+ be the block with xk+1 added. The mean values

in each block are x̄ = 1
k
(x1 + · · · + xk) and x̄+ = 1

k+1
(x1 + · · · + xk+1) and

AE(B) =
∑k

i=1 |xi − x̄| and AE(B+) =
∑k+1

i=1 |xi − x̄+|. Considering how much

the AE can be reduced with the addition of xk+1 to B, |xi−x̄|−|xi−x̄+| ≤ |x̄−x̄+|
holds for each i (= 1, ..., k), so AE(B)− AE(B+) is at most k · |x̄− x̄+|. On the

other hand, with the addition of xk+1, AE increases by at least |xk+1−x̄+| because
this is a new item. Since xk+1 = (k + 1)x̄+ − (x1 + · · · + xk) = (k + 1)x̄+ − kx̄,

then |xk+1 − x̄+| = |k · (x̄ − x̄+)| = k · |x̄ − x̄+|. Hence, AE(B+) − AE(B) ≥
k · |x̄− x̄+| − k · |x̄− x̄+| = 0 always holds. Therefore, since Bpi always has more

elements than Bpi+1
, AE(Bpi) ≥ AE(Bpi+1

).

Considering BAE(B), there exists a natural number m (1 ≤ m ≤ k) where if

i < m, BAE(Bpi)) ≥ BAE(Bpi+1
) + δ ≥ θ + 2− δ, if i = m, θ + 2 ≥ BAE(Bpi) ≥
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θ+ 2− δ, and if m < i, BAE(Bpi) = θ+ 2− δ. Therefore, using Eqs.(7.16, 7.17),

(∗2) ≤ 2

λ
+

m−1∑
i=1

2

λ
exp

(
θ − BAE(Bpi) + 2

λ

)
+

2

λ

≤ 4

λ
+

2

λ
· 1

1− exp
(
− δ

λ

)
=

2

λ
·
3 exp

(
δ
λ

)
− 2

exp
(
δ
λ

)
− 1

.

(7.18)

Thus, to make (∗2) satisfy γϵr-DP,
2
λ
· 3 exp(

δ
λ)−2

exp( δ
λ)−1

≤ γϵr should holds. Since the

λ and δ that satisfy these conditions are not uniquely determined, these values

are determined by giving exp(δ/λ) as a hyperparameter α. Then, we can always

calculate λ = (3α−2
α−1

) · ( 2
γϵr

) and δ = λ logα, in turn, which satisfies (∗2) ≤ γϵr. α

is valid for α > 1. If α is extremely close to 1, λ diverges and random convergence

is too inaccurate. As α increases, λ decreases, but δ increases. Thus λ and δ are

trade-offs, and independently of the dataset, there exists a point at which both

values are reasonably small. Around α = 1.4 ∼ 1.8 works well empirically.

Finally, together with (∗1), the recursive bisection by random converge and

random cut satisfies ϵr-DP. In addition, the perturbation consumes ϵp for each

block to add Laplace noise, so together with this, HDPView satisfies ϵp+ϵr = ϵb-

DP.

Error Analysis

When a p-view created by HDPView publishes a counting query answer, we can

dynamically estimate an upper bound distribution of the error included in the

noisy answer. The upper bound of the error can be computed from the number

of blocks used to answer the query and the distribution of the perturbation. Note

that this can be computed without consuming any extra privacy budget because,

as shown in A.5, in addition to the count values, block partitioning results are

released in a DP manner.

As a count query on the p-view is processed as Eq. (7.9), the answer consists

of the sum of the query results for each block, and from Eq. (7.3), each block

contains two types of errors: AE and PE. Let the error of a counting query q

be Error(q,X ,X ′) := ||q(X ) − q(X ′)||1 where X and X ′ are the original and

noisy data, respectively, and we define the error by the L1-norm. First, since

208



Appendix

the AE depends on the concrete count values of each block involved in each

query condition, we characterise the block distribution by defining an ξ-uniformly

scattered block.

Definition 13 (ξ-uniformly scattered). A block B is ξ-uniformly scattered if for

any subblock B′ ⊂ B,
AE(B′)/|B′| ≤ ξ ·AE(B)/|B|. (7.19)

While ξ depends on the actual data, it is expected to decrease with each step by

random cut.

Then, we have the following theorem for the error.

Theorem 10. If for all i, block Bi is ξi-uniformly scattered, any µ satisfying

0 < µ < 1, and any t satisfying |t| < ϵp and |t| < 1
λ
, the error of a counting

query satisfies Error(q,X ,X ′) ≥ Θmin(µ) and Error(q,X ,X ′) ≤ Θmax(µ) with

probability of at least 1− µ, respectively, with

Θmin(µ) =
1

t

(
log µ+

∑
i=1,...,m

log (1− (
wi

ϵp
)2t2)

)
Θmax(µ) =

∑
i=1,...,m

ξiwi(kiδ + θ)

− 1

t

(
log µ+

∑
i=1,...,m

log (1− (
wi

ϵp
)2t2) + log (1− (ξiwiλ)

2t2)

) (7.20)

where wi =
|Bi∩cq |
|Bi| , ki is depth of Bi that can be public information.

Proof. The errors included in Error(q,X ,X ′) are PEs and AEs. Both of them

follow independent probability distributions for each block, and we first show the

PE. For each Bi, perturbation noise is uniformly divided inside Bi. Hence, the

total PE in the query q is represented by
∑

i=1,...,m wi ∗ PE(Bi) where wi =
|Bi∩cq |
|Bi|

and PE(Bi) is Laplace random variable following Lap( 1
ϵp
).

Then, we consider the AE. From random converge, given a Bi, then BAE(Bi)+
Lap(λ) ≤ θ holds. Considering BAE(B) = max(θ + 2 − δ, AE(B) − kδ), when

θ + 2− δ ≤ AE(Bi)− kiδ,

AE(Bi) ≤ Lap(λ) + kiδ + θ. (7.21)

And when θ + 2− δ > AE(Bi)− kiδ,
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AE(Bi)− kiδ < θ + 2− δ ≤ Lap(λ) + θ (7.22)

Thus, the upper bound of AE(Bi) is distributed under Lap(λ) + kiδ + θ. In

other words, AE cannot be observed directly, but the upper bound distribution is

bounded by the Laplace distribution. Also note that the AE satisfies AE(Bi) ≥ 0.

Therefore, for the error lower bound, we only need to consider the m PEs,∑
i=1,...,m wi ∗ PE(Bi). PE(Bi) is independent random variable, respectively. We

apply Chernoff bound to the sum, for any a and t,

Pr [Error(q,X ,X ′) ≤ a] ≤ e(ta)
∏

i=1,...,m

E[e(−twiPE(Bi))], (7.23)

where |t| < ϵp is required for existence of the moment generating function. By

using PE(Bi) follows Lap( 1
ϵp
), we can derive

Pr

[
Error(q,X ,X ′) ≤ 1

t

(
log µ+

∑
i=1,...,m

log (1− (
wi

ϵp
)2t2)

)]
≤ µ. (7.24)

On the other hand, for the error upper bound, we need to consider AEs as well.

Hence, we apply Chernoff bound to the sum of 2m independent random variables

following each Laplace distribution. Considering the upper bound distribution

of AE(Bi) has wi(kiδ + θ) for the mean and λ for the variance, let ĀE(Bi) be

a Laplace random variable whose mean and variance are 0 and λ, respectively,

then we have

Pr
[
Error(q,X ,X ′)−

∑
i=1,...,m

ξiwi(kiδ + θ) ≥ a
]

≤ e(−ta)
∏

i=1,...,m

E[e(twiPE(Bi))]E[e(twiξiĀE(Bi))],
(7.25)

where since block Bi is ξi-uniformly scattered, AE included in the query q and

block Bi is at most ξiwiAE(Bi). Lastly, for any t, where |t| < ϵp and |t| < 1
λ
, from

the inequality, we can derive as follows:

Pr

[
Error(q,X ,X ′) ≥

∑
i=1,...,m

ξiwi(kiδ + θ)

− 1

t

(
log µ+

∑
i=1,...,m

log (1− (
wi

ϵp
)2t2) + log (1− (ξiwiλ)

2t2)

)]
≤ µ.

This completes the proof.
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Table A.3: Datasets.

Dataset #Record
#Column

(categorical)
#Domain Variance

Adult 48842 15 (9) 9× 1019 0.0360

Small-adult 48842 4 (2) 3× 105 0.0237

Numerical-adult 48842 7 (1) 2× 1011 0.0200

Traffic 48204 8 (2) 1× 1014 0.0484

Bitcoin 500000 9 (1) 4× 1012 0.0379

Electricity 45312 8 (1) 1× 1014 0.0407

Phoneme 5404 6 (1) 2× 106 0.0304

Jm1 10885 22 (1) 2× 1021 0.0027

Importantly, this can be dynamically computed for any counting queries, helping

the analyst to perform a reliable exploration.

Similarly, since the HDMM [113] optimizes budget allocations for counting

queries by the MM, we can statically calculate the error distributions for each

query. However, this is workload-dependent. In data exploration, we consider

predefined workload is strong assumption to be avoided.

A.6 Evaluation

In this section, we report the results of the experimental evaluation of HDPView.

To evaluate our proposed method, we design experiments to answer the following

questions:

• How effectively can the constructed p-views be used in data exploration via

various range counting queries?

• How space-efficiently can the constructed p-views represent high-dimensional

count tensors?

We shows the effectiveness of HDPView via range counting queries in section

A.6, and section A.6 reports the space efficiency.
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Experimental Setup

We describe the experimental setups. In the following experiments, we run 10

trials with HDPView and the competitors and report their averages to remove

bias. Throughout the experiments, the hyperparameters of HDPView are fixed

as (ϵr/ϵb, α, β, γ) = (0.9, 1.6, 1.2, 0.9). Please see Section A.6 for insights on how

to determine the hyperparameters. We provide observations and insights into all

the hyperparameters of HDPView later.

Datasets. We use several multidimensional datasets commonly used in the lit-

erature, as shown in Table A.3. Adultb includes 6 numerical and 9 categorical

attributes. We prepare Small-adult by extracting 4 attributes (age, workclass,

race, and capital-gain) from Adult. Additionally, we form Numerical-adult by

extracting only numerical attributes and a label. Trafficc is a traffic volume

dataset. Bitcoind is a Bitcoin transaction graph dataset. Electricitye is a

dataset on changes in electricity prices. Phonemef is a dataset for distinguishing

between nasal and oral sounds. Jm1g is a dataset of static source code analysis

data for detecting defects with 22 attributes. HDPView and most competitors

require the binning of all numerical attribute values for each dataset. Basically,

we set the number of bins to 100 or 10 when the attribute is a real number. We

consider that the number of bins should be determined by the level of granular-

ity that analysts want to explore, regardless of the distribution of the data. For

categorical columns, we simply apply ordinal encoding. In Table A.3, #Domain

shows the total domain sizes after binning. Variance is the mean of the variance

for each dimension of the binned and normalized dataset and gives an indication

of how scattered the data is.

Implementations of competitors. We compare our proposed method HD-

PView with Identity [42], Privtree [114], HDMM [113], PrivBayes [242], and

DAWA partitioning mechanism [248]. For these methods, we perform the fol-

lowing pre- and postprocessing steps. For Identity, we estimate errors following

[113], employing implicit matrix representations and workload-based estimation,

because it is infeasible to add noises on a high-dimensional count tensor because

bhttp://archive.ics.uci.edu/ml/datasets/Adult
chttp://archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume
dhttps://archive.ics.uci.edu/ml/datasets/BitcoinHeistRansomwareAddressDataset
ehttps://www.openml.org/d/151
fhttps://www.openml.org/d/1489
ghttps://www.openml.org/d/1053
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of the huge space. For Privtree, as described in [114], we set the threshold to 0

and allocate half of the privacy budget to tree construction and half to pertur-

bation. Using the same method as HDPView, the blocks obtained by Privtree

are used as the p-view. For the HDMM, we utilize p-Identity strategies as a tem-

plate. DAWA’s partitioning mechanism can be applied to multidimensional data

by flattening data into a 1D vector. However, when the domain size becomes

large, the optimization algorithm based on the v-optimal histogram for the count

vector cannot be applied due to the computational complexity. Therefore, we

apply DAWA to Small-adult and Phoneme because their domain sizes are rel-

atively small. We perform only DAWA partitioning without workload optimiza-

tion to compare the partitioning capability without a given workload to evaluate

workload-independent p-view generation. For fairness, PrivBayes is trained on

raw datah. PrivBayes, in counting queries, samples the exact number of original

data points; therefore, it may consume extra privacy budget.

Workloads. We prepare different types of workloads. k-way All Marginal is

all marginal counting queries using all combinations of k attributes. k-way All

Range is the range version of the marginal query. Prefix-kD is a prefix query

using all combinations of k attributes. Random-kD Range Query is a range

query for arbitrary k attributes and we randomly generate 3000 queries for a

single workload.

Reproducibility. The experimental code is publicly available i.

Effectiveness

We evaluate how effective p-views constructed by HDPView are in data explo-

ration by issuing various range counting queries. We utilize the above-mentioned

workloads.

Evaluation metrics. We evaluate HDPView and other mechanisms by mea-

suring the RMSE for all counting queries. Formally, given the count tensor

X , randomized view X ′ and workload W, the RMSE is defined as: RMSE =√
1

|W|
∑

q∈W(q(X )− q(X ′))2. This metric is useful for showing the utility of

the p-view. It corresponds to the objective function optimized by MM families

[249, 113], where given a workload matrix W and a query strategy A, which

is the optimized query set to answer the workload, the expected error of the

hPrivBayes shows worse performances with binned data in our prestudy.
ihttps://github.com/FumiyukiKato/HDPView
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Figure A.3: Relative RMSEs against HDPView on all the datasets and work-

loads: HDPView shows small errors for a wide variety of high-dimensional range

counting queries.

workloads is 2
ϵ2
||A||21||WA+||2F = RMSE2. Thus, we can compare the measured

errors with this optimized estimated errors. We also report the relative RMSE

against HDPView for comparison. To evaluate the average performance for a

wide range of queries and datasets, we compute the average over all workloads

and all datasets. We refer to this metric as average relative RMSE (ARR).

High quality on average. Figure A.3 shows the relative RMSEs for all datasets

and workloads and algorithms with privacy budget ϵ=1.0. The relative RMSE

(log-scale) is plotted on the vertical axis and the dataset on the horizontal axis

where high-dimensional datasets (Jm1 and Adult) are on the left, medium-dimensional

datasets (Traffic, Electricity, Bitcoin and Numerical-adult) are in the

middle, and low-dimensional datasets (Small-adult and Phoneme) are on the

right. The errors with Identity for high-dimensional data are too large and are

omitted for appearance. As a whole, HDPView works well. In Section A.1, Ta-

ble A.2 shows the relative RMSE averaged over all workloads and all datasets in
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#Blocks 15669

RMSE 657.37

#Blocks 19475

RMSE 315.79

Figure A.4: Examples of HDPView (left) and Privtree (right) on 2D dataset

(Gowalla): HDPView has fewer blocks, leading to noisier results than Privtree

for very low-dimensional data. Also, HDPView provides flexible block parti-

tioning.

Figure A.3, and HDPView achieves the lowest error on average. In data explo-

ration, we want to run a variety of queries, so the average accuracy is important.

We believe HDPView has such a desirable property. A detailed comparisons

with the competitors are explained in the following paragraphs.

Comparison with Identity, HDMM and DAWA. Identity, which is the most

basic Baseline, and HDMM, which performs workload optimization, cause more

errors for high-dimensional datasets than HDPView. For Identity, the reason

is that the accumulation of noise increases as the number of domains increases.

HDPView avoids the noise accumulation by grouping domains into large blocks.

The results of HDMM show that the increasing dimension of the dataset and the

dimension of the query can increase the error. This is because the matrix repre-

senting the counting queries to which the matrix mechanism is applied becomes

complicated, making it hard to find efficient budget allocations. This is why

the accuracy of the 3- or 4-dimensional queries for Jm1 and Adult is poor with

HDMM. In particular, the HDMM’s sensitivity to dimensionality increases can

also be seen in Figure A.7. DAWA’s partitioning leads more errors than the HD-

PView and Privtree. When applied to multi-dimensional data, DAWA finds the

optimal partitioning on a domain mapped in one-dimension, while HDPView

and Privtree finds more effective multi-dimensional data partitioning.

Comparison with Privtree. Overall, HDPView outperforms Privtree’s ac-
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Figure A.5: Number of blocks (log-scale) with various AEs for high-dimensional

dataset (i.e., Adult) for HDPView and Privtree. HDPView has slightly larger

AE blocks, but Privtree has a much more number of blocks i.e., much larger PEs.

Figure A.6: HDPView is more effective than Privtree even with controlled num-

ber of cuttings on Numerical-adult (left) and Jm1 (log-scale) (right).

curacy mainly for mid- to high-dimensional datasets. In particular, we can

see Privtree’s performance drops drastically in high-dimensionality (i.e., Jm1).

Privtree achieves higher accuracy than HDPView for Phoneme. This is likely

because Privtree’s strategy, which prioritize finer splitting, are sufficient for the

small domain size rather than HDPView’s heuristic algorithm. Even if the

blocks is too fine, the accumulation of PEs is not so large in low-dimensionality,

and AEs become smaller, which results in an accurate p-view. The reason why
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HDPView is better for Small-adult despite the low-dimensionality may be that

the sizes of the cardinality of attributes are uneven (Small-adult: {74, 9, 5, 100},
Phoneme: {10, 10, 10, 10, 10, 10, 2}), which may make Privtree’s fixed cutting

strategy ineffective. To see the very low-dimensional case, Figure A.4 shows the

block partitioning for the 2D data with a popular Gowallaj check-in dataset. The

table below shows the number of blocks and the RMSE for the 3000 Random 2D

range query. HDPView yields fewer blocks and Privtree generates a less noisy

p-view for the above-mentioned reason. The figure also confirms that HDPView

performs a flexible shape of block partitioning.

On the other hand, for high-dimensional dataset, this property can be avenged.

In Privtree, a single cutting always generates 2d new blocks, which are too fine,

resulting in very large PEs even though the AEs are smaller. Figure A.5 shows the

distribution of AEs for blocks on Adult for HDPView and Privtree. HDPView

has slightly larger AE blocks, but Privtree has a large number of blocks and

cause larger PEs. An extreme case is Jm1 in which Privtree causes large errors.

This is probably because Jm1 actually requires fewer blocks since the distribution

is highly concentrated (c.f., Table A.3). Figure A.8 shows that the number of

blocks of generated p-view by HDPView and Privtree. For Jm1, HDPView

generates very small number of blocks while Privtree does not. We can confirm

that HDPView avoids unnecessary splitting via random cut and suppresses the

increase in PEs which causes in Privtree. This would be noticeable for datasets

with concentrated distributions, where the required number of blocks is essentially

small. In summary, Privtree’s partitioning strategy contributes to smaller AEs,

but leads to an excessive increase in PEs for high-dimensional data.

Figure A.6 shows the results of reducing the number of cut attributes in

Privtree and adjusting the number of blocks in p-view on Numerical-adult

and Jm1. If the number of cut attributes is smaller than the dimension d, we

choose target attributes in a round-robin way (Appendix of [114]). In the case of

Numerical-adult, the error basically decreases as the number of cut attributes

is increased, similar to the observation in Appendix of [114]. However, for high-

dimensional data such as Jm1, the error increases rapidly as the number of cut

attributes increases to some extent. This is consistent with the earlier observation

that influence of PEs increases. Also, in any cases, the error of HDPView is

smaller, indicating that HDPView not only has a smaller number of blocks, but

jhttp://snap.stanford.edu/data/loc-Gowalla.html
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Figure A.7: Changes in the performance when adding attributes to Adult one by

one in HDPView, PrivBayes, and HDMM.

also performs effective block partitioning compared to Privtree on these datasets.

Comparison with PrivBayes. We do not consider PrivBayes a direct com-

petitor because it is a generative model approach that does not provide any

analytical reliability as described in Section A.2. However, PrivBayes is a state-

of-the-art specialized for publishing differentially private marginal queries; there-

fore, we compared the accuracy to demonstrate the performance of HDPView.

As shown in Figure A.3, HDPView is a little more accurate than PrivBayes

in many cases. However, in Adult, PrivBayes slightly outperforms HDPView.

Because PrivBayes uses Bayesian network to learn the data distribution, it can fit

well even to high-dimensional data as long as the distribution of the data is eas-

ily modelable. In HDPView, with larger dimensionality, the PEs grow slightly

because the total number of blocks increases. The AEs also grow since more

times of random converge result in larger errors. Thus, the total error is at least

expected to increase, and the larger dimensionality may work to the advantage

of PrivBayes. Still, HDPView is advantageous, especially for concentrated data

such as Jm1.

We consider the reason why on Numerical-adult, which has a smaller di-
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Figure A.8: The number of blocks generated by HDPView is much lower than

that generated by Privtree.

mensionality than Adult, PrivBayes is less accurate than HDPView is because

the effective attributes for capturing the accurate marginal distributions with

Bayesian network are removed. We can see the same behavior for Small-adult.

The following experimental results can support this. Figure A.7 describes the

changes in the RMSE with attributes added to Adult one by one in two work-

loads, where the added attributes are shown on the horizontal axis. Initially,

HDPView is more accurate than PrivBayes. As attributes are added, HD-

PView is basically robust with increasing dimensionality, but the error increases

slightly. On the other hand, interestingly, the error in PrivBayes becomes slightly

smaller.

Lastly, considering HDPView is better in Numerical-adult and worse in

Adult, one of the advantages of PrivBayes may be due to the increase in cate-

gorical attributes. Because HDPView bisects the ordered domain space, it may

be hard to effectively divide categorical attributes, which possibly worsens the

accuracy in HDPView.

Space Efficiency

Our proposed p-view stores each block in a single record. This method avoids

redundancy in recording all cells that belong to the same block. The p-view con-

sists of blocks and values, and basically, the space complexity follows the number

of blocks. Figure A.8 shows a comparison between the numbers of blocks of HD-

PView and Privtree. While the accuracy of the counting queries of HDPView

is higher than that of Privtree, the number of blocks generated by HDPView

is much lower than that of Privtree, indicating that the strategy of HDPView
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Table A.4: HDPView’s p-view is space efficient (up to 1013×).

Dataset Identity-based HDPView

Adult 30.99 EB 3.61 MB

Bitcoin 1.27 TB 6.77 MB

Electricity 1.11 TB 2.19 MB

Phoneme 781.34 KB 273.59 KB

avoids unnecessary splitting. In particular, on Jm1, HDPView is 4×104 more ef-

ficient than Privtree. Table A.4 shows the size of the randomized views, Identity-

based noisy count vector (not p-view) and p-view generated by HDPView at

ϵ=1.0. Since HDPView constructs the p-view by a compact representation, it

results in up to 1013 times smaller space on Adult.

Analysis for Hyperparameters

We provide an explanation of the hyperparameters of HDPView. As shown in

Algorithm 16, HDPView requires four main hyperparameters, ϵr/ϵb, α, β and γ.

We mentioned in Section A.6 that we fix the hyperparameters as (ϵr/ϵb, α, β, γ) =

(0.9, 1.6, 1.2, 0.9) in the experiments. Here, we provide some insights into each

hyperparameter from observations of experimental results on a real-world dataset

Small-adult varying each hyperparameter.

Figures A.9 A.10 A.11 A.13 show the RMSEs for 3000 random 2D range query

on Small-adult dataset when only one of the hyperparameters varies and others

are fixed as the above-mentioned default. From this result, we obtain the following

insights:

Ratio, ϵr/ϵb. The best accuracy is achieved when the Ratio is approximately

0.7˜0.9 as shown in Figure A.9. In HDPView, seemingly, the effect of aggrega-

tion error is larger than perturbation error, therefore we try to allocate a budget

to the cutting side so that the aggregation error is smaller.

Gamma, γ. As shown in Figure A.10, it was confirmed that prioritizing therandom

converge to accurately determine AEs improves accuracy rather than random

cut. However, if no budget is allocated for random cut, the error increases, i.e., a

completely random cutting strategy lose accuracy compared to appropriate our

proposed random cut. Therefore, 0.9 is reasonable. However, the random cut
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Figure A.9: Effects of HDPView’s

hyperparameter ϵr/ϵb (Ratio) on

Small-adult dataset.

Figure A.10: γ on Small-adult.

Figure A.11: β on Small-adult.

Figure A.12: β on Numerical-adult

dataset: Optimal β depends on dataset

and our default parameter β = 1.2 is

somewhat conservative.

Figure A.13: α on Small-adult.

Figure A.14: λ and δ on various α when

γϵr = 1.0.

may be less less significant due to the conservative setting of the β shown below.

Beta, β. The β is somewhat conservatively determined. We choose β = 1.2

because, when β = 1.2, the maximum depth of HDPView ’s bisection rarely

reaches κ on various datasets. As a rough guideline, if the total number of domains

in a given dataset is ñ, all blocks can be split at log2 ñ times depth, assuming

the domains are bisected exactly in the all cutting. Thus κ = 1.2 ∗ log2 ñ is deep

enough to split all the blocks, allowing for some skewness, and all the cutting

point is likely to be selected by an Exponential Mechanism rather than by random

one. However, remember the budget for each EM is inversely proportional to κ,

depending on the data set, the budget available for EM may be unnecessarily

small due to the unnecessarily large setting of κ as is the case with Small-adult
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(Figure A.11). We also show the Numerical-adult result as another example

(Figure A.12). The small β do not take full advantage of the random cut. Since

determining the optimal β for any dataset is impossible without additional privacy

consumption, we conservatively set β = 1.2 for all dataset in the experiment.

Alpha, α. α, i.e., exp(δ/λ), is valid for α > 1. If α is extremely close to 1, λ

diverges andHDPView does not work well because random converge causes large

errors. Because λ = (3α−2
α−1

) · ( 2
γϵr

) and δ = λ logα, as α increases, λ decreases and

converges to 3, but δ increases. Thus λ and δ are trade-offs. When δ increases, the

bias of BAE increases, which also leads to a worse convergence decision. Figure

A.14 plots the size of λ and δ for various α when γϵr = 1.0. As α increases,

the δ increases, but the decrease in λ is small, starting from approximately 1.4.

Therefore, around α = 1.4 ∼ 1.8 works well empirically and we use α = 1.6 as

default value.

A.7 Conclusion

We addressed the following research question: How can we construct a privacy-

preserving materialized view to explore the unknown properties of the high-

dimensional sensitive data? To practically construct the p-view, we proposed a

data-aware segmentation method, HDPView. In the experiments, we confirmed

the following desirable properties, (1) Effectiveness: HDPView demonstrated

smaller errors for various range counting queries in multidimensional queries. (2)

Space efficiency: HDPView generates a compact representation of the p-view.

We believe that our method helps us explore sensitive data in the early stages of

data mining while preserving data utility and privacy.

B PCT-TEE: Trajectory-based Private Contact

Tracing System with Trusted Execution En-

vironment

B.1 Introduction

Since the beginning of 2020, the emergence of COVID-19 has caused a worldwide

pandemic. Many governments and companies are developing various measures
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and technologies to prevent the spread of the virus [262, 263, 264, 265]. At present,

contact tracing is expected to be a powerful countermeasure for controlling the

spread of infection. The effectiveness of contact tracing has already been shown

by several previous studies [266, 267, 268, 269]. However, conducting effective

contact tracing often requires collecting citizens’ personal information, such as

their locations [270] or telephone numbers [271], which raises ethical issues and

serious privacy violations [272]. Therefore, acceptable private contact tracing

(PCT) is urgently needed.

Recently, Bluetooth-based PCT has been intensively studied [135, 273, 274,

275, 276]. Decentralized privacy-preserving proximity tracing (DP3T) [135], which

is an open protocol for PCT that uses Bluetooth low-energy (BLE) beacons, is

already being used in applications developed worldwide. To strongly protect

users’ privacy, it uses only the contact (proximity) history detected by the BLE

beacons. In DP3T, the applications use the Bluetooth signal of a smartphone

to broadcast a random ID that does not include sensitive information such as

the user’s identity or location, and nearby smartphone devices receive and store

the data for a limited time. Users who are then discovered to be infected with

COVID-19 send a report to the server that includes the random IDs they have

generated. Moreover, each user routinely checks to see if the random IDs received

from devices they have contacted in the past have been uploaded to the server.

Additionally, there are similar methods for adopting decentralized architecture,

such as Epione [273], the PACT protocol [274], CEN [275, 277] and Google and

Apple specifications [276].

However, Bluetooth-based PCT has several limitations in terms of functional-

ity and flexibility. First, Bluetooth-based PCT detects only direct contact (i.e.,

human-human contact) but cannot detect indirect contact (i.e., human-object

contact, e.g., when a person visits the same shop shortly after a patient with

COVID-19 visited it). The Centers for Disease Control and Prevention (CDC) in

the US showed that it is possible for a person to become infected with COVID-19

by touching a surface or object that has the virus on it and then touching their

own mouth, nose, or eyes [278] — despite not making direct contact with patients

with COVID-19. Moreover, recent studies [279, 280] followed this idea and high-

lighted the need to trace indirect contact. Second, Bluetooth-based PCT lacks

flexibility in terms of determining the rule of “risky contact”. Essentially, the rule

of risky contact in Bluetooth-based PCT is hard-wired into the Bluetooth device
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since risky contact is implicitly defined as two devices being in close proximity to

each other’s signal ranges. In practice, whether or not risky contact occurs varies

with the environmental situation and the nature of the virus. The rules of risky

contact in the case of COVID-19 have been updated as our understanding of the

virus [281] has improved. For example, in the beginning of the pandemic, profes-

sionals believed that transmission took place only through direct human-human

contact; however, it was recently argued that airborne transmission should be

taken into account [282, 279]. In addition to the nature of the virus, a recent epi-

demiological study [283] showed the importance of appropriate selection of the

proximity detection range (PDR), which also supports the necessity of flexibility

in PCT. Moreover, recent reviews have pointed out the current PCT application

limitations [284, 285], which are the inability to detect infections that do not

involve direct contact and radio signal limitations in contact detection [266, 286].

In this work, we propose secure and efficient trajectory-based PCT to enable

both direct and indirect contact tracing. By comparing the trajectory data be-

tween a user and infected patients, we can check whether or not the user visits

“infected locations” within a certain time period. The rule of risky contact can

be flexibly defined according to the condition of the location and the nature of

the virus. The four requirements for trajectory-based PCT are as follows.

1. Efficiency: The central server must be able to handle the query throughput.

2. Security: A client’s trajectory data must be protected from the server and

any other clients. However, nothing about the server-side data is disclosed

to the client except the query result.

3. Flexibility: The rule of risky contact should be simple to change when

necessary.

4. Accuracy: The server should carefully return accurate results because these

results are very sensitive and can significantly affect users.

As shown in Figure B.1, we assume that the health agency (e.g., the government

or official healthcare institute) registers the trajectory data of patients confirmed

to have COVID-19 (these data are encrypted or released under the consent of

the patients) to a server that is untrusted by clients (i.e., queriers). The server

receives queries and encrypted personal trajectories from clients and returns a

224



Appendix

Figure B.1: Trajectory-based PCT overview.

Functionality Efficiency Security Flexibility Accuracy

DP3T [135] - ✓ ✓ - ✓

HE-based PSI [287, 64] - - ✓ - ✓

TEE-based PSI [288] - ✓ ✓ - -

MPC-based PCT [267] ✓ - ✓ - ✓

PCT-TEE (mine) ✓ ✓ ✓ ✓ ✓

Table B.1: Comparison with existing approaches.

Boolean value indicating whether there is risky contact or not by computing an

intersection between server and client trajectories in a private manner.

Although the problem of trajectory-based PCT is similar to the well-studied

problem of a private set intersection (PSI), the existing approaches for the PSI

cannot satisfy all four of the above-mentioned requirements. A PSI ensures that

two (or more) parties can collaboratively calculate the intersection of their pri-

vate sets without their private data being disclosed to the other party, only the

existing information of the intersection or the result. However, the existing PSI

techniques, based mostly on cryptographic primitives, cannot achieve all of the

above-mentioned requirements. The state-of-the-art cryptography-based PSI ap-
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proaches, such as oblivious transfer [287] and homomorphic encryption [64] have

limitations in terms of the efficiency, and there are still performance problems

[289, 267] under medium or large workloads, due mainly to the heavy use of time-

consuming cryptographic primitives. Recently, approaches based on secure hard-

ware (such as Intel SGX or ARM TrustZone) have received increasing attention.

Secure hardware enables to make trusted execution environment (TEE) [62, 70],

which is used to speed up secure computations on an untrusted party. Tamrakar

et al. [288] proposed the first efficient TEE-based PSI. It is efficient but does not

satisfy the accuracy requirement since it introduces unpredictable error because

of the use of probabilistic data structures. Moreover, flexibility is not considered

because their work is based on a general hash function for hash-based dictionary

structures. In the method, we use a flexible encoding hash function to satisfy the

requirements. Thus, we compare their work with ours in Table B.1, adding [267]

which is an MPC-based PCT system using trajectories. Functionality means the

capability to detect indirect contact.

The contributions in this work are threefold. First, we formulate the problem

of trajectory-based PCT. We show that the problem is a generalization of the

well-studied private proximity testing [289] and PSI. The formulation is param-

eterized for both time and space and can be used in general settings. We name

this formulation the spatiotemporal PSI. Second, we propose PCT-TEE, a TEE-

based efficient algorithm for trajectory-based PCT. In addition to satisfying the

above-mentioned requirements, a challenge in designing the TEE-based algorithm

is the constraint of secure memory (i.e., enclave) on secure hardware. We solve

these problems by designing a novel trajectory data encoding method, Trajecto-

ryHash, and combining it with fast succinct trie [290]. TrajectoryHash and the

fast succinct trie enable algorithmic flexibility, more efficient compression, and

deterministic and fast search performance for a high-speed PSI in a TEE. Third,

we implement the proposed system on Intel SGX and open source the prototype

code in GitHubk. Our experiments on real-world datasets show that the proposed

system is efficient and effective in practical scenarios. Specifically, the proposed

encoding and data structure compresses the actual trajectory data to one-sixth

the size of the Hashmap (also known as a hash table) with the same performance,

and as a result, the total execution time is substantially reduced. Moreover, we

show that the proposed system, implemented on a single machine equipped with

khttps://github.com/ylab-public/PCT
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SGX, can handle hundreds of queries on tens of millions of records of trajectory

data in a few seconds.

Outline. In Section B.2, as preliminaries, we show that certain features of In-

tel SGX are related to our system design and discuss the TEE-based PSI and

conventional cryptography-based PSI performances. In Section B.3, we offer the

problem statement and formulate the PCT problem. In Section B.4, we give an

overview of our architecture, and in Section B.5, we present the algorithm and

trajectory-based data compression. In Section B.6, we show the experimental re-

sults and evaluation. In Section B.7, we present related works, including related

recent PCT applications and the position of this work. Finally, we provide the

conclusions in Section B.8.

B.2 Preliminaries

Characteristics of Intel SGX

As introduced in Section 2.3, Intel SGX [70] is the extended instruction set of

Intel x86 processors, which enables the creation of an isolated TEE, called the

enclave. The enclave resides in the protected memory region, called the Enclave

Page Cache (EPC), in which all programs and data can be unencrypted and

quickly processed as well as transparently encrypted outside the CPU package

by a memory encryption engine using a secret key that only processor hardware

can access. In other words, SGX adopts a model that considers the CPU package

as a trust boundary and everything outside as untrusted. In this trusted space,

accesses from any untrusted software, including the OS/Hypervisor, are prohib-

ited by the CPU, protecting the confidentiality and integrity of the program and

data inside the enclave. Therefore, programs using SGX must use two types of

instructions called OCALL/ECALL to invoke functions across trust boundaries

under strict control. These instructions often require too many clock cycles [291],

and does uploading data to the enclave. This observation is important to improve

the system performance.

Memory size limitation. A challenge in designing algorithms for Intel SGX is

the size constraint of the EPC. The maximum size of the EPC is limited to 128

MB, including 32 MB of metadata for secure management (or 256 MB including

64 MB of metadata in the recent Intel high-end processor [292] in 2021). This

limitation may be gradually improved but will continue to be a problem regarding
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hardware and memory-securing performance. Assume that memory is allocated

beyond this memory size constraint. In this case, SGX with Linux allows paging

with special encryption. However, many studies have shown that the performance

is greatly degraded by severe overhead [293, 294, 134], which is derived from a

requirement to preserve confidentiality and integrity even outside the enclave.

Therefore, it is necessary to design an efficient algorithm that works within SGX.

This is still an important problem, and Kockan et al. [295] presented a method

to overcome the severe memory limitation of TEEs for genomic data analysis.

Private Set Intersection

The PSI is a well-studied and important problem. The PSI refers to a setting

where multiple parties each hold a set of private sets and wish to learn the inter-

section of their sets without revealing any information except for the intersection

itself. The existing main approach is to use cryptographic primitives, which are

summarized as follows. We can classify the conventional approaches into two

categories; methodology and security model.

Regarding the former, first, there are methods based on the commutative prop-

erties of the Diffie–Hellman (DH) key exchange [296]. They require computing

the polynomial interpolation, which requires a high computational cost. Huang

et al. [297] described a garbled circuit-based approach. Their proposed SCS cir-

cuit family improved the efficiency at that time. This approach is similar to the

secure-hardware-based approach described later in terms of leveraging a general-

purpose secure computation. Oblivious transfer (OT) [298, 287, 299] is one of

the most promising approaches. While it is generally used for semi-honest ad-

versaries, [287] extended the OT method to a malicious adversary using the dual

execution technique [300]. Homomorphic encryption (HE) [64, 301] is suitable

for an unbalanced setting where the server-side data are large and the client-side

data are small, because it can replace the oblivious pseudorandom function in the

OT-based approach with leveled fully HE and substantially reduce the amount

of data to be transmitted. Last, there is a method extended from private infor-

mation retrieval [302]. Thus, many improvements have been proposed based on

these extensions; however, there is still no method to achieve practical efficiency

on large scale data in terms of the execution time and communication bandwidth.

Regarding the latter category, there are semi-honest [303] or malicious adver-

saries. Roughly speaking, a semi-honest adversary is an attacker who tries to
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bandwidth computation requirements
server

security

TEE O(n) O(n)
attestation

hardware
malicious

OT [287] O(N) O(N logN) nothing malicious

HE [64] O(n logN) O(N) nothing semi-honest

Table B.2: PSI comparison: cryptography-based(OT, HE) v.s. TEE-based: TEE

needs to special hardware, but it has advantages in efficiency and security.

infer secret information from the information he obtains, while following correct

protocols and not crafting send and receive data, while a malicious adversary is

an attacker who crafts send and receive data and executes the protocol as many

times as possible to extract secret information. Generally, the malicious client

setting requires a more secure standard and higher costs. Which model we should

secure depends on the applications and situations, but in this scenario, we con-

sider a malicious adversary because it is reasonable to consider that an untrusted

server can control and access any computation on the server. The TEE-based

approach can achieve malicious security [304].

We consider the secure-hardware-based approach to be the better option. Re-

garding the methodology, we do not have to use the above-mentioned crypto-

graphic primitives. Using Intel SGX, platform verification and transparent mem-

ory encryption by the hardware occurs so quickly and thoroughly that a highly

efficient PSI can be achieved. The difference in efficiency is significant, being

especially impactful on the choice. Additionally, the TEE provides a refined se-

curity model for a malicious adversary. [304] shows that no operation or inputs

expose information regarding the inner state or data of the TEE. All we need to

consider is privacy leakage from outside the TEE and software implementation

bugs.

We present a deeper comparison between the existing cryptography-based PSI

and the secure-hardware-based PSI in terms of the efficiency. We recognize the

state-of-the-art approaches as [287] in terms of the balanced data size setting

in the server and client and [64] in terms of the unbalanced case. The latter

assumes a semi-honest server and is faster than others in the malicious server

model. Table B.2 shows a comparison of the properties between them and secure
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hardware (Intel SGX). It includes a relatively rough estimate of the asymptotic

bandwidth and computational costs at every PSI execution. We denote n, N as

the client data size and server data size, respectively, assuming n << N . Asymp-

totic comparisons are acceptable for one purpose because of the large impact of

different coefficients. However, with secure hardware, both communication and

computing costs are dramatically more efficient, as they are proportional only

to the client data size (Table B.2). On the other hand, the secure-TEE-based

approach requires RA in advance and a hardware with special functionality on

the server side. Cryptography-based methods do not need any special devices;

they consist solely of algorithms. Rindal et al. [287] reduce communication

cost to (N) from the naive (N2) cost by using a variant of Cuckoo hashing in

an OT-based method. In [64], the communication cost is efficiently reduced to

O(n logN), and the server computational cost is O(n) homomorphic evaluations

on large circuits of size O(N/n). These facts show that the secure-hardware-

based method demands an extra cost such as special hardware, but is a better

choice for large-scale deployment because of the significant efficiency.

B.3 Problem Formulation

We first introduce the trajectory-based PCT scenario, and then we formulate the

problem based on the well-studied private proximity testing.

Scenario

In the scenario, we assume that trajectory-based PCT is used to prevent the

spread of COVID-19. We consider a centralized architecture that stores the tra-

jectory data of patients with COVID-19 on a central server and accepts PCT

requests from users with their trajectory data. In practice, these patients’ tra-

jectories can be received in bulk from public institutions such as a government or

health agency.

In the system operation, based on the incubation period of the virus, the server

always keeps the trajectory data of the infected patients for the past 14 days [305].

All the data are periodically updated in batches (e.g., once per day at night), with

data being added and deleted. The server transforms the trajectory data into an

appropriate structure in advance and is always ready to accept PCT requests from

clients. A client sends encrypted trajectory data for the past 14 days as a PCT
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request, and the server performs contact detection and then returns the results to

the client. The results can be time-stamped and signed in SGX as needed so that

they can be verified by a third party using an authenticated public key of SGX,

allowing clients to use the results for various agencies and events to show that the

risk of infection is low. While client data are protected from any other parties

except the TEE by encryption, server-side infected people trajectories can be

either confidential or open access ( i.e., the South Korea case [306]. Our system

can be applied to both situations; if the infection data should be confidential,

a health agency can encrypt the data before uploading the TEE by RA. Note

that the infection data are generally large in size and need to be kept in memory

outside of the enclave. This means that the encrypted data initially uploaded

to the TEE are encrypted in the enclave and placed in memory outside of the

enclave. In our experimental implementation, we consider the confidential case

which causes additional decryption overheads.

Problem Statement

Trajectory-based PCT. The trajectory-based PCT protocol is an asymmetric

protocol between a client and a server. When a client wants to know the contact

with trajectories stored on a server, this protocol returns 1 or 0 to the client

depending on the result, and does not disclose the private information of the client

to the server. In the use case for infections, each client has a set of trajectory data

for one person, and the server has trajectory data for many infected patients.

In conventional private proximity testing [289], when two people, user u and

v, have geographic data Xi that consist of location l
(i)
t (= (latitude, longitude),

e.g., (40.74836, -73.98562)) of time t (i = u, v), user u executes the protocol and

obtains the following result: 1 ( ||l(u)t − l
(v)
t || ≤ Θ)

0 ( others )

where Θ is a proximity threshold. After that, v does not learn any information

about Xu and u does not learn information except whether ||l(u)t − l
(v)
t || ≤ Θ.

In a similar vein, trajectory-based PCT can be represented as an extension of

this formulation. For contact tracings, a contact can be determined according to

human time-series tracking data. We can perform private proximity testing by
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extending single geographic data to time-series trajectory data. The threshold

can also be extended to 2D thresholds to check the spatiotemporal proximity.

PCT allows capturing indirect contacts by examining whether patients are in the

proximate place within a specific time period. Therefore, we obtain the following

formula denoting the trajectory data of user i as Xi = (x
(i)
1 = (t

(i)
1 , l

(i)
1 ), ..., x

(i)
n =

(t
(i)
n , l

(i)
n )) (e.g., x100 =(2020/12/20 12:00:00, 40.74836, -73.98562)), with which

the result of contact between u and v can be obtained:
1 (∃x(u)

i ∈ Xu , x
(v)
j ∈ Xv s.t.

||l(u)i − l
(v)
j || ≤ Θgeo and ||t(u)i − t

(v)
j || ≤ Θtime )

0 ( others )

(7.26)

where Θgeo and Θtime are the spatial and temporal proximity thresholds, respec-

tively. Furthermore, v does not learn any information about Xu, and u can obtain

only 1 or 0 regarding Xv in this protocol. The thresholds are generally given by

medical and epidemiological experts and may be updated. We define this pro-

cedure as trajectory-based PCT, which can capture indirect contacts by having

a certain width in the time direction. Moreover, we can extend the definition

so that the duration of exposure to an infected user can be considered, which is

recognized as an important factor of COVID-19 transmission [307, 305]. Let Θdoe

be the risky duration of exposure, the following formula is obtained:
1 ( ∃τ s.t. ∀i = (τ, τ + 1, ..., τ +Θdoe)

∃x(u)
i ∈ Xu , x

(v)
j ∈ Xv, s.t. ||l(u)i − l

(v)
j || ≤ Θgeo and ||t(u)i − t

(v)
j || ≤ Θtime )

0 ( others )

(7.27)

Finding the exact solution of Eq.(7.26) and Eq.(7.27) for the sampled discrete

trajectory data is computationally inefficient. Therefore, we simplify this prob-

lem by mapping continuous space to discrete space for computational efficiency,

where we approximate the PCT problem to the PSI problem. We denote A as

the set of all symbols in a discrete space and Ai ∈ A as the i-th element. By

mapping fΘ : x→ A, we can map any point x in the trajectory data to a single

symbol A. We call this mapping an “encoding” and introduce the corresponding

method in Section B.5. The encoding, fΘ, must be adjustable according to the

granularity parameters Θgeo and Θtime, which correspond to the size of the prede-

fined subspace in the 3D spatiotemporal space, and each subspace corresponds to
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Figure B.2: Spatiotemporal Private Set Intersection.

one unique symbol, as shown in Figure B.2. For example, suppose fΘ(x1) = A1,

fΘ(x2) = A2, fΘ(x3) = A2, fΘ(x4) = A2, fΘ(x5) = A2, trajectory point x1 is

mapped to A1, and x2,x3,x4, and x5 are mapped to A2 in Figure B.2. We deter-

mine contact by considering the intersection of these symbol sets between u and

v. This can be formulated as follows:
1
(
∃A(u) ∩A(v) ̸= ∅ s.t.

A(u) = { fΘ(x(u)
i ) | x(u)

i ∈ Xu } and A(v) = { fΘ(x(v)
j ) | x(v)

j ∈ Xv }
)

0 ( others )

(7.28)

v does not learn any information aboutXu, and u can obtain only 1 or 0 regarding

Xv in this problem. We name this problem the spatiotemporal PSI or stPSI for

short. Considering the duration of exposure and given threshold parameters

Θ = (Θgeo,Θtime) and Θdoe, the problem can be formulated as follows:
1
(
∃τ s.t. ∀i = (τ, τ + 1, ..., τ +Θdoe)

(∃A(u) ∩A(v) ̸= ∅ s.t.

A(u) = { fΘ(x(u)
i ) | x(u)

i ∈ Xu } and A(v) = { fΘ(x(v)
j ) | x(v)

j ∈ Xv })
)

0 ( others )

(7.29)

Note that the worst computational complexity this problem causes is the same

as in Eq.(3) since we need to sequentially check the u’s of all the data only once,

both of which are checked O(|Xu|) times.

233



Appendix

In this work, we consider the stPSI as a contact between u and v. Hence,

we can reduce the problem to one that is simple enough to be computed with

existing confidential computing stacks in a practical computational time. How-

ever, the problem is basically an approximation of trajectory-based PCT. Given

the threshold parameter Θ, this approximation causes some detection errors. We

carefully analyze these errors in Section B.5 and show that there is a trade-off

between false positives and false negatives due to the proposed algorithms and

thresholds.

Additionally, we describe the important requirements of trajectory-based PCT.

Efficiency. Trajectory-based PCT requires efficiency in several aspects.

• The first is the response throughput since the server will always be exposed

to requests from a large number of users. It can be a substantial workload

in this centralized protocol.

• The second aspect is the bandwidth. Since the protocol is applied to many

users, it is necessary to reduce the bandwidth for communication efficiency.

• The third aspect is scalability. For instance, for COVID-19, the size of

the infected patient data and the user data may increase in the event of

infection spreading.

The efficiency requirements depend entirely on the context in which PCT is de-

ployed and are determined by the amount of users, frequency of use, number of

data, etc.

Security. Security concerns in general PCT systems are manifold. The con-

cerns must include violating the privacy of participants by revealing personal

information such as location, inducing errors in PCT results by introducing false

information, and violating the integrity and availability of the system. In our sce-

nario, we believe it is reasonable to assume a malicious client, a malicious server,

and a semi-honest health agency as the attacker models. Because any client can

participate in a service, and because it is not obvious how the server runs in a re-

mote environment, we should assume that it has a full control over the operating

system and/or hypervisor, memory hardware units, and packet flow in the net-

work and uses them to attack the system. In addition, the selected health agency

is publicly authenticated. In the centralized architecture used in our scenario,

some of the attacks that are often of concern in BLE-based PCT methods are not
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possible (e.g., carryover attack [275], paparazzi attack [308], Orwell attack [309],

etc.). On the other hand, we should consider the following attacks;

• Denial-of-service (DoS) attacks: malicious clients send many requests to

the server to bring down the system.

• Query-abusing attacks: privacy violation attacks are performed to obtain

an infected person’s data by a malicious client’s queries.

• Side-channel attacks: the malicious server causes information leakage by

side-channel attacks on communication paths and within the server.

• False answering: the malicious server answers clients by sending fake results.

• Fake data injection: the malicious server injects fake infected data into the

system.

• Replay: someone catches the client request information by communication

interception and reuses it to obtain the client’s PCT result.

Our proposed trajectory-based PCT system should have countermeasures to pre-

vent or mitigate all of these attacks.

Flexibility. The rules of risky contact in the case of COVID-19 have been up-

dated as the understanding of the virus has improved [281] as we explained Section

B.1. In the trajectory-based PCT, flexibility requires that (Θgeo,Θtime,Θdoe) be

parameterized and changeable in the PCT system. For example, these parameters

need to be changed to minimal values if it is found after the system is released

that only direct contact needs to be captured because of the virus’s capacity

for transmission. However, we do not believe that these parameters need to be

parameterized at the client query level (i.e., clients can choose the parameters).

In other words, we assume that there is one global condition that is epidemi-

ologically determined to be important for infection prevention. In addition, if

the client has control over the parameters, it can expose information about the

infected person’s data, creating an unnecessary security risk.

We believe that these parameters should be updated only once a day at most.

Therefore, it is reasonable to apply the changes in these parameters to the data

at the same time as the batch update of the infected data on the server, which

justifies our proposed method. In the proposed method, we encode the data in
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advance with a granularity that matches the parameters and then use the PSI to

detect contact decisions.

Accuracy. Accuracy requires to achieve the high correct detection rate. Since

virus infection information is very sensitive, it is necessary to reduce the per-

centage of responses to clients that contain false positives or false negatives. In

addition, when a response is false, what kind of false it is, i.e., whether it is

nearly correct or randomly generated, has completely different meanings in terms

of whether there is an upper limit to the error or not. For example, even if the

epidemiological false positive is somewhat large, it may be effective in preventing

infection depending on the phase of infection [283].

There are several aspects of trajectory-based PCT that can cause a false out-

come. The first one is the error of trajectory data collection. Many studies have

shown that the accuracy of GPS-based trajectory data collection is improved

[310, 311]; however, the accuracy is degraded especially in indoor environments.

Also, if they stay somewhere for too short a time, they may not be captured when

the trajectory data is collected. On the other hand, it is possible to improve the

collection accuracy by combining wireless devices such as indoor Wi-Fi [312]. Our

work assumes that these state-of-the-art devices collect highly accurate trajec-

tory data, and this false is beyond the scope. The second is a false result caused

by the stPSI approximation. It is necessary to clarify how many false positives

and false negatives are generated by the approximation and what is the upper

limit of the error. Through extensive experiments, we empirically clarify how

much error is caused by the stPSI. The third is the false result caused by the

physical environment, which cannot be captured by location information alone.

For example, if a person is riding in a car or spending time in an adjacent room,

a false positive may occur if only trajectory data are used. This error is difficult

to determine from the trajectory data and requires a different type of data; we

consider it to be the topic of future work.

B.4 System Overview

We introduce an overview of the system. Table B.3 shows the symbols and

parameters that are used in the rest of this section.

Figure B.3 shows an overview of the architecture with a trusted enclave. Our

method consists of several steps, including the transformation of data maintained
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Symbols Explanation

ND number of raw trajectory data of infected people

D raw trajectory data of infected people

NC number of clients

ci ∈ C a client i(∈ {1, ..., NC}) and all clients set

NR number of chunks of central data

R mapped D, array of efficient chunks (= (r1, ..., rNR
))

ri i-th chunked data of R, efficient representation (e.g., FSA)

qi client i’s query data (raw trajectory data)

Q merged and mapped NC query data (e.g., unique array)

NQ unique size of Q

θ parameter of PCT, θ = (θtime, θgeo)

(ti, li) i-th row of trajectory data, time ti and location li = (lilat, lilon)

Table B.3: Symbols and parameters.

on the server side and the transformation of data sent from the clients, as follows.

First, we describe the data of infected patients on the server.

1 : (Update master data) The health agency updates the infected patient

data D in batch processing. D is in the raw form of trajectory data D =

[(t1, l1), ..., (tnR
, lnR

)] and does not have to include the user IDs since there is

no need to distinguish trajectory data by infected users.

2 : (Mapping) Step 2 is executed in the same batch processing as step 1. We

map from the raw data format D to efficient dictionary representation R with

the function mapToChunkedDictionary. This mapping function includes en-

coding, chunking, and transforming into the dictionary representation. Encoding

is to encode each piece of trajectory data into 1D bytes of representation. It

corresponds to fΘ in Eq. (7.28) (7.29). Chunking is to split the dataset into NR

chunks. Transforming is to transform each chunk into a dictionary representation

and into R that consists of NR chunks ri (i = 1, ..., NR), where each chunk fits

in the enclave memory limitation. How to represent the chunked data special-

ized in the PSI under the SGX memory constraint is the challenge of this work.

These encoding and compression schemes are described in Section B.5. In the

case where the infected data are to be kept secret, the encrypted infected data
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Figure B.3: Architecture overview: circled numbers correspond to the steps shown

in System Overview.

are uploaded to SGX by the health agency, step 2 is performed in SGX, and

the binary data of the encrypted R are placed in the memory of the untrusted

server. The key used for encryption during the upload is obtained from SGX by

the health agency through RA.

The next part is the processing of queries from clients.

3 : (Remote attestation) The client verifies the remote enclave through the RA

protocol before sending the request to the server. The client can confirm that

the enclave has not been tampered with and then securely exchange the key with

the enclave. After that, the shared key are used to encrypt the data, which

enables secret communication to the remote enclave through a secure channel.

Note that a secure channel is a communication channel where only the query

data in the request are encrypted and kept secret. Client metadata (e.g., IP

address) exchanged in the application layer is not kept secret from the server side

and need to be used in the response. The response data are encrypted and kept
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secret, as well as the request query data.

4 : (Request) Many clients send PCT requests to the server. In the figure, ci

sends qi as a request parameter that contains 14 days of her trajectory data.

Trajectory data are encoded by fΘ before encryption; thus, the server and client

share the parameter Θ in advance. qi is encrypted in all the untrusted areas after

leaving the client environment and is visible only in the verified enclave.

5 : (Queuing) Until a certain number (Nc) of requests are accumulated, qi is

queued outside the enclave, and they are passed to the enclave together by the

loadToEnclave function. This function is actually implemented by the so-

called ECALL to invoke an SGX function. We aim to optimize the loading pro-

cess for multiple (e.g. 1000) users by batch processing, mitigating the overheads

invoked.

6 : (Mapping) After uploaded to the trusted enclave, the data are finally de-

crypted. Inside the enclave, all qi are grouped together and mapped to query

representation Q using mapToArray. While these query data are private and

cannot be handled outside the enclave, the size of the enclave memory is strictly

limited. Therefore, encoding trajectory data to small bytes is critical.

7 : (Contact detection) The chunked data ri are imported into the enclave one

by one, and we compute the set intersection of ri and Q in the enclave. This can

be done by checking the bytes-based match. In the result, only queries with a

true result for a set intersection are recorded as positive. If a query is found to be

positive, we can reduce some overhead by not computing the PSI for subsequent

ri for the query.

8 : (Response construction) After the iterations for all the chunks are completed,

responses for all clients are constructed from the results and complete query data

qi (i = 1, ..., NC) inside the trusted enclave by constructResponses. This

process can be carried out by simply encrypting the results (positive or negative)

for each client inside the enclave. Finally, the process returns the encrypted result

through the secure channel to each client.

B.5 Spatiotemporal PSI

Trajectory Data Representation

In this subsection we focus on the trajectory data representation, which is op-

timized for PSI processing in the memory constraint of Intel SGX. The most
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important issue is how to represent each trajectory data point. This is called

encoding and corresponds to fΘ in Eq. (7.28) (7.29). We need to encode different

trajectory data into unique 1D data to solve the trajectory-based PCT as the

stPSI, as described in Section B.3. In addition, we need to make the encoded

data as small as possible. The compact representation contributes to the whole

system performance, and the compressibility contributes to the performance of

the PSI part which is the core component of the system.

Additionally, we carefully develop the dictionary representationR (= (r1, ...rNR
))

obtained by the mapping in step 2. R should satisfy the following constraints:

First, a memory-efficient data structure storing trajectory data should be used to

overcome the severe memory constraints of SGX. Second, a fast search should be

implemented for a fast PSI. Third, a deterministic search method for an accurate

PSI should be provided. The standard dictionary representations do not fulfill

these requirements. We consider Hashmap as a baseline. Hashmap ideally sup-

ports the O(1) key-based search. While it provides desirable search performance

and allows a deterministic search, it fails to satisfy the efficiency requirements be-

cause its size increases linearly with the size of the data. A smaller data structure

is preferable in this setting because the overheads caused by SGX are consider-

ably heavy. While probabilistic data structures such as the Bloom filter provide

the same search speed performance as that of Hashmap and superior memory

efficiency, they do not satisfy deterministic search requirement. It causes random

and unpredicted false positives.

Our proposed method to achieve the desired dictionary representation is a

combination of effective trajectory data encoding and storing into a fast succinct

trie (FST) [290]. An FST is a data structure proposed in [290] and is the base of

Succinct Range Filter (SuRF). The SuRF can improve efficiency for queries such

as match and range in exchange for false positives, while the FST does not allow

any false positives. The FST has basically the same properties as those of trie,

but its internal representation is closer to being succinct, and it has a particular

strength in spatial efficiency. For more information on the FST, please refer to

[290]. Similar to the basic trie, the FST provides high compression performance

for highly similar data by sharing a common prefix of encoded bytes in a single

node. Essentially, the aim is to ensure that the encoding process transforms

trajectory data into highly similar byte sequence representations and then utilizes

the similarity to create a compressed dictionary representation using an FST.
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Figure B.4: An overview of running example from raw trajectory to the final risk

assessment.

Figure B.4 shows an overview of running example from raw trajectory to the

final risk assessment.

TrajectoryHash

We introduce encoding, which corresponds to fΘ in the stPSI as described in

Section B.3. The encoding should satisfy the following 3 properties. First, there is

an injective function between different trajectory data and unique byte sequences.

Obviously, if this property is not satisfied, the PSI cannot be performed correctly.

Second, the encoded value should be small in size. The space after mapping

should be as small as possible because if it is small, all data, including both

the server data and the queries from the client, will be small. This is the ideal

situation for TEE-based secure computation. [313] lacks this aspect; string-level

merging caused the binary size of the encoded values to grow. The other desired

property is that the encoded values should have many similarities because we can

efficiently store within the FST. We introduce TrajectoryHash encoding and show

that it satisfies all properties.

The trajectory data X consist of an array of tuples of temporal data and

geographical data, such as the UNIX epoch and tuples of latitude and longitude,

as follows.

X = [x1 = (t1, l1), ..., xn = (tn, ln)]

tk ∈ time (UNIX epoch)

lk = (lk,lat, lk,lon) ∈ coordinate ((latitude, longitude))
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Algorithm 17 TrajectoryHash

Require: t,, (llat, llng), θtime, θgeo, tstart, tend

Ensure: hash

1: b1, b2 ← QuadKeyEncode(llat, llng, θgeo) ▷ b1, b2 are binary sequence with

θgeo length

2: b3 ← PeriodicEncode(t, θtime) ▷ b3 are binary sequence

3: binary ← BitMix(b1, b2, b3)

4: hash← ByteEncode(binary)

5: return hash

6: procedure QuadKeyEncode(llat, llng, θgeo)

7: maxLatitude← 360 arctan(exp(π))/π − 90 ▷ ≃ 85.05112877980659

8: llat ← min(maxLatitude,max(−maxLatitude, llat)) ▷ for clipping

9: px←
llng + 180

360
▷ transform to the Tile Coordinates

10: py ←
(1
2
−

1

π
log

1 + sin (llat × π/180)

1− sin (llat × π/180)

)
11: mapSize← 2θgeo ▷ map consists of 2θgeo × 2θgeo areas

12: x← Floor(px×mapSize) ▷ round down function

13: y ← Floor(py ×mapSize)

14: Xbinary ← AsBinary(x) ▷ get as bit array representation

15: Xbinary ← ZeroPadding(Xbinary, θgeo) ▷ padding 0 to θgeo length

16: Y binary ← AsBinary(y)

17: Y binary ← ZeroPadding(Xbinary, θgeo)

18: return Xbinary, Y binary

19: end procedure

20: procedure PeriodicEncode(t, tstart, tend, θtime)

21: maxLength← Length(AsBinary(tend − tstart))

22: ▷ maximum bit length to represent the period tstart to tend

23: tdiff ← t− tstart

24: shift← 32− θtime ▷ 32 = max bit length of UNIX epoch

25: tdiff ← Floor(tdiff/2
shift) ▷ right shift tdiff >> shift

26: binary ← AsBinary(tdiff )

27: binary ← ZeroPadding(binary,maxLength− shift)

28: return binary

29: end procedure
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parameter θgeo geo distance Θgeo

26 0.6 m

25 1.2 m

24 2.4 m

23 4.8 m

Table B.4: Approximate scale of the

parameter θgeo.

parameter θtime time distance Θtime

32 1 s

26 1 min

24 4 min

22 17 min

Table B.5: Approximate scale of the

parameter θtime.

t1 and tn are determined as tstart and tend considering conditions such as the lifes-

pan of the virus. (e.g., in the case of COVID-19, we currently believe it is 14

days.) Algorithm 17 shows the pseudocode of TrajectoryHash. The input

parameters θgeo and θtime correspond to Θgeo and Θtime, respectively. While Θgeo

and Θtime directly express the spatial distance as in Figure B.2, note that θgeo

and θtime express granularity on a different scale, as shown in Table B.4, B.5.

The algorithm of the encoding is based on two encodings QuadKeyEncode,

PeriodicEncode and a binary-level mixing function, BitMix. ST-Hash [314]

is similar to the encoding. The part to be mixed at the binary level is the same,

but the 2 encoding methods and the motivation are different. We use Quad-

KeyEncode and PeriodicEncode to preserve the trajectory data similarity

and hierarchical structure to compress the trajectories.

QuadKeyEncode is based on the quadkey introduced by Bing Map [315],

which is a method of encoding into bits in the tile coordinate space, recursively

dividing into two parts according to a given level, as shown in Figure B.5. Note

that in the method, QuadKeyEncode outputs separated binaries. As we can

see in the figure, while we obtain ”212”(=100110 in binary) using quadkey en-

coding, QuadKeyEncode outputs 101 and 010. This algorithm is described in

detail in Algorithm 17. The parameter θgeo and the approximated distance in-

cluded in the square in tile coordinates are shown in Table B.4. Strictly speaking,

it is correct for both the latitude and longitude at the equator, but the tile length

of the latitude is slightly variable according to the height of the latitude, e.g., in

New York, θtime = 22 corresponds to Θtime = 1.83. Using this encoding, we ob-

tain unique binaries for each distinguishable area by θgeo. Moreover, we can keep

the hierarchical structure and similarity of trajectory locations in the binary rep-
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Figure B.5: quadkey and QuadKeyEncode.

resentation. For instance, given θgeo = 16, (llng, llat) = (135.3214557, 30.4564223),

we obtain the output 1110000000111010 and 0110100100111110 as binaries.

PeriodicEncode is optimized to discretize the time data over a specific given

period and at specific given time intervals. This encoding outputs bits with min-

imum length that can express a distinct time interval according to given θtime in

the period tstart to tend. Given 14 days as the period, the relation between param-

eter θtime and the approximate time interval is as shown in Table B.5. The final

output length is determined by both θtime and (tstart, tend). For example, given

(t, tstart, tend, θtime) = (“2020/10/10 10: 00”, “2020/10/05 00: 00”, “2020/10/19 00: 00”, 24)

, the processing is carried out in detail as follows:

tend − tstart = 1603065600− 1601856000 = 1209600

maxLength = 21 (1209600 < 221 = 2097152) (Line 21)

tdiff = 1602324000− 1601856000 = 468000 (Line 23)

shift = 32− 24 = 8 (Line 24)

tdiff = 468000/2 ∗ ∗8 = 1828 (Line 25)

binary = AsBinary(1828) = 11100100100 (Line 26)

binary = ZeroPadding(11100100100, 21− 8) = 0011100100100 (Line 27)
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Figure B.6: Mixing Trajectory-

Hash.

Figure B.7: Sequential merge Trajecto-

ryHash.

Finally, we obtain 0011100100100 as a binary. In this way, we obtain the mini-

mum representation to express trajectory time information and preserve the time

representation similarity of the trajectories in the period while adjusting intervals

to the given granularity parameter θtime. Obviously, this gives an information-

theoretic lower bound on the byte size, since it is the smallest bit representation

that identifies a given period. Furthermore, in terms of location information, since

the bit array obtained fromQuadKeyEncode is also the size of the information-

theoretic lower bound for identifying individual regions in the map at the given

scale, TrajectoryHash is a succinct representation of the trajectory data for a

given granularity.

Now, we have three binaries, i.e., this longitude: 1110000000111010, latitude:

0110100100111110 and periodic: 0011100100100. We mix them into one binary

by BitMix (Line 3). We consider that there can be some variants, mixing or

simply merging without mixing. A plausible option is to mix one by one from

each binary as shown in Figure B.6. In this mixing, the 3D trajectory data

are encoded as in Figure B.8, where the 3D similarity of the trajectory data

is naturally preserved in the binaries in a balanced manner regarding time and

location. By changing the mixing, we can further generalize the encoding. For

example, in the encoding of [313], the spatial and temporal information were

merged sequentially (Figure B.7) to efficiently share and store the prefixes on the

nodes of a finite state automaton.

Last, we encode the bits into bytes by ByteEncode for ease of transport and

processing. This may involve extra padding in the prefix to match the size of the

bytes. However, since the padding is common in the prefixes, it is largely ignored

in the FST.
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Figure B.8: TrajectoryHash interpretation in the time-series map.

Here, we explain that the FST satisfies the three above-mentioned require-

ments. We can use the FST as key-based data to store and compress the byte

sequence data, sharing prefix bytes from the tree structure’s roots. The FST also

provides a fast key-based search as a dictionary in proportion to the maximum

depth. Moreover, the search cost can be O(1) if the maximum length is small,

which is asymptotically equivalent to the Hashmap and may be advantageous

because it does not require computing hash functions. Thus, it basically meets

the requirements. In addition, the FST can also provide operations using select

and rank to speed up the internal movement between nodes and can efficiently

perform multiple adjacent key searches. Therefore, we increase the compression

efficiency and search performance for the PSI by introducing the FST, and this

data structure satisfies the requirements.

Chunking

We have to consider how to make a chunked FST. At step 2 of Figure B.3, we

transform raw data into chunked dictionary representations. Generally, chunking

the FST is not a straightforward task because the compression results depend on

how we divides the dataset for each chunk, which is different from the Hashmap.

With the FST, the greater the similarity of the data contained in each chunk,

the more it can be compressed. With the Hashmap, the performance does not

depend on these processes because the data size is determined just by the number

of stored data. However, we can solve this problem by simple operation. Before

constructing the FST, we sort the encoded values in byte order and iteratively

take the ND/NR trajectory data from top to bottom and transform the data
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Algorithm 18 Spatiotemporal PSI

Require: qi(i = 1, ..., nc), Θ = (Θgeo,Θtime), R ←
mapToChunkedDictionary(D,Θ) ▷ 1 , 2

Ensure: Responses

1: loadToEnclave(q1, ..., qNC
) ▷ 5 6

2: q1, ..., qnc ← decrypt(q1, ..., qnc) ▷ by AES-GCM etc. using shared key

through RA

3: Q← mapToArray(q1, ..., qNC
) ▷ 6 , qi has list of encoded value and client

ID

4: Results← {}
5: for ri ← R do ▷ 7 R has ND chunks

6: loadToEnclave(ri) ▷ iteratively load chunked data ri

7: ri ← decrypt(ri)

8: for query in Q do ▷ 7 Q is array with NQ length

9: if ri.contains(query.value) then

10: Results← Results ∪ query.clientID

11: end if

12: end for

13: end for

14: Responses← constructResponses(q1, ..., qNC
, Results) ▷ 8

15: Responses← encrypt(Responses)

16: Responses← loadFromEnclave(Responses) ▷ return encrypted data to

untrusted area

into a single FST. Then, we obtain NR chunk of FST. We can stably construct

well-compressed FST because a chunk of data has more similarity.

Complexity Analysis

Here, we discuss the asymptotic computational costs of the PSI and precautions.

We show the stPSI algorithm for trajectory-based PCT in Algorithm 18. Some of

the functions are described in B.4. Dictionary ri must implement the contains

method, which returns a Boolean value indicating whether the dictionary includes

the target or not. In the case of the FST, it is asymptotically constant. The
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Algorithm 19 Spatiotemporal PSI (duration of exposure)

Require: qi(i = 1, ..., nc), Θ = (Θgeo,Θtime), Θdoe, R ←
mapToChunkedDictionary(D,Θ)

Ensure: Responses

1: loadToEnclave(q1, ..., qNC
)

2: q1, ..., qnc ← decrypt(q1, ..., qnc)

3: Results← {}
4: for ri ← R do

5: loadToEnclave(ri)

6: ri ← decrypt(ri)

7: for qi in (q1, ..., qNC
) do

8: durationOfExposure← 0

9: for query in qi do

10: if ri.contains(query.value) then

11: durationOfExposure++

12: ▷ add the interval of sampling rate of the trajectory data collection. (e.g., 1

minute)

13: if durationOfExposure ≥ Θdoe then

14: durationOfExposure← 0

15: Results← Results ∪ query.clientID

16: break

17: end if

18: Results← Results ∪ query.clientID

19: else

20: durationOfExposure← 0

21: end if

22: end for

23: end for

24: end for

25: Responses← constructResponses(q1, ..., qNC
, Results) ▷ 8

26: Responses← encrypt(Responses)

27: Responses← loadFromEnclave(Responses)
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computational costs of trajectory-based PCT are as follows. Assume that the

cost of a single key search for a dictionary is c and that the unique size of Q is

NQ. The calculation cost is

c×NR ×NQ = O(NRNQ)

Seemingly, NQ and the number of chunks NR is constant, and the PSI is com-

pletely scalable for an infected trajectory size. However, note that the size of

NR depends on the memory constraints of SGX. When processing thousands of

queries together, the exact qi(i = 1, ..., NC) information needs to be kept within

the enclave to correctly reconstruct the response, which can be several tens of

MB in size; eventually, the size available for chunk ri is not large. This means

that there is actually a practical lower bound on NR. Last, the routine includes

decrypt and encrypt. These encryptions are implemented by fast and simple

methods, such as 128-bit AES-GCM, and the HW module for encryption is used

inside SGX so that the execution time is not dominant.

Algorithm 19 shows the algorithm for considering the duration of exposure. The

difference is that Θdoe is required as input, and the number of cases where the PSI

is positive are counted continuously for each client (i.e., duration of exposure).

As on Line 11, if the server data contain client data, then we add the interval

of the sampling rate of the trajectory data collection to durationOfExposure.

If the server data contain continuous client data, durationOfExposure will be

increased; otherwise, it will be reset to zero. Finally, the client is considered posi-

tive only when the duration of exposure to risky contacts exceeds Θdoe. Note that

this algorithm requires only one scan of the query data; thus, the computational

complexity is the same as that of Algorithm 18.

Accuracy Analysis

Here, we analyze how accurate a contact decision by the stPSI (i.e., Eq.(7.28))

is compared to the correct contact decision (i.e., Eq.(7.26)). Since Eq.(7.28)

is an approximation of Eq.(7.26), false negatives and false positives may occur.

In Figures B.9 and B.10, the central blue point represents one trajectory data

point xi included in the query from the client. The blue rectangle represents

the area of the TrajectoryHash value to which xi belongs (i.e., the stPSI results

are positive if there is infected person data in the same area). The red circle

represents the area that is judged positive by the exact PCT (i.e., Eq. (7.26)). In
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Figure B.9: Possible false outcome

in terms of the location.

Figure B.10: Possible false outcome

in terms of time.

particular, Figure B.9 shows the projection of 3D space onto the longitude and

latitude dimensions, indicating a possible false pattern. The false positive occurs

in the blue area on the upper left of the blue rectangle in the figure, depending

on the position of the trajectory point in the blue rectangle. If there is a false

positive, the distance between the false positive data and the trajectory point

is between Θgeo and
√
2Θgeo. A false negative can occur over a relatively large

area, as indicated by the red circle in the figure. The possible distance from the

trajectory point ranges from 0 to Θgeo. Figure B.10 shows the occurrence of false

results in the time direction, where the blue point is the trajectory point, the

blue area is the area judged as positive by the stPSI, and the red area is the area

judged as positive by Eq.(7.26). In the time-axis direction, since the amount of

Θtime that is judged positive by the stPSI is always contained within 2Θtime, it is

judged positive by Eq.(7.26), as shown in the figure. Therefore, a false positive

does not occur, but a false negative occurs. The bounds of the distance between

the possible false negatives and the trajectory point are from 0 to Θtime. Note

that these analyses are for individual data points. In an actual contact detection

query, we have a large amount of infected person trajectory data. Therefore,

these false outcomes may not be very problematic because the query will return

1 if at least one positive sample is found in the entire infected person dataset.

In Section B.6, we perform an empirical evaluation of these false outcomes by

experimenting with the trajectory data and show that the resulting detection is

highly accurate.

False negatives can occur in the stPSI, which can be problematic. False neg-

atives in PCT may encourage potentially infected individuals to become active,

which may contribute to the spread of infection. In addition, as shown in the pre-
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Figure B.11: nfp-stPSI design (2D version for

simplicity).

Figure B.12: Maximum

distance between trajectory

point and false positive.

vious analysis, the minimum distance between the trajectory point and the false

negative data point obtained by the stPSI is 0. On the other hand, false positives

may be effective in spreading infection. Pandl et al. [283] shows the importance

of appropriate selection of the PDR, suggesting that a wider PDR, i.e., the al-

lowance of false positives, may help prevent the spread of infection. Therefore,

we believe that a false positive is more acceptable than a false negative in PCT.

We devise a variant of the stPSI, nfp-stPSI (non-false negative-stPSI), which has

only false positives and no false negatives. Moreover, there is a guarantee that

the distances between the trajectory point and false positive samples are tightly

bounded.

nfp-stPSI is a simple extension of the stPSI that intersects all blocks around

a block trajectory point belonging to a 3D encoded space (Figure B.1). In other

words, the search is performed on 26 surrounding blocks in addition to the orig-

inal center block to which the trajectory point belongs. The hash values of

these blocks can be efficiently computed from the binary of the trajectory point’s

TrajectoryHash by some bit operations. Figure B.11 shows the design of the nfp-

stPSI in 2D space for simplicity. nfp-stPSI judges all the surrounding blocks as

positive. Therefore, the exact positive area according to Eq. (7.26), indicated by

the red circle in the figure, is always detected as positive. The area shown by the

red bold line in the figure includes all possible exact positive areas (Eq.(7.26))

for the trajectory points belonging to the center block, and it is always included

in the area of the external blue blocks. Hence, in nfp-stPSI, false negatives do

not occur. As shown in Figure B.12, the maximum distance between the false

251



Appendix

positives and the trajectory point is reached when the trajectory point belongs to

the inner corner of the center block and the infected data are in the outer corner

of the external block, with a maximum value of 2
√

2Θ2
geo +Θ2

time. Therefore,

the false positive that occurs is guaranteed to be close to the correct answer to

some extent. Thus, although nfp-stPSI increases the overhead of the search, it

eliminates false negatives and generates acceptable false positives. In the next

section, we evaluate this method empirically.

B.6 Experiments

We conduct experiments using real trajectory data to demonstrate that the pro-

posed architecture for PCT can achieve high query throughput and the expected

properties.

Experimental setup. We use an HP Z2 SFF G4 Workstation, with a 4-core

3.80 GHz Intel Xeon E-2174G CPU (8 threads, with an 8 MB cache), and 64

GB RAM, which supports the SGX instruction set and has 128 MB processor

reserved memory (PRM) in which 96 MB EPC is available for user use. The

host OS is Ubuntu 18.04 LTS, with Linux kernel 5.4.0-72. We use version 1.1.3

of the Rust SGX SDKl [316] which supports Intel SGX SDK v2.9.1, and Rust

nightly-2020-04-07. Our experimental implementation is available on Githubm.

Preliminary Experiments

Before the experiments, as described in Section B.2, we consider the secure-

hardware-based PSI to be much better than the cryptography-based PSI in terms

of efficiency. To verify this, we compare both PSI executions under setting similar

to the scenario. For fairness, we compare single end-to-end PSI query without

multiplexing optimization, as described in Section B.4. Our secure-hardware-

based approach implementation is based on Intel SGX and simply uses Hashmap

and performs the PSI inside the enclave; the OT-based approach implementation
n follows [287]. Table B.6 describes the execution time comparison between the

OT-based [287] and secure-hardware (Intel SGX) -based PSI under the balanced

setting, where we assume that only the RA protocol is performed in advance and

lhttps://github.com/apache/incubator-teaclave-sgx-sdk
mhttps://github.com/ylab-public/PCT
nhttps://github.com/osu-crypto/libPSI
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size N (bytes)

Intel SGX

execution (ms) /

communication (MB)

OT [287]

execution (ms) /

communication (MB)

103 (16 KB) 38 / 0.016 35 / 2

104 (0.16 MB) 52 / 0.16 207 / 22

105 (1.6 MB) 153 / 1.6 2389 / 235

106 (16 MB) 1552 / 16 27110 / 2482

5.0× 106 (80 MB) 121526 / 80 154826 / 12502

Table B.6: PSI comparison: cryptography-based vs secure-hardware-based; exe-

cution time (balanced)

that the online phase includes the client-side encryption and decryption time. We

change the set size 103 to 106, and each data point has 128 bit. As shown in Table

B.6, Intel SGX can easily overcome the state-of-the-art method in the balanced

setting. In particular, at 105 106 the difference in execution time becomes signif-

icant because of the overhead of oblivious transfer while SGX has scalability in

this range of sizes. Additionally, the secure hardware substantially improves the

bandwidth. The communication cost of SGX is almost the same as the original

size because the data we have to send are just data encrypted by a symmetric key

such as AES-128. Assuming many clients, this condition is essential. Although

the efficiency is better in the two aspects, we should also pay attention to the

last line in the table. Despite using Intel SGX, the execution time is very slow

because of the memory constraint of SGX. When N = 5.0 × 106 (80 MB), the

trusted enclave has to handle approximately 160 MB of data, which exceeds the

memory limitation (=96 MB). As a result, serious overhead occurs.

Table B.7 shows the results obtained when using Intel SGX in the unbalanced

setting. We also show the results of [64] as a reference o i.e., the total execution

time (online sending and receiver’s encryption and decryption) of the best pa-

rameters and the maximum multithreading (≤ 64). These numbers are the best

of their implementation, but the table shows Intel-SGX-based PSI is significantly

fast and efficient in the unbalanced setting, even though the security model is

stricter than [64] (semi-honest). The secure-hardware-based PSI is basically not

o[64] does not offer open-source implementation; thus we directly compare with the results

they reported.
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size N (bytes) size n

Intel SGX

execution (ms) /

communication (MB)

HE [64]

216 (1 MB) 5535 77 / 0.089 600 / 2.6

216 (1 MB) 11041 73 / 0.17 1300 / 4.1

220 (17 MB) 5535 72 / 0.089 2200 / 5.6

220 (17 MB) 11041 85 / 0.17 4000 / 12.0

224 (268 MB) 5535 249 / 0.089 10600 / 11.0

224 (268 MB) 11041 424 / 0.17 16200 / 21.1

Table B.7: PSI comparison: cryptography-based vs secure-hardware-based; exe-

cution time (unbalanced)

affected by the server-side data size N , as shown in Table B.2. However, when

it is beyond the SGX memory constraint, the execution time becomes slow due

to paging overheads, as shown at N = 224 (268 MB). In this case, the client size

is very small, and less paging is required, and the impact is smaller than that of

the previous result.

In this way, we can achieve a fast PSI by utilizing secure hardware. We expect

cryptography-based methods to gradually improve; however, it is unlikely that

they will catch up to the secure-hardware-based method in the near future. For

deployment in a practical situation for the PCT system, it is better to adopt

secure hardware.

Experiments

Datasets. We conduct the experiments with a synthetic dataset and real datasets.

The synthetic dataset is generated by the density EPR model [317] implemented

in scikit-mobility p. We extend this implementation to describe a more continu-

ous human mobility; it is reproducible by our open-source code q. The data are

individual trajectories for every minute of 14 days in New York City. The real

dataset includes data on people’s trajectories in specific regions of Japan avail-

phttps://github.com/scikit-mobility/scikit-mobility
qhttps://github.com/ylab-public/PCT/tree/master/tools/trajectory
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Figure B.13: Trajectory distributions of New York, Kinki and Tokyo. Note that

the latitude and longitude scales are different.

able in JoRASr of The University of Tokyo. We use the people flow datasets for

Kinkit and Tokyou in Japan to create the experimental dataset. Note that this

dataset has individual trajectories for every minute of only a single day for pri-

vacy. We extract only the time and coordinate information and create the dataset

by applying the encoding described in Section B.5. Figure B.13 shows this 3D

trajectory data distribution of New York, Kinki and Tokyo from left to right.

The scatter is 100000 trajectory points randomly sampled. Since the New York

data are generated by EPR model [317], they are distributed in approximately

70 regions. Compared to Kinki, Tokyo has a much denser distribution.

Accuracy Experiments

To empirically evaluate the contact detection accuracy of the stPSI and nfp-

stPSI, we prepare the server-side infected person data and client-side query data

for the New York, Kinki and Tokyo datasets. Table B.8 shows the dataset scale.

To prepare these data, regardless of whether they were clients or servers, for the

New York dataset, we randomly generated trajectories for each user as above-

mentioned, and for the Kinki and Tokyo datasets, we randomly sampled users

without replacement from original data. We measure the results of queries by

rhttp://www.csis.u-tokyo.ac.jp
sPrecisely, these people flow datasets are synthetic datasets that are elaborated from real

trajectories. More details about the specific process can be found here: http://pflow.csis.u-

tokyo.ac.jp/data-provision-service/about-people-flow-data/ and/or [318]. In this work, we con-

sider these datasets as real datasets.
thttps://joras.csis.u-tokyo.ac.jp/dataset/show/id/3038201000
uhttps://joras.csis.u-tokyo.ac.jp/dataset/show/id/3000200800
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client query data server infection data

NY 20160× 100 20160× 1000

Kinki 1440× 100 1440× 14000

Tokyo 1440× 100 1440× 14000

Table B.8: Data set size used in accuracy evaluation. For example, New York’s

client query data has 100 clients and each of them has 20160 trajectory point

records (e.g., every minute for 2 weeks), totally 2016000 records for client query

data.

the stPSI and nfp-stPSI and compare them with the correct answers that exactly

satisfy Eq. 7.26 for each client. The result of each query is obtained as a binary.

Tables B.9 and B.10 show the results of the stPSI and nfp-stPSI, respectively.

The tables show the parameters used for the stPSI and the true positive, true

negative, false positive, and false negative rates of the contact detection. Each

value represents a percentage and (the number of queries). The stPSI has a

detection accuracy (true positive + true negative) of approximately 90% for the

New York dataset and a higher accuracy, closer to 100%, for the real Kinki and

Tokyo datasets. However, looking at the New York dataset, the stPSI shows

nonnegligible false negatives, as theoretically expected, and the recall is higher,

especially as the threshold parameters become more granular. Compared to the

stPSI, nfp-stPSI improves the false negative rate and accuracy for all datasets

and causes false positives. Especially, in the case of New York and (θgeo, θtime) =

(25, 25), nfp-stPSI greatly improves on the true positive and false negative rates,

with a relatively small false positive rate. Moreover, all of these false positives

are “close” errors.

Overall, the accuracy is high, especially for real data. Even when the true

positive and true negative rates are extremely high in Kinki and Tokyo, respec-

tively, the detection accuracy is high in both cases, which emphasizes that our

proposed method is significantly effective. In the case of real data, we believe

that infected people are moving continuously and are more likely to be in contact

with multiple points than with a single trajectory data point; hence, the contacts

can be captured even with a fixed block area in the stPSI or nfp-stPSI.

We implement the method in [267] and experiment with its accuracy. The

method performs PCT based on trajectory data, similar to our method, but con-
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θgeo θtime TP TN FP FN

NY

21 21 49% (985635) 37% (745317) 0% (326) 14% (284722)

24 22 29% (575880) 61% (1224748) 0% (196) 11% (215176)

25 25 9% (178467) 80% (1611751) 0% (246) 11% (225536)

Kinki 24 22 1% (1007) 99% (141409) 0% (0) 0% (45)

Tokyo 24 22 78% (112459) 20% (28145) 0% (2) 1% (1885)

Table B.9: st-PSI can achieve high accuracy for all trajectory dataset, but cause

false negatives.

θgeo θtime TP TN FP FN

NY

21 21 63% (1270303) 26% (530334) 11% (215309) 0% (54)

24 22 39% (791054) 55% (1104383) 6% (120561) 0% (2)

25 25 20% (404003) 74% (1489927) 6% (122070) 0% (0)

Kinki 24 22 1% (1052) 99% (141380) 0% (29) 0% (0)

Tokyo 24 22 80% (114313) 19% (26772) 1% (1375) 0% (1)

Table B.10: nfp-stPSI improves accuracy and remove false negatives, but cause

false positive.

siders only the location information and not the temporal proximity. Therefore,

we randomly select 100 time points out of 14 days and apply their method on the

trajectory data of those time points. In their method, each data point is rounded

to the closest position on the grid, where the distance between the points on the

grid is set by θgeo and θtime in the experiment. As shown in Table B.11, their

method can generate false negatives as well as the stPSI can.

Note that in these accuracy evaluation experiments, the accuracy of collecting

trajectory data including GPS tracking is beyond the scope. The detection accu-

racy we are discussing is focused only on the error generated by the algorithm,

not the error caused by the radio signal troubles, and so on.

Performance Experiments

We mention two notes about the performance experiment as a whole. First, note

that in the following experiments, both the client and server send trajectory data

“every minute” for two weeks. In practical scenarios, the data interval may be

257



Appendix

θgeo θtime TP TN FP FN

NY 24 22 22% (2206) 70% (6986) 0% (2) 8% (806)

Table B.11: The method of Reichert et al causes similar errors for sub-sampled

NewYork dataset.

larger, and hence the client query size will be smaller. Therefore, the number of

clients and infected people are not very important in these experiments. Second,

in measuring the execution time, we report the worst case of the stPSI, i.e.,

while we can avoid checking queries that have already been judged as positive in

previous chunks during the execution of the stPSI, since the stPSI depends on

the distribution of the data, we do not skip this step and always calculate the

intersection for all query data. This is important in terms of security and can

be a countermeasure against side-channel attacks, which guess the query result

from the execution time. Hence, the execution time practically be shorter than

the experimental result as usual.

First, we show the compression results. In our method, the trajectory data

are encoded by TrajectoryHash and stored in the FST. The baseline method

is to use TrajectoryHash and Hashmap (of the state-of-the-art Rust standard

library v). Figure B.14 shows the sizes of the dictionary data representation for

TrajectoryHash-encoded trajectory points stored in the FST and Hashmap. The

dataset used here is the server-side dataset shown in Table B.8, and Random

is random data instead of trajectory data. NY (24-22) corresponds to the New

York dataset with TrajectoryHash parameters (θgeo, θtime) = (24, 22). The results

show that, overall, the FST is able to efficiently compress and keep the data

encoded by TrajectoryHash compared to the Hashmap. For many datasets, the

compression is more than approximately 5 times better. Therefore, we can see

that compression can be achieved regardless of the granularity of the parameters

or density of the trajectory data. The fact that the compression efficiency for

the actual trajectory data is greater than that for the random data confirms that

TrajectoryHash preserves the similarity of the trajectory data and that the FST

is able to compress the data well. The reason why the Hashmap size is different

for the same data size is that some of the trajectory data can be grouped into the

same TrajectoryHash value (e.g., continuous observations at the same location

vhttps://github.com/rust-lang/hashbrown
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Figure B.14: FST can efficiently keep trajectory data encoded by TrajectoryHash

for different datasets.

within a few minutes). This result supports the fact that the combination of

TrajectoryHash and the FST can perform PCT on a large amount of data, even

under the tight memory constraints of SGX.

To operate the system efficiently under the strict enclave memory constraint, we

have to determine the proper chunk size. We experiment to find the proper chunk

size, using the New York dataset and encoding with (θgeo, θtime) = (25, 25). The

server-side data size is 20160×5000, and the client-side data is 20160×200. If the
chunk size is 1, i.e., without chunking, the server-side data size is approximately

282 MB, which causes very large overhead in allocating memory in the enclave

area because the process tries to allocate virtual memory using special paging

beyond the EPC size. We address chunking the FST by presorting the trajectory

data, dividing the data into chunks, and converting each chunk into an FST as

described Section B.5. Figure B.15 shows the data for each chunk when the

above-introduced server data are divided into 10 chunks. The sum of the data

size is slightly less than the original data size of 282 MB. We consider each FST

to keep data with high similarity by sorting before chunking.

Then, we evaluate the relation between stPSI performance and chunk size.

Figure B.16 shows the PSI execution time for different chunk sizes when using

the FST and Hashmap. The results of the FST show that the execution time

decreases as the chunk size increases, being fastest around 20 to 30, and becomes

slower as the chunk size increases. Compared to the result of the Hashmap, the

FST can achieve better performance overall. When the chunk size is small, the

execution time is affected by the memory constraints of SGX, and when the chunk

size is large, the execution time is affected by the cost of the repeated ECALL,
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Figure B.15: Sizes of 10 chunks for

282 MB server data, and original

data size and sum of these chunks.

Figure B.16: The execution time

varies depending on the number of

chunks.

which is function used to upload data into the enclave and switch the process to

a trusted process. Considering that the client query data size is approximately

32 MB (= 8 bytes × 20160 × 200), the results are reasonable since the EPC

limitation is 96 MB. For example, when the chunk size is less than 5, the execution

time increases despite the small number of iterations because each chunk is more

than 56 MB (=282 MB /5), which incurs a paging cost. However, when the chunk

size is small (e.g., less than 5), there is not such a large overhead even when

the EPC memory size is exceeded. This outcome occurs because the internal

implementation of the FST is such that the data to be accessed belong to a

contiguous memory area and the number of paging occurrences is small. In the

case of the Hashmap, the overhead is more outstanding. Although not included

in the figure, when the chunk size is 1, the execution time is 532 seconds. The size

of one chunk when divided into 10 chunks is roughly 100 MB, and if divided into

50 chunks, it is approximately 20 MB. Compared to the FST, since the memory

layout of the data of the Hashmap is scattered, the paging of the EPC is likely

to occur frequently.

Next, we evaluate the overall performance. Figure B.17 shows the overall

execution time of the PCT when the server data are fixed at 5000×20160 and

the client data increase from 100×20160 to 500×20160. The figure on the left

shows the execution time of the stPSI, and the figure on the right shows the

execution time of nfp-stPSI. The execution times of the four phases of the stPSI,

i.e., computation of intersection, decryption of the server data, decryption of
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Figure B.17: The stPSI can achieve high performance on a practical data scale

(left). nfp-stPSI causes a larger overhead (right).

Figure B.18: Finer granular-

ity of parameters directly de-

grades the performance.

Figure B.19: Results of the stPSI (left) and nfp-

stPSI (right) on real data.

the query data, and uploading of the query data to the enclave are shown in

different colors. In the stPSI, the number of chunks is set to 20, and in nfp-

stPSI, the number of chunks is set to 1. These values are selected because the

number of searches to the FST increases enormously in nfp-stPSI; thus it is more

effective to reduce the number of chunks to reduce the number of iterations.

The execution time of the stPSI and nfp-stPSI increases almost linearly with the

client data size. As the client size increases, the time required for uploading and

decoding the query data becomes nonnegligible, but the computational cost of

the intersection is completely dominant. Compared with the stPSI, nfp-stPSI
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causes a large overhead, approximately 4 to 6 times larger. This result indicates

that there is room for further improvement in the implementation of nfp-stPSI.

Overall, however, our proposed algorithms are able to return results with practical

execution times for data with a scale close to that of real data.

We compare the results in terms of performance with [267], which also achieves

PCT by secret computation, similar to our method. Their method performs

the secret computation by ORAM [319]. We perform PCT by using the same

implementation of binary search with Floramw as in their work. We assume

that the server data consist of 1000 trajectories and the client data consisted of

100 trajectoriesx. In their algorithm, the precomputation increased the size of

the data by a factor of 9, resulting in the need to compute the intersection of

9000 points of server data and 900 points of client data. Even though this is

a setting that is approximately six orders of magnitude smaller than the scale

of the experiment, the computation takes 123.3 seconds on average. This result

indicates that the overhead of ORAM is still unacceptable at present and that

more emphasis should be placed on the speedup of the secret computation that

the TEE brings.

Figure B.18 shows a comparison of the execution time for several granularity

parameters. The used client size is 200×20160, and the server size is 5000×20160.
Because the parameters are set to finer granularity, the execution time essentially

increases. This phenomenon occurs due to the increase in the size of the hash

value and the decrease in the compression ratio by the FST due to the decrease

in the similarity and coincidence rate of the trajectory data. The size of the hash

value for θgeo, θtime = (21, 21) is 7 bytes, but for (24,22) and (25,25), it is 8 bytes.

The results of the stPSI and nfp-stPSI execution times for the real Kinki and

Tokyo datasets are shown in Figure B.19. The execution times shown are the

same as in Figure B.17. The used client data size is 1440×200, and the server

data size is 1440×14000. In the stPSI, the percentage of the execution time

for decryption and query data upload is relatively high, while in nfp-stPSI, the

percentage of intersection computation is high. Overall, the execution time is

kept small, which shows that our proposed algorithm works fast even for real

data.

whttps://gitlab.com/neucrypt/floram
xNote that this is different from the experimental scale of our proposed method because the

computation of the competitor is too time consuming.
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Requirements Analysis

We show how the system meets the requirements we introduced in Section B.3.

Efficiency. There are four elements that make the system efficient: Intel SGX,

chunking, data representation, and query multiplexing. First, SGX bring us an

efficient PSI. SGX allows software to perform secret computations transparently

and eliminates the need for complicated and time-consuming cryptographic tech-

niques to perform the PSI. This fact can be confirmed the preliminary experiments

and is the main basis of the efficiency of the system. The computational over-

head is small, and also bandwidth is dramatically improved compared to existing

methods. Second, chunking R into ri (i = 1, ..., ND) avoids the serious paging

overhead caused by the severe memory constraints of SGX even when the data

of infected patients become too large to fit into the enclave. Third, the memory-

efficient dictionary representation (Section B.5) reduces the number of chunks,

resulting in reduced PSI execution and overheads for upload to the enclave. This

is also an important element of the system. Fourth, steps 5 and 6 (Section B.4)

show query multiplexing and improve the throughput of the query processing.

Reading the chunked data ri, as in Step 7, is costly due to the ND iteration, and

doing this for every query yields large overheads. As a result, the system achieves

high query throughput and scalability.

Security. Our protocol follows the RA and secure computation provided by

Intel SGX. Previous studies [320, 304] show the protocol security. Informally,

any state cannot be observed from outside the TEE, and even if any inputs are

known, any tampering with the state that can be performed by the malicious

server will not divulge any information about the client trajectories. Hence, it

is guaranteed that all information an attacker can observe is only outside the

TEE. However, in this system, all information observed outside the TEE must be

encrypted. Therefore, cryptographically strong security for the client’s privacy

from any external attacker is ensured when using proper encryption. More formal

definitions require elaborate modeling of the attacker and private information, but

our setting is common, and we defer to earlier work [320, 304]. Note that some

side-channel attacks, such as Spectre [182] and other cache attacks, are beyond

the scope of their work and our work. To protect against these attacks, we have

to consider data-obliviousness [321, 322] to make the side channels uniform.

Considering the risk analysis discussed in Section B.3, some simple extensions

are needed. DoS attacks: To prevent DoS attacks against SGX, it is necessary to
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authenticate the client before SGX processes it. Since the data on the server side

change only once a day, each client should be allowed to make only one request per

day. This can be done with a simple extension, since the information of the user

requesting the query does not need to be anonymized. Query-abusing attacks:

This can also be done by authenticating the client to minimize the damage of

attacks. The client can obtain only the 0 or 1 information. However, even if

the request is limited to once a day, there is a possibility that some information

may be leaked as a result of using multiple compromised clients. To prevent this,

other protection mechanisms are necessary; for example, assuming the possibility

of linking the obtained information with other information, preserving DP should

be considered. For example, recent work [323] proposes a variant of the DP that

is relevant for this purpose. Side-channel attacks: Since the data are encrypted by

a key shared between SGX and the client, it cannot be leaked from the network.

On the other hand, attacks through the side channels inside the server may be

possible due to cache attacks, etc. Defending against these attacks is the topic of

future work. False answering: False answering is prevented because the enclave’s

internal blogs are verified by RA. Fake data injection: In this scenario, we assume

that the health agency is a trusted institution, and when a third party injects

data, it is necessary to modify the data in the memory encrypted by SGX. Thus,

it is cryptographically protected. Replay: A replay attack can occur even when a

secure channel is in place, but it can be completely prevented by authenticating

the user, restricting the number of requests per day, and updating the key every

day.

Flexibility. We achieve flexibility by parameterizing the encoding of the data us-

ing a granularity parameter Θ. The three parameters we introduce are geographic

granularity, temporal granularity, and duration of exposure to the virus. The pa-

rameters are shared between the server and clients in advance. We have to update

all the data when we want to change the rules of risky contact. In other words,

our method cannot change the flexibility parameters more frequently than batch

updates. Essentially, we believe that these parameters are determined based on

epidemiological arguments and that their change frequency is not more than the

frequency of batch updates of the data (i.e., once a day).

Accuracy. Our proposed method may generate nonnegligible false negatives and

false positives. However, we have shown that it is possible to extend the method

to generate only false positives with a reasonable upper bound on the error. Note
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that we have focused only on the errors caused by the algorithm. In the real

world, in addition to this, there are errors that occur during data collection and

errors that occur due to the physical characteristics of buildings and vehicles. To

perform contact detection based on this information, more metadata and other

information may be required. There is a trade-off between the cost of information

collection, privacy, and accuracy. A more detailed discussion of the trade-offs

involved from epidemiological perspectives is beyond the scope.

B.7 Related Works

There are DP3T [135] and similar schemes [275, 276, 274, 273], which are BLE-

based decentralized architectures that use a device’s wireless signals. They are

the most popular implementation methods to date. The major difference from

our proposed system is that while they handle only contact information through

random ID tracking, we directly handle trajectory data in a private manner to

detect indirect contacts. Desire [324], known as hybrid architecture, has basically

the similar characteristics as decentralized architectures. In Desire users send

random ID-based contact information to the server, but the ID cannot be used to

identify an individual. Therefore, there is no way to discover an indirect contact

based on trajectory data.

Hamagen [325] and AAROGYA SETU y are similar applications developed for

COVID-19 but use trajectory data. Hamagen uses trajectory data to identify

the contact location, but the logic of contact determination is different from that

of our proposed method because Hamagen is a BLE-based method similar to

DP3T. In other words, Hamagen does not attempt to use trajectory data to

detect contacts but rather to publish the locations where contacts with infected

people have occurred. AAROGYA SETU collects raw trajectory data, unlike

the proposed system; thus, there are serious privacy concerns [326]. There are

other studies [327, 328] that propose the use of richer data such as users’ detailed

trajectory data. In contrast to these studies, our method differs in that we use

these rich trajectory data to find instances of indirect contact.

We summarize the comparison between the BLE-based PCT technique and

our method (centralized architecture) as follows. First, from the security and pri-

vacy points of view, the characteristics are very different, as described in Section

yhttps://www.aarogyasetu.gov.in/
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B.3 and [329]. In centralized architectures, it is important to discuss the trust

model. We have to consider how to protect a client’s privacy when the server is

untrusted. In the BLE-based approach, there is no such security concern since

personal data are not exposed to any party. On the other hand, BLE-based

methods have security risks that do not arise in a centralized architecture, such

as continuous tracking of random IDs. In most cases, to ensure the security of a

centralized architecture, either a very costly method such as secret computation

or a strong assumption such as trusting the server is required. This is one of the

main reasons why a decentralized architecture is preferred. Second, in terms of

efficiency, as opposed to the BLE-based method, where the contact decision is

computed on each device, our method is computed on the server, which can be

computationally intensive. The advantage of the BLE-based method is that the

computational cost is lower than that of our method, which compares the data

of many infected people, because the target of the computation is limited to only

those who have direct contact. On the other hand, it is not possible to detect,

e.g., indirect contact, via the BLE-based method. In terms of communication

cost, the BLE-based method basically requires broadcasting of the infected per-

son data. While the size of these data is very small, it is necessary to notify all

users. In a centralized architecture such as mine, users need to send information

about their trajectory data only when they query the server, but the data size is

much larger. Finally, regarding storage, while the BLE-based method stores only

the contact’s ID, our method requires the user to store the trajectory data on

his own device. Third, we compare the ability to detect contacts. We mentioned

that our method is able to detect a wider class of contacts (i.e., indirect contacts)

by using trajectory data. However, there are cases where the BLE-based method

is more advantageous in the contact detection capability. Since the BLE-based

method relies on wireless signals, contact decisions are performed according to

the constraints of the physical environment (e.g., walls, vehicles, etc.). Therefore,

there is a possibility that direct contact can be detected with an accuracy that

cannot be captured only by analyzing trajectory data. This is a noteworthy point

compared to our method.

Reichert et al. [267] proposes a setting similar to that of our study. The simi-

larity is that they used PCT with secret computation techniques and centralized

trajectory data. Our work differs from theirs in the contact detection algorithm

and the secret computation technique used. The basis of their method is a PSI
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using ORAM, which has some performance problems. To compare, we extensively

experiment on and evaluate the performance and accuracy of the two methods in

this work.

We need to refer to the open-source project SafeTrace (https://github.com/

enigmampc/SafeTrace) [330]. SafeTrace proposes a TEE-based method similar

to our proposed method. SafeTrace focuses mainly on collecting and managing

the trajectory data secretly. Currently, the development is not updated, and the

part of contact detection (PCT) and notification service are not yet specified.

Moreover, their work does not include any efficient PCT algorithm. We develop

an algorithm for finding indirect contacts; thus, their work is orthogonal to mine.

One clear difference between our proposed method and theirs is that their system

collects the complete trajectory data, while our system uses information that is

optimally encoded for PCT and can be applied in the stPSI efficiently. Hence, the

proposed method is able to achieve optimized performance because it is focused

on PCT.

A similar type of query to the proximity query is the reachability query [331,

332]. , where the query is to determine whether or not it is possible to reach a tar-

get vertex from a source vertex in a given digraph. This method has the potential

to perform contact tracing by using a graph related to meeting information [332].

However, it is not suitable for answering contact judgment queries for unknown

users because it can answer queries only for data that can be precomputed and

are already in the database, and it cannot answer unknown data efficiently. [332]

has a different feature from our proposed method because it can track contacts

on a human basis, not on a location basis.

Regarding trajectory data compression, a well-studied technique is that of

Douglas-Peucker, i.e., route-wise compression [333, 334, 335]. The basic idea is re-

production by estimating the route from a minimum number of points [333]. The

compression is performed by approximating the route information rather than the

position information. Our compression is based on the similarity of trajectory

points. Therefore, it is orthogonal to these compression methods. However, this

route-wise compression may not work well in contact tracing because it is not

possible to tell whether or not points are really in contact just by intersecting.

To detect contact, it is necessary to include some time information in the route

information.
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B.8 Conclusions

In this work, we proposed a trajectory-based PCT system using trusted hard-

ware to control the spread of infectious diseases. We identified the problems of

existing PCT systems, clarified the requirements for trajectory-based PCT, and

presented a TEE-based architecture to achieve secure, efficient, flexible, and ac-

curate contact tracing. The experimental results obtained on real data suggested

that our proposed system can work on a realistic scale. We hope that this study

will motivate different communities and help in the development of solutions to

combat COVID-19 as soon as possible.
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