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Abstract

Random walks on random graphs are associated with diffusion phenomena in disordered
media. In this thesis, the graphs of interest are uniform spanning tree (UST) and loop-
erased random walk (LERW). Firstly, we will give a quantitative estimate of the number
of collisions of two independent simple random walks on the three-dimensional UST.
Secondly, we will demonstrate log-logarithmic fluctuations of the quenched heat kernel of
the simple random walk on the three-dimensional UST, which is caused by the same type
of fluctuation of the volume of intrinsic balls. Finally, we will discuss annealed heat kernel
estimates for the simple random walk on high-dimensional LERWs.
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1 Introduction

The exploration of random walks in random environments stands as a critical pursuit in
the study of diffusion phenomena. The mathematical models in this area serve as a pivotal
avenue for advancing our comprehension of diffusion phenomena, including heat and wave
propagation, on disordered media such as polymers, crystals, and porous structures. Historical
overview and exploration of pioneering models in this field can be found in [2, 23]. Notably,
the examination of random walks in random media has gone beyond the study of diffusion
and led to diverse applications, ranging from network analysis and algorithmic development
to the formulation of various models in the social and natural sciences.

In this thesis, we investigate the behavior of simple random walks on two types of random
graphs, the three-dimensional uniform spanning tree and the high-dimensional loop-erased
random walks, defined on the Euclidean lattice Zd. By delving into the intricacies of these
models, we aim to contribute to the broader understanding of random walks in complex
environments and their implications across various scientific and analytical domains.

1.1 Uniform spanning trees and loop-erased random walks

Let us first begin with the introduction of uniform spanning forests on Zd. Pemantle [36]
proved that if Gn is a sequence of finite subgraphs which exhausts Zd, then the sequence of the
uniform spanning measures on Gn weakly converges to some probability measure supported
on the set of spanning forests of Zd. The corresponding random graph is called the uniform
spanning forest (USF) on Zd. Pemantle [36] also showed that the uniform spanning forest is
a single tree almost surely if d ≤ 4, in which case the random graph is called the uniform
spanning tree (UST) on Zd, while it consists of infinitely many trees if d ≥ 5. Since their
introduction, the study of uniform spanning forests has played an important role in probability
theory, due to its connection to various areas such as electrical networks [10, 12, 20], loop-
erased random walk [25, 36, 42], the random cluster model [14, 15], and for d = 2, conformally
invariant scaling limits [4, 11, 17, 30, 38].

Let us mention that the uniform spanning tree is often considered to be included in the
same class as various critical models arising in statistical physics since it has similar properties
such as fractal-like scaling limits with non-trivial scaling exponents. Moreover, the uniform
spanning tree is one of the few models for which rigorous results have been proved even for
the three-dimensional case [1, 21, 31], which is typically the most difficult case to study.

Next, we introduce the loop-erased random walk (LERW) on Zd. Given a finite path γ, we
denote by LE(γ) the chronological loop-erasure of γ (see Section 2.1 for the precise definition).
If γ is a random walk path up to a finite time, then LE(γ) is called a finite loop-erased random
walk. Let S be the entire path of a simple random walk (SRW) on Zd. Since S is transient
for d ≥ 3, we can apply the same procedure of erasing loops to S almost surely, and the
resulting infinite simple random path is called the infinite loop-erased random walk, while
two-dimensional infinite LERW is obtained as the limit of finite LERW on Z2 (see [28], for
example).

Uniform spanning forests and loop-erased random walks are closely related to each other
via an algorithm called Wilson’s algorithm [10, 42]. While the USF is defined as (the weak
limit of) the uniformly distributed random graphs on the set of spanning forests, Wilson’s
algorithm describes a method to construct USF with independent LERW paths, which enables
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one to investigate the property of d-dimensional UST or USF by utilizing the known facts
concerning LERWs on Zd.

The behavior of random walks on random graphs strongly depends on the geometric
and spectral properties of the random graphs. Motivating the study of the SRW on the
uniform spanning trees and the uniform spanning forests is that such a process captures these
properties that depend on the dimension d. It has been proved that the random walk displays
mean-field behavior for d ≥ 4, with a logarithmic correction in four dimensions [16, 18]. On
the other hand, different (nontrivial) exponents describe the asymptotic behavior of several
quantities such as transition density (heat kernel), exit time and mean-square displacement
of the random walk below four dimensions [1, 8]. At least, this is confirmed for d = 2 and it is
strongly believed that this is the case for d = 3 (see Remark 1.1). Similar kinds of differences
in such properties for different dimensions are also observed for the loop-erased random walks
on Zd. It has been proved that the LERW converges to Brownian motion if d ≥ 4, with a
logarithmic correction in four dimensions, while the mean-square displacement is described
with nontrivial exponents for d = 2 and 3 [28].

Remark 1.1. Rigorously speaking, it is not clarified that the uniform spanning tree on Z3

exhibits different exponents than the high-dimensional case since the only information about
the growth exponent β is that it satisfies 1 < β ≤ 5/3. As shown in (1.4), the leading order

of the on-diagonal heat kernel is n
− 3

3+β a.s. in three dimensions, while it equals n− 2
3 for every

component of the uniform spanning forest in higher dimensions [16, 18].

1.2 Main theorems

The main part of this thesis consists of three chapters. In this section, we state the main
result of each chapter.

1.2.1 Collisions of random walks on the 3D UST

In Chapter 3, we will estimate the number of collisions of two independent random walks
on the three-dimensional uniform spanning tree. To be more precise, let us introduce some
terminology here. For infinite connected recurrent graph G, let X and Y be independent
(discrete time) simple random walks on G. We say that G has the infinite collision property
when |{n : Xn = Yn}| = ∞ holds almost surely, where |A| denotes the cardinality of A. For
classical examples such as Z and Z2, it is easy to see that two independent simple random
walks collide infinitely often. On the other hand, Krishnapur and Peres [22] gave an example
of a recurrent graph for which the number of collisions is almost surely finite. For collisions
on random graphs, Barlow, Peres and Sousi [9] proved that a critical Galton-Watson tree, the
incipient infinite cluster in high dimensions and the uniform spanning tree on Z2 all have the
infinite collision property almost surely. The infinite collision property of reversible random
rooted graphs including uniform spanning trees on Zd (d ≤ 4) and every component of uniform
spanning forests on Zd (d ≥ 5) was proved in [19].

The purpose of Chapter 3 is to give a quantitative estimate of the number of collisions until
two random walks exit a ball of the three-dimensional UST. Let U be the uniform spanning
tree on Z3 and P be its law. Let X̃ and Ỹ be two independent simple random walks on U
killed when they exit the intrinsic ball of U of radius r. We denote by P the law of (X̃, Ỹ )
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started at (0, 0) and by E the corresponding expectation. Let ZBr be the total number of
collisions of X̃ and Ỹ (see Section 3.1 for the precise definition).

Theorem 1.2. There exist some universal constants C > 0, c > 0 and δ > 0 such that for
any r ≥ 1 and for all 0 < ε < δ, there exists some event K(r, ε) with P(K(r, ε)) ≥ 1 − Cεc

such that on K(r, ε),

εr ≤ E(ZBr) ≤ 6r, (1.1)

E(Z2
Br

) ≤ 144r2 + 6r, (1.2)

hold. In particular, on K(r, ε) we have

P (εr ≤ ZBr ≤ 72ε−2r) ≥ ε2/12. (1.3)

The infinite collision property of the three-dimensional UST directly follows from Theorem
1.2.

Corollary 1.3. The uniform spanning tree on Z3 has the infinite collision property P-a.s.

Remark 1.4. Note that the above statement includes two different probability measures, the
law of the three-dimensional UST and that of random walks on it. Corollary 1.3 claims that
if we choose a tree according to the law of the three-dimensional UST and check whether two
independent simple random walks on the tree collide infinitely often almost surely, then it has
the infinite collision property almost surely with respect to the UST measure.

Remark 1.5. In [19], it is proved that the uniform spanning tree on Zd (d = 3, 4) and each
connected component of the uniform spanning forest on Zd (d ≥ 5) have the infinite collision
property. In Section 3.2 of this article, we will derive Corollary 1.3 from Theorem 1.2, which
gives another proof for the three-dimensional case. We expect that quantitative moment
estimates of the number of collisions for the case d ≥ 4 can also be derived from various
estimates obtained in [16] and [18]. We will not pursue this further in the present article.

1.2.2 Heat kernel fluctuations for the simple random walk on the 3D UST

The aim of Chapter 4 is to demonstrate an oscillatory phenomenon for the volume and heat
kernel of the simple random on the three-dimensional uniform spanning tree. Let U be the
uniform spanning tree on Z3. We write pt(x, y) for the transition density (heat kernel) of simple
random walks on graphs and, in particular, pUn (x, y) for the heat kernel of the (discrete-time)
simple random walk on U , see Section 2.2 for its precise definition. We also let β ∈ (1, 5/3]
be the growth exponent that governs the time-space scaling of the three-dimensional loop-
erased random walk, which coincides with the Hausdorff dimension of the scaling limit of the
three-dimensional loop-erased random walk [39, 40], see Section 2.1 for details.

Remark 1.6. Numerical estimates suggest that β = 1.624 · · · (see [43]).

It was proved in [24] that if a random graph satisfies some assumptions on its volume and
effective resistance, the on-diagonal heat kernel pt(x, x) has upper and lower bounds which
are derived from volume and effective resistance estimates. Combining this with estimates
for the three-dimensional uniform spanning tree obtained by [1, Theorem 1.6] concludes that
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there exist deterministic constants b1, b2, b3, b4 > 0 and c1, c2 > 0 such that with probability
one

c1n
− 3

3+β (log log n)−b1 ≤ pU2n(0, 0) ≤ c2n
− 3

3+β (log log n)b2 , (1.4)

for large n, and also

c1r
3
β (log log r)−b3 ≤ |BU (0, r)| ≤ c2r

3
β (log log r)b4 , (1.5)

for large r.
The main theorem of Chapter 4 then demonstrates that there exist some exponents of

log-logarithmic bounds which cause fluctuations of the on-diagonal heat kernel.

Theorem 1.7. There exist deterministic constants a1, a2 > 0 such that one has

lim inf
n→∞

(log log n)a1n
3

3+β pU2n(0, 0) = 0, (1.6)

and also
lim sup
n→∞

(log log n)−a2n
3

3+β pU2n(0, 0) = ∞, (1.7)

almost surely.

Similar heat kernel fluctuations have been established for Galton-Watson trees [7, 13]
and the uniform spanning tree on Z2 [5]. We will describe some key differences between
these models and the three-dimensional UST at the beginning of Chapter 4, but common
ingredients in the proofs of such results are corresponding volume fluctuations. The idea of
proof of Theorem 1.7 is similar to that of [5, Corollary 1.2]. Specifically, to prove Theorem
1.7, the crucial step is to demonstrate that the volume of intrinsic balls (with respect to the
graph distance) of U also enjoys log-log fluctuations. To be more precise, let BU (0, r) be the
intrinsic ball in U of radius r centered at the origin. Then we have the following volume
fluctuations.

Theorem 1.8. There exist deterministic constants a3, a4 > 0 such that one has

lim inf
r→∞

(log log r)a3 r
− 3

β |BU (0, r)| = 0, (1.8)

and also
lim sup
r→∞

(log log r)−a4 r
− 3

β |BU (0, r)| = ∞, (1.9)

almost surely. Here |A| stands for the cardinality of A.

Remark 1.9. The main contribution of Theorems 1.7 and 1.8 is demonstrating the exis-
tence of the exponents ai that satisfies (1.6), (1.7), (1.8) and (1.9). Determining the optimal
exponents for ai seems to be a difficult problem and we do not pursue this here.
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1.2.3 Annealed off-diagonal heat kernel of the simple random walk on high-
dimensional LERWs

The main result of Chapter 5 is annealed heat kernel estimates for the random walk on
the random graph given by the trace of a LERW in high dimensions. Our main theorem
reveals that the annealed (averaged) heat kernel of the random walk satisfies sub-Gaussian
estimate, which exhibits an interesting difference from the quenched (typical) heat kernel
estimates of Gaussian form with respect to the intrinsic graph metric. Investigating such a
difference between quenched and annealed heat kernel estimates rigorously was motivated by
a conjecture made in [5, Remark 1.5] for the two-dimensional uniform spanning tree, and
naturally leads one to consider to what extent the behavior is typical for random walks on
random graphs embedded into an underlying space.

Let us introduce our model of a random walk in a random environment. Throughout the
thesis, we let (Ln)n≥0 be the loop-erasure of the discrete-time simple random walk (Sn)n≥0

on Zd, where d ≥ 5, started from the origin. (See Section 2.1 for a precise definition of this
process, which was originally introduced by Lawler in [25].) Given a realisation of (Ln)n≥0,
we define a graph G to have vertex set

V (G) := {Ln : n ≥ 0} ,

and edge set
E(G) := {{Ln, Ln+1} : n ≥ 0} .

We then let (XG
t )t≥0 be the continuous-time random walk on G that has unit mean exponential

holding times at each site and jumps from its current location to a neighboring vertex chosen
with equal probability. Moreover, we will always suppose that XG

0 = L0 = 0. We define the
annealed law of XG to be the probability measure on the Skorohod space D(R+,Rd) given by

P
(
XG ∈ ·

)
=

∫
P G (XG ∈ ·

)
P(dG),

where P is the probability measure on the underlying probability space on which L is built,
and P G is the law of XG on the particular realization of G (i.e. the quenched law of G). We
use the notation x ∨ y := max{x, y} and x ∧ y := min{x, y}.

Theorem 1.10. For any ε > 0, there exist constants c1, c2, c3, c4 ∈ (0,∞) such that, for every
x ∈ Zd and t ≥ ε|x|,

P
(
XG

t = x
)
≤ c1

(
1 ∧ |x|2−d

)(
1 ∧ t−1/2

)
exp

(
−c2

(
|x|4

1 ∨ t

)1/3
)

and also

P
(
XG

t = x
)
≥ c3

(
1 ∧ |x|2−d

)(
1 ∧ t−1/2

)
exp

(
−c4

(
|x|4

1 ∨ t

)1/3
)
.

The key ingredient of the proof is a time-averaged Gaussian bound on the distribution
of the loop-erased random walk. Now, one can check that SRW satisfies pointwise Gaussian
bounds of the form

cn−d/2e−
|x|2
cn 1{n≥∥x∥1} ≤

P(Sn = x) +P(Sn+1 = x)

2
≤ c−1n−d/2e−

c|x|2
n , ∀x ∈ Zd, n ≥ 1,

(1.10)
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where c is a constant and we write ∥x∥1 for the ℓ1-norm of x, see [2, Theorem 6.28], for
example. (The averaging over two time steps is necessary for parity reasons.) Of course, one
can not expect the same bounds for a LERW. Indeed, the ‘on-diagonal’ part of the distribution
P(Ln = 0) is equal to zero for n ≥ 1. Instead, we will establish the following theorem, which
demonstrates that if one averages P(Ln = 0) over longer time intervals, then one can see
Gaussian estimates.

Theorem 1.11. The loop-erased random walk (Ln)n≥0 on Zd, d ≥ 5, started from the origin
satisfies the following bounds: for all x ∈ Zd\{0}, n ≥ 1,

1

n

2n−1∑
m=n

P(Lm = x) ≤ c1n
−d/2e−

c2|x|
2

n ,

and for all x ∈ Zd\{0}, n ≥ |x|,

1

n

⌊c4n⌋∑
m=⌈c3n⌉

P(Lm = x) ≥ c5n
−d/2e−

c6|x|
2

n ,

where c1, . . . , c6 are constants.

To put this result into context, it helps to briefly recall what kind of behavior has been
observed for anomalous random walks and diffusions in other settings. In particular, for many
random walks or diffusions on fractal-like sets (either deterministic or random), it has been
shown that the associated transition density pt(x, y) satisfies, within appropriate ranges of
the variables, upper and lower bounds of the form

c1t
−ds/2 exp

(
−c2

(
d(x, y)dw

t

) 1
dw−1

)
, (1.11)

where d(x, y) is some metric on the space in question. (See [2, 23] for overviews of work in
this area.) The exponent ds is typically called the spectral dimension since it is related to
the growth rate of the spectrum of the generator of the stochastic process. The exponent dw,
which is usually called the walk dimension (with respect to the metric d), gives the space-time
scaling.

Now, in our setting, we can clearly write

P
(
XG

t = x
)
= P

(
XG

t = x x ∈ G
)
P (x ∈ G) ,

and, moreover, using simple facts about the intersection properties of SRW in high dimensions,
one can check that P(x ∈ G) ≍ 1∧ |x|2−d (where we use the notation ≍ to mean that the left-
hand side is bounded above and below by constant multiples of the right-hand side). Hence,
Theorem 1.10 gives that the (conditioned) annealed transition probability P(XG

t = x x ∈ G)
satisfies the sub-Gaussian estimate of the form of (1.11), with ds = 1, dw = 4 and d being
the Euclidean metric. We can understand that ds = 1 results from one-dimensional nature of
the graph G with respect to its intrinsic metric dG . Moreover, the exponent dw = 4 gives the
space-time scaling of the process XG with respect to the Euclidean metric. We note that the
exponent ds = 1 matches the quenched spectral dimension, while dw = 4 is the multiple of the
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‘2’ of the quenched bound, which is the walk dimension of XG with respect to the intrinsic
metric dG , and the ‘2’ that gives the space-time scaling of L. We highlight that the annealed
bound is not obtained by simply replacing dG(0, x) by |x|2 in the quenched bound, though, as
doing that does not result in an expression of the form at (1.11).
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2 Definition and Notation

In this chapter, we introduce some notations that will be used in the thesis and discuss some
necessary background.

We begin with some notation for subsets of Zd. We apply the definition below to d = 3 in
Chapters 3 and 4 and to d ≥ 5 in Chapter 5. For two points x, y ∈ Zd, we let dE(x, y) = |x−y|
be the Euclidean distance between x and y. If A and B are two subsets of Zd, we let
dist(A,B) = inf{dE(x, y) : x ∈ A, y ∈ B}. In particular, for x ∈ Zd, we write d(x,B) instead
of d({x}, B). For a set A ⊂ Zd, let

∂iA = {x ∈ A : there exists y ∈ Zd \A such that dE(x, y) = 1},
∂A = {x ∈ Zd \A : there exists y ∈ A such that dE(x, y) = 1}

be the inner and outer boundary of A, respectively. We denote balls in the Euclidean metric
by

B(x, r) = {y ∈ Zd : dE(x, y) ≤ r},

and balls in l∞-metric d∞, i.e. cubes, by

B∞(x, r) = {y ∈ Zd : d∞(x, y) ≤ r}.

Throughout the thesis, we let Sz denote a simple random walk on Zd started at z ∈ Zd

and let P z denote its law. We take (Sz)z∈Zd to be independent.

2.1 Loop-erased random walk

Now we define a loop-erased random walk, which is a model of interest itself in this thesis
and plays an important role in the analysis of uniform spanning trees.

Firstly, we introduce some notation for paths on Zd. For x, y ∈ Zd, we write x ∼ y if
dE(x, y) = 1. A finite or infinite sequence of vertices θ = (θ0, θ1, · · · ) is called a path if
θi−1 ∼ θi for all i = 1, 2, · · · . If θ satisfies θi ̸= θj for all i ̸= j, then θ is called a simple path.
We write θ[i, j] = (θi, θi+1, · · · , θj) for 0 ≤ i ≤ j and θ[i,∞) = (θi, θi+1, · · · ). For a finite path
θ = (θ0, · · · , θk), we define the length of θ to be len(θ) = k.

For two paths θ = (θ0, θ1, · · · , θk) and θ′ = (θ′0, θ
′
1, · · · ) with θk = θ′0, we define the

concatenation θ ⊕ θ′ of them by

θ ⊕ θ′ = (θ0, θ1, · · · , θk, θ′1, · · · ).

Given a path θ on Zd and a set A ⊂ Zd, we define

τ θA = min{i ≥ 0 : θi ∈ A}. (2.1)

We write τ z(A) := τS
z

A for the first hitting time of a set A ⊂ Zd by the simple random walk
Sz started at z.

Given a path λ = [λ0, λ1, . . . , λm] ⊂ Zd with len(λ) = m, we define its (chronological)
loop-erasure LE(λ) as follows. Let σ0 = max{k : λk = λ0} and also, for i ≥ 1,

σi = max
{
k : λk = λσi−1+1

}
. (2.2)
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We note that these quantities are well-defined up to the index j = min{i : λσi = λm}, and
we use them to define the loop-erasure of λ by setting

LE(λ) =
[
λσ0 , λσ1 , . . . , λσj

]
.

It follows by construction that LE(λ) is a simple path satisfying LE(λ) ⊆ λ, LE(λ)0 = λ0 and
LE(λ)j = λm. If λ = [λ0, λ1, . . . ] ⊆ Zd is an infinite path such that {k : λk = λi} is finite for
each i ≥ 0, then its loop-erasure LE(λ) can be defined similarly.

2.2 Uniform spanning tree

In this subsection, we introduce the three-dimensional uniform spanning tree, the model of
interest in Chapter 3 and Chapter 4.

A subgraph of a connected graph G is called a spanning tree on G if it is connected,
contains all vertices of G and has no cycle. Let T (G) be the set of all spanning trees on
G. For a finite connected graph G, a random tree chosen according to the uniform measure
on T (G) is called the uniform spanning tree (UST) on G. We can define the uniform
spanning tree on Z3, or the three-dimensional uniform spanning tree, as the weak limit of the
USTs on the finite boxes Z3 ∩ [−n, n]3, see [36].

We will assume that the three-dimensional UST U is built on a probability space (Ω,F ,P)
and we denote the corresponding expectation by E. Note that, P-a.s., U is a one-ended tree
[36]. For any x, y ∈ Z3 and any connected subset A ⊂ Z3, we write γ(x, y) for the unique
self-avoiding path between x and y, γ(x,A) for the shortest path among {γ(x, y) : y ∈ A} if
x ̸∈ A, and γ(x,A) = {x} if x ∈ A. We let γ(x,∞) for the unique infinite self-avoiding path
started at x. We denote by dU the intrinsic metric on the graph U , i.e. dU (x, y) = len(γ(x, y)).
We define balls in the intrinsic metric by

BU (x, r) = {y ∈ Z3 : dU (x, y) ≤ r}, (2.3)

and let |BU (x, r)| be the number of points in BU (x, r).
Now we recall Wilson’s algorithm. This method to construct UST with LERW was first

introduced to finite graphs [42] and then extended to transient Zd including Z3 [10]. Let
{v1, v2, · · · } be an ordering of the vertices of Z3 and let γ∞ be the infinite LERW started at
the origin. We define a sequence of subtrees of Z3 inductively as follows:

U0 = γ∞,

Ui = Ui−1 ∪ LE(Szi [0, τ zi(Ui−1)]), i ≥ 1,

U = ∪iUi.

Then by [10], the random tree U has the same law as the three-dimensional UST. It follows
that the law of U above does not depend on the ordering of Z3.

We end this subsection by defining the simple random walk on U . We denote by µG the
measure on the vertex set V of a (random or deterministic) graph G such that µG({x}) is
given by the number of edges of G which contain x ∈ V . We write µG(x) := µG({x}). For
a given realization of U , the simple random walk on U is the discrete-time Markov process
XU = ((XU

n )n≥0, (P
U
x )x∈Z3) which at each step jumps from its current location to a uniformly

11



chosen neighbor in U . For x ∈ Z3, the law PU
x is called the quenched law of the simple

random walk on U . We write

pUn (x, y) =
PU
x (XU

n = y)

µU ({y})
, x, y ∈ Z3, (2.4)

for the quenched heat kernel.

2.3 Effective Resistance and Green’s function

Now we define the effective resistance and Green’s function, which is a key tool to derive the
key estimates of Chapters 3 and 4.

Definition 2.1. Let G = (V,E) be a connected graph and let f and g be functions on V .
Then we define a quadratic form E by

E(f, g) = 1

2

∑
x,y∈V
x∼y

(f(x)− f(y))(g(x)− g(y)).

If we consider G as an electrical network by regarding each edge of G to be a unit resistance,
then the effective resistance between disjoint subsets A and B of V is defined by

Reff(A,B)−1 = inf{E(f, f) : E(f, f) < ∞, f |A = 1, f |B = 0}. (2.5)

If we let Reff(x, y) = Reff({x}, {y}), then Reff(·, ·) is a metric on G, see [41].

Definition 2.2. Let B be a connected subgraph of G. For a simple random walk X with
starting point x ∈ G, we define the Green’s function by

G(x, y) =
∞∑
n=0

P x(Xn = y),

and we write G(x) := G(0, x). For a simple random walk XB on G killed when it exits B, the
Green’s function is defined by

GB(x, y) =
∞∑
n=0

P x(XB
n = y). (2.6)

Let G = (V,E) be a connected recurrent graph with a fixed vertex 0. Recall the definition
of µG in the previous section. For a finite subset 0 ∈ B ⊂ V , the effective resistance between
0 and Bc and Green’s function are related by the following equality:

µG(x)Reff(x,B
c) = GB(x, x), (2.7)

see [34] Section 2.2, for example.
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2.4 Simple random walk estimates

Let S be a simple random walk on Zd, and suppose m and n are real numbers such that
1 ≤ m < n. Moreover, let A = {x ∈ Zd : m ≤ |x| ≤ n}, and set τ = τSAc to be the first time
that S exits A. Then [28, Proposition 1.5.10] gives that, for all x ∈ A,

Px (|Sτ | ≤ m) =
|x|2−d − n2−d +O(m1−d)

m2−d − n2−d
. (2.8)

Whilst this approximation is good for large m, in this thesis, we also need to consider the
situation when m = 1 and |x| is large. In this case, |Sτ | ≤ m if and only if Sτ = 0, and
the estimate (2.8) is not useful due to the O(m1−d) term. However, adapting the argument
used to prove [28, Proposition 1.5.10], it is possible to establish that there exists a universal
constant a = ad > 0 such that

Px (Sτ = 0) =
a|x|2−d − an2−d +O(|x|1−d)

G(0)− an2−d
, (2.9)

where G(0) is as defined in Definition 2.2, which is finite in the dimensions we are considering.
In this thesis, we will also make use of another basic estimate for the simple random

walk on Zd, which is often called the gambler’s ruin estimate. We take θ ∈ Rd with |θ| = 1
and set Ŝj = Sj · θ. Let ηn = min{j ≥ 0 : Ŝj ≤ 0 or Ŝj ≥ n}. We denote by P̂x the law

of Ŝ with starting point x ∈ R. Then [29, Proposition 5.1.6] guarantees that there exist
0 < α1 < α2 < ∞ such that: for all 1 ≤ m ≤ n,

α1
m+ 1

n
≤ P̂m(Ŝηn ≥ n) ≤ α2

m+ 1

n
. (2.10)

The gambler’s ruin estimate gives upper and lower bounds on the probability that a simple
random walk on Zd projected onto a line escapes from one of the endpoints of a line segment.
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3 Quantitative estimates on the collisions of random walks on
the three-dimensional uniform spanning tree

In this chapter, we will prove Theorem 1.2. Let us briefly explain the strategy of the proof
of the Theorem 1.2. We will obtain some estimates of the moments of ZBr , the total number
of collisions of two independent simple random walks on the three-dimensional UST U killed
when exiting the intrinsic ball BU (0, r). To this end, we will rewrite ZBr in terms of the
effective resistance of the three-dimensional UST, which can be derived from some geometric
properties of graphs. We will construct a “good” event and demonstrate that the three-
dimensional UST exhibits such properties with high probability.

This chapter is organized as follows. We will give some definitions and estimates that are
needed in the proof of main results in Section 3.1. Then Theorem 1.2 and Corollary 1.3 will
be proved in Section 3.2.

3.1 Preliminaries

In this section, we will introduce the growth exponent of the three-dimensional infinite LERW,
which represents the time-space scaling of the LERW. We will also present some estimates on
ZBr , which will enable one to bound its moment using the effective resistance.

We run the SRW on Z3 started at the origin until the first exiting time of B(0, n). Let
Mn be the length of the loop erasure of this SRW path. We denote the law of S and the
corresponding expectation by P and E, respectively. If the limit

β := lim
n→∞

logE(Mn)

log n
, (3.1)

exists, then this constant β is called the growth exponent of the LERW. The existence of the
limit is proved in [39] and that β ∈ (1, 5/3] is obtained in [27]. Although the exact value of β
has not been discovered yet, it is estimated that β = 1.624 · · · by numerical calculations, see
[43]. Moreover, the following exponential tail bounds of Mn are obtained in [39].

Theorem 3.1. ([39, Theorem 1.4]) There exists c > 0 such that for all n ≥ 1 and κ ≥ 1,

P(Mn ≥ κE(Mn)) ≤ 2 exp{−cκ},

and for any ε ∈ (0, 1), there exist 0 < cε, Cε < ∞ such that for all n ≥ 1 and κ ≥ 1,

P (Mn ≤ κ−1E(Mn)) ≤ Cε exp{−cεκ
1
β
−ε}. (3.2)

Next, we define the infinite collision property and introduce some previous results. Let
G = (V,E) be a connected graph and let X = {Xn}∞n=0 and Y = {Yn}∞n=0 be independent
discrete time simple random walks on G. For x, y ∈ V , we write x ∼ y if x and y are connected
with an edge, i.e. {x, y} ∈ E. We denote by Pa,b the law of {(Xn, Yn)}∞n=0 with starting point
(X0, Y0) = (a, b).

Definition 3.2. We define the total number of collisions between X and Y by

Z =

∞∑
n=0

1(Xn = Yn). (3.3)

14



Let B be a connected subgraph of G and let XB = {XB
n }∞n=0 and Y B = {Y B

n }∞n=0 be inde-
pendent discrete-time simple random walks on G killed when they exit B. We define the total
number of collisions of XB and Y B by

ZB =
∞∑
n=0

1(XB
n = Y B

n ). (3.4)

Definition 3.3. If
Pa,a(Z < ∞) = 1, (3.5)

holds for all a ∈ G, then G has the finite collision property. If

Pa,a(Z = ∞) = 1, (3.6)

holds for all a ∈ G, then G has the infinite collision property.

Remark 3.4. There is no simple monotonicity property for collisions. Let Comb(Z) be the
graph with vertex set Z× Z and edge set

{[(x, n), (x,m)] : |m− n| = 1} ∪ {[(x, 0), (y, 0)] : |x− y| = 1}.

Then Comb(Z) has the finite collision property (see [22, Theorem 1.1]) and is a subgraph of
Z2, which has the infinite collision property.

It is proved that for any connected graph, either (3.5) or (3.6) holds.

Proposition 3.5. ([9, Proposition 2.1]) Let G be a (connected) recurrent graph. Then for
any starting point (a, b) ∈ G×G of the process {(Xn, Yn)},

Pa,b(Z = ∞) ∈ {0, 1},

holds. In particular, for all a ∈ G, either Pa,a(Z = ∞) = 0 or Pa,a(Z = ∞) = 1 holds.

Recall the definition of the effective resistance on a connected graph G given in 2.3. Now
let us derive some estimates on ZB (see (3.4) for definition) for a finite subgraph B from
effective resistance and Green’s function. For the first moment of ZB, we have

E0,0(ZB) =
∞∑
n=0

∑
x∈B

P0,0(X
B
n = Y B

n = x)

=
∞∑
n=0

∑
x∈B

P 0(XB
n = x)2

=

∞∑
n=0

∑
x∈B

P 0(XB
n = x,XB

2n = 0)
µG(x)

µG(0)
.

Thus, it holds that

1

µG(0)

∞∑
n=0

P 0(XB
2n = 0) ≤ E0,0(ZB) ≤

maxx∈B µG(x)

µG(0)

∞∑
n=0

P 0(XB
2n = 0). (3.7)
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Since P x(XB
2n+1 = x) ≤ P x(XB

2n = x) for all n, we have that

1

2
GB(x, x) =

1

2

∞∑
n=0

(
P x(XB

2n = x) + P x(XB
2n+1 = x)

)
≤

∞∑
n=0

P x(XB
2n = x) ≤ GB(x, x).

Thus, it follows from (3.7) that

1

2µG(0)
GB(0, 0) ≤ E0,0(ZB) ≤

maxx∈B µG(x)

µG(0)
GB(0, 0). (3.8)

An upper bound of the second moment is obtained by

E0,0(Z
2
B) =

∞∑
n=0

∑
x∈B

P0,0(X
B
n = Y B

n = x)

+ 2

∞∑
n=0

∞∑
m=n+1

∑
x∈B

∑
y∈B

P0,0(X
B
n = Y B

n = x,XB
m = Y B

m = y)

=E0,0(ZB)

+ 2
∞∑
n=0

∑
x∈B

P0,0(X
B
n = Y B

n = x)
∞∑

m=1

∑
y∈B

Px,x(X
B
m = Y B

m = y)

≤maxx∈B µG(x)

µG(0)
GB(0, 0) + 2

maxx∈B µG(x)

µG(0)
GB(0, 0)max

x∈B
GB(x, x),

where we applied the Markov property for the second equality and (3.8) for the last inequality.
By plugging (2.7) into the above inequality, we obtain

E0,0(Z
2
B) ≤ max

x∈B
µG(x)Reff(0, B

c) + 2
(
max
x∈B

µG(x)
)2
Reff(0, B

c)max
x∈B

Reff(x,B
c). (3.9)

3.2 Proof of the main theorem

In this section, we will prove Theorem 1.2. In order to do so, we will first estimate the effective
resistance of U between the origin and ∂B(0, r) in the following theorem.

Let Ur be the connected component of U ∩B(0, r) which contains the origin. Recall that
β is the growth exponent of the three-dimensional LERW defined in (3.1).

Theorem 3.6. There exists some universal constant C > 0 such that for all r ≥ 1 and λ > 0,

P(Reff(0,U \ Ur) ≥ rβ/λ1+4β) ≥ 1− Cλ−1. (3.10)

Proof. Note that it suffices to prove the inequality (3.10) for λ ≥ λ0 where λ0 is a sufficiently
large universal constant that does not depend on r.

We first fix r > 0 and consider a sequence of subsets of Z3 including ∂iB(0, r). For
k = 1, 2, · · · , let δk = λ−12−k and ηk = (2k)−1. We define k0 to be the smallest positive
integer such that rδk0 < 1. Let

Ak = B(0, (1 + ηk)r) \B(0, (1− ηk)r),
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and let Dk be a finite subset of lattice points of Ak with |Dk| ≤ Cδ−3
k such that

Ak ⊂
⋃

z∈Dk

B(z, δkr).

Next, we perform Wilson’s algorithm rooted at infinity (see Section 2.2) to obtain the
desired event of the three-dimensional UST. Let U0 = γ∞ i.e. the infinite LERW started
at the origin. Given Uk (k ≥ 0), we regard Uk as the root of Wilson’s algorithm and add
branches started at vertices in Dk+1 \ Uk and denote by Uk+1 the resulting random subtree
at this step. Once we obtain Uk0 , we add branches started at vertices in Z3 \ Uk0 to complete
Wilson’s algorithm. Note that Uk (k = 0, 1, 2, · · · , k0) is a subtree of U containig all vertices
in
⋃k

i=1Di ∪ {0} and the sequence {Uk}k0k=0 is increasing. Since rδk0 < 1, it holds that
∂iB(0, r) ⊂ Dk0 ⊂ Uk0 .

Now we are ready to define the events where the effective resistance in (3.10) is bounded
below. Firstly, we examine the behavior of the branches started at vertices contained in
D1. For z ∈ Dk (k ≥ 1), we denote by yz be the first point of Uk−1 visited by γ(z, 0) i.e.
dU (z, yz) = miny∈Uk−1

dU (z, y). We define the event Fz by

Fz = {γ(z, yz) ∩B(0, λ−4r) = ∅}, (3.11)

for z ∈ D1. Since dE(0, z) ≥ r/2, by [27, Theorem 1.5.10], there exists some constant C > 0
such that for all λ ≥ 2,

P(F c
z ) ≤ P(Sz[0,∞) ∩B(0, λ−4r) ̸= ∅) ≤ Cλ−4,

holds. By taking the union bound, we obtain that

P

 ⋃
z∈D1

F c
z

 ≤ |D1|Cλ−4 ≤ Cλ−1, (3.12)

where the last inequality follows from the fact that |D1| ≤ Cλ3.
Secondly, we bound from below the first time when γ∞ exits B(0, λ−4r), which is denoted

by τ(B(0, λ−4r)c). We define the event F̃ by

F̃ =
{
len
(
γ∞[0, τ(B(0, λ−4r)c)]

)
≥ rβ/λ1+4β

}
. (3.13)

By [39, Theorem 1.4], [32, Corollary 1.3] and the fact that β ≤ 5/3, there exist some constants
C > 0 and c > 0 such that

P(F̃ c) ≤ C exp{−cλ1/2}, (3.14)

for all r ≥ 1 and λ > 0.
Thirdly, we consider the branches started at vertices in Dk (k ≥ 2) step by step. Let us

begin by defining an event that guarantees the “hittability” of γ(x,∞) for x ∈ Dk. To be
precise, for x ∈ Dk (k ≥ 1) and ξ > 0, we define the event Hx(ξ) by

Hx(ξ) =
{
There exists some z ∈ B(x, δkr) such that

P z(Sz[0, τSz(B(z, δ
1/2
k r)c)] ∩ γ(x,∞) = ∅) ≥ δξk

}
,
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where Sz is an independent simple random walk started at z ∈ Z3 and P z denotes its law.
By [37, Theorem 3.1], there exist some C > 0 and ξ1 > 0 such that

P(Hx(ξ1)) ≤ Cδ4k for all r ≥ 1, k ≥ 1 and x ∈ Dk. (3.15)

Let
H̃k :=

⋂
x∈Dk

Hx(ξ1)
c, (3.16)

where ξ1 is as defined in (3.15). Note that P z(Sz[0, τSz(B(z, δ
1/2
k r)c)] ∩ γ(x,∞) = ∅) is a

function of γ(x,∞) and thus Hx(ξ) and H̃k are measurable with respect to Uk. Moreover, it
follows from (3.15) and the definition of Dk that

P(H̃k) ≥ 1− |Dk|Cδ4k ≥ 1− C ′δk, (3.17)

where C ′ > 0 is uniform in r ≥ 1 and k ≥ 1.
Now we will demonstrate that conditioned on the event H̃k, branches γ(z, yz) (z ∈ Dk+1)

are included in Ak with high conditional probability. Let M = ⌈4/ξ1⌉. For z ∈ Dk+1, let

Iz =
{
Sz[0, τSz(B(z,Mδ

1/2
k r)c)] ∩ Uk = ∅

}
.

Since z ∈ Dk+1 ⊂ Ak, we can take some x ∈ Dk with z ∈ B(x, δkr) and on the event Iz, we
have that

Sz[0, T 1] ∩ γ(x,∞) = ∅,

holds, where T 1 = τSz(B(z, δ
1/2
k r)c).

In the rest of this proof, we take λ ≥ 6M without loss of generality. Since dE(z, S
z(T 1 −

1)) ≤ δ
1/2
k r, we have that z1 := Sz(T 1−1) ∈ Ak and we can take x1 ∈ Dk with z1 ∈ B(x1, δkr).

By the same argument as the above, on the event Iz we have that Sz[T 1, T 2] ∩ γ(x1,∞) = ∅,
where T 2 = τSz(B(z1, δ

1/2
k r)c). Iteratively, we obtain the sequences {T i}, {zi} ⊂ Ak and

{xi} ⊂ Dk (i = 1, 2, · · · ,M) and we have that

Iz ⊂
M⋂
i=1

{Sz[T i−1, T i] ∩ γ(xi−1,∞) = ∅},

where we set T 0 = 0 and x0 = x. By the strong Markov property, it holds that

P z(Iz) ≤ P z

(
M⋂
i=1

{R[T i−1, T i] ∩ γ(xi−1,∞) = ∅}

)

=
M∏
i=1

P zi−1(Szi−1 [0, τSzi−1 (B(zi−1, δ
1/2
k r))] ∩ γ(xi−1,∞) = ∅),

from which it follows that
H̃k ⊂ {P z(Iz) ≤ δ4k}.

Thus, by Wilson’s algorithm, we have that for all z ∈ Dk+1,

P
(
γ(z, yz) ̸⊂ B(z,Mδ

1/2
k r) | H̃k

)
≤ δ4k. (3.18)
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Figure 1: In this figure, two circles represent Euclidean balls centered at the origin: the larger one
is of radius r and the smaller one is of radius λ−4r. On the event K, the branches from
D1 do not enter the smaller ball of radius λ−4r and the branches from Dk (k ≥ 2) hits the
already constructed subtree Uk−1 before entering B(0, r/2). Moreover, the length of γ∞
up to the exiting time τ(B(0, λ−4r)c) is bounded below by rβ/λ1+4β .

We define the event Ĩk+1, which is measurable with respect to Uk+1, by

Ĩk+1 =
⋂

z∈Dk+1

{
γ(z, yz) ⊂ B(z,Mδ

1/2
k r)

}
. (3.19)

Then by (3.18) and that |Dk+1| ≤ Cδ−3
k , it holds that

P(Ĩk+1 | H̃k) ≥ 1− |Dk+1|δ4k ≥ 1− Cδk.

Combining this with (3.17), we obtain that

P(H̃k ∩ Ĩk+1) ≥ 1− Cδk, (3.20)

for some universal constant C > 0.
Finally, we construct an event where the desired effective resistance bound holds. Let

K =

 ⋂
z∈D1

Fz

 ∩ F̃ ∩

(
k0⋂
k=1

(H̃k ∩ Ĩk+1)

)
.

Recall that Fz, F̃ , H̃k and Ĩk+1 are defined by (3.11), (3.13), (3.16) and (3.19), respectively.
Then combining (3.12), (3.14) and (3.20), we obtain that

P(Kc) ≤ Cλ−1 + C exp{−cλ1/2}+
∞∑
k=1

Cδk ≤ Cλ−1. (3.21)

We claim that on the event K, the following two statements hold:

(1) dU (0, yz) ≥ rβ/λ1+4β for all z ∈ D1.

(2) For k ≥ 2, γ(z, 0) hits U1 before entering B(0, r/2) for all z ∈ Dk.
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Note that (1) is immideate from K ⊂ (
⋂

z∈D1
Fz)∩ F̃ and (2) follows from K ⊂ (

⋂k0
k=1(Ĩk+1 ∩

H̃k)).
Suppose that K occurs. Let w be an element of {yz : z ∈ D1} which satisfies dU (0, w) =

minz∈D1 dU (0, yz). It follows from the above statements (1) and (2) that every path of U
connecting the origin and B(0, r)c includes γ(0, w) (recall that ∂iB(0, r) ⊂ Dk0). Thus, by
the series law of effective resistance (see [34] Section 2.3, for example), we have that

Reff(0,U \ Ur) = Reff(0, w) +Reff(w,U \ Ur)

≥ dU (0, w) ≥ rβ/λ1+4β .

Combining this with (3.21) yields the desired result (3.10). 2

Now we are ready to prove Theorem 1.2. Recall that ZB is defined in (3.4). In the rest of
the article, we set Br = BU (0, r).

Proof of Theorem 1.2. Let us define the event K̃(r, λ) by

K̃(r, λ) = {Reff(0, BU (0, r)
c) ≥ r/λ} . (3.22)

By [1, Proposition 4.1], there exist some C ′ > 0 and c′ ∈ (0, 1) such that

P
(
Ur ̸⊂ BU (0, λr

β)
)
≤ C ′λ−c′ ,

for all r > 1 and λ ≥ 1. On the event {Ur ⊂ BU (0, λr
β)}, by monotonicity

Reff(0,U \ Ur) ≤ Reff(0, BU (0, λr
β)c),

holds (see [34] Section 2.2, for example). Thus, we have

P
(
Reff(0, BU (0, λr

β)c) < rβ/λ1+4β
)

≤P
(
Reff(0, BU (0, λr

β)c) < rβ/λ1+4β , Ur ⊂ BU (0, λr
β)
)
+P

(
Ur ̸⊂ BU (0, λr

β)
)

≤P
(
Reff(0,U \ Ur) < rβ/λ1+4β

)
+ C ′λ−c′ .

By Theorem 3.6, we obtain that

P
(
Reff(0, BU (0, λr

β)c) ≥ rβ/λ1+4β
)
≥ P

(
Reff(0,U \ Ur) ≥ rβ/λ1+4β

)
− C ′λ−c′

≥ 1− Cλ−1 − C ′λ−c′ .

By reparameterizing R = λrβ , and taking C ′ > 0 properly, we have that

P
(
K̃(R, λ)

)
≥ 1− C ′λ

− c′
2+4β . (3.23)

Next, we make use of the estimates of E(ZB) and E(Z2
B) in Section 3.1. Since 1 ≤ µU (x) ≤

6 for all x ∈ Z3, it follows from (2.7) and (3.8) that on the event K̃(r, λ),

r

2λ
≤ E0,0(ZBr) ≤ 6r, (3.24)
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where we plugged Reff(0, BU (0, r)
c) ≤ r to obtain the second inequality. By reparameteriza-

tion, (1.1) follows.
On the other hand, since

Reff(x,BU (0, r)
c) ≤ Reff(x, 0) +Reff(0, BU (0, r)

c)

≤ 2r,

for x ∈ BU (0, r), plugging this into (3.9) yields that

E0,0(Z
2
Br

) ≤ 144r2 + 6r, (3.25)

for any realization U , which gives (1.2).
Now we will apply the second moment method to ZBr on the event K̃(r, λ). By (3.24)

and (3.25), on the event K̃(r, λ) we have

P0,0

(
ZBr ≥ r

12λ

)
≥ P0,0

(
ZBr ≥ 1

6
E0,0(ZBr)

)
≥ 25E0,0(ZBr)

2

36E0,0(Z2
Br

)
≥ 1

6 · (12λ)2
.

By reparameterizing ε−1 = 12λ, we have that on K̃(r, ε−1/12),

P0,0(ZBr ≥ εr) ≥ ε2/6. (3.26)

Finally, by Markov’s inequality,

P0,0(ZBr ≥ 72ε−2r) ≤ P0,0(ZBr ≥ 12ε−2E0,0(ZBr))

≤ ε2/12,

holds on the event K̃(r, ε−1/12). Combining this with (3.26) gives (1.3). 2

We obtain the infinite collision property of the three-dimensional UST as a corollary.

Proof of Corollary 1.3. Suppose ω ∈ K(r, ε) and let U(ω) be the corresponding realization of
UST. We take two simple random walks X and Y on U(ω). Recall that Z is the total number
of collisions between X and Y defined by (3.3). By Theorem 1.2, for any N ≥ 1 and any fixed
ε > 0,

P0,0(Z ≥ N) ≥ P0,0

(
ZBε−1N

≥ N
)
≥ ε2/12,

holds. By taking the limit N → ∞ we obtain that P0,0(Z = ∞) ≥ ε2/12, from which the
infinite collision property of U(ω) follows by Proposition 3.5. Thus,

P({U(ω) has the infinite collision property}) ≥ 1− Cεc.

Since ε is arbitrary, we have that

P({U(ω) has the infinite collision property}) = 1,

which completes the proof. 2

Remark 3.7. We can also derive the infinite collision property of the three-dimensional UST
from (3.23) by applying Corollary 3.3 of [9]. In this article, we gave another proof by using
quantitative estimates of the number of collisions in the intrinsic ball ZBr .
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4 Volume and heat kernel fluctuations for the three-dimensional
uniform spanning tree

In this chapter, we will prove Theorem 1.7 and Theorem 1.8. We start with explaining
the main idea of the proofs of these theorems, which is inspired by the result on the two-
dimensional uniform spanning tree [5].

In order to obtain Theorem 1.8, we consider the three-dimensional uniform spanning tree
as a collection of small pieces where the probability of events corresponding to those on the
whole tree can be calculated. Similarly to [5, Theorem 1.1], we consider unlikely configurations
of U , namely “comb” and “spiral” configurations as depicted in Figures 2 and 3 respectively.
Here the comb configuration is constructed in such a way that we obtain an intrinsic ball in
U with an unusually large size, which enables us to obtain (1.9). On the other hand, we use
the spiral configuration to make an unusually small ball for the sake of the derivation of (1.8).
Although the scenario is essentially the same as that for the two-dimensional case in [5], here
we need to deal with a central hurdle: since the Beurling projection theorem (a property
of the simple random walk on Z2 that it hits any path of Z2 with high probability, see [29,
Theorem 6.8.1] for example) is not available when d = 3, the construction of such unlikely
configurations of U via Wilson’s algorithm (see Section 2.2) requires some extra work, which
is rather complicated. We overcome this difficulty through careful use of a type of hittability
of loop-erased random walks in Z3, as derived in [37, Theorem 3.1]. Combining Theorem 1.8
with the fact that the behavior of the effective resistance metric on U is similar to that of the
intrinsic metric (see Subsection 4.2.2 below for this), Theorem 1.7 is also proved.

Figure 2: Illustration for the comb configuration. The horizontal solid curve stands for the unique
infinite path in U started at the origin. We force it to keep going to the right with no
big backtracking. We also make each vertical solid branch keep going down. For another
point x, as the dotted curve illustrates, the branch between x and a solid curve has a small
length. As a result, if the Euclidean metric between the origin and x is not small, the
intrinsic metric from the origin to x is unusually small.

The rest of this chapter is organized as follows. The claim (1.9) will be proved in Section
4.1 and (1.8) will be proved in Section 4.2. Finally, we will give the proof of Theorem 1.7 in
Section 4.3. Throughout this chapter, we refer to the definition and notation for the uniform
spanning tree and loop-erased random walk in Z3 introduced in Chapter 2.
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Figure 3: Illustration for the spiral configuration. The solid curve stands for the unique infinite
path in U started at the origin. We make it spiral around the origin many times. This
configuration ensures that the intrinsic metric from the origin to x is unusually large if the
Euclidean metric between the origin and x is not small.

4.1 Upper volume fluctuations

In this section, we prove (1.9), upper volume fluctuations of log-logarithmic magnitude in
Theorem 4.13. The key ingredient of the proof is the following lemma, which provides a lower
bound on an upper tail of the volume of intrinsic balls in the three-dimensional UST U .

Recall that β is the growth exponent of the three-dimensional LERW defined by (3.1) and
BU stands for intrinsic balls in U defined by (2.3).

Proposition 4.1. Let U be the three-dimensional UST build on a probability space (Ω,F ,P).
Then there exist c1, c2 > 0 such that for all λ > 0 and r ≥ 1,

P(|BU (0, r)| ≥ λr3/β) ≥ c1 exp{−c2λ
(β−1)/β log λ}, (4.1)

where β is the growth exponent of the three-dimensional LERW.

Remark 4.2. See [1, Proposition 6.1] for an exponential upper bound for the probability in
the left-hand side of (4.1).

4.1.1 The comb configuration in the UST

We explain an idea of the proof of (4.1) here, which is inspired by the proof of (4.1) of
[5, Lemma 4.1]. We construct a cube of side-length Nm, consisting of N3 small boxes of
side-length m, as follows. For each j ≥ 0, let

xj = (jm, 0, 0) ∈ Z3, Bxj = B∞(xj ,m/2), (4.2)

i.e. Bxj is the cube of side-length m centered at xj (see Chapter 2 for the definition of B∞).
Firstly, we align the boxes Bxj (0 ≤ j ≤ N), whose center points are located on the x1 axis.
Secondly, we take the boxes B∞((jm, km, 0),m/2) for each 0 ≤ j ≤ N and 1 ≤ k ≤ N .
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Figure 4: The event Ax1
∩Ax2

∩Ax3
to consider for upper volume fluctuations

Described in Figure 4 are the boxes having been constructed at this step. Finally we take the
boxes B∞((jm, km, lm),m/2) for each 0 ≤ j ≤ N , 1 ≤ k ≤ N and 1 ≤ l ≤ N .

Let γ∞ be the infinite LERW started at the origin, which is the first branch in Wilson’s
algorithm to generate U . We consider the event Ax1 which is the intersection of the following
events:

• γ∞ moves toward the right until it exits from a “tube”
⋃N

j=1Bxj without backtracking.

• The number of points in γ∞ ∩Bxj is bounded above by mβ for all 1 ≤ j ≤ N .

• For some snall ε > 0, with high probability, each point in B(xj , εm) (j = 1, · · ·N) is
connected to γ∞ with a path of length of order mβ .

Next we run SRWs S(j), j = 1, 2, · · · , N independent of γ and each other started at the
points (jm,Nm, 0). We consider the event Ax2 where each S(j) moves in a “tube” parallel to
the y axis until it hits γ, the number of points in its loop erasure is bounded above by Nmβ

and every point in a small Euclidean ball around the center of each box is connected to the
loop erasure with a short path.

Finally, we consider the corresponding event Ax3 for independent SRWs started at (jm, km,Nm)
until they hit the already constructed subtree in the tubes parallel to the z axis.

Note that if the intersection Ax1∩Ax2∩Ax3 occurs, it leads to a lower bound of the volume
of a ball in intrinsic metric. Once we have a lower bound of the probability of the event A,
we consider LERWs satisfying the same condition and parallel to the y and z axis.

In the remainder of this subsection, we will establish a lower bound of the probability of
the event Ax1 ∩ Ax2 ∩ Ax3 in Lemma 4.7 and in Lemma 4.8. In order to do so, we follow an
argument of [33], Section 4, which makes use of the cut points of the three-dimensional SRW.

We begin with defining several events.

Definition 4.3. For a < b, we define

Q[a, b] = {(x1, x2, x3) ∈ Z3 : a ≤ x1 ≤ b,−m ≤ x2, x3 ≤ m},
Q(a) = {(x1, x2, x3) ∈ Z3 : x1 = a,−m ≤ x2, x3 ≤ m}.
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Figure 5: Sets Q[a, b], Q(a), Q̃(a) and Rj

We also set

Q̃(a) = {(x1, x2, x3) ∈ Z3 : x1 = a,−m/2 ≤ x2, x3 ≤ m/2},
Rj = {(x1, x2, x3) ∈ Z3 : x1 = jm, |x2|2 + |x3|2 < m2/100}

∪{(x1, x2, x3) ∈ Z3 : x1 = jm, |x2|2 + |x3|2 > m2/64}. (4.3)

Note that setting aj = (j − 1/2)m, it follows that Q[aj , aj+1] = Bxj and that Q(aj+1)
corresponds to the right face of Bxj (see (4.2) for the definition of Bxj )

Now we consider the SRW S on Z3 started at the origin. By linear interpolation, we may
assume that S(k) is defined for every non-negative real k and S[0,∞) is a continuous curve.
For a continuous curve λ in R3 , we define

tλ(a) = inf{k ≥ 0 : λ(k) ∈ Q(a)}.

Let

N = (log logm)1/2, (4.4)

q = m/N2. (4.5)

Using tS(a), we define events Aj as the following:

A0 = {tS(a1) < ∞, S(tS(a1)) ∈ Q̃(a1), S[0, tS(a1)] ⊂ Bx0 , S[tS(a1 − q), tS(a1)] ∩Q(a1 − 2q) = ∅},

Aj = {tS(aj) < tS(aj+1) < ∞, S(tS(aj+1)) ∈ Q̃(aj+1), S[tS(aj), tS(aj+1)] ⊂ Q[aj − q, aj+1] \Rj ,

S[tS(aj+1 − q), tS(aj+1)] ⊂ Q[aj+1 − 2q, aj+1]} for j ≥ 1. (4.6)

The event A0 guarantees that S exits Bx0 from Q̃(a1) and has no big backtracking from
tS(a1 − q) to tS(a1). For j ≥ 1, the event Aj ensures that once S enters Bxj , it keeps
moving to the right until hitting Q(aj+1). The last condition of Aj requires that S has no
big backtracking in [tS(aj+1 − q), tS(aj+1)]. We note that the event A0 (resp. Aj , j ≥ 1) is
measurable with respect to S[0, tS(a1)] (resp. S[tS(aj), tS(aj+1)]).
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Figure 6: Definition of the event Aj (j ≥ 1)

We set

Gj =

j⋂
k=0

Ak. (4.7)

We next consider a cut time with special properties for the SRW.

Definition 4.4. Suppose that the event Aj defined in (4.6) occurs. For each j ≥ 1, we call k
a nice cut time in Bxj if it satisfies the following conditions:

(i) tS(aj +
q
2) ≤ k ≤ tS(aj + q),

(ii) S[tS(aj), k] ∩ S[k + 1, tS(aj+1)] = ∅,

(iii) S[k, tS(aj+1)] ∩Q(aj) = ∅,

(iv) S(k) ∈ Q[aj +
q
2 , aj + q].

If k is a nice cut time in Bxj , then we call S(k) a nice cut point in Bxj .

We define events Bj by

Bj = {S has a nice cut point in Bxj},

for each j ≥ 1. Note that the event Bj is measurable with respect to S[tS(aj), tS(aj+1)]. We
define

Hj =

j⋂
k=1

Bk. (4.8)

Now we consider two random curves ξj and ξ′j defined as follows. We set

ξj = LE(S[0, tS(aj+1)]),
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Figure 7: Example of nice cut point in Bxj

(a) Original random walk S (b) ξj (c) ξ′j

Figure 8: Examples of ξj and ξ′j

and

λj = LE(S[tS(aj), tS(aj+1)]) for j ≥ 0, (4.9)

ξ′0 = ξ0, ξ′j = ξ′0 ⊕ λ1 ⊕ · · · ⊕ λj for j ≥ 1. (4.10)

Note that ξ′j is not necessarily a simple curve and thus ξj ̸= ξ′j in general. However, the
next lemma from [33] shows that the difference between these two curves is small on the event
Gj ∩Hj .

Lemma 4.5. ([33, Lemma 4.3]) Let j ≥ 1. Suppose that Gj ∩Hj defined in (4.7) and (4.8)
occurs. Then, for the length of ξj and ξ′j, we have

len(ξj) ≤ len(ξ′0) +

j∑
k=1

{len(λk) + |ξj ∩Q[ak − q, ak + q]|} , (4.11)

where for A ⊂ R3, we write |A| for the number of points in A ∩ Z3.

Note that len(ξ′j) = len(ξ0)+
∑j

k=1 len(λk), and thus the above lemma compares the length
of ξj and ξ′j .

We will next deal with the length and the hittability of each λj . For C ≥ 1, we define the
event Ej(C) by

E0 = E0(C) = {len(ξ0) ≤ Cmβ}, Ej = Ej(C) = {len(λj) ≤ Cmβ} for j ≥ 1, (4.12)
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Figure 9: The event {λj ∩Rxj [0, TRxj (2m/5)] ̸= ∅}

where ξ0 and λj , j ≥ 1 are as defined in (4.10). Let Rz be a SRW on Z3 started at z ∈ Z3

and independent of S. We denote by P and P z the law of S and Rz, respectively. For N ≥ 4
and η > 0, we define the event Fj(η) by

Fj = Fj(η) = {P xj (λj ∩Rxj [0, TRxj (2m/5)] ̸= ∅) ≥ η}, (4.13)

where TR(r) = inf{k ≥ 0 : |R(k)| ≥ r}. Note that Fj(η) is measurable with respect to
S[tS(aj), tS(aj+1)].

The next lemma gives a lower bound on the probability of Aj∩Bj∩Ej(C)∩Fj(η) choosing
C sufficiently large and η sufficiently small.

Lemma 4.6. There exist universal constants 0 < η∗, c∗, C∗ < ∞ such that

P (A0 ∩ E0(C∗)) ≥ c∗,

and for all j ≥ 1,
min

x∈Q̃(aj)
P x(Aj ∩Bj ∩ Ej(C∗) ∩ Fj(η∗)) ≥ c∗N

−2. (4.14)

Proof. The first assertion is proved in [33, Lemma 4.4] and we also follow its proof to show
that (4.14) holds. By the translation invariance, the minimum in the left-hand side of (4.14)
does not depend on j. Hence, we will only consider the case j = 1.

It follows from the gambler’s ruin estimate ([29, Proposition 5.1.6], for example) that

c1N
−2 ≤ P x(A1) ≤ c2N

−2 uniformly in x ∈ Q̃(a1), (4.15)

and from [26, Corollary 5.2] that

P x(B1 | A1) ≥ c3 uniformly in x ∈ Q̃(a1), (4.16)

for some universal constants 0 < c1, c2, c3 < ∞.
On the event A1 ∩ B1, let k1 be a nice cut time in Bx1 as defined in Definition 4.4. By

definition, it follows that k1 ≤ tS(a1 + q) and

dist (x1,LE(S[k1, tS(a2)]) ≤ m/8. (4.17)
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We check this by contradiction. Suppose that (4.17) does not hold. This implies that
LE(S[k1, tS(a2)]) contains some point z ∈ R1, where R1 is as defined in (4.3). Thus, it
also holds that z ∈ S[tS(a1), tS(a2)], which contradicts (4.6).

It follows from (4.17) and the decomposition λ1 = LE(S[tS(a1), k1]) ⊕ LE(S[k1, tS(a2)])
that dist(x1, λ1) ≤ m/8. Hence, by [37, Theorem 3.1], there exist some universal constant
0 < η1, c4 < 1 such that

P x (F1(η1) | A1 ∩B1) ≥ 1− c4 uniformly in x ∈ Q̃(a1).

Combining this with (4.16), we obtain

P x(B1 ∩ F1(η1) | A1) = P x(F1(η1) | A1 ∩B1)P
x(B1 | A1) ≥ (1− c3)c4. (4.18)

By the similar argument to the proof of [33, Lemma 4.4], we can obtain Ex(len(λ1)) ≤ Cmβ

uniformly in x ∈ Q̃(a1) and by the Markov’s inequality, there exists a universal constant
0 < C1 < ∞ such that

P x(E1(C1)
c | A1) ≤ c3(1− c4)/2,

uniformly in x ∈ Q̃(a1). Combining this with (4.15), (4.16) and (4.18) yields

P x(A1 ∩B1 ∩ E1(C1) ∩ F1(η1)) ≥
c1c3(1− c4)

2
N−2,

which finishes the proof. 2

Now we perform Wilson’s algorithm around the center of each small cube. Recall that
B(x, r) indicates the ball in the Euclidean metric and τγ(A) is the first time that γ hits
A. Given λi (see (4.9) for the definition), we regard it as a deterministic set and consider
independent simple random walks started at the points in B(xi, λ

−2m) for some λ ≥ 1. We
regard these random walks as a step of Wilson’s algorithm rooted at ξ′i.

In the following lemma, we will observe that with high conditional probability, a small
Euclidean ball around the center of each box Bxi is included in an intrinsic ball centered at
the same point and of radius of order mβ . We define the event Mj(λ) by

Mj(λ) = {B(xj , λ
−2m) ⊂ BUN (xj , λ

−1mβ}. (4.19)

Lemma 4.7. There exist c4, c5 > 0 such that for all δ > 0,m ≥ 1, λ ∈ [1,m(1−δ)/2) and
j ∈ {1, · · · , N},

P (Mj(λ)) | Aj ∩Bj ∩ Ej(C∗) ∩ Fj(η∗)) ≥ 1− c4λ
−c5 . (4.20)

Proof. It suffices to show (4.20) in the case j = 1. Let PUN (·) := P(· | A1 ∩ B1 ∩ E1(C∗) ∩
F1(η∗)). We may assume that m and λ are sufficiently large for the same reason as [1,
Proposition 4.1]. Thus, we take large m so that

mδ/2

δ logm+ 2
≥ 10, (4.21)

for a fixed δ > 0.
Recall that Rz indicates the SRW on Z3 started at z and independent of S. Given S, we

run Rx1 until it hits ξN . On the event A1 ∩B1 ∩E1(C∗) ∩ F1(η∗), we have that dE(x1, ξN ) ∈
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[m/10,m/8] by the definition of A1 (see (4.6)) and the event {LE(Rx1 [0, τRx1 (ξN )]) ⊂ Bx1}
occurs with positive conditional probability by the definition of F1 and η∗ (see (4.13) and
(4.14)). By [35, Corollary 4.5], we have that for λ ≥ 40 the law of LE(Rx1 [0, τRx1 (ξN )])
restricted to B(x1, λ

−1m) is comparable to that of the infinite LERW started at x1 restricted
to the same ball. Thus, we can follow the discussion of [1, Proposition 4.1], which gives a tail
bound estimate of the volume of intrinsic balls in the three-dimensional UST.

Let σ and σ̃ be the first time that γx1
:= LE(Rx1 [0, τRx1 (ξN )]) exits B(xi, λ

−2m) and
B(xi, λ

−1m), respectively. We define the event F by

F =

{
γx1 [σ̃, len(γx1)] ∩B(x1, 2λ

−2m) = ∅, σ ≤ 1

2
λ−1mβ

}
.

Then by [28, Proposition 1.5.10], the probability that a SRW started at a point outside
B(x1, λ

−1m) returns to B(x1, λ
−2m) is smaller than Cλ−1 for some universal constant C < ∞.

This implies PUN (γx1 [σ̃, len(γx1)] ∩ B(x1, 2λ
−2m) ̸= ∅) ≤ Cλ−1. On the other hand, by [39,

Theorem 1.4] and [32, Corollary 1.3], the probability that σ is greater than 1
2λ

−1mβ is bounded
above by C exp{−cλ−1} for some universal constants 0 < C, c < ∞. Thus, it follows from the
above estimates that

PUN (F ) ≥ 1− Cλ−1. (4.22)

Next we observe that γx1 can be hit by another independent SRW started at a point which
is close to γx1 with high probability. For ζ > 0, we define an event G(ζ) by

G(ζ) =
{
∀y ∈ B(x1, 2λ

−2m), P y
R(R[0, TRy(x1, λ

−3/2m)] ∩ γx1 = ∅) ≤ λ−ζ
}
,

where TRy(x, l) is the first time that Ry exists B(x, l). From [37, Theorem 3.1], there exist
universal constants C < ∞ and ζ1 ∈ (0, 1) such that for all m ≥ 1 and λ ≥ 2,

P(G(ζ1)) ≥ 1− Cλ−1. (4.23)

Then we take a sequence of subsets of Z3 including the boundary of B(x1, λ
−1m). For

each k ≥ 1, let εk = λ−ζ1/62−k−10, ηk = (2k)−1 and

Ak = B(x1, (1 + ηk)λ
−2m) \B(x1, (1− ηk)λ

−2m).

Write k0 for the smallest integer satisfying λ−2mεk0 < 1. Note that the condition (4.21)
guarantees that both the inner and outer boundary of B(x1, λ

−2m) are contained in Ak0 .
Moreover, let Dk be a set of lattice points in Ak such that Ak ⊂

⋃
z∈Dk

B(z, λ−2mεk). We

may suppose that |Dk| ≤ Cε−3
k . Since λ−2mεk0 < 1 and ∂iB(x1, λ

−2m) ⊂ Ak0 , it follows that
∂iB(x1, λ

−2m) ⊂ Dk0 .
Now we perform Wilson’s algorithm to prove (4.20). Let UN

0 := ξN ∪ γx1 .

(i) Consider an independent SRW started at a point in D1 and run until it hits UN
0 . We

add its loop-erasure to UN
0 and denote the union by UN

1,1. Given UN
1,j , we consider an

independent SRW from another point in D1 \ UN
1,j and let UN

1,j+1 be the union of UN
1,j

and the loop-erasure of the new SRW. We continue this procedure until all points in D1

are contained in the tree, which we denote by UN
1 .
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(ii) We repeat the above procedure for D2 taking UN
1 as a root. Let UN

2 be the output tree.
We continue inductively to construct UN

3 ,UN
4 , · · · UN

k0
.

(iii) Once we obtain UN
k0
, we perform Wilson’s algorithm for all points in B(x1, λ

−2m).

(iv) We repeat the same procedure as (i), (ii) and (iii) for all x2, x3, · · ·xN .

(v) Finally, we perform Wilson’s algorithm for all points in
⋃N

j=0Bxj to obtain UN .

By construction, it is clear that UN
k ⊂ UN

k+1, and also ∂iB(x1, λ
−2r) ⊂ UN

k0
.

By the definition of G(ζ1), we have that

P(γ(y,UN
0 ) ̸⊂ B(x1, λ

−3/2m) | F ∩G(ζ1)) ≤ λ−ζ1 . (4.24)

On the other hand, by stopping conditioning γx1 on F ∩G(ζ1), it follows from [39, Theorem
1.4] and [32, Corollary 1.3] that there exist some universal constant C, c, c′ > 0 such that

P

(
γUN (y,UN

0 ) ⊂ B(x1, λ
−1m), dUN (y,UN

0 ) ≥ 1

2
λ−1mβ

)
≤

P(γUN (y,UN
0 ) ⊂ B(x1, λ

−1m), dUN (y,UN
0 ) ≥ 1

2λ
−1mβ)

P(F ∩G(ζ1))

≤ C exp{−cλc′}. (4.25)

Combining (4.24) and (4.25), we have that

P(γ(y,UN
0 ) ⊂ B(x1, λ

−1m), dU (y,UN
0 ) ≤ 1

2
λ−1mβ) ≥ 1− Cλ−ζ1 .

Let H be the event defined by

H =

{
γ(y,UN

0 ) ⊂ B(x1, λ
−1m), dU (y,UN

0 ) ≤ 1

2
λ−1mβ for all y ∈ D1

}
.

Then we have
P(H) ≥ 1− Cλ−ζ1/2,

since |D1| ≤ Cλζ1/2.
Next, we will consider several events that ensure hittability of branches in the subtree.

For k ≥ 1 and ζ > 0, we define the event I(k, x, ζ) by

I(k, x, ζ)

=
{
P y
R

(
R
[
0, TRy(y, λ−2mε

1/2
k )

]
∩ (UN

0 ∪ γ(x,UN
0 ))

)
≤ εζk for all y ∈ B(x, λ−2mεk)

}
,

(4.26)

Let I(k, ζ) =
⋂

x∈Dk
I(k, x, ζ). Applying [37, Lemma 3.2], it follows that there exist universal

constants ζ2 > 0 and C < ∞ such that for all k ≥ 1,m ≥ 1, λ ≥ 2 and x ∈ Dk,

PUN (I(k, x, ζ2)
c) ≤ Cε5k.
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Combining this with |Dk| ≤ Cε−3
k yields that

P(I(k, ζ2)
c) ≤ Cε2k ≤ Cλ−ζ1/3.

We set A′
1 := F ∩ G(ζ1) ∩H ∩ I(1, ζ2). Note that A′

1 is measurable with respect to UN
1 ,

the subtree obtained after the first step (i) of Wilson’s algorithm. We have already seen that
PUN (A′

1) ≥ 1− Cλ−ζ1/3.
Conditioning UN

1 on the event A′
1, we proceed with Wilson’s algorithm for the points

in D2. We take y ∈ D2 and consider the SRW Ry started at y until it hits UN
1 . By the

definition of D1, there exists x′ ∈ D1 such that dE(x, y) ≤ λ−2mε1. Suppose that Ry exits

B(y, λ−2mε
1/3
1 ) before it hits UN

1 . Then the event that Ry exits B(x, λ−2mε1) before it hits
UN
1 occurs. However by (4.26) and the definition of ζ2, the probability that the event occurs

conditioned on A′
1 is lower than εζ21 . By iteration, the number of balls of radius λ−2mε

1/2
1

that Ry exits before hitting UN
1 is larger than ε

−1/6
1 . Hence, we have that

P y(Ry exits B(y, λ−2mε
1/3
1 ) before it hits UN

1 ) ≤ ε
cζ2ε

−1/6
1

1 ,

for some universal constant c > 0. Moreover, following the same argument as (4.25), we have
that

P y
(
γ(y,UN

1 ) ̸⊂ B(y, λ−2mε
1/3
1 ) and dU (y,UN

1 ) ≥ (λ−2m)βε
1/4
1

)
≤ C exp

{
−cε

−1/12
1

}
.

With this in mind, we define the event B2 by

B2 =
{
γ(y,UN

1 ) ⊂ B(y, λ−2mε
1/3
1 ) and dU (y,UN

1 ) ≤ λ−1mβε
1/4
1 , for all y ∈ D2

}
.

Since |D2| ≤ Cε−3
2 , we have that

PUN (B2 | A′
1) ≥ 1− Cε−3

1 exp
{
−cε

−1/12
1

}
.

Hence, letting A′
2 := A1 ∩B2 ∩ I(2, ζ2), it follows that

PUN (A′
2 | A′

1) ≥ 1− Cε22.

Following the above argument, we define the sequences of events {A′
k}, {Bk}(k = 2, 3, · · · , k0)

by

Bk =
{
γ(y,UN

k−1) ⊂ B(y, λ−2mε
1/3
k−1) and dU (y,UN

k−1) ≤ λ−1mβε
1/4
k−1, for all y ∈ D2

}
,

A′
k = A′

k−1 ∩Bk ∩ I(k, ζ2).

Then we can conclude that

PUN (A′
k0) = PUN (A′

1)

k0∏
k=2

PUN (A′
k | A′

k−1) ≥ (1− Cλ−ζ1/3)

∞∏
k=1

(1− Cε2k) ≥ 1− Cλ−ζ1/3.

(4.27)
On the other hand, on the event A′

k0
, there exists some universal constant C > 0 such that
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(1) dU (x1, y) ≤ λ−1mβ for all y ∈
(
UN
0 ∩B(x1, λ

−2m)
)
∪
(⋃

y∈D1
γ(y,UN

0 )
)
,

(2) dU (x1, y) ≤ Cλ−1mβ for all y ∈ (UN
0 ∩B(x1, λ

−2m)) ∪ UN
k0
,

It immediately follows that (1) holds from the definition of F and H. For y ∈ Uk0 , let
yk (k = 1, 2, · · · k0 − 1) be the first point in UN

k that appears on γUN (y,UN
0 ) (we set yk = y if

y ∈ UN
k ). On the event A′

k0
, we have that

dU (x1, y) ≤ dU (x1, y1) +

k0−1∑
k=1

dU (yk, yk+1)

≤ λ−1mβ +
∞∑
k=1

λ−1mβε
1/4
k−1 ≤ Cλ−1mβ ,

which implies (2).
Once we see that (2) holds on the event A′

k0
, we need to estimate the dU distance between

an arbitrary point in B(x1, λ
−2m) and ∂iB(x1, λ

−2m). In order to do so, we take another
“net”: we let ε′k = λ−ζ1/42−k−10 and D′

k be a set of lattice points in B(x1, λ
−2m) such that

B(x1, λ
−2m) ⊂

⋃
z∈D′

k
B(z, λ−2mε′k). We may suppose that |D′

k| ≤ C(ε′k)
−3. By the similar

argument to the estimate of PUN (A′
k0
), we obtain

PUN

(
dU (y, ∂iB(x1, λ

−2m)) ≥ Cλ−1mβ for some y ∈ B(x1, λ
−2m)

)
≤ Cλ−ζ1/2. (4.28)

For the lower bound of volume (4.20), we now estimate the distance between x1 and all
points in B(x1, λ

−2m). Since UN
k0

contains ∂iB(x1, λ
−2mβ), it follows from the same argument

as (4.25) again that for any y ∈ B(x, λ−2m),

PUN

(
dU (x1, y) ≤ Cλ−1mβ for all y ∈ B(x1, λ

−2m)
)

≥ PUN (A′
k0)−PUN

(
A′

k0 ∩
{
dU (x1, y) > Cλ−1mβ for some y ∈ B(x1, λ

−2m)
})

≥ PUN (A′
k0)−PUN

(
dU (y, ∂iB(x1, λ

−2m)) > Cλ−1mβ for some y ∈ B(x1, λ
−2m)

)
≥ 1− Cλ−c,

for some universal constant c > 0, which completes the proof of (4.20). 2

It follows from (4.14) and (4.20) that there exists some universal constant λ∗ ≥ 1 such
that

P (Aj ∩Bj ∩ Ej(C∗) ∩ Fj(η∗) ∩Mj(λ∗)) = c2∗N
−2, (4.29)

for j = 1, 2, · · ·N . We have obtained a lower bound of the probability that the volume of the
random tree constructed by Wilson’s algorithm in each Bxj is of the order of mβ .

Recall that the events Gj and Hj are defined by (4.7) and (4.8) respectively. We define an

event Ij by Ij =
⋂j

k=1Mk(λ∗). Let Jj =
⋂j

k=1Ek(C∗) and Kj =
⋂j

k=1 Fk(η∗) for C∗ and η∗
defined in Lemma 4.6, where Ek(C) and Fk(η) are as defined in (4.12) and (4.13), respectively.
Recall that TS(r) = inf{k ≥ 0 : |S(k)| ≥ r}.
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Figure 10: Qw for w = wj = ((j − 1
2 )m, 0, 0)

By (4.11), in order to estimate len(ξj) on the event Gj ∩Hj ∩ Ij ∩Jj ∩Kj , we need to give
an upper bound on |ξj ∩Q[ak − q, ak + q]| for k = 1, · · · , j and for q defined in (4.5). Take

w = (w1, w2, w3), R(N) = exp{2eRN2
+ 1}, (4.30)

and define

Qw = {y = (y1, y2, y3) : |y1 − w1| ≤ q, |yi − wi| ≤ m/2 for i = 2, 3},
Nw = |Qw ∩ LE(S[0, TS(R(N)m)])| .

Then, it follows from [33, Lemma 4.5] that there exist universal constants 0 < c,C < ∞
such that

P (Nw ≥ mβ) ≤ C exp{−cN2} uniformly in w ∈ B(0, R(N)m). (4.31)

We define

wj =(aj , 0, 0), Lj =
{
|Qwk

∩ ξj | ≤ mβ for all 1 ≤ k ≤ j/2
}

for j ≥ 1,

U2N =

{
S(TS(R(N))) ∈ {(y1, y2, y3) ∈ R3 : y1 ≥ 4

5
R(N)m},

S[tS(a2N+1), TS(R(N))] ∩B(0, a 7
4
N ) = ∅

}
.

and set
AN = G2N ∩H2N ∩ I2N ∩ J2N ∩K2N ∩ L2N ∩ U2N . (4.32)

We estimate the lower bound of the probability of the event AN .

Lemma 4.8. There exists a universal constant c3 > 0 such that

P (AN ) ≥ c−1
3 exp{−c3N(logN)} (4.33)

Proof. To prove this, we will make use of the strong Markov property of S as follows. Firstly,
by the strong Markov property

P (G2N ∩H2N ∩ I2N ∩ J2N ∩K2N )

= P ((A2N ∩B2N ∩ E2N ∩ F2N ∩M2N ) ∩ (G2N−1 ∩H2N−1 ∩ I2N−1 ∩ J2N−1 ∩K2N−1))

= PS(tS(a2N ))(A2N ∩B2N ∩ E2N ∩ F2N ∩M2N )P (G2N−1 ∩H2N−1 ∩ J2N−1 ∩K2N−1).
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Figure 11: Definition of the event U2N

Then by (4.29), we have that

P (G2N ∩H2N ∩ I2N ∩ J2N ∩K2N ) ≥ c∗N
−2P (G2N−1 ∩H2N−1 ∩ I2N−1 ∩ J2N−1 ∩K2N−1),

and by iteration, it follows that there exists some universal constant c > 0 such that

P (G2N ∩H2N ∩ I2N ∩ J2N ∩K2N ) ≥ (cN−2)2N . (4.34)

Secondly, again by the strong Markov property

P (G2N ∩H2N ∩ I2N ∩ J2N ∩K2N ∩ U2N )

=P (U2N | G2N ∩H2N ∩ I2N ∩ J2N ∩K2N )P (G2N ∩H2N ∩ J2N ∩K2N )

=PS(tS(a
2N+1)) (U2N )P (G2N ∩H2N ∩ I2N ∩ J2N ∩K2N ).

Then by [28, Proposition 1.5.10], PS(tS(a
2N+1)) (U2N ) is bounded below by some universal

constant c > 0. Combining this with (4.34), we obtain

P (G2N ∩H2N ∩ I2N ∩ J2N ∩K2N ∩ U2N ) ≥ c exp{−cN(logN)}. (4.35)

Furthermore, following the proof of [33, Proposition 4.6], we obtain that

P (G2N ∩H2N ∩ I2N ∩ J2N ∩K2N ∩ U2N ∩ (L2N )c) ≤ CN exp{−cN2},

where we use (4.31) instead. Combining this with (4.35), we obtain

P (G2N ∩H2N ∩ I2N ∩ J2N ∩K2N ∩ L2N ∩ U2N ) ≥ c exp{−cN(logN)},

which completes the proof. 2

4.1.2 Proof of Proposition 4.1

In the previous subsection, we observed the behavior of U along the LERW starting at the
origin, i.e. the first step of Wilson’s algorithm. Now we consider several events to complete a
lower bound estimate of the upper tail of the volume.

We take yj = (jm,Nm, 0) ∈ Z3, j = 1, · · · , N, and run a simple random walk Ryj started
at yj until it hits UN . Let By(k) be the cube of side-length m centered at yj,k = (jm, km, 0) ∈
Z3. We define τyj (resp. σyj ) to be the first time that Ryj hits By(0) = Bxj (resp. UN ).
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Figure 12: The sets we consider in the event Vyj ∩Wyj

Definition 4.9. Define Vyj to be the intersection of the following events of Ryj :

• {LE(Ryj [0, τyj ]) ⊂
⋃N−1

k=1 By(k)},

• {len(LE(Ryj [0, τyj ])) ≤ (N − 1)mβ},

•
N−1⋂
k=1

{
∀z ∈ B(yj,k, 2λ

−2m), P z
R̃
([0, T

R̃z(yj,k, λ
−3/2m)] ∩ LE(Ryj [0, τyj ] = ∅) ≤ λ−ζ1

}
, where

R̃ is a simple random walk independent of Ryj and ζ1 is as defined in (4.23),

•
⋂N−1

k=1 {B(yj,k, λ
−2m) ⊂ BU (yj,k, λ

−1mβ)},

and define Wyj by

Wyj :=
{
len(LE(Ryj [τyj , σyj ])) ≥ cN(logN)100mβ

}
Lemma 4.10. For each j = 1, 2, · · ·N ,

P yj (Vyj ∩Wyj | AN ) ≥ c exp{−CN(logN)}. (4.36)

Remark 4.11. Since tail bounds for the length of three-dimensional LERW in a general set
have not been obtained, we will apply the tail bound for the length of infinite LERW in a
Euclidean ball given in [39, Theorem 1.4] and [32, Corollary 1.3], instead of regarding γ∞
as a deterministic set. Thus, in order to estimate the conditional probability of Wyj on the
event AN from below, we consider the length cN(logN)100mβ in the right-hand side of the
definition of Wyj , so that P yj (W c

yj ) becomes enough compared to P(AN ).

Proof. Firstly, applying the same argument as Lemma 4.7 and Lemma 4.8, there exists a
universal constant c > 0 such that P yj (Vyj | AN ) ≥ c exp{−cN logN}. Secondly, we will
estimate the upper bound of P yj (AN ∩Vyj ∩W c

yj ). In order to do so, we stop conditioning on

AN and consider LE(Ryj [τyj , σyj ]) as a part of infinite LERW. By [39, Theorem 1.4] and [32,
Corollary 1.3], we have that

P yj (AN ∩ Vyj ∩W c
yj ) ≤ P

(
len(LE(Ryj [τyj , σyj ])) ≥ cN(logN)100mβ

)
≤ exp{−CN(logN)100},
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from which it follows that

P yj (AN ∩ Vyj ∩Wyj ) = P yj (AN ∩ Vyj )− P yj (AN ∩ Vyj ∩W c
yj ) ≥

1

2
P yj (AN ∩ Vyj ),

since P (F0) ≥ c exp{−CN logN} by Lemma 4.8 and Lemma 4.7. Thus, we have

P yj (Vyj ∩Wyj | AN ) ≥ 1

2
P yj (Vyj | AN )

≥ c exp{−cN(logN)},

which completes the proof. 2

Finally we take zj,k = (jm, km,Nm) ∈ Z3, j, k = 1, · · · , N, and run a simple random
walk Rzj,k started at zj,k until it hits UN . Let Bz(l) be the cube of side-length m centered
at zj,k,l = (jm, km, lm) ∈ Z3. We define τzj,k (resp. σzj,k) to be the first time that Rzj,k hits
Bz(0) = By(k) (resp. already constructed subtree of U). Let Vzj,k (resp. Wzj,k) be an event
of Rzj,k which corresponds to Vyj (resp. Wyj ) with x2 axis replaced by x3 axis (see Definition
4.9 for the definition of Vyj and Wyj ). By applying the same argument as Lemma 4.10, we
have that

P zj,k(Vzj,k ∩Wzj,k | AN ∩ Vyj ∩Wyj ) ≥ c exp{−CN(logN)}. (4.37)

Note that Vzj,k ∩Wzj,k is independent of Vyj′ ∩Wyj′ if j ̸= j′.

Corollary 4.12. There exist universal constants c, c′, C, C ′ such that for all m ≥ 1 and
N ≥ 1,

P
(
|BU (0, C

′Nmβ)| ≥ c′(Nm)3
)
≥ c exp{−CN3(logN)}. (4.38)

Proof. Recall that xj = (jm, 0, 0). On the event AN , we have that for all y ∈ B(xj , λ
−2
∗ m),

dU (0, y) ≤ dU (0, xj) + dU (xj , y)

≤ CNmβ + λ−1
∗ mβ

≤ C ′Nmβ

Since each step of Wilson’s algorithm is mutually independent, applying the result of Lemma
4.10 to the “tubes” parallel to x2 axis, we obtain

P

 N⋂
k=0

N⋂
j=1

{
dU (0, y) ≤ CNmβ for all y ∈ B

(
(jm, km, 0), λ−2

∗ m
)}

≥ P(AN )
N∏
j=1

P yj (Vyj ∩Wyj | AN )

≥ c exp{−CN2(logN)}.
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Next, we consider the “tubes” parallel to x3 and we have

P

 N⋂
l=0

N⋂
k=0

N⋂
j=1

{
dU (0, y) ≤ CNmβ for all y ∈ B

(
(jm, km, lm), λ−2

∗ m
)}

≥ c exp{−CN2(logN)}
N∏
k=1

N∏
j=1

P zj,k
(
Vzj,k ∩Wzj,k | AN ∩ Vyj ∩Wyj

)
≥ c exp{−CN3(logN)},

where we applied (4.37) in the last inequality. Finally, comparing the left-hand side of the
above inequality and (4.38), we obtain (4.38). 2

Proof of Propositon 4.1. Setting r = C ′Nmβ and λ = c′N3(β−1)/β/C ′3/β in (4.38) yields the
result at (4.1). 2

Theorem 4.13. P-a.s.,

lim sup
r→∞

(log log r)−(β−1)/βr−3/β |BU (0, r)| = ∞. (4.39)

Proof. We will begin with defining a sequence of scales. Fix ε > 0 and let

Di = ei
2
, mi = Di/ε(log i)

1/3.

We now run Wilson’s algorithm. Let γ∞ be the infinite LERW started at the origin and
let (Sz)z∈Z3 be the family of independent SRW which is also independent of γ∞. At stage
i (i ≥ 1), we use all the vertices in B∞(0, Di) which have not already been contained and
write Ui for the tree obtained.

By [1, Proposition 4.1], there exists M > 0 such that the event

B∞(0, Di) ⊂ BU (0, i
MDβ

i ) ⊂ B∞(0, i2MDi) (4.40)

occurs with probabilty greater than 1 − ci−2. Hence, if we run Wilson’s algorithm for the
vertices contained in B∞(0, Di) taking γ∞ as the root, then the probability that Ui leaving
B∞(0, i2M ) is less than cλ−2. By applying the Borel-Cantelli lemma, we obtain that

Ui ⊂ B∞(0, i2MDi) ⊂ B∞(0,mi+1/2) (4.41)

for large i, almost-surely. Moreover, from (4.40), we may also assume that

dU (0, z) ≤ iMDβ
i ≤ mβ

i+1 for all z ∈ Ui (4.42)

almost-surely.
Define the event F (i) to be the event that both (4.41) and (4.42) hold. Let Fi be the

σ-field generated by the followings:

• γ∞[0, τB∞(0,i2MDi
)],

• All simple random walks added to Ui−1 at stage i,

38



where τA represents the first exiting time from A.
Now we bound the probability that the subtree Ui+1 obtained at stage i+ 1 also satisfies

the diameter estimate and the inclusion corresponding to (4.41) conditioned that F (i) holds.
We define an event G(i) by

G(i) = {|γ∞[0, τB∞(0,mi)]| ≤ mβ
i } ∩Aε(log i)1/3 ∩

ε(log i)1/3⋂
j=1

Vyj ∩Wyj


∩

ε(log i)1/3⋂
k=1

ε(log i)1/3⋂
j=1

Vzj,k ∩Wzj,k

 ,

where replace the scales m and N by mi and ε(log i)1/3, respectively. See (4.32) and Definition
4.9 for the definition of the events AN , Vyj ∩Wyj and Vzj,k ∩Wzj,k .

For A ⊂ Z3, let
τ ′A = sup{i : γ∞(i) ∈ A},

be the last time that γ∞ exits from A and recall that τA indicates the first exiting time. Then,
by [35, Proposition 4.6], γ∞[0, τB∞(0,i2MDi

)] and γ∞[τ ′
B∞(0,i4MDi)

,∞) is “independent up to

constant”, i.e. there exists a universal constant C > 0 such that for any i and any possible
paths η1, η2,

P(γ∞[0, τB∞(0,i2MDi)] = η1, γ∞[τ ′B∞(0,i4MDi)
,∞) = η2)

≥ CP(γ∞[0, τB∞(0,i2MDi)] = η1)P(γ∞[τ ′B∞(0,i4MDi)
,∞) = η2). (4.43)

Let γ̂∞ = γ∞[τB∞(0,i2MDi), τB∞(0,i4MDi)]. Then,

P(G(i+ 1) | Fi)

≥ P

Aε(log(i+1))1/3 ∩

ε(log(i+1))1/3⋂
j=1

Vyj ∩Wyj

 ∩

ε(log(i+1))1/3⋂
k=1

ε(log(i+1))1/3⋂
j=1

Vzj,k


−P(|γ̂∞| ≥ mβ

i+1 | Fi). (4.44)

By Corollary 4.12, we have that the first term of (4.44) is bounded below by Ci−cε3 .
For the second term of (4.44), we first consider the diameter of γ̂∞.
Let θ1 = {θ1(0), · · · , θ1(k)} be a path which satisfies

θ1(0) ∈ ∂iB∞(0, i6MDi), θ1(k) ∈ ∂iB∞(0, i4MDi), θ1(1), · · · , θ1(k − 1) ∈ B∞(0, i4MDi)
c,

and θ2 = {θ2(0), · · · , θ2(l)} be a path in B∞(0, i2MDi) which satisfies θ2(0) = 0 and θ2(l) ∈
∂iB∞(0, i2Mdi). Let X be a random walk on Z3 started at z ∈ ∂iB(0, i6MDi) and conditioned
not to hit θ2. We define σ to be the first hitting time of B∞(0, i4MDi). Then by calculation
of conditional probability, we have that

P z(X[0, σ] = θ1) =
P z(S[0, σ] = θ1, S[σ,∞) ∩ θ2 = ∅)

P z(S[0,∞) ∩ θ2 = ∅)

= P z(S[0, σ] = θ1)
P θ1(k)(R[0,∞) ∩ θ2 = ∅)

P z(S[0,∞) = ∅)
,

(4.45)
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where we applied the strong Markov property for the second equality. Since θ2 is included
in B∞(0, i2MDi), it follows from [28, Proposition 1.5.10] that there exists some universal
constant C > 0 such that for any θ1 and θ2,

1

C
≤ P z(X[0, σ] = θ1)

P z(S[0, σ] = θ1)
≤ C.

Thus, we have

P (γ̂∞ ∩B∞(0, i6MDi) ̸= ∅) ≤ max
z∈∂iB(0,i6MDi)

P (X[0,∞) ∩B∞(0, i4MDi) ̸= ∅)

≤ C max
z∈∂iB(0,i6MDi)

P (S[0,∞) ∩B∞(0, i4MDi) ̸= ∅).

By applying [28, Proposition 1.5.10] again, we obtain that

P (γ̂∞ ∩B∞(0, i6MDi) ̸= ∅) ≤ Ci−2M . (4.46)

On the other hand, we have that

P (γ̂∞ ∩B∞(0, i6MDi) = ∅, |γ̂∞| ≥ mβ
i+1 | Fi)

≤
P (γ̂∞ ∩B∞(0, i6MDi) = ∅, |γ̂∞| ≥ mβ

i+1)

P (|γ∞[0, τB∞(0,i2MDi)]| ≤ mβ
i )

By applying Lemma 4.8, the denominator is bounded below by

P (|γ∞[0, τB∞(0,i2MDi)]| ≤ mβ
i ) ≥ P (Aε(log i)1/3) ≥ i−cε3 .

For the numerator, now we stop conditioning on Ui and consider γ̂∞ as a subset of the infinite
LERW started at the origin. Thus, again by [39, Theorem 1.4] and [32, Corollary 1.3], we
have that

P (γ̂∞ ∩B∞(0, i6MDi) = ∅, |γ̂∞| ≥ mβ
i+1) ≤ P (|γ∞[0, τB∞(0,i6MDi)]| ≥ mβ

i+1)

≤ Ce−2i.

It follows from the above inequalities that

P (γ̂∞ ∩B∞(0, i6MDi) = ∅, |γ̂∞| ≥ mβ
i+1 | Fi) ≤ Cicε

3
e−2i. (4.47)

Substituting (4.46) and (4.47) into (4.44) yields

P (G(i+ 1) | Fi) ≥ Ci−cε3 , (4.48)

from which it follows that

P(G(i+ 1) | Fi) ≥ P(G(i+ 1) | Fi)1F (i)

≥ exp{−c(Di+1/mi+1)
3 log(Di+1/mi+1)} − Ci2M

≥ i−cε3

for large i. Since G(i) is Fi-measureable, it follows from the conditional Borel-Cantelli lemma
that G(i) occurs infinetely often, almost-surely. Note that on G(i) we have that

|BU (0, C
′Dim

β−1
i )| ≥ c′D3

i .

Finally, the reparameterization ri = C ′Dim
β−1
i yields the result. 2
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Figure 13: An example of three-dimensional spiral

4.2 Lower volume fluctuations and resistance estimate

In this section, we prove bounds for the volume and effective resistance which are key ingre-
dients of the proof of upper fluctuations for the heat kernel.

4.2.1 Lower volume fluctuations

In this subsection, we prove (1.8), lower volume fluctuations of log-logarithmic magnitude in
Theorem 4.22. Recall that β is the growth exponent of the three-dimensional LERW and BU
indicates intrinsic balls in the three-dimensional UST U on a probability space (Ω,F ,P).

Proposition 4.14. There exist c6, c7 > 0 such that for all λ > 0 and r ≥ 1,

P(|BU (0, r)| ≤ λ−1r3/β) ≥ c6 exp{−c7λ
β/(3−β) log λ}. (4.49)

Remark 4.15. See [1, Theorem 5.1] for an exponential upper bound for the probability in
the left-hand side of (4.49).

Here we follow the idea of [5], Section 3 and 4 again. Recall that γ∞ is the infinite LERW
started at the origin as the first step of Wilson’s algorithm. For the result at (4.49), we
will take a similar approach to the previous section, in which we construct the UST U by
Wilson’s algorithm in a collection of small boxes. We consider a rectangular prism of side-
length (2N −1)m, (2N −1)m, 2Nm as a collection of 2N(2N −1)2 small boxes of side-length
m. We let the origin be located at the center of one of the two boxes closest to the center of
the large rectangular prism. Let π be a sequence of boxes that starts at the one containing
the origin and spirals outwards.

Now we describe an example of how to construct such a spiral inductively. In the case of
N = 1, we start at the box containing the origin and then move to the other one. Without
loss of generality, we can let the latter cube be centered at (0, 0,m) and π go upwards. In the
case of N = 2 (also see Figure 13), we first continue to move upwards to the box centered at
(0, 0, 2m) and spiral outwards in the upper face of the cube. Then we spiral down along the
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side of the cube. Finally, we spiral inwards the lower face of the cube and end up with the
box centered at (0, 0,−m). Suppose that we have constructed the spiral up to the N -th step.
If N is odd, the last step ended up with the box centered at (0, 0, Nm), therefore we move to
the box centered at (0, 0, (N +1)m) and continue in the same procedure as the previous case
(N = 2). If N is even, the last step ended up with the box centered at (0, 0,−(N − 1)m),
therefore we first move to the box centered at (0, 0,−Nm) and spiral outwards the lower face
of the cube, spiral up along the side of the cube and then spiral inwards in the upper face of
the cube.

Remark 4.16. Note that the following argument can be applied to any spiral π which step
by step goes outwards without getting close to the origin.

To prove Proposition 4.14, we consider several events similar to those which we considered

in the previous section. Let {xj}2N(2N−1)2

j=1 be a sequence of the center of the boxes in the π,

i.e. π = {Bxj}
2N(2N−1)2

j=1 , where Bxj = B∞(xj ,m/2). Now we define some events for the SRW
S started at the origin. By linear interpolation, we may assume that S[0,∞) is a continuous
curve in R3.

Definition 4.17. For j = 1, 2, · · · , 2N(2N−1)2, let Qj be the face of Bxj which is the closest

to xj+1 and let wj ∈ R3 be the center of Qj. Then we define Q̃j by

Q̃j = Qj ∩B∞(wj ,m/4),

a subset of the face Qj which is not too close to its edges. For a > 0, b ≥ 0, we define

Qj [−a,−b] = {y ∈ Bxj : b ≤ dE(y,Qj) ≤ a},
Qj(−a) = {y ∈ Bxj : dE(y,Qj) = a},

Rj = Qj(−m/2) ∩ (B(xj ,m/8)c ∪B(xj ,m/10)).

For a continuous surve in R3 and a ∈ R, we define

tλ(Qj(a)) = inf{k ≥ 0 : λ(k) ∈ Qj(a)}.

The sets Q̃j , Qj [−a,−b], Qj(−a) and Rj we defined above correspond to the idea of

Q̃(aj+1), Q[aj+1 − a, aj+1 − b], Q(aj+1 − a) and Rj , which we defined in Definition 4.3 in
Subection 4.1.1, respectively.

Now we define some events for the SRW S. Let q = m/N and

A′
1 = {tS(Q1(0)) < ∞, S (tS(Q1(0))) ∈ Q̃1, S[tS(Q1(−q)), tS(Q1(0))] ∩Q1(−2q) = ∅},

A′
j = {tS(Qj−1(0)) < tS(Qj(0)) < ∞, S (tS(Qj(0))) ∈ Q̃j ,

S[tS(Qj−1(0)), tS(Qj(0))] ⊂ Qj−1[−q, 0] ⊂ Bxj \Rj ,

S [tS(Qj(−q)), tS(Qj(0))] ⊂ Qj [−2q, 0]}, for j ≥ 2. (4.50)

Note that the event A1 (resp. Aj , j ≥ 2) is measurable with respect to S[0, tS(Qj(0))]
(resp. S[tS(Qj−1(0)), tS(Qj(0))]).

We set

G′
j =

j⋂
k=1

A′
k.

Now we define a cut time for S.
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Figure 14: The sets defined in Definition 4.17 Figure 15: Definition of the event A′
j

Figure 16: Example of nice cut point in Bxj

Definition 4.18. Suppose that the event A′
j defined in (4.50) occurs. For each j ≥ 2, we call

k is a nice cut time in Bxj if it satisfies the four conditions in Definition 4.4 with tS(aj + b)
replaced by tS(Qj(b)) for b ∈ R.

If k is a nice cut time in Bxj , then we call S(k) a nice cut point in Bxj .

We define events B′
j by

B′
j = {S has a nice cut point in Bxj}, (4.51)

for each j ≥ 2. Note that event B′
j is measurable with respect to S[tS(Qj−1(0)), tS(Qj(0))].

We define

H ′
j =

j⋂
k=2

B′
k.

The events A′
j and B′

j correspond to the idea of the events Aj and Bj , which we defined
in Section 4.1.1 to estimate an upper fluctuation of the volume of the three-dimensional UST.

Now we consider the length and the hittability of the loop erasure of S. Suppose that the
event G′

j ∩H ′
j occurs and let kj be a nice cut time in Bxj . We set

ξ′′j = LE(S[0, tS(Qj(0))]) for j ≥ 1,

λ′
j = LE(S[kj , tS(Qj(0))]) for j ≥ 2,
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Figure 17: The sets and the points we consider in the events E′
j and F ′

j

and let

sj = inf{k ≥ 0 : ξ′′j−1 ∈ S[tS(Qj−1(0)), tS(Qj(0))]},
tj = sup{tS(Qj−1(0)) ≤ k ≤ tS(Qj(0)) : S(k) = ξ′′j−1(sj)},
uj = inf{k ≥ 0 : λ′

j(k) ∈ Qj [−q, 0]},

for j ≥ 2. Then we have

ξ′′j = ξ′′j−1[0, sj ]⊕ LE(S[tj , kj ])⊕ LE(S[kj , tS(Qj(0))]) ⊃ ξ′′j−1[0, sj ] ∪ λ′
j ,

and therefore,
ξj [0, sj+1] ⊃ ξ′′j−1[0, sj ] ∪ λ′

j [0, uj ],

on the event G′
j ∩ H ′

j . Thus, in order to bound the length of ηj from below, we need to
estimate the length of λ′

j [0, uj ]. For j ≥ 2 and C > 0, we define the event E′
j(C) by

E′
j = E′

j(C) = {len(λ′
j [0, uj ]) ≥ Cmβ}. (4.52)

Moreover, we define the event F ′
j(η) for the hittability of λ′

j for j ≥ 2 by

F ′
j = F ′

j(η) = {P xj (λ′
j ∩ (Rxj [0, TRxj (2m/5)]) ̸= ∅) ≥ η}, (4.53)

where P z indicates the law of Rz, the simple random walk started at z independent of S.
The next lemma is an analog of Lemma 4.6, which gives a lower bound on the probability

that the events as defined above occur simultaneously.

Lemma 4.19. Let P be the law of S. There exist universal constants 0 < η∗, c∗ < ∞ such
that

P (A′
1) ≥ c∗

and for all j ≥ 2,
min
x∈Q̃j

P x(A′
j ∩B′

j ∩ E′
j(c

∗) ∩ F ′
j(η

∗)) ≥ c∗N−2. (4.54)

44



Proof. Similarly to the proof of Lemma 4.6, it suffices to show that for a fixed constant c,
there exists a universal constant c′ such that P x(E′

2(c
′) | A′

2) ≥ c holds uniformly in x ∈ Q̃1.
We consider a small box B∞(x2,m/6) of side-length m/3, which is included in Bx2 . Let I
be the number of points lying in both λ′

2 and B∞(x2,m/6). Then by [39, Lemma 8.9], there
exists a universal constant c′ such that

P x(I ≥ c′mβ | A′
2) ≥ c.

Since |len(λ′
2[0, u2])| ≥ I, we have that

P x(|λ′
2[0, u2]| ≥ c′mβ | A′

2) ≥ c,

uniformly in x ∈ Q̃1, which completes the proof. 2

For j = 1, 2, · · · , L(lN ), let M ′
j(λ) be an event defined by

M ′
j(κ) = {B(xj , κ

−2m) ⊂ BUN (xj , κ
−1mβ}.

Let c∗ be a constant which satisfies (4.54). By the same argument as Lemma 4.7, there exists
some constant κ∗ > 0 depending only on c∗ such that

P
(
M ′

j(κ∗)) | A′
j ∩B′

j ∩ E′
j(c∗) ∩ F ′

j(η∗)
)
≥ c∗. (4.55)

We set I ′j =
⋂j

k=2 I
′
k(κ∗) for κ∗ defined in (4.55).

Let J ′
j =

⋂j
k=2E

′
k(c

∗) and K ′
j =

⋂j
k=2 F

′
k(η

∗) for c∗ and η∗ defined in Lemma 4.19. We
define

U ′
N =

{
S(TS(R(N))) ∈ {(y1, y2, y3) ∈ R3 : y1 ≥ 4

5
R(N)},

S[tS(Q4N(4N−1)2), TS(R(N))] ∩B

(
0, 3

(
N − 1

2

))
= ∅
}
, (4.56)

where R(N) = exp{2eRN2
+ 1} and set

BN = G′
2N(2N−1)2 ∩H ′

2N(2N−1)2 ∩ I ′2N(2N−1)2 ∩ J ′
2N(2N−1)2 ∩K ′

2N(2N−1)2 ∩ U ′
N . (4.57)

Then by the same argument as Lemma 4.8, we obtain the following lemma.

Lemma 4.20. There exists a universal constant c8 > 0 such that

P (BN ) ≥ c−1
8 exp{−c8N

3(logN)}. (4.58)

On the event BN , the first LERW γ∞ in Wilson’s algorithm moves through the spiral π
and its length up to the j-th box is bounded below by Cjmβ .

Lemma 4.21. There exist universal constants c, c′, C such that for all m ≥ 1,

P

(
BU

(
0, cN3mβ

)
⊂ B∞

(
0,

2

3
Nm)

))
≥ C exp{−c′N3(logN)}. (4.59)
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Figure 18: Definition of the event U ′
N

Once we prove the above lemma, we will obtain Proposition 4.14 as follows.

Proof of Propositon 4.14. It follows from (4.59) that

P

(∣∣∣BU

(
0, cN3mβ

)∣∣∣ ≤ 8

27
N3m3

)
≥ C exp{−c′N3(logN)}.

Reparameterizing r = cN3mβ and λ = 27
8 c

3/βN9/β−3 yields the result at (4.49). 2

Proof of Lemma 4.21. We may assume that m is sufficiently large for the same reason as [1,
Proposition 4.1].

We first take a sequence of subsets of Z3 including the boundary of B(0, (2N − 1)m/3).
For each k ≥ 1, let εk = N−4/32−k−10, ηk = (15k)−1 and

Ak = B∞

(
0,

(
2

3
+ ηk

)
(2N − 1)

m

2

)
\B∞

(
0,

(
2

3
− ηk

)
(2N − 1)

m

2

)
.

We let Dk ⊂ Z3 be a subset of Ak such that Ak ⊂
⋃

z∈Dk
B(z, (2N − 1)mεk) and we suppose

that |Dk| ≤ Cε−3
k . Write k0 for the smallest integer satisfying (2N − 1)mεk0 < 1. Note

that for sufficiently large m, both the inner and outer boundary of B∞(0, 13(2N − 1)m) are
contained in Ak0 . Moreover, we have ∂iB∞(0, 13(2N − 1)m) ⊂ Dk0 by the definition of k0.

We begin with performing Wilson’s algorithm in
⋃2N(2N−1)2

j=1 Bxj . Let UN
0 be the subtree of

the UST constructed in the event BN . Then we follow the same construction of the sequence
of subtrees UN

1 ,UN
2 , · · · ,UN

k0
as (i)-(iv) in the proof of Lemma 4.7 and end up with the subtree

UN , which contains all points in
⋃2N(2N−1)2

j=1 B(xj ,m/2).
Next, we consider the hittability of branches in the constructed subtree. We take z ∈ D1,

then there exists j ∈ [1, 2, · · · , 2N(2N − 1)2] such that z ∈ Bxj . Let τBj be the first hitting
time of B(xj , λ

−2m) and σQj be the first exiting time of B∞(xj , 3m/2) by Rz, a simple random
walk started at z and independent of S. Then by [28, Proposition 1.5.10], there exists some
p > 0 such that for all j ≥ 1 and z ∈ Bxj

P z(σQj < τBj ) ≤ p, (4.60)
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holds. We define the event L(1, z) by

L(1, z) = {γUN (z,∞) exits the cube B∞(z,Nm/100) before hitting the subtree UN
0 },

for z ∈ D1 and suppose that L(1, z) occurs, where γUN (y,∞) stands for the unique infinite
path of the subtree UN started at y. Then the event {σQj < τBj} occurs and by (4.60) its
probability is smaller than p. By iteration, the number of boxes of side-length 3m/2 that
Rz exist before hitting UN

0 is larger than N/200. Hence, by the strong Markov property, it
follows that

P(L(1, z)) ≤ pN/200,

for all z ∈ D1. Since |D1| ≤ Cε−3
1 , we have that

P

 ⋂
z∈D1

L(1, z)c

 ≥ 1−N4pN/200.

We next define the event that guarantees the hittability of branches of UN
k starting at

z ∈ Dk. For k ≥ 1 and x ∈ Dk, let

I ′(k, x, ζ)

=
{
P y
R

(
R
[
0, TRy(y, (2N − 1)mε

1/2
k )

]
∩ (UN

0 ∪ γUN (x,UN
0 ))

)
≤ εζk for all y ∈ B(x, (2N − 1)mεk)

}
.

(4.61)

and I ′(k, ζ) =
⋂

x∈Dk
I ′(k, x, ζ). Again by [37, Lemma 3.2], there exist universal constants

ζ3 > 0 and C < ∞ such that for all k ≥ 1, m ≥ 1, and x ∈ Dk,

PUN (I ′(k, x, ζ3)
c) ≤ Cε5k.

Combining this with |Dk| ≤ Cε−3
k yields that

PUN (I ′(k, ζ3)
c) ≤ Cε2k.

We finally define an event L(k, z) for k ≥ 2 and z ∈ Dk by

L(k, z) = {γUN (z,∞) exits B(z, (2N − 1)mε
1/3
k−1) before hitting UN

k−1},

and set M1 := BN ∩ (
⋂

z∈D1
L(1, z)c)∩ I ′(1, ζ3) and Mk := Mk−1 ∩ (

⋂
z∈D1

L(1, z)c)∩ I ′(k, ζ3)
inductively for k ≥ 2. Suppose that the event Mk−1 occurs. The number of balls of radius

(2N − 1)mε
1/2
k−1 that Rz exits before hitting UN

k−1 is larger than ε
−1/6
k−1 . By the strong Markov

property, it holds that

P z(Rz exits B(z, (2N − 1)mε
1/3
1 ) before it hits UN

k−1) ≤ ε
cζ3ε

−1/6
k−1

k−1 ,

for some universal constant c > 0. Since |Dk| ≤ Cε−3
k , we have that

P

 ⋂
z∈Dk

L(k, z)c

∣∣∣∣∣∣Mk−1

 ≥ 1− Cε−3
k ε

cζ3ε
1/6
k−1

k−1 , (4.62)
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It follows from the argument above that

P(M1 | BN ) ≥ 1−N−8/3,

and
P(Mk | Mk−1) ≥ 1− Cε2k.

Hence we can conclude that

P(Mk0 | BN ) = P(M1 | BN )

k0∏
k=2

P(Mk | Mk−1) ≥ (1−N−8/3)
∞∏
k=1

(1− Cε2k) ≥ 1− CN−8/3.

On the event Mk0 , for all y ∈ UN ,

dE(y,D1) ≤
Nm

100
+

k0∑
k=2

(2N − 1)mε
1/6
k ≤ Nm

100
+ (2N − 1)m

k0∑
k=2

ε
1/6
k ≤ Nm

50
,

i.e. γU (y, 0) hits the subtree UN
0 before it exits the ball centered at y of radius Nm/50. Hence

we have

dE(0, y) ≥ dE(0, D1)−
Nm

50
≥ 11

20
(2N − 1)m.

Since ∂iB∞(0, 13(2N − 1)m) ⊂ Dk0 , γU (z, 0) hits UN
k0

before entering B∞(0, 1120(2N − 1)m) for

all z ∈ B∞(x, 13(2N−1)m). By the definition of the spiral π, it follows that on the event Mk0 ,

z ∈ B∞

(
0,

1

3
(2N − 1)m

)c

=⇒ dU (0, z) ≥ CN

(
N − 1

2

)2

mβ

for some universal constant c, i.e. BU (0, cN(N − 1
2)

2mβ) ⊂ B∞(0, 13(2N − 1)m). By taking
N sufficiently large, we obtain (4.59) for some universal constant c′. 2

Theorem 4.22. P-a.s.,

lim inf
r→∞

(log log r)(3−β)/βr−3/β |BU (0, r)| = 0. (4.63)

Proof. Similarly to the proof of upper volume fluctuation in Theorem 4.13, we begin with
defining a sequence of scales by

Di = ei
2
, mi = Di/ε(log i)

1/3.

Let γ∞ be the infinite LERW started at the origin and (Sz)z∈Z3 be the family of independent
SRW which is also independent of γ∞. Then by the same argument as obtaining (4.41) and
(4.42),

Ui ⊂ B∞(0, i2MDi) ⊂ B∞(0,mi+1/2), (4.64)

dU (0, z) ≤ iMDβ
i ≤ mβ

i+1 for all z ∈ Ui, (4.65)

holds for large i, almost-surely.
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We define an event H(i) by

H(i) =
i⋂

j=1

Bε(log j)1/3 ,

where the event BN is as defined in (4.57) and at each stage i we rescale by m = mi and
N = ε(log i)1/3. Then by (4.43), i.e. the “independence up to constant” of γ∞, there exists a
universal constant C > 0 such that for any i,

P(H(i+ 1) | Fi) ≥ P(H(i+ 1) | Fi)1H(i)

≥ CP
(
Bε(log(i+1))1/3

)
≥ Ci−cε3 ,

where the last inequality follows from (4.58). Note that on H(i) we have that

|BU (0, cD
3
im

β−3
i )| ≤ 8

27
D3

i .

Finally, the reparameterization ri = cD3
im

β−3
i yields the result. 2

4.2.2 Estimates for effective resistance

In order to demonstrate upper heat kernel fluctuations, we need to estimate the effective
resistance of balls in the three-dimensional uniform spanning tree. See (2.5) for the definition
of effective resistance.

Suppose that the event BN defined in (4.58) occurs. We give estimates for bounds of the
volume and a lower bound of the effective resistance of UST on the event BN .

Proposition 4.23. There exists some universal constant 0 < c9, c10, c, C < ∞ and the event
M̃N with P(M̃N ) ≥ c9 exp{−c10N

3 logN} such that on M̃N , the followings hold :

|BU (0, N
3mβ)| ≤ 1

4
N3m3,

|BU (0, CN3mβ/(logN)300)| ≥ cN3m3/(logN)300,

Reff(x,BU (0, N
3mβ)) ≥ cN3mβ/(logN)300 for all x ∈ BU (0, cN

3mβ/(logN)300). (4.66)

We will apply [24, Proposition 3.2] to bound the heat kernel on U from above. To do so,
we need to estimate (i) upper bound of the volume of an intrinsic ball BU (0, N

3mβ), (ii) lower
bound of the volume of a smaller ball BU (0, εN

3mβ) where ε is some small constant and (iii)
lower bound of the effective resistance between x ∈ BU (0, εN

3mβ) and the boundary of the
ball BU (0, N

3mβ), which correspond to the three inequalities above.

Proof. We set lN = N/(logN)100 and L(k) = 2k(2k − 1)2. Let S be the SRW started at the
origin and recall that events A′

j , B
′
j , E

′
j , F

′
j and U ′

N are as defined in (4.50), (4.51), (4.52),
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Figure 19: The unlike event which we consider in Proposition 4.23. To bound the effective resis-
tance from below, we need to consider two properties: (i) paths started at a point in
BU (0, N

3mβ)c do not enter a smaller ball BU (0, N
3mβ/(logN)300) and (ii) paths branch-

ing from γ∞ at a point close to the origin have limited length.

(4.53) and (4.56), respectively. We define events BN
(1) and BN

(2) by

BN
(1) =

L(lN )⋂
j=1

(
A′

j ∩B′
j ∩ E′

j ∩ F ′
j ∩ {B(xj , λ

−2m) ⊂ BU (xj , λ
−1mβ)}

)
,

BN
(2) =


L(N)⋂

j=L(iN )+1

(
A′

j ∩B′
j ∩ E′

j ∩ F ′
j ∩ {B(xj , λ

−2m) ⊂ BU (xj , λ
−1mβ)}

) ∩ U ′
N .

It follows from the same argument as Lemma 4.21 that

P(BN
(1)) ≥ C exp{−cN3(logN)−299}, (4.67)

P(BN
(2)) ≥ C exp{−cN3(logN)}, (4.68)

for some constants C, c > 0. Note that (logN)−299 in the lower bound of P(BN
(1)) is the result

of the number of small boxes lN . We need this term to avoid the competition between P(BN
(1))

and a bound for the probability that UST paths branching from γ∞ near the origin do not
have a large length.

Suppose that the event BN
(1) ∩ BN

(2) occurs. Then the occurence of
⋂L(N)

j=1 A′
j guarantees

that the part of S after exiting the L(lN )-th box BxL(lN )
does not go back into

⋂L(lN )−1
j=1 Bxj .

In particular, LE(S[0, tS(QL(lN )(0))]) and LE(S[0, tS(QL(N)(0))]) restricted to
⋂L(lN/2)

j=1 Bxj

are exactly the same on BN
(1) ∩BN

(2), where tλ(Qj(a)) is as defined in Definition 4.17.

For each k ≥ 1, let εk = N−4/32−10−k, ηk = (30k)−1 and

Ak = B

(
0,

(
1

3
+ ηk

)
lNm

)
\B

(
0,

(
1

3
− ηk

)
lNm

)
.

Write k0 for the smallest integer satisfying lNmεk < 1. Now we take a “εk-net” of Ak, i.e. let
Dk be a set of lattice points in Ak such that

⋃
z∈Dk

B (z, lNmεk) with |Dk| ≤ Cε−3
k .
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Now we perform Wilson’s algorithm in
⋃L(N)

j=1 Bxj to obtain the subtree UL(N)
k0

in the same

procedure as we did in Lemma 4.21. Note that UL(N)
0 is the union of the infinite LERW

γ∞ started at the origin and balls BU (xj , λ
−1mβ) constructed in the event I ′2N(2N−1)2 . For

z ∈ UL(N)
k0

, let γUL(N)(x,∞) be the unique infinite path in UL(N)
k0

starting at z. We set
Cp = 5 logN/ log(1/p) where p be as defined in (4.60). For z ∈ D1, we define the event

L̃(1, z) by

L̃(1, z) =
{
LE(Sz[0, τ(UL(N)

0 )]) ̸⊂ B (z, Cpm)
}
∪
{
|γUL(N)(z,UL(N)

0 )| ≥ N3

(logN)10
mβ

}
.

Then

P
(
L̃(1, z)

∣∣∣ BN
(1) ∩BN

(2)

)
≤ P

(
|LE(Sz[0, τ(UL(N)

0 )])| ≥ N3

(logN)10
mβ , LE(Sz[0, τ(UL(N)

0 )]) ⊂ B (z, Cpm)

∣∣∣∣ BN
(1) ∩BN

(2)

)
+P

(
LE(Sz[0, τ(UL(N)

0 )]) ̸⊂ B (z, Cpm)
∣∣∣ BN

(1) ∩BN
(2)

)
. (4.69)

Since both of the events we consider in the right-hand side of (4.69) are independent of BN
(2),

we can omit the condition on BN
(2) from the conditional probabilities on the right-hand side.

For the first term, we stop conditioning on BN
(1) and consider γUL(N)(z,∞) as the infinite

LERW started at z. Then it follows from [39, Theorem 1.4] and [32, Corollary 1.3] that for
some universal constants C > 0 and c > 0,

P z

(
|LE(Sz[0, τ(UL(N)

0 )])| ≥ N3

(logN)10
mβ , LE(Sz[0, τ(UL(N)

0 )]) ⊂ B (z, Cpm)

∣∣∣∣ BN
(1) ∩BN

(2)

)

≤
P z
(
|LE(Sz[0, τ(UL(N)

0 )])| ≥ N3mβ/(logN)10, LE(Sz[0, τ(UL(N)
0 )]) ⊂ B (z, Cpm)

)
P
(
BN

(1)

)
≤ C exp{−cN3(logN)−10−β},

where the last inequality follows from (4.67). On the other hand, by the independence, the

strong Markov property and the hittability of UL(N)
0 ,

P z
(
LE(Sz[0, τ(UL(N)

0 )]) ̸⊂ B (z, Cpm)
∣∣∣ BN

(1) ∩BN
(2)

)
≤ p−Cp = N−5.

Thus, we obtain that

P
(
L̃(1, z)

∣∣∣ BN
(1) ∩BN

(2)

)
≤ N−5. (4.70)

Next, we consider events that guarantee the hittability of each branch in UL(N)
k . For ζ > 0,

we define an event Ĩ(k, x, ζ) by

Ĩ(k, x, ζ)

=
{
P y
R

(
R
[
0, TRy(y, lNmε

1/2
k )

]
∩ (UL(N)

0 ∪ γUL(N)(x,UL(N)
0 )) = ∅

)
≤ εζk

for all y ∈ B(x, lNmεk)
}
. (4.71)
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and let Ĩ(k, ζ) =
⋂

x∈Dk
Ĩ(k, x, ζ). Then by [37, Lemma 3.2], there exist universal constants

ζ4 > 0 and C < ∞ such that for all k ≥ 1, m ≥ 1, and x ∈ Dk,

P(Ĩ(k, x, ζ4)) ≥ 1− Cε5k,

which combined with |Dk| ≤ Cε−3
k yields

P(Ĩ(k, ζ4)) ≥ 1− Cε2k. (4.72)

Finally, let

L̃(k, z) =
{
γUL(N)(z,∞) exits B

(
z, lNmε

1/3
k−1

)
before hitting UL(N)

k−1

}
∪
{∣∣∣γUL(N)(z,UL(N)

k−1 )
∣∣∣ ≥ ε

1/5
k

N3

(logN)10
mβ

}
, (4.73)

be the event for the length of the attached branch for each k ≥ 2 and z ∈ Dk. We set
M̃1 = BN

(1) ∩ BN
(2) ∩ Ĩ(1, ζ4) ∩ (

⋂
z∈D1

L̃(1, z)c) and M̃k = M̃k−1 ∩ Ĩ(k, ζ4) ∩ (
⋂

z∈Dk
L̃(k, z)c)

inductively for k = 2, 3, · · · , k0.
Since |D1| ≤ CN4, it follows from (4.70) that

P(M̃1) ≥ (1−N−1) exp{−cN3(logN)}.

By applying the argument for (4.62) again, we have that,

P

(
γUL(N)(z,∞) exits B

(
z,

N

(logN)100
mε

1/3
k−1

)
before hitting UL(N)

k−1

∣∣∣∣ M̃k−1

)
≤ Cε−3

k−1ε
cζ4ε

−1/6
k−1

k−1 .

Again we stop conditioning on M̃1 and consider γUL(N)(z,∞) as the infinite LERW started at
z. By [39, Theorem 1.4] and [32, Corollary 1.3],

P(L̃(2, z) | M̃1)

≤P

({
γUL(N)(z,UL(N)

1 ) ⊂ B
(
z, lNmε

1/3
1

)}
∩
{∣∣∣γUL(N)(z,UL(N)

1 )
∣∣∣ ≥ ε

1/5
1

N3

(logN)10
mβ

}
| M̃1

)
+ Cε−3

1 ε
cζ4ε

−1/6
1

1

≤exp{−ε
−cβ/3+1/4
2 · ε−1/20

2 ·N3−β(logN)99}
P(M̃1)

+ Cε−3
1 ε

cζ4ε
−1/6
1

1

≤ exp{−ε
−1/12
2 N3(logN)99}.

Combining this with (4.72), we obtain

P(M̃2 | M̃1) ≥ 1− Cε22,
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and by iteration, we have that P(M̃k | M̃k−1) ≥ 1− Cε2k. Hence we can conclude that

P(M̃k0) = P(M̃1)

k0∏
k=2

P(M̃k | M̃k−1)

≥ (1−N−1) exp{−cN3 logN}
∞∏
k=1

(1− Cε2k)

≥ C exp{−cN3 logN},

for some universal constant C,c > 0. On the event M̃k0 , we have that there exists some univer-
sal constant C > 0 such that for all z ∈ ∂iB(0, Nm/3(logN)100), dU (0, z) ≤ CN3mβ/(logN)10

holds.
Once we construct UL(N)

k0
, we proceed with Wilson’s algorithm. This time, in the same

argument as for (4.28), we have that conditioned on M̃k0 , with conditional probability larger
than some universal constant c > 0, dU (0, z) ≤ CN3mβ/(logN)10 holds for all z contained in
B(0, Nm/3(logN)100).

Finally, we consider “εk-net” of annuli around the boundary of B(0, Nm) and repeat the
argument of Lemma 4.21. Then we have that there exist universal constants 0 < C,C ′, c, c′ <
∞ and an event M̃N with P(M̃N ) ≥ C exp{−cN3 logN}, such that the following statements
hold:

(1) |BU (0, CN3mβ/(logN)300)| ≥ cN3m3/(logN)300,

(2) γU (z, γ∞) ̸⊂ B(0, c2lNm) for all z ∈ B(0, lNm/3,

(3) dU (0, z) ≤ C2N
3mβ/(logN)10 for all z ∈ B(0, lNm/3,

(4) |BU (0, N
3mβ)| ≤ 1

4N
3m3.

We bound the effective resistance Reff(0, BU (N
3mβ)) from below. By (2), points outside the

Euclidean ball B(0, lNm/3) is connected to the spiral γ∞ outside the smaller ball B(0, c2lNm).
Combining this with (3), all the paths on U connecting the origin and BU (0, C2N

3mβ/(logN)10)
contains the part of γ∞ inside the B(0, c2lNm). By the series law of effective resistance (see
for example [34], Section 2.3), we have that Reff(0, BU (0, N

3mβ)c) ≥ c3N
3mβ/(logN)300 for

some universal constant c3 > 0. Thus we have Reff(x,BU (0, N
3mβ)c) ≥ c3N

3mβ/2(logN)300

for all x ∈ B(0, c3N
3mβ/2(logN)300) , which completes the proof. 2

4.3 Heat kernel fluctuations

In this section, we will show Theorem 1.7, quenched heat kernel fluctuations for the three-
dimensional UST. We start with lower fluctuations and then move on to upper fluctuations.

Recall that pUn stands for the quenched heat kernel defined in (2.4).

Theorem 4.24. P-a.s.,

lim inf
n→∞

(log log n)
β−1
3+β n

3
3+β pU2n(0, 0) = 0. (4.74)
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Proof. By [7, Theorem 4.1], we have that

pU2r|BU (0,r)|(0, 0) ≤
2

|BU (0, r)|
,

for any realization of U . Let tn = n|BU (0, n)| and un = n−3/β |BU (0, n)|, then we have

pU2tn(0, 0) ≤
2

|BU (0, 0)|
=

2

t
3/(3+β)
n n−3/(3+β)|B(0, n)|β/(3+β)

= 2t−3/(3+β)
n u

− β
3+β

n .

By (4.39), u
− β

3+β
n > (log log n)

β−1
3+β infinitely often almost surely, which completes the proof. 2

Remark 4.25. We proved the existence of some exponent of the log-logarithmic term which

causes lower heat kernel fluctuation. However, The exponent
β − 1

3 + β
of the log-logarithmic

term of pU2n which appears in (4.74) is not necesarily a sharp estimate. The critical exponent
of the log-logarithmic term has not been obtained even in the critical Galton-Watson tree
case.

Proposition 4.26. There exists some constant α > 0 such that P-a.s.,

lim sup
n→∞

(log log)−αn
3

3+β pU2n(0, 0) = ∞. (4.75)

Proof. Let δ > 0 and
Ni = (δ log i)1/3 mi = ei

2
/Ni,

where c10 is as in the statement of Proposition 4.23. We follow the construction of a subtree
of U in B∞(0, Nimi) given in the proof of Proposition 4.23. Let γ∞ be the infinite LERW
started at the origin. Then at stage i (i ≥ 1), we use all vertices in B∞(0, Nimi) and write Ui

for the obtained tree. Similarly to (4.41), we have a good separation of scales. By Proposition

4.23, conditioned on Ui−1, the event M̃
Ni occurs with conditional probability greater than i−1

if we take δ small enough. Now we apply [24, Proposition 3.2] to this Ui. We set R = N3
i m

β
i ,

λ = 1 and ε = c/4(logNi)
300 where c is as given in (4.66). Let r : [0,∞] → [0,∞] be

r(x) = x. Then by Proposition 4.23, we can set m (which appears in [24, Proposition 3.2])
by m = c(logNi)

−300. Plugging these into (3.6) of [24], we have

pU2n(0, 0) ≥ c′N−3
i m−3

i for n ≤
cN6

i m
3+β
i

32(logNi)300
,

for c > 0 in (4.66) and some constant c′ > 0. Thus, taking T = c
32N

6
i m

3+β
i (logNi)

−300, it

holds that on the event M̃Ni , we have

T
3

3+β pU2T (0, 0) ≥
( c

64

) 3
3+β

c′N
9−3β
3+β

i (logNi)
− 300

3+β ≥ c′′(log log T )
9−3β
2(3+β)

−ε
,

for some c′′ > 0 and ε > 0 which is small. Finally, we apply the Borel-Cantelli argument.
Since ∑

i

c9 exp{−c10N
3
i (logNi)} ≥

∑
i

i−1 = ∞,

by the conditional Borel-Cantelli lemma, we obtain the lower bound (4.75). 2
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5 Annealed transition density of random walk on a loop-erased
random walk

In this chapter, we will prove Theorem 1.11 and then prove Theorem 1.10. As remarked in
Subsection 1.2.3, it was conjectured in [5] that a similar combination of the various exponents
will appear in sub-Gaussian annealed heat kernel bounds for the random walk on the two-
dimensional uniform spanning tree. In that case, the spectral dimension of the quenched and
annealed bounds is known to be 16/13, the intrinsic walk dimension is 13/5 and the exponent
governing the embedding is given by the growth exponent of the two-dimensional LERW, i.e.
5/4, giving an extrinsic walk dimension of 13/4. We can check the corresponding result for
our simpler model using the simple observation that

P
(
XG

t = x
)
=
∑
m≥0

P G(XG = Lm)P(Lm = x), (5.1)

and then combining the estimate on the distribution of the LERW from Theorem 1.11 with
the deterministic Gaussian bounds on P G(XG = Lm) of Lemma 5.17 below.

The remainder of this chapter is organized as follows. In Section 5.1, we study the LERW
in more detail, proving Theorem 1.11. In Section 5.2, we derive our heat kernel estimates for
XG , proving Theorem 1.10.

5.1 Loop-erased random walk estimates

The aim of this section is to prove Theorem 1.11. Due to the diffusive scaling of the LERW,
it is convenient to reparameterize the result. In particular, we will prove the following, which
clearly implies Theorem 1.11. Throughout this section, for x ∈ Zd, we write τx = τLx for the
first time that the LERW L hits x.

Proposition 5.1. There exist constants c1, c2 ∈ (0,∞) such that for every x ∈ Zd\{0} and
M > 0,

P
(
τx ∈

[
M |x|2, 2M |x|2 − 1

])
≤ c1

(
M |x|2

)1−d/2
exp

(
− c2
M

)
.

Moreover, there exist constants c3, c4, c5, c6 ∈ (0,∞) such that for every x ∈ Zd\{0} and
M ≥ |x|−1,

P
(
τx ∈

[
c3M |x|2, c4M |x|2

])
≥ c5

(
M |x|2

)1−d/2
exp

(
− c6
M

)
.

We will break the proof of this result into four pieces, distinguishing the cases M ∈ (0, 1)
and M ≥ 1, and considering the upper and lower bounds separately. See Propositions 5.2,
5.3, 5.6 and 5.13 for the individual statements.

5.1.1 Upper bound for M ≥ 1

The aim of this subsection is to establish the following, which is the easiest to prove of the
constituent results making up Proposition 5.1.

Proposition 5.2. There exist constants c1, c2 ∈ (0,∞) such that for every x ∈ Zd\{0} and
M ≥ 1,

P
(
τx ∈

[
M |x|2, 2M |x|2 − 1

])
≤ c1

(
M |x|2

)1−d/2
exp

(
− c2
M

)
.
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Proof. Recalling the definition of (σi)i≥0 from (2.2), we have that

P
(
τx ∈

[
M |x|2, 2M |x|2 − 1

])
=

⌊2M |x|2−1⌋∑
i=⌈M |x|2⌉

P (Sσi = x)

≤ E
(
#
{
i ≥ ⌈M |x|2⌉ : Sσi = x

})
.

Using that σi ≥ i, this implies that

P
(
τx ∈

[
M |x|2, 2M |x|2 − 1

])
≤ E

(
#
{
n ≥ ⌈M |x|2⌉ : Sn = x

})
=

∞∑
n=⌈M |x|2⌉

P(Sn = x)

≤
∑

n=⌈M |x|2⌉

Cn−d/2

≤ C
(
M |x|2

)1−d/2
,

where for the second inequality, we have applied the upper bound on the transition probabil-
ities of S from [2, Theorem 6.28]. Since it also holds that exp(−c2/M) ≥ C uniformly over
M ≥ 1, the result follows. 2

5.1.2 Upper bound for M ∈ (0, 1)

We will give an upper bound on the probability that τx is much smaller than |x|2. More
precisely, the goal of this subsection is to prove the following proposition. Replacing M by
2M , this readily implies the relevant part of Proposition 5.1.

Proposition 5.3. There exist constants c1, c2 ∈ (0,∞) such that for every x ∈ Zd\{0} and
M ∈ (0, 2),

P
(
τx ≤ M |x|2

)
≤ c1

(
M |x|2

)1−d/2
exp

(
− c2
M

)
. (5.2)

Before diving into the proof, we observe that it is enough to show (5.2) only for the case
that both |x|−1 and M are sufficiently small. To see this, suppose that there exist some
c1, c2 ∈ (0,∞) and r0 ∈ (0, 1) such that the inequality (5.2) holds with constants c1, c2 for
all x and M satisfying |x|−1 ∨ M ≤ r0. The remaining cases we need to consider are (i)
|x|−1 ≥ r0 and (ii) M ∈ [r0, 2). We first deal with case (i). If we suppose that |x|−1 ≥ r0
and M < r20, then M |x|2 < 1, and so the probability on the left-hand side of (5.2) is equal to
0. On the other hand, if |x|−1 ≥ r0 and M ∈ [r20, 2), by choosing the constant c1 to satisfy
c1 ≥ 2d/2−1r2−d

0 exp{c2r−2
0 }, we can ensure the right-hand side of (5.2) is greater than 1, and

so the inequality (5.2) also holds in this case. Let us move to case (ii). We note that the
probability on the left-hand side of (5.2) can be always bounded above by

P
(
τSx < ∞

)
≤ C|x|2−d

for some constant C ∈ (0,∞), where we have applied (2.9) to deduce the inequality. Thus,
choosing the constant c1 so that c1 ≥ C2d/2−1 exp{c2r−1

0 }, the inequality (5.2) holds. Con-
sequently, replacing the constant c1 by c1 ∨ 2d/2−1r2−d

0 exp{c2r−2
0 } ∨C2d/2−1 exp{c2r−1

0 }, the
inequality (5.2) holds for all x ∈ Zd \ {0} and M ∈ (0, 2).
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We next give a brief outline of the proof of Proposition 5.3, assuming that both |x|−1 and
M are sufficiently small. We write Ax = B∞(0, |x|/4

√
d) for the box of side length |x|/2

√
d

centered at the origin, and let
tx = τLAc

x

be the first time that L exits Ax. Note that x ̸∈ Ax, and so

P
(
τx ≤ M |x|2

)
≤ P

(
tx ≤ τx ≤ M |x|2

)
≤ P

(
τx < ∞ tx ≤ M |x|2

)
P
(
tx ≤ M |x|2

)
. (5.3)

Writing
px,M = P

(
τx < ∞ tx ≤ M |x|2

)
and qx,M = P

(
tx ≤ M |x|2

)
, (5.4)

we will show that
px,M ≤ C|x|2−d, qx,M ≤ C exp{cM−1}

in Lemmas 5.4 and 5.5 below, respectively. Proposition 5.3 is then a direct consequence of
these lemmas.

We start by dealing with px,M , as defined in (5.4).

Lemma 5.4. There exists a constant C ∈ (0,∞) such that for all x ∈ Zd \{0} and M ∈ (0, 2)
with P(tx ≤ M |x|2) > 0,

px,M ≤ C|x|2−d.

Proof. Let
Λ =

{
λ : P

(
tx ≤ M |x|2, L[0, tx] = λ

)
> 0
}

be the set of all possible paths for L[0, tx] satisfying tx ≤ M |x|2. For λ ∈ Λ, we write R = Rλ

for a random walk conditioned on the event that R[1,∞) ∩ λ = ∅. Note that R is a Markov
chain (see [29, Section 11.1]). We use Py

R to denote the law of R started from R0 = y. Then
the domain Markov property for L (see [28, Proposition 7.3.1]) ensures that

px,M =

∑
λ∈ΛP

λlen(λ)

R (x ∈ LE (R[0,∞)))P(L[0, tx] = λ)

qx,M
≤ max

λ∈Λ
P

λlen(λ)

R (x ∈ R[0,∞)) .

Therefore, it suffices to show that there exists a constant C ∈ (0,∞) such that for all x ∈
Zd \ {0}, M ∈ (0, 2) with P(tx ≤ M |x|2) > 0 and λ ∈ Λ,

P
λlen(λ)

R (x ∈ R[0,∞)) ≤ C|x|2−d.

With the above goal in mind, let us fix λ ∈ Λ. We set u := τRB(|x|/2)c for the first time that

R exits B(|x|/2). (Note that Ax ⊆ B(|x|/2) by our construction.) Using the strong Markov
property for R at time u, we have

P
λlen(λ)

R (x ∈ R[0,∞)) ≤ max
y∈∂B(|x|/2)

Py
R (x ∈ R[0,∞)) .

On the other hand, it follows from (2.8) that

min
y∈∂B(|x|/2)

Py (S[0,∞) ∩ λ = ∅) ≥ min
y∈∂B(|x|/2)

Py (S[0,∞) ∩Ax = ∅) ≥ c0
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for some constant c0 > 0. Combining these estimates and using (2.9), we see that, for each
y ∈ ∂B(|x|/2),

Py
R (x ∈ R[0,∞)) ≤ Py (x ∈ S[0,∞))

Py (S[0,∞) ∩ λ = ∅)
≤ 1

c0
Py (x ∈ S[0,∞)) ≤ C|x|2−d

for some constant C ∈ (0,∞). This finishes the proof. 2

Recall that qx,M was defined at (5.4). We will next estimate qx,M as follows.

Lemma 5.5. There exist constants c, C ∈ (0,∞) such that for all x ∈ Zd\{0} and M ∈ (0, 2),

qx,M ≤ C exp{−cM−1}. (5.5)

Proof. As per the discussion after (5.2), it suffices to prove (5.5) only in the case that both
|x|−1 and M are sufficiently small. In particular, throughout the proof, we assume that

M ≤ (3200d)−1. (5.6)

Furthermore, we may assume
|x|M ≥ (4

√
d)−1, (5.7)

since qx,M = 0 when |x|M < (4
√
d)−1. (Notice that it must hold that tx ≥ |x|(4

√
d)−1.)

Now, define the increasing sequence of boxes {Ai}Ni=1, where N = ⌊(1600dM)−1⌋, by
setting

Ai = B∞

(
0, 400

√
d |x|Mi

)
for 1 ≤ i ≤ N . Observe that the particular choice ofN ensures that AN ⊆ Ax = B∞(0, |x|/4

√
d),

and the assumption (5.6) guarantees that

N ≥ (3200dM)−1. (5.8)

Also, we note that dist(∂Ai−1, ∂Ai) is bigger than 400
√
d |x|M − 1, which is in turn bounded

below by 99 because of (5.7). As a consequence, it is reasonable to compare the number of
lattice points in the set L ∩ (Ai \Ai−1) with |x|2M2. To be more precise, let t0 = 0, and, for
i ≥ 1, set

ti = τL(Ai)c

to be the first time that L exits Ai. Then [6, Corollary 3.10] shows that there exists a
deterministic constant c1 ∈ (0, 1) such that for all x ∈ Zd \ {0} and M ∈ (0, 2) satisfying (5.6)
and (5.7),

P
(
ti − ti−1 ≥ c1|x|2M2 L[0, ti−1]

)
≥ c1, 1 ≤ i ≤ N. (5.9)

With the inequality (5.9) and a constant a > 0 satisfying

2

√
2a

1− c1
<

1

6400d
log

1

1− c1
, (5.10)

it is possible to apply [3, Lemma 1.1] to deduce the result of interest. In particular, the
following table explains how the quantities of this article are substituted into [3, Lemma 1.1].
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[3, Lemma 1.1] X Yi n p b x

This article tx ti − ti−1 N 1− c1 2 |x|−2M−2 aM |x|2

Then, from [3, Lemma 1.1], one has

P
(
tx ≤ aM |x|2

)
≤ exp

{
2M−1

√
2a

1− c1
−N log

1

1− c1

}
≤ exp

{(
2

√
2a

1− c1
− 1

3200d
log

1

1− c1

)
M−1

}
≤ exp

{
− M−1

6400d
log

1

1− c1

}
,

where for the second and third inequalities, we apply (5.8) and (5.10), respectively. Rewriting
aM = M ′ completes the proof. 2

Proof of Proposition 5.3. Proposition 5.3 follows directly from (5.3) and Lemmas 5.4 and 5.5
(and the basic observation that M1−d/2 ≥ 21−d/2 for M ∈ (0, 2)). 2

5.1.3 Lower bound for M ∈ (0, 1)

Recall that for x ∈ Zd \ {0}, τx indicates the first time that L hits x. The aim of this
subsection is to bound below the probability that τx is much smaller than |x|2. In particular,
the following is the main result of this subsection, which readily implies the part of the lower
bound of Proposition 5.1 with |x|−1 ≤ M < 1.

Proposition 5.6. There exist constants c, c′, R ∈ (0,∞) such that for every x ∈ Zd\{0} and
|x|−1 ≤ M < 1,

P
(
τx ∈ [R−1M |x|2, RM |x|2]

)
≥ c′(M |x|2)1−d/2 exp

(
− c

M

)
. (5.11)

Before moving on to the proof, we will first show that once we prove that there exists
a constant n0 ≥ 1 such that (5.11) holds for n0|x|−1 ≤ M < 1, we obtain (5.11) for every
x ∈ Zd \ {0} and |x|−1 ≤ M < 1 by adjusting c, c′ and R as needed. Let us consider the
following three events:

• S[0, τSx ] is a simple path of length ⌈M |x|2⌉,

• S[τSx + 1, τSB(0,2r)c ] is a simple path that does not intersect S[0, τSx ],

• S[τSB(0,2r)c ,∞) ∩B(0, 32 |x|) = ∅,

where we set r = |x| ∨ n0. It is straightforward to see that τx ∈ [M |x|2, 2M |x|2] holds on
the intersection of these events. By constructing a simple random walk path that satisfies
the first two conditions up to the first exit time from the Euclidean ball B(0, 2r) and then
applying (2.8) and the strong Markov property, we have

P
(
τx ∈ [M |x|2, 2M |x|2]

)
≥ a(2d)−2M |x|2(2d)−2r,
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for some a > 0 that does not depend on M or x. Suppose 1 ≤ M |x| ≤ n0. If |x| < n0, then
the right-hand side is bounded below as follows:

a(2d)−2M |x|2(2d)−2r ≥ a(2d)−(2n2
0+2n0) ≥ C ≥ c′(M |x|2)1−d/2e−

c
M .

On the other hand, if |x| ≥ n0, then the right-hand side satisfies

a(2d)−2M |x|2(2d)−2r ≥ C
(
M |x|2

)1−d/2
e−cM |x|2−c′|x| ≥ C

(
M |x|2

)1−d/2
e−c′′/M .

In particular, by replacing R by R ∨ 2 and adjusting c, c′ appropriately, the result at (5.11)
can be extended to 1 ≤ M |x| < |x|.

The structure of this subsection is as follows. Firstly, we define several subsets of Rd.
These will be used to describe a number of events involving the simple random walk S whose
loop-erasure is L. Secondly, we provide some key estimates on the probabilities of these events
in Lemmas 5.9 and Lemma 5.12. Finally, applying these results, we prove Proposition 5.6 at
the end of this subsection.

We begin by defining “a tube connecting the origin and x”, which will consist of a number
of boxes of side-length M |x|. To this end, for M ∈ (0, 1), let

NM =

⌈
1

M
+

1

2

⌉
.

Moreover, for x = (x1, . . . , xd) ∈ Zd \ {0} and M ∈ (0, 1), define a sequence {bi} of vertices of
Rd by setting

bi =
(
iMx1, . . . , iMxd

)
(5.12)

for i ∈ {0, 1, . . . , 2NM}. Let us consider a rotation around the origin that aligns the x1-axis
with the line through the origin and x. We denote by B andQ the images of [−M |x|/2,M |x|/2]d
and {0} × [−M |x|/2,M |x|/2]d−1 under this rotation, respectively. For y = (y1, . . . , yd) ∈ Rd,
we let

B̃(y, r) =
{(

y1 + rz1, . . . , yd + rzd
)
: (z1, . . . , zd) ∈ B

}
, (5.13)

be the tilted cube of side-length rM |x| centered at y, and we write Bi for B̃(bi, 1). For
i = 0, 1, . . . , 2NM and a, b ∈ R with a < b, also let

Q(y, r) =
{
(y1 + rz1, . . . , yd + rzd) : (z1, . . . , zd) ∈ Q

}
,

Bi[a, b] =
{(

z1 + sMx1, . . . , zd + sMxd
)
: s ∈ [a, b], (z1, . . . , zd) ∈ Qi(0)

}
,

where

Qi(b) = Q

((
(i− 1

2
+ b)M |x|, . . . , (i− 1

2
+ b)M |x|

)
, 1

)
.

We also set

Q̃i(b) = Q

((
(i− 1

2
+ b)M |x|, . . . , (i− 1

2
+ b)M |x|

)
,
1

2

)
,

and note that, by definition, Q̃i(b) ⊆ Qi(b) for all i ≥ 0 and b ∈ R. Observe that every Q̃i(b)
is perpendicular to the line through the origin and x, and that Qi := Qi(0) is the “left face”
of the cube Bi = Bi[0, 1]. Finally, we write

Q̃i := Q̃i(0), i = 1, 2, . . . , 2NM + 1, (5.14)
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Figure 20: Illustration of Bi, Qi and Q̃i for a given x.

and set Q0 = Q̃0 = {0} for convenience. See Figure 20 for a graphical representation of the
situation.

In this subsection, it will be convenient to consider S (recall that L = LE(S[0,∞))) as a
continuous curve in Rd by linear interpolating between discrete time points, and thus we may
assume that S(k) is defined for all non-negative real k. If λ is a continuous path in Rd and
A ⊆ Rd, we write

τλ(A) = inf {t ≥ 0 : λ(t) ∈ A} ,

and also, for x ∈ Rd, we set τλx = τλ({x}), analogous to the notation of first hitting times for
discrete paths (2.1).

In order to obtain the lower bound (5.11), we consider events under which the LERW L,
started at the origin, travels through the “tube”

⋃NM
i=0 Bi until it hits x. See Figure 21 for a

graphical representation.

Definition 5.7. We define the events Fi, i = 0, 1, . . . , 2NM , as follows. Firstly,

F0 =

{
τS(Q1) < ∞, S(τS(Q1)) ∈ Q̃1, S[0, τ

S(Q1)] ⊂ B0,
S[τS(Q1(−ε)), τS(Q1)] ∩Q1(−2ε) = ∅

}
.

For i = 1, 2, . . . , NM − 1,

Fi =

{
τS(Qi) < τS(Qi+1) < ∞, S(τS(Qi+1)) ∈ Q̃i+1, S[τ

S(Qi), τ
S(Qi+1)] ⊂ Bi[−ε, 1],

S[τS(Qi+1(−ε)), τS(Qi+1)] ∩Qi+1(−2ε) = ∅

}
.

Moreover,

FNM
=


τS(QNM

) < τSx < τS
(
QNM+1

(
1
4

))
< ∞,

S
(
τS
(
QNM+1

(
1
4

)))
∈ Q̃NM+1

(
1
4

)
, S[τS(QNM

), τS(QNM+1)] ⊂ BNM

[
−1

4 ,
5
4

]
,

S
[
τSx , τ

S
(
QNM+1

(
1
4

))]
∩ LE(S[τS(QNM

), τSx ]) = ∅

 ,

FNM+1 =

{
τS
(
QNM+1

(
1
4

))
< τS(QNM+2), τ

S(QNM+2) ∈ Q̃NM+2,
S
[
τS
(
QNM+1

(
1
4

))
, τS(QNM+2)

]
⊂ BNM+1

[
1
4 − ε, 1

] }
,

and, for i = NM + 1, . . . , 2NM ,

Fi =

{
τS(Qi) < τS(Qi+1) < ∞, S(τS(Qi+1)) ∈ Q̃i+1,

S[τS(Qi), τ
S(Qi+1)] ⊂ Bi[−ε, 1]

}
.
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Figure 21: Illustration of the events Fi, i = 0, 1, . . . , NM .

The first three conditions of the definition of each Fi, i = 0, 1, . . . , 2NM , require that
S travels inside the “tube” and it exits each Bi at a point which is not close to ∂Qi+1.
Furthermore, the last condition in the definition of F0, the last two conditions in that of
each Fi, i = 1, 2, . . . , NM − 1, and the third condition in that of FNM

control the range
of backtracking of S. Finally, the last condition in the definition of FNM

and events Fi,
i = NM + 1, . . . , 2NM guarantee that x remains in LE(S[0, τS(Q2NM+1)]).

Next, we define events that provide upper and lower bounds for the length of the loop-
erasure of S in each Bi. For i ∈ {0, 1, . . . , NM − 1}, let

ξi = LE
(
S[0, τS(Qi+1)]

)
, (5.15)

and also set ξNM
= LE(S[0, τSx ]). We further define

λi = LE
(
S[τS(Qi), τ

S(Qi+1)]
)
, 1 ≤ i ≤ NM − 1,

λNM
= LE

(
S[τS(QNM

), τSx ]
)
,

ξ′0 = ξ0,

ξ′i = ξ0 ⊕ λ1 ⊕ · · · ⊕ λi, i ≥ 1. (5.16)

Since ξi is not necessarily a simple curve, ξi and ξ′i do not coincide in general. However, the
restriction on the backtracking of S on the events Fi and a cut time argument (see Definition
5.10 and Definition 5.11 below) enable us to handle the difference between ξi and ξ′i. This
will be discussed later, in the proof of Proposition 5.6.

We now define events upon which the length of λi is bounded above.

Definition 5.8. For C > 0, the event G0(C) is given by

G0(C) =
{
len(ξ0) ≤ CM2|x|2

}
,

and for i = 1, 2, . . . , NM , the event Gi(C) is given by

Gi(C) =
{
len(λi) ≤ CM2|x|2

}
.

In the following lemma, we demonstrate that Gi occurs with high conditional probability.
Recall that Q̃i was defined at (5.14).

Lemma 5.9. For any δ > 0, there exists a constant C+ > 0 such that

Pz (Gi(C+) Fi) ≥ 1− δ, (5.17)

uniformly in x ∈ Zd\{0}, |x|−1 ≤ M < 1, i ∈ {0, 1, . . . , NM} and z ∈ Q̃i.
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Proof. For i = 0, 1, . . . , NM − 1, y ∈ Bi[−ε, 1] and z ∈ Q̃i, we have that

Pz (y ∈ λi | Fi) ≤ Pz(τSy < τS(Qi+1) | Fi).

Moreover, by (2.10) and translation invariance, we have that there exists some constant c > 0
such that

inf
z∈Q̃i

Pz(Fi) ≥ cε, (5.18)

for all i = 1, 2, . . . , NM − 1. For i = 0, the same argument yields that P(F0) ≥ cε. Thus, it
follows from (2.9) and (5.18) that

Pz(τSy < τS(Qi+1) | Fi) ≤
Pz(τSy < τS(Qi+1))

Pz(Fi)
≤ CPz(τSy < ∞) ≤ C

(
|y − z|2−d ∧ 1

)
,

for some constant C > 0. By taking the sum over y ∈ Bi[−ε, 1], we have that

Ez(len(λi) | Fi) =
∑

y∈Bi[−ε,1]

Pz(y ∈ λi | Fi) ≤ C
∑

y∈Bi[−ε,1]

(
|y − z|2−d ∧ 1

)
≤ CM2|x|2.

(5.19)
The same argument also applies to the case i = 0, and thus we have

E0(len(ξ0) | F0) ≤ CM2|x|2. (5.20)

Similarly, for the case i = NM , recalling that λNM
was defined at (5.16), we have that

Pz (y ∈ λNM
| FNM

) ≤ Pz
(
τSy < τSx | FNM

)
≤

Pz
(
τSy < τSx < τS(BNM

[−1
4 ,

5
4 ]

c)
)

Pz (FNM
)

=
Pz
(
τSy < τSx ∧ τS(BNM

[−1
4 ,

5
4 ]

c)
)
Py
(
τSx < τS(BNM

[−1
4 ,

5
4 ]

c)
)

Pz (FNM
)

,

(5.21)

where we used the strong Markov inequality to obtain the last inequality. We will prove that
Pz(FNM

) ≥ C ′(M |x|)2−d later in this subsection, see (5.38).
Now we bound above the sum of the numerator of (5.21) over y ∈ BNM

[−1
4 ,

5
4 ], separating

into three cases depending on the location of y.

(i) For y ∈ B(z, 1
18M |x|), it follows from (2.9) that

Pz

(
τSy < τS

(
BNM

[
−1

4
,
5

4

]c)
∧ τSx

)
= C(|y − z|2−d − (M |x|/2)2−d) +O(|y − z|1−d),

Py

(
τSx < τS

(
BNM

[
−1

4
,
5

4

]c))
≤ C(M |x|)2−d.

Thus we have that∑
y∈B(z, 1

18
M |x|)

Pz

(
τSy < τSx ∧ τS

(
BNM

[
−1

4
,
5

4

]c))
Py

(
τSx < τS

(
BNM

[
−1

4
,
5

4

]c))

≤ C(M |x|)2−d

1
18

M |x|∑
k=1

∑
|y−z|=k

(k2−d − (M |x|/2)2−d +O(k1−d))

≤ C(M |x|)4−d.
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(ii) For y ∈ B(x, 1
18M |x|), a similar argument to case (i) yields that

∑
y∈B(x, 1

18
M |x|)

Pz

(
τSy < τSx ∧ τS

(
BNM

[
−1

4
,
5

4

]c))
Py

(
τSx < τS

(
BNM

[
−1

4
,
5

4

]c))
≤ C(M |x|)4−d.

(iii) For y ∈ BNM
[−1

4 ,
5
4 ] \ (B(z, 1

18M |x|) ∪B(x, 1
18M |x|)), we have that

Pz

(
τSy < τSx < τS

(
BNM

[
−1

4
,
5

4

]c))
≤ Pz(τSy < ∞) ≤ C(M |x|)2−d,

Py

(
τSx < τS

(
BNM

[
−1

4
,
5

4

]c))
≤ Py(τSx < ∞) ≤ C(M |x|)2−d,

which gives∑
y∈BNM

[− 1
4
, 5
4
]

|y−z|,|y−x|≥ 1
18

M |x|

Pz

(
τSy < τSx < τS

(
BNM

[
−1

4
,
5

4

]c))
Py

(
τSx < τS

(
BNM

[
−1

4
,
5

4

]c))

≤ C
∑

y∈BNM
[− 1

4
, 5
4
]

|y−z|,|y−x|≥ 1
18

M |x|

(M |x|)4−2d ≤ C(M |x|)4−d.

Thus, by (5.21), it holds that

Ez(len(λNM
) | FNM

) =
∑

y∈BNM
[− 1

4
, 5
4
]

Pz(y ∈ λNM
| FNM

) ≤ C(M |x|)4−d

c′ · C ′(M |x|)2−d
≤ CM2|x|2.

(5.22)
Combining (5.19), (5.20) and (5.22) with Markov’s inequality, it holds that

Pz(len(λi) ≥ C+M
2|x|2 | Fi) ≤ C/C+,

for i = 0, 1, . . . , NM . By taking C+ = δ−1C, we obtain (5.17). 2

Now we will deal with events involving S upon which the length of λi is bounded below
and, at the same time, the gap between the lengths of ξi and ξ′i is bounded above. Firstly, we
define a special type of cut time of S in each Bi.

Definition 5.10. A nice cut time in Bi is a time k satisfying the following conditions:

• k ∈
[
τS(Qi(ε/3)), τ

S(Qi(ε))
]
,

• S(k) ∈ B(S(τS(Qi)), εM |x|/2),

• S[τS(Qi), k] ∩ S
[
k + 1, τS(Qi(ε))

]
= ∅,

• S[k + 1, τS(Qi(ε))] ∩Qi = ∅.
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Figure 22: Illustration of B′
i and B′′

i .

Secondly, let B′
i (respectively B′′

i ) be the cube of side-length M |x|/3 (respectively M |x|/9)
centered at bi whose faces are parallel to those of Bi, i.e.

B′
i = B̃

(
bi,

1

3

)
, B′′

i = B̃

(
bi,

1

9

)
,

where bi and B̃(y, r) are as defined in (5.12) and (5.13), respectively. We denote by QL
i

(respectively QR
i ) the “left (respectively right) face” of B′

i. See Figure 22.
Let ρi = inf{n ≥ τS(B′′

i ) : S(k) ∈ (B′
i)
c} be the first time that S exits B′

i after it first
entered B′′

i . We define a set of local cut times of S by

Ki =
{
τS(B′′

i ) ≤ k ≤ ρi : S(k) ∈ B′′
i , S[τ

S(B′
i), k] ∩ S[k + 1, ρi] = ∅

}
.

Finally, we define events H
(j)
i (j = 1, 2, 3, 4) as follows.

Definition 5.11. For 1 ≤ i ≤ NM − 1 and l > 0,

H
(1)
i = {S has a nice cut time in Bi} ∩

{
0 < τS(Qi(ε))− τS(Qi) ≤ Cε2M2|x|2

}
,

H
(2)
i =

{
τS(B′

i) < τS(Qi+1), S(τ
S(Qi(1/3))) ∈ QL

i ,
S[τS(Qi(ε)), τ

S(Qi(1/3))] ∩Qi(ε/2) = ∅

}
,

H
(3)
i (l) =

{
#Ki ≥ lM2|x|2, S(ρi) ∈ QR

i , S[τ
S(B′

i), k] ∈ Qi[0, 5/9] for all k ∈ Ki

}
,

H
(4)
i =

{
S[ρi, τ

S(Qi+1)] ∩Qi[0, 11/18] = ∅
}
,

where #A denotes the cardinality of set A. Moreover, Hi(l) = H
(1)
i ∩H

(2)
i ∩H

(3)
i (l) ∩H

(4)
i .

Note that, on the event Hi(l), a local cut time k ∈ Ki satisfies

S[τS(Qi), k] ∩ S[k + 1, τS(Qi+1)] = ∅,

and thus len(λi) ≥ #Ki holds.

Lemma 5.12. Let Hi(l) be as defined above. Then there exists constants c > 0, ε > 0, l > 0
and R′ > 0 such that

Pz (Hi(l) | Fi) ≥ c, (5.23)

uniformly in x and M with M |x| > R′, i ∈ {1, 2, . . . , NM − 1} and z ∈ Q̃i.
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Proof. By the strong Markov property, we have that

Pz (Hi(l) | Fi)

≥ inf
z1,z2,z3,z4

1

Pz(Fi)

3∏
j=1

Pzj
(
H

(j)
i ∩ {S[τS(zj), τS(zj+1)] ⊆ Bi[−ε, 1]}

)
×Pz4

(
H

(4)
i ∩

{
S[τS(z3), τ

S(z4)] ⊆ Bi[−ε, 1], S(τS(Qi+1)) ∈ Q̃i+1,
S[τS(Qi+1(−ε)), τS(Qi+1)] ∩Qi+1(−2ε)

})
≥ inf

z1
Pz1(H

(1)
i ) inf

z2
Pz2(H

(2)
i | {S[τS(z2), τS(z3)] ⊆ Bi[−ε, 1]}) inf

z3
Pz3(H

(3)
i (l))

× inf
z4

Pz4

(
H

(4)
i

S[τS(z3), τ
S(z4)] ⊆ Bi[−ε, 1], S(τS(Qi+1)) ∈ Q̃i+1,

S[τS(Qi+1(−ε)), τS(Qi+1)] ∩Qi+1(−2ε)

)
, (5.24)

where the infima are taken over z1 ∈ Q̃i, z2 ∈ ∂B̃(z1, 2ε), z3 ∈ QL
i and z4 ∈ QR

i (see (5.13)

for the definition of B̃(y, r)).

Firstly, we estimate the conditional probability of H
(1)
i . Recall that B(x, r) denotes the

Euclidean ball of radius r with center point x. We consider the event of S up to the first exit
time of the small box B̃(z1, 2ε). Let k1 = τS(B(z, ε2M |x|)c) and k2 = τS(B̃(z1, 2ε)

c). Then

Pz1(H
(1)
i ) ≥ Pz1

(
S has a nice cut time k ∈ [k1, k2], 0 < k2 − τS(Qi) ≤ C ′ε2M2|x|2

)
≥ Pz1

(
S has a nice cut time k ∈ [k1, k2],

#S[τS(Qi), k1] ≥ C ′−1ε2M2|x|2, 0 < k2 − τS(Qi) ≤ C ′ε2M2|x|2
)

≥ Pz1
(
S has a nice cut time k ∈ [C ′−1ε2M2|x|2, C ′ε2M2|x|2]

)
−Pz1

(
#S[τS(Qi), k1] ≥ C ′−1ε2M2|x|2

)
−Pz1

(
0 < k2 − τS(Qi) ≤ C ′ε2M2|x|2

)
. (5.25)

If we take C ′ > 1 sufficiently large, then the second and third terms on the right-hand side
of (5.25) are bounded below by some small constant, while it follows from [26, equation (1)]
that the first term is bounded below by some universal constant. Thus, we have

Pz1(H
(1)
i ) ≥ c1 (5.26)

for some constant c1 > 0.
Secondly, we consider the conditional probability of H

(2)
i . By (2.8), there exists some

universal constant C > 0 such that

Pz2
(
S
[
τS(B(z, εM |x|/2)c), τS(B′

i)
]
∩ (B(z, ε2M |x|/2)) ̸= ∅

)
≤ Cεd−2,

for M |x| ≥ ε−d. It follows from (2.10) that

c2ε ≤ Pz2
(
τS(B′

i) < τS(Qi+1), S[τS(z2), τ
S(z3)] ⊆ Bi[−ε, 1]

)
≤ Pz2

(
S[τS(z2), τ

S(z3)] ⊆ Bi[−ε, 1]
)

≤ c3ε,

uniformly in z2 ∈ B(z1, εM |x|/2). Thus we have that

Pz2
(
H

(2)
i S[τS(z2), τ

S(z3)] ⊆ Bi[−ε, 1]
)
≥ c2ε− Cεd−2

c3ε
≥ c, (5.27)
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Figure 23: Illustration of the event I1 ∩ I2 ∩ J1 ∩ J2.

for some constant c > 0 and sufficiently small ε.
Again by (2.10), it holds that

Pz4

(
H

(4)
i

S[τS(z4), τ
S(Qi+1)] ⊆ Bi[−ε, 1], S(τS(Qi+1)) ∈ Q̃i+1,

S[τS(Qi+1(−ε)), τS(Qi+1)] ∩Qi+1(−2ε)

)
≥ c (5.28)

for some constant c > 0.
We will next derive a lower bound for Pz3(H

(3)
i ) by applying the second moment method.

We consider the ball B := B (y,M |x|/18) and two independent simple random walks R1 and
R2 with starting point y. Let wj = Rj(τR

j
(Bc)) for j = 1, 2. We define two events of R1 and

R2 as follows:

I1 =
{
R1[1, τR

1
(Bc)] ∩R2[1, τR

2
(Bc)] = ∅

}
,

I2 =
{
dist({w1}, R2[1, τR

2
(Bc)]) ∨ dist({w2}, R1[1, τR

1
(Bc)]) ≥ M |x|/36

}
.

Let us denote by P the joint distribution of R1 and R2. By [6, Lemma 3.2], we have

P(I2 | I1) ≥ c4, (5.29)

while it follows from [28, equation (3.2)] that P(I1) ≥ c4 for some constant c4 > 0. On I2,
without loss of generality, we suppose that |w1 − z3| ≤ |w2 − z3|. Let

J1 =
{
τR

1

z3 < τR
1
(B′

i
c
), dist(R1(k), l1) ≤ M |x|/200 for all k ∈ [τR

1
(Bc), τR

1

z3 ]
}

J2 =
{
R2(τR2(Bi

c)) ∈ QR
i , dist(R2(k), l2) ≤ M |x|/200 for all k ∈ [τR

2
(Bc), τR

2
(B′

i
c
)]
}
,

where l1 (respectively l2) is the line segment between the points w1 and z3 (or between w2

and R2(τR
2
(B′

i
c)), respectively). (See Figure 23 for a depiction of I1 ∩ I2 ∩ J1 ∩ J2.) Since

dist(w2, B
′
i
c) is comparable to M |x|, we have that

P(J2) ≥ c′,
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for some constant c′ > 0. Moreover, by the strong Markov property and (2.9),

P(J1) ≥ P
(
dist(R1(k), l1) ≤ M |x|/200 for all k ∈ [τR

1
(Bc), τR

1
(B(z3,M |x|/400))]

)
×PR1(τR

1
(B(z3,M |x|/400)))

(
τR

1

z3 < τR
1
(B′

i
c
)
)
×Pz3

(
R1(τR

1
(B(z3,M |x|/200))) ̸∈ B′

i

)
≥ c|w1 − z3|2−d, (5.30)

for some constant c > 0. By the strong Markov property, we bound from below the expectation
of #Ki on the event A := {S(ρi) ∈ QR

i , S[τ
S(B′

i), k] ∈ Qi[0, 5/9] for all k ∈ Ki} by

Ez3 (#Ki1A) ≥
∑
y∈B′′

i

P (I1 ∩ I2 ∩ J1 ∩ J2)

=
∑
y∈B′′

i

P(I1)P(I2 | I1)P(J1)P(J2)

≥
∑
y∈B′′

i

c24 · c|y − z3| · c′

≥ cM2|x|2. (5.31)

On the other hand, the first and second moment of Ki is bounded above as follows. Since
|y − z3| ≥ 1

9M |x| for y ∈ B′′
i and z ∈ QL

i ,

Ez3(#Ki) ≤ Ez3

∑
y∈B′′

i

1(τSy < ∞)

 ≤
∑
y∈B′′

i

Pz3
(
{τSy < ∞}

)
≤
∑
y∈B′′

i

C|y − z3|2−d ≤ CM2|x|2,

(5.32)

Ez3((#Ki)
2) ≤ Ez3

∑
y∈B′′

i

1(τSy < ∞)

2
≤ CM2|x|2 +

∑
y∈B′′

i

∑
y′∈B′′

i

(
Pz3(τSy < τSy′ < ∞) +Pz3(τSy′ < τSy < ∞)

)
≤ CM2|x|2 +

∑
y∈B′′

i

∑
y∈B′′

i

(
Pz3(τSy < ∞) +Pz3(τSy′ < ∞)

)
Py(τSy′ < ∞)

≤ CM2|x|2 +
∑
y∈B′′

i

1
18

M |x|∑
k=1

∑
y∈B′′

i
|y−y′|=k

(
|y − z3|2−d + |y′ − z3|2−d

)
k2−d

+
∑
y∈B′′

i

∑
k≥ 1

18
M |x|+1

∑
y∈B′′

i
|y−y′|=k

(
|y − z3|2−d + |y′ − z3|2−d

)
(M |x|/9)2−d

≤ C ′M4|x|4, (5.33)

where C and C ′ depend only on d. Now, for 0 ≤ θ ≤ 1, we have that

Ez3 (#Ki1A) ≤ θEz3 (#Ki1A) +Ez3 (#Ki1A1 (#Ki1A > θEz3(#Ki1A))) .
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From this, since #Ki ≥ 0, the Cauchy-Schwarz inequality yields

Pz3({#Ki > θEz3(#Ki1A)} ∩A) ≥ Pz3({#Ki1A > θEz3(#Ki1A)} ∩A)

≥ (1− θ)2
Ez3(#Ki1A)

2

Ez3((#Ki)2)
.

By substituting (5.31), (5.32) and (5.33) into the above estimate, we obtain that

Pz3(H
(3)
i (l)) ≥ Pz3

(
#Ki ≥

l

C
Ez3(#Ki)

)
≥
(
1− l

C

)2 Ez3(#Ki1A)
2

Ez3((#Ki)2)
≥ c. (5.34)

Finally, substituting (5.26), (5.27), (5.28) and (5.34) into (5.24) gives (5.23). 2

We are now ready to prove Proposition 5.6. Recall that Fi, Gi and Hi were defined in
Definitions 5.7, 5.8 and 5.11, respectively. Let

UNM
=
{
S[τS(Q2NM+1),∞] ∩B(0, NM ·M |x|) = ∅

}
,

and

Θ = Θ(C, l) =

(
2NM⋂
i=0

Fi

)
∩

(
NM⋂
i=0

Gi(C)

)
∩

(
NM−1⋂
i=1

Hi(l)

)
∩ UNM

.

Proof of Proposition 5.6. We will first demonstrate that the bound τx ∈ [R−1M |x|2, RM |x|],
as appears in the probability on the left-hand side of (5.11), holds on Θ(C, l). Suppose that
Θ(C, l) occurs. By the definition of Fi, i = 0, 1, . . . , 2NM ,

LE(S[0, τSx ]) ∩ S[τSx + 1,∞] = ∅

holds. Thus x ∈ L and τx = len(S[0, τSx ]). Let ki be a nice cut time of S in Bi (see Definition
5.10), and recall that ξi and ξ′i are as defined in (5.15) and (5.16), respectively. Let

si = inf
{
n ≥ 0 : ξi−1(n) ∈ S[τS(Qi), τ

S(Qi+1)]
}
,

ti = sup
{
n ∈ [τS(Qi), τ

S(Qi+1)] : S(n) = ξi−1(si)
}
.

Then we have that

λi = LE
(
S[τS(Qi), ki]

)
⊕ LE

(
S[ki, τ

S(Qi+1)]
)
, (5.35)

and also

ξi = ξi−1[0, si]⊕ LE (S[ti, ki])⊕ LE
(
S[ki, τ

S(Qi+1)]
)
⊆ ξi−1 ∪ S[ti, ki] ∪ λi,

for i = 1, 2, . . . , NM − 1, where we have applied (5.35) for the inclusion. Furthermore,

ξNM
= ξNM−1[0, sNM

]⊕ LE(S[tNM
, τSx ]) ⊆ ξNM−1 ∪ λNM

.

Thus, by induction, it follows that

NM−1⋃
i=1

LE
(
S[ki, τ

S(Qi+1)]
)
⊆ ξNM

⊆ ξ0 ∪
NM−1⋃
i=1

(
S[τS(Qi), τ

S(Qi(ε))] ∪ λi

)
∪ λNM

.
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Note that, on Hi(l), k′ ∈ Ki is a cut time of the path S[ki, τ
S(Qi+1)], and thus S(k′) ∈

LE(S[ki, τ
S(Qi+1)]). By the definition of Gi(C) and Hi(l) (see Definitions 5.8 and 5.11,

respectively), we have that

len(ξNM
) ≥

NM−1∑
i=1

#Ki ≥
1

2
lM |x|2,

len(ξNM
) ≤ len(ξ0) +

NM−1∑
i=1

(
#S[τS(Qi), τ

S(Qi(ε))] + len(λi)
)
+ len(λNM

)

≤ 3(C + ε2)M |x|2,

on Θ(C, l). Hence choosing R suitably large gives the desired bound on Θ(C, l).
Consequently, to complete the proof, it will be enough to show that P(Θ) is bounded

below by the right-hand side of (5.11). By Lemma 5.12, there exist constants c5, ε, l > 0 such
that inf

z∈Q̃i
Pz(Hi(l) | Fi) ≥ c5 for i = 1, 2, . . . , NM . Moreover, by Lemma 5.9, there exists

a constant C > 0 such that inf
z∈Q̃i

Pz(Gi(C) | Fi) ≥ 1− c5/2 for i = 0, 1, . . . , NM . Thus we
have

inf
z∈Q̃i

Pz(Gi(C) ∩Hi(l) | Fi) ≥
c5
2
, i ∈ {1, 2, . . . , NM − 1}, (5.36)

inf
z∈Q̃i

Pz(Gi(C) | Fi) ≥ 1− c5
2
, i = 0, NM . (5.37)

As already noted in the proof of Lemma 5.9, we also have that

inf
z∈Q̃i

Pz(Fi) ≥ c6ε, (5.38)

for all i = 1, 2, . . . , NM − 1, and a similar bound holds for P(F0). And, repeating a similar

argument to the lower bound for Pz3(H
(3)
i ) from the proof of Lemma 5.12, from (5.29) to

(5.30) we have that
inf

z∈Q̃NM

Pz(FNM
) ≥ c6M

2−d|x|2−d,

where c6 > 0 is adjusted if necessary. By combining these estimates on P(Fi) with (5.36) and
(5.37), we obtain that

inf
z∈Q̃i

Pz(Fi ∩Gi(C) ∩Hi(l)) ≥
c5c6ε

2
, i ∈ {1, 2, . . . , NM − 1},

P(F0 ∩G0(C)) ≥
(
1− c5

2

)
c6,

inf
z∈Q̃NM

Pz(FNM
∩GNM

(C)) ≥
(
1− c5

2

)
c6M

2−d|x|2−d.

Furthermore, similarly to the case with i = 1, 2, . . . , NM − 1, it holds that

inf
z∈Q̃i

Pz(Fi) ≥ c6ε, i ∈ {NM + 1, NM + 2, . . . , 2NM},

and it follows from (2.8) that
inf

z∈Q̃2NM+1

Pz(UNM
) ≥ c
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for some constant c > 0. Finally, by the strong Markov property, we have that

P(Θ(C, l))

≥ P(F0 ∩G0(C))

NM−1∏
i=1

inf
z∈Q̃i

Pz (Fi ∩Gi(C) ∩Hi(l))

× inf
z∈Q̃NM

Pz(FNM
∩GNM

(C))×
2NM∏

i=NM+1

inf
z∈Q̃i

Pz(Fi)× inf
z∈Q̃2NM+1

Pz(UNM
)

≥ CM2−d|x|2−de−
c
M

≥ CM1−d/2|x|2−de−
c
M ,

where the third inequality holds simply because M ≤ 1. 2

5.1.4 Lower bound for M ≥ 1

We now turn to the proof of the lower bound of Proposition 5.1 with M ≥ 1. In particular,
we will establish the following.

Proposition 5.13. There exist constants c, c′, R ∈ (0,∞) such that for every x ∈ Zd\{0}
and M ≥ 1,

P
(
τx ∈ [R−1M |x|2, RM |x|2]

)
≥ c′(M |x|2)1−d/2 exp

(
− c

M

)
.

As in the previous subsection, the basic strategy involves the construction of a set of
particular realizations of L that we can show occur with suitably high probability. To do this,
we will use a certain reversibility property of the simple random walk, as is set out in the
next lemma. In the statement of this, for a finite path λ = [λ(0), λ(1), · · · , λ(m)], we write
λR = [λ(m), λ(m− 1), · · · , λ(0)] for its time reversal.

Lemma 5.14. Let x, z ∈ Zd, x ̸= z, and write Sx, Sz for independent simple random walks in
Zd started at x, z, respectively. Moreover, write τ zx := inf{j : Sz

j = x}, τxz := inf{j : Sx
j = z},

σ1 = sup{j ≤ τxz : Sx
j = x}, u = inf{j ≥ τxz : Sx

j = x}, σ2 = sup{j < u : Sx
j = z}.

It then holds that{
λ : P

(
(Sz[0, τ zx ])

R = λ τ zx < ∞
)
> 0
}
= {λ : P (Sx[σ1, σ2] = λ τ zx < ∞) > 0} , (5.39)

and, denoting the set above Λ,

P
(
(Sz[0, τ zx ])

R = λ τ zx < ∞
)
= P (Sx[σ1, σ2] = λ τxz < ∞) , ∀λ ∈ Λ. (5.40)

Proof. Since (5.39) is easy to see, we only check (5.40). Take λ = [λ(0), λ(1), · · · , λ(m)] ∈ Λ.
Note that P(τ zx < ∞) = P(τxz < ∞) by symmetry. It follows that

P
(
(Sz[0, τ zx ])

R = λ, τ zx < ∞
)
= P

(
Sz[0, τ zx ] = λR, τ zx < ∞

)
= P

(
Sz[0, τ zx ] = λR

)
= (2d)−m.
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On the other hand, we have

P (Sx[σ1, σ2] = λ, τxz < ∞) = P (Sx[σ1, σ2] = λ)

=
∑
k≥0

P (Sx[σ1, σ2] = λ, σ1 = k)

=
∑
k≥0

P (z /∈ Sx[0, k], Sx
k = x, Sx[k, k +m] = λ, σ2 = k +m)

=
∑
k≥0

P
(
z /∈ Sx[0, k], Sx

k = x, Sx[k, k +m] = λ, Sx
k+m = z, F

)
,

where F := {z /∈ Sx[k + m + 1, u′)} with u′ = inf{j ≥ k + m : Sx
j = x}. Therefore, the

Markov property ensures that

P
(
z /∈ Sx[0, k], Sx

k = x, Sx[k, k +m] = λ, Sx
k+m = z, F

)
= P (z /∈ Sx[0, k], Sx

k = x)P (Sx[0,m] = λ)P(F ′)

= (2d)−mP (z /∈ Sx[0, k], Sx
k = x)P(F ′),

where F ′ := {z ̸∈ Sz[1, τ zx ]}. Writing

ξx = inf{j ≥ 1 : Sx
j = x} and p = P (ξx < ∞, z /∈ Sx[0, ξx]) ,

we note that ∑
k≥0

P (z /∈ Sx[0, k], Sx
k = x) =

1

1− p
.

Moreover, by symmetry again, it holds that P(F ′) = 1− p. Hence we conclude that

P (Sx[σ1, σ2] = λ, τxz < ∞) = (2d)−m,

which gives (5.40). 2

In order to explain our application of the previous result, we need to introduce some
notation. Let x ∈ Zd\{0} and M ≥ 1. Moreover, set J = C

√
M |x|2 for some C ≥ 1 that will

be determined later, and, for i ∈ Z, write b̂i = (2iJ, 0, . . . , 0) ∈ Rd and

B̂i = B∞

(
b̂i, J

)
,

which represent adjacent cubes of side length 2J . We also introduce the following smaller
cubes centred at b′ = (94J,

J
2 , 0, . . . , 0) ∈ Rd,

B̂′ = B∞(b′, J/6), B̂′′ = B∞(b′, J/18)

Note that B̂′′ ⊂ B̂′ ⊂ B̂1. See Figure 24 for a sketch showing the cubes B̂−1, B̂0, B̂1 and
B̂′, as well as some of the other objects that we now define. In particular, we introduce a
collection of surfaces:

Q∗ =

{
5

2
J

}
× [−J, J ]d−1,

Q∗ = {3J} × [−J, J ]d−1,
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Figure 24: Cubes and other regions appearing in the proof of Proposition 5.13.

Q = {3J} ×
[
−J

4
,
J

4

]
× [−J, J ]d−2 ⊂ Q∗,

Q̃ = {J} × [−J, J ]d−1, Q′ =
{
(y1 − J/16, y2, · · · , yd) : (y1, y2, · · · , yd) ∈ Q̃

}
,

Q̃± = {J} ×
[
±J

2
− J

8
,±J

2
+

J

8

]
× [−J, J ]d−2 ⊂ Q̃,

Q−1 = B̂−1 ∩ {−3J} × Rd−1;

the hyperplane H(1)
85J/36, where for a ∈ R and i ∈ {1, . . . , d}, we denote

H(i)
a =

{
(x1, · · · , xd) ∈ Rd : xi = a

}
(see Figure 26 below for the location of H(1)

85J/36 in particular); and also the following regions:

D± =

[
−J,

49

16
J

]
× [−J, J ]d−1 \

[
15

16
J,

5

2
J

]
×
[
−J

2
∓ J

2
,
J

2
∓ J

2

]
× [−J, J ]d−2,

D̃± = D± ∩
[
15

16
J,∞

)
× Rd−1.

We highlight that D+ is shown as the shaded region in Figure 24.
Roughly speaking, to establish the main result of this subsection, we will show that, with

high enough probability, the loop-erased random walk L passes from 0 to (somewhere close
to) Q through D+, spending a suitable time in B̂′′ on the way, before returning to x through
D−, and then escapes to ∞ via Q−1. To make this precise, we will consider an event based
on the simple random walk started from 0; see Figure 25. Controlling the probability of this
will involve an appeal to Lemma 5.14, through which we obtain a bound that depends on
three independent random walks, one started from 0 and two started from x (see Lemma 5.15
below).

Concerning notation, as in the statement of Lemma 5.14, for each z ∈ Zd, we will write
Sz for a simple random walk started from z. We assume that the elements of the collection
(Sz)z∈Zd are independent. We moreover write (S̃z)z∈Zd for an independent copy of (Sz)z∈Zd .
We also set

τ zA := inf{k ≥ 0 : Sz
k ∈ A}, σz

A = sup{k ≥ 0 : Sz
k ∈ A},
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Figure 25: A sketch of a realisation of S0 yielding τx ≥ M |x|2.

τ zx = τ z{x} and σz
x = σz

{x}. A particularly important point in the argument that follows is given
by

ρ = S0
τ0Q
,

i.e. the location where S0 hits Q, which is defined when τ0Q < ∞. Additionally, we introduce

τ̃ = inf
{
k ≥ 0 : S̃x

k ∈ Rd \ (B̂0 ∪ B̂−1)
}
,

and, to describe a collection of local cut points for a path λ,

Γ(λ[i, j]) = {λ(k) : λ[i, k] ∩ λ[k + 1, j] = ∅} .

The following result gives the key decomposition of the simple random walk underlying L
that we will consider later in the subsection. It already takes into account the time-reversal
property of Lemma 5.14. We will break the complicated event that appears in the statement
into several more convenient pieces below.

Lemma 5.15. In the setting described above, P(τx ≥ M |x|2) is bounded below by the proba-
bility of the following event:

τ0Q < ∞, S0[0, τ0Q] ⊂ D+, S
0[0, σ0

B̂′′ ] ∩H(1)
85J/36 = ∅, S0[τ0Q∗ , τ0Q] ∩H(1)

85J/36 = ∅,
#(Γ(S0[0, τ0Q]) ∩ B̂′′) ≥ M |x|2, τxρ < ∞, Sx[0, σx

ρ ] ⊂ D−,

(S0[0, τ0Q] ∩ Sx[0, σx
ρ ]) ∩ B̂0 = ∅, S̃x ∩ (S0[0, τ0Q] ∪ Sx[0, σx

ρ ]) = ∅

 .

Proof. Clearly,
τ0Q < τ0x < ∞, S0[0, τ0Q] ⊂ D+, S

0[0, σ0
B̂′′ ] ∩H(1)

85J/36 = ∅, S0[τ0Q∗ , τ0Q] ∩H(1)
85J/36 = ∅,

#(Γ(S0[0, τ0Q]) ∩ B̂′′) ≥ M |x|2, S0[τ0Q, τ
0
x ] ⊂ D−,

(S0[0, τ0Q] ∩ S0[τ0Q, τ
0
x ]) ∩ B̂0 = ∅, S0[τ0x ,∞) ∩ (S0[0, τ0Q] ∪ S0[τ0Q, τ

0
x ]) = ∅


is a subset of the event {τx ≥ M |x|2}. Now, conditioning on the value of ρ and applying the
strong Markov property at times τ0Q and τ0x , we have that the probability of the above event
is equal to

∑
z∈Q

P


τ0Q < ∞, ρ = z, τ zx < ∞,

S0[0, τ0Q] ⊂ D+, S
0[0, σ0

B̂′′ ] ∩H(1)
85J/36 = ∅, S0[τ0Q∗ , τ0Q] ∩H(1)

85J/36 = ∅,
#(Γ(S0[0, τ0Q]) ∩ B̂′′) ≥ M |x|2, Sz[0, τ zx ] ⊂ D−,

(S0[0, τ0Q] ∩ Sz[0, τ zx ]) ∩ B̂0 = ∅, S̃x ∩ (S0[0, τ0Q] ∪ Sz[0, τ zx ]) = ∅

 .
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Applying Lemma 5.14, we can replace τ zx and Sz[0, τ zx ] in the above expression by τxz and
Sx[σ1, σ2], respectively, where σ1, σ2 are defined as in the statement of that result. Since
0 ≤ σ1 ≤ σ2 ≤ σx

z , it holds that Sx[σ1, σ2] ⊆ Sx[0, σx
z ]. Consequently, we obtain that the

above sum is bounded below by

∑
z∈Q

P


τ0Q < ∞, ρ = z, τxz < ∞,

S0[0, τ0Q] ⊂ D+, S
0[0, σ0

B̂′′ ] ∩H(1)
85J/36 = ∅, S0[τ0Q∗ , τ0Q] ∩H(1)

85J/36 = ∅,
#(Γ(S0[0, τ0Q]) ∩ B̂′′) ≥ M |x|2, Sx[0, σx

z ] ⊂ D−,

(S0[0, τ0Q] ∩ Sx[0, σx
z ]) ∩ B̂0 = ∅, S̃x ∩ (S0[0, τ0Q] ∪ Sx[0, σx

z ]) = ∅

 ,

and replacing the sum with a union inside the probability completes the proof. 2

Now, we will rewrite the event we defined in the statement of Lemma 5.15 as the inter-
section of various smaller events concerning S0, Sx and S̃x. For convenience, we will write

η0 := S0
τ0
Q̃

, ηx := Sx
τx
Q̃
, η̃ := S̃x

τ̃

in the remainder of this subsection. We moreover define the event E1 by setting

E1 =


τ0
Q̃
< ∞, η0 ∈ Q̃+, τ

x
ρ < ∞, ηx ∈ Q̃−, τ̃ < ∞, η̃ ∈ Q−1,

(S0[0, τ0
Q̃
] ∩ Sx[0, τx

Q̃
]) ∩ B̂0 = ∅,

S0[0, τ0
Q̃
] ⊂ D+, S

x[0, τx
Q̃
] ⊂ D−, S̃

x[0, τ̃ ] ∩ (S0[0, τ0
Q̃
] ∪ Sx[0, τx

Q̃
]) = ∅

 .

On E1, the paths S0, Sx and S̃x do not have an intersection and move along the different
courses until they first exit the union of B̂−1 and B̂0.

Next, we will define some events that restrict the behavior of S0 after τ0
Q̃
. Recall that

b′ = (94J,
J
2 , 0, · · · , 0) ∈ Rd and B̂′ = B∞(b′, J6 ). We define the “left” and “right” faces of B̃′

by

QL =

{
25

12
J

}
×
[
J

3
,
2

3
J

]
×
[
−J

6
,
J

6

]d−2

, QR =

{
29

12
J

}
×
[
J

3
,
2

3
J

]
×
[
−J

6
,
J

6

]d−2

.

Moreover, we define a subset of D̃+ by setting

B̂′
L =

[
17

18
J,

79

36
J

]
×
[
J

3
,
2

3
J

]
×
[
−J

2
,
J

2

]d−2

.

See Figure 26. Then, writing uy = inf{n ≥ τy
Q̃
: Sy

n ∈ Q′} and σ′ = inf{n ≥ τy
B̂′′ : S

y
n ∈ (B̂′)c},

let

F1(y) =
{
τyQL

< uy, Sy[τy
Q̃
, τyQL

] ⊂ B̂′
L

}
, (5.41)

F2(y) =

{
τy
B̂′′ < inf{n ≥ τyQL

: Sy
n ∈ (B̂′

L)
c} < ∞, σ′ ∈ QR,

#
{
k ∈ [τy

B̂′′ , σ
′] : Sy[τyQL

, k] ∩ Sy[k + 1, σ′] = ∅, Sy
k ∈ B̂′′

}
≥ M |x|2

}
, (5.42)

F3(y) =

{
τyQ∗ < τyQ < ∞, Sy[σ′, τyQ] ⊂ D+ ∩

[
85

36
J,∞

)
× Rd−1

}
, (5.43)
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Figure 26: Illustration of the sets used in controlling the number of cut points of S0 in B̂′′.

and set E2 = F1(0) ∩ F2(0) ∩ F3(0). In particular, on the event E2, we have the existence of
cut points of S[τyQL

, σ′] contained in B̂′′. Finally, let

E3 =
{
τxρ < ∞, Sx[τx

Q̃
, σx

ρ ] ⊂ D̃−

}
,

E4 =
{
S̃x[τ̃ ,∞] ∩ (S0[0, τ0Q] ∪ Sx[0, σx

ρ ]) = ∅
}
,

be events that restrict the regions where Sx and S̃x can explore, respectively.
We continue by checking the local cut points that we construct on the event F2(0) are

cut points of the loop-erasure of S0[0, τ0Q]. Note that on the event E2, it follows from the
definition of F2(0) and F3(0) that

S[τ0Q∗ , τ0Q] ∩H(1)
85J/36 = ∅, S[σ′, τ0Q∗ ] ∩ B̂′′ = ∅.

Moreover, on the event E1 ∩ E2, we have that

• S0[0, τ0
Q̃
] ∩Q∗ = ∅,

• S0[τ0
Q̃
, τ0QL

] ∩Q∗ = ∅,

• S0[τ0QL
, σ′] ∩Q∗ = ∅.

The first and second statements follow from the definitions of E1 and F1(0), respectively,
while the third statement is derived from the definitions of F2(0) and σ′ (recall the definitions
of the sets defined above, which are also shown in Figure 26). From these statements, we
immediately conclude that

S0[0, σ′] ∩Q∗ = ∅.

For the rest of the path S0[0, τ0Q], the definition of F3(0) implies that

S0[σ′, τ0Q∗ ] ∩ B̂′′ = ∅, S0[τ0Q∗ , τ0Q] ∩H(1)
85/36J = ∅.

Combining the preceding three statements, we see that, on E1 ∩ E2,

S0[0, σ0
B̂′′ ] ∩H(1)

85/36J = ∅, S0[τ0Q∗ , τ0Q] ∩H(1)
85J/36 = ∅,

where we recall that is σ0
B̂′′ be the last exit time of B̂′′ by S0 (we assume here that S0 is

stopped at τ0Q). Thus, the local cut points of the event F2(0) are indeed cut points of the
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loop-erasure of S0[0, τ0Q] and the probability of the event we defined in the statement of Lemma
5.15 is bounded below by

P(E1 ∩ E2 ∩ E3 ∩ E4).

In what follows, we will bound below this probability below. To start with, we will prove
that S0, Sx and S̃x do not have an intersection and are separated in a cube with positive
probability. Let T z

r = τ zB∞(0,r). We define the event Gn by setting

Gn =
{
S0[0, T 0

n ] ∩ Sx[0, T x
n ] = S0[0, T 0

n ] ∩ S̃x[0, T̃ x
n ] = Sx[0, T x

n ] ∩ S̃x[1, T̃ x
n ] = ∅

}
,

and let Zn be given by

min
{
d(S0

T 0
n
, Sx[0, T x

n ] ∪ S̃x[0, T̃ x
n ]), d(S

x
Tx
n
, S0[0, T 0

n ] ∪ S̃x[0, T̃ x
n ]), d(S̃

x
T̃x
n
, S0[0, T 0

n ] ∪ Sx[0, T x
n ])
}
,

where d here is the Euclidean distance, i.e. Zn is the minimum of the distance between the
point from which either S0, Sx or S̃x exits B∞(0, n) and the union of the other two paths up
to their exit times.

Lemma 5.16. There exists c > 0 and n0 ≥ 1 such that: for all n ≥ n0,

P
(
Gn ∩

{
Zn ≥ n

2

})
≥ c.

Proof. For readability, we assume that x = (0, |x|, 0, · · · , 0). (Other cases will follow by
a small modification of the argument.) We follow the idea of [6, Lemma 3.2]. Let e1 =
(1, 0, 0, · · · , 0) ∈ Zd and e2 = (0, 1, 0, · · · , 0) ∈ Zd. We define the event I1 by setting

I1 =
{
S0
i = ie2, S

x
i = ie1, S̃

x
i = −ie1 for 1 ≤ i ≤ k

}
,

where k ≥ 1 will be fixed later. Then we have P(I1) = (2d)−3k.
We will show that the probability that S0, Sx and S̃x do not intersect before they first

exit from B∞(0, n) conditioned on I1 is bounded above by arbitrarily small ε by taking k
sufficiently large. Let K(j) be the number of intersections of S0[j, T 0

n ], S
x[j, T x

n ] and S̃x[j, T̃ x
n ],

i.e.

K(j) = #
(
(S0[j, T 0

n ] ∩ Sx[j, T x
n ]) ∪ (S0[j, T 0

n ] ∩ S̃x[j, T̃ x
n ]) ∪ (Sx[j, T x

n ] ∩ S̃x[max{1, j}, T̃ x
n ])
)
.

Then by the Markov inequality,

P(K(0) > 0 | I1) ≤ P(K(k) ≥ 1 | I1)
≤ E(K(k) | I1)
≤ 3 max

x,y: d(x,y)≥k
E (#(Sx[0, T x

n ] ∩ Sy[0, T y
n ]))

≤ 3 max
x,y: d(x,y)≥k

∞∑
m=0

∞∑
m′=0

∑
z∈Zd

Px(Sx
m = z)Py(Sy

m′ = z)

≤ 3 max
x,y: d(x,y)≥k

∞∑
m=0

∞∑
m′=0

Px(Sx
m+m′ = y).
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By substituting the Gaussian estimate of the transition probability of the simple random
walk, the right-hand side is bounded above as follows:

3 max
x,y: d(x,y)≥k

∞∑
m=0

∞∑
m′=0

Px(Sx
m+m′ = y) ≤ 3

∞∑
l=1

l · Cl−d/2e−ck2/l

≤ C
∞∑
l=1

l1−d/2e−ck2/l, (5.44)

for some C, c > 0, where we applied the Gaussian estimate for the off-diagonal heat kernel of
the simple random walk on Zd for the last inequality (see (1.10)). Since d ≥ 5, the right-hand
side of (5.44) converges to 0 as k → ∞.

Our next step is to construct subsets where each simple random walk path is constrained
to move until it first exits from B∞(0, n). We define by

HL =
{
−n

2

}
×
[
−n

4
,
n

4

]d−1
, HR =

{n
2

}
×
[
−n

4
,
n

4

]d−1
,

the subsets of the left and right face of B∞(0, n2 ) in the direction of x1-axis, respectively, and
by

H+ =
[
−n

4
,
n

4

]
×
{n
2

}
×
[
−n

4
,
n

4

]d−2
,

the subset of the upper face of B∞(0, n2 ) in the direction of x2-axis. Let

I02 =

{
S0
T 0
n/2

∈ H+, S
0
T 0
n
∈ H(2)

n , S0[T 0
n/2, T

0
n ] ∩ (H(1)

n/3 ∪H(1)
−n/3 ∪H(2)

n/3) = ∅
}
,

Ix2 =
{
Sx
Tx
n/2

∈ HR, S
x
Tx
n
∈ H(1)

n , Sx[T x
n/2, T

x
n ] ∩ (H(1)

n/3 ∪H(2)
n/3) = ∅

}
,

Ĩx2 =

{
S̃x
T̃x
n/2

∈ HL, S̃
x
T̃x
n
∈ H(1)

−n, S̃
x[T̃ x

n/2, T̃
x
n ] ∩ (H(1)

−n/3 ∪H(2)
n/3) = ∅

}
,

and I2 = I02 ∩ Ix2 ∩ Ĩx2 . It is an elementary exercise to check that there exists some ε > 0 such
that P(I2 | I1) ≥ ε holds uniformly in n ≥ 1 and x ∈ Zd. Note that on the event I1 ∩ I2, it
holds that

Sx
Tx
n
∈ H(1)

n , S0[0, T 0
n ] ∪ S̃x[0, T̃ x

n ] ⊂ (−∞,
n

2
]× Rd−1,

so that d(Sx
Tx
n
, S0[0, T 0

n ]∪S̃x[0, T̃ x
n ]) ≥ n

2 . Similarly, the same bound holds for d(S0
T 0
n
, Sx[0, T x

n ]∪
S̃x[0, T̃ x

n ]) and d(S̃x
T̃x
n

, S0[0, T 0
n ] ∪ Sx[0, T x

n ]). Thus we have Zn ≥ n
2 on the event in question.

Finally, by taking k large so that P(K(0) > 0 | I1) ≤ ε
2 , we obtain that

P
(
Gn ∩

{
Zn ≥ n

2

})
≥ P(I1 ∩ I2 ∩ {K(0) = 0})

= P(I1) (P(I2 | I1)−P(K(0) > 0 | I1))
≥ (2d)−3kε/2,

which completes the proof. 2

We are now ready to complete the proof of the main result of this subsection.
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Proof of Proposition 5.13. For any R > 1, we have that

P
(
τx ∈ [R−1M |x|2, RM |x|2]

)
≥ P

(
τx ≥ M |x|2

)
−P

(
τx > RM |x|2

)
Now, by the argument used to prove Proposition 5.2, we have that

P
(
τx > RM |x|2

)
≤ C

(
RM |x|2

)1−d/2
.

Thus, by taking R suitably large, and applying Lemma 5.15 and the argument above Lemma
5.16, to complete the proof it suffices to prove that

P (E1 ∩ E2 ∩ E3 ∩ E4) ≥ cJ2−d

for some constant c.
Firstly, we derive an estimate for P(E1) from the result of Lemma 5.16. We take C ≥ 1

large so that J = C
√
M |x|2 ≥ 3n0. We then define the event F ′ by setting

F ′ =


τ0
Q̃
< ∞, η0 ∈ Q̃+, τ

x
ρ < ∞, ηx ∈ Q̃−, τ̃ < ∞, η̃ ∈ Q−1,

S0[T 0
J/3, τ

0
Q̃
] ∩
(
H(1)

J/9 ∪H(2)
5J/36

)
= ∅, Sx[T x

J/3, τ
x
Q̃
] ∩
(
H(1)

J/9 ∪H(2)
5J/36

)
= ∅,

S̃x[T̃ x
J/3, τ̃ ] ∩H(1)

−J/9 = ∅

 .

Recall the definition of the events I1 and I2 and the random variable K(j) from the proof of
Lemma 5.16. It is straightforward to check that if we take n = J/3, then

I1 ∩ I2 ∩ {K(0) = 0} ∩ F ′ ⊂ E1.

Moreover, by the strong Markov property and the approximation to Brownian motion, there
exists some constant c > 0 such that P(F ′ | I1 ∩ I2 ∩{K(0) = 0}) ≥ c, uniformly in x and M .
By Lemma 5.16, we thus obtain that

P(E1) ≥ P
(
F ′ | I1 ∩ I2 ∩ {K(0) = 0}

)
P(I1 ∩ I2 ∩ {K(0) = 0}) ≥ c2. (5.45)

Secondly, we estimate P(E2 | E1). It follows from the strong Markov property that

P (E2 | E1) ≥ inf
a1∈Q̃+

Pa1 (F1(a1) ∩ F2(a2) ∩ F3(a3)) ,

where F1(y), F2(y) and F3(y) are as defined in (5.41), (5.42) and (5.43), respectively. Thus
it suffices to bound from below the right-hand side of the above inequality. We begin with a
lower bound for Pa1(F1). By the gambler’s ruin estimate (2.10), we have that Pa1(F1) ≥ c for
some universal constant c > 0. Next, applying a similar argument to that used to obtain (5.34)
in the proof of Lemma 5.12 and the strong Markov property, we obtain that Pa1(F2 | F1) ≥ c.
Finally, again by (2.10) and the strong Markov property, we have that Pa1(F3 | F1 ∩F2) ≥ c.
Since c > 0 does not depend on a1 ∈ Q̃+, we can conclude that

Pa1(E2 | E1) ≥ c3. (5.46)

By the independence of S0 and Sx and the strong Markov property, we also have that

P(E3 | E1 ∩ E2) ≥ inf
a2∈Q̃−, z∈Q

Pa2
(
τa2z < ∞, Sa2 [0, σa2

z ] ⊂ D̃−

)
.
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Let a2 ∈ Q̃− and z ∈ Q. Again by the strong Markov property,

Pa2
(
τa2z < ∞, Sa2 [0, σa2

z ] ⊂ D̃−

)
= Pa2

(
τa2z < ∞, Sa2 [0, τa2z ] ⊂ D̃−

)
Pz
(
Sz[0, σz

z ] ⊂ D̃−

)
.

(5.47)
We will give lower bounds for the two probabilities on the right-hand side. Let la2,z be the
piecewise linear curve that runs from a2 in the direction of e2 until its second coordinate
reaches 5J/2, and then runs along the line from that point to z. Similarly to (5.30) in Lemma
5.12, we obtain that

Pa2
(
τa2z < ∞, Sa2 [0, τa2z ] ⊂ D̃−

)
≥ Pa2 (τa2z < ∞, dist(Sa2(k), la2,z) ≤ J/16 for all k ∈ [0, τa2z ])

≥ cJ2−d, (5.48)

uniformly in a2 and z for some c > 0. Furthermore, we have that

Pz
(
Sz[0, σz

z ] ⊂ D̃−

)
≥ 1−Pz (Sz[0, σz

z ] ∩B(z, J/16)c ̸= ∅)

≥ 1− sup
w∈∂B(z,J/16)

Pw(τwz < ∞)

≥ 1− a

G(0)
J2−d,

where we applied (2.9) with n → ∞ to the last inequality. Thus, by increasing the value of
the constant C > 0 in J = C

√
M |x|2 if necessary, we have that

Pz
(
Sz[0, σz

z ] ⊂ D̃−

)
≥ c, (5.49)

for some uniform constant c > 0. Plugging (5.48) and (5.49) into (5.47) yields that

P(E3 | E1 ∩ E2) ≥ cJ2−d. (5.50)

Now we will give a lower bound for P(E4 | E1 ∩ E2 ∩ E3). Recall that Q−1 = B̂−1 ∩
{−3J} × Rd−1. By the strong Markov property and the definition of the events E1, E2 and
E3, we have that

P(E4 | E1 ∩ E2 ∩ E3) ≥ inf
a3∈Q−1

P̃a3(S̃a3 [0,∞] ∩ (D+ ∪D−) = ∅).

From this, it is an easy application of (2.8) to deduce that

P (E4 | E1 ∩ E2 ∩ E3) ≥ c, (5.51)

for some universal constant c > 0.
Finally, by multiplying each side of (5.45), (5.46), (5.50) and (5.51), we obtain the desired

lower bound. 2
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5.2 Heat kernel estimates for the associated random walk

The aim of this section is to prove Theorem 1.10. As explained in the introduction, the main
input concerning the loop-erased random walk will be Theorem 1.11. To estimate P(XG

t = x)
using the decomposition at (5.1), we also require control over P G(XG

t = Lm), where in this
section (Lm)m≥0 is always the infinite LERW started from 0. Since the structure of the graph
G is simply that of Z+ equipped with nearest-neighbour bonds, we have the obvious identity

P G(XG
t = Lm) = qt(0,m),

where (qt(x, y))x,y∈Z+, t>0 gives the transition probabilities of the continuous-time simple ran-
dom walk on Z+ with unit mean holding times. For this, we have the following estimates
from [2]. (We note that although the result we will cite in [2] is stated for the simple random
walk on Z, it is easy to adapt to apply to the half-space Z+.)

Lemma 5.17. For any ε > 0, there exist constants c1, c2, c3, c4, c5, c6 ∈ (0,∞) such that for
every m ∈ Z+ and t ≥ εm,

qt(0,m) ≤ c1

(
1 ∧ t−1/2

)
exp

(
−c2m

2

1 ∨ t

)
and also

qt(0,m) ≥ c3

(
1 ∧ t−1/2

)
exp

(
−c4m

2

1 ∨ t

)
.

Moreover, for m ≥ 1 and t < εm, we have that

qt(0,m) ≤ c5 exp (−c6m (1 + log(m/t))) .

Proof. From [2, Theorem 6.28(b)], we obtain the relevant bounds for t ≥ 1 ∨ m. Moreover,
the bounds for m = 0, t ∈ (0, 1), follow from [2, Theorem 6.28(d)]. As for m ≥ 1, t ∈ (εm,m),
we can apply [2, Theorem 6.28(c)] to deduce that qt(0,m) is bounded above and below by an
expression of the form:

c exp
(
−c−1m (1 + log(m/t))

)
.

This can be bounded above and below by an expression of the form c exp(−c−1m), and that

in turn by c(1 ∧ t−1/2) exp(− c−1m2

1∨t ), uniformly over the range of m and t considered. This
completes the proof of the first two inequalities in the statement of the lemma. The third
inequality is given by again applying [2, Theorem 6.28(c)]. 2

We are now ready to proceed with the proof of Theorem 1.10.

Proof of Theorem 1.10. Clearly, if x = 0, then Lemma 5.17 immediately yields

P
(
XG

t = x
)
= qt(0, 0) ≍ 1 ∧ t−1/2,

which gives the result in this case.

81



We next suppose x ̸= 0. In this case, applying Lemma 5.17 with ε = 1, we find that

P
(
XG

t = x
)

=
∞∑

m=1

P
(
XG

t = Lm

)
P (Lm = x)

=

∞∑
m=1

qt(0,m)P (Lm = x)

≤ c1

(
1 ∧ t−1/2

) t∑
m=1

exp

(
−c2m

2

1 ∨ t

)
P (Lm = x)

+c3

∞∑
m=t+1

exp (−c4m (1 + log(m/t)))P (Lm = x) . (5.52)

Now, the second sum here is readily bounded as follows:

c3

∞∑
m=t+1

exp (−c4m (1 + log(m/t)))P (Lm = x) ≤ c3

∞∑
m=t+1

exp (−c4m) ≤ c3 exp (−c5t) .

Moreover, since we are assuming t ≥ ε|x| ≥ ε, the final expression is readily bounded above
by one of the form

c6

(
1 ∧ |x|2−d

)(
1 ∧ t−1/2

)
exp

(
−c7

(
|x|4

1 ∨ t

)1/3
)
.

Thus, to complete the proof of the upper bound in the statement of Theorem 1.10, it remains
to derive a similar bound for the first sum on the right-hand side at (5.52). For this, we have
that

c1

(
1 ∧ t−1/2

) t∑
m=1

exp

(
−c2m

2

1 ∨ t

)
P (Lm = x)

≤ c1

(
1 ∧ t−1/2

) ∞∑
k=0

exp

(
−c2(2

k)2

1 ∨ t

) 2k+1−1∑
m=2k

P (Lm = x)

≤ c1

(
1 ∧ t−1/2

) ∞∑
k=0

exp

(
−c2(2

k)2

1 ∨ t

)
(2k)1−d/2 exp

(
−c3|x|2

2k

)

≤ c1

(
1 ∧ t−1/2

) ∞∑
m=1

m−d/2 exp

(
−c2m

2

1 ∨ t
− c3|x|2

m

)
≤ c1

(
1 ∧ t−1/2

)∫ ∞

1
u−d/2 exp

(
− c2u

2

1 ∨ t
− c3|x|2

u

)
du, (5.53)

where we have applied Theorem 1.11 for the second inequality. To bound the integral, we
first note that, for any δ > 0, it is possible to find a constant C < ∞ such that ad/2 ≤ Ceδa

for all a ≥ 0. In particular, choosing δ = c3/2, this implies that

u−d/2 = |x|−d

(
u

|x|2

)−d/2

≤ C|x|−d exp

(
c3|x|2

2u

)
.
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Hence, applying this estimate and the change of variable v = u/((1 ∨ t)|x|2)1/3, we obtain∫ ∞

1
u−d/2 exp

(
− c2u

2

1 ∨ t
− c3|x|2

u

)
du

≤ C|x|−d

∫ ∞

1
exp

(
− c2u

2

1 ∨ t
− c3|x|2

2u

)
du

≤ C|x|2−d

(
|x|4

1 ∨ t

)−1/3 ∫ ∞

0
exp

(
−
(
c2v

2 +
c3
2v

)
×
(

|x|4

1 ∨ t

)1/3
)
dv. (5.54)

Now, let f(v) := c2v
2+ c3

2v , and note that this is a function that has a unique minimum v0 on
(0,∞) such that f(v0) > 0. Thus, for |x|4 ≥ 1 ∨ t, the remaining integral above is estimated
as follows: ∫ ∞

0
exp

(
−
(
c2v

2 +
c3
2v

)
×
(

|x|4

1 ∨ t

)1/3
)
dv

≤
∫ ∞

0
exp (− (f(v)− f(v0))) dv exp

(
−f(v0)

(
|x|4

1 ∨ t

)1/3
)

= C exp

(
−c

(
|x|4

1 ∨ t

)1/3
)
.

Putting this together with (5.53) and (5.54), we deduce the desired result in the range |x|4 ≥
1 ∨ t. If |x|4 < 1 ∨ t, then we follow a simpler argument to deduce:

P
(
XG

t = x
)

=

∞∑
m=1

qt(0,m)P (Lm = x)

≤ c1

(
1 ∧ t−1/2

) ∞∑
m=1

P (Lm = x)

= c1

(
1 ∧ t−1/2

)
P (Lm = x for some m ≥ 0)

≤ c1

(
1 ∧ t−1/2

)
P (Sm = x for some m ≥ 0)

≤ c1

(
1 ∧ t−1/2

)
|x|2−d,

where we have applied Lemma 5.17 for the first inequality, and (2.9) for the third. This is
enough to establish that the upper bound of Theorem 1.10 holds in this case as well.

For the lower bound when x ̸= 0, we follow a similar argument to the upper bound,
but with additional care about the range of summation/integration. In what follows, we set
α = c4/c3, where, here and for the rest of the proof, c3, c4 are the constants of Theorem 1.11.
Clearly, we can assume that c3 ≤ 1 < c4, so that α > 1. Recall that we are also assuming
t ≥ ε|x|, and without loss of generality, we may suppose ε ∈ (0, 1). Applying the bounds of
Lemma 5.17 with ε given by

ε′ := min

{
ε

1 + α2
,

αε4/3

4c4(1 + α2)

}
,

83



we deduce that

P
(
XG

t = x
)

=
∞∑

m=1

qt(0,m)P (Lm = x)

≥ c
(
1 ∧ t−1/2

) ⌊t/ε′⌋∑
m=1

exp

(
−Cm2

1 ∨ t

)
P (Lm = x)

≥ c
(
1 ∧ t−1/2

) ⌊logα(⌊t/ε′⌋)⌋−1∑
k=0

exp

(
−C(αk)2

1 ∨ t

) ⌊αk+1⌋∑
m=⌈αk⌉

P (Lm = x) ,

where for the second inequality, we have applied that

[
1, ⌊t/ε′⌋

]
⊇

⌊logα(⌊t/ε′⌋)⌋−1⋃
k=0

[
αk, αk+1

]
and the observation that each m can appear in at most two of the intervals [⌈αk⌉, ⌊αk+1⌋].
(We also note that our choice of c ensures ⌊logα(⌊t/ε′⌋)⌋−1 ≥ 1, and so the sum is non-empty.)
Consequently, applying Theorem 1.11 with n = αk/c3, we find that

P
(
XG

t = x
)

≥ c
(
1 ∧ t−1/2

) ⌊logα(⌊t/ε′⌋)⌋−1∑
k=0∨⌈logα(c3|x|)⌉

exp

(
−C(αk)2

1 ∨ t

)
(αk)1−d/2 exp

(
−C|x|2

αk

)

≥ c
(
1 ∧ t−1/2

) ⌊α−1⌊t/ε′⌋⌋∑
m=1∨⌈αc3|x|⌉

m−d/2 exp

(
−Cm2

1 ∨ t
− C|x|2

m

)

≥ c
(
1 ∧ t−1/2

)∫ αt/(1+α2)ε′

2c4|x|
u−d/2 exp

(
−Cu2

1 ∨ t
− C|x|2

u

)
du,

where we have used that 1 ∨ ⌈αc3|x|⌉ = 1 ∨ ⌈c4|x|⌉ = ⌈c4|x|⌉ to obtain the bottom limit
of the integral, and the choice of ε′ to obtain the top one. Making the change of variable
v = uε4/3/((1 ∨ t)|x|2)1/3 yields a lower bound for the integral of

c
(
((1 ∨ t)|x|2)1/3

)1−d/2
∫ αε7/3

(1+α2)ε′
×(t/ε|x|)2/3

2c4ε×(ε|x|/t)1/3
v−d/2 exp

(
−C

(
v2 +

1

v

)
×
(

|x|4

1 ∨ t

)1/3
)
dv,

and, since t ≥ ε|x|, our choice of ε′ implies that this is bounded below by

c
(
((1 ∨ t)|x|2)1/3

)1−d/2
∫ 4c4ε

2c4ε
v−d/2 exp

(
−C

(
v2 +

1

v

)
×
(

|x|4

1 ∨ t

)1/3
)
dv

≥ c((1 ∨ t)|x|2)1/3−d/6 exp

(
−C

(
|x|4

1 ∨ t

)1/3
)
.
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Hence, if |x|4 ≥ 1 ∨ t, we can put the pieces together to find that

P
(
XG

t = x
)

≥ c
(
1 ∧ t−1/2

)
((1 ∨ t)|x|2)1/3−d/6

(
|x|4

1 ∨ t

)1/3−d/6

exp

(
−C

(
|x|4

1 ∨ t

)1/3
)

= c
(
1 ∧ t−1/2

)
|x|2−d exp

(
−C

(
|x|4

1 ∨ t

)1/3
)
,

as required. Finally, for |x|4 < 1∨ t, continuing to suppose that c4 is the constant of Theorem
1.11, we have that

P
(
XG

t = x
)

≥
⌊
√

4c24t⌋∑
m=1

qt(0,m)P (Lm = x)

≥ c
(
1 ∧ t−1/2

) ⌊
√

4c24t⌋∑
m=1

P (Lm = x)

≥ c
(
1 ∧ t−1/2

) ⌊c4⌈|x|⌉⌋∑
m=⌈c3⌈|x|⌉⌉

P (Lm = x)

≥ c
(
1 ∧ t−1/2

)
|x|2−d,

where we have applied Lemma 5.17 with ε = 1/4c24 for the second inequality, that c4⌈|x|⌉ ≤
2c4|x| ≤

√
4c24t for the third, and Theorem 1.11 for the final one. 2
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Poincaré Probab. Stat. 48 (2012), no. 4, 922–946. MR 3052399

[10] I. Benjamini, R. Lyons, Y. Peres, and O. Schramm, Uniform spanning forests, Ann.
Probab. 29 (2001), no. 1, 1–65. MR 1825141

[11] S. Benoist, L. Dumaz, and W. Werner, Near-critical spanning forests and renormaliza-
tion, Ann. Probab. 48 (2020), no. 4, 1980–2013. MR 4124531

[12] R. Burton and R. Pemantle, Local characteristics, entropy and limit theorems for span-
ning trees and domino tilings via transfer-impedances, Ann. Probab. 21 (1993), no. 3,
1329–1371. MR 1235419

[13] D. A. Croydon and T. Kumagai, Random walks on Galton-Watson trees with infinite
variance offspring distribution conditioned to survive, Electron. J. Probab. 13 (2008),
no. 51, 1419–1441. MR 2438812

[14] G. Grimmett, The random-cluster model, Grundlehren der mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences], vol. 333, Springer-Verlag,
Berlin, 2006. MR 2243761

[15] O. Häggström, Random-cluster measures and uniform spanning trees, Stochastic Process.
Appl. 59 (1995), no. 2, 267–275. MR 1357655

[16] N. Halberstam and T. Hutchcroft, Logarithmic corrections to the Alexander-Orbach
conjecture for the four-dimensional uniform spanning tree, 2022, arXiv preprint,
arXiv:2211.01307.

[17] N. Holden and X. Sun, SLE as a mating of trees in Euclidean geometry, Comm. Math.
Phys. 364 (2018), no. 1, 171–201. MR 3861296

[18] T. Hutchcroft, Universality of high-dimensional spanning forests and sandpiles, Probab.
Theory Related Fields 176 (2020), no. 1-2, 533–597. MR 4055195

[19] T. Hutchcroft and Y. Peres, Collisions of random walks in reversible random graphs,
Electron. Commun. Probab. 20 (2015), no. 63, 6. MR 3399814

[20] G. Kirchhoff, Ueber die auflösung der gleichungen, auf welche man bei der untersuchung
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