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Abstract

Random walks on random graphs are associated with diffusion phenomena in disordered
media. In this thesis, the graphs of interest are uniform spanning tree (UST) and loop-
erased random walk (LERW). Firstly, we will give a quantitative estimate of the number
of collisions of two independent simple random walks on the three-dimensional UST.
Secondly, we will demonstrate log-logarithmic fluctuations of the quenched heat kernel of
the simple random walk on the three-dimensional UST, which is caused by the same type
of fluctuation of the volume of intrinsic balls. Finally, we will discuss annealed heat kernel
estimates for the simple random walk on high-dimensional LERWs.
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1 Introduction

The exploration of random walks in random environments stands as a critical pursuit in
the study of diffusion phenomena. The mathematical models in this area serve as a pivotal
avenue for advancing our comprehension of diffusion phenomena, including heat and wave
propagation, on disordered media such as polymers, crystals, and porous structures. Historical
overview and exploration of pioneering models in this field can be found in [2, 23]. Notably,
the examination of random walks in random media has gone beyond the study of diffusion
and led to diverse applications, ranging from network analysis and algorithmic development
to the formulation of various models in the social and natural sciences.

In this thesis, we investigate the behavior of simple random walks on two types of random
graphs, the three-dimensional uniform spanning tree and the high-dimensional loop-erased
random walks, defined on the Euclidean lattice Z?%. By delving into the intricacies of these
models, we aim to contribute to the broader understanding of random walks in complex
environments and their implications across various scientific and analytical domains.

1.1 Uniform spanning trees and loop-erased random walks

Let us first begin with the introduction of uniform spanning forests on Z?. Pemantle [36]
proved that if G,, is a sequence of finite subgraphs which exhausts Z?, then the sequence of the
uniform spanning measures on G, weakly converges to some probability measure supported
on the set of spanning forests of Z?. The corresponding random graph is called the uniform
spanning forest (USF) on Z?. Pemantle [36] also showed that the uniform spanning forest is
a single tree almost surely if d < 4, in which case the random graph is called the uniform
spanning tree (UST) on Z¢, while it consists of infinitely many trees if d > 5. Since their
introduction, the study of uniform spanning forests has played an important role in probability
theory, due to its connection to various areas such as electrical networks [10, 12, 20], loop-
erased random walk [25, 36, 42], the random cluster model [14, 15], and for d = 2, conformally
invariant scaling limits [4, 11, 17, 30, 38].

Let us mention that the uniform spanning tree is often considered to be included in the
same class as various critical models arising in statistical physics since it has similar properties
such as fractal-like scaling limits with non-trivial scaling exponents. Moreover, the uniform
spanning tree is one of the few models for which rigorous results have been proved even for
the three-dimensional case [1, 21, 31], which is typically the most difficult case to study.

Next, we introduce the loop-erased random walk (LERW) on Z¢. Given a finite path v, we
denote by LE(7) the chronological loop-erasure of 7 (see Section 2.1 for the precise definition).
If v is a random walk path up to a finite time, then LE(7) is called a finite loop-erased random
walk. Let S be the entire path of a simple random walk (SRW) on Z<. Since S is transient
for d > 3, we can apply the same procedure of erasing loops to S almost surely, and the
resulting infinite simple random path is called the infinite loop-erased random walk, while
two-dimensional infinite LERW is obtained as the limit of finite LERW on Z? (see [28], for
example).

Uniform spanning forests and loop-erased random walks are closely related to each other
via an algorithm called Wilson’s algorithm [10, 42]. While the USF is defined as (the weak
limit of) the uniformly distributed random graphs on the set of spanning forests, Wilson’s
algorithm describes a method to construct USF with independent LERW paths, which enables



one to investigate the property of d-dimensional UST or USF by utilizing the known facts
concerning LERWs on Z.

The behavior of random walks on random graphs strongly depends on the geometric
and spectral properties of the random graphs. Motivating the study of the SRW on the
uniform spanning trees and the uniform spanning forests is that such a process captures these
properties that depend on the dimension d. It has been proved that the random walk displays
mean-field behavior for d > 4, with a logarithmic correction in four dimensions [16, 18]. On
the other hand, different (nontrivial) exponents describe the asymptotic behavior of several
quantities such as transition density (heat kernel), exit time and mean-square displacement
of the random walk below four dimensions [1, 8]. At least, this is confirmed for d = 2 and it is
strongly believed that this is the case for d = 3 (see Remark 1.1). Similar kinds of differences
in such properties for different dimensions are also observed for the loop-erased random walks
on Z%. Tt has been proved that the LERW converges to Brownian motion if d > 4, with a
logarithmic correction in four dimensions, while the mean-square displacement is described
with nontrivial exponents for d = 2 and 3 [28].

Remark 1.1. Rigorously speaking, it is not clarified that the uniform spanning tree on Z3
exhibits different exponents than the high-dimensional case since the only information about
the growth exponent [ is that it satisfies 1 < 8 < 5/3. As shown in (1.4), the leading order
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of the on-diagonal heat kernel is n~ 3+8 a.s. in three dimensions, while it equals n=5 for every
component of the uniform spanning forest in higher dimensions [16, 18].

1.2 Main theorems

The main part of this thesis consists of three chapters. In this section, we state the main
result of each chapter.

1.2.1 Collisions of random walks on the 3D UST

In Chapter 3, we will estimate the number of collisions of two independent random walks
on the three-dimensional uniform spanning tree. To be more precise, let us introduce some
terminology here. For infinite connected recurrent graph G, let X and Y be independent
(discrete time) simple random walks on G. We say that G has the infinite collision property
when [{n : X,, = Y, }| = oo holds almost surely, where |A| denotes the cardinality of A. For
classical examples such as Z and Z2, it is easy to see that two independent simple random
walks collide infinitely often. On the other hand, Krishnapur and Peres [22] gave an example
of a recurrent graph for which the number of collisions is almost surely finite. For collisions
on random graphs, Barlow, Peres and Sousi [9] proved that a critical Galton-Watson tree, the
incipient infinite cluster in high dimensions and the uniform spanning tree on Z? all have the
infinite collision property almost surely. The infinite collision property of reversible random
rooted graphs including uniform spanning trees on Z? (d < 4) and every component of uniform
spanning forests on Z¢ (d > 5) was proved in [19].

The purpose of Chapter 3 is to give a quantitative estimate of the number of collisions until
two random walks exit a ball of the three-dimensional UST. Let U be the uniform spanning
tree on Z3 and P be its law. Let X and Y be two independent simple random walks on U
killed when they exit the intrinsic ball of U of radius r. We denote by P the law of (X,Y)



started at (0,0) and by E the corresponding expectation. Let Zp, be the total number of
collisions of X and Y (see Section 3.1 for the precise definition).

Theorem 1.2. There exist some universal constants C > 0, ¢ > 0 and d > 0 such that for
any r > 1 and for all 0 < e < 0, there exists some event K(r,e) with P(K(r,e)) > 1 — Ce®
such that on K(r,€),

er < E(Zp,) < 6r,
E(Z% ) < 144r% + 6r, (1.2)

hold. In particular, on K(r,e) we have
P(er < Zp, < 727%r) > £%/12. (1.3)

The infinite collision property of the three-dimensional UST directly follows from Theorem
1.2.

Corollary 1.3. The uniform spanning tree on Z> has the infinite collision property P-a.s.

Remark 1.4. Note that the above statement includes two different probability measures, the
law of the three-dimensional UST and that of random walks on it. Corollary 1.3 claims that
if we choose a tree according to the law of the three-dimensional UST and check whether two
independent simple random walks on the tree collide infinitely often almost surely, then it has
the infinite collision property almost surely with respect to the UST measure.

Remark 1.5. In [19], it is proved that the uniform spanning tree on Z? (d = 3,4) and each
connected component of the uniform spanning forest on Z¢ (d > 5) have the infinite collision
property. In Section 3.2 of this article, we will derive Corollary 1.3 from Theorem 1.2, which
gives another proof for the three-dimensional case. We expect that quantitative moment
estimates of the number of collisions for the case d > 4 can also be derived from various
estimates obtained in [16] and [18]. We will not pursue this further in the present article.

1.2.2 Heat kernel fluctuations for the simple random walk on the 3D UST

The aim of Chapter 4 is to demonstrate an oscillatory phenomenon for the volume and heat
kernel of the simple random on the three-dimensional uniform spanning tree. Let U/ be the
uniform spanning tree on Z3. We write p;(x, ) for the transition density (heat kernel) of simple
random walks on graphs and, in particular, pY(x,y) for the heat kernel of the (discrete-time)
simple random walk on U, see Section 2.2 for its precise definition. We also let 5 € (1,5/3]
be the growth exponent that governs the time-space scaling of the three-dimensional loop-
erased random walk, which coincides with the Hausdorff dimension of the scaling limit of the
three-dimensional loop-erased random walk [39, 40], see Section 2.1 for details.

Remark 1.6. Numerical estimates suggest that § = 1.624--- (see [43]).

It was proved in [24] that if a random graph satisfies some assumptions on its volume and
effective resistance, the on-diagonal heat kernel p;(z,x) has upper and lower bounds which
are derived from volume and effective resistance estimates. Combining this with estimates
for the three-dimensional uniform spanning tree obtained by [1, Theorem 1.6] concludes that



there exist deterministic constants b1, b, b3, by > 0 and ¢y, co > 0 such that with probability
one s .
cin” 348 (loglogn) = < g4 (0,0) < con” 55 (log log n)®2, (1.4)

for large n, and also
3 3
clrﬁ(loglogr)_b3 < |By(0,7)] < cor? (log logr)b4, (1.5)

for large r.
The main theorem of Chapter 4 then demonstrates that there exist some exponents of
log-logarithmic bounds which cause fluctuations of the on-diagonal heat kernel.

Theorem 1.7. There exist deterministic constants ai,as > 0 such that one has

lim inf (log log n)alnﬁpg{n(o, 0) =0, (1.6)
n—o0
and also 5
lim sup (log log n) ~%2n5+5 p (0, 0) = oo, (1.7)
n—oo

almost surely.

Similar heat kernel fluctuations have been established for Galton-Watson trees [7, 13]
and the uniform spanning tree on Z? [5]. We will describe some key differences between
these models and the three-dimensional UST at the beginning of Chapter 4, but common
ingredients in the proofs of such results are corresponding volume fluctuations. The idea of
proof of Theorem 1.7 is similar to that of [5, Corollary 1.2]. Specifically, to prove Theorem
1.7, the crucial step is to demonstrate that the volume of intrinsic balls (with respect to the
graph distance) of U also enjoys log-log fluctuations. To be more precise, let By (0,7) be the
intrinsic ball in U of radius r centered at the origin. Then we have the following volume
fluctuations.

Theorem 1.8. There exist deterministic constants as,aq > 0 such that one has

lirginf (loglogr)®® r8 | By (0,7)| = 0, (1.8)
and also
_3
lim sup (loglogr)™ % r~ 7 |By(0,7)| = oo, (1.9)
r—00

almost surely. Here |A| stands for the cardinality of A.

Remark 1.9. The main contribution of Theorems 1.7 and 1.8 is demonstrating the exis-
tence of the exponents a; that satisfies (1.6), (1.7), (1.8) and (1.9). Determining the optimal
exponents for a; seems to be a difficult problem and we do not pursue this here.



1.2.3 Annealed off-diagonal heat kernel of the simple random walk on high-
dimensional LERWs

The main result of Chapter 5 is annealed heat kernel estimates for the random walk on
the random graph given by the trace of a LERW in high dimensions. Our main theorem
reveals that the annealed (averaged) heat kernel of the random walk satisfies sub-Gaussian
estimate, which exhibits an interesting difference from the quenched (typical) heat kernel
estimates of Gaussian form with respect to the intrinsic graph metric. Investigating such a
difference between quenched and annealed heat kernel estimates rigorously was motivated by
a conjecture made in [5, Remark 1.5] for the two-dimensional uniform spanning tree, and
naturally leads one to consider to what extent the behavior is typical for random walks on
random graphs embedded into an underlying space.

Let us introduce our model of a random walk in a random environment. Throughout the
thesis, we let (Ly)n>0 be the loop-erasure of the discrete-time simple random walk (.S),)n>0
on Z¢, where d > 5, started from the origin. (See Section 2.1 for a precise definition of this
process, which was originally introduced by Lawler in [25].) Given a realisation of (Ly)n>0,
we define a graph G to have vertex set

and edge set
E(G) == {{Ln;Lns1}: n>0}.

We then let (X¢)¢>0 be the continuous-time random walk on G that has unit mean exponential
holding times at each site and jumps from its current location to a neighboring vertex chosen
with equal probability. Moreover, we will always suppose that Xog = Lo = 0. We define the
annealed law of XY to be the probability measure on the Skorohod space D(R,,R%) given by

P(X9€) = /PQ (X9 € ) P(dg),

where P is the probability measure on the underlying probability space on which L is built,
and PY is the law of X9 on the particular realization of G (i.e. the quenched law of G). We
use the notation z V y := max{x,y} and x Ay := min{z, y}.

Theorem 1.10. For any e > 0, there exist constants c1, ca, cs,cq4 € (0,00) such that, for every
€7 and t > e|z],

4\ 1/3
st =) <o (100 (o (1))

4\ 1/3
(17 =) 2 (1) (126 2o (s (1)),

The key ingredient of the proof is a time-averaged Gaussian bound on the distribution
of the loop-erased random walk. Now, one can check that SRW satisfies pointwise Gaussian
bounds of the form

and also

P(S, = 2) + P(Syy1 = )

1 _d/p _clal?
5 < In~%2% no VweZd,nZL

(1.10)

_d/2 _l=®
en” e e Lz oy <



where ¢ is a constant and we write [|z||; for the ¢;-norm of x, see [2, Theorem 6.28], for
example. (The averaging over two time steps is necessary for parity reasons.) Of course, one
can not expect the same bounds for a LERW. Indeed, the ‘on-diagonal’ part of the distribution
P(L, = 0) is equal to zero for n > 1. Instead, we will establish the following theorem, which
demonstrates that if one averages P(L,, = 0) over longer time intervals, then one can see
Gaussian estimates.

Theorem 1.11. The loop-erased random walk (Ly)n>0 on Z¢, d > 5, started from the origin
satisfies the following bounds: for all x € Z\{0}, n > 1,

2n—1 eo 2|2
S Pl = ) < cxn 92~ 2E,

m=n

1
n

and for all x € Z4\{0}, n > |z|,

where c1,...,cg are constants.

To put this result into context, it helps to briefly recall what kind of behavior has been
observed for anomalous random walks and diffusions in other settings. In particular, for many
random walks or diffusions on fractal-like sets (either deterministic or random), it has been
shown that the associated transition density py(z,y) satisfies, within appropriate ranges of
the variables, upper and lower bounds of the form

1
d dw \ dp—1
et~ %/ exp (—cz ((az,ty)) ) , (1.11)

where d(x,y) is some metric on the space in question. (See [2, 23] for overviews of work in
this area.) The exponent ds is typically called the spectral dimension since it is related to
the growth rate of the spectrum of the generator of the stochastic process. The exponent d,,,
which is usually called the walk dimension (with respect to the metric d), gives the space-time
scaling.

Now, in our setting, we can clearly write

P(X{ =2)=P(X/ =z|z€G)P(z€Q),

and, moreover, using simple facts about the intersection properties of SRW in high dimensions,
one can check that P(z € G) < 1A |z|>~? (where we use the notation < to mean that the left-
hand side is bounded above and below by constant multiples of the right-hand side). Hence,
Theorem 1.10 gives that the (conditioned) annealed transition probability P(X{ = z |z € G)
satisfies the sub-Gaussian estimate of the form of (1.11), with ds = 1, dy, = 4 and d being
the Euclidean metric. We can understand that d; = 1 results from one-dimensional nature of
the graph G with respect to its intrinsic metric dg. Moreover, the exponent d,, = 4 gives the
space-time scaling of the process X9 with respect to the Euclidean metric. We note that the
exponent d; = 1 matches the quenched spectral dimension, while d,, = 4 is the multiple of the



‘2 of the quenched bound, which is the walk dimension of XY with respect to the intrinsic
metric dg, and the ‘2’ that gives the space-time scaling of L. We highlight that the annealed
bound is not obtained by simply replacing dg (0, z) by |z|? in the quenched bound, though, as
doing that does not result in an expression of the form at (1.11).
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2 Definition and Notation

In this chapter, we introduce some notations that will be used in the thesis and discuss some
necessary background.

We begin with some notation for subsets of Z¢. We apply the definition below to d = 3 in
Chapters 3 and 4 and to d > 5 in Chapter 5. For two points z,y € Z¢, we let dg(z,y) = |z —|
be the Euclidean distance between z and y. If A and B are two subsets of Z%, we let
dist(A, B) = inf{dg(z,y) : * € A,y € B}. In particular, for 2 € Z?, we write d(z, B) instead
of d({z}, B). For a set A C Z4, let

A= {x e A: there exists y € Z%\ A such that dp(z,y) = 1},
DA = {x € Z%\ A : there exists y € A such that dp(z,y) = 1}
be the inner and outer boundary of A, respectively. We denote balls in the Euclidean metric

by
B(z,r) ={y € 2% : dg(z,y) <r},

and balls in [, -metric d, .e. cubes, by
Boyo(z,7) ={y € 7% : doo(z,y) < 1}

Throughout the thesis, we let S* denote a simple random walk on Z? started at z € Z¢
and let P* denote its law. We take (5%),cza to be independent.

2.1 Loop-erased random walk

Now we define a loop-erased random walk, which is a model of interest itself in this thesis
and plays an important role in the analysis of uniform spanning trees.

Firstly, we introduce some notation for paths on Z%. For z,y € Z%, we write x ~ y if
dr(x,y) = 1. A finite or infinite sequence of vertices 6 = (0y,01,---) is called a path if
0;—1~0; for all t = 1,2,---. If 0 satisfies 6; # 0; for all ¢ # j, then 6 is called a simple path.
We write 0[i, j] = (05, 0i41,--- ,0;) for 0 <i < j and 6[i,00) = (0;,0;4+1,---). For a finite path
0 = (0o, ,0k), we define the length of 6 to be len(d) = k.

For two paths 6 = (00,601, - ,60) and 6 = (6],67,---) with 6, = 6], we define the
concatenation 6 @ 6’ of them by

00 = (90,91,"' , 01, /1,)
Given a path 6 on Z¢ and a set A C Z%, we define
74 =min{i > 0:6; € A}. (2.1)

We write 7%(A) == 73 for the first hitting time of a set A C Z? by the simple random walk
S% started at z.

Given a path A = [Ag, A1,..., \n] C Z¢ with len(\) = m, we define its (chronological)
loop-erasure LE(A) as follows. Let 09 = max{k : Ay = Ao} and also, for i > 1,

0; = max {k: AR = /\JFIH} . (2.2)
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We note that these quantities are well-defined up to the index j = min{i : A\s, = A}, and
we use them to define the loop-erasure of A by setting

LE(A) = [Aogs Aors -+ Aoy ] -

It follows by construction that LE()) is a simple path satisfying LE(A) C A\, LE(\)g = Ao and
LE(A)j = Ap. If A= [Ao, A1,...] € Z% is an infinite path such that {k : Ay = \;} is finite for
each i > 0, then its loop-erasure LE()) can be defined similarly.

2.2 Uniform spanning tree

In this subsection, we introduce the three-dimensional uniform spanning tree, the model of
interest in Chapter 3 and Chapter 4.

A subgraph of a connected graph G is called a spanning tree on G if it is connected,
contains all vertices of G and has no cycle. Let 7(G) be the set of all spanning trees on
G. For a finite connected graph G, a random tree chosen according to the uniform measure
on T(G) is called the uniform spanning tree (UST) on G. We can define the uniform
spanning tree on Z3, or the three-dimensional uniform spanning tree, as the weak limit of the
USTs on the finite boxes Z3 N [—n,n]3, see [36].

We will assume that the three-dimensional UST U is built on a probability space (2, F, P)
and we denote the corresponding expectation by E. Note that, P-a.s., I/ is a one-ended tree
[36]. For any x,y € Z® and any connected subset A C Z3, we write y(z,y) for the unique
self-avoiding path between x and y, v(z, A) for the shortest path among {v(z,y) : y € A} if
r ¢ A, and y(z,A) = {z} if x € A. We let v(z, 00) for the unique infinite self-avoiding path
started at . We denote by dy; the intrinsic metric on the graph U, i.e. dy(z,y) = len(v(x,y)).
We define balls in the intrinsic metric by

By(z,7) ={y € Z% : dy(z,y) < r}, (2.3)

and let | By(z,r)| be the number of points in By/(x,r).

Now we recall Wilson’s algorithm. This method to construct UST with LERW was first
introduced to finite graphs [42] and then extended to transient Z¢ including Z3 [10]. Let
{v1,v9,---} be an ordering of the vertices of 73 and let Yoo be the infinite LERW started at
the origin. We define a sequence of subtrees of Z? inductively as follows:

U() = Yoos
U; = U;—1 ULE(S* [O,Tzi(ui_l)]), 1>1,
U = u;l;.

Then by [10], the random tree U has the same law as the three-dimensional UST. It follows
that the law of I/ above does not depend on the ordering of Z3.

We end this subsection by defining the simple random walk on /. We denote by ug the
measure on the vertex set V' of a (random or deterministic) graph G such that ug({z}) is
given by the number of edges of G which contain x € V. We write ug(z) = pue({z}). For
a given realization of U, the simple random walk on U is the discrete-time Markov process

XY = (XY),>0, (PY) cz3) which at each step jumps from its current location to a uniformly

11



chosen neighbor in . For x € Z3, the law PY is called the quenched law of the simple
random walk on /. We write

u, oy P =y)
Pn(@y) == D

for the quenched heat kernel.

, T, Y € Z3, (2.4)

2.3 Effective Resistance and Green’s function

Now we define the effective resistance and Green’s function, which is a key tool to derive the
key estimates of Chapters 3 and 4.

Definition 2.1. Let G = (V, E) be a connected graph and let f and g be functions on V.
Then we define a quadratic form £ by

1

E(f.9) =5 D (F(@) = F)(9(z) - 9(v)).
z,yeV

If we consider G as an electrical network by regarding each edge of G to be a unit resistance,
then the effective resistance between disjoint subsets A and B of V is defined by

Ref‘f(AaB)il = lnf{g(.ﬂ f) : g(fa f) < OO?f‘A = 17f‘B = 0} (25)
If we let Regr(x,y) = Regt({z}, {y}), then Reg(-,-) is a metric on G, see [41].

Definition 2.2. Let B be a connected subgraph of G. For a simple random walk X with
starting point © € G, we define the Green’s function by

G%x7y)::jE:]3$(X% ::yL
n=0

and we write G(x) == G(0,2). For a simple random walk X on G killed when it exits B, the
Green’s function is defined by

Gala.y) =3 PUXE = ). (2.6)
n=0

Let G = (V, E) be a connected recurrent graph with a fixed vertex 0. Recall the definition
of pue in the previous section. For a finite subset 0 € B C V, the effective resistance between
0 and B¢ and Green’s function are related by the following equality:

() Reg(x, B¢) = Gp(z, x), (2.7)

see [34] Section 2.2, for example.
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2.4 Simple random walk estimates

Let S be a simple random walk on Z? and suppose m and n are real numbers such that
1 <m < n. Moreover, let A= {z € Z9 : m < |z| < n}, and set 7 = 75. to be the first time
that S exits A. Then [28, Proposition 1.5.10] gives that, for all x € A,

. ’x‘Qfd _ n2fd 4 O(mlfd)
P” (|S,] <m) = 3 . (2.8)

Whilst this approximation is good for large m, in this thesis, we also need to consider the
situation when m = 1 and |z| is large. In this case, |S;| < m if and only if S; = 0, and
the estimate (2.8) is not useful due to the O(m'~?) term. However, adapting the argument
used to prove [28, Proposition 1.5.10], it is possible to establish that there exists a universal
constant a = a4 > 0 such that

a|x]2*d —an? 4+ O(|x\1*d)
G(0) — an2—d ’

P*(S,=0) = (2.9)
where G(0) is as defined in Definition 2.2, which is finite in the dimensions we are considering.

In this thesis, we will also make use of another basic estimate for the simple random
walk on @d, which is often called the gambler’s ruin estimate. We take 6 € R4 with [0] =1
and set S; = S;-6. Let n, = min{j > 0:5; < 0orS; > n}. We denote by P* the law
of S with starting point z € R. Then [29, Proposition 5.1.6] guarantees that there exist
0 < a1 < as < oo such that: for all 1 < m <n,

m+1 < m+1

P"(S >n)< . 2.1
u—— < (Syn > n) < an - (2.10)

The gambler’s ruin estimate gives upper and lower bounds on the probability that a simple
random walk on Z¢ projected onto a line escapes from one of the endpoints of a line segment.
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3 Quantitative estimates on the collisions of random walks on
the three-dimensional uniform spanning tree

In this chapter, we will prove Theorem 1.2. Let us briefly explain the strategy of the proof
of the Theorem 1.2. We will obtain some estimates of the moments of Zp_, the total number
of collisions of two independent simple random walks on the three-dimensional UST U killed
when exiting the intrinsic ball By(0,7). To this end, we will rewrite Zp, in terms of the
effective resistance of the three-dimensional UST, which can be derived from some geometric
properties of graphs. We will construct a “good” event and demonstrate that the three-
dimensional UST exhibits such properties with high probability.

This chapter is organized as follows. We will give some definitions and estimates that are
needed in the proof of main results in Section 3.1. Then Theorem 1.2 and Corollary 1.3 will
be proved in Section 3.2.

3.1 Preliminaries

In this section, we will introduce the growth exponent of the three-dimensional infinite LERW,
which represents the time-space scaling of the LERW. We will also present some estimates on
Zp,, which will enable one to bound its moment using the effective resistance.

We run the SRW on Z3 started at the origin until the first exiting time of B(0,n). Let
M,, be the length of the loop erasure of this SRW path. We denote the law of S and the
corresponding expectation by P and F, respectively. If the limit

log E(M,,
5= lim 08 E(Mn)
n—oo  logn

(3.1)

exists, then this constant 3 is called the growth exponent of the LERW. The existence of the
limit is proved in [39] and that 5 € (1,5/3] is obtained in [27]. Although the exact value of g
has not been discovered yet, it is estimated that 8 = 1.624--- by numerical calculations, see
[43]. Moreover, the following exponential tail bounds of M,, are obtained in [39].

Theorem 3.1. (/39, Theorem 1.4]) There exists ¢ > 0 such that for alln >1 and k > 1,
P(M, > KE(Mn)) < 2exp{—C/€},

and for any € € (0,1), there exist 0 < ¢, C: < 00 such that for alln >1 and k > 1,
P(M, < k7 E(M,)) < C- exp{—cor? ). (3.2)

Next, we define the infinite collision property and introduce some previous results. Let
G = (V,E) be a connected graph and let X = {X,,}°°, and Y = {Y¥,,}22, be independent
discrete time simple random walks on G. For z,y € V| we write x ~ y if x and y are connected
with an edge, i.e. {z,y} € E. We denote by P, the law of {(X,,Y,)}72, with starting point
(X07 Yo) = (CL, b)

Definition 3.2. We define the total number of collisions between X and Y by

Z=>) 1(X,=Y,). (3.3)



Let B be a connected subgraph of G and let XB = {XB}>2 ) and YB = {V,B}22 ) be inde-
pendent discrete-time simple random walks on G killed when they exit B. We define the total
number of collisions of XB and YB by

o

Zp =Y 1XF=YP). (3.4)
n=0
Definition 3.3. If
Poo(Z < o0) =1, (3.5)

holds for all a € G, then G has the finite collision property. If
Pa,a(Z = OO) =1, (36)
holds for all a € G, then G has the infinite collision property.

Remark 3.4. There is no simple monotonicity property for collisions. Let Comb(Z) be the
graph with vertex set Z x Z and edge set

{[(z,n), (z,m)] - [m —n| =1} U{[(=,0), (y,0)] : [+ — y| = 1}.

Then Comb(Z) has the finite collision property (see [22, Theorem 1.1]) and is a subgraph of
Z?, which has the infinite collision property.

It is proved that for any connected graph, either (3.5) or (3.6) holds.

Proposition 3.5. (/9, Proposition 2.1]) Let G be a (connected) recurrent graph. Then for
any starting point (a,b) € G x G of the process {(Xn,Yn)},

Pa,b(Z = OO) S {07 1}7
holds. In particular, for all a € G, either Py o(Z = 00) =0 or P, q(Z = 00) =1 holds.

Recall the definition of the effective resistance on a connected graph G given in 2.3. Now
let us derive some estimates on Zp (see (3.4) for definition) for a finite subgraph B from
effective resistance and Green’s function. For the first moment of Zg, we have

Eoo(Zp) = ZZPOO =Y, =)

n=0zeB
o
DM WUE
n=0z€eB
pa(x)
—ZZPO B — ¢, XB =0) e
n=0z€B MG( )
Thus, it holds that
R— max MG
B
a0 Y PUX3, =0) < Ego(Zp) < S Z PY(XB =0). (3.7)
n=0
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Since P*(X$ .1 = z) < P"(X% = ) for all n, we have that
1 1 = x B x B
iGB(DC,w) =3 Z (P*(Xgp = @) + P"(Xgp41 = 7))
n=0

<> PP(xf =) < Gp(x.2).
n=0

Thus, it follows from (3.7) that

1 maxgep e ()
——~Gp(0,0) < Eyo(Zp) < —— <
QMG(O) B( ) 070( B> UG(O)

An upper bound of the second moment is obtained by

G5(0,0). (3.8)

[e'e)
Eoo(Z3) =Y Poo(X) =Y.} =)
n=0zeB

o] o]
230 30 DD P =Y = e X =Yl =y)

n=0m=n+1xeByeB

=FEoyo(ZB)
+23 Y Poo(X7 =Y =2) Y Y Pea(Xn =Y. =y)
n=0zeB m=1yeB
maxgep pa () maxgep pa ()
—— —2Gp(0,0) + 2———————="GpR(0,0) max Gg(x, x),
16 (0) 5(0,0) 1 (0) 5(0,0) max Gp(z, 2)

where we applied the Markov property for the second equality and (3.8) for the last inequality.
By plugging (2.7) into the above inequality, we obtain

Eoo(Z3) < max pi () Regr (0, BS) + 2(m€aé< MG($))2Reﬁ(O, B°) max Reg(x, BY). (3.9)

3.2 Proof of the main theorem

In this section, we will prove Theorem 1.2. In order to do so, we will first estimate the effective
resistance of U between the origin and 0B(0,r) in the following theorem.

Let U, be the connected component of U N B(0,r) which contains the origin. Recall that
B is the growth exponent of the three-dimensional LERW defined in (3.1).

Theorem 3.6. There exists some universal constant C' > 0 such that for allr > 1 and A > 0,
P(Reff(oau \ Ur) > Tﬂ/)\1+46) >1- cx L (3.10)

Proof. Note that it suffices to prove the inequality (3.10) for A > Ao where )¢ is a sufficiently
large universal constant that does not depend on 7.

We first fix 7 > 0 and consider a sequence of subsets of Z? including 9;B(0,r). For
E=1,2,---, let 6 = A7'27% and 7, = (2k)~!. We define kg to be the smallest positive
integer such that rdy, < 1. Let

A, = B(0, (14 n)r) \ B(0, (1 — n)r),

16



and let Dy, be a finite subset of lattice points of Ay, with |Dg| < C6, * such that

Ay C U B(z, k).

2€Dy,

Next, we perform Wilson’s algorithm rooted at infinity (see Section 2.2) to obtain the
desired event of the three-dimensional UST. Let Uy = 7Y~ i.e. the infinite LERW started
at the origin. Given Uy (k > 0), we regard U as the root of Wilson’s algorithm and add
branches started at vertices in Dyy1 \ Uy and denote by Uiy the resulting random subtree
at this step. Once we obtain Uy, we add branches started at vertices in Z3 \ U, to complete
Wilson’s algorithm. Note that Uy (k= 0,1,2,--- ko) is a subtree of U containig all vertices
in ", D; U {0} and the sequence {Uk}l]:o:() is increasing. Since rdg, < 1, it holds that
8iB(0,7“) - Dko C Uko.

Now we are ready to define the events where the effective resistance in (3.10) is bounded
below. Firstly, we examine the behavior of the branches started at vertices contained in
D,. For z € Dy (k > 1), we denote by y, be the first point of Uy_; visited by ~(z,0) i.e.
dy(z,y.) = mingeyy, , dy(z,y). We define the event F, by

F. = {7(z,4.) N B(0,\"%r) = 0}, (3.11)

for z € D;. Since dg(0,z) > r/2, by [27, Theorem 1.5.10], there exists some constant C' > 0
such that for all A > 2,

P(F7) < P(57[0,00) N B(0,A7*r) # 0) < OAT,

holds. By taking the union bound, we obtain that

P |J Fo| <IDifex*<ont, (3.12)
zeDy

where the last inequality follows from the fact that |D;| < C\3.
Secondly, we bound from below the first time when v exits B (0, \=%r), which is denoted
by 7(B(0,A\4r)¢). We define the event F by

F= {1en(%o [0, 7(B(0,\™47)°)]) > 78 /A1+46 } . (3.13)

By [39, Theorem 1.4], [32, Corollary 1.3] and the fact that 8 < 5/3, there exist some constants
C > 0 and ¢ > 0 such that _
P(F°) < Cexp{—cA!/?}, (3.14)

forall » > 1 and A > 0.

Thirdly, we consider the branches started at vertices in Dy (k > 2) step by step. Let us
begin by defining an event that guarantees the “hittability” of ~v(x,00) for € Dy. To be
precise, for x € Dy, (k> 1) and £ > 0, we define the event H.(§) by

H,(¢) = {There exists some z € B(x, d,r) such that

P*(S7[0, 75= (B(2,6./%1)%)] N y(w, 00) = ) > 5§},
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where S7 is an independent simple random walk started at z € Z* and P? denotes its law.
By [37, Theorem 3.1], there exist some C' > 0 and & > 0 such that

P(H,(¢)) < Co¢ forallr>1,k>1and z € Dy, (3.15)
Let B
Hy, = (] Ho(&)", (3.16)
€Dy,

where & is as defined in (3.15). Note that PZ<SZ[O,TSZ(B(Z,(5;/27“>C)] Ny(z,00) = 0) is a
function of y(z, 00) and thus H,(§) and Hj are measurable with respect to Uy. Moreover, it
follows from (3.15) and the definition of Dy, that

P(H,) > 1 - D08} > 1 - C'5y, (3.17)

where C’ > 0 is uniform in r > 1 and k& > 1. N
Now we will demonstrate that conditioned on the event Hy, branches v(z,y.) (z € Dg41)
are included in Ay with high conditional probability. Let M = [4/£1]. For z € D41, let

1. = {8°(0, 75 (B(z, M3 *r)*) Nt = 0}

Since z € Dgy1 C Ag, we can take some x € Dy with z € B(x,0,r) and on the event I, we
have that
570, T N ~y(z, 00) = 0,

holds, where T = 7g:(B(z, 5,1/27")‘3).

In the rest of this proof, we take A > 6M without loss of generality. Since dg(z, S*(T* —
1)) < 5;/27", we have that z; == S*(T'—1) € Ay and we can take z; € Dy, with 21 € B(x1, 6r).
By the same argument as the above, on the event I, we have that S*[T", T2 N~(z1,00) = 0,
where T2 = TSZ(B(21,5;/27“)C). Iteratively, we obtain the sequences {T°}, {z} C Aj and
{z;} C Dy (1=1,2,--- , M) and we have that

M
Lc (ST T Ny (i1, 00) = 0},
=1

where we set T = 0 and x¢ = . By the strong Markov property, it holds that

PA(I)

IN

M
p* <ﬂ{R[T“7Ti] Ny (zi-1,00) = @}>

i=1

PA1 (S50, Tgrimt (B(2i1, 84 1)) Ny (wi1, 00) = D),

o

N
Il
i

from which it follows that N
Hy C {P*(L,) < 81}

Thus, by Wilson’s algorithm, we have that for all z € Dy,

P (1(,9.) ¢ Bz, M&,*r) | Hy) < 3}, (3.18)
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B(0,r)

Figure 1: In this figure, two circles represent Euclidean balls centered at the origin: the larger one
is of radius 7 and the smaller one is of radius A~*r. On the event K, the branches from
D; do not enter the smaller ball of radius A~%r and the branches from Dy, (k > 2) hits the
already constructed subtree Uj_; before entering B(0,7/2). Moreover, the length of 7y
up to the exiting time 7(B(0, A™4r)¢) is bounded below by 77 /\1+45.

We define the event I k+1, which is measurable with respect to Uy41, by

Tii1 = ﬂ {*y(z,yz) C B(z,M(Sliﬂr)}. (3.19)

2€Dg 41
Then by (3.18) and that |Dyy1| < C6, 2, it holds that
P(Ipy1 | Hy) > 1 — |Dppa]0t > 1= C6.
Combining this with (3.17), we obtain that
P(H, N 1pp1) > 1— C6p, (3.20)

for some universal constant C' > 0.
Finally, we construct an event where the desired effective resistance bound holds. Let

ko
K=|[)F mﬁm(ﬂ(ﬁkmfkﬂ)).

z€D1q k=1

Recall that F,, F, Hy and I, are defined by (3.11), (3.13), (3.16) and (3.19), respectively.
Then combining (3.12), (3.14) and (3.20), we obtain that

P(K®) < CA™' + Cexp{—cA/?} + > Co <O (3.21)
k=1
We claim that on the event K, the following two statements hold:
(1) dy(0,y.) > rP /A48 for all z € D;.

(2) For k > 2, v(z,0) hits U, before entering B(0,7/2) for all z € Dj,.
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Note that (1) is immideate from K C ((),cp, F%) NE and (2) follows from K C (ﬂZ‘;l(ka N

Suppose that K occurs. Let w be an element of {y, : z € D1} which satisfies d(0,w) =
min,ecp, dy(0,y.). It follows from the above statements (1) and (2) that every path of U
connecting the origin and B(0,r)¢ includes (0, w) (recall that 0; B(0,7) C Dy,). Thus, by
the series law of effective resistance (see [34] Section 2.3, for example), we have that

Re(0,U \ Uy) = Regt (0, w) + Rer(w,U \ Uy)
> dy (0, w) > P /A5,

Combining this with (3.21) yields the desired result (3.10). O

Now we are ready to prove Theorem 1.2. Recall that Zp is defined in (3.4). In the rest of
the article, we set B, = By/(0,r).

Proof of Theorem 1.2. Let us define the event I?(r, A) by
K(r, ) = {Regt (0, By (0,7)°) > r/A}. (3.22)
By [1, Proposition 4.1}, there exist some C’ > 0 and ¢’ € (0,1) such that
P (UT ¢ B0, W)) <o,
for all » > 1 and A > 1. On the event {U, C By(0, ")}, by monotonicity
Rer(0,U \ Uy) < Resr(0, By(0, xr?)°),
holds (see [34] Section 2.2, for example). Thus, we have
P (R (0, Bu(0,xr)%) < 17 /A1+47)
<P ((Ror(0, Bu(0, ")) < 17 /A49,U, € By(0,70%) ) + P (U, ¢ Bu(0,3"))
<P (Rea(0,U \ Uy) < v /A1) 4 O/
By Theorem 3.6, we obtain that
P (Rer(0, Bu(0,007)%) = 17 /A7) > P (Rer(0,U\ Uy) = 17 ]NIF49) — ¢A
>1-CA -0
By reparameterizing R = A\r®, and taking C’ > 0 properly, we have that
P (f((R, /\)) > 1N, (3.23)

Next, we make use of the estimates of F(Zp) and E(Z%) in Section 3.1. Since 1 < yy(z) <
6 for all z € Z3, it follows from (2.7) and (3.8) that on the event K (r, \),
r

oy = Eo0(Zs,) < 6, (3.24)
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where we plugged Reg(0, By/(0,7)¢) < r to obtain the second inequality. By reparameteriza-
tion, (1.1) follows.
On the other hand, since

Ref‘f($7 BZ/{(Oa T)C) S Ref‘f(l‘) O) + Reff(()) BZ/{(Oa ,,,,)C)
< 2r,
for x € By/(0,r), plugging this into (3.9) yields that
Eoo(Z3,) < 144r* 4 6r, (3.25)

for any realization U, which gives (1.2). N
Now we will apply the second moment method to Zp, on the event K(r,A). By (3.24)
and (3.25), on the event K(r, \) we have

T 1
j2 (Z,>—)>P Zp > ~FEoo(Zs.
00 \ZB, 2 157 ) = Too ( B 2 ¢ 0,0( B,))

- 25E0,0(Zp,)* S 1

T 36FEo0(Zy) T 6-(120)%
By reparameterizing ! = 12\, we have that on [N((r, e71/12),

Pyo(Zp, > er) > /6. (3.26)
Finally, by Markov’s inequality,
Poo(Zp, > T72e7%r) < Pyo(Zp, > 12 *Eyo(Zp,))

< e%/12,

holds on the event K (r,e~!/12). Combining this with (3.26) gives (1.3). O
We obtain the infinite collision property of the three-dimensional UST as a corollary.

Proof of Corollary 1.3. Suppose w € K(r,e) and let U(w) be the corresponding realization of
UST. We take two simple random walks X and Y on U(w). Recall that Z is the total number
of collisions between X and Y defined by (3.3). By Theorem 1.2, for any N > 1 and any fixed
e >0,

Poo(Z 2 N) > Poy(Zp_,, > N) >e*/12,

holds. By taking the limit N — oo we obtain that Pyo(Z = oo) > 2/12, from which the
infinite collision property of U(w) follows by Proposition 3.5. Thus,

P ({U(w) has the infinite collision property}) > 1 — Ce“.
Since ¢ is arbitrary, we have that
P({U(w) has the infinite collision property}) = 1,
which completes the proof. O

Remark 3.7. We can also derive the infinite collision property of the three-dimensional UST
from (3.23) by applying Corollary 3.3 of [9]. In this article, we gave another proof by using
quantitative estimates of the number of collisions in the intrinsic ball Zp, .
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4 Volume and heat kernel fluctuations for the three-dimensional
uniform spanning tree

In this chapter, we will prove Theorem 1.7 and Theorem 1.8. We start with explaining
the main idea of the proofs of these theorems, which is inspired by the result on the two-
dimensional uniform spanning tree [5].

In order to obtain Theorem 1.8, we consider the three-dimensional uniform spanning tree
as a collection of small pieces where the probability of events corresponding to those on the
whole tree can be calculated. Similarly to [5, Theorem 1.1], we consider unlikely configurations
of U, namely “comb” and “spiral” configurations as depicted in Figures 2 and 3 respectively.
Here the comb configuration is constructed in such a way that we obtain an intrinsic ball in
U with an unusually large size, which enables us to obtain (1.9). On the other hand, we use
the spiral configuration to make an unusually small ball for the sake of the derivation of (1.8).
Although the scenario is essentially the same as that for the two-dimensional case in [5], here
we need to deal with a central hurdle: since the Beurling projection theorem (a property
of the simple random walk on Z? that it hits any path of Z? with high probability, see [29,
Theorem 6.8.1] for example) is not available when d = 3, the construction of such unlikely
configurations of U via Wilson’s algorithm (see Section 2.2) requires some extra work, which
is rather complicated. We overcome this difficulty through careful use of a type of hittability
of loop-erased random walks in Z3, as derived in [37, Theorem 3.1]. Combining Theorem 1.8
with the fact that the behavior of the effective resistance metric on U is similar to that of the
intrinsic metric (see Subsection 4.2.2 below for this), Theorem 1.7 is also proved.

Figure 2: Ilustration for the comb configuration. The horizontal solid curve stands for the unique
infinite path in U started at the origin. We force it to keep going to the right with no
big backtracking. We also make each vertical solid branch keep going down. For another
point x, as the dotted curve illustrates, the branch between x and a solid curve has a small
length. As a result, if the Euclidean metric between the origin and x is not small, the
intrinsic metric from the origin to x is unusually small.

The rest of this chapter is organized as follows. The claim (1.9) will be proved in Section
4.1 and (1.8) will be proved in Section 4.2. Finally, we will give the proof of Theorem 1.7 in
Section 4.3. Throughout this chapter, we refer to the definition and notation for the uniform
spanning tree and loop-erased random walk in Z3 introduced in Chapter 2.

22



Figure 3: Illustration for the spiral configuration. The solid curve stands for the unique infinite
path in U started at the origin. We make it spiral around the origin many times. This
configuration ensures that the intrinsic metric from the origin to z is unusually large if the
Euclidean metric between the origin and x is not small.

4.1 Upper volume fluctuations

In this section, we prove (1.9), upper volume fluctuations of log-logarithmic magnitude in
Theorem 4.13. The key ingredient of the proof is the following lemma, which provides a lower
bound on an upper tail of the volume of intrinsic balls in the three-dimensional UST U.

Recall that S is the growth exponent of the three-dimensional LERW defined by (3.1) and
By stands for intrinsic balls in ¢ defined by (2.3).

Proposition 4.1. Let U be the three-dimensional UST build on a probability space (2, F,P).
Then there exist c1,co > 0 such that for all A >0 andr > 1,

P(|By(0,r)] = Mr?7) = ¢ exp{—cAP"D/ P log A}, (4.1)
where B is the growth exponent of the three-dimensional LERW.

Remark 4.2. See [1, Proposition 6.1] for an exponential upper bound for the probability in
the left-hand side of (4.1).

4.1.1 The comb configuration in the UST

We explain an idea of the proof of (4.1) here, which is inspired by the proof of (4.1) of
[5, Lemma 4.1]. We construct a cube of side-length Nm, consisting of N3 small boxes of
side-length m, as follows. For each j > 0, let

Ty = (jm,0,0) € ZS? ij = Boo(x]7m/2); (42)

i.e. By, is the cube of side-length m centered at z; (see Chapter 2 for the definition of B).
Firstly, we align the boxes By, (0 < j < N), whose center points are located on the z; axis.

Secondly, we take the boxes By ((jm,km,0),m/2) for each 0 < j < N and 1 < k < N.
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Figure 4: The event A,, N A,, N A,, to consider for upper volume fluctuations

Described in Figure 4 are the boxes having been constructed at this step. Finally we take the
boxes Boo((jm, km,Iim),m/2) foreach 0 <j < N, 1<k< N and 1<[<N.

Let 7o be the infinite LERW started at the origin, which is the first branch in Wilson’s
algorithm to generate U. We consider the event A,, which is the intersection of the following
events:

® 75 moves toward the right until it exits from a “tube” U;V:1 B, without backtracking.

e The number of points in vy N ij is bounded above by mP for all 1 < j < N.

e For some snall ¢ > 0, with high probability, each point in B(z;,em) (j = 1,---N) is
connected to Yo with a path of length of order m?.

Next we run SRWs S, j =1,2,.--, N independent of v and each other started at the
points (jm, Nm,0). We consider the event A,, where each S () moves in a “tube” parallel to
the y axis until it hits -, the number of points in its loop erasure is bounded above by Nm?
and every point in a small Euclidean ball around the center of each box is connected to the
loop erasure with a short path.

Finally, we consider the corresponding event A, for independent SRWs started at (jm, km, Nm)
until they hit the already constructed subtree in the tubes parallel to the z axis.

Note that if the intersection A, N A, N A, occurs, it leads to a lower bound of the volume
of a ball in intrinsic metric. Once we have a lower bound of the probability of the event A,
we consider LERWSs satisfying the same condition and parallel to the y and z axis.

In the remainder of this subsection, we will establish a lower bound of the probability of
the event A, N A, N Ay, in Lemma 4.7 and in Lemma 4.8. In order to do so, we follow an
argument of [33], Section 4, which makes use of the cut points of the three-dimensional SRW.

We begin with defining several events.

Definition 4.3. For a < b, we define

Qla,b) = {(z*, 2%, 23) € Z3 :a < z' < b,—m < 22, 23 < m},

Q(a) = {(37179027963) e7?: 2t = a,—m < mQ,xS < m}.
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Qla, b]
Q(a)

/
Q(a) Ba;
Figure 5: Sets Q[a,b], Q(a), Q(a) and Rj

We also set

Qa) = {(z", 2%, 2% € Z% : 2" = a,—m/2 < 2%, 2> < m/2},
R; = {(z", 2%, 2%) € Z* : 2! = jm, |2?]* + |2*|* < m?/100}
U{(z!,22%,2%) € Z% . 2! = jm, |2%® + |2°]2 > m?/64}.  (4.3)
Note that setting a; = (j — 1/2)m, it follows that Qla;, aj11] = B;; and that Q(a;+1)
corresponds to the right face of B, (see (4.2) for the definition of By))
Now we consider the SRW S on Z3 started at the origin. By linear interpolation, we may

assume that S(k) is defined for every non-negative real k and S[0,00) is a continuous curve.
For a continuous curve A in R? | we define

f(a) = inf{k > 0: A(k) € Q(a)}.
Let
N = (loglogm)'/?, (4.4)
g =m/N>,
Using ¢5(a), we define events A; as the following;
Ag = {ts(a1) < 00,S(ts(a1)) € Q(ar), 8[0,t5(a1)] C By, Slts(ar — q), ts(a1)] N Q(ar — 2q) = 0},
Aj = {ts(a;) <ts(ajr1) <o0,S5(ts(ajs1)) € Qlaj+1),S[ts(ay), ts(ajr1)] C Qla; — q,a511] \ Rj,

Slts(aj+1 — a),ts(ajp1)] C Qaj+1 — 2q, ajya]} for j > 1. (4.6)

The event Ay guarantees that S exits B, from @(al) and has no big backtracking from
ts(a1 — q) to ts(a1). For j > 1, the event A; ensures that once S enters B,,, it keeps
moving to the right until hitting Q(a;4+1). The last condition of A; requires that S has no
big backtracking in [tg(a;+1 — q),ts(aj+1)]. We note that the event Ay (resp. Aj, j > 1) is
measurable with respect to S[0,tg(a1)] (resp. S[ts(a;),ts(aj+1)]).
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J
Figure 6: Definition of the event A; (j > 1)

We set .
J
Gi=) 4 (4.7)
k=0

We next consider a cut time with special properties for the SRW.

Definition 4.4. Suppose that the event A; defined in (4.6) occurs. For each j > 1, we call k
a nice cut time in By, if it satisfies the following conditions:

(1) ts(a; + 3) <k <ts(aj +q),
(ii) Slts(aj), k)N Sk +1,ts(aj41)] =0,
(ii) Slk,ts(aj1)] N Q(az) =0,
(iw) S(k) € Qlaj + 3, a; + q.
If k is a nice cut time in By, then we call S(k) a nice cut point in By, .
We define events B; by
Bj = {8 has a nice cut point in By, },

for each j > 1. Note that the event B; is measurable with respect to S[ts(a;),ts(a;t1)]. We
define

J
H; = (1 Bx- (4.8)
k=1
Now we consider two random curves §; and f} defined as follows. We set

& = LE(S[0,ts(aj+1))),
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Figure 7: Example of nice cut point in B,

Aj1
P2 T Y
S & A
B, B, B,
(a) Original random walk S (b) & (c) &
Figure 8: Examples of ¢; and 5;»
and
Aj = LE(S[ts(a;), ts(aj+1)]) for j =0, (4.9)
G=6 C=GoMe--@N forj> 1. (4.10)

Note that 5} is not necessarily a simple curve and thus §; # 5;- in general. However, the
next lemma from [33] shows that the difference between these two curves is small on the event
G]' NH e

Lemma 4.5. (/33, Lemma 4.3]) Let j > 1. Suppose that G; N H; defined in (4.7) and (4.8)
occurs. Then, for the length of &; and 5;, we have

len(&;) <len(&) + Y _ {len(\p) + & N Qlak — g, ar + q]l} (4.11)
k=1

where for A C R3, we write |A| for the number of points in ANZ3.

Note that len(€}) = len(&o) —i—Zi:l len(Ag), and thus the above lemma compares the length
of {; and .

We will next deal with the length and the hittability of each A\;. For C' > 1, we define the
event E£;(C) by

Ey = Ey(C) = {len(&) < CmP}, Ej = E;(C) = {len(\;) < CmP} forj>1, (4.12)
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B,
J

Figure 9: The event {\; N R*/ [0, Tr=; (2m/5)] # 0}

where & and A;, j > 1 are as defined in (4.10). Let R* be a SRW on Z? started at z € Z3
and independent of S. We denote by P and P? the law of S and R?, respectively. For N > 4
and 7 > 0, we define the event Fj(n) by

Fj = Fj(n) = {P%(A; 1 R¥9[0, Tye; (2m/5)] # 0) > ), (4.13)

where Tr(r) = inf{k > 0 : |R(k)| > r}. Note that Fj(n) is measurable with respect to

Slts(a;), ts(aj1)]-
The next lemma gives a lower bound on the probability of A;NB;NE;(C)NF;(n) choosing
C sufficiently large and 7 sufficiently small.

Lemma 4.6. There exist universal constants 0 < 1y, ¢y, Cx < 00 such that
P(Ag N Ey(Cy)) > cu,

and for all 7 > 1,
min P®(A; N B; N E;(C.) N Fj(n)) > ca N2 (4.14)
z€Q(aj)

Proof. The first assertion is proved in [33, Lemma 4.4] and we also follow its proof to show
that (4.14) holds. By the translation invariance, the minimum in the left-hand side of (4.14)
does not depend on j. Hence, we will only consider the case j = 1.

It follows from the gambler’s ruin estimate ([29, Proposition 5.1.6], for example) that

aN?< P*(A;) < coN~2 uniformly in z € @(al), (4.15)
and from [26, Corollary 5.2] that
P*(By | A1) > ¢3 uniformly in z € Q(a), (4.16)

for some universal constants 0 < ¢1, co, c3 < 00.
On the event A; N By, let k1 be a nice cut time in B, as defined in Definition 4.4. By
definition, it follows that k1 < tg(a1 + ¢) and

dist (1, LE(S[k1, ts(as)]) < m/8. (4.17)
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We check this by contradiction. Suppose that (4.17) does not hold. This implies that
LE(S[k1,ts(az)]) contains some point z € R;, where R; is as defined in (4.3). Thus, it
also holds that z € S[tg(a1),ts(a2)], which contradicts (4.6).

It follows from (4.17) and the decomposition Ay = LE(S[ts(a1), k1]) ® LE(S[k1,ts(a2)])
that dist(x1, A1) < m/8. Hence, by [37, Theorem 3.1], there exist some universal constant
0 < m1,cq4 < 1 such that

P*(Fy(m) | AiNBy) >1—¢4 uniformly in x € @(al).
Combining this with (4.16), we obtain
Px(Bl N Fl(T]l) | Al) = Px(Fl(T]l) | AN Bl)Px(Bl | Al) > (1 — 03)04. (418)

By the similar argument to the proof of [33, Lemma 4.4], we can obtain E*(len(\;)) < Cm/
uniformly in xz € @(al) and by the Markov’s inequality, there exists a universal constant
0 < Cq < oo such that

PHEL(C1)" | A1) < e3(1 —ca)/2,

uniformly in = € Q(a1). Combining this with (4.15), (4.16) and (4.18) yields

ciez(1 —cy)
2

which finishes the proof. |

Px(AlﬁBlﬂEl(Cl)ﬁFl(nl)) > N_2,

Now we perform Wilson’s algorithm around the center of each small cube. Recall that
B(z,r) indicates the ball in the Euclidean metric and 7,(A) is the first time that v hits
A. Given \; (see (4.9) for the definition), we regard it as a deterministic set and consider
independent simple random walks started at the points in B(x;, A2m) for some A > 1. We
regard these random walks as a step of Wilson’s algorithm rooted at ..

In the following lemma, we will observe that with high conditional probability, a small
Euclidean ball around the center of each box B, is included in an intrinsic ball centered at
the same point and of radius of order m®. We define the event M;()\) by

M;(\) = {B(zj, \"*m) C Byn (x;, \"'mP}. (4.19)

Lemma 4.7. There exist cy,c5 > 0 such that for all § > 0,m > 1,\ € [1,m1=9/2) and
je {17 aN}y

P (M;(N) | 4501 B; 1 E5(C.) N Fy(n.)) > 1 — A=, (4.20)

Proof. Tt suffices to show (4.20) in the case j = 1. Let Py~ (-) = P(- | Ay N By N E(Cy) N
Fi(n«)). We may assume that m and A are sufficiently large for the same reason as [1,
Proposition 4.1]. Thus, we take large m so that
5/2
m
_ M >, 4.21
dlogm+2 — ( )
for a fixed § > 0.
Recall that R? indicates the SRW on Z3 started at z and independent of S. Given S, we
run R* until it hits {y. On the event Ay N By N E1(Cy) N Fi(ns), we have that dg(x1,&n) €
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[m/10,m/8] by the definition of A; (see (4.6)) and the event {LE(R™[0, g1 (¢n)]) C By, }
occurs with positive conditional probability by the definition of F; and 7, (see (4.13) and
(4.14)). By [35, Corollary 4.5], we have that for A > 40 the law of LE(R*'[0, Tg=1 (¢n)])
restricted to B(x1, A\~'m) is comparable to that of the infinite LERW started at 1 restricted
to the same ball. Thus, we can follow the discussion of [1, Proposition 4.1], which gives a tail
bound estimate of the volume of intrinsic balls in the three-dimensional UST.

Let o and & be the first time that 7., = LE(R™[0, 7gs1 (£n)]) exits B(xi, A~2m) and
B(z;, \"'m), respectively. We define the event F' by

~ 1
F = {’yxl[a, len(ve,)] N B(z1,22A72m) =0, o < 2)\_1mﬁ} .

Then by [28, Proposition 1.5.10], the probability that a SRW started at a point outside
B(x1, \~'m) returns to B(z1, A"2m) is smaller than CA~! for some universal constant C' < co.
This implies Pyn (Ve [0, len(vs, )] N B(x1,2272m) # 0) < CA~L. On the other hand, by [39,
Theorem 1.4] and [32, Corollary 1.3], the probability that o is greater than %/\_lmﬁ is bounded
above by C exp{—cA~!} for some universal constants 0 < C, ¢ < oo. Thus, it follows from the
above estimates that

Py~(F)>1-Cx L. (4.22)

Next we observe that 7., can be hit by another independent SRW started at a point which
is close to v,, with high probability. For ¢ > 0, we define an event G({) by

G(Q) = {¥y € Blar,2A7%m), PH(RI0, T (w1, A~2m)] Ny = 0) < A,

where Try(x,1) is the first time that RY exists B(xz,[). From [37, Theorem 3.1], there exist
universal constants C' < oo and ¢; € (0, 1) such that for all m > 1 and A > 2,

P(G(¢)) >1—-C\x L. (4.23)

Then we take a sequence of subsets of Z3 including the boundary of B(x1,A~!'m). For
each k > 1, let g, = A~<1/62=k=10 pp — (2k)~! and

A = B(:Cl, (1 + nk))\_Qm> \B(l‘l, (1 — nk))\_Qm).

Write ko for the smallest integer satisfying A™?mey, < 1. Note that the condition (4.21)
guarantees that both the inner and outer boundary of B(wz1,A\"2m) are contained in Ay,.
Moreover, let D, be a set of lattice points in A such that Ay C UZeDk B(z,\%2mey). We
may suppose that |Dy| < 05;3. Since A ?mey, < 1 and 9;B(z1, \"2m) C Ay,, it follows that
8¢B($1, )\_Qm) C DkO'

Now we perform Wilson’s algorithm to prove (4.20). Let L{év = &N Uy,

(i) Consider an independent SRW started at a point in D; and run until it hits 23’. We
add its loop-erasure to L{év and denote the union by L[{Yl. Given U{Yj, we consider an
independent SRW from another point in D; \LllNd and let Z/{f\fjJrl be the union of Z/{f\fj
and the loop-erasure of the new SRW. We continue this procedure until all points in Dy
are contained in the tree, which we denote by Uj".
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(ii) We repeat the above procedure for Dy taking U as a root. Let U3’ be the output tree.
We continue inductively to construct U2, U, -- -U,ﬁg .
iii) Once we obtain U, we perform Wilson’s algorithm for all points in B(z1, A\~2m).
ko
(iv) We repeat the same procedure as (i), (ii) and (iii) for all zo, x3, - zN.

(v) Finally, we perform Wilson’s algorithm for all points in U;V:o By, to obtain U N,

By construction, it is clear that U,ﬁv C Z/{,ﬁl, and also 9;B(x1, \"%r) C ?/I,i\g.
By the definition of G((1), we have that

P(v(y,Ug") ¢ B, \7*Pm) | FNG(G)) < A7 (4.24)

On the other hand, by stopping conditioning 7., on F N G((1), it follows from [39, Theorem
1.4] and [32, Corollary 1.3] that there exist some universal constant C, ¢, ¢ > 0 such that

1
P (%tN(y,UéV) C Bz, A"'m), dyn (y,U3) > §>\ lmﬁ>

_ Pl (0 Ug) € B, A'm), dygw (9, Ug) > 507'm?)
- P(FNG(G))
< Cexp{—cA®}. (4.25)

Combining (4.24) and (4.25), we have that
P(y(y,UY) C Blar, \'m), du(y,t) < %)flmﬁ) >1— A
Let H be the event defined by
H= {v(y,UéV) C Bz, \7'm), dy(y,Ud’) < %xlmﬁ for all y € Dl} .

Then we have
P(H) >1—C\ /2

since |Dp| < CX/2.
Next, we will consider several events that ensure hittability of branches in the subtree.
For k > 1 and ¢ > 0, we define the event I(k,z, () by

I(k,z,¢)
- {P;g (R [O,TRy(y, A 2mer)] n @l U v(x,uév))) < & for all y € Bz, A\~ msk)}
(4.26)

Let I(k,¢) = N,e pp L (k,z,¢). Applying [37, Lemma 3.2], it follows that there exist universal
constants (o > 0 and C < oo such that for all k > 1,m > 1,A > 2 and x € Dy,

Py (I(k,x,(2)) < Cej.
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Combining this with |Dg| < 05;3 vields that
P(I(k,()°) < Cet < ON~G/3,

We set A} = FNG(&1)NHNI(1,¢G). Note that A} is measurable with respect to Uj",
the subtree obtained after the first step (i) of Wilson’s algorithm. We have already seen that
Py~ (A)) > 1 —CA~G/3,

Conditioning U on the event A}, we proceed with Wilson’s algorithm for the points
in Dy. We take y € Dy and consider the SRW RY started at y until it hits U{V . By the
definition of D1, there exists 2’ € D; such that dg(x,y) < A"2me;. Suppose that RY exits

B(y, )\*Qms}/g) before it hits 4. Then the event that RY exits B(x, \"?me;) before it hits

Z/{fv occurs. However by (4.26) and the definition of (2, the probability that the event occurs

conditioned on A} is lower than £;°. By iteration, the number of balls of radius )\_Qmsi/ 2

1/6

that RY exits before hitting U} is larger than e; /. Hence, we have that

~1/6

PY(RY exits B(y, \™~ msl/ ) before it hits U¥) < (1'(261 ,

for some universal constant ¢ > 0. Moreover, following the same argument as (4.25), we have
that

pY (v(y,UfV) ¢ B(y, )\_Qmsi/?’) and dy (y,UN) > ()\_Qm)ﬁei/‘l) < Cexp{ ceq 1/12} .
With this in mind, we define the event By by
By = {’y(y,ulN) C B(y, )\_Qmsi/?’) and dy(y, Ui ) < A_1m55}/4, for all y € D2} .
Since |Dg| < Cey?, we have that
Pyv(Bs | A}) > 1— Ce® exp{ 1/12}.
Hence, letting A% := A1 N By N I(2,(2), it follows that
Py v (A | A)) > 1 - Cel.

Following the above argument, we define the sequences of events {A} }, { By }(k = -+ ko)
by
By = {y(y,uliv_l) C B(y,\ *me, /3 ) and dy(y, Up 1) <A™ mﬁsk/ 1> forall y € Dg},
= A;c—l N BN I(k, CQ)

Then we can conclude that
ko 0o
Py (Ay,) = Py (A)) [] Pun (44 | 4_) = (1= CA/%) H —Ce2) > 1-CA9/3,

k=2
(4.27)

On the other hand, on the event A%O, there exists some universal constant C' > 0 such that
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(1) du(wr,y) < At for all y € (U 0 Blan, A2m) U (Uyep, 7(0:U0)))

(2) dy(z1,y) < CAX7ImP for all y € UL N Bz, \72m)) UU,Q)[,

It immediately follows that (1) holds from the definition of F' and H. For y € Uy,, let
yr (k=1,2,---ko — 1) be the first point in 2/;¥ that appears on v, (y,UL") (we set y, = y if
y € UY). On the event Aggo, we have that

ko—1

(w1, y) < dy(@1,51) + Y du(Yn, Yer)
k=1

o0
<A7hnf 4 ST A Il < oa i,
k=1

which implies (2).

Once we see that (2) holds on the event Aﬁm, we need to estimate the dy; distance between
an arbitrary point in B(z1, \"?m) and 0;B(x1,A"2m). In order to do so, we take another
“net”: we let g, = A=C/49=k=10 apnd D;. be a set of lattice points in B(z1, A~2m) such that
B(z1,A7%m) C UzeD;C B(z,A"?me}). We may suppose that |Dj}| < C(e},)~. By the similar
argument to the estimate of Py (A}, ), we obtain

Py~ (du(y, 9;B(z1,A\"%m)) > CA~'m” for some y € B(xy, )\*Qm)> <OX92 (4.28)

For the lower bound of volume (4.20), we now estimate the distance between x; and all
points in B(x1, A"2m). Since L{,i\g contains 9; B(x1, A~2m”), it follows from the same argument
as (4.25) again that for any y € B(x, \~2m),

Py~ (du(xl,y) < CAXtmP for all y € B(xy, )\_Qm)>
> Py (A)) — Pyn (Aﬁm N {du(xl,y) > OA"'m” for some y € Bz, x2m)})

> Py~ (AL,) — Pyn (du(y,&B(xl, A72m)) > CA~tm? for some y € B(x1, )\_Qm)>
>1-—C0N,

for some universal constant ¢ > 0, which completes the proof of (4.20). O

It follows from (4.14) and (4.20) that there exists some universal constant A, > 1 such
that
P(4; 0 B; 0 E;(C.) N Fy(n.) N M;(A) = N2, (4.29)

for j =1,2,--- N. We have obtained a lower bound of the probability that the volume of the
random tree constructed by Wilson’s algorithm in each B, is of the order of mP.

Recall that the events G; and H; are defined by (4.7) and (4.8) respectively. We define an
event I; by I; = i‘:l Mi(A\y). Let J; = i‘:l Ep(Cy) and K; = ﬂizl Fy(n,) for Cy and n,
defined in Lemma 4.6, where Ej(C) and F(n) are as defined in (4.12) and (4.13), respectively.
Recall that Tg(r) = inf{k > 0: [S(k)| > r}.
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Figure 10: Q,, for w = w; = ((j — 3)m,0,0)

By (4.11), in order to estimate len(§;) on the event G; N H;NI;NJ; N Kj, we need to give
an upper bound on |{; N Qag — q,a, +¢]| for k=1,---,j and for ¢ defined in (4.5). Take

w= (wh,w?w?), R(N)= exp{2€RN2 + 1}, (4.30)
and define

Qw = {y = (ylay27y3) : |y1 - ’UJ1| S q, ‘yz - wZ’ g m/2 for i = 2?3}a
Ny = |Quw NLE(S[0, Ts(R(N)m)])| .

Then, it follows from [33, Lemma 4.5] that there exist universal constants 0 < ¢,C' < oo
such that
P(N, >mP) < Cexp{—cN?} uniformly in w € B(0, R(N)m). (4.31)

We define
wj =(a;,0,0), L;= {]ka NE|<mP forall 1 <k < j/2} for j > 1,

%5
Slts(azn41). Ts(RON)] N B(0,a3) = 0}

Unn = {5<TS<R<N>>> e (' v2®) € By > SR(N)m),

and set
AN:GQNﬂHgNﬂIQNﬁJQNﬁKQNﬂLgNﬁUQN. (4.32)

We estimate the lower bound of the probability of the event AY.
Lemma 4.8. There exists a universal constant cg > 0 such that
P(AN) > ¢t exp{—c3N(log N)} (4.33)

Proof. To prove this, we will make use of the strong Markov property of S as follows. Firstly,
by the strong Markov property

P(GQN N Hoy NIony NJay N KQN)
= P((Aan N Bon N Eany N Fon N Mon) N (Gan—1 N Han—1 N Ian—1 N Jon—1 N Kon—1))
= PSUs(a28))(Ayn N Bay N Ean N Fan 0 Man)P(Gan—1 N Hay—1 0 Jan—1 N Kan_1).
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Figure 11: Definition of the event Usy

Then by (4.29), we have that
P(Gaon N Hon N Ioy N Jon N Kan) > e N "2P(Gan—1 N Hon—1 N Ion—1 N Joy—1 N Kan_1),
and by iteration, it follows that there exists some universal constant ¢ > 0 such that
P(Gon N Hoy NIoy N Joy N Kon) > (eN72)2Y, (4.34)
Secondly, again by the strong Markov property

P(GQN NHony NIony NJoy N Koy N UQN)

=P(Uan | Gan N Han N Ioy N Joy N Koy )P(Gany N Han N Joy N Kan)
2N+1))(

_pSisa Usn) P(Gan N Hon N Iy N Jay N Koy).

Then by [28, Proposition 1.5.10], PSts(@h) (Uzn) is bounded below by some universal
constant ¢ > 0. Combining this with (4.34), we obtain

P(Gan N Hoy N Ioy N Jony N Koy NUsy) > cexp{—cN(log N)}. (4.35)
Furthermore, following the proof of [33, Proposition 4.6], we obtain that
P(Gan N Han N Ian N Joy N Koy N Uy N (Lan)©) < CN exp{—cN?},
where we use (4.31) instead. Combining this with (4.35), we obtain
P(Gan N Haoy NIan N Jany N Koy N Loy NUszn) > cexp{—cN(log N)},

which completes the proof. O

4.1.2 Proof of Proposition 4.1

In the previous subsection, we observed the behavior of U along the LERW starting at the
origin, i.e. the first step of Wilson’s algorithm. Now we consider several events to complete a
lower bound estimate of the upper tail of the volume.

We take y; = (jm, Nm,0) € Z3, j=1,--- , N, and run a simple random walk RY started
at y; until it hits UV, Let By(k) be the cube of side-length m centered at y; x = (jm, km,0) €
Z3. We define 7, (resp. oy,) to be the first time that RY hits By (0) = B,, (resp. uny.
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LE (Ryj [Ty ij])
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Figure 12: The sets we consider in the event V,. NW,_

Definition 4.9. Define V,, to be the intersection of the following events of RY :
o {LE(R%0,7,,]) € UpZy! By(k)},
o {len(LE(RY/[0,7,,])) < (N — 1)m”},
N-1
o ﬂ {Vz € B(y;r, 22 "2m), P[0, T. (yjk, A~32m)] N LE(RY [0,7,] =0) < )\_Cl}, where
k=1
R is a simple random walk independent of RY and (1 is as defined in (4.23),
o iz {Bjk: A?m) C Bu(y;n A~ 'mP)},
and define W, by

Wy, = {len(LE(Ryj [Ty;,0y;])) > cN(log N)momﬁ}

Lemma 4.10. For each j=1,2,--- N,
PYi(V,, N W,, | AN) > cexp{—CN(log N)}. (4.36)

Remark 4.11. Since tail bounds for the length of three-dimensional LERW in a general set
have not been obtained, we will apply the tail bound for the length of infinite LERW in a
Euclidean ball given in [39, Theorem 1.4] and [32, Corollary 1.3], instead of regarding o
as a deterministic set. Thus, in order to estimate the conditional probability of W, . on the
event AN from below, we consider the length c¢N(log N)'%m# in the right-hand side of the
definition of Wy, so that P¥ (W) becomes enough compared to P(AN).

Proof. Firstly, applying the same argument as Lemma 4.7 and Lemma 4.8, there exists a
universal constant ¢ > 0 such that PY% (V,, | AN) > cexp{—cNlog N}. Secondly, we will
estimate the upper bound of P¥% (AN N Viy; N Wycj) In order to do so, we stop conditioning on

A" and consider LE(RY[r,,0,.]) as a part of infinite LERW. By [39, Theorem 1.4] and [32,
Corollary 1.3], we have that

pPYi(AN N Vy; N W;ﬂ) <P (len(LE(Ryj [75,+04;])) > N (log N)loomg)
< exp{—CN (log N)'9},
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from which it follows that
. . , . 1,
PU(AN OV, O Wy,) = PU(AY O V) = PY(AY NV, nWE) > SPY (AN N V),
since P(Fp) > cexp{—CN log N} by Lemma 4.8 and Lemma 4.7. Thus, we have

. 1.
PYI(Vy, Wy, | AY) > §Py”(vyj | A™)
> cexp{—cN(log N)},
which completes the proof. O

Finally we take z;1 = (jm,km,Nm) € Z3, j,k = 1,---,N, and run a simple random
walk R%* started at zj until it hits UYN. Let B,(I) be the cube of side-length m centered
at zj 1 = (jm, km,Ilm) € Z3. We define Tz (T€Sp. 03, ) to be the first time that R** hits
B.(0) = By(k) (resp. already constructed subtree of U). Let V., (resp. W, ,) be an event
of R** which corresponds to V,,; (resp. W,,,) with 3 axis replaced by x3 axis (see Definition
4.9 for the definition of V;,; and W,,,). By applying the same argument as Lemma 4.10, we
have that

PER(V,,  NW,

Note that sz,k NWw,

| AN NV, NW,,) > cexp{—CN(log N)}. (4.37)
is independent of V, , N Wy, if j # 7.

gk
gk

Corollary 4.12. There exist universal constants c,c’,C,C" such that for all m > 1 and
N >1,

p (\BM(O, C'Nmf)| > c’(Nm)3) > cexp{—CN3(log N)}. (4.38)
Proof. Recall that x; = (jm,0,0). On the event AV, we have that for all y € B(z;, \;>m),

dy(0,y) < dy(0,z;) + dy(z;,y)
< CNm”® + /\*_1me
< C'NmP

Since each step of Wilson’s algorithm is mutually independent, applying the result of Lemma
4.10 to the “tubes” parallel to xo axis, we obtain

N N
P ﬂ m {du((),y) < CNmP forally € B ((jm,km,O),)\;Qm)}
k=0 j=1
N
> P(AN) H Pyj(vyj N Wyj ’ AN)
j=1

> cexp{—CN?(log N)}.
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Next, we consider the “tubes” parallel to x3 and we have

N N N
P(ONN {du(O,y) < CNm® for all y € B ((jm, km,Im), )\*_2m)}
1=0 k=0 j=1
N N
> cexp{-CN?*(log N)} [ [ P7* (Ve, N W2, | AN 0V, nTW,))
k=1j=1

> cexp{—CN3(log N)},

where we applied (4.37) in the last inequality. Finally, comparing the left-hand side of the
above inequality and (4.38), we obtain (4.38). O

Proof of Propositon 4.1. Setting r = C'Nm? and X\ = ¢ N3B=1D/8/C"3/8 in (4.38) yields the
result at (4.1). O

Theorem 4.13. P-a.s.,

lim sup (log log )~ #=1V/873/8| B, (0,7)| = co. (4.39)

r—00

Proof. We will begin with defining a sequence of scales. Fix € > 0 and let
Di=¢e", m; = D;/e(logi)'/3.

We now run Wilson’s algorithm. Let 7., be the infinite LERW started at the origin and
let (5%).czs be the family of independent SRW which is also independent of 7. At stage
i (i > 1), we use all the vertices in By (0, D;) which have not already been contained and
write U; for the tree obtained.

By [1, Proposition 4.1}, there exists M > 0 such that the event

Boo(0, D;) C By(0,iM DP) € By (0,i*M Dy) (4.40)

occurs with probabilty greater than 1 — ci~2. Hence, if we run Wilson’s algorithm for the

vertices contained in By, (0, D;) taking v as the root, then the probability that U; leaving
B (0, i?M ) is less than cA~2. By applying the Borel-Cantelli lemma, we obtain that

U; C Boo(0,3*M D;) € Boo(0,m441/2) (4.41)
for large 4, almost-surely. Moreover, from (4.40), we may also assume that

dy(0,2) <MD} <m | forall zel (4.42)

almost-surely.
Define the event F'(i) to be the event that both (4.41) and (4.42) hold. Let F; be the
o-field generated by the followings:

° 'YOO[OaTBOO(O,iQMDi)]v
o All simple random walks added to U;_1 at stage 1,
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where T4 represents the first exiting time from A.

Now we bound the probability that the subtree U;41 obtained at stage ¢ + 1 also satisfies
the diameter estimate and the inclusion corresponding to (4.41) conditioned that F'(7) holds.
We define an event G (i) by

e(logi)t/3
1 ogi)l/3
G = {el0, 50 mpll < Y 0 A= 0 [ ) v, o,
j=1

e(log)1/3 e(logi)l/3

NN () Vel nWe |

k=1 j=1

where replace the scales m and N by m; and e(log4)'/3, respectively. See (4.32) and Definition
4.9 for the definition of the events A, Vy, N Wy, and V., "W, .
s T
For A C Z3, let

T = sup{i : Yoo (i) € A},
be the last time that v, exits from A and recall that 74 indicates the first exiting time. Then,

by [35, Proposition 4.6], 7 [0, 7p__ (0,20 p;)] and Yeo[Tg ( ),oo) is “independent up to

077;4]\/1[)1.
constant”, i.e. there exists a universal constant C' > 0 such that for any ¢+ and any possible

paths 71,72,
P(750[0, T, (0,121 Dy)] = 1M1, Yoo [TJIBOO(O,#MD@-)’ 00) = 12)
> CP(7s0[0, TBOO(O,ﬂMDi)] = nl)P('Yoo[TIBOO(OJz;MDi), o00) =1n2). (4.43)
Let Yoo = Yool TBoe (0,120 Dy)> TBa (0.i4M b)) Then,

P(G(i+1)| F)

. e(log(i4+1))1/3 e(log(i4+1))1/3 e(log(i+1))1/3
> P [ Ao+ 1y N Vi, nWy, |0 M N Ve
j=1 k=1 j=1
— P[] >mf,, | Fy). (4.44)

By Corollary 4.12, we have that the first term of (4.44) is bounded below by Ci—e’,
For the second term of (4.44), we first consider the diameter of Y.

Let 01 = {601(0),--- ,01(k)} be a path which satisfies
01(0) € 0;Bso(0,i°M D;), 01(k) € 9;Boo(0,i*™MD;), 61(1),---,01(k — 1) € Boo(0,i*™ Dy)e,

and fy = {02(0),--- ,02(1)} be a path in By (0,i*M D;) which satisfies 62(0) = 0 and (1) €
0;Boo(0,i2Md;). Let X be a random walk on Z? started at z € 9;8(0,i°" D;) and conditioned
not to hit fs. We define o to be the first hitting time of By (0,i*" D;). Then by calculation
of conditional probability, we have that
P#(S[0,0] = 61, S[o,00) N Oy = )
PZ(S[O,OO) Noy = @)

PO )R]0, 00) N By = 0)

P%(S[0,00) =0)

P*(X[0,0] = 61) =

= P*(S[0,0] = 61)

(4.45)
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where we applied the strong Markov property for the second equality. Since 05 is included
in By (0,i*M D;), it follows from [28, Proposition 1.5.10] that there exists some universal
constant C' > 0 such that for any #; and 65,
1 _ PX[0.0] = 6))
C = P*(S[0,0] = 61)

<C.

Thus, we have

P92 N Boo(0, M D, < P(X[0,00) N Bso(0,i*M D;
(7 (0,4 )#@)_ZeaiB%a}ggMDi) (X0, 00) (0,4 ) # 0)

<C P(S|0 N Buo(0,i*M D; ‘
= 2631'3%8,?6(MD1-) (S[0,00) (0,4 ) # 0)

By applying [28, Proposition 1.5.10] again, we obtain that
P(J2 N Boo (0, D;) # §) < Ci—2M, (4.46)
On the other hand, we have that
P(75 N Boo(0,M D;) = 0, |7 | > m},, | Fy)
PN Boo(0,1MD:) = 0, 15| > i)

P(|7[0, 7 (0,2m D]l < mf)

By applying Lemma 4.8, the denominator is bounded below by
P(|o0[0, 7. 023 py) )| < ) > P(ATEDTE) > e,

For the numerator, now we stop conditioning on I; and consider 7, as a subset of the infinite
LERW started at the origin. Thus, again by [39, Theorem 1.4] and [32, Corollary 1.3], we
have that

P72 N Boo(0,iM D;) = 0, |70 | > m%B+1) < P(|7[0, 75 (0,6m Dl = miﬁ-i-l)
< Qe 2,
It follows from the above inequalities that
P(7% N Boo(0,iM D) = 0, || > mf, | | F;) < Cic=" ™20 (4.47)
Substituting (4.46) and (4.47) into (4.44) yields
P(Gli+1)| F) > Ci™, (4.48)
from which it follows that
P(G(i+1) [ F) 2 P(G(i+1) | Fi)lpg
> exp{—c(Dit1/mit1)*10g(Dit1/mit1)} — Ci*M
> e’

for large i. Since G(7) is F;-measureable, it follows from the conditional Borel-Cantelli lemma
that G(i) occurs infinetely often, almost-surely. Note that on G(i) we have that

‘Bu(o, C’Dimf_l)] Z C/D?.

Finally, the reparameterization r; = C’ Dim? -1 yields the result. a
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Figure 13: An example of three-dimensional spiral

4.2 Lower volume fluctuations and resistance estimate

In this section, we prove bounds for the volume and effective resistance which are key ingre-
dients of the proof of upper fluctuations for the heat kernel.

4.2.1 Lower volume fluctuations

In this subsection, we prove (1.8), lower volume fluctuations of log-logarithmic magnitude in
Theorem 4.22. Recall that 3 is the growth exponent of the three-dimensional LERW and By,
indicates intrinsic balls in the three-dimensional UST U on a probability space (€2, F,P).

Proposition 4.14. There exist cg,cy > 0 such that for all A >0 and r > 1,
P(|By(0,7)] < X71r3/8) > cgexp{—cr A/ 3= log A}, (4.49)

Remark 4.15. See [1, Theorem 5.1] for an exponential upper bound for the probability in
the left-hand side of (4.49).

Here we follow the idea of [5], Section 3 and 4 again. Recall that s is the infinite LERW
started at the origin as the first step of Wilson’s algorithm. For the result at (4.49), we
will take a similar approach to the previous section, in which we construct the UST U by
Wilson’s algorithm in a collection of small boxes. We consider a rectangular prism of side-
length (2N —1)m, (2N —1)m, 2Nm as a collection of 2N (2N — 1)? small boxes of side-length
m. We let the origin be located at the center of one of the two boxes closest to the center of
the large rectangular prism. Let m be a sequence of boxes that starts at the one containing
the origin and spirals outwards.

Now we describe an example of how to construct such a spiral inductively. In the case of
N =1, we start at the box containing the origin and then move to the other one. Without
loss of generality, we can let the latter cube be centered at (0,0,m) and 7 go upwards. In the
case of N = 2 (also see Figure 13), we first continue to move upwards to the box centered at
(0,0,2m) and spiral outwards in the upper face of the cube. Then we spiral down along the
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side of the cube. Finally, we spiral inwards the lower face of the cube and end up with the
box centered at (0,0, —m). Suppose that we have constructed the spiral up to the N-th step.
If N is odd, the last step ended up with the box centered at (0,0, Nm), therefore we move to
the box centered at (0,0, (N 4 1)m) and continue in the same procedure as the previous case
(N = 2). If N is even, the last step ended up with the box centered at (0,0, —(N — 1)m),
therefore we first move to the box centered at (0,0, —Nm) and spiral outwards the lower face
of the cube, spiral up along the side of the cube and then spiral inwards in the upper face of
the cube.

Remark 4.16. Note that the following argument can be applied to any spiral 7 which step
by step goes outwards without getting close to the origin.

To prove Proposition 4.14, we consider several events similar to those which we considered

IN(2N—

2
in the previous section. Let {xz;} D" be a sequence of the center of the boxes in the m,

j=1
i.e. m={By, }?fl(QN*”Q, where B, = By (x5, m/2). Now we define some events for the SRW

S started at the origin. By linear interpolation, we may assume that S[0,00) is a continuous
curve in R3.

Definition 4.17. Forj =1,2,--- ,2N(2N — 1), let Q; be the face of By, which is the closest
to wj1 and let wj € R3 be the center of Qj. Then we define ij by

Qj = Qj N Boo(wj,m/4),
a subset of the face Q; which is not too close to its edges. For a > 0,b > 0, we define
Qj[_a7 _b] = {Z/ € ij b < dE(ya Q]) < a}v
Qj(—a) ={y € By, : dp(y,Q;) = a},
R; =Q;j(—m/2) N (B(xz;,m/8)° U B(x;,m/10)).
For a continuous surve in R3 and a € R, we define
ta(Qj(a)) =inf{k > 0: A(k) € Q;(a)}.

The sets @j, Qjl—a,—b], Qj(—a) and R; we defined above correspond to the idea of
@((Ij+1), Qlaj41 — a,aj41 — b], Q(aj+1 — a) and Rj, which we defined in Definition 4.3 in
Subection 4.1.1, respectively.

Now we define some events for the SRW S. Let ¢ = m/N and

Al = {ts(Q1(0)) < 00,8 (ts(Q1(0))) € Q1, S[ts(Q1(—1)), ts(Q1(0))] N Q1(—2q) = O},
Al = {ts(Q;-1(0)) < ts(Q;(0)) < 00, S (ts(Q;(0))) € Q;,
S[ts(Qj-1(0)),ts(Q4(0))] C Qj—1[—¢q,0] C By, \ Ry,
Sts(Qi(—q)),ts(Q;(0))] € Q;[—2q, 0]}, for j > 2. (4.50)

Note that the event A; (resp. Aj, j > 2) is measurable with respect to S[0,t5(Q;(0))]

(resp. S[ts(Q;-1(0)),ts(Q;(0))])-
We set

J
! !
G =) 4
k=1
Now we define a cut time for S.
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Figure 14: The sets defined in Definition 4.17 Figure 15: Definition of the event A’,

\ Qj

Figure 16: Example of nice cut point in B,

Definition 4.18. Suppose that the event A; defined in (4.50) occurs. For each j > 2, we call
k is a nice cut time in By, if it satisfies the four conditions in Definition 4.4 with ts(a; + b)
replaced by ts(Q;(b)) for b € R.

If k is a nice cut time in By, then we call S(k) a nice cut point in By,.

We define events B} by
B} = {S has a nice cut point in By, }, (4.51)

for each j > 2. Note that event B’ is measurable with respect to S[ts(Q;-1(0)),ts(Q;(0))].
We define

j
Hj =) B;.
k=2

The events A; and B;- correspond to the idea of the events A; and B;, which we defined
in Section 4.1.1 to estimate an upper fluctuation of the volume of the three-dimensional UST.

Now we consider the length and the hittability of the loop erasure of S. Suppose that the
event G;» NnNH ]' occurs and let k; be a nice cut time in B,,;. We set

7 = LE(S[0,t5(Q;(0))]) for j > 1,
N; = LE(S[kj, t5(Q;(0))]) for j > 2,
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X (u;)

By,

J

Figure 17: The sets and the points we consider in the events £ and Fj

and let

sj=1inf{k >0: §§-/_1 € S[ts(Q;-1(0)),ts(Q;(0))]},
t; = sup{ts(Qj-1(0)) < k < ts(Q;(0)) : S(k) = &/_1(s))},
uj = inf{k > 0: )\;(k‘) € Qj[—q, 0]},

for 7 > 2. Then we have

J = 1100, 53] ® LE(S[t;, k;]) ® LE(S[k;, ts(Q;(0))]) D €110, 55] U},

J
and therefore,
£10, 5541 D €110, 5] UN;[0, uy],

on the event G; N H J’ Thus, in order to bound the length of 7; from below, we need to
estimate the length of )\; [0,u;]. For j > 2 and C' > 0, we define the event E;(C’) by

Ej = Ej(C) = {len(X}[0,u;]) > Cm”}. (4.52)
Moreover, we define the event F(n) for the hittability of A} for j > 2 by

Fj = Fj(n) = {P"(X; N (R0, Tg=; (2m/5)]) # 0) = n}, (4.53)
where P? indicates the law of R?, the simple random walk started at z independent of S.

The next lemma is an analog of Lemma 4.6, which gives a lower bound on the probability
that the events as defined above occur simultaneously.

Lemma 4.19. Let P be the law of S. There exist universal constants 0 < n*,c* < co such
that

P(A) > ¢
and for all 7 > 2,

min P*(A; N BjN Ej(c*) N Fj(n*)) > ¢*N 2. (4.54)
z€Q;
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Proof. Similarly to the proof of Lemma 4.6, it suffices to show that for a fixed constant c,
there exists a universal constant ¢’ such that P*(ES(c’) | AL) > ¢ holds uniformly in z € Q.
We consider a small box Boo(x2,m/6) of side-length m/3, which is included in B,,. Let I
be the number of points lying in both X\, and Buo(x2,m/6). Then by [39, Lemma 8.9], there
exists a universal constant ¢’ such that

PEI>cdmP | 4) > e
Since [len(A5[0,u2])| > I, we have that
P2(|\5[0,uz]| = ¢'m” | Ap) > e,
uniformly in z € @1, which completes the proof. o
For j=1,2,---, L(In), let Mj(\) be an event defined by
M(r) = {B(z;,x %m) C Byn(zj, k 'm"}.

Let ¢, be a constant which satisfies (4.54). By the same argument as Lemma 4.7, there exists
some constant k. > 0 depending only on c, such that

P (Mj(k.)) | A5 N BN Ej(co) N Fj(n.)) > c.. (4.55)
We set I = f;:Q Ii.(k+) for K, defined in (4.55).

Let J} = i=2 E(c*) and K = w(n*) for ¢* and n* defined in Lemma 4.19. We
define

SRV}

Ul = {S(TS<R<N>>> € (P y®) Ryt >
Slts(Qanwan-1)2), Ts(R(N))| N B <O,3 (N — ;)) = @} ; (4.56)

where R(N) = exp{2e®V° + 1} and set

N
B" = /2N(2N—1)2 N HéN(2N—1)2 N IéN(QN—l)Q A JéN(QN—l)Q a KéN(QN—l)Q NUy.  (457)

Then by the same argument as Lemma 4.8, we obtain the following lemma.

Lemma 4.20. There exists a universal constant cg > 0 such that
P(B"Y) > cgt exp{—csN3(log N)}. (4.58)

On the event BY, the first LERW 4, in Wilson’s algorithm moves through the spiral 7
and its length up to the j-th box is bounded below by Cjm?.

Lemma 4.21. There exist universal constants c,c’,C such that for all m > 1,
2
p (Bu (o,cN3m/3> C Buo (0, 3Nm)>> > Cexp{—c'N3(log N)}. (4.59)
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B (0, Nm)

B+ (0,2Nm)

B0, R(N)m)

Figure 18: Definition of the event Uj

Once we prove the above lemma, we will obtain Proposition 4.14 as follows.

Proof of Propositon 4.14. It follows from (4.59) that
P (‘Bu (O,CNgmﬂ)‘ < 287N3m3> > Cexp{—cN3(log N)}.

Reparameterizing r = ¢cN*m” and \ = %03/ BN9/B=3 yields the result at (4.49). O

Proof of Lemma 4.21. We may assume that m is sufficiently large for the same reason as [1,
Proposition 4.1].

We first take a sequence of subsets of Z3 including the boundary of B(0, (2N — 1)m/3).
For each k > 1, let g, = N=%/327k=10 5, — (15k)~! and

Ap = Boo (0, <§ + 77k> (2N — 1)?) \ Boo (0, (; - m) (2N — 1)2‘) .

We let Dy, C Z? be a subset of Ay, such that A, C U.ep, B(z, (2N — 1)mey) and we suppose

that |Dy| < C&,;S. Write ko for the smallest integer satisfying (2N — 1)meg, < 1. Note
that for sufficiently large m, both the inner and outer boundary of Bu(0,1(2N — 1)m) are
contained in Ay,. Moreover, we have 9; B (0, (2N — 1)m) C Dy, by the definition of k.

551(2N—1)2 B,,. Let U{" be the subtree of
the UST constructed in the event BY. Then we follow the same construction of the sequence
of subtrees UM U, - - ,L{,?D[ as (i)-(iv) in the proof of Lemma 4.7 and end up with the subtree
UN | which contains all points in U?Z@N_m B(z;,m/2).

Next, we consider the hittability of branches in the constructed subtree. We take z € D1,
then there exists j € [1,2,---,2N(2N — 1)?] such that z € By;. Let 7p; be the first hitting
time of B(z;, A"?m) and o, be the first exiting time of By (5, 3m/2) by R?, a simple random
walk started at z and independent of S. Then by [28, Proposition 1.5.10], there exists some
p > 0 such that for all j > 1 and 2 € By,

We begin with performing Wilson’s algorithm in | J

P*(oq, < TB;) <D, (4.60)
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holds. We define the event L(1,z) by
L(1,2) = {yy~(z,00) exits the cube Boo(z, Nm/100) before hitting the subtree U3},

for z € Dy and suppose that L(1,z) occurs, where 7;,~(y,00) stands for the unique infinite
path of the subtree &" started at y. Then the event {og, < 7p,} occurs and by (4.60) its
probability is smaller than p. By iteration, the number of boxes of side-length 3m/2 that
R? exist before hitting ¢}" is larger than N/200. Hence, by the strong Markov property, it
follows that

P(L(1,2)) < /20,

for all z € D;. Since |D;| < 051_3, we have that

P () L(12)° | =1- N*pN20.
z€Dq

We next define the event that guarantees the hittability of branches of U,iv starting at
2z € Di. For k> 1 and x € Dy, let

I'(k,z,Q)

_ {P}/% (R [O,TRy (y, (2N — 1)m6,1€/2)} N UY Uy (J:,Z/I(])V))> < & for all y € Bz, (2N — l)msk)} .
(4.61)

and I'(k,C) = N,ep, I'(k,2,¢). Again by [37, Lemma 3.2], there exist universal constants
(3 >0 and C < oo such that for all k > 1, m > 1, and x € Dy,

Pyn(I'(k,2,(3)°) < Ce}.
Combining this with |Dg| < Ce; ? yields that
Py (I'(k, G3)) < Cef.
We finally define an event L(k, z) for k£ > 2 and z € Dy, by
L(k, z) = {yyn~(z,00) exits B(z, (2N — l)msllc/_?’l) before hitting U} ,},
and set My := BY N (N, cp, L(1,2))NI'(1,¢3) and My, == My_1 N (N.cp, L(1,2)°) N I'(k,(3)

inductively for k > 2. Suppose that the event Mj_; occurs. The number of balls of radius

(2N — 1)ma,1€/_ 21 that R* exits before hitting Z/{év_ | is larger than a,;_I{G. By the strong Markov

property, it holds that

2Dz s 1/3 o1 N cCaer 1°
P*(R* exits B(z,(2N — 1)me|'") before it hits U},_ ;) < e, """,
for some universal constant ¢ > 0. Since |Dy| < C’s,;?’, we have that
5 cCyel/
P () Lk 2)° | Moy | 21— Cep’e, M, (4.62)

z€Dy
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It follows from the argument above that
P(M, | BN)>1—- N33,

and
P(My | My_1) > 1— Ce3.

Hence we can conclude that

ko 0o
P(My, | BY) =P(M; | BY) [[P(Mi | Mp—1) > (1= N33 JJ(1 - Cef) 21— N7/,
k=2 k=1

On the event My, for all y € U,

Nm 1/6 _ Nm 1/6
dp(y,D1) < ——+ Y (2N —1)me,/” < 100 2N—1ng <7

i.e. 114(y, 0) hits the subtree U2’ before it exits the ball centered at y of radius Nm/50. Hence
we have

Nm _ 11
dp >d Dy)——>_—-(2N -1
(0,9) > dis(0, 1) ~ 20 > (N — 1)m
Since 0; B (0, %(2]\7 —1)m) C Dy, mu(2,0) hits Z/lko before entering B (0, %(1) (2N — 1)m) for
all z € By (x, é(QN— 1)m). By the definition of the spiral =, it follows that on the event M,

1 ¢ 1\ 2

for some universal constant c, i.e. By(0,cN(N — 3)?m?) C Bo(0, 5(2N — 1)m). By taking
N sufficiently large, we obtain (4.59) for some universal constant ¢ O

Theorem 4.22. P-a.s.,

lim inf (log log ) 3=#/8r=3/8| By, (0, )| = 0. (4.63)

r—00

Proof. Similarly to the proof of upper volume fluctuation in Theorem 4.13, we begin with
defining a sequence of scales by

D; =", m; = D;/e(logi)'/3.

Let 700 be the infinite LERW started at the origin and (5%),cz3 be the family of independent
SRW which is also independent of vo,. Then by the same argument as obtaining (4.41) and
(4.42),

U; C Boo(0,72M D;) € Boo(0,mi41/2), (4.64)
dy(0,2) <MD <ml | forall zels, (4.65)

holds for large i, almost-surely.

48



We define an event H (i) by

A

where the event BY is as defined in (4.57) and at each stage i we rescale by m = m; and
N = g(logi)'/3. Then by (4.43), i.e. the “independence up to constant” of ., there exists a
universal constant C' > 0 such that for any <,

P(H(i+1) [ F) 2 P(H(i+1) | Fi)ly)
> CP (Bs(log(i+1))1/3>
> i’
where the last inequality follows from (4.58). Note that on H (i) we have that

| By(0,eD3mP )| < %DS

Finally, the reparameterization r; = cD?mf -3 yields the result. |

4.2.2 Estimates for effective resistance

In order to demonstrate upper heat kernel fluctuations, we need to estimate the effective
resistance of balls in the three-dimensional uniform spanning tree. See (2.5) for the definition
of effective resistance.

Suppose that the event B defined in (4.58) occurs. We give estimates for bounds of the
volume and a lower bound of the effective resistance of UST on the event BV .

Proposition 4.23. There exists some unwersal constant 0 < cg, c19,¢,C < 00 and the event

MY with P(MYN) > cgexp{—c1oN3log N} such that on MY, the followings hold :

1
|Bu(0, N*mP)| < S N*m?
| By (0, CN3mP /(log N)39)| > eN3m?/(log N )3,
Regi (2, By (0, N3mP)) > eN3mP /(log N)3® for all € By(0,cN3mP /(log N)3).  (4.66)
We will apply [24, Proposition 3.2] to bound the heat kernel on U from above. To do so,
we need to estimate (i) upper bound of the volume of an intrinsic ball By, (0, N3m?), (ii) lower
bound of the volume of a smaller ball By;(0,eN3m”) where ¢ is some small constant and (iii)

lower bound of the effective resistance between z € By(0,eN3m?®) and the boundary of the
ball By (0, N3m/?), which correspond to the three inequalities above.

Proof. We set Iy = N/(log N)'% and L(k) = 2k(2k — 1)2. Let S be the SRW started at the
origin and recall that events A}, B}, £, I and Uy are as defined in (4.50), (4.51), (4.52),
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Boo(0, Nm)

«/\L’TTH—;/\}FYOO
B (0, Nm/(log N)100

Figure 19: The unlike event which we consider in Proposition 4.23. To bound the effective resis-
tance from below, we need to consider two properties: (i) paths started at a point in
By (0, N*m#)¢ do not enter a smaller ball By (0, N*m? /(log N)3°°) and (ii) paths branch-
ing from 7., at a point close to the origin have limited length.

(4.53) and (4.56), respectively. We define events B(]\lf) and Bg) by
L(ln)
B = () (40 B0 B0 EL (B, A2m) € Bulag, Am?)})
j=1
L(N)
By =1 ) (A9 N Bj N E;NFjN{B(xj,\*m) C By(a;, A—lmﬂ)}) NUY.
j:L(iN)+1

It follows from the same argument as Lemma 4.21 that
P(B),) > Cexp{—cN®(log N) 7>}, (4.67)
P(BY)) > Cexp{—cN*(log N)}, (4.68)

for some constants C, ¢ > 0. Note that (log N)~2% in the lower bound of P(Bg\lf)) is the result

of the number of small boxes . We need this term to avoid the competition between P(B(]\{))
and a bound for the probability that UST paths branching from ., near the origin do not
have a large length.

Suppose that the event Bg) N Bg) occurs. Then the occurence of ﬂ]Li]f) A;- guarantees
that the part of S after exiting the L(Iy)-th box Beyay fgf’)_l By,
In particular, LE(S[0,%s(QL,)(0))]) and LE(S[0,ts(Qr(n)(0))]) restricted to ﬂfﬁ{vﬂ) By,
are exactly the same on B(]\{) N B(]g), where t)(Q;(a)) is as defined in Definition 4.17.

For each k > 1, let g, = N=%/32710-k . — (30k)~" and

A, =B (0, (; + 77k> le> \ B <0, <; — 771:) lNWL) :

Write kg for the smallest integer satisfying {ymer < 1. Now we take a “cp-net” of Ay, i.e. let
Dy, be a set of lattice points in A such that UzeDk B (z,Iymey) with |Dyg| < 061;3.

does not go back into [
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Now we perform Wilson’s algorithm in UJLSP B, to obtain the subtree le,fo (V)

procedure as we did in Lemma 4.21. Note that L{L(N) is the union of the infinite LERW
Yoo started at the origin and balls By(z;, A\~1m?) constructed in the event I} N@EN-1)2° For

z € Z/IL(N) let v,L(v) (2, 00) be the unique infinite path in Z/lko( ) starting at z. We set
Cp, = 510g N/log(1/p) where p be as defined in (4.60). For z € D;, we define the event

L(1,z) by

in the same

~ 3
£(1,) = {LE(S10. 704 ™)) 2 B (2. Cym) U { oo (ot ) 2 o}

Then
P (E(Lz) ‘ BY,n Bg))

3
<P (rLszm,T(ué‘N))])\ > gy EST0.70 ) € B (. Gym) | B 0 5
+ P (LE(S*[0, 7Ug ™)) ¢ B (2, Cpm) ] BY,n BY)). (4.69)

Since both of the events we consider in the right-hand side of (4.69) are independent of B(]g),

we can omit the condition on Bg) from the conditional probabilities on the right-hand side.

For the first term, we stop conditioning on B(]\lf) and consider 7;,.(v)(2,00) as the infinite
LERW started at z. Then it follows from [39, Theorem 1.4] and [32, Corollary 1.3] that for
some universal constants C' > 0 and ¢ > 0,

3
(]LE(SZ[O FUEY)| > (loéVN)mmﬁ, LE(S*0, 7@ ™))) € B (2, Cym) ’ Bl N Bé¥>)

P (JLE(S[0, 7@s ™)) = N*m? /(10g N)10, LE(S7[0, 7y ™)) € B (2, Cym) )

= P (Bg))

< Cexp{—cN3(log N)~10-F},

where the last inequality follows from (4.67). On the other hand, by the independence, the

strong Markov property and the hittability of Z/IL(N)

P (LE(SZ[O rUPY) ¢ B (2, Cym ‘ BY, mB(Q))
<p @»=N"
Thus, we obtain that
p (5(1,2) ‘ BY,n Bg)> < N5, (4.70)

Next, we consider events that guarantee the hittability of each branch in Z/{,f ™) For ¢ >0,
we define an event I(k,x,() by

I(k,z,¢)
- {P;{2 (R [O,TRy (y, Iyme./? )} u
for all y € B(x, leek)}. (4.71)

LN )U’yuL n (z, Uy (N))) Q)) Ssi
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and let I(k,() = (N,ep, I(k,z,¢). Then by [37, Lemma 3.2], there exist universal constants
(4 > 0 and C' < oo such that for all kK > 1, m > 1, and x € Dy,

P(I(k,z,Gi)) > 1 - Ce},
which combined with |Dj| < C’e,;?’ yields
P(I(k,(y)) > 1 — Ceb. (4.72)

Finally, let

L(k,z) = {"yuL(N)(z, 00) exits B <z, leai/_gl) before hitting L[,CL_(JIV)}

]VB
U {‘FYZ/{L(N)(Z7U]5_(]1V)) Z 5]1/5(10g]\],)10m/8} s (473)

be the event for the length of the attached branch for each k¥ > 2 and z € D,. We set

M, = BN, 0 B N 1(1,¢) N (Noep, L(1,2)¢) and My, = My,_y 0 1(k, Ca) 0 (.ep, Lk, 2)°)

inductively for £ =2,3,--- , ko.
Since |D1| < CN*, it follows from (4.70) that

P(M1) > (1— N~!) exp{—cN3(log N)}.

By applying the argument for (4.62) again, we have that,

N —
P (’yuL(N)(z,oo) exits B (z, a()g]\[)loomgllc/?)1> before hitting U,ffjl\]) ’ Mk_1>

g _cCaei 1
< Cep’ie

Again we stop conditioning on ]\71 and consider v;,.(v) (2, 00) as the infinite LERW started at
z. By [39, Theorem 1.4] and [32, Corollary 1.3],

P(L(2,2) | My)
N3 —
§P<{’YuL(N)(Z,Z/{1L(N)) Cc B (Zaleai/?))} A {"YL{L(N)(Z,UIL(N)> > 6}/5m5} i,
~1/6
_|__ 051_36134-481
<eXp{_52_66/3+1/4 cey 1?0 N30 (log N)P)

P(M))
< exp{—egl/uN?’(log N)P}.

_3_cCaey /0
+Ce "¢

Combining this with (4.72), we obtain

P(M, | My) > 1 — Cé2,
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and by iteration, we have that P(Mk | Mk_l) > 1— Ce2. Hence we can conclude that

ko
P(My,) = P(My) [[ P(My | M)
k=2

> (1 - NYexp{—cN3log N} H(l — Ce?)
k=1
> Cexp{—cN3log N},

for some universal constant C',c > 0. On the event M, ko, we have that there exists some univer-
sal constant C' > 0 such that for all z € 9; B(0, Nm/3(log N)'%°), dys(0, 2) < ON3m?/(log N)'©
holds.

(N

0

Once we construct L{kL ), we proceed with Wilson’s algorithm. This time, in the same

argument as for (4.28), we have that conditioned on Mko, with conditional probability larger
than some universal constant ¢ > 0, dy(0, z) < CN3m?/(log N)!'° holds for all z contained in
B(0, Nm/3(log N)1%).

Finally, we consider “ci-net” of annuli around the boundary of B(0, Nm) and repeat the
argument of Lemma 4.21. Then we have that there exist universal constants 0 < C, C' e d <
oo and an event MY with P(MY) > Cexp{—cN?log N}, such that the following statements
hold:

(1) | By (0, CN3mP /(log N)390)| > eN3m?/(log N)309,

(2) Yu(z,700) € B(0, calym) for all z € B(0,iym/3,

(3) dy(0,z) < CoN3*mP /(log N)' for all z € B(0,Ixm/3,
(4) [Bu(0, N*m?)| < FN*m?.

We bound the effective resistance Reg(0, By (N®mP)) from below. By (2), points outside the
Euclidean ball B(0,lxm/3) is connected to the spiral 7., outside the smaller ball B(0, calym).
Combining this with (3), all the paths on U connecting the origin and By, (0, CoN*m? /(log N)10)
contains the part of 7 inside the B(0,calym). By the series law of effective resistance (see
for example [34], Section 2.3), we have that Reg(0, By(0, N3mP)¢) > c3N3mP/(log N)3% for
some universal constant c3 > 0. Thus we have Rug(x, By/(0, N3m®)¢) > c3N*mP /2(log N)300
for all 2 € B(0, c3N3m?/2(log N)3°0) | which completes the proof. O

4.3 Heat kernel fluctuations

In this section, we will show Theorem 1.7, quenched heat kernel fluctuations for the three-
dimensional UST. We start with lower fluctuations and then move on to upper fluctuations.
Recall that p% stands for the quenched heat kernel defined in (2.4).

Theorem 4.24. P-a.s.,

57
lim inf (log log 1) 575 057 4, (0,0) = 0. (4.74)
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Proof. By [7, Theorem 4.1], we have that

U
p2r|Bu(07”')|(O’O) = W7

for any realization of U. Let t, = n|By(0,n)| and u, = n~3/#|By(0,n)|, then we have
2 2

u
0,0) < =
Pat,, (0,0) 1By (0,0)] tf’b/(3+ﬁ)n—3/(3+5)|B(0, n)|B/(B3+5)

__B_

: B-1
By (4.39), u, **® > (loglogn)3+# infinitely often almost surely, which completes the proof. O

Remark 4.25. We proved the existence of some exponent of the log-logarithmic term which

causes lower heat kernel fluctuation. However, The exponent of the log-logarithmic

3+ 8
term of pg{n which appears in (4.74) is not necesarily a sharp estimate. The critical exponent
of the log-logarithmic term has not been obtained even in the critical Galton-Watson tree
case.

Proposition 4.26. There exists some constant o > 0 such that P-a.s.,

lim sup(log log)_anﬁpg{n(o, 0) = oc. (4.75)
n—oo
Proof. Let § > 0 and ,
Nl’ = (510gi)1/3 m; = 62 /NZ,

where cqg is as in the statement of Proposition 4.23. We follow the construction of a subtree
of U in B (0, N;m;) given in the proof of Proposition 4.23. Let 7 be the infinite LERW
started at the origin. Then at stage i (¢ > 1), we use all vertices in By (0, N;m;) and write U;
for the obtained tree. Similarly to (4.41), we have a good separation of scales. By Proposition
4.23, conditioned on U;_1, the event MY occurs with conditional probability greater than i—!
if we take ¢ small enough. Now we apply [24, Proposition 3.2] to this ;. We set R = Nf’mf ,
A =1 and e = c/4(log N;)3% where c is as given in (4.66). Let r : [0,00] — [0,00] be
r(z) = x. Then by Proposition 4.23, we can set m (which appears in [24, Proposition 3.2])
by m = c(log N;) 3%, Plugging these into (3.6) of [24], we have

6,,3+8
u I N3, —3 cNym;
Pan(0,0) 2 ENm for n < o5 Ny

for ¢ > 0 in (4.66) and some constant ¢ > 0. Thus, taking 7' = S%me?Jrﬁ(log N;) 7390 it
holds that on the event MY, we have

= U c ﬁ / 93_73[3 — 300 " =88 _¢
T35 p4,.(0,0) > (@) ¢'N,* (log N;)"3+8 > ¢'(log log T)26+5) °
for some ¢’ > 0 and € > 0 which is small. Finally, we apply the Borel-Cantelli argument.
Since
209 exp{—cioN? (log N;)} > Zfl = 00,
i i
by the conditional Borel-Cantelli lemma, we obtain the lower bound (4.75). O
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5 Annealed transition density of random walk on a loop-erased
random walk

In this chapter, we will prove Theorem 1.11 and then prove Theorem 1.10. As remarked in
Subsection 1.2.3, it was conjectured in [5] that a similar combination of the various exponents
will appear in sub-Gaussian annealed heat kernel bounds for the random walk on the two-
dimensional uniform spanning tree. In that case, the spectral dimension of the quenched and
annealed bounds is known to be 16/13, the intrinsic walk dimension is 13/5 and the exponent
governing the embedding is given by the growth exponent of the two-dimensional LERW, i.e.
5/4, giving an extrinsic walk dimension of 13/4. We can check the corresponding result for
our simpler model using the simple observation that

P(Xf =2)=)_ PYXY=Lp)PLn=u1), (5.1)
m>0
and then combining the estimate on the distribution of the LERW from Theorem 1.11 with
the deterministic Gaussian bounds on P9(X9 = L,,) of Lemma 5.17 below.
The remainder of this chapter is organized as follows. In Section 5.1, we study the LERW
in more detail, proving Theorem 1.11. In Section 5.2, we derive our heat kernel estimates for
X9, proving Theorem 1.10.

5.1 Loop-erased random walk estimates

The aim of this section is to prove Theorem 1.11. Due to the diffusive scaling of the LERW,
it is convenient to reparameterize the result. In particular, we will prove the following, which

clearly implies Theorem 1.11. Throughout this section, for 2 € Z4, we write 7, = 7 for the
first time that the LERW L hits z.

Proposition 5.1. There exist constants c1,ca € (0,00) such that for every x € Z*\{0} and
M >0,

P (€ (Mo, 2MJaf? ~ 1)) < 1 (MJaf2)' ™ exp (—2)

Moreover, there exist constants cs,cy,cs5,c6 € (0,00) such that for every x € Z\{0} and
M > |zt
P (. € [esMlaf?,esMaf?]) > 5 (M) ™ exp (—2)

We will break the proof of this result into four pieces, distinguishing the cases M € (0, 1)
and M > 1, and considering the upper and lower bounds separately. See Propositions 5.2,
5.3, 5.6 and 5.13 for the individual statements.

5.1.1 Upper bound for M >1

The aim of this subsection is to establish the following, which is the easiest to prove of the
constituent results making up Proposition 5.1.

Proposition 5.2. There erist constants c1,cy € (0,00) such that for every x € Z\{0} and
M >1,
P (1, € [M|z|*,2M |z — 1]) < &1 (M]x\Q)l_d/Q exp (—%) .

95



Proof. Recalling the definition of (¢;);>0 from (2.2), we have that

2Me[2-1
P (7, € [Mzf 2M[z* -1]) = > P(S, ==
i=[ M1

< E(#{i>[M|z]]: Sy =z}).
Using that o; > ¢, this implies that
P (Tz € [M|m]2,2M|1:\2 - 1]) < E (# {n > [M|z|*] : S, = m})

= Z P(S, =)
n=[M|z|?]

< Z Cipy—/2
n=[M|ax|?]

< C (M\x|2)17d/2,

where for the second inequality, we have applied the upper bound on the transition probabil-
ities of S from [2, Theorem 6.28]. Since it also holds that exp(—ca/M) > C uniformly over
M > 1, the result follows. g

5.1.2 Upper bound for M € (0,1)

We will give an upper bound on the probability that 7, is much smaller than |z|2. More
precisely, the goal of this subsection is to prove the following proposition. Replacing M by
2M, this readily implies the relevant part of Proposition 5.1.

Proposition 5.3. There erist constants c1,cy € (0,00) such that for every x € Z\{0} and
M € (0,2),

P(r, < Mz*) < (M|x\2)1id/2 exp (—%) . (5.2)

Before diving into the proof, we observe that it is enough to show (5.2) only for the case
that both |z|™! and M are sufficiently small. To see this, suppose that there exist some
c1,¢2 € (0,00) and rg € (0,1) such that the inequality (5.2) holds with constants ¢, co for
all z and M satisfying ||~ V M < ry. The remaining cases we need to consider are (i)
||t > ro and (ii) M € [rg,2). We first deal with case (i). If we suppose that |z|™1 > rg
and M < r3, then M|z|? < 1, and so the probability on the left-hand side of (5.2) is equal to
0. On the other hand, if |z|~! > ry and M € [r3,2), by choosing the constant ¢; to satisfy
1 > 242712 exp{earg ?}, we can ensure the right-hand side of (5.2) is greater than 1, and
so the inequality (5.2) also holds in this case. Let us move to case (ii). We note that the
probability on the left-hand side of (5.2) can be always bounded above by

P (Tf < 00) < Clz|>~4

for some constant C' € (0, 00), where we have applied (2.9) to deduce the inequality. Thus,
choosing the constant ¢; so that ¢; > C2¢/2-1 exp{cary 11 the inequality (5.2) holds. Con-
sequently, replacing the constant ¢; by ¢1 V 2d/2*1r(2)_d exp{cary 2} v 0242 L exp{cary '}, the
inequality (5.2) holds for all x € Z¢\ {0} and M € (0,2).
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We next give a brief outline of the proof of Proposition 5.3, assuming that both |z|~! and
M are sufficiently small. We write A, = Boo(0, |z|/4V/d) for the box of side length |z|/2v/d
centered at the origin, and let
t _ L
Tz = TA;

be the first time that L exits A,. Note that x € A,, and so
P (1, < Mz]?) <P (ty <7 < M[z]?) <P (1, < 00|ty < Mlz|*) P (t, < M|z[*). (5.3)

Writing
Pt =P (12 <oty < M|z[*)  and  gea =P (to < Mlzf?), (5.4)

we will show that
PeM < C!m\2_d, Qo < Cexp{cM‘l}

in Lemmas 5.4 and 5.5 below, respectively. Proposition 5.3 is then a direct consequence of
these lemmas.
We start by dealing with p, ps, as defined in (5.4).

Lemma 5.4. There exists a constant C € (0,00) such that for all x € Z¢\ {0} and M € (0,2)
with P(t, < M|x|?) > 0,
Pz M < C|x‘2id~

Proof. Let
A={X: P (t; <Mz, L[0,t;] = \) > 0}

be the set of all possible paths for L[0, ¢,] satisfying t, < M|xz|?. For A € A, we write R = R*
for a random walk conditioned on the event that R[1,00) N A = (). Note that R is a Markov
chain (see [29, Section 11.1]). We use P¥ to denote the law of R started from Ry =y. Then
the domain Markov property for L (see [28, Proposition 7.3.1]) ensures that

Alcn()\)
P € LE (R[0, 50))) P(L[0, t,] = A
o = DA (0 RO oD PO =Y) _ ppos (s € ).
qx,M €

Therefore, it suffices to show that there exists a constant C' € (0,00) such that for all x €
73\ {0}, M € (0,2) with P(t, < M|z|?) > 0 and X € A,

PY™ (z € R[0,00)) < Cla|>

With the above goal in mind, let us fix A € A. We set u := Tg(mﬂ)c for the first time that

R exits B(|z|/2). (Note that A, C B(|z|/2) by our construction.) Using the strong Markov
property for R at time u, we have

Alen(\) Yy
P z € R|0,00)) < max P3%(z€ R|0,00)).
Y (@ € R0.00) € max | P (r € D))

On the other hand, it follows from (2.8) that
min  PY(S[0,00)NA=0)> min PY(S[0,00)NA;=0)>co

yedB(|z(/2) ~ y€dB(|z|/2)

57



for some constant ¢y > 0. Combining these estimates and using (2.9), we see that, for each
y € 0B(|x[/2),

Y PV (z € S[0,00)) 1 _
P7, (z € R[0,00)) < Bv (5[0.00) N A=) < %Py (z € §[0,00)) < Oz~

for some constant C' € (0, 00). This finishes the proof. a
Recall that g, ps was defined at (5.4). We will next estimate g, ps as follows.

Lemma 5.5. There exist constants c,C € (0,00) such that for all x € Z3\ {0} and M € (0,2),
st < Cexpl a1} 55

Proof. As per the discussion after (5.2), it suffices to prove (5.5) only in the case that both
|z|7! and M are sufficiently small. In particular, throughout the proof, we assume that

M < (3200d) . (5.6)

Furthermore, we may assume
2| M > (4vd)7!, (5.7)
since ¢z = 0 when |2|M < (4v/d)~!. (Notice that it must hold that ¢, > |z|(4vd)!.)
Now, define the increasing sequence of boxes {A*}Y |, where N = [(1600dM)~!|, by
setting

Al = By (0,400\/& yx|Mz')

for 1 <4 < N. Observe that the particular choice of N ensures that AN C A, = B (0, |z|/4Vd),
and the assumption (5.6) guarantees that

N > (3200dM) L. (5.8)

Also, we note that dist(9A*™!, DA?) is bigger than 400v/d |z|M — 1, which is in turn bounded
below by 99 because of (5.7). As a consequence, it is reasonable to compare the number of
lattice points in the set L N (A*\ A1) with |#|?M?2. To be more precise, let t° = 0, and, for
1> 1, set

i _ L

t = T(Ai)c
to be the first time that L exits A’. Then [6, Corollary 3.10] shows that there exists a
deterministic constant ¢; € (0, 1) such that for all z € Z%\ {0} and M € (0, 2) satisfying (5.6)

and (5.7), o .
P(t' =t > ¢|z*M?|L[0,£'71]) > e, 1<i<N. (5.9)

With the inequality (5.9) and a constant a > 0 satisfying

2a 1 1

2 < 1 )
1—¢; - 6400d 21— ¢

(5.10)

it is possible to apply [3, Lemma 1.1] to deduce the result of interest. In particular, the
following table explains how the quantities of this article are substituted into [3, Lemma 1.1].
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n ‘ D ‘ b ‘ x
N ‘ 1—c ‘ 2|z|2M 2 ‘ aM|x|?

3, Lemma 1.1] | X | Y; |
This article H te ‘ tr— 1 ‘

Then, from [3, Lemma 1.1], one has

[2 1
P (t, < aM\x|2)§ exp { 2Mt @ N log
1-— C1 1-— C1
%a 1 1
2 — 1 M1
eXp{(\/l—cl wmmogy—q> }
< M e
€ — O
=P T 64000 BT — ¢ [

where for the second and third inequalities, we apply (5.8) and (5.10), respectively. Rewriting
aM = M’ completes the proof. O

IN

Proof of Proposition 5.3. Proposition 5.3 follows directly from (5.3) and Lemmas 5.4 and 5.5
(and the basic observation that M1=%2 > 21=4/2 for M € (0,2)). O
5.1.3 Lower bound for M € (0,1)

Recall that for z € Z%\ {0}, 7, indicates the first time that L hits x. The aim of this
subsection is to bound below the probability that 7, is much smaller than |z|2. In particular,
the following is the main result of this subsection, which readily implies the part of the lower
bound of Proposition 5.1 with |z|~! < M < 1.

Proposition 5.6. There erist constants c,c’, R € (0,00) such that for every x € Z\{0} and
z|Tt <M <1,

P (7, € [R™M|z[2, RM|z[2]) > ¢ (M|z[2)" "2 exp (—%) . (5.11)

Before moving on to the proof, we will first show that once we prove that there exists
a constant ng > 1 such that (5.11) holds for nglz|~* < M < 1, we obtain (5.11) for every
z € Z4\ {0} and |z|~! < M < 1 by adjusting ¢, ¢ and R as needed. Let us consider the
following three events:

e S[0,77] is a simple path of length [M|z|?],
o Sty + 1,7 5(07%)6] is a simple path that does not intersect S[0, 7],
o 5[5 200 5) 1 B, 3fa) = 0,

where we set » = |z| V ng. It is straightforward to see that 7, € [M|z|?, 2M|x|?] holds on
the intersection of these events. By constructing a simple random walk path that satisfies
the first two conditions up to the first exit time from the Euclidean ball B(0,2r) and then
applying (2.8) and the strong Markov property, we have

P (7, € [M|z|?, 2M|x|?]) > a(2d)~2MI7F (24)=%",
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for some a > 0 that does not depend on M or x. Suppose 1 < M|z| < ng. If |z| < ng, then
the right-hand side is bounded below as follows:

a(Qd)—2M\x|2(2d)—2r > a(2d)—(2n%+2no) >C > CI(M’xIZ)l—d/Qe—ﬁ.
On the other hand, if |z| > ng, then the right-hand side satisfies
a(2d)—2M|J:|2(2d)—2r >C (M|$|2)1_d/2 e—cM|x\2—c’\x| > C (M|l‘|2)1_d/2 G_CH/M.

In particular, by replacing R by RV 2 and adjusting ¢, ¢’ appropriately, the result at (5.11)
can be extended to 1 < M|z| < |z|.

The structure of this subsection is as follows. Firstly, we define several subsets of R,
These will be used to describe a number of events involving the simple random walk S whose
loop-erasure is L. Secondly, we provide some key estimates on the probabilities of these events
in Lemmas 5.9 and Lemma 5.12. Finally, applying these results, we prove Proposition 5.6 at
the end of this subsection.

We begin by defining “a tube connecting the origin and z”, which will consist of a number
of boxes of side-length M|z|. To this end, for M € (0,1), let

Ny = ’7]\14 + ;—‘ .
Moreover, for z = (z,...,2%) € Z%\ {0} and M € (0,1), define a sequence {b;} of vertices of
R? by setting
by — (z’Ma:l,...,ide> (5.12)

for i € {0,1,...,2Ny}. Let us consider a rotation around the origin that aligns the z!-axis
with the line through the origin and x. We denote by B and Q the images of [~ M |z|/2, M |x|/2]¢
and {0} x [-M|z|/2, M|x|/2]4"! under this rotation, respectively. For y = (y',...,y%) € R,
we let

B(y,r) = {(yl +Tzl,...,yd+rzd) NG = B}, (5.13)

be the tilted cube of side-length rM|z| centered at y, and we write B; for B(b;,1). For
1=0,1,...,2N and a,b € R with a < b, also let

Qy,r) = {(yl—}—rzl,...,yd—i—rzd) : (zl,...,zd) € Q},

Bila,b] = {(zl +8Mx1,...,zd+sde) i s € [a,b], (zl,...,zd) € Qi(O)},
where .
Qi(b) = Q <((z — 5+ OMlal, . (i % +b)M\x|> ,1) .
We also set

Gi(b) = Q <<(z’—;+b)M]x\,...,(i—;—i—b)M\xl) ;) ,

and note that, by definition, Q;(b) C Q;(b) for all i > 0 and b € R. Observe that every Q;(b)
is perpendicular to the line through the origin and z, and that @; := Q;(0) is the “left face”
of the cube B; = B;[0,1]. Finally, we write

Qi =Qi(0), i=1,2,...,2Ny +1, (5.14)
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Figure 20: Illustration of B;, ); and @i for a given x.

and set Qo = Qo = {0} for convenience. See Figure 20 for a graphical representation of the
situation.

In this subsection, it will be convenient to consider S (recall that L = LE(S[0,00))) as a
continuous curve in R by linear interpolating between discrete time points, and thus we may
assume that S(k) is defined for all non-negative real k. If \ is a continuous path in R? and
A C R% we write

™ (A) =inf{t >0 : A(t) € A},

and also, for z € R?, we set 7) = 7*({z}), analogous to the notation of first hitting times for
discrete paths (2.1).

In order to obtain the lower bound (5.11), we consider events under which the LERW L,
started at the origin, travels through the “tube” Ui\g‘g B; until it hits z. See Figure 21 for a
graphical representation.

Definition 5.7. We define the events F;, 1 = 0,1,...,2Ns, as follows. Firstly,

= { (@) < 20, S(r°(Qu)) € Q1, S[0,75(Qu)] < Bo, }
S (Q1(=€)), 75 (Q)] N Q1(—2¢) =0 '
Fori=1,2,..., Ny —1,
P { Qi) < 73(Qiy1) < 00, S(15(Qix1)) € Qiz1, S[T(Q:), 75(Qiv1)] C Bil—e.1], }
' SIT(Qit1(—€)), ™ (Qix1)] N Qig1(—2¢) =0 '

Moreover,

TS(QNNM) < Tf <75 (QNM-H (i)) < 00,
FNM - S (TS (QNMJrl (%))) € QNM+1 (%) ) S[TS(QNM)vTS(QNM+1)] C BNM [_%’ %] ) )
S [T;?’TS (Qny+1 (%))} NLE(S[T%(Qn,,), 75]) = 0

Faooy = { 5 (Quy+1 () < 75(Qnur2), 75 (Qnyr12) € Qo }
M S [TS (QNM+1 (i)) ’TS(QNM+2)] C Bny+1 [i -& 1] 7

and, fori = Ny +1,...,2Nyy,

F, = { 79(Qi) < 7°(Qi+1) < 00, S(r%(Qin1)) € Qir1, }
' S[TS(Qi)7TS(Qi+1)] - Bi[_€7 1] '
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Figure 21: Illustration of the events F;, i =0,1,..., Ny;.

The first three conditions of the definition of each F;, i = 0,1,...,2N)s, require that
S travels inside the “tube” and it exits each B; at a point which is not close to 0Q;11.
Furthermore, the last condition in the definition of Fy, the last two conditions in that of
each F;, 1 = 1,2,..., Ny — 1, and the third condition in that of Fj,, control the range
of backtracking of S. Finally, the last condition in the definition of Fl,, and events Fj,
i = Ny +1,...,2N)s guarantee that 2 remains in LE(S[0, 7%(Qany,+1)])-

Next, we define events that provide upper and lower bounds for the length of the loop-
erasure of S in each B;. For ¢ € {0,1,..., Ny; — 1}, let

& = LE (5[0, 7%(Qi11)]) , (5.15)
and also set £y,, = LE(S[0,72]). We further define

Ai = LE (S[TS(Qz‘),TS(QiH)]), 1<i< Nypy-—1,
)\NIM =LE (S[TS(QNM)vafD )
& = o,
g=oM®---®N, i>1 (5.16)

Since &; is not necessarily a simple curve, & and £ do not coincide in general. However, the
restriction on the backtracking of S on the events F; and a cut time argument (see Definition
5.10 and Definition 5.11 below) enable us to handle the difference between & and &. This
will be discussed later, in the proof of Proposition 5.6.

We now define events upon which the length of A; is bounded above.

Definition 5.8. For C > 0, the event Go(C) is given by
Go(C) = {len(&) < CM?|z|*},
and fori=1,2,..., Ny, the event G;(C) is given by
G;(C) = {len(\;) < OM?|z|*}.

In the following lemma, we demonstrate that G; occurs with high conditional probability.
Recall that @Q; was defined at (5.14).

Lemma 5.9. For any 0 > 0, there exists a constant Cy > 0 such that
P* (Gi(Cy) | F) =21 =6, (5.17)
uniformly in x € ZO\{0}, || P <M < 1,i€{0,1,..., Ny} and z € Q;.
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Proof. For i =0,1,...,Ny — 1,y € Bi[—¢,1] and z € Qi, we have that
P (y e\ | F) <P (1) <7%(Qit1) | ).
Moreover, by (2.10) and translation invariance, we have that there exists some constant ¢ > 0
such that
inf P*(F;) > ce, (5.18)
2€Q;
for all i = 1,2,..., Nyy — 1. For i = 0, the same argument yields that P(Fy) > ce. Thus, it
follows from (2.9) and (5.18) that
P*(r) < 75(Qit1))
P*(F;)
for some constant C' > 0. By taking the sum over y € B;[—¢, 1], we have that

Ef(len(\) | F) = Y Pyen|F)<C Y (|y LN 1) < OM?|z].
y€B;[—¢,1] yEB;[—¢,1]

P*(rf < 75(Qun1) | ) <

< CPZ(T?;9 <o0)<C (|y — 224 A 1) ,

The same argument also applies to the case ¢ = 0, and thus we have (19
E’(len(&) | Fo) < CM?|z)?. (5.20)
Similarly, for the case i = Ny, recalling that \y,, was defined at (5.16), we have that
P* (y € Any, | Fivyy) < P? (79 < 75| Fuy,,)
P* (7'{,9 < Tf < TS(BNM [—i, g]c))
- P*(Fn,,)
P* (T?f <TIA TS(BNM[

—1319) P (77 < 79(Bn,, [-1,3]9)
P> (FNM)

i

(5.21)

where we used the strong Markov inequality to obtain the last inequality. We will prove that
P?(Fy,,) > C'(M|x|)?>~9 later in this subsection, see (5.38).

Now we bound above the sum of the numerator of (5.21) over y € By,, [—i, %], separating
into three cases depending on the location of y.

(i) For y € B(z, :xM|zl), it follows from (2.9) that

s 1 5]° _ _ _
P (<% (B |1 3] ) A7) = Clly = = = (lal 224+ O(1y = 21,

1 Cc
pY <T;§ <r° <BNM {—4,2] )) < C(Mlz|)*.

Thus we have that

. 1 5]°¢ 1 5]°
S R A R D) EICR (MR

yEB (2,15 M|z])

< O(Mlz])*™ (k24 = (M]z] /2~ + O(k'™))



(ii) For y € B(x, % M|z|), a similar argument to case (i) yields that
; 1 5]° 1 5]°
I A CAE S DL GRS CAE T D)
yGB(x,EM|x|)
< C(M|z])*~4.

(ili) For y € By, [—1,2]\ (B(z, tsM|z|) U B(z, ;xM|z|)), we have that

1 5]°
P~ <7‘5 < 7‘5 <7 <BNM [—4, 4} >> < PZ(T; < o0) < C(M|z])>9,

1 c
(o ([ 4] ami csr <o

which gives

. 1 5]°¢ 1 5]°
S e [ L)) o [ 1)

15
yeBNy, [=77]
ly—=2l,ly—2|> 1 M|z|

<c Y (M)t o)t

1
yeBNA/[ [71721
ly—z|,|ly—=|> 1k M|z

Thus, by (5.21), it holds that

C(M]az|)*~?

Ez(len()‘NM> ’ FN]\/I) = Z Pz(y S /\NM ‘ FNM) < o . C,(M|$|)2_d < CM2’1"2.
yEBNM [7i7%]
(5.22)
Combining (5.19), (5.20) and (5.22) with Markov’s inequality, it holds that
P?(len(\;) > CL M2 |z | Fy) < C/C4,
for i = 0,1,..., Ny By taking C; = §~1C, we obtain (5.17). a

Now we will deal with events involving .S upon which the length of )A; is bounded below
and, at the same time, the gap between the lengths of ¢ and £ is bounded above. Firstly, we
define a special type of cut time of S in each B;.

Definition 5.10. A nice cut time in B; is a time k satisfying the following conditions:
o ke [79(Qi(e/3)), 7 (Qi(e))],
o S(k) € B(S(7%(Q:)),eM|z|/2),
o S[T9(@Q:), kIN S [k+1,75(Qi(e))] =0,
o S[k+1,79(Q:i(e)]NQ; = 0.
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E(Zl, 25)

Figure 22: Illustration of B; and BY.

Secondly, let B! (respectively BY) be the cube of side-length M|x|/3 (respectively M|z|/9)
centered at b; whose faces are parallel to those of B;, i.e.

~ 1 ~ 1
Bz, =B <bl)3> ) Bz// =B <bw9> )

where b; and B(y,r) are as defined in (5.12) and (5.13), respectively. We denote by QF
(respectively Q) the “left (respectively right) face” of B!. See Figure 22.

Let p; = inf{n > 75(BY) : S(k) € (B!)°} be the first time that S exits B! after it first
entered B!'. We define a set of local cut times of S by

K; ={r5(B}) <k < pi: S(k) € B, S7°(B]), k| N S[k+1,p;] = 0} .

Finally, we define events Hi(j ) (j =1,2,3,4) as follows.
Definition 5.11. For 1 <i< Ny;—1 andl >0,

HZ(1 = {S has a nice cut time in B;} N {0 <7 (Ql( ) —75(Qi) < Ce*M?|z 2},

H(z) _{ S( z) (Qi—i—l)v ( (QZ 1/3)) z" }

i S[TS(Qi(e)% m5(Qi(1/3))] N Qi(e/2) = ’

HO (1) = {#K, > IM?|22, S(pi) € QF, S[+5(B), k] € Q;[0,5/9) for all k € K;}
4 _

Hz‘( = {S[pi, ™ (Qi+1)] N Q;[0,11/18] = 0},
where #A denotes the cardinality of set A. Moreover, H;(l) = HZ-(l) N Hi(z) N Hi(S)(l) N Hi(4).
Note that, on the event H;(l), a local cut time k € K; satisfies
S[T(Q:), k] N Sk +1,75(Qiz1)] = 0
and thus len(\;) > #K; holds.

Lemma 5.12. Let H;(l) be as defined above. Then there exists constants ¢ >0, >0,1>0
and R’ > 0 such that
P~ (Hi(l) | Fi) > c, (5.23)

uniformly in x and M with M|x| > R', i € {1,2,...,Ny; — 1} and z € @Z
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Proof. By the strong Markov property, we have that
P* (H;(1) | F')

> it Pz H P (HY 0 {S[r%(2)), 75 (z141)] € Bil—2,11})
o pes (g o ] SI(s), ()] € Bil-e 11, S(r°(Qis)) eczm,
e (# “{ S5 (Qusr(—2)), 75(Qisn)] N Qi (- /)
C Bil-e (

> inf P2 (H()inf P2 (H | {75 (22), 7% (z3)] ]})1an23(H(3) )

5[75(23)7 TS(Z4)] - Bi[—E, 1] ( (QHI E Qz+1> ) 5 24
SIT3(Qit1(—2)), 79(Qix1)] N Qis1(—

where the infima are taken over z; € CNQi, z9 € 8§(z1,25), z3 € QZL and z4 € Qf (see (5.13)
for the definition of B(y,r)).
Firstly, we estimate the conditional probability of H fl). Recall that B(z,r) denotes the

Euclidean ball of radius r with center point . We consider the event of S up to the first exit
time of the small box B(z1,2¢). Let ki = 79(B(z, §M|z|)¢) and ko = 79(B(21,2¢)¢). Then

X inf P (H.(4)

z4 v

le(Hi(l)) > P* (S has a nice cut time k € [ki, ko], 0 < kg — (@) < C'e?M?|z|?)
- pa S has a nice cut time k € [k, ko],
- #S[15(Qi) k1] > O MP[af?, 0 < kp — 75(Qi) < C'e> M|
> P* (S has a nice cut time k € [C"" 2 M?|z|?, C'e*M?|z|*])

—P7 (#5[75(Qi) ki) = M)
—P* (0 < ke — 7°(Q;) < C'E*M?|z?). (5.25)
If we take C’ > 1 sufficiently large, then the second and third terms on the right-hand side

of (5.25) are bounded below by some small constant, while it follows from [26, equation (1)]
that the first term is bounded below by some universal constant. Thus, we have

P (HY) > ¢ (5.26)

for some constant ¢; > 0.
Secondly, we consider the conditional probability of Hi(Q). By (2.8), there exists some
universal constant C' > 0 such that

P (S [t9(B(z,eM||/2)), 7 (B})] N (B(z,e2M|z|/2)) # 0) < C=*2,

)

for M|xz| > ¢, Tt follows from (2.10) that
coe < P* (’TS(BZ{) < TS(QZ-H), S[TS(ZQ),’TS(Zg)] C Bj[—¢, 1])
< P> (S[’TS(ZQ),TS(Zg)] C Bj[—¢, 1])
< C3¢g,

uniformly in 29 € B(z1,eM|z|/2). Thus we have that

o d—2
P (B2 |Slr(22), 75(:)) € Bil -2, 1]) > s Cel . . (5.27)

Cc3&
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Figure 23: Illustration of the event I; N Io N Jy N Js.

for some constant ¢ > 0 and sufficiently small €.
Again by (2.10), it holds that

P <H§4)

5[75(24),75(621 1)] € Bi[—e,1], S(9(Qit1)) € QVZ L .
S[TS(Qi++1(—E)),TS(Qi+1)] ﬂQi+1zr—2€) - > > (5.28)

for some constant ¢ > 0.

We will next derive a lower bound for P*(H. Z-(3)) by applying the second moment method.
We consider the ball B := B (y, M|z|/18) and two independent simple random walks R' and
R? with starting point y. Let w; = RI (7% (B¢)) for j = 1,2. We define two events of R! and
R? as follows:

1= { R (B8] 0 R (8] = 0}
I = {dist({wr}, R[1, 7% (B)]) v dist({ws}, R'[1, 7' (B)]) = M]al /36 }
Let us denote by P the joint distribution of R' and R2. By [6, Lemma 3.2], we have
Pl | ) > ¢, (5.29)

while it follows from [28, equation (3.2)] that P(I;) > ¢4 for some constant ¢4 > 0. On Iy,
without loss of generality, we suppose that |w; — 23| < |wg — 23|. Let

Ji = {ng < 77 (B, dist(R'(k),1") < M|z|/200 for all k € [TRl(BC),Tgl]}
Jy = {RQ(TRQ (B;%)) € QF, dist(R%(k),1?) < M|z|/200 for all k € [rF° (BC),TRQ(B;C)}} ,
where I! (respectively [2) is the line segment between the points w; and z3 (or between ws

and R2(7R2(BZ{C)), respectively). (See Figure 23 for a depiction of I1 N I N J; N Jz.) Since
dist(we, BL) is comparable to M|z|, we have that

P(JQ) Z Cl,
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for some constant ¢’ > 0. Moreover, by the strong Markov property and (2.9),
P(J,) > P (dist(Rl(k), 1Y < M|z|/200 for all k € [+F (B°), 77" (B(z3, M]a:\/400))])
1
x PRI (B M) (7 2R (1)) P2 (R (77 (B(25, M]al /200)) ¢ BY)
> clwy — 2z3*79, (5.30)

for some constant ¢ > 0. By the strong Markov property, we bound from below the expectation
of #K; on the event A == {S(p;) € QF, S[t5(B!), k] € Q;[0,5/9] for all k € K;} by

E® (#K14) > Y P(LinLNJiN.J)
yEBY
= " P(L)P(Ly | )P(J1)P(Jy)
yeBY
> Z 2 ocly—z)- ¢
yeBY
> eM?|z|?. (5.31)

On the other hand, the first and second moment of K; is bounded above as follows. Since
ly — 23] > §M|z| for y € B! and z € QF,

E®(#K) <E? | ) 1(7) <o0) | < > P®({r) <oo}) < Y Cly— 2z < CM?Ja]?,
yeBY yEBY yeBY
(5.32)

2
E*((#K;)%) < E® Y 1(r) < )
yeBY
< CM*|z]* + Z Z (PZ3(TyS < T;; < 00) + PZS(TZ‘/S, < TyS < 00))
yEB,EI y/eBg/
< CM*z]* + Z Z (PZ?’(TZf < 00) + PZ3(T?§ < 00)) Py(Til < 00)
yeB! yeBY
15 M|z|

< OM2|z)? + Z Z Z <‘y_23‘27d+’y/_z3‘27d> p2—d

yeB! k=1 ye]l3;./
ly—y'|=k

£ > (sl - ) (Mlal/9)*

YEB k> M|z|+1 y@?i’
ly—y'|=k

< C'M* x|, (5.33)
where C' and C’ depend only on d. Now, for 0 < 6 < 1, we have that
E* (#K;14) < 0E® (#K;14) + E* (#K;141 (#K;14 > 0E= (#K,;14))) .
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From this, since #K; > 0, the Cauchy-Schwarz inequality yields

P#({#K; > 0E= (#K;14)} N A) > P?({#K;14 > 0E® (#K;14)} N A)
E*(#Ki14)°
>(1-0)=—1"12
=0 ()
By substituting (5.31), (5.32) and (5.33) into the above estimate, we obtain that

23 (3) 23 . i 23 . 7i 2EZ3(#K2'1A)2
P=(H;" (1)) > P <#Kzz E (#Kl)) > (1 c) B (4K > c. (5.34)
Finally, substituting (5.26), (5.27), (5.28) and (5.34) into (5.24) gives (5.23). O

We are now ready to prove Proposition 5.6. Recall that F;, G; and H; were defined in
Definitions 5.7, 5.8 and 5.11, respectively. Let

{S QQNM+1) ]QB(O,NM-M‘?L‘D:@},

2Nas N Ny —1
0=0(C1) = (ﬂ F) N (ﬂ Gi(0)> N ( N Hi(l)> NUp,,.
=0

=0 i=1

and

Proof of Proposition 5.6. We will first demonstrate that the bound 7, € [R™'M|z|?, RM|z|],
as appears in the probability on the left-hand side of (5.11), holds on ©(C,[). Suppose that
O(C,1) occurs. By the definition of F;, i =0,1,...,2Nyy,

LE(S[0, 7)) N S[r5 +1,00] = 0

holds. Thus = € L and 7, = len(S[0,75]). Let k; be a nice cut time of S in B; (see Definition
5.10), and recall that & and & are as defined in (5.15) and (5.16), respectively. Let

si=1inf {n>0:&_1(n) € S[¥(Q:), 7°(Qit1)]}

ti =sup {n € [7°(Q:), 7°(Qix1)] : S(n) = &1(si)} -
Then we have that

Ai = LE (S[r%(Qi), ki]) & LE (S[ks, 75(Qi11)]) (5.35)
and also
& = &i-1[0, 55 @ LE (S[ti, ki]) & LE (S[ki, 7°(Qix1)]) € &—1 U S[ti, ki] U N,
for i =1,2,..., Ny — 1, where we have applied (5.35) for the inclusion. Furthermore,
ENyr = ENpg 1[0, 5Ny, ® LE(S[tny,, 72]) € Enpy—1 U Ay,

Thus, by induction, it follows that

NM—I N]V[—l
U LE (S m%(Qis)]) Sény S |J (S(Q1), 7*(Qi(e)] U ) U Ay,
= =1
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Note that, on H;(l), ¥’ € K; is a cut time of the path S[k;, 7%(Q;41)], and thus S(k') €
LE(S [kZ,T (Qi+1)]). By the definition of G;(C) and H;(l) (see Definitions 5.8 and 5.11,
respectively), we have that

Na—1
len(éy,,) > Z #EK; > —lM\x!z

Ny—1
len(éy,,) <len(éo) + Y (#S[7°(Q), 7°(Qi(e))] + len(A)) + len(An,,)
=1
<3(C+ )Mz,

on O(C,1). Hence choosing R suitably large gives the desired bound on ©(C,1).
Consequently, to complete the proof, it will be enough to show that P(©) is bounded
below by the right-hand side of (5.11). By Lemma 5.12, there exist constants cs,e,l > 0 such

that inf__s5 P*(H;(l) | F;) > ¢5 for i = 1,2,..., Njyr. Moreover, by Lemma 5.9, there exists

a constant C' > 0 such that inf _5 PZ( i(C) ] F;)>1—¢5/2 fori=0,1,...,Np. Thus we
have c
inf P*(G;(C)N Hy(l) | F) > 55 ie{1,2,..., Ny —1}, (5.36)
2€Q;
inf P*(G,(C )|F)>1——, i=0,Ny. (5.37)
2€Q: 2
As already noted in the proof of Lemma 5.9, we also have that
inf P*(F;) > cge, (5.38)
2€Q;

for all i = 1,2,..., Ny — 1, and a similar bound holds for P(Fp). And, repeating a similar
argument to the lower bound for P (Hi(3)) from the proof of Lemma 5.12, from (5.29) to
(5.30) we have that
iyf PZ(FNM) > CGM2_d|l‘|2_d,
Z€QN ),
where ¢g > 0 is adjusted if necessary. By combining these estimates on P(F;) with (5.36) and
(5.37), we obtain that

inf P*(F; N Gi(C) N Hi(l) = 255, i e{L,2,.... Ny — 1},
2€Q;
cs
> _ 2
P(Fy N Go(C)) > (1 2>c6,
inf P*(Fy, NGy, (C)) > (1 - 55) ceM>4|z 2.
2€QNy, 2

Furthermore, similarly to the case with ¢ =1,2,..., Ny — 1, it holds that

inf P*(F;) > cge, i €{Ny+1,Ny+2,...,2Np},
2€Q;

and it follows from (2.8) that
inf PZ(UNM) >c

2E€EQaN 41

70



for some constant ¢ > 0. Finally, by the strong Markov property, we have that

P(O(C,1))
Ny—1
>P(FynGo(C) [] inf P*(FNGi(C)NH;1)
i—1 €Qs
2N
x inf P*(Fn, NGn,(C) x [] inf P*(F)x inf P*(Uy,)
ZEQN ), =Ny +17€Qi 2€Q2N )y +1
> CM27d|$’27defﬁ

> CMl—d/2|x|2—de—ﬁ ’
where the third inequality holds simply because M < 1. |

5.1.4 Lower bound for M >1

We now turn to the proof of the lower bound of Proposition 5.1 with M > 1. In particular,
we will establish the following.

Proposition 5.13. There exist constants c¢,c’, R € (0,00) such that for every x € Z4\{0}
and M > 1,

- — C
P (. € [R™ Mlaf?, RMaf2)) > ¢(Mlaf2)' 2 exp ().

As in the previous subsection, the basic strategy involves the construction of a set of
particular realizations of L that we can show occur with suitably high probability. To do this,
we will use a certain reversibility property of the simple random walk, as is set out in the
next lemma. In the statement of this, for a finite path A = [A(0),A(1),---, A(m)], we write
AR = [A(m),\(m — 1),---, A\(0)] for its time reversal.

Lemma 5.14. Let xz,z € Z%, x # z, and write S*, S* for independent simple random walks in
74 started at x, z, respectively. Moreover, write 77 := inf{j St =z}, 77 =inf{j: 57 =z},
op=sup{j <7y : Sf=x}, u=inf{j>77: S =x}, oy=sup{j<u:Sj=z}

It then holds that

{A:PaymmmR:A

¢<m)x@:uzpwmmm:M@<mpr(mm
and, denoting the set above A,

P (5710, 7)™ = A

Ty < oo) =P (S%01,02] = A7 < 00), VA € A. (5.40)

Proof. Since (5.39) is easy to see, we only check (5.40). Take A = [A(0), \(1),--- , A(m)] € A.
Note that P(77 < o0) = P(7¥ < 00) by symmetry. It follows that

3 ((SZ[O,T;])R =\ TP < oo> =P (S7[0,77] = A, 72 < o0) = P (S7[0,77] = A) = (2d) ™.
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On the other hand, we have
P (S%[o1,00] =\, 77 < o0) =P (5%[01,02] = )
—ZP 0'1,0'2 —)\ O‘1—/€)

k>0

=> P(z¢ S0k, Sf =, S"[k,k+m] =), o2 =k+m)
k>0

=> P(2¢ S570,k], S ==, S¥[k,k+m] =X Sf,, =z F),
k>0

where F':= {z ¢ S%[k +m + 1,u)} with v’ = inf{j > k+m : S} = x}. Therefore, the
Markov property ensures that

P (z ¢ S°[0,k], Sf =z, S"lk,k+m]=X, Si ., =2 F)
=P (2 ¢ 57[0,k], Sf = z)P(57[0,m] = \) P(F")
= (2d)""P (2 ¢ S"[0,k], Sy = x)P(F),

where F' := {z ¢ S*[1,77]}. Writing
§e =inf{j >1: 57 =ux} and p=P (& < oo, z¢ S5Y00,&]),
we note that
k>0
Moreover, by symmetry again, it holds that P(F’) =1 — p. Hence we conclude that
P (S%[o1,00) = A, 77 < o0) = (2d)™™
which gives (5.40). O

In order to explain our application of the previous result, we need to introduce some
notation. Let € Z4\{0} and M > 1. Moreover, set J = C'/M|xz|? for some C > 1 that will
be determined later, and, for i € Z, write b; = (2iJ,0,...,0) € R? and

B\i :Boo (/EMJ>>

which represent adjacent cubes of side length 2J. We also introduce the following smaller
cubes centred at V' = (J,%,0,...,0) € R?,
B' = By (V,J/6), B’ =By(l,J/18)

Note that B” ¢ B’ C B;. See Figure 24 for a sketch showing the cubes E_l, By, By and
B’, as well as some of the other objects that we now define. In particular, we introduce a

collection of surfaces: .
Q* = {2,]} x [—J, J]41
Q. = {3J} x [=J,J]% 1,
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Q-1 []

B By By D+
2J

Figure 24: Cubes and other regions appearing in the proof of Proposition 5.13.

Q= {3J} x [—‘i, ‘ﬂ x [=J,J]972 C Q.,
@ = {J} X [_J7 J]dila QI = {(yl - J/167y27 T 7yd) : (ylay2a e 7yd) € @}7
Ge= ) x |23 - L2+ 3] <[22 G,

Q_1=B_1N{-3J} x R¥";

1

the hyperplane Y

85.1/36° where for a € R and i € {1,...,d}, we denote

H) = {(a:l,"- ,xq) € RY: 1y :a}

1

(see Figure 26 below for the location of HY

85./36 in particular); and also the following regions:

g ® a1\ |15,5 J S I _J d-2
Di= =050 x ani [2030] [ 5 5.5 = 5 x

~ 15
Dy =DinN [16J, oo> x RI-1.

We highlight that D is shown as the shaded region in Figure 24.

Roughly speaking, to establish the main result of this subsection, we will show that, with
high enough probability, the loop-erased random walk L passes from 0 to (somewhere close
to) @ through D, spending a suitable time in B” on the way, before returning to x through
D_, and then escapes to oo via Q_1. To make this precise, we will consider an event based
on the simple random walk started from 0; see Figure 25. Controlling the probability of this
will involve an appeal to Lemma 5.14, through which we obtain a bound that depends on
three independent random walks, one started from 0 and two started from z (see Lemma 5.15
below).

Concerning notation, as in the statement of Lemma 5.14, for each z € Z%, we will write
S% for a simple random walk started from z. We assume that the elements of the collection
(5%),cza are independent. We moreover write (57) eza for an independent copy of (5%),cpa.
We also set

74 = inf{k > 0: Sf € A}, 0% =sup{k>0:5; € A},
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é//

LG LN R

B, By By D+
2J

Figure 25: A sketch of a realisation of S° yielding 7, > M|z|?.

T = T{Zx} and 0% = wa}. A particularly important point in the argument that follows is given
by
p= 870—6%,

i.e. the location where S° hits @), which is defined when 7'82 < 0o. Additionally, we introduce
?:inf{k >0:5° eRd\(EOUE_l)},
and, to describe a collection of local cut points for a path A,
L(A[i, 1) = {A(R) = Ali KIN Ak +1,5] = 0}

The following result gives the key decomposition of the simple random walk underlying L
that we will consider later in the subsection. It already takes into account the time-reversal
property of Lemma 5.14. We will break the complicated event that appears in the statement
into several more convenient pieces below.

Lemma 5.15. In the setting described above, P(1, > M|x|?) is bounded below by the proba-
bility of the following event:

7§ < 00, 8°(0,78] C Dy, S0, 0%, ] NHG), 06 = 0, S°lrd, 78] NHL) 05 = 0,
#(D(S00,7]) N BY) > Mlef?, 72 < oo, 5°[0,0%] C D_,

(S°0, TQ]HS’”[ ])OBO—@ 57N (S°0, TQ]USz[O op]) =0
Proof. Clearly,

78 <70 < 00, §°[0,73] C Dy, 8°00,0%, ] NHE), o =0, S8, 78] N HL), oo =0,
#( (50[0 TQ]) nB") > Mlz|?, S0lrg, ) € D,
5910, 73] N SO[79, N By =0, SO0, 00) N (8910, 73] U SO[72, T =0
Q 0% g Q Q

is a subset of the event {7, > M|z|?}. Now, conditioning on the value of p and applying the
strong Markov property at times Tg and 70, we have that the probability of the above event

is equal to
79 < 00, p =z, T; < 00,
Sp S°00,73] ¢ D, 8°[0, ag,,]mHés)J/% 0, SO[TQ*,TQ}ﬁHé5)J/36 0,
0 #(T(S°[0, 7)) N B”)>M\~’L‘!2 S#[0,77] € D,
(8°[0, 73] N $7[0,7]) N By = B, 5% N (5°[0, 78] U [0, 7Z]) = 0
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Applying Lemma 5.14, we can replace 77 and S?[0,77] in the above expression by 77 and
S*[o1,09), respectively, where o1, o9 are defined as in the statement of that result. Since
0 < o1 <oy < o?, it holds that S*[o1,02] C S%[0,07]. Consequently, we obtain that the
above sum is bounded below by

Tg<oo,p:z,7'§<oo,

1 1
Tp $°0,78] € Dy, 8°0,0%,] mAH;;, 136 =0, S°[73., 73] N HggJ/% =0,
o #(F(SO[O,Tg]) N B") > M|x|?, S*[0,0%] C D_, ’
(8°[0, 73] N S*[0,02]) N By = 0, S* N (S°[0,79] U §*[0,0%]) = 0
and replacing the sum with a union inside the probability completes the proof. ]

Now, we will rewrite the event we defined in the statement of Lemma 5.15 as the inter-
section of various smaller events concerning S°, S and S*. For convenience, we will write

no == S?—Q? Ne = S—;J-E‘Ev "7 = S%
Q Q
in the remainder of this subsection. We moreover define the event E; by setting

’7'%<OO, 770€@+7 Tg<OO, 77:136@77 ?<OO, ﬁEQflv
B = (5°0, 78] N 5°(0,72]) N Bo = 0,

0 0 T T Qr 0 0 T T\ —
S [O,Té} cDy, S [O,T@] C D_, S*[0, 7] N (S [O,Té] us [O,Té]) =0
On FEi, the paths SV, S* and 5% do not have an intersection and move along the different

courses until they first exit the union of B\,l and EO.
Next, we will define some events that restrict the behavior of S after T%. Recall that

V= (3, %,0, ---,0) € R* and B = B (V, %) We define the “left” and “right” faces of B’
by

25 J 2 J J1%? 29 J 2 J J142
12 227 2z {2 22T 22
R U R S R E R R

Moreover, we define a subset of l~)+ by setting

~ 17 79 J 2 J J|?

By = | =72 x| 2,20« |-2,2] .

L [18 ' 36 }X[3’3 ]X[ 2’2]
See Figure 26. Then, writing v¥ = inf{n > TC% . 5% € Q') and o/ = inf{n > 1Y% :SY e (B)},
let

Fily) = {TgL <, $V[r%,78,] E'L} , (5.41)
74 <inf{n > 7} . SY e (B))°} < o0, 0 € Qr,
Fy(y) = i {y , ,} Voo Lt (5.42)
#k€lrg,, 0] 8y, kI NSY[k+1,0] =0,5/ B } > M|z|
85
Fi(y) = {T%* <71 < 00, Sy[U’,T(%} cDyin [BGJ’ oo) X Rdl} , (5.43)

75



~ 1
B Hgy, 36}
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QL QR

oY)
BL

Figure 26: Illustration of the sets used in controlling the number of cut points of S° in B".

and set Ep = Fi(0) N F2(0) N F3(0). In particular, on the event E», we have the existence of
cut points of S [T%L, o'] contained in B”. Finally, let

Es :{T < 00, Sx[TQ,O'p] C 15_},

By = {517, 00] N (5°[0, 78] U 5°[0,05]) = 0},

be events that restrict the regions where S* and S can explore, respectively.

We continue by checking the local cut points that we construct on the event F5(0) are
cut points of the loop-erasure of S° [O,Tg]. Note that on the event FE», it follows from the
definition of F»(0) and F3(0) that

S[TQ* TQ] N Héf))‘]/% =0, S[O'/,T%*] NnB" =.

Moreover, on the event Ey N Ey, we have that

. SO[O,TC%] nNR* =10,
. SO[T%,TgL] nNR*=10

o SUrQ ,0'1INQ* =1.

The first and second statements follow from the definitions of F; and Fj(0), respectively,
while the third statement is derived from the definitions of F5(0) and ¢’ (recall the definitions
of the sets defined above, which are also shown in Figure 26). From these statements, we
immediately conclude that

50,01 N Q* = 0.
For the rest of the path S°[0, 7'82], the definition of F5(0) implies that
0 D _ (1)
S0’ 791 N B" =0, SOIrQe, 7ol N Hgs /267 = 0.

Combining the preceding three statements, we see that, on £ N Es,
(1) 0 (1)
s°[o, UB”] Hys /367 = 0, S [TQ*vTQ] Hgs y/36 = 0,

where we recall that is U%N be the last exit time of B” by 9 (we assume here that SO is
stopped at TC%). Thus, the local cut points of the event F5(0) are indeed cut points of the
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loop-erasure of S°[0, Tg] and the probability of the event we defined in the statement of Lemma,
5.15 is bounded below by
P(El NEyNE3N E4)

In what follows, we will bound below this probability below. To start with, we will prove
that SY, S* and S® do not have an intersection and are separated in a cube with positive
probability. Let T7? = =Th 0.)" We define the event G, by setting

G = {SO[O,TQ] A S0, 7] = S°[0, T N 5[0, T2] = §°[0, T%] N §%[1,T2] = @} ,
and let Z, be given by
min {d(Shy, $7[0, T3] U §°[0, 7)), d(SF,., $°10, T9] U 510, 7)), d(SE,, S0, T U 5710, T7)) },

where d here is the Euclidean distance, i.e. Z,, is the minimum of the distance between the
point from which either S°, S% or S% exits B, (0,n) and the union of the other two paths up
to their exit times.

Lemma 5.16. There exists ¢ > 0 and ng > 1 such that: for all n > ng,

P(Gnm{an g}) > c.

Proof. For readability, we assume that = = (0, |z|,0,---,0). (Other cases will follow by
a small modification of the argument.) We follow the idea of [6, Lemma 3.2]. Let e; =
(1,0,0,---,0) € Z¢ and e3 = (0,1,0,---,0) € Z%. We define the event I; by setting

= {Szo:iez, Sy =iey, gf = —je; for 1 <3< k:},

where k > 1 will be fixed later. Then we have P(I;) = (2d)

We will show that the probability that S, S* and S* do not intersect before they first
exit from By, (0,n) conditioned on I; is bounded above by arbitrarily small ¢ by ‘taking k
sufficiently large. Let K (j) be the number of intersections of S°[j, 7], S*[j, T%] and S®[j, T%],
ie.

K (j) = # ((S°0, T8 1 S0, T)) U (8°1, T8 0 571, Tal) U (871, T) 0 5 max{1, 1, T2)))
Then by the Markov inequality,

P(K(0)>0| L) <P(K(k)>1]|I)
< E(K(F) [ 1)
<3

z,y: g%ax) >k E (#(8%[0, ;] N S¥[0,TY)))

< max Z Z ZP“c Sy, =2)PY(SY, = z)

d(z,y)>k
xy =92k 220 m =0 zezd
< max g E P (S 0 =)

xy d(z,y)>k =0 1/ =0
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By substituting the Gaussian estimate of the transition probability of the simple random
walk, the right-hand side is bounded above as follows:

3 max Z Z Pm ﬁz—f—m’ — y) < 3il . led/2efck2/l

d(wy)>k £
@.y: d(@,y) =0 m/=0 =1

<Oy e (5.44)
=1

for some C, ¢ > 0, where we applied the Gaussian estimate for the off-diagonal heat kernel of
the simple random walk on Z¢ for the last inequality (see (1.10)). Since d > 5, the right-hand
side of (5.44) converges to 0 as k — oo.

Our next step is to construct subsets where each simple random walk path is constrained
to move until it first exits from Bo.(0,n). We define by

d—1 d—1
m= bl e {5
2 44 2 4° 4

the subsets of the left and right face of B(0, 5) in the direction of x;-axis, respectively, and

by nn n n nd-2
me= -3l Agh < Faal

Z) in the direction of xs-axis. Let

the subset of the upper face of By (0, 5

1
{SOO/ € Hy, Sy € HY, (10, T9) 0 (W), UHT) JUHP),) = @},
T X xX X X 1
- {S:’lf/z € Hp, Sy € ), S7[T75, T3] N (ng/)s UHn/3) B (Z)}

U H(2)

nj3) = @}

and Ir = I§NIEN fg . It is an elementary exercise to check that there exists some € > 0 such
that P(I5 | I;) > ¢ holds uniformly in n > 1 and 2 € Z?. Note that on the event I; N I, it
holds that

Iy {5 e Hy, 52, e '), §(fz,, T n (@),
/

2 xR,
2

so that d(S7s, $970, TO)US*[0, T7]) > 5. Similarly, the same bound holds for d(S%O, S*0, TFU
57[0,7%]) and d(Sm , 5010, 79 U 5[0, T%]). Thus we have Z, > 2 on the event in question.

Finally, by taking ko large so that P(K(0) > 0| I1) < 5, we obtaln that

Sk cHY,  °0,79 US5[0, € (oo,

P( { g}) P(I; NI N {K(0) = 0})
=P(L)(P(I2 | 1) —P(K(0)>0] 1))
(2d) %< /2,

Y

which completes the proof. |

We are now ready to complete the proof of the main result of this subsection.
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Proof of Proposition 5.13. For any R > 1, we have that
P (7, € [R"'M|z|*, RM|z|?]) > P (7, > M|z|*) — P (7, > RM|z|?)

Now, by the argument used to prove Proposition 5.2, we have that

P (. > RMz[?) < C (RM|z|?)" ™.

Thus, by taking R suitably large, and applying Lemma 5.15 and the argument above Lemma
5.16, to complete the proof it suffices to prove that

P(E\NE;yNEsNEy) > cJ*

for some constant c.
Firstly, we derive an estimate for P(E;) from the result of Lemma 5.16. We take C' > 1
large so that J = Cy/M|z|? > 3ng. We then define the event F’ by setting

7'%<OO, UOGQ—s—, T§<OO7 UwGQ—,?'<OOa77€Q—1a

_ O m® g ceipe o O m® )
F= S, A (HJ/Q UH5J/36) =0, 5°[T34,72] 1 (HJ/Q UH5J/36> =0,

ST, 7 NHY) g =0

Recall the definition of the events I; and Iy and the random variable K (j) from the proof of
Lemma 5.16. It is straightforward to check that if we take n = J/3, then

LNLN{K(0)=0}NF' CE;.

Moreover, by the strong Markov property and the approximation to Brownian motion, there
exists some constant ¢ > 0 such that P(F' | 1 N IoN{K(0) = 0}) > ¢, uniformly in 2 and M.
By Lemma 5.16, we thus obtain that

P(E) >P (F' | L NnLN{K(0)=0})P(HNnI,N{K(0)=0}) > A2 (5.45)
Secondly, we estimate P(FEs | Ey). It follows from the strong Markov property that

P (EQ ‘ El) > in@ﬁ P (Fl(al) N Fg(ag) N F3(CL3)) ,
a1€Q+

where Fi(y), Fa(y) and F3(y) are as defined in (5.41), (5.42) and (5.43), respectively. Thus
it suffices to bound from below the right-hand side of the above inequality. We begin with a
lower bound for P% (F}). By the gambler’s ruin estimate (2.10), we have that P% (F;) > ¢ for
some universal constant ¢ > 0. Next, applying a similar argument to that used to obtain (5.34)
in the proof of Lemma 5.12 and the strong Markov property, we obtain that P* (Fy | Fy) > c.
Finally, again by (2.10) and the strong Markov property, we have that P (F3 | F1 N Fy) > c.
Since ¢ > 0 does not depend on a1 € @+, we can conclude that

PY(Ey | By) > 3. (5.46)
By the independence of SY and S* and the strong Markov property, we also have that

P(E; | EyNEy) > inf P9 (rg2 < 00, §2[0,0%2] C f),) .
a2€Q —, z€Q
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Let ag € @, and z € Q. Again by the strong Markov property,

paz (ng < 00, §2[0,0%] C 5_) — pa (ng < 00, §2[0,7%2] C f)_) p* (SZ[O,Uj] c f)_) .

(5.47)
We will give lower bounds for the two probabilities on the right-hand side. Let [, . be the
piecewise linear curve that runs from as in the direction of es until its second coordinate
reaches 5J/2, and then runs along the line from that point to z. Similarly to (5.30) in Lemma
5.12, we obtain that

P2 (722 < 00,5%[0, 722 € D) = P (122 < 00,dist (5% (k), lop.-) < J/16 for all k € [0, 7£2])
> cJ? 74, (5.48)

uniformly in a2 and z for some ¢ > 0. Furthermore, we have that

p: (sz[o, o%] C f)f) >1 - P*(8%[0,07] N B(z, J/16)° # 0)

>1- sup  PY(7Y < o0)
w€eHB(z,J/16)
a
>1-— J2d

where we applied (2.9) with n — oo to the last inequality. Thus, by increasing the value of
the constant C' > 0 in J = C'\/M]|z|? if necessary, we have that

p* <SZ[O, o7 C f)_> > ¢, (5.49)
for some uniform constant ¢ > 0. Plugging (5.48) and (5.49) into (5.47) yields that
P(FE3 | By N Ey) > cJ* 4, (5.50)

Now we will give a lower bound for P(Ey | E1 N Ey N E3). Recall that Q1 = B\,l N
{-3J} x R, By the strong Markov property and the definition of the events Ey, F and
FE3, we have that

P(Es | By NEyN E3) > ierégf P (S%[0,00] N (Dy UD_) = ).
a3 —1

From this, it is an easy application of (2.8) to deduce that
P (E4 ‘ EiNEyN Eg) >, (551)

for some universal constant ¢ > 0.
Finally, by multiplying each side of (5.45), (5.46), (5.50) and (5.51), we obtain the desired
lower bound. a
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5.2 Heat kernel estimates for the associated random walk

The aim of this section is to prove Theorem 1.10. As explained in the introduction, the main
input concerning the loop-erased random walk will be Theorem 1.11. To estimate IP(th =)
using the decomposition at (5.1), we also require control over PY(XY = L,,), where in this
section (L, )m>0 is always the infinite LERW started from 0. Since the structure of the graph
G is simply that of Z, equipped with nearest-neighbour bonds, we have the obvious identity

PY(XY = L) = q:(0,m),

where (q;(2,9))zyez,, +>0 gives the transition probabilities of the continuous-time simple ran-
dom walk on Z, with unit mean holding times. For this, we have the following estimates
from [2]. (We note that although the result we will cite in [2] is stated for the simple random
walk on Z, it is easy to adapt to apply to the half-space Z .)

Lemma 5.17. For any € > 0, there exist constants ¢y, ca,c3, ¢4, cs5,c6 € (0,00) such that for
every m € Zy andt > em,

2
q:(0,m) <1 (1 A t_l/Q) exp <_02m >

1Vt

and also

_ cam?
qt(0,m) > c3 (1 At 1/2) exp <— 14\/15) )

Moreover, for m > 1 and t < em, we have that
q:(0,m) < csexp (—cgm (1 4 log(m/t))) .

Proof. From [2, Theorem 6.28(b)]|, we obtain the relevant bounds for ¢ > 1V m. Moreover,
the bounds for m = 0, ¢t € (0,1), follow from [2, Theorem 6.28(d)]. As for m > 1, ¢t € (em,m),
we can apply [2, Theorem 6.28(c)] to deduce that ¢:(0,m) is bounded above and below by an
expression of the form:

cexp (—c¢ 'm (1 +log(m/t))) .
This can be bounded above and below by an expression of the form cexp(—c~'m), and that

1

in turn by (1 A t1/2) exp(—CEVTQ), uniformly over the range of m and ¢ considered. This

completes the proof of the first two inequalities in the statement of the lemma. The third
inequality is given by again applying [2, Theorem 6.28(c)]. O

We are now ready to proceed with the proof of Theorem 1.10.

Proof of Theorem 1.10. Clearly, if x = 0, then Lemma 5.17 immediately yields
P (Xf =1z) = ¢(0,0) < 1A =12,

which gives the result in this case.
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We next suppose x # 0. In this case, applying Lemma 5.17 with € = 1, we find that

P(Xf=2) = > P(Xf=Ln)P[Ln=2)
m=1
= Z q:(0,m )
m=1

IN

! C m2
c1 (1 A t_1/2) mzzjlexp (— 12\/ t) P (L, =x)
+c3 Z exp (—eam (14 log(m/)) P (L, = ). (5.52)

Now, the second sum here is readily bounded as follows:

o oo
3 Z exp (—eam (1 4 log(m/t))) P (L, = z) < c3 Z exp (—eam) < czexp (—cst) .
m=t+1 m=t+1

Moreover, since we are assuming ¢ > ¢|z| > ¢, the final expression is readily bounded above

by one of the form
B T 4\ 1/3
C6 (1/\|:c\2 d) (1/\75 1/2> exp <_c7<1|\/|t> .

Thus, to complete the proof of the upper bound in the statement of Theorem 1.10, it remains
to derive a similar bound for the first sum on the right-hand side at (5.52). For this, we have
that

oo CQ(Qk)Q 2k+1_1
S (&1 (1 AN t71/2) Zexp <_]_\/t> Z P (Lm = QL')
k=0 m=2k
o k\2 2
-1/2 702(2 ) ky1—d/2 7C3|33|
< a <1/\t )kz_;)exp< Vi (2%) exp o
-1/2 - —d/2 cam?  csla]?
< cl<1/\t )Zm eXp(_l\/t_ = )
m=1
[ee] 2 2
< (1 A t_1/2> / u=? exp (—?\th _ clel > du, (5.53)
1 u

where we have applied Theorem 1.11 for the second inequality. To bound the integral, we
first note that, for any & > 0, it is possible to find a constant C' < oo such that a%/2 < Ced®
for all a > 0. In particular, choosing § = ¢3/2, this implies that

—d)2 af w7 —d ca|z]?
u = |z| e < Clz| % exp o )
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1/3

Hence, applying this estimate and the change of variable v = u/((1V t)|z|?)!/3, we obtain

00 2 2
/ w92 exp <C2U sl >du
1 1vt u
00 2 2
- _cu® csl]
C|z| /1 exp( T 0 )du
-1/3 oo 4\ 1/3
2-a (|2 (cx? + 22) 2]
— — — — dv. .54
Clz| <1\/t> /0 exp( coU +21} “\1v3 v (5.54)

Now, let f(v) := cov® + 52, and note that this is a function that has a unique minimum vy on
(0,00) such that f(vg) > 0. Thus, for |x|* > 1V ¢, the remaining integral above is estimated

as follows:
/OOO exp (— <C2U2 + ;%) X <1‘:C\/|1>1/3> o
< /OOO exp (= (f(v) = f(vo))) dvexp <_f(UO) < o >1/3>

1vt
4\ 1/3
= (Cexp (c (F\lt) ) .

Putting this together with (5.53) and (5.54), we deduce the desired result in the range |z|* >
1Vt If |z|* < 1Vt then we follow a simpler argument to deduce:

IN

IN

P(Xf=2) = > q0,mP (Ly=uz)
m=1
< e (1AtTY2 ZP(Lm:a:)

IA
)
—
—_
>
7
—_
~
no

I
)
—
/N 7 N N
—_
>
B
—
Iy
N— ——— N—

< (1 /\t_l/z) |24,

where we have applied Lemma 5.17 for the first inequality, and (2.9) for the third. This is
enough to establish that the upper bound of Theorem 1.10 holds in this case as well.

For the lower bound when =z # 0, we follow a similar argument to the upper bound,
but with additional care about the range of summation/integration. In what follows, we set
a = c4/c3, where, here and for the rest of the proof, c3, ¢4 are the constants of Theorem 1.11.
Clearly, we can assume that c3 < 1 < ¢4, so that a > 1. Recall that we are also assuming
t > e|x|, and without loss of generality, we may suppose € € (0,1). Applying the bounds of
Lemma 5.17 with € given by

¢ := min c act/?
= mi
14+ a2 deg(1+a?) [
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we deduce that

P(Xf=2) = > q0,m)P (Ly=nx)

Lt/€’]
c (1 A t_1/2) Z exp <—f1\7j> P (L, =x)

>
m=1
[log, ([t/'])]—1 k la" 1]
_ C(a
> 1/2 E — E —
> c(l/\t ) 2 exp< 1Vt 2 HP(Lm x),

where for the second inequality, we have applied that

[log, ([t/e'])] -1
[17 Lt/é_lJ] ») U |:Oék,06k+1:|

k=0

and the observation that each m can appear in at most two of the intervals [[a*], |aF*1]].
(We also note that our choice of ¢ ensures |log, (|t/¢'])]—1 > 1, and so the sum is non-empty.)
Consequently, applying Theorem 1.11 with n = af /c3, we find that

[log,, ([t/" )] -1 kN2 2
P (th =z) > ¢ (1 A t_l/z) Z exp <_Cl((3/t) ) (aF)1=4/2 exp <— C(Li’ )
k=0V[log,, (c3|x])]

Y

et t/e']] 2 2
_ _ Cm Clz
c(rae?) 32 md/2exp<‘m‘ ln|>

m=1V[acs|z|]

at/(1+a?)e’ 2 2
> c <1 A t_l/z) / u~? exp —C—u — Clal du,
24|z 1vt u

where we have used that 1V [acs|z|] = 1V [ea|z|]] = [ca]z|] to obtain the bottom limit
of the integral, and the choice of ¢’ to obtain the top one. Making the change of variable
v =ue?3/((1 Vv t)|z[*)"/? yields a lower bound for the integral of

ae?/3 2/3 1/3
1-d/2 [ Trazye X t/elzl) 1 4N\
e ((@vplaye) T [T o2 e~ ( i ) y <H> W

2cqex (e|z| /)3 v 1vt
and, since ¢ > ¢|z|, our choice of ¢’ implies that this is bounded below by

1—dj2 [4cae 1 a4\ 1/3
c (((1 Vt)]x\2)1/3> /2 v % exp <—C <112 + v) X <1|x\lt> dv

Cq4€

/
> e((1V)[af2) /3 exp <—o (’) ) |

1Vvt
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Hence, if |z|* > 1V t, we can put the pieces together to find that

P(X{ =x)

\Y]

1/2 2\1/3—d/6 |55‘4 M6 ‘$|4 /2
c(1/\f / ) (1 V B)|]?) /3~ (m) exp | —C (m)

1/2 2—d |5U‘4 V8
= c <1 At ) |z|*"“exp | —C (1\/15) ,

as required. Finally, for |z|* < 1V, continuing to suppose that ¢, is the constant of Theorem
1.11, we have that

/i)

P (th =z) > Z q:(0,m)P (L, = )
m=1
[V/4cit]
> ¢ (1 At—1/2> S P(Ln=u2)
m=1
Leall=[1]
> ¢ (1 /\t_1/2) > PLn=2
m=[cz[|z|]]
> ¢ (1 A t_1/2> |z|>~4,

where we have applied Lemma 5.17 with ¢ = 1/4c2 for the second inequality, that c4[|z|] <
2c4|z| < \/4citt for the third, and Theorem 1.11 for the final one. O
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