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Chapter 1

Introduction

Some parts of this chapter are based on the introductory parts of Refs. [1, 2, 3, 4], each corresponds to
papers 1, 2, 3, and 4 in the list of author’s papers, respectively.

1.1 Seismic Activity, Laws, and Modelling

An earthquake is an instantaneous fracture process on a fault plane to release the strain energy slowly
accumulated originating from plate tectonics [Section 1.8 in Ref. [5]]. The basic understanding of earth-
quake occurrence can be simplified in this way. However, the interactions between earthquakes, i.e., the
effect of an earthquake on other earthquakes’ occurrence at other faults, typically due to the Coulomb
stress change by an earthquake that causes the generation or suppression of subsequent earthquakes,
make the occurrence of earthquakes complicated [Section 4.5 in Ref. [6], Section 5 in Ref. [7]]. As a
result of such interactions, the collective occurrence pattern of earthquakes, referred to as seismicity or
seismic activity, shows complexity; some studies have indicated that the networks generated from seismic
activity manifest complexity, such as scale-free and small-world natures [8, 9, 10, 11].

In analyzing seismic activity, each earthquake is characterized by a few representative quantities; in
most cases, it is a combination of an earthquake’s time of occurrence, spatial location such as hypocenters
or epicenters1, and the magnitude to quantify the size of an earthquake [12, 13] 2. Information on such
representatives is summarized and published in seismic catalogs [7, 12, 13]. Seismic catalogs include local
catalogs for earthquakes in a local area, such as the JMA catalog of earthquakes around Japan [16, 17]
and the Southern California catalog [18, 19], and global catalogs that include earthquakes on a global
scale, such as the Preliminary Determination of Earthquakes (PDE) catalog [20] and the global Centroid
Moment Tensor (CMT) catalog [21, 22, 23].

Figure 1.1 shows an example of the space-time-magnitude information using the local JMA catalog in
the area around the mainshock of the Tohoku earthquake in March 2011 (140◦ ‒ 146◦E and 35◦ ‒ 42◦N),
from 01/01/2000 ‒ 03/31/2022 [16, 17]. As this figure shows, seismic activity can be expressed as a point
process with marks representing magnitude values in space-time [Section 4 in Ref. [7]] as conceptually
drawn in Fig. 1.2. Figure 1.1(a) shows the earthquakes’ (≥M3) epicenters in this space-time domain by
colored circles; the color and the size of circles reflect the value of each earthquake’s magnitude. Also,
Figure 1.1(b) is the projection of hypocenters onto a cross-section of longitude × depth. The magnitude
of each earthquake is indicated by color and symbol size as in Fig. 1.1(a). Hypocenters whose depth
increases as the longitude decreases and approaches the Japanese island indicate the subduction of the
Pacific plate under the Okhotsk plate [pp. 65-70 in Ref. [24]]. Figures 1.1(c) ‒ (e) show the time series
of magnitude; each earthquake is represented as a bar at the occurrence time with magnitude value as
the height. In Figs. 1.1(c) ‒ (e), also the cumulative number of earthquakes (N(t) against time since
the origin time t) with magnitude ≥ M3 are shown. As shown in Figs. 1.1(c) and (e), after the large
earthquake (M9 Tohoku mainshock), seismicity is activated, and many earthquakes follow around the

1The epicenter is the latitude and longitude of the starting location of a rupture. The hypocenter further includes depth
information [p.2 in Ref. [5]] [12].

2Magnitude has several definitions, including based on the body or surface wave in seismic waves [Section 5.2 in Ref.
[5]] [12, 13]. Such magnitudes become inaccurate by saturation at a large value, though the moment magnitude can avoid
such saturation [Section 5.2 in Ref. [5]][13, 14, 15].
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Figure 1.1: Seismic activity in the area 140◦ ‒ 146◦E and 35◦ ‒ 42◦N, from 01/01/2000 ‒ 03/31/2022,
drawn using the JMA catalog [16, 17]. (a) Distribution of epicenters of earthquakes in the above
space-time domain. Only the earthquakes with magnitude ≥ M3 are shown. The size of the cir-
cle and color reflect the magnitude of each earthquake. The map was drawn using the file in
[http://www.gnuplotting.org/plotting-the-world-revisited/]. (b) Distribution of hypocenters with magni-
tude ≥M3. (c) Time series of magnitude of earthquakes in the spatial domain. The cumulative number
of earthquakes ≥M3 from 01/01/2000 is also shown by the red curve. (d) and (e) show the enlarged ver-
sions of (c) for the period 01/01/2000 ‒ 12/31/2010 and 03/01/2011 ‒ 03/20/2011, respectively. In (d),
the cumulative number of earthquakes in the time domains (01/01/2000 ‒ 05/26/2003 and 08/01/2006
‒ 04/30/2008) in which seismic activity can be regarded as stationary is shown by thick blue lines (the
same as JS in Chapter 5). In (e), the time domain of aftershock activity of the M9 mainshock is shown by
magenta, the foreshock activity following the M7.3 earthquake by cyan, and before the foreshock domain
by yellow (After Refs. [1, 25, 26]).

mainshock rupture zone; such subsequent earthquakes are called aftershocks [pp. 3-4, p.189 in Ref. [5]].
Occasionally, as shown in Fig. 1.1(e), a large earthquake (and its following seismic activity) is observed
prior to the mainshock; these are called foreshocks, though they do not always precede the mainshock [pp.
3-4 in Ref. [5]]. It is only after the occurrence of a mainshock (i.e., the occurrence of a subsequent larger
earthquake than foreshocks) that such earthquakes are confirmed to be foreshocks, and it is a crucial open
problem from the viewpoint of forecasting whether the foreshocks and mainshock-aftershocks or swarms
can be distinguished in real-time [pp. 322-323 in Ref. [5], pp. 116-117 in Ref. [24]]. Figure 1.1(d) shows
seismic activity before the Tohoku mainshock. Several mainshock-aftershock sequences can be identified,
though other than such activations, the activity is stationary with a nearly constant occurrence rate
(the slope of the cumulative number of earthquakes is almost constant, which is prominent in the time
domains indicated by bold blue lines in Fig. 1.1(d)).

Figure 1.3 shows another example of the epicenter distribution and magnitude time series for the case
of the global PDE catalog [20], from 01/01/1973 to 12/31/2023. Figure 1.3(a) shows that most large
earthquakes occur in a limited area at the boundary of plates. By limiting the earthquakes to those
with large magnitudes, aftershock activities observed in the local catalog are less noticeable, and the
occurrence rate of earthquakes with ≥ M5 seem almost stationary as in Fig. 1.3(b). In this thesis, the
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Figure 1.2: Conceptual diagram of a marked point process to represent seismic activity. (a, b) Jump
process of epicenters in a spatial domain at different cut-off magnitudes (m for (a) and M(:= m +
∆m, ∆m > 0) for (b)). In the figure, A, B, and C are events with magnitude ≥ M and a, b, ..., e
are between m and M . With different cut-off magnitudes, the jump process is different, and thus, the
epicentral network looks very different. (c) Corresponding time series of magnitude. A point (indicated
by × symbol) process is determined by setting a cut-off magnitude. The interval between points × is
called the inter-event time and expressed by τ ; for the point process at cut-off magnitude m (M), the
inter-event time is represented by τm (τM ), and its probability density, the inter-event time distribution,
is by pm(τm) (pM (τM )); their average is expressed by 〈τm〉 (〈τM 〉). The inter-event time intervals at the
lower cut-off magnitude (m) can be obtained as the partition of the divided inter-event time interval at
the upper cut-off magnitude (M).

seismic time series with an almost constant occurrence rate as in whole activity in Fig. 1.3(b) and the
blue-colored parts in Fig. 1.1(d) are referred to as the stationary time series, the aftershocks following
major earthquakes as the aftershock sequence, and their mixture or superposition as in whole activity in
Fig. 1.1(d) as the mixture time series 3.

The seismic activities shown in these figures are apparently complex and random. However, seismology
has found some characteristic patterns and statistical laws in seismic activity. Spatiotemporal pattern
includes the aftershocks, the swarms [Section 7.3 in Ref. [5]], the emergence of the seismic gap in space
and seismic quiescence in time [Section 7.6A in Ref. [5]], doughnut-shaped pattern [Section 7.6A in Ref.
[5]], and activation by foreshocks [Section 7.2 in Ref. [5]] (as shown in Fig. 1.1(e)) around the future
rupture zone before large earthquakes [Section 7.2.2 in Ref. [6]] [27].

The most notable statistical laws are the Omori ‒ Utsu (OU hereafter) [28, 29, 30] and Gutenberg ‒
Richter (GR hereafter) [31] laws. The OU law is about the temporal property of seismicity; the number
of aftershocks per day at time t from the mainshock (R(t)) obeys inverse power-law [28, 29, 30]:

R(t) =
K

(t+ c)p
, (1.1)

where K, c (≲ 1 day), and p (≈ 1) are parameters determined for each aftershock sequence, in particular
c and p are referred to as the c-value and p-value, respectively. Figure 1.4(a) shows an example of the OU
law for the aftershocks (≥M4) of Tohoku mainshock in Fig. 1.1. This example indicates that aftershocks
occurred at a high occurrence rate immediately after the mainshock (t ≲ c (≈ 0.362) days), and as time
passes (t � c), the occurrence rate decays in a power-law manner (R(t) ≈ K/tp). As suggested by such
a power-law decay, an aftershock activity can continue for a long period of time [30]. It has widely been
observed that major earthquakes are followed by aftershocks whose decay rate obeys OU law [29, 30].

The other recognized seismic law, the GR law, is about the frequency of magnitude, which denotes that
the distribution function of magnitude (P (M), the probability for magnitude ≥ M , Prob(magnitude ≥

3This category of seismic time series and their judgment way is based on the proceeding studies on the scaling universality
of the inter-event time distributions in a seismic activity described in Section 1.3.1.
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M)) obeys the exponential distribution [31]:

P (M) = 10−b(M−Mmin). (1.2)

Here Mmin is the minimum magnitude to be considered, and b (≈ 1 for ordinary seismic activity) is a
parameter characterizing the magnitude distribution called the b-value [Section 5.4B in Ref. [5]]. Figure
1.4(b) shows an example of the probability distribution of magnitudes for the time series of the JMA
catalog in Fig. 1.1(c). The probability density function of magnitudes p(M) (P (M) =

∫∞
M
p(m)dm) is also

shown in the figure 4. In this figure, the magnitude distribution shows an exponential GR decay forM ≥ 4,
though it does not follow the exponential distribution for smaller magnitudes. Such deviations from the
GR law at small magnitude are interpreted as indicating that such small earthquakes are undetected [35],
i.e., the seismic catalog is incomplete at the magnitude range [35, 36]. Therefore, when analyzing seismic
catalogs, the data analysis is limited to the range of magnitudes for which the magnitude frequency
obeys the GR law; the infimum magnitude following the GR law is regarded to be the completeness
magnitude (Mc), and earthquakes larger than or equal to Mc are considered to be complete [35]. The
setting of Mc is crucial in order to correctly capture the nature of the seismic activity, removing artifacts
caused by catalog incompleteness [35, 36]. There have been proposed several methods to determine Mc

based on the GR law [35] 5. Among them, the result of Mc calculated by the MBASS (Median-Based
Analysis of the Segment Slope) method [32] (Mc = 1.6) is shown in Fig. 1.4(b). However, looking at
Fig. 1.4(b), it appears that the linear decay of the exponential distribution suggested by the GR law
seems to follow in the larger magnitude range (M ≥ 4). Thus, in this thesis, the range following the
GR law is often determined by appearance; Chapter 2 determines the magnitude range only by sight,
and Chapter 5 determines it in a larger magnitude than the completeness magnitude determined by the
objective MBASS method.

4The GR law denotes p(M) ∝ 10−bM .
5As Mc reflects the ability of seismic networks to detect earthquakes, there are methods to determine Mc from the

observation networks [35, 37].
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Figure 1.5: Examples of spatial distribution of completeness magnitude Mc calculated using the MBASS
method [32]. Referring to Ref. [40], the spatial domain was divided into regions of 0.5◦ × 0.5◦, and the
results of Mc calculated by applying the MBASS method to cells containing at least 100 earthquake data
are shown. (a) Earthquakes recorded in the JMA catalog within 140◦ ‒ 146◦E, 35◦ ‒ 42◦N, and during
01/01/2000 ‒ 03/31/2022, and (b) in the Southern California catalog [18, 19] within 112◦ ‒ 123◦W,
29◦ ‒ 38◦N, and during 01/01/1981 ‒ 03/31/2022. Black dots are epicenters of earthquakes ≥ M3
for reference. The maps were drawn using the file in [http://www.gnuplotting.org/plotting-the-world-
revisited/].

The completeness magnitude can vary in time [36]; Mc will go down as the detection capability
increases with the development of seismic observation networks [36], and it is known that the detection
ability decreases immediately after the mainshock due to the effect of the mainshock seismic waves [13]
and thus Mc temporally increases [36, 38, 39]. Mc also varies spatially [36]; Fig. 1.5 shows the spatial
distribution of Mc calculated using the MBASS method for the JMA catalog and the Southern California
catalog. The calculations are made for cells containing 100 earthquakes or more, referring to Ref. [40]. As
Fig. 1.5 shows, Mc is higher at sea where there are no ground stations and at the edges of the observation
network; the detectability decreases in the regions where observation stations are scarce, and thus Mc

increases [36]. Therefore, when conducting catalog analysis, it is necessary to avoid such regions with
high Mc or set high Mc [36].

In the determined magnitude range in which the GR law holds, the maximum likelihood method is
optimal to calculate the b-value [12]; when the lower bound of magnitude range is given, the method in
Ref. [33] should be used, and in the case when the lower and upper bounds are given, the method in Ref.
[34] can be applicable. In Fig. 1.4(b), the GR law with the b-value calculated by the maximum likelihood
method is also shown.

As the magnitude is the logarithm of the energy released by an earthquake [14, 41], the GR law
indicates the power-law decay of the energy distribution [pp. 147-148 in Ref. [5]]. Therefore, the above-
mentioned two laws represent widely observed scale-free nature characteristic of seismic activity, and
the physical mechanisms to explain them have been considered; simple physical and automaton models
exhibiting self-organized criticality [42, 43] have been attempted to explain them; for example, the Spring-
Block model [44, 45] since Burridge and Knopoff [46] and the cellular automaton model such as the Olami
‒ Feder ‒ Christensen model [47, 48, 49].

Meanwhile, other attempts have been made to model seismic activity as shown in Fig. 1.2 using
stochastic models [7, 50, 51], and a simple non-stationary Poisson process combining the empirical OU and
GR law called the Epidemic Type Aftershock Sequence (ETAS) model was proposed [27, 50, 52, 53, 54, 55].
Figures 1.1(c ‒ e) suggested that a mainshock can excite aftershocks; the ETAS model assumes that every
earthquake can excite its subsequent aftershocks at the rate of the OU law with the weight given by the
Utsu ‒ Seki law [56] (or productivity law [57], the number of aftershocks ∝ 10αM ) [50]. Thus, the ETAS
model considers seismic activity as a superposition of mainshock-aftershock sequences and expresses it
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as an inhomogeneous marked Poisson process with the occurrence rate (λ(t)) at time t given by [50, 58]:

λ(t) = λ0 +
∑

j:tj<t

K10α(Mj−M0)

(t− tj + c)θ+1
, (1.3)

where {tj ,Mj} (j ∈ N) are the time and magnitude of events before time t. M0 represents the minimum
magnitude and (λ0,K, α, c, θ(= p − 1)) are the parameters to characterize the activity; in particular,
λ0 represents the constant rate for background seismicity [50, 58]. The combination of the remaining

parameters as well as the b-value in the GR law yields the branching ratio nbr =
K

θcθ
b

b− α
(when θ > 0)

[58] that determines the stationarity of the time series (if nbr < 1, the time series does not diverge [p.
81 in Ref. [59]]) as well as the ratio of aftershocks generated by mainshocks [60]. While the occurrence
rate depends on the past activity as Eq. (1.3), the magnitude of each event is determined independently
and randomly by the GR law [50]. This means that the correlation between seismic activity and its
subsequent major earthquake occurrence is not assumed.

Although the ETAS model is a simple stochastic process, it is capable of representing the nature of
actual seismic activity well [50, 58, 61, 62, 63]. Estimating of the model parameter values from past
seismic activity, the ETAS model provides a standard for seismic activity at a region, which enables us to
detect relative anomalous activity [27, 50]. The ETAS model has been extended to space-time versions
by adding a term on spatial correlations in Eq. (1.3) [52, 54, 64]. Furthermore, the HIST-ETAS model
[53, 55], which divides the space into smaller parts, yields the spatial distribution of background seismicity
rate (λ0) [7]. As will be described in Section 1.2.1, the conditional intensity function can evaluate the
seismic risk at a certain time, location, and magnitude [7]. Thus, the ETAS model is valuable for seismic
risk assessment, but the ETAS model is also useful in examining statistical properties of seismicity due
to its high reproducibility of seismic activity, as will be described in Section 1.3.1.

1.2 Probabilistic Forecasting of Earthquake Occurrence

As large earthquakes can cause severe damage to society, seismic risk assessment is an important issue.
Probabilistic forecasting of significant earthquake occurrence is one of the approaches to this problem.
In this approach, the view of seismic activity is fundamental; the earthquake occurrence is forecasted
probabilistically by utilizing the data in seismicity represented by the marked point process as Fig. 1.2.
In the following subsections, two primary approaches are described.

1.2.1 Point Process Approach

The conditional intensity function [p.9 in Ref. [7]] [51, 55] R(t,x,M |Ht) given by modeling a marked
point process yields the probability of occurrence time (t), spatial position (x), and magnitude (M) of
a future event using a set of parameter values determined by the history of seismic activity (Ht) which
includes the information on small-scale earthquakes ≥ M0 [2, 7, 27, 51, 50, 52, 54, 55, 59, 65]. For the
ETAS model, the conditional intensity function is given as [7] 6:

R(t,M |Ht) = λ(t|Ht)p(M)

∝

λ0 + ∑
j:tj<t

K10α(Mj−M0)

(t− tj + c)θ+1

 10−b(M−M0). (1.4)

Numerous studies have been conducted using such an approach, and projects are underway to develop
a better forecasting model [7]. However, as typically indicated in Eq. (1.4), the conditional intensity
function is in most point process modeling expressed as the product of two functions; a function that
depends only on time and spatial position and another function only on magnitude [7, 51, 65] [Section
6.3.1 in Ref. [59]]. This is based on the already-mentioned assumption that a seismicity pattern does not
affect the spatiotemporal occurrence of its subsequent large-size earthquake. This means that although
the seismic risk at a spatiotemporal domain can be evaluated depending on past seismic activity, the

6Although this is the conditional intensity function for time and magnitude, if Eq. (1.3) includes a function for space,
one can obtain the conditional intensity function for space-time-magnitude [pp.9-10 in Ref. [7]].
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GR law independently determines how large the event will occur. Considering correlations between a
significant shock and seismicity ahead of it [27, 40, 65, 66, 67, 68] is important for improving forecasting
[65]. Thus, it is meaningful to prepare a theoretical framework to manage such inter-event correlations
toward improving forecasting.

1.2.2 Renewal Process Approach

Although the above-mentioned point process approaches have been actively studied for better earthquake
forecasting [7], the currently used seismic risk assessment is based on a simpler viewpoint of the renewal
process [69] (see Fig. 1.2(c)). In this approach, a point process at a certain large cut-off magnitude 7

is regarded as a renewal process, and the risk of occurrence of earthquakes ≥ that cut-off magnitude is
evaluated by a hazard function of the inter-event time distribution determined by past seismic activity
[51, 59, 70].

The inter-event time distribution is defined as a probability density of a length between adjacent
points in the point process determined by setting a cut-off magnitude for the marked point process (see
Fig. 1.2(c)). Hereafter, for the cut-off magnitude m (M), the inter-event times are denoted by using a
variable τM (τm), and the inter-event time distribution it follows by pM (τM ) (pm(τm)). Also, the average
of the inter-event time distribution is expressed as:

〈τm〉 :=
∫ ∞

0

τmpm(τm)dτm, (1.5)

〈τM 〉 :=
∫ ∞

0

τMpM (τM )dτM . (1.6)

The hazard function (ϕM (t)) for the event with magnitude ≥ M is defined as follows [pp.50-51 in Ref.
[59]]:

ϕM (t) =
pM (t)∫∞

t
pM (τ)dτ

. (1.7)

The Headquarters for Earthquake Research Promotion basically publishes the probabilistic risk of earth-
quake occurrence based on the hazard function calculated above [69].

However, this approach has a disadvantage that it cannot utilize the abundant information of earth-
quakes below the cut-off magnitude for forecasting, which can be utilized in the point process approach
in Section 1.2.1. As the GR law suggests, the number of earthquakes exponentially increases as the mag-
nitude decreases. Because the information included in seismic catalogs is limited, utilizing such abundant
information for forecasting is an important point. Therefore, considering the theoretical framework to
incorporate the information on small-scale earthquakes into this renewal process approach is significant
to improve the earthquake forecasting method currently used.

1.3 Properties of Inter-event Time Distribution in Seismic Ac-
tivity

As described in Section 1.2.2, the inter-event time distribution yields fundamentally important informa-
tion for probabilistic forecasting of earthquakes. On the other hand, the inter-event time distribution in
seismic activity has been studied in the context of a better understanding of complex seismic activity,
such as its connection with other statistical laws and properties [25, 71, 72, 73, 74, 75, 26]. In this section,
two properties of the inter-event time distributions of earthquakes are introduced.

7This thesis distinguishes the threshold magnitude (M) set for a marked point process as follows. If the events with
a magnitude lower than threshold magnitude M are discarded, then such threshold is called the cut-off magnitude. The
cut-off magnitude is used when considering seismic time series in which the magnitude values are recorded in one or two
decimal places (In Chapter 5, the calculated moment magnitude in the CMT catalog is output to one decimal place, and
the cut-off magnitude is set as in other catalog data). On the other hand, if the events with a magnitude smaller than
or equal to the threshold magnitude M are discarded, that is called the magnitude threshold, which is used in theoretical
analysis and numerical analysis using synthetic time series such as the ETAS model in which the magnitude value is a real
number. Although such a distinction does not make much difference, we make them just in case.
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Figure 1.6: Examples of scaling collapses of the inter-event time distributions for stationary time series
in the JMA and PDE catalogs. (a) The inter-event time distributions (pM (τM )) for different cut-off
magnitudes. (b) Rescaled inter-event time distribution by its average (〈τM 〉). The dotted black curve
shows the gamma distribution in Eq. (1.9).

1.3.1 Scaling Universality of Inter-event Time Distribution in Seismicity

Bak et al. pointed out a universality in the inter-event time distribution in seismicity after scaling by
the GR and OU laws and the fractality of epicenters [71]. Although its universality was questioned
[76], Corral found another scaling universality in the inter-event time distribution [77] in the process of
examining the Bak et al.’s universality [72, 73]. Corral’s scaling universality indicates that the inter-event
time distribution at the cut-off magnitude M in a spatial domain S (temporarily represented as pSM (τM )
with superscript S) collapses to around a universal (generalized) gamma distribution (f(y)) independent
of M and S, except for short time intervals (y ≲ 10−2) [77, 78], after rescaled by the occurrence rate
(RS

M ):

pSM (τM ) = RS
Mf

(
RS

MτM
)
, (1.8)

f(y) ≈ Cyγ−1e−y/B , (1.9)

where (γ,B,C) ≈ (0.67, 1.58, 0.5) [77]. This scaling universality was shown for stationary seismic time
series (almost constant occurrence rate, RS

M ≈ R (const.), which is the average occurrence rate over the
stationary time series [77])[72, 73, 77, 79, 80] and aftershock sequences (for time t from the mainshock so
large t � c that the OU occurrence rate in Eq. (1.1) can be approximated by power-law RS

M (t) ∝∼ t−p)
[77, 80]. As the occurrence rate is almost constant in the stationary time series, the scaling factors in
these time ranges can be consolidated into the occurrence rate at a given moment; thus, this scaling
universality implies that the instantaneous occurrence rate governs the temporal characteristic of seismic
activity [77].

Figure 1.6 illustrates examples of scaling in Eq. (1.8) for the stationary time domains in the JMA
catalog and the PDE catalog (blue-colored time domain in Fig. 1.1(d) and whole time series in Fig.
1.3(b), see also Fig. 5.7 in Chapter 5). As these time series can be regarded as stationary, the scaling
factor of the inter-event time distribution is the inverse of the average interval (RM = 〈τM 〉−1 for the
cut-off magnitude M). The disparate inter-event time distributions for each cut-off magnitude and the
spatial domain collapse around the gamma distribution in Eq. (1.9).

Subsequent studies of Corral’s catalog analysis critically examined this scaling universality theoreti-
cally and numerically using the ETAS model [78, 81, 82, 83, 84, 85] and elevated it to include multiple
time scales other than the occurrence rate [86, 87, 88].

The author notes that the treatment of the time series differs in these subsequent studies from Corral’s
original method; these studies regarded the stationarity as the branching ratio [58] [p. 81 in Ref. [59]]]
is less than one, and the universality was discussed for the mixture time series that can include major
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aftershock activities using the average occurrence rate for entire time series as the scaling factor, leading
to approximate- or non-universality. However, according to the original treatment of seismic time series,
scaling of the inter-event time distribution should be considered for stationary time series and aftershock
sequences by different scaling factors to discuss universality. Rescaling by the average of the entire mixture
time series overestimates the number of short inter-event times in rescaling inter-event time distributions
because the short intervals in major aftershock sequences are not transformed by the OU law. Also, the
scaling universality for aftershock sequences by the OU rate has rarely been considered (excluding, for
example, Ref. [89]) since Corral pointed it out.

1.3.2 Dependence of Weibull Parameters on Cut-off Magnitude

It was shown by the catalog analysis that the inter-event time distributions in seismic activity can be
fit by the superposition of the Weibull distribution and the log-Weibul distribution [90, 91]. Their
proportion varies with the cut-off magnitude in a way that as it gets larger, the proportion of the Weibull
distribution becomes dominant [90, 91]. Thus, the main contribution for the inter-event time distribution
is the Weibull distribution, and the logWeibull distribution works as compensation [25, 26]. The shape
of the Weibull probability density function (pWM (τM ), or its residual distribution function PW

M (τM ) and
cumulative distribution QW

M (τM ) := 1 − PW
M (τM )) varies with the cut-off magnitude M in the following

way [25, 26, 90, 91]:

pWM (τM ) =

(
αM

βM

)(
τM
βM

)αM−1

exp

[
−
(
τM
βM

)αM
]
, (1.10)

PW
M (τM ) =

∫ ∞

τM

pWM (s)ds = e
−
(

τM
βM

)αM

, (1.11)

QW
M (τM ) =

∫ τM

0

pWM (s)ds = 1− e
−
(

τM
βM

)αM

. (1.12)

TheWeibull parameters {αM , βM} characterize the temporal property of the renewal process at the cut-off
magnitude M , and their dependence on M shows the characteristic of the temporal hierarchy in seismic
activity reflecting the correlations between events at different scales [25, 26, 75]. Such a hierarchical
structure was examined by catalog analysis for mixture time series as well as the aftershock sequence
[25, 26]. For the aftershock sequence, the moving ensemble of 100 days long was used to see the temporal
variation of the Weibull distribution; in each moving ensemble, the inter-event time distribution was fit by
the Weibull distribution and the hierarchical structure captured by the dependence of Weibull parameters
on cut-off magnitude was examined [25, 26]. The unification of the inter-event time statistics and the
magnitude frequency can be represented as, using a constant kEQ independent of cut-off magnitude M
[25, 26, 75]:

〈τm〉P (m) = 〈τM 〉P (M) = e−kEQ , (1.13)

and using Weibull statistics and the GR law [25, 26, 75]:

βMΓ (1 + 1/αM ) 10−bM = e−kEQ , (1.14)

where the representation of the average of the Weibull distribution 〈τM 〉 = βMΓ (1 + 1/αM ) (Γ(·) is
the gamma function) is used. Equation (1.14) indicates the unification of the Weibull statistics and the
GR law [25, 26, 75]. Equation (1.14) indicates that the hierarchical structure captured by the Weibull
distribution can be expressed as [25, 26, 75]:

αM = fα(M, b),

βM = fβ(M, b), (1.15)

and from Eq. (1.15), the relation between Weibull parameters is:

βM = fβ(f
−1
α (αM )) = g(αM , b). (1.16)

The relation in Eq. (1.16) (or Eq. (1.15)) is called the ”multi-fractal relation” and its universal features
have been reported [25, 26]. The multi-fractal relation is a new formula to combine two important seismic
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laws: the GR law for the magnitude and the Weibull law for the inter-event times [25, 26, 75], and Eq.
(1.16) suggests that the GR parameter b is determined by the Weibull parameters (αM , βM ) [25, 75].

However, as with the GR and OU laws, the multi-fractal relation, as well as the Weibull distribution, is
an empirical property, and it is necessary to promote a more fundamental understanding of multi-fractal
relation.

1.4 Purpose and Structure of Thesis

As described in Section 1.2, there is room for improvement in the approaches of probabilistic forecast-
ing of future earthquake occurrence; Section 1.2.1 pointed out the problem in point process approach
that the correlation between seismic activity and subsequent large earthquake is not assumed, and Sec-
tion 1.2.2 pointed out that the practical renewal process approach cannot take into consideration the
abundant information on small-scale earthquakes. The latter approach is based on the inter-event time
distribution in seismic activity, which, as mentioned in Section 1.3, is important not only as a basis of
earthquake forecasting but understanding statistical properties of seismic activity. Two properties related
to the universality in the hierarchy of the inter-event time statistics were presented with their respective
problems.

To better understand seismic activity and improve probabilistic forecasting, (1) this thesis presents
a method to analyze the hierarchical nature of seismic activity represented by marked point processes,
i.e., the conditional probability between inter-event times at different cut-off magnitude and the integral
equation that connects the inter-event time distributions at different cut-off magnitude via the conditional
probability, and (2) examines the hierarchical structure using several seismic catalogs to understand
seismic activity, in particular the inter-event time statistics. Furthermore, (3) this thesis presents a
Bayesian approach to improve the renewal process approach for forecasting earthquakes based on that
conditional probability, which also possibly enhances the point process approach, and (4) examines it
using synthetic and seismic time series.

Chapter 2 is related to the points (1) and (2). This chapter introduces the conditional probability and
the integral equation. The properties related to the conditional probability are analyzed using several
seismic catalogs, and an attempt is made to derive the multi-fractal relation from the integral equation.

Chapter 3 is related to the points (3) and (4). Bayes’ theorem about the conditional probability and
its extension, Bayesian updating, are considered analytically for a simple point process. This Bayesian
method incorporates the information on small-scale events into the forecasting by the renewal process
approach. The Bayesian updating is numerically applied to the ETAS time series to examine its effec-
tiveness for forecasting future large-scale event timing. Possible improvement by the Bayesian framework
of the point process approach is also discussed.

Chapter 4 is related to the point (3). This chapter extends the Bayesian method considered in Chapter
3 for magnitude-time marked point process to the spatiotemporal version theoretically.

Chapter 5 is related to the points (2), (3), and (4). The simplest case of the Bayesian method
(Bayes’ theorem) is examined using stationary and aftershock sequences, though these are transformed
by occurrence rates. The probability densities related to Bayes’ theorem are analyzed in such seismic time
series with weak inter-event correlations, and the scaling universality in the inter-event time distribution
is discussed in view of the temporal hierarchy in seismic time series. Possible ways to apply the Bayesian
method for forecasting are discussed based on the results of catalog analysis.

Finally, Chapter 6 summarizes the chapters and discusses the future prospects.
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Chapter 2

Introduction of the Method to
Characterize the Hierarchical
Structure of Seismic Time Series and
the Analysis of the Hierarchy of
Weibull Statistics of Inter-event
Time Statistics

This chapter is based on and updated from Ref. [1], which is paper 1 in the list of author’s papers, and
Ref. [92].

2.1 Introduction

This chapter introduces the central tools throughout the thesis: the conditional probability that char-
acterizes the temporal hierarchy in marked point processes, and the integral equation that has this
conditional probability at its kernel and the inter-event time distributions at its solution. Properties
of the conditional probability are examined using two seismic catalogs, and the multi-fractal relation is
derived from the integral equation with such properties.

2.2 Conditional Probability and Integral Equation

This chapter considers the time series of shocks as represented in Fig. 1.2(c). Let us define the conditional
probability pmM (τm|τM ) which expresses the probability density of the inter-event time intervals τm in the
upper interval τM , where the magnitude m is always smaller thanM , i.e., m < M(:= m+∆m, ∆m > 0).
The conditional probability defined here plays an important role in characterizing the correlation between
shock sequences with two different cut-off magnitudes, m and M . If we assume that there exist the
stationary inter-event time distributions pm(τm) and pM (τM ) in each magnitude level, pmM (τm|τM )
satisfies the following integral equation:

Nmpm(τm) = NM

∫ ∞

τm

τM
〈〈τm〉〉τM

pmM (τm|τM )pM (τM )dτM . (2.1)

Here Nm and NM stand for the total number of inter-event time intervals at the threshold level m and
M , respectively. Also, 〈〈τm〉〉τM represents the conditional average of the inter-event time intervals at
the lower cut-off magnitude in an upper interval of length τM :

〈〈τm〉〉τM =

∫ ∞

0

τm pmM (τm|τM )dτm. (2.2)
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Equation (2.1) can be expressed as follows using the GR law (NM/Nm = 10−b∆m (This transformation
does not strictly hold for a time series with a finite number of events because the number of the events
is different from that of the intervals by 1. However, we consider that the statistical properties are for
infinite samples, and in a time series containing an infinite number of events, the two are equivalent and
the equality holds. 8):

pm(τm) = 10−b∆m

∫ ∞

τm

τM
〈〈τm〉〉τM

pmM (τm|τM )pM (τM )dτM . (2.3)

In the present chapter, we refer to Eq. (2.3) as the embedding equation for the magnitude sequences
of earthquakes since the equation characterizes the hierarchical structure of the point process at the
lower cut-off magnitude (τm’s), which is embedded in the large scale interval τM . In fact, Eq. (2.3)
combines the two inter-event time distributions, pm(τm) and pM (τM ), via the conditional probability
pmM (τm|τM ), and one can easily understand that Eq. (2.3) describes the higher correlation between
two point processes obtained by different cut-off magnitudes m and M . Thus, the embedding equation
(2.3) allows us to discuss the characteristics of the inter-event time distribution from the viewpoint of
the hierarchical nature of the inter-event times quantified by the conditional probability 9.

The conditional probability pmM (τm|τM ) can be decomposed into two parts depending on the con-
dition (1) τm < τM and (2) τm = τM . These cases correspond to the two patterns to obtain the lower
inter-event time interval of length τm by decreasing the threshold level from M to m, as shown in Fig.
2.1. Therefore, the conditional probability pmM (τm|τM ) is represented as:

pmM (τm|τM ) = ΞmM (τm, τM )θ(τM − τm) + ∆mM (τM )δ(τM − τm), (2.4)

where θ(x) is a unit step function (θ(x) = 1 for x > 0 and θ(x) = 0 for x ≤ 0) and δ(x) is the
Dirac’s delta function. The first term [ΞmM (τm, τM )θ(τM − τm)] corresponds to the case (1) in Fig. 2.1
and [∆mM (τM )δ(τM − τm)] to the case (2) in Fig. 2.1. By considering the normalization condition of
pmM (τm|τM ), ∆mM (τM ) is expressed by ΞmM (τm, τM ) as:

∆mM (τM ) = 1−
∫ τM

0

ΞmM (τm, τM )dτm. (2.5)

Therefore, ΞmM (τm, τM ) is the only factor to determine the form of pmM (τm|τM ). Finally, the
embedding equation (2.1) is rewritten into the following form:

Nmpm(τm) = NM

∫ ∞

τm

τM ΞmM (τm, τM )pM (τM )∫ τM
0

x ΞmM (x, τM )dx+ τM∆mM (τM )
dτM

+NM
τmpM (τm)∆mM (τm)∫ τm

0
x ΞmM (x, τm)dx+ τm∆mM (τm)

. (2.6)

This equation shows that the interrelation between two inter-event time distributions pm(τm) and
pM (τM ) are completely determined by a characteristic function ΞmM (τm, τM ). In other words, the
correlation between two shocks with different threshold levels m and M is expressed by ΞmM (τm, τM ).

In the following sections, the property of the conditional probability is examined using seismic catalogs
to consider the multi-fractal relation from the viewpoint of the hierarchical structure of seismic time series.
In the next section, we introduce the information on seismic catalogs to be used in this chapter.

2.3 Seismic Catalogs and Statistical Properties

2.3.1 Catalog Information

The three seismic time series (named PDE, JS, and JA, respectively) are numerically analyzed in the
present chapter [16, 17, 20] (see Table 2.1) 10. The first one (PDE) is for the worldwide global case, and
the second (JS) and the third (JA) are the data in the local Fukushima ‒ Miyagi area in Japan; (JS)
is the mixture time series before the large earthquake (Tohoku EQ at March 11, 2011), and (JA) for
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Figure 2.1: Schematic of the two patterns that yields an inter-event time interval at the lower cut-off
magnitude (m) of length τm. (1) The lower interval of length τm is obtained as a piece of its upper
interval (of length τM ) divided by the event inserted by lowering the cut-off magnitude. In this case,
τm < τM . (2) No event is inserted in the upper interval when lowering the cut-off magnitude. In this
case, τm = τM .

Table 2.1: Catalog information on the time series used in Chapter 2.

Catalog Name Spatial domain Time domain b-value (in [1] 11) b-value (MLE)
PDE PDE Whole world 01/01/1973 ‒ 12/31/2002 1.05 1.042 (M ∈ [5, 7.5])
JMA JS 140◦E ‒ 150◦E 10/01/1997 ‒ 02/28/2011 0.84 0.768 (M ∈ [3, 5])

JA 35◦N ‒ 42◦N 03/11/2011 ‒ 03/11/2014 0.95 0.878 (M ∈ [4, 5]),
0.725 (M ∈ [3, 5])

the aftershock sequence of the Tohoku EQ. As will be described later, the aftershock sequence (JA) is
analyzed using moving ensembles with 100-day time intervals.

2.3.2 Statistical Properties of the Seismic Time Series

Magnitude frequency

Figure 2.2 shows the magnitude frequency for the three time series. One can see deviations from the GR
law in Fig. 2.2(c) because the ensemble is not stationary in the JA case. The GR law can be judged to
hold in the magnitude range M ∈ [5, 7.5] for PDE, M ∈ [3, 5] for JS, and M ∈ [4, 5] for JA. The b-values
calculated within these magnitude ranges by the maximum likelihood estimate [33] are summarized in
Table 2.1 and indicated in Fig. 2.2. Although the case of JA seems complete for M ≥ 4, we also used
M ≥ 3 data where the GR law is approximately satisfied in the analysis of the hierarchical structure
of seismic activity (the b-value calculated in this range is also in Table 2.1). Much detailed analysis of
non-stationary data was reported in the preceding papers [25]. In this Chapter, the cut-off magnitude is
set to be within the same magnitude range as that used in the calculation of the b-values by the maximum
likelihood estimate (i.e., M ∈ [5, 7.5], M ∈ [3, 5], and M ∈ [4, 5] for PDE, JS, and JA, respectively). The
cut-off magnitude is set in the increment of 0.1 from the respective minimum magnitude.

Occurrence rate of aftershocks

Figure 2.3 shows the time evolution of the occurrence rate of aftershocks since the Tohoku mainshock
time (t days) for JA. The OU power-law decay (∝ t−p) is observed for M (cut-off magnitude)≥ 3 and
t longer than 1 ∼ 10 days. For this aftershock sequence, we denote the time series in 100-day time
window ((t0, t0 + 100]) with the initial time t0 = 100, 200, ..., 500 (days from the mainshock time) by

8Note here is from the author’s paper [2], paper 2 in the list of author’s papers.
9This sentence is from the author’s paper [4], paper 4 in the list of author’s papers.

10The data in the seismic catalogs are at the time of Ref. [1].
11The b-values in Ref. [1] were obtained as follows. For PDE, b-value was calculated by fitting the probability density

(log10 p(j∆M) (j ∈ Z), the endpoint of the bin width of magnitude (∆M = 0.1) as a representative point (whereas in Fig.
2.2, the representative point is at (j+0.5)∆M for the probability density)) in the range M ∈ [5, 7]. For JS and JA, b-value
was calculated by fitting log10 P (j∆M) in the range 3 ≤ M and M ∈ [4, 8], respectively.
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Figure 2.2: The magnitude frequency (p(M)) and the distribution function of magnitudes (P (M)) for
the time series of (a) PDE, (b) JS, and (c) JA.
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Figure 2.3: Magnitude dependence of the time evolution of the occurrence rate of aftershocks of the
Tohoku mainshock to the time since the mainshock. The solid lines show the OU law with p = 1 for
reference. See Ref. [25] for details.

JA(t0 = 100), JA(t0 = 200), ..., JA(t0 = 500), respectively, and examine their property in each time
window.

Inter-event time distributions

Figure 2.4 shows the residual probabilities (PM (τM ) :=
∫∞
τM

pM (x)dx) of the inter-event time distribution

at several cut-off magnitudes for our data-analysis and their fittings by the Weibull distribution (Eq.
(1.12)) for our data-analysis 12. Figure 2.4 shows that the Weibull distribution describes the inter-event
time distribution, in particular at large intervals. Note that in the calculation of the inter-event time
distribution, we treated the seismic catalogs similarly as the former studies [25, 26], i.e., the minimum
cut-off time interval τmin is introduced to remove the short intervals from the population to avoid the
uncertainty coming from the time resolution in each data catalog; a similar idea is used in the inter-
event time statistics of the earthquakes [71, 77, 90]. The parameter τmin used in the catalog analysis is
summarized in Table 2.2.

Multi-fractal relation

The Weibull parameters ({αM , βM}) at each cut-off magnitude (M) that can be obtained by the fittings
in the previous subsection yield the multi-fractal relation for each time series. Figure 2.5 shows the multi-
fractal diagrams [25, 75, 26]. The Weibull fittings of the inter-event time distribution are performed up
to the upper limit of the magnitude range to analyze determined in the previous subsection, and several
Weibull parameter values at large cut-off magnitudes are added to those in Ref. [1]. αM and βM show

12In the calculation of the residual probabilities of the inter-event time distribution, the bin width (∆τ) was set to 0.0025
for PDE and JA, and 0.01 for JS as in Ref. [1]. The same number of points such that PM (j∆τ) ≡ 0 are recorded at the
tail of the distribution as the number of bins with pM (j∆τ) > 0.

18



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

(a)
P

M
(τ

M
)

τM

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

P
M

(τ
M

)

τM

M=5.0
M=5.5
M=6.0
M=6.5
M=7.0
M=7.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14

(b)

P
M

(τ
M

)

τM

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-2

10
-1

10
0

10
1

10
2

10
3

P
M

(τ
M

)

τM

M=2.0
M=2.5
M=3.0
M=3.5
M=4.0
M=4.5
M=5.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

(c)

P
M

(τ
M

)

τM

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

10
2

P
M

(τ
M

)

τM

M=2.0
M=2.5
M=3.0
M=3.5
M=4.0
M=4.5
M=5.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

(d)

P
M

(τ
M

)
τM

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

10
2

P
M

(τ
M

)

τM

M=2.0
M=2.5
M=3.0
M=3.5
M=4.0
M=4.5
M=5.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

(e)

P
M

(τ
M

)

τM

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

10
2

P
M

(τ
M

)

τM

M=2.0
M=2.5
M=3.0
M=3.5
M=4.0
M=4.5
M=5.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

(f)

P
M

(τ
M

)

τM

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

10
2

P
M

(τ
M

)

τM

M=2.0
M=2.5
M=3.0
M=3.5
M=4.0
M=4.5
M=5.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

(g)

P
M

(τ
M

)

τM

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

10
2

P
M

(τ
M

)

τM

M=2.0
M=2.5
M=3.0
M=3.5
M=4.0
M=4.5
M=5.0

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.2  0.4  0.6  0.8  1

(h)

P
M

(τ
M

)

τM

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-3

10
-2

10
-1

10
0

10
1

P
M

(τ
M

)

τM

t0=100
t0=200
t0=300
t0=400
t0=500

Figure 2.4: The residual distributions (PM (τM )) of the inter-event times and their fittings by the Weibull
distribution PW

M (τM ) for (a) PDE, (b) JS, (c) JA(t0 = 100), (d) JA(t0 = 200), (e) JA(t0 = 300), (f)
JA(t0 = 400), and (g) JA(t0 = 500). (h) shows PM (τM ) at M = 4 with its fitting Weibull distribution
for each time window t0 = 100 to t0 = 500 in JA. The upper panels show the distributions at short
inter-event times, and the lower panels show the entire distribution with the logarithmic scale of the
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monotonically decreasing and increasing trends with respect to the cut-off magnitude M , respectively, of
which empirical forms can be approximated by:

αm ≈ λ10−µm + ν, (2.7)

log (βm) ≈ −p+ q10rm, (2.8)

where (λ, µ, ν) and (p, q, r) are the fitting parameters in each case. The parameter values (for four
significant digits) are summarized in Table 2.3.

Figure 2.6 shows the multi-fractal relation corresponding to each case in Fig. 2.5 13. In the stationary
(PDE) and mixture (JS) cases, the multi-fractal relation seems to be close, though the multi-fractal dia-
grams (fα(M, b) and fβ(M, b) in Eq. (1.15)) are different as shown in Figs. 2.5(a) and (b). Furthermore,
in the case of the non-stationary (aftershock) regime (JA(t0 = 100), ..., JA(t0 = 500)), the multi-fractal
relation in each moving ensemble seems to be around an invariant curve though the difference in those
parameters (αM , βM ) as shown in Figs. 2.5(c ‒ g). The universality conjecture for the multi-fractal
relation have been discussed in preceding papers [25, 75, 26], but the theoretical background still remains
open.

2.4 Analysis of the Conditional Probability and the Integral
Equation using Seismic Catalog Data

This section introduces two phenomenological coefficients to demonstrate the correlation in the time
series of earthquakes; one is the magnitude factor ηmM (τm) which can describe the influence from the
larger magnitude M to the lower magnitude m, and the other is the temporal factor amM (τM ) which
describes the influence from the upper interval τM (for larger shock) to the lower interval τm (for smaller
shock). In what follows, one can see that those two factors ηmM (τm) and amM (τM ) obey certain scaling
features respectively, and the embedding equation can be rewritten by using those correlation coefficients
ηmM (τm) and amM (τM ).

2.4.1 Magnitude Correlation Coefficient ηmM(τm) and its Scaling Property

Here, we derive a characteristic parameter to describe the magnitude correlation ηmM (τm). The first
term on the right-hand side (r.h.s.) of Eq. (2.6) corresponds to the part of θ-function in Eq. (2.4), and
the quantity multiplied by dτm represents the total number of the intervals at the lower cut-off magnitude
with the length within [τm, τm + dτm) obtained as a piece of division of the upper interval as shown in
Fig. 2.1(1). Denote the second term on the r.h.s. in Eq. (2.6) by Nδ(τm), and its ratio to the total
quantity of the left-hand side (l.h.s.) of Eq. (2.6) (Nmpm(τm)) by Rδ(τm), i.e.:

Nδ(τm) := NM
τmpM (τm)∆mM (τm)∫ τm

0
x ΞmM (x, τm)dx+ τm∆mM (τm)

, (2.9)

and:

Rδ(τm) :=
Nδ(τm)

Nmpm(τm)
. (2.10)

Table 2.2: Conditions used in the statistical analysis.

Time series Inter-event time distribution ICC MCC
τmin (minutes) τmin (minutes) NM

min τmin (minutes) Nm
min

PDE 240 240 20 2.0 100
JS 240 240 20 2.0 100
JA 14.4 14.4 20 0.0 75

13In Ref. [1], several αM values in JA(t0 = 100) were incorrectly set to slightly different values of about four decimal
places when moving them from the multi-fractal diagram to multi-fractal relations, which is corrected in Figs. 2.6, 2.11,
and 2.14.
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Figure 2.5: Multi-fractal diagrams for each time series; (a) PDE, (b) JS, (c) JA(t0 = 100), (d) JA(t0 =
200), (e) JA(t0 = 300), (f) JA(t0 = 400), and (g) JA(t0 = 500). The red-colored (dotted) curves show
the fitting of αM by Eq. (2.7) and blue-colored curves the fitting of log10 βM by Eq. (2.8). In (a), the
results of Weibull parameters in the magnitude range M ∈ [5, 6.4] analyzed in Ref. [1] are indicated using
© and 4, and the results newly added in the range M ∈ [6.5, 7.5] are by + and ×. The fittings by Eqs.
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Figure 2.6: Multi-fractal relations obtained from Fig. 2.5; cases of (a) stationary (PDE) and mixture
(JS), and (b) non-stationary (JA(t0 = 100), ..., JA(t0 = 500)). Cases for PDE and JS are close, and
in the aftershock region, the multi-fractal relation for five moving ensembles seems around an invariant
curve, though the moving time t0 differs [26].

Let us see that the relative fraction parameter Rδ(τm) is an important quantity to estimate the effect
of the correlation between different magnitude scales m and M . Then the original embedding equation
(Eq. (2.1)) is rewritten into:

Nmpm(τm)Rδ(τm) = NM
τmpM (τm)∆mM (τm)∫ τm

0
x ΞmM (x, τm)dx+ τm∆mM (τm)

. (2.11)

If the magnitude of each shock is independently random 1415, Rδ(τm) is evaluated in the following way.
In the case of Fig. 2.1(1), the magnitude of both ends of the events that sandwich τm have to be larger
than m. On the other hand, if the interval τm satisfies the case of Fig. 2.1(2), the magnitudes of two
successive shocks are both larger than M . Therefore, if there is no correlation between the time interval

Table 2.3: Fitting parameters in data-analysis (for four significant digits).

Time series λ µ ν p q r
PDE (M ∈ [5, 6.4]) 4.191× 104 0.9290 0.8510 3.850 1.203 0.09267
PDE (M ∈ [5, 7.5]) 3.812× 106 1.329 0.9748
JS (M ∈ [3, 4.6]) 46.10 0.6205 0.8029 1.524 0.4393 0.1597
JS (M ∈ [3, 5]) 48.32 0.6315 0.8190
JA (t0 = 100) 19.65 0.5152 0.8117 5.461 2.248 0.08072
JA (t0 = 200) 3.424 0.3945 0.9685 3.086 0.5549 0.1694
JA (t0 = 300) 5.425 0.3254 0.5751 4.494 1.693 0.09188
JA (t0 = 400) 2.296 0.1760 0.4390 9.822 6.483 0.04114
JA (t0 = 500) 16.96 0.6528 0.8932 4.964 2.160 0.08525

14Some earthquake models use this hypothesis to explain the real seismicity, see Ref. [50].
15Note that the discussion here implicitly assumes not only independence between magnitudes but also independence

between magnitude and inter-event time. The parameter Rδ(τm) is a quantity that can reflect the correlation between
magnitudes, and that is the reason we referred to it as the magnitude correlation coefficient, though it also can include the
correlation between magnitude and inter-event time. For example, in the case of the ETAS model, although the magnitudes
are generated totally randomly, Eq. (2.12) holds only for the stationary Poisson process (when λ(t) ≡ λ0 in Eq. (1.3)); in
other cases, the time interval following an event is affected by the magnitude of that event, and Eq. (2.12) does not hold
reflecting such a correlation.

22



τm and the magnitudes of the two intervening events, the parameter Rδ(τm) does not depend on the
variable τm, and Rδ(τm) is described only by the magnitude distribution given in the GR law of Eq.
(1.2):

Rδ(τm) =
P (M)2

P (m)2
= 10−2b∆m, (2.12)

where the GR law (NM/Nm = P (M)/P (m) = 10−b∆m) is used. Equation (2.11) is rewritten into:

pm(τm) = 10b∆m τmpM (τm)∆mM (τm)∫ τm
0

x ΞmM (x, τm)dx+ τm∆mM (τm)
, (2.13)

where Nm/NM = 10b∆m is used again. This equation is a simplified form of the embedding equation
applied to the case where no correlation exists between different magnitudes.

However, the data analysis in many cases shows us that the parameter Rδ(τm) deviates from Eq.
(2.12). This suggests the possibility that the magnitudes of successive two shocks are not independent
but correlated. In fact, such magnitude correlation has been pointed out in the study of actual earthquakes
[40, 68], and it has been expected to obtain the more precise statistical law from the correlation analysis
in the inter-event time statistics.

Here we introduce a correction factor ηmM (τm) to describe the correlation instead of Eq. (2.12):

Rδ(τm) = 10−2b∆mηmM (τm), (2.14)

and consider the embedding equation in the following form:

pm(τm)ηmM (τm) = 10b∆m τmpM (τm)∆mM (τm)∫ τm
0

x ΞmM (x, τm)dx+ τm∆(τm)
. (2.15)

The factor ηmM (τm) is referred to as the magnitude correlation coefficient (MCC) in the present chapter
because it can reflect a correlation between two different magnitudes (m and M) and expresses the
correction in the GR law.

Figure 2.7 shows that the coefficient ηmM (τm) satisfies the following empirical scaling property 16,

ηmM (τm) = 1 + η

(
τm
〈τM 〉

)
∆m, (2.16)

where η(x) is a characteristic factor depending on the rescaled parameter, i.e., x = τm
⟨τM ⟩ . In the calculation

of the MCC, we consider the cases where the number of samples (N) is large enough to obtain the stable
evaluation η(τm/〈τM 〉); the MCC is obtained for N ≥ Nm

min (at τm) in Table 2.2. The values of the cut-off
interval τmin are fixed constant in each calculation.

Based on the scaling property suggested in Eq. (2.16), the scaling function η(x) is calculated for
the mixed population of the samples at the cut-off magnitude pairs (m,M) with the same ∆m 17. This
method enables us to obtain a clearer form of the scaling function, avoiding the shortage of the sample
number, in particular at large ∆m. In this calculation, no threshold is set for time intervals (τmin). As
Fig. 2.7(a, b) shows, such calculated η(x) is almost the same as those from a specific cut-off magnitudes

16Equation (2.14) includes the GR law, though the b-value does not come into play calculating ηmM (τm) for a specific
pair of (m,M), because in the actual calculation (⟨τm⟩/⟨τM ⟩)2 with numerically obtained ⟨τm⟩ and ⟨τM ⟩ are used instead
of 10−2b∆m. In this chapter, the b-values calculated by the maximum likelihood estimate are used differently from Ref. [1],
though the results of η(x) are the same. However, for the calculation using mixed samples for the (m,M)-pairs with the
same ∆m, the b-values are necessary and those calculated by the maximum likelihood estimate are used.

17The similar approach is used in Chapter 5. The outline of the method used here is as follows. Let us define
the transformation of the lower inter-event times ς := log10

τm
⟨τM ⟩ . Let {m0,m1, ...,mn} be the cut-off magnitudes

to be set for each time series (mj = m0 + 0.1j). For a given ∆m, the lower and upper cut-off magnitudes can be

{m0,m0 + ∆m}, ..., {mn−10∆m,mn}. Let N̂mj ,mj+∆m(ς) denote the number of such transformed lower inter-event time

intervals whose length within [ς, ς + ∆σ] when the upper and the lower cut-off magnitudes are {mj ,mj + ∆m}. Also, let

N̂δ
mj ,mj+∆m(ς) denote the number of such lower intervals obtained in the manner shown in Fig. 2.1(2). Thus, for a ∆m,

the coefficient η(ς) can be calculated as: η(ς) =

∑n−10∆m
j=0

N̂δ
mj,mj+∆m(ς)∑n−10∆m

j=0
N̂mj,mj+∆m(ς)

102b∆m−1

∆m
.
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pair (m,M), indicating that the scaling relation in Eq. (2.16) is reasonable. However, such consistency
is not observed in the cases of JA; this is considered to be due to the effect of the b-value. In this
calculation, the b-value calculated in the range M ∈ [3 : 5] was used, though, as can be seen in Fig.
2.2(c), the linearity of log10 p(M) in this magnitude range is not good. This is likely to affect the result
of η(x) obtained from mixed samples. Moreover, η(x) shows gradual deviation as ∆m gets large even in
Figs. 2.7(a, b), suggesting the scaling relation in Eq. (2.16) is not perfect in particular for large ∆m.

Figure 2.7 also compares the results with those for the time series with reshuffled magnitudes; in
particular, Figs. 2.7(a,b) shows that the magnitude correlations are reflected in the scaling function
ηmM (x). The scaling function ηmM (x) shows the tendency that it takes larger positive value at short
intervals (x) and gradually decreases to around a negative value (around [−1, 0]) as the length of the
interval (x) gets longer. Such a tendency is relatively clearly observed in the case of PDE and JS. In
particular, in the case of JA, the results obtained for a specific combination of (m,M) seem to show the
above-described tendency partially. Although the results calculated for mixed populations for (m,M)
combinations with the same ∆m are vague, these also take value around [−1, 0] at large x. Figure 2.7(h),
which is the result of mixed populations for all time windows of JA, shows a relatively clear trend similar
to that of PDE and JS.

In the stationary and mixture cases (PDE, JS) treated in this study, the scaling form of Eq. (2.16)
reveals almost the same behavior and is surmised to be universal. Even in the non-stationary (aftershock)
case (JA), the factor η(τm/〈τM 〉) seems to be described by a similar curve in all cases for the moving
ensembles at different time.

2.4.2 Inter-event Time Correlation Coefficients amM(τM) and its Scaling Prop-
erty

This subsection derives another phenomenological coefficient amM (τM ), which describes the correlation
between two inter-event times τm and τM . Here we assume that the conditional probability pmM (τm|τM )
approaches to the stationary one pm(τm) when the interval τM (or the difference τM − τm) goes to large
enough, i.e., τM → ∞ (or ∆m = M −m → ∞), the conditional probability is approximated by pm(τm)
similarly to Eq. (2.4):

pmM (τm|τM ) ≈ pm(τm)θ(τM − τm) + Pm(τm)δ(τM − τm), (2.17)

or:

QmM (τm|τM ) ≈ Qm(τm)θ(τM − τm) + θ(τm − τM ), (2.18)

where QmM (τm|τM ) is the cumulative distribution of the conditional probability; QmM (τm|τM ) :=∫ τm
0

pmM (x|τM )dx.
The examples of the comparison between QmM (τm|τM ) and Qm(τm) for selected pairs of cut-off

magnitudes for each time series shown in Fig. 2.8 suggest that the above approximation (2.18) seems
satisfactory when ∆m and τM are large enough. When the above conditions break, we surmise here that
Eq. (2.18) is extended to the following generalized form:

QmM (τm|τM ) = amM (τM )Qm(τm)θ(τM − τm) + θ(τm − τM ), (2.19)

where amM (τM ) is a correction factor which obeys amM (τM ) → 1 as ∆m goes to large, and amM (τM ) → 0
as ∆m→ 0. By integrating Eq. (2.19), one can obtain the factor amM (τM ) directly from the data analysis,
i.e.:

amM (τM ) =
τM − 〈〈τm〉〉τM∫ τM

0
Qm(x)dx

. (2.20)

The factor amM (τM ) is referred to as the inter-event time correlation coefficient (ICC) in the present
chapter because it describes a correlation among different inter-event times (τm and τM ). Figure 2.9
shows the scaling property of the ICC:

amM (τM ) = a∆m

(
τM
〈τM 〉

)
, (2.21)

18In Ref. [1], the range of τM/⟨τM ⟩ to show was τM/⟨τM ⟩ ∈ [1, 10]. Figure 2.8 shows wider range than it.
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Figure 2.7: The scaling in Eq. (2.16) for (a) PDE, (b) JS, (c) JA(t0 = 100), (d) JA(t0 = 200), (e)
JA(t0 = 300), (f) JA(t0 = 400), and (g) JA(t0 = 500). (h) shows the result of the calculation using
all the time series from JA(t0 = 100) to JA(t0 = 500). (Upper panels) Rescaled correction function
η(τm/〈τM 〉) calculated at some (m,M)-pairs and computed for mixed samples of (m,M) with the same
∆m as the population. The gray-colored symbols are the results with the number of samples N being
less than Nm

min. Some very large symbols are out of the range shown in the figure. (Lower panels) The
enlarged view of the results in the upper panel satisfying N ≥ Nm

min. The gray-colored symbols show the
results for the time series with magnitudes shuffled. The blue-colored band indicates the approximate
range for η(1).
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Figure 2.8: Comparison between QmM (τm|τM ) and Qm(τm) at two cut-off magnitudes in (a) PDE, (b)
JS, (c) JA(t0 = 100), (d) JA(t0 = 200), (e) JA(t0 = 300), (f) JA(t0 = 400), and (g) JA(t0 = 500).
Equation (2.18) is approximately satisfactory for ∆m > 1.0 and τM/〈τM 〉 > 1 18.
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which suggests that amM (τM ) does not explicitly depend on the magnitude (m and M) but a function of
the difference ∆m and is uniquely determined by a rescaled variable τM/〈τM 〉. Note that in the calculation
of the ICC, we consider the cases where the number of samples (N) is large enough (N ≥ NM

min (at τM )
in Table 2.2) to obtain the stable evaluation of ICC (a∆m (τM/〈τM 〉)).

Based on the above-suggested scaling property, we calculated the scaling function using the samples
for the cut-off magnitude pairs (m,M) with the same ∆m as a mixed population in the same manner as
the MCC 19. The resulting scaling functions are almost the same as those for the specific pairs (m,M),
which supports the validity of the scaling property in Eq. (2.21). In particular, similarly to the MCC,
the scaling functions a∆m (τM/〈τM 〉) for JA are nearly the same regardless of t0.

Figure 2.10 shows the ∆m-dependence of a∆m(1) for each time series calculated for the mixed popu-
lations of (m,M) pairs with the same ∆m; the method to use mixed populations enabled us to determine
in more detail such a ∆m dependence. As shown in the figure, the ∆m dependence of a∆m(1) can be
fit by the exponential function 1 − exp (−ρ∆m), and the derivative of the scaling function a′0(1) can be
estimated as ρ. Table 2.4 summarizes the estimated value of ρ (= a′0(1)) for each time series.

The embedding equation (Eq. (2.15)) is finally rewritten into the following by using Eqs. (2.18) ‒
(2.21),

pm(τm)

(
1 + η

(
τm
〈τM 〉

)
∆m

)
= 10b∆m

τm

(
1− a∆m

(
τm

⟨τM ⟩

)
Qm(τm)

)
τm − a∆m

(
τm

⟨τM ⟩

) ∫ τm
0

Qm(x)dx
pM (τm). (2.22)

The point is that the original embedding equation is expressed by two empirical coefficients η
(

τm
⟨τM ⟩

)
and

a∆m

(
τM
⟨τM ⟩

)
which reflect the magnitude correlation and the inter-event time correlation, respectively.

The next section derives the multi-fractal relation from Eq. (2.22).

2.5 Approach to the Multi-fractal Relation

2.5.1 Derivation of the Multi-fractal Relation

The multi-fractal relation is considered to be a new statistical law that represents the important com-
bination of the GR law and the inter-event time statistics. In this section, using the properties found
in Section 2.4 on the conditional probability, we discuss the theoretical background of the multi-fractal
relation from the embedding equation and give an approximate calculation of the multi-fractal relation
to compare with the results of data analysis in Section 2.3.2.

Table 2.4: Estimated value of a′∆m(1) based on the fitting of a∆m(1) by the exponential function (up to
four decimal places).

Time series Estimate of a′0(1)
PDE 7.1175
JS 4.4046
JA (t0 = 100) 6.0932
JA (t0 = 200) 6.3019
JA (t0 = 300) 4.9168
JA (t0 = 400) 5.8595
JA (t0 = 500) 5.2134

19The calculation used here is as follows. First, we numerically obtain ⟨⟨τm⟩⟩τM and
∫ τM
0 Qm(x)dx. Let nj(σ) be

the number of the upper intervals within the transformed length [σ, σ + ∆σ] (where σ := log10
τM

⟨τM ⟩ and ∆σ = 0.1) for

a given ∆m and a pair of the cut-off magnitudes {mj ,mj + ∆m}. Thus, compute the addition of akmjmj+∆m(σ) for

these upper intervals in the time series for all the pairs of {mj ,mj + ∆m} with the same ∆m and take the average;

a∆m(σ) =

∑n−10∆m
j=0

∑nj(σ)

k=0
ak
mjmj+∆m(σ)∑n−10∆m

j=0

∑nj(σ)

k=0
1

.
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Figure 2.9: Rescaled correction coefficient a∆m(τM/〈τM 〉) for (a) PDE, (b) JS, (c) JA(t0 = 100), (d)
JA(t0 = 200), (e) JA(t0 = 300), (f) JA(t0 = 400), and (g) JA(t0 = 500). The results for specific pairs of
cut-off magnitudes are shown by filled symbols and for the mixed populations of (m,M) with the same
∆m by empty symbols. The blue-colored band shows a rough range of the a0.1(1) value for each time
series.
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Let us start with Eq. (2.22). Data analysis has suggested that the Weibull distribution can approx-
imate the inter-event time statistics. Especially, in the case when τm (< τM ) is large enough, not only
pM (τM ) but also pm(τm) can be adjusted by the Weibull distribution. Therefore, our purpose is to derive
a relation between two Weibull parameters (αm, βm) from the embedding equation (Eq. (2.22)) by sub-
stituting the Weibull distributions pm(τm) ≈ pWm (τm) and pM (τM ) ≈ pWM (τM ) in Eq. (1.10). Equation
(2.22) is rewritten as follows:(

αm

βm

)(
τm
βm

)αm−1

e−(
τm
βm

)
αm

[
1 + η

(
τm
〈τM 〉

)
∆m

]

=
βMΓ

(
1 + 1

αM

)
βmΓ

(
1 + 1

αm

) τm

[
1− a∆m

(
τm

⟨τM ⟩

)(
1− e−(

τm
βm

)
αm
)]

τm − a∆m

(
τm

⟨τM ⟩

) [
τm − βm

αm
γ
(

1
αm

,
(

τm
βm

)αm
)] (αM

βM

)(
τm
βM

)αM−1

e
−
(

τm
βM

)αM

,

(2.23)

where γ(x, y) is the lower incomplete gamma function.
One can say that Eq. (2.23) approximates at the arbitrary time τm if the Weibull approximation is

satisfied, but in our data analysis we have to be careful that the Weibull approximation breaks in the
case of small magnitude as well as in the case of small τm, where it is known that the inter-event time
statistics reveals a gradual change towards the Log-Weibull distribution from the Weibull distribution
[90, 91]; consequently, we have to treat Eq. (2.23) under the following two conditions: (1) m is large
enough (m ≤ M , m → M) and (2) τm (≤ τM ) is also large enough (i.e., τm ≈ 〈τM 〉). Under these two
conditions, Eq. (2.23) can be rewritten into the multi-fractal relation between two Weibull parameters
αm and βm (see Appendix A):

ln

(
βm
βm0

)
=

∫ m

m0

dm
1

(αm − 1)− αmΓ
(
1 + 1

αm

)αm

{
−η(1) + a′0(1)

[
e−Γ(1+ 1

αm
)
αm

−
γ
(

1
αm

,Γ
(
1 + 1

αm

)αm
)

αmΓ
(
1 + 1

αm

)
+ α′

m

 1

αm
−
ψ
(
1 + 1

αm

)
α2
m

+

(
1− Γ

(
1 +

1

αm

)αm
)
log Γ

(
1 +

1

αm

) ,

(2.24)

where we need the scaling forms obtained in Section 2.2 (Eqs. (2.16) and (2.21)), ψ(x) is the digamma
function, and α′

m := dαm/dm, β′
m := dβm/dm. m0 is a reference point of the integration; in our analysis,

m0 is fixed to m0 = 5.0 for PDE, 3.0 for JS, and 3.0 for JA, respectively, considering the Weibull
approximation is satisfied at these cut-off magnitudes.

Figure 2.11 shows the numerical results of Eq. (2.24) calculated with the fitting parameter function
Eq. (2.7) of αM with the parameter values of {λ, µ, ν} in Table 2.3 and the representative values of η(1)
and a′0(1) determined from the numerical results in Section 2.2; as shown by the blue-colored bands in
Figs. 2.7 and 2.9, these parameter values may fluctuate within a certain range; from the results in Fig.
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2.7, η(1) may deviate within the range [−1, 0]. Also, from the results in Fig. 2.9 and Table 2.4, a′0(1) may
deviate about [4, 7.2] for PDE, [3, 4.5] for JS, and [4, 6.4] for JA. Thus, it is important to consider the
impact of these fluctuations on the numerically computed multi-fractal relations. However, we determined
a representative of these parameter values from these ranges to be (η(1), a′0(1)) = (−0.5, 5.0) for PDE,
(−0.3, 4.0) for JS, and (−0.4, 5.0) for JA(t0 = 100 ∼ 500), respectively (the value of a′0(1) is roughly
inferred by the value of ∆m = 0.1). The effect of the changes in these values on the numerical results of
the multi-fractal relation will be discussed later.

The results in Fig. 2.11 show that the approximation given by Eq. (2.24) describes qualitatively the
tendency of the multi-fractal relation obtained by catalog analysis for either stationary (PDE), mixture
(JS), and non-stationary (JA) cases. In particular, in the non-stationary (aftershock) sequence, it is
striking that the theoretically derived multi-fractal relations in each moving ensemble seem to obey
nearly the same invariant curve. However, these derived multi-fractal relation curves are imperfect in
that they gradually separate from the results of catalog analysis at large cut-off magnitudes; the cause
of which is discussed in the following.

Figures 2.12‒ 2.14 show the results of the additional numerical calculations using the parameter values
of η(1) and a′0(1) in the above range. These figures indicate that the effect from a′0(1) is significant; the
larger values of a′0(1), which is obtained from the more detailed estimation of a′0(1) in Fig. 2.10, can
better describe the shape of the multi-fractal relations at large ∆m. On the other hand, the difference
at small ∆m seems to widen. The value of η(1) also affects the multi-fractal relation; from Fig. 2.7, a
slight tendency that η(1) gets smaller as ∆m gets larger can be observed, and this tendency does not
compensate but rather increase the difference between the theoretical curve and the catalog analysis
result. Therefore, although the fluctuations in the scaling functions related to the conditional probability
can qualitatively better describe the hyperbolic-shaped multi-fractal relation, it is difficult to explain in
full detail; this suggests the necessity of the detailed consideration of the conditional probability, especially
the assumptions put on the two correlation coefficients.

In order to analyze the properties of the conditional probability and the embedding equation, we
introduced these two correlation coefficients as a stepping stone, though, in fact, they have problems.
The MCC, as already pointed out, is not the smallest unit of the inter-correlation between earthquakes in
that it can include other correlations than magnitude-magnitude correlation. Also, the scaling property
of the MCC is empirical, and the mixing method of the samples with the same ∆m suggests the tendency
of the scaling function to gradually deviate for large ∆m. The other coefficient ICC is assumed to be
the univariate function, though the analytically derived conditional probability in later Chapter 3 for
the case of the stationary marked Poisson process is the bivariate function 20, and thus it is a rough
approximation. These points can cause quantitative deviations in the theoretically derived multi-fractal
relation from the result of the catalog analysis that can not be compensated by the parameter values.

Nevertheless, the derived multi-fractal relation based on these assumptions can qualitatively explain
the hyperbolic shape, and it is shown that the hierarchical structure of the seismic activity is reflected in
the multi-fractal relation, including its universality such as the time-independence in aftershock sequence.
For a detailed quantitative description of the multi-fractal relation, a more accurate understanding of
the conditional probability and, furthermore, derivation of its functional form is necessary. The following
chapters gradually clarify the properties and the functional form of this conditional probability; Chapter
3 derives its functional form for the stationary marked Poisson process, and Chapter 5 for time series
with weak inter-event correlations.

20The analytical result in Chapter 3 shows that the assumption put on the ICC (Eq. (2.19)) is incorrect; amM is a bivariate
function amM (τm, τM ), and this assumption leads to βm = βm010

(e−2)b(m−m0) for the stationary marked Poisson process,
which is actually βm ∝ 10b(m−m0). Therefore, the assumption causes the discrepancy between the theoretical result and
catalog analysis by the factor of ∼ 100.71, shortening the estimate of the βm value. This simple result suggests that the
quantitative discrepancy between the theoretical results and catalog analysis in the multi-fractal relation can be caused by
the assumptions put on the ICC and possibly MCC, and therefore, a detailed analysis of the conditional probability starting
from a simple time series is necessary.

21In Ref. [1], the theoretical curve of PDE was incorrectly drawn in the magnitude range [5, 7.5]. The theoretical curves
of the multi-fractal relation for the magnitude ranges of [5, 6.4] and [5, 7.5] are correctly shown in Fig. 2.11(a).
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Figure 2.11: The multi-fractal relation obtained by (symbols) the catalog analysis and ((dotted) curves)
Eq. (2.24) calculated using the fitting curve of αM and the representative values of (η(1), a′0(1)) for
(a) PDE, (b) JS, and (c) JA. (a) The symbol � shows the {αM , βM} obtained by catalog analysis in
the range M ∈ [5, 6.4] analyzed in Ref. [1] and + are in the range M ∈ [6.5, 7.5]. The solid (dotted)
curve shows the numerical calculation results using the fitting function of αM only within the magnitude
range [5, 6.4] ([5, 7.5]) in which the fluctuation in numerical data analysis results is less. The integral in
Eq. (2.24) was performed in the range M ∈ [5, 6.4] 21 ([5, 7.5]). (b) The 4 symbols are the results of
catalog analysis in the range M ∈ [3, 4.6] analyzed in Ref. [1] and × in the range M ∈ [4.7, 5]. The
solid (dotted) curve shows Eq. (2.24) using the fitting function of αM within the magnitude range [3, 4.6]
([3, 5]) and calculated in the integration in Eq. (2.24) for m ∈ [3, 4.6] (m ∈ [3, 5]). (c) The symbols show
the multi-fractal relation obtained by catalog analysis (the same symbol as in Fig. 2.5) and the (dotted)
curves show Eq. (2.24) calculated within M ∈ [3, 5], which is the same as the magnitude range of the
fitting of αM .
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Figure 2.12: Multi-fractal relations calculated from Eq. (2.24) with the parameter values within the range
a′0(1) ∈ [4, 7.2] and η(1) ∈ [−1, 0] and the fitting function of αM in (a) M ∈ [5, 6.4] and (b) M ∈ [5, 7.5].
The results for three values of a′0(1) = 4, 5, 7.2 with η(1) = −0.5 are shown by (dotted) curves, and from
these, the range for varying the value of η(1) is shaded.
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Figure 2.13: Equation (2.24) for JS with a′0(1) ∈ [3, 4.5] and η(1) ∈ [−1, 0]. The fitting function of αM

in the magnitude range (a) M ∈ [3, 4.6] and (b) M ∈ [3, 5]. The three cases of a′0(1) with η(1) = −0.3
are shown by (dotted) curves, and the ranges when η(1) varies in [−1, 0] are shown by the shaded area.
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Figure 2.14: Equation (2.24) for five time windows of JA; (a) JA(t0 = 100), (b) JA(t0 = 200), (c)
JA(t0 = 300), (d) JA(t0 = 400), and (e) JA(t0 = 500). The parameter values are set in the range
a′0(1) ∈ [4, 6.4] and η(1) ∈ [−1, 0]. The results for three values of a′0(1) with η(1) = −0.4 are shown
by (dotted) curves and the range Eq. (2.24) sweeps when η(1) varies within [−1, 0] is shown by shaded
region.
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2.6 Summary and Discussions

In this chapter, we developed the Embedding Equation Theory (EET) to derive detailed information
about the inter-event time statistics of seismicity. The conditional probability is described by two corre-
lation coefficients; one is the magnitude coefficient, and another is the inter-event time coefficient, and
the scaling forms of those coefficients are numerically determined by using the seismic data in the PDE
catalog and the JMA catalog. Furthermore, it is striking that the scaling form of each coefficient seems to
be universal not only in the stationary and mixture ensembles but also in the non-stationary (aftershock)
ensembles.

The empirical scaling laws obtained by the EET enable us to derive a new statistical feature in seismic
activity. Indeed, EET yields a theoretical foundation for the multi-fractal relation, and it is shown that
the approximate calculation of the multi-fractal relation reveals qualitative agreement with the numerical
results, which are obtained under the condition that the inter-event time distribution obeys the Weibull
statistics.

However, theoretically derived multi-fractal relations do not give a quantitatively full explanation of
the catalog analysis, and it is important to further understand the nature of the conditional probability
that characterizes the hierarchical structure of seismic time series and to clarify its functional form. In the
subsequent chapters, the properties of the conditional probability are examined through the consideration
of the Bayesian method to improve the probabilistic forecasting method of earthquakes.
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Chapter 3

Bayesian Updating on Time
Intervals at Different Magnitude
Thresholds in a Marked Point
Process and Its Application to
Synthetic Seismic Activity

This chapter is based on Ref. [2], which is paper 2 in the list of author’s papers, and Ref. [93].

3.1 Introduction

Chapter 2 introduced the conditional probability in marked point processes that yields the statistical
relation between inter-event times at different magnitude thresholds (m and M (= m+∆m), ∆m > 0).
It can be considered that the information on the intervals at the lower magnitude threshold (m) can be
utilized for estimating the length of the upper interval through the conditional probability. This chapter
considers Bayes’ theorem and Bayesian updating on the intervals at different magnitude thresholds and
presents the results of the numerical analysis related to the inverse probability density function.

In Section 3.2, we derive Bayes’ theorem for the inter-event time intervals at different magnitude
thresholds in the marked point process. In Section 3.3, the inverse probability density function is derived
for the stationary marked Poisson process that corresponds to the background seismicity of the ETAS
model (λ(t) ≡ λ0 in Eq. (1.3)). In Section 3.4, the Bayesian updating method is considered for the
stationary marked Poisson process, and the inverse probability density and its approximation functions
are derived. These functions are calculated numerically and compared in Section 3.5. In Section 3.6,
Bayesian updating is applied to the time series of the ETAS model. The approximation function is
examined numerically, and the property of the maximum point of its kernel part is analyzed statistically
considering the effectiveness for forecasting. Finally, Section 3.7 presents additional discussions and
conclusions. As so many variables and constants appear in this chapter, they are listed in Table 3.1,
including those already described in previous Chapters.

Table 3.1: Variables and constants used in Chapter 3.

Symbols Meaning
m, M Lower (m) and upper (M) magnitude thresholds for an marked point

process.
∆m :=M −m.
τm, τM Inter-event time interval for the point process at magnitude threshold

m, M .
pm(τm), pM (τM ) Inter-event time distributions of τm, τM .
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tj Time of j-th event in ETAS time series or of j-th Bayesian update.
Mj Magnitude of j-th event in ETAS time series.
λ(t) Event occurrence rate at time t.
λ0 Constant occurrence rate of background seismicity.
K, α, c, θ Parameters in ETAS model to determine history-dependence.
M0 The minimum magnitude in ETAS time series.
p(M) Probability density of magnitude being M .
b b-value of the GR law.
pmM (τm|τM ) Conditional probability density function of a lower interval length given

the upper interval length τM
Nm, NM Number of intervals at magnitude threshold m, M .
〈〈τm〉〉τM Average of the conditional probability density function (pmM (τm|τM )).
pMm(τM |τm) Inverse probability density function of an upper interval length given the

length τm of a lower interval in it.
NmM (τm|τM ) Number of upper and lower interval pairs of lengths τM and τm.
〈τm〉, 〈τM 〉 Average of pm(τm), pM (τM ).
zm(τm), zM (τM ) Generalized inter-event time distributions at magnitude threshold m,M .
zmM (τm|τM ) Generalized conditional probability density function.
ρmM (τm|i, τM ) Conditional probability density function of a lower interval length given

the upper interval with length τM including i lower intervals.
ΨmM (i|τM ) Probability mass function of the number of lower intervals in the upper

interval of length τM .
A∆m := 〈τM 〉/〈τm〉 − 1(= 10b∆m − 1).
δ(·) Dirac’s delta function.
θ(·) Unit step function.

{τ (1)m , · · · , τ (n)m } n consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m }.
NmM (τM , τ

(1)
m , · · · , τ (n)m ) Number of combinations of an upper interval of length τM and

{τ (1)m , · · · , τ (n)m }.
pMm(τM |τ (1)m , · · · , τ (n)m ) Inverse probability denisity function of an upper interval length given

{τ (1)m , · · · , τ (n)m } in it.
T Sum of the lengths of consecutive lower intervals.

N ′
mM (τ

(1)
m , · · · , τ (n)m |τM ) Number of {τ (1)m , · · · , τ (n)m } in the new time series in Fig. 3.4(b).

PL(τm|τM ) (PR(τm|τM )) Probability density function of the left(right)most lower interval length
in an upper interval of length τM .

P (τ
(1)
m , · · · , τ (l)m |τM ) Probability density function of the left(right)most lower intervals lengths

in an upper interval of length τM .

Pi(τ
(i)
m |τM ) Probability density function of the i-th interval length in consecutive

lower intervals in an upper interval of length τM .

pMm(τM |τ (1)m , · · · , τ (n)m ) Inverse probability density function of an upper interval length given

{τ (1)m , · · · , τ (n)m }.
papproxMm (τM |τ (1)m , · · · , τ (n)m ) Approximation function of pMm(τM |τ (1)m , · · · , τ (n)m ).

pkernelMm (τM |τ (1)m , · · · , τ (n)m ) Kernel part of the approximation function papproxMm (τM |τ (1)m , · · · , τ (n)m ).

pcorrectMm (τM |τ (1)m , · · · , τ (n)m ) Correction term in the approximation function

papproxMm (τM |τ (1)m , · · · , τ (n)m ).
τm,j , τM,k Discretized intervals defined by Eq. (3.41).

jmin, jmax (j
(k)
min, j

(k)
max) Minimum and maximum of j in Eq. (3.41) (with explicit dependence on

k).
kmin, kmax Minimum and maximum of k in Eq. (3.41).
le Parameter for the calculation regarding extrapolation of the range of the

bivariate distributions.
lc Parameter for testing the effect of the edge in the P1.
∆τm, ∆τM Increments in discretized intervals.
pm, pM Numerically calculated inter-event time distributions defined by Eq.

(3.42).
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pmM , P1 Numerically calculated conditional probability density function and
P1(τm|τM ) defined by Eq. (3.42).

N Number of time series for sample data.
psup, pinf Upper and lower bounds imposed on numerical calculations.
D(f ||g) Distance between two square-integrable functions f and g defined by Eq.

(3.45).
D′(·||·) Distance calculated by Eq. (3.46) with Eqs. (3.39) and (3.40).
D′′(·||·) Distance calculated by Eq. (3.46) with Eqs. (3.36) and (3.37).
T Elapsed time from the event with magnitude above M .
τ̂max
M Maximum peak time in Eq. (3.24) which is discretized in Eq. (3.41).
τmax,approx
M Maximum peak time in Eq. (3.36).
kmax, kmax,approx The k corresponds to τ̂max

M and τmax,approx
M by Eq. (3.41).

τmax
M (τmax,n

M ) Maximum peak time of the kernel part in Eq. (3.37) (at the n-th update).
kmax (kmax,n) The k corresponds to τmax

M (τmax,n
M ) by Eq. (3.41) (at the n-th update).

τmax,L
M , τmax,R

M Maximum peak time in Eq. (3.36) where Pi are all replaced by PL or
PR.

kmax,L, kmax,R The k corresponds to τmax,L
M and τmax,R

M by Eq. (3.41).
τ∗M The time interval from the previous to the next events with magnitudes

> M .
δn Relative error between τmax,n

M and τ∗M defined by Eq. (3.48).
δth Threshold of relative error δn to judge the accuracy of the estimation.
nfin Total number of updates until the next event greater than M .
n≤ Consecutive number of updates that satisfy |δn| ≤ δth and include nfin-th

update.
Rn, Occurrence rate of events defined by Eq. (3.51).
∆ log10Rn, ∆k

max
n Variations of log10Rn and kmax,n defined by Eqs. (3.52) and (3.53).

Pfin Probability of |δnfin
| ≤ δth.

P≥30 Probability of n≤ ≥ 30 among n≤ > 0.
τ≤th Time duration corresponds to the n≤ consecutive updates.

3.2 Bayes’ Theorem for Inter-event Times at Different Magni-
tude Thresholds

We consider Bayes’ theorem between the inter-event times at different magnitude thresholds (m andM) in
a marked point process, and we derive the general relationship between the conditional probability density
function pmM (τm|τM ) and the inverse probability density function pMm(τM |τm). Here pMm(τM |τm)
represents the probability density function of the upper interval length under the condition that it includes
a lower interval of length τm.

LetNmM (τM , τm) be the total number of the pairs of the upper interval of length within [τM , τM+dτM )
and the lower interval of length within [τm, τm+dτm) (Fig. 3.1). Hereafter, we express this NmM (τM , τm)
as the number of the pairs of the intervals such that the length of the upper interval is τM and the length
of the lower interval is τm, for simplicity, and other numbers of the intervals are expressed in the same
way. NmM (τM , τm) can be represented in two ways:

Time

M
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n
it
u
d
e

τM

τm
(1)

τm
(3)

τm
(2)
=3=1 =1 τm

(4)
=2

=7

M

m

Figure 3.1: Schematic of the approach to count the number of pairs of upper and lower intervals whose
lengths are τM and τm, respectively. Four pairs are shown in the figure, and NmM (7, 1) = 2, NmM (7, 2) =
1, and NmM (7, 3) = 1.
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1) Derive NmM (τM , τm) by counting the cumulative total number of the upper intervals of length τM
that include the lower interval of length τm (Fig. 3.2(a)). Among the Nm lower intervals in the time
series, there are Nmpm(τm)dτm intervals of length τm. There exists only one upper interval that includes
each of such lower intervals. The probability that the length of that upper interval is τM is given by
pMm(τM |τm)dτM . Therefore:

NmM (τM , τm) = Nmpm(τm)pMm(τM |τm)dτmdτM . (3.1)
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Figure 3.2: Schematic of the two approaches for calculating NmM (τM , τm). (a) The first approach involves
counting the cumulative total number of the upper intervals of length τM that include the lower interval
of length τm. (b) The second approach involves counting the number of the lower intervals of length τm
included in the upper interval of length τM .

2) Derive NmM (τM , τm) by counting the total number of the lower intervals of length τm included in
the upper interval of length τM (Fig. 3.2(b)). The number of the upper intervals of length τM in the time
series is NMpM (τM )dτM . Therefore, the number of the lower intervals included in these upper intervals
is:

NMpM (τM )
τM

〈〈τm〉〉τM
dτM .

Among them, the proportion of the lower intervals whose length is τm is pmM (τm|τM )dτm. Therefore:

NmM (τM , τm) = NMpM (τM )
τM

〈〈τm〉〉τM
pmM (τm|τM )dτmdτM . (3.2)

From Eqs. (3.1) and (3.2):

Nmpm(τm)pMm(τM |τm) = NMpM (τM )
τM

〈〈τm〉〉τM
pmM (τm|τM ). (3.3)

By using NM/Nm = 〈τm〉/〈τM 〉, Eq. (3.3) is rewritten as:

pMm(τM |τm) =

(
〈τm〉
〈τM 〉

τM
〈〈τm〉〉τM

)
pmM (τm|τM )pM (τM )

pm(τm)
. (3.4)

Equation (3.4) can be considered as Bayes’ theorem for a marked point process. The parenthesized
part is from the difference in the number of intervals for each magnitude threshold (〈τm〉/〈τM 〉) and the
inclusion relationship between the upper and lower intervals (τM/〈〈τm〉〉τM ), i.e., a lower interval is always
included in only one upper interval, whereas an upper interval includes τM/〈〈τm〉〉τM lower intervals on
average. This part disappears by using generalized probability density functions [94]:

zm(τm) :=
τm
〈τm〉

pm(τm),

zM (τM ) :=
τM
〈τM 〉

pM (τM ),

zmM (τm|τM ) :=
τm

〈〈τm〉〉τM
pmM (τm|τM ).

(3.5)
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These functions satisfy the normalization condition of the probability density function. Equations (2.3)
and (3.4) are simplified as [94]:

zm(τm) =

∫ ∞

0

zmM (τm|τM )zM (τM )dτM , (3.6)

pMm(τM |τm) =
zmM (τm|τM )zM (τM )

zm(τm)
. (3.7)

These equations indicate that pMm(τM |τm) satisfies the normalization condition.

3.3 Bayes’ Theorem for Stationary Marked Poisson Process

In this section, we derive pMm(τM |τm) for a stationary marked Poisson process generated by the ETAS
model with λ(t) ≡ λ0 in Eq. (1.3). In this case, the magnitudes and inter-event times obey the following
probability density functions independently.

p(M) ∝ 10−bM , (3.8)

pM (τM ) =
1

〈τM 〉
e
− τM

⟨τM ⟩ . (3.9)

First, we derive pmM (τm|τM ), which can be expressed generally as:

pmM (τm|τM ) =

∑∞
i=1 i ρmM (τm|i, τM )ΨmM (i|τM )∑∞

i=1 i ΨmM (i|τM )
, (3.10)

where i (∈ N) represents the number of lower intervals included in the upper interval of length τM ;
ΨmM (i|τM ) represents the probability mass function of such i under the condition that the length of the
upper interval is τM ; and ρmM (τm|i, τM ) represents the probability density function of a lower interval
length given that the length of the upper interval is τM and the number of the lower intervals in it is i.
We can calculate the conditional probability density function and other related amounts when we know
these functions.

In the case of the stationary Poisson process, these functions can be obtained as follows. For the
selected stationary Poisson process, the average number of events included in the upper interval of length
τM is (τM/〈τm〉 − τM/〈τM 〉), because no event greater than M occurs in the interval considered, and
therefore, τM/〈τM 〉-events larger than M occurring in the interval of length τM on average must be
excluded from the average number τM/〈τm〉 of events occurring in the interval of length τM . Then,
the average occurrence rate in the upper interval of length τM is (1/〈τm〉 − 1/〈τM 〉). The number of
events with m < magnitude ≤ M in τM is one less than that of the lower intervals, and therefore, the
probability of including i lower intervals is equal to the probability of including (i − 1) events with an
average occurrence rate (1/〈τm〉 − 1/〈τM 〉). Therefore:

ΨmM (i|τM ) =

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩ , (3.11)

where:

A∆m :=
〈τM 〉
〈τm〉

− 1

= 10b∆m − 1. (3.12)

The other function ρmM (τm|i, τM ) is obtained as follows. For i = 1,

ρmM (τm|1, τM ) = δ(τM − τm). (3.13)

For i ≥ 2 [95, 96],

ρmM (τm|i, τM ) =
(i− 1)

τM

(
1− τm

τM

)i−2

θ(τM − τm). (3.14)
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From Eqs. (3.11) ‒ (3.14), pmM (τm|τM ) is derived as (Appendix B):

pmM (τm|τM ) =
e
−A∆m

τM
⟨τM ⟩ δ(τM − τm) + A∆m

⟨τM ⟩ e
−A∆m

τm
⟨τM ⟩

(
A∆m

τM−τm
⟨τM ⟩ + 2

)
θ(τM − τm)(

A∆m
τM
⟨τM ⟩ + 1

) . (3.15)

This conditional probability composed of Eqs. (3.11) ‒ (3.14) certainly has exponential distributions as
the solution of Eq. (2.3) (Appendix B).

Second, we derive pMm(τM |τm). From Eqs. (3.9) and (3.15), pMm(τM |τm) is obtained as (Appendix
B):

pMm(τM |τm) =
e−

τM−τm
⟨τm⟩ δ(τM − τm) + A∆m

⟨τM ⟩ e
− τM−τm

⟨τM ⟩
(
A∆m

τM−τm
⟨τM ⟩ + 2

)
θ(τM − τm)

(A∆m + 1)
2 . (3.16)

We emphasize that pMm(τM |τm) has a peak at:

τmax
M = τm + 〈τM 〉

(
1− 2

A∆m

)
, (3.17)

when the next condition is satisfied (Appendix B).

∆m >
log10 3

b
. (3.18)

3.4 Bayesian Updating for Stationary Marked Poisson Process

Bayes’ theorem shows a one-to-one relationship between an upper and a lower interval. In this section,
we extend it to the relationship between an upper interval and multiple consecutive lower intervals
by considering Bayesian updating for the stationary marked Poisson process. We derive the inverse

probability density function pMm(τM |τ (1)m , · · · , τ (n)m ), as well as its approximation function, for the upper

interval under the condition that it includes the consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m }.

3.4.1 Inverse Probability Density Function

As in Section 3.2, we derive the inverse probability density function by expressing the total number of com-

binations of the upper interval of length τM and the consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m }
included in it denoted by NmM (τM , τ

(1)
m , · · · , τ (n)m ) in two ways.

First, we derive NmM (τM , τ
(1)
m , · · · , τ (n)m ) by counting the cumulative total number of the upper inter-

vals of length τM that include the consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m } (Fig. 3.3(a)). We
begin with the case n = 2. The intervals in the stationary marked Poisson process emerge independently,

and therefore, the total number of the two consecutive lower intervals of lengths τ
(1)
m and τ

(2)
m is:

Nmpm(τ (1)m )pm(τ (2)m )dτ2m.

Among them, some pairs do not belong to the same upper interval (the case of (3) in Fig. 3.3(a)). In
that case, the magnitude of the event sandwiched between the two lower intervals is larger than M . In
the stationary marked Poisson process, the proportion that the consecutive lower intervals belong to the
same upper interval equals to the probability that the magnitude of the event sandwiched between the
two lower intervals is smaller than M . It is given by the GR law as:

1− P (M)

P (m)
= 1− 10−b∆m

= 1− 〈τm〉
〈τM 〉

.
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Figure 3.3: Schematic of the two approaches to calculate NmM (τM , τ
(1)
m , τ

(2)
m ). (a) The first approach

involves counting the cumulative total number of the upper intervals of length τM that include the

consecutive lower intervals of lengths {τ (1)m , τ
(2)
m }. (b) The second approach involves counting the number

of the consecutive lower intervals of lengths {τ (1)m , τ
(2)
m } included in the upper interval of length τM .

Therefore,

NmM (τM , τ
(1)
m , τ (2)m ) = Nm

(
1− 〈τm〉

〈τM 〉

)
pm(τ (1)m )pm(τ (2)m )pMm(τM |τ (1)m , τ (2)m )dτ2mdτM . (3.19)

Equation (3.19) can be generalized for n(≥ 2) consecutive lower intervals.

NmM (τM , τ
(1)
m , · · · , τ (n)m ) = Nm

(
1− 〈τm〉

〈τM 〉

)n−1
(

n∏
i=1

pm(τ (i)m )

)
pMm(τM |τ (1)m , · · · , τ (n)m )dτnmdτM . (3.20)

Second, we derive NmM (τM , τ
(1)
m , · · · , τ (n)m ) by counting the total number of the consecutive lower

intervals of lengths {τ (1)m , · · · , τ (n)m } included in the upper interval of length τM (Fig. 3.3(b)). To this end,
we start with the case n = 2 again (Fig. 3.3(b)). When the upper interval of length τM includes i (≥ 2)
lower intervals, the first interval of the two consecutive lower intervals is selected from (i − 1) intervals

except for the rightmost one. The probability that this first interval has length τ
(1)
m is ρmM (τ

(1)
m |i, τM )dτm.

The second lower interval is fixed at adjacent to the first one. This second interval is one of the (i − 1)

intervals that divide the remaining length τM−τ (1)m , and therefore, the probability that the second interval

has length τ
(2)
m is ρmM (τ

(2)
m |i− 1, τM − τ

(1)
m )dτm. Thus, considering all i (≥ 2):

NmM (τM , τ
(1)
m , τ (2)m ) = NMpM (τM )dτM

∞∑
i=2

(i−1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )ρmM (τ (2)m |i−1, τM−τ (1)m )dτ2m.

(3.21)
Equation (3.21) is generalized for the case n(≥ 2) lower intervals as:

NmM (τM , τ
(1)
m , · · · , τ (n)m ) = NMpM (τM )dτM

×
∞∑
i=n

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
dτnm. (3.22)
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From Eqs. (3.20) and (3.22), pMm(τM |τ (1)m , · · · , τ (n)m ) is derived as:

pMm(τM |τ (1)m , · · · , τ (n)m ) =
〈τm〉
〈τM 〉

1(
1− ⟨τm⟩

⟨τM ⟩

)n−1

pM (τM )∏n
i=1 pm(τ

(i)
m )

×
∞∑
i=n

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
. (3.23)

Furthermore, the explicit form of the inverse probability density function is derived by substituting Eqs.
(3.9) and (3.11) ‒ (3.14) into Eq. (3.23) as (Appendix C):

pMm(τM |τ (1)m , · · · , τ (n)m ) =

(
〈τm〉
〈τM 〉

)2
{
e−

τM−
∑n

i=1 τ
(i)
m

⟨τm⟩ δ

(
τM −

n∑
i=1

τ (i)m

)

+
A∆m

〈τM 〉
e
− τM−

∑n
i=1 τ

(i)
m

⟨τM ⟩

[
A∆m

〈τM 〉

(
τM −

n∑
i=1

τ (i)m

)
+ 2

]
θ

(
τM −

n∑
i=1

τ (i)m

)}
.

(3.24)

Equation (3.24) includes the case n = 1 (Eq. (3.16)). In addition, Eq. (3.24) is identical to Eq. (3.16)

when τm is replaced with T :=
∑n

i=1 τ
(i)
m ; this implies that the occurrence pattern of small events does

not affect that of upper intervals. This seems natural for the stationary Poisson process.

The same property as Eqs. (3.17) and (3.18) holds for pMm(τM |τ (1)m , · · · , τ (n)m ); it has a peak at:

τmax
M = T + 〈τM 〉

⟨τM ⟩
⟨τm⟩ − 3

⟨τM ⟩
⟨τm⟩ − 1

(> T ),

under the condition

∆m >
log10 3

b
. (3.25)

In the above-mentioned Bayesian updating, the position of the consecutive lower intervals in an upper
interval is not restricted. However, the update can be started only from the lower interval immediately
after the event with the magnitude above M . In such a method, the inverse probability density function
is different from Eq. (3.24) (Appendix D). At a glance, this updating method seems suitable under
the situation wherein the information on the lower intervals observed one after another is imported
sequentially; however, seismic catalogs are known to be incomplete immediately after a large earthquake
[38]. In that case, the lower intervals should be considered not from the leftmost one but from somewhere
else. Therefore, in the present chapter, we limit ourselves to examining the property of the inverse
probability density function of the unrestricted updating method that is more appropriate for application
to earthquake catalogs.

3.4.2 Approximation Function of Inverse Probability Density Function

Equation (3.23) indicates that new information on the lower intervals cannot be added by the prod-
uct of the conditional probabilities as is usual in Bayesian updating. In this subsection, we derive its
approximation function with a convenient form applicable to the time series with correlations between
events.

To this end, we use the approximate derivation of NmM (τM , τ
(1)
m , · · · , τ (n)m ) described below instead

of the second approach for deriving Eq. (3.22). In the following, the upper and the lower consecutive
intervals are assumed to satisfy:

τM ≥
n∑

i=1

τ (i)m . (3.26)

First, consider the case n = 2. There are NMpM (τM )dτM upper intervals of length τM in the time
series. These upper intervals are as shown in Fig. 3.4(a), and we use them to generate a new time series
by connecting them in the order of appearance as in Fig. 3.4(b). Let the number of the consecutive
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Figure 3.4: Schematic of another approach to count the total number of consecutive lower intervals of

lengths τ
(1)
m and τ

(2)
m included in the upper interval of length τM . (a) First, pick up all upper intervals

of length τM from the time series. (b) Second, generate new time series by connecting these upper

intervals in the order of appearance. Third, N ′
mM (τ

(1)
m , τ

(2)
m |τM ) is calculated by counting the total

number of the consecutive lower intervals of lengths {τ (1)m , τ
(2)
m } in this new time series. In this counting

process, an approximate calculation using the product of the conditional probability is conducted. Finally,

NmM (τM , τ
(1)
m , τ

(2)
m ) is obtained by excluding such pairs where the two consecutive lower intervals are not

included in the same upper interval (the cases indicated with ∗) from N ′
mM (τ

(1)
m , τ

(2)
m |τM ).

lower intervals of lengths {τ (1)m , τ
(2)
m } in this new time series be denoted by N ′

mM (τ
(1)
m , τ

(2)
m |τM ). The total

number of the lower intervals in this new time series is given as:

NMpM (τM )
τM

〈〈τm〉〉 τM
dτM .

Therefore, based on the assumption that τ
(1)
m and τ

(2)
m emerge independently, N ′

mM (τ
(1)
m , τ

(2)
m |τM ) is

approximately calculated as:

N ′
mM (τ (1)m , τ (2)m |τM ) ≈ NMpM (τM )

τM
〈〈τm〉〉 τM

pmM (τ (1)m |τM )pmM (τ (2)m |τM )dτ2mdτM . (3.27)

N ′
mM (τ

(1)
m , τ

(2)
m |τM ) is not equivalent to NmM (τM , τ

(1)
m , τ

(2)
m ) because N ′

mM (τ
(1)
m , τ

(2)
m |τM ) includes

cases where the two consecutive lower intervals do not belong to the same upper interval (the case
indicated by ∗ in Fig. 3.4(b)). Therefore, it is necessary to count such cases in the time series, and

subtract them from N ′
mM (τ

(1)
m , τ

(2)
m |τM ).

These cases to exclude occur when an upper interval of length τM whose rightmost lower interval has

length τ
(1)
m is adjacent to the left of another upper interval whose leftmost lower interval has length τ

(2)
m .

The probability density that the length of the rightmost or leftmost lower interval of the upper interval
of length τM is τm is, because the position of the rightmost or leftmost interval is confirmed among the
i-lower intervals, calculated as:

PR(τm|τM ) = PL(τm|τM )

=

∞∑
i=1

ΨmM (i|τM )ρmM (τm|i, τM ). (3.28)

Here, the probability density for the rightmost lower interval is denoted by PR(τm|τM ), and the leftmost
by PL(τm|τM ). Equation (3.28) can be explicitly written using Eqs. (3.11) ‒ (3.14) as (Appendix E):

PR(τm|τM ) = PL(τm|τM )

= e
−A∆m

τM
⟨τM ⟩ δ(τM − τm) +

A∆m

〈τM 〉
e
−A∆m

τm
⟨τM ⟩ θ(τM − τm). (3.29)
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By using PL(τm|τM ) and PR(τm|τM ), the number of cases to exclude can be expressed for a sufficiently
large NM (because NMpM (τM )dτM in Eq. (3.30) is precisely NMpM (τM )dτM − 1) as:

NMpM (τM )PR(τ (1)m |τM )PL(τ (2)m |τM )dτ2mdτM . (3.30)

Therefore, NmM (τM , τ
(1)
m , τ

(2)
m ) is approximately derived as:

NmM (τM , τ
(1)
m , τ (2)m )

≈ NMpM (τM )

(
τM

〈〈τm〉〉 τM
pmM (τ (1)m |τM )pmM (τ (2)m |τM )− PR(τ (1)m |τM )PL(τ (2)m |τM )

)
dτ2mdτM .

(3.31)

Next, we consider the case n(≥ 3). Equation (3.27) is generalized as:

N ′
mM (τ (1)m , · · · , τ (n)m |τM ) ≈ NMpM (τM )

τM
〈〈τm〉〉 τM

(
n∏

i=1

pmM (τ (i)m |τM )

)
dτnmdτM . (3.32)

From thisN ′
mM (τ

(1)
m , · · · , τ (n)m |τM ), the cases wherein the consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m }

are not included in the same upper interval need to be excluded. Considering the condition of Eq. (3.26),
a sequence of consecutive lower intervals is divided by only one boundary event with a magnitude above

M (Fig. 3.5). Let P (τ
(1)
m , · · · , τ (l)m |τM ) be the probability that the rightmost or leftmost lower intervals

of the upper interval of length τM is {τ (1)m , · · · , τ (l)m } (l ≥ 2). Then, as the position of the rightmost or

leftmost lower intervals is confirmed among the i(≥ l) lower intervals, P (τ
(1)
m , · · · , τ (l)m |τM ) is:

P (τ (1)m , · · · , τ (l)m |τM ) =

∞∑
i=l

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

l∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
. (3.33)

By substituting Eqs. (3.11) ‒ (3.14) into Eq. (3.33) (Appendix F):

P (τ (1)m , · · · , τ (l)m |τM ) =

l∏
i=1

Pi(τ
(i)
m |τM ), where Pi(τ

(i)
m |τM ) =

(
A∆m

〈τM 〉

)
e
−A∆m

τ
(i)
m

⟨τM ⟩ . (3.34)

There are (n − 1) possible choices for the boundary position of the consecutive lower intervals (Fig.
3.5(a)), each with an equal probability

∏n
i=1 Pi. The number of consecutive upper intervals in the new

time series is almost NMpM (τM )dτM , and therefore, the number of cases to be excluded is:

NMpM (τM )(n− 1)

(
n∏

i=1

Pi(τ
(i)
m |τM )

)
dτnmdτM .

Then,

NmM (τM , τ
(1)
m , · · · , τ (n)m ) ≈ NMpM (τM )

[
τM

〈〈τm〉〉 τM

n∏
i=1

pmM (τ (i)m |τM )− (n− 1)

n∏
i=1

Pi(τ
(i)
m |τM )

]
dτnmdτM .

(3.35)

Therefore, from Eqs. (3.20) and (3.35), the approximation function (papproxMm (τM |τ (1)m , · · · , τ (n)m )) of the
inverse probability density function is derived as:

papproxMm (τM |τ (1)m , · · · , τ (n)m ) =
〈τm〉
〈τM 〉

1(
1− ⟨τm⟩

⟨τM ⟩

)n−1

τM
〈〈τm〉〉 τM

(
n∏

i=1

pmM (τ
(i)
m |τM )

pm(τ
(i)
m )

)
pM (τM )

− 〈τm〉
〈τM 〉

(n− 1)(
1− ⟨τm⟩

⟨τM ⟩

)n−1

(
n∏

i=1

Pi(τ
(i)
m |τM )

pm(τ
(i)
m )

)
pM (τM ). (3.36)
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Figure 3.5: Schematic of the patterns of the consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m } excluded
from N ′

mM (τ
(1)
m , · · · , τ (n)m |τM ). (a) There are (n−1) ways to divide the sequence of lower intervals by the

event with a magnitude greater than M at the boundary of the upper intervals of length τM . (b) The
sequence can not be divided by more than one boundary according to condition (3.26).

Equation (3.36) is composed of two parts: the first term on the r.h.s. involves the product of the
conditional probability density functions, and we refer to this part as the kernel part of the approximation

function (pkernelMm (τM |τ (1)m , · · · , τ (n)m )) hereafter.

pkernelMm (τM |τ (1)m , · · · , τ (n)m ) =
〈τm〉
〈τM 〉

1(
1− ⟨τm⟩

⟨τM ⟩

)n−1

τM
〈〈τm〉〉 τM

(
n∏

i=1

pmM (τ
(i)
m |τM )

pm(τ
(i)
m )

)
pM (τM ). (3.37)

The second term of the r.h.s. is referred to as the correction term, and we denote the part other than

(n− 1) by pcorrectMm (τM |τ (1)m , · · · , τ (n)m ) as:

correction term = (n− 1)pcorrectMm (τM |τ (1)m , · · · , τ (n)m ), (3.38)

where pcorrectMm (τM |τ (1)m , · · · , τ (n)m ) =
〈τm〉
〈τM 〉

1(
1− ⟨τm⟩

⟨τM ⟩

)n−1

(
n∏

i=1

Pi(τ
(i)
m |τM )

pm(τ
(i)
m )

)
pM (τM ).

Equation (3.36) can be explicitly written as (Appendix G):

papproxMm (τM |τ (1)m , · · · , τ (n)m ) =
〈τm〉
〈τM 〉2

(
1− 〈τm〉

〈τM 〉

)(
A∆m

τM
〈τM 〉

+ 1

)
e
− τM−

∑n
i=1 τ

(i)
m

⟨τM ⟩

×
n∏

i=1

[
1−

(
τ
(i)
m − ⟨τM ⟩

A∆m

τM + ⟨τM ⟩
A∆m

)]
− 〈τm〉

〈τM 〉2

(
1− 〈τm〉

〈τM 〉

)
(n− 1)e

− τM−
∑n

i=1 τ
(i)
m

⟨τM ⟩ .

(3.39)

The kernel part is explicitly expressed as:

pkernelMm (τM |τ (1)m , · · · , τ (n)m )

=
〈τm〉
〈τM 〉2

(
1− 〈τm〉

〈τM 〉

)(
A∆m

τM
〈τM 〉

+ 1

)
e
− τM−

∑n
i=1 τ

(i)
m

⟨τM ⟩

n∏
i=1

[
1−

(
τ
(i)
m − ⟨τM ⟩

A∆m

τM + ⟨τM ⟩
A∆m

)]
. (3.40)

Note that functions (3.36) ‒ (3.40) do not satisfy the normalization condition. Furthermore, in some

cases, papproxMm (τM |τ (1)m , · · · , τ (n)m ) in Eqs. (3.36) and (3.39) may take negative values when the correction
term is larger than the kernel part. The relationship between the inverse probability density function
and its approximation function is discussed in Appendix H.
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3.5 Examination of Bayesian Updating Method in Stationary
Marked Poisson Process

In this section, we compute the inverse probability density function given by Eq. (3.24) and the (part of)
approximation function (Eqs. (3.36) ‒ (3.40)) for the numerically generated stationary marked Poisson
process, and we compare their properties. We examine the numerical method of Bayesian updating by
changing some conditions to see its utility.

3.5.1 Time Series Generation and Bayesian Updating Methods

The stationary marked Poisson process can be numerically generated by setting λ(t) ≡ λ0 in Eq. (1.3).
In fact, it was numerically generated as the renewal process in which magnitudes and time intervals were
generated randomly obeying Eqs. (3.8) and (3.9), respectively. We set the parameter values to be b = 1
and λ0 = 0.0007. M0 was set to 3. It should be noted that the magnitudes were set to be generated in
the range greater than M0 = 3; however, as the outputs were only six decimal places, a small number of
events with magnitude≡ 3 existed. Such cases were excluded from the analysis by setting the following
lower magnitude threshold at m = M0. The magnitude thresholds were set to (M,m) = (5, 3). The
b-value condition of Eq. (3.25) is satisfied for these settings. The occurrence time of each event was
recorded to 20 decimal places. For such time series, Bayesian updating was applied as explained below.

Bayesian updating was executed for each lower interval in the order of appearance starting from the one

immediately after the event with a magnitude above M by substituting their lengths {τ (1)m , τ
(2)
m , · · · , τ (n)m }

into Eqs. (3.24), (3.39), and (3.40). The summation of the lower intervals at the n-th update
∑n

i=1 τ
(i)
m

is equivalent to the elapsed time T from the previous event with a magnitude above M . Further, the
updating was performed until the event immediately before the next large event with a magnitude above
M (i.e., the rightmost lower interval in an upper interval was not used). Therefore, we considered only
cases where at least one event was (or two lower intervals were) included in an upper interval.

In addition, we used the following numerical method based on Eqs. (3.36) and (3.37). First, we
generated N time series each contains 105 events as sample data. From these sample data, we nu-
merically obtained the statistics required for calculating Eqs. (3.36) and (3.37), i.e., pm(τm), pM (τM ),
pmM (τm|τM ) and Pi(τm|τM ), and the average number of lower intervals inside the upper interval of
length τM , τM/〈〈τm〉〉τM . Although the last one is a quantity related to the conditional probability, we
calculated it separately. Moreover, we calculated only P1(τm|τM ) and used it instead of Pi(τm|τM ) for
i ≥ 2.

These statistics were obtained as a vector or a matrix on discretized intervals as:

τm,j := 10(j+0.5)∆τm ,

τM,k := 10(k+0.5)∆τM , (3.41)

where j, k ∈ Z, such that:

pm = [pm,j ]j=jmin,··· ,jmax
,

pM = [pM,k]k=kmin,··· ,kmax
,

pmM =
[
[pmM,jk]j=j

(k)
min,··· ,j

(k)
max

]
k=kmin,··· ,kmax

,

P1 =
[
[P1,jk]j=j

(k)
min,··· ,j

(k)
max

]
k=kmin,··· ,kmax

.

(3.42)

In Eq. (3.42), jmin, jmax, kmin, and kmax represent the smallest and largest bin numbers of each distribu-

tion. For the statistics obtained as a matrix, the range of j depends on k, and this is indicated as j
(k)
min

and j
(k)
max. The ranges of j and k are different for distribution; however, the same symbol is used in Eq.

(3.42). In this chapter, we fix ∆τm = 0.1, and in this section, we examine the cases N = 103, 105 and
∆τM = 0.1, 0.025. In the case N = 105, they were fully used only for pmM (τm|τM ) and P1(τm|τM ), and
only 103 of them were used for pm(τm), pM (τM ), and τM/〈〈τm〉〉τM .

To use these amounts in numerical Bayesian updating, we performed the following interpolations
between the data points and extrapolations outside the data range. We describe these procedures using
the example of the case N = 103 and ∆τM = 0.1.
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First, for the inter-event time distributions (pm and pM ), we interpolated between the data points
of each distribution (between τm,j and τM,k, respectively) using cubic spline functions. Outside the data
range (i.e., τm < τm,jmin

, τm > τm,jmax
and τM < τM,kmin

, τM > τM,kmax
), we extrapolated the fitting

curve for the edge 10 points (Fig. K.1). The distributions were defined for all continuous τm values and
for all τM,k using this process.

Second, for the bivariate distributions (pmM and P1), we performed the same interpolations and
extrapolations for τm,j (Figs. K.2 and K.3). Meanwhile, for τM,k, the domain was extended using the
average of the functions at {τM,kmin

, · · · , τM,kmin+le−1} as the substitute for τM,k with k < kmin, whereas
using the functions at {τM,kmax−le+1, · · · , τM,kmax

} as the substitute for τM,k with k > kmax. We set
le = 5 for ∆τM = 0.1 and le = 20 for ∆τM = 0.025.

Finally, for τM,k/〈〈τm〉〉τM,k
, the interpolation and extrapolation procedures were conducted in the

same way as pM , although the extrapolation functions were different (Fig. K.4).
Thus, the discrete variable τm,j became continuous as τm, and the distribution functions were defined

for all τm larger than 0. This made it possible to return a value for any input of the length of a lower
interval when performing Bayesian updating. Further, the distribution functions were defined for any k
in Eq. (3.41). We set the range of k to be −120 ≤ k ≤ 70 for ∆τM = 0.1, and −480 ≤ k ≤ 280 for
∆τM = 0.025. Although this yielded the maximum range of Bayesian updating, the updating at the n-th

step was performed within the range max{τ (1)m , · · · , τ (n)m } < τM . The properties of the inverse probability
density function and the (part of) approximation function were examined within this range.

The kernel parts of the approximation functions were computed by calculating Eq. (3.37) in a step-
by-step manner as:

ln pkernelMm (τM,k|τ (1)m ) = ln

(
〈τm〉
〈τM 〉

τM,k

〈〈τm〉〉 τM,k

)
+ ln pmM (τ (1)m |τM,k)− ln pm(τ (1)m ) + ln pM,k,

ln pkernelMm (τM,k|τ (1)m , τ (2)m ) = − ln

(
1− 〈τm〉

〈τM 〉

)
+ ln pmM (τ (2)m |τM,k)− ln pm(τ (2)m ) + ln pkernelMm (τM,k|τ (1)m ),

ln pkernelMm (τM,k|τ (1)m , τ (2)m , τ (3)m ) = − ln

(
1− 〈τm〉

〈τM 〉

)
+ ln pmM (τ (3)m |τM,k)− ln pm(τ (3)m ) + ln pkernelMm (τM,k|τ (1)m , τ (2)m ),

... (3.43)

The correction terms of the approximation functions were calculated by first update as:

ln pcorrectMm (τM,k|τ (1)m ) = ln

(
〈τm〉
〈τM 〉

)
+ lnP1(τ

(1)
m |τM,k)− ln pm(τ (1)m ) + ln pM,k,

ln pcorrectMm (τM,k|τ (1)m , τ (2)m ) = − ln

(
1− 〈τm〉

〈τM 〉

)
+ lnP1(τ

(2)
m |τM,k)− ln pm(τ (2)m ) + ln pcorrectMm (τM,k|τ (1)m ),

ln pcorrectMm (τM,k|τ (1)m , τ (2)m , τ (3)m ) = − ln

(
1− 〈τm〉

〈τM 〉

)
+ lnP1(τ

(3)
m |τM,k)− ln pm(τ (3)m ) + ln pcorrectMm (τM,k|τ (1)m , τ (2)m ),

... (3.44)

and then, we added ln(n− 1) for each ln pcorrectMm (τM |τ (1)m , · · · , τ (n)m ).
The approximation functions were obtained by adding together the kernel part and the correction

term calculated by these separate updates. The approximation functions were calculated only for such
k’s that psup > ln pkernelMm , ln pcorrectMm > pinf . Here, psup(= 600) and pinf(= −600) yielded the upper and
lower limits of pkernelMm and pcorrectMm to ensure that these were within the range of the computer capacity.
In addition, such k’s for which the correction term was so large that Eq. (3.36) became negative were
excluded.

Figure K.5 shows an example of Bayesian updating for the stationary marked Poisson process. The
inverse probability density function given by Eq. (3.24) has a characteristic peak that is not observed
in pM (τM ). The correction term makes the kernel part obtained from Eq. (3.40) closer to the inverse
probability density function. Moreover, the numerical calculations based on Eqs. (3.36) and (3.37) with
N = 103 and ∆τM = 0.1 appear to be consistent with these results.

In the next subsection, we compare these functions statistically to examine numerical Bayesian up-
dating method.
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3.5.2 Examination of Numerical Bayesian Updating Method

In this subsection, we compare the probability density functions and the (part of) approximation functions
statistically. The Bayesian updating method described in the previous subsection is applied to 100 test
data time series, each containing 105 events prepared separately from the sample data.

Comparison by Distance

We define the distance for two square-integrable functions f(·) and g(·) as:

D(f ||g) :=
∫ ∞

T

|f(τM )− g(τM )|2 dτM . (3.45)

The range of the integral is set to (T,∞) to exclude the Dirac’s delta function at τM = T in the inverse

probability density function. For f = pMm(τM |τ (1)m , · · · , τ (n)m ) and g = pM (τM ), the distance can be
analytically derived (Appendix I), whereas when f(·) or g(·) is the (part of) approximation function, the
distance is calculated numerically as:

D(f ||g) '
∑

k;τM,k>T
psup>ln f,ln g>pinf

|f(τM,k)− g(τM,k)|2 (ln 10)τM,k∆τM . (3.46)

D(f ||g) was calculated for each update throughout the 100 test data time series. If no k’s satisfied
psup > ln f, ln g > pinf , it was not included in the following calculation. The average distance 〈D(f ||g)〉
was calculated by averaging these distances for each elapsed time T ∈ [100.1l, 100.1(l+1)) with l ∈ Z from
the previous event larger than M .

Figure 3.6(a) shows the average distance for the cases f = pMm(τM |τ (1)m , · · · , τ (n)m ), papproxMm (τM |τ (1)m , · · · , τ (n)m ),

pkernelMm (τM |τ (1)m , · · · , τ (n)m ), and g = pM (τM ). In addition to the analytical calculation in Eq. (3.45) for
D(pMm||pM ), the results of the numerical integration of Eq. (3.46) are presented; the calculations using
Eqs. (3.39) and (3.40) are indicated by D′(·||·). The results of the calculation using Eqs. (3.36) and (3.37)
with the numerical method in Section 3.5.1 with N = 103 and ∆τM = 0.1 are presented by D′′(·||·). The
results for N = 105 with ∆τM = 0.1 and ∆τM = 0.025 are shown in Fig. K.6.

First, one can see that 〈D′(pMm||pM )〉 is almost consistent with 〈D′(papproxMm ||pM )〉, which indicates

that papproxMm (τM |τ (1)m , · · · , τ (n)m ) derived in the previous section certainly approximates the inverse proba-
bility density function, regardless of the elapsed time (or regardless of the number of updates, because
the occurrence rate is constant). However, these separate from D(pMm||pM ) at around T ∼ 105 and at a
large T . As such separations disappear when ∆τM = 0.025 (Figs. K.6(c) and K.6(d)), this is attributed
to the coarseness of the numerical integration.

Second, 〈D′(pkernelMm ||pM )〉 is nearly consistent with 〈D′′(pkernelMm ||pM )〉. This suggests that the numerical
updating method in Eq. (3.43) certainly calculates the kernel part. However, 〈D′′(papproxMm ||pM )〉 gradually
separates from 〈D′(papproxMm ||pM )〉 at a large T . This separation is more clearly illustrated in Fig. 3.6(b),
which shows the average distances between f = papproxMm , pkernelMm and g = pMm calculated by Eq. (3.46).
This separation can be attributed to the calculation of the correction term in Eq. (3.44), in particular to
the fluctuation in the numerically obtained P1 (Appendix J).

Comparison by Maximum Peak Time

In the previous subsection, the approximation function calculated by the numerical Bayesian updating
method was suggested to be separate from the inverse probability density function. However, we show
that such a separation does not have a considerable effect around the maximum peak. To this end, we
further compare the maximum points (hereafter, maximum peak time) of the inverse probability density
function in Eq. (3.24) and its approximation function in Eq. (3.36) with the numerical updating method,
each denoted by τ̂max

M and τmax,approx
M . Both functions are discretized as Eq. (3.41); the corresponding k

in Eq. (3.41) is denoted by k̂max and kmax,approx, respectively.

k̂max and kmax,approx were numerically searched for each update. These were determined as such k
that the function took the maximum value within the range for which the above-mentioned numerical
results were obtained, while excluding its edges. Thus, if k̂max or kmax,approx was located at such edges,
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Figure 3.6: Average distances for each elapsed time (T ) from the previous large event with a magnitude
above M . (a) Distances between the inter-event time distribution and other function. D(pMm||pM ) (Eq.
(I.2) in Appendix I) is shown by the red curve, and the symbols are numerical results for Eq. (3.46). (b)
Distances between the inverse probability density function and other function numerically calculated by
Eq. (3.46).

it was not considered the peak and was set to k = 80 when ∆τM = 0.1 and k = 320 when ∆τM = 0.025.
Further, when the numerical results of the approximation function were not obtained for any k (when
the correction term exceeded the kernel part for all k), kmax,approx was set to be 80 or 320.

Figure 3.7 shows the joint probability mass function (p.m.f.) of (k̂max, kmax,approx) for N = 103

and ∆τM = 0.1. Those for N = 105 are presented in Fig. K.7. Here, the population is all the pairs
of (k̂max, kmax,approx) obtained for each update throughout the test data. In the following, we further
discuss the area where the maximum peaks appeared. The maximum peak search was conducted in the

two ranges; (a) τM > max{τ (1)m , · · · , τ (n)m }, and (b) τM > T . In the former case, the p.m.f. was bimodal;

the higher peak existed around k̂max = kmax,approx, and the other lower peak around k̂max > kmax,approx.
The second peak disappeared in the latter case, and the first peak is intrinsic, i.e., the positions of
the maximum peak were close between the inverse probability density function and its approximation
function. The situation was the same for other cases (Fig. K.7). These results indicate that it is the
off-peak region of the approximation function that contributes to the separation of the average distances.

The results obtained in this section indicate that the numerical method using 1100 time series (1000 for
sample data and 100 for test data) is sufficient to calculate the kernel part as well as the maximum peak
time of the approximation function that is important in the inference, and to examine their statistical
property. Further, these results indicate that Bayesian updating can be applied with the numerical
method even if the explicit functional forms of the inter-event time distribution and the conditional
probability density function and so on are unclear, such as the time series of the ETAS model.

3.6 Bayesian Updating for the Time Series of the ETAS Model

In this section, Bayesian updating is applied to the time series of the ETAS model. In this case, due
to the correlations among events, it is difficult to derive the inverse probability density function and its
approximation function analytically. Therefore, we compute the approximation function (Eq. (3.36)) and
its kernel part (Eq. (3.37)) using the numerical Bayesian updating method. The maximum peak time of
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Figure 3.7: Joint probability mass function for (k̂max, kmax,approx). Numerical search of the maximum

peak is conducted for (a) τM > max{τ (1)m , · · · , τ (n)m } and (b) τM > T . The horizontal line at kmax,approx =

80 and the vertical line at k̂max = 80 correspond to the cases when the peak is not detected by the peak
search. The lower panels show the enlarged versions of the upper panels.
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Figure 3.8: The OU law for the parameter values in the text with a different mainshock magnitude
Mm (after Ref. [93]). The number of aftershocks per unit day against the elapsed time (T ) from the
mainshock obeys λ(T ) = K10α(Mm−M0)/(T + c)θ+1. The background rate (λ0 = 0.0007) is also shown.

the kernel part is used as the estimate for the time to occur the next large-magnitude event greater than
the upper threshold, and the effectiveness of forecasting based on that estimate is evaluated statistically.

3.6.1 Time Series Generation and Bayesian Updating Methods

We applied the numerical Bayesian updating method in Section 3.5.1 to the time series generated by Eq.
(1.3) [52, 59] with the parameter values b = 1, α = 0.8, θ = 0.2, c = 0.01, M0 = 3, λ0 = 0.0007, and
K = 0.0125; the parameter values were set in partially reference to the preceding numerical study [78]
so that the branching ratio is less than 1 [58]. The magnitude thresholds were (M,m) = (5, 3). As in
Section 3.5.1, we found some events (149 out of 1.1 × 108) had magnitude≡ 3, those were excluded by
the setting the lower threshold m = 3. Although the entire time series is stationary in the sense that the
branching ratio (nbr ≈ 0.785) is less than 1 (in the word of this thesis, it is a mixture time series), it is
locally non-stationary obeying nearly the OU law after a large event, as shown in Fig. 3.8 (note that the
local OU law in Eq. (1.3) is different from the global aftershock decay [58], and thus, the actual decaying
must be slightly different from shown in Fig. 3.8). The activity can be categorized into three regimes
with respect to the elapsed time (T ) from the mainshock, as summarized in Table 3.2.

Table 3.2: Three Regimes in the time series of the ETAS model.
Category Regime Property
( I ) T ≲ c(= 0.01) Stationary, high occurrence rate
(II) c ≲ T ≲ γ(≈ 103) Non-stationary, relaxation process
(III) γ ≲ T Stationary, low occurrence rate (≲ λ0)

We prepared 1100 time series, with each containing 105 events. First, random numbers generated
from five different seed values were used to generate 240 time series for each seed. Among them, those
containing events with magnitude ≥ 10 were excluded. This is because the aftershock sequence excited
by such an unrealistic large event does not fit within a single time series, and then, the non-stationarity
affects the statistics of the sample data. We used 1100 of the remaining time series. N = 1000 were used
as the sample data to obtain statistics with ∆τM = 0.1; the interpolation and extrapolation procedures
were conducted with le = 5 in the same way as explained in Section 3.5.1 (Figs. K.8 ‒ K.12). Bayesian
updating (Eqs. (3.43) and (3.44)) was applied to the remaining 100 time series. The maximum range of
k was set to −120 ≤ k ≤ 70, and the n-th update from the occurrence time of the event above M was

conduced in the range max{τ (1)m , · · · , τ (n)m } < τM . The numerical update was conducted when the lower
interval was above 0 (for the occurrence times recorded to 20 decimal places); otherwise, the update was
skipped.
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Figure 3.9: Joint probability mass functions for (a)
(
kmax, kmax,L

)
and (b)

(
kmax, kmax,R

)
. The horizontal

lines at kmax,L = 80 and kmax,R = 80 and the vertical line kmax = 80 are the cases where the peak is not
detected.

The following normalizations were performed in the calculations of Bayesian updating. The result
of the calculation in Eq. (3.43) can be very large. In order to compute the approximation functions
together with Eq. (3.44), it is necessary to use the function value of pkernelMm as it is, though it can exceed
psup. Therefore, to avoid such enlargement, we normalized the result of Eq. (3.43) for each update by
subtracting the following numerical integration from Eq. (3.43).

ln

 ∑
k;τM,k>T

psup>ln pkernel
Mm >pinf

pkernelMm (τM,k|τ (1)m , · · · , τ (n)m )(ln 10)τM,k∆τM

 . (3.47)

Further, it is necessary to subtract Eq. (3.47) from the correction term in Eq. (3.44) at the same time
(thereby the entire approximation function is multiplied by a constant). Thus, for each update of Eqs.
(3.43) and (3.44), the numerical integration (3.47) was computed and subtracted from both.

3.6.2 Comparison of the Approximation Function and its Kernel Part

It is difficult to obtain Pi(τm|τM ) for the ETAS model, and therefore, we examined the contribution
from the correction term to the approximation function as follows. Instead of Pi(τm|τM ), we calculated
the probability density functions PL(τm|τM ) and PR(τm|τM ) (Figs. K.10 and K.11). According to
the OU law, we consider that these two are the end-members of Pi(τm|τM ). Then, the approximation
functions were calculated numerically by replacing all Pi(τm|τM )’s in Eq. (3.44) by either PL(τm|τM ) or

PR(τm|τM ). We denote the maximum peak times of these approximation functions by τmax,L
M and τmax,R

M ,
and their corresponding k’s in Eq. (3.41) by kmax,L and kmax,R, respectively. Similarly, they are denoted
by τmax

M and kmax for the kernel part, hereafter. The numerical search of kmax,L, kmax,R, and kmax was

conducted in the same way as indicated in Section 3.5.2 in the range τM > max{τ (1)m , · · · , τ (n)m }.
Figure 3.9 shows the joint p.m.f. of (kmax, kmax,L) and (kmax, kmax,R), which was calculated in the

same way as indicated in Section 3.5.2. From the results when the maximum peaks were detected, the
maximum peak time of the kernel part is not significantly affected by the correction term, and then,
it can be used to infer that of the inverse probability density function (in some cases, the maximum
peak was undetected in the approximation function; particularly those with PL(τm|τM ) showed high
probability at kmax,L = 80. It should be noted that the discussion here is based on the cases without
when the maximum peak time was undetected). However, its confidence interval or average cannot be
used because the correction term is not taken into account. In the following, we use the maximum peak
time of the kernel part (τmax

M ) as the estimator of when the event above M will occur, and we discuss the
effectiveness of the forecasting based on the estimates.
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3.6.3 Estimation of the Next Large Event Timing and Effectiveness of Fore-
casting

We denote the estimate at the n-th update by τmax,n
M (= 10(k

max,n+0.5)∆τM ), and the actual elapsed time
of the next large event from the previous one by τ∗M . We evaluated the accuracy of the estimation at the
n-th update using the relative error (δn), which is given as:

δn :=
τ∗M − τmax,n

M

τ∗M
. (3.48)

Equation (3.48) considers that the error |τ∗M − τmax,n
M | gets larger as τ∗M becomes longer. The relative

error makes it possible to evaluate the accuracy in a manner that is comparable regardless of τ∗M .
The accuracy at the n-th update was judged by whether δn was within the threshold (δth):

−δth ≤ δn ≤ δth. (3.49)

When Eq. (3.49) is satisfied, the estimation at the n-th update is judged to be plausible for the given
threshold value δth in the present study. This is equivalent for the actual occurrence time to be within
the range:

τmax,n
M

(1 + δth)
≤ τ∗M ≤

τmax,n
M

(1− δth)
. (3.50)

Based on the above accuracy at each update, we further evaluated whether a series of estimations
yields effective forecasting. Here, effective forecasting implies that τmax

M takes a nearly constant value
around τ∗M continuously from well before the elapsed time τ∗M . This can be quantitatively expressed as
follows: Let n≤th be the number of consecutive updates immediately before the next large event, in which
Eq. (3.49) is satisfied. Further, we denote the last update as the nfin-th update. When the sequence
of updates with a sufficiently long n≤th exists in the range of n ∈ (nfin − n≤th, nfin], we consider the
forecasting to be effective. We judge the stability of τmax,n

M by Eq. (3.49), and therefore, δth should not
be too large. In the present study, we set δth = 0.5 and 0.25.

To observe the relationship between the effectiveness of forecasting and the stationarity of the time
series, we examined the occurrence rate (Rn), variation of its log (∆ log10Rn), and variation of log-
estimate (∆kmax

n ) defined below.

Rn := 10/ (tn+9 − tn) , (3.51)

∆ log10Rn := log10Rn+10 − log10Rn, (3.52)

∆kmax
n := kmax,n+10 − kmax,n, (3.53)

where tn represents the occurrence time of the n-th update.

3.6.4 Examples of Bayesian Updating

Figures 3.10 ‒ 3.12 show examples of Bayesian updating and other related amounts for the cases where
τ∗M is included in each regime in Table 3.2. δth was set to 0.5.

Figure 3.10 shows the first example for τ∗M ∈ ( I ). Figure 3.10(d) indicates that the occurrence rate is
high, and it stays almost constant. The kernel part has a peak as shown in Fig. 3.10(a), and its maximum
peak time (τmax,n

M ) continues to be nearly constant around τ∗M from well before the large event as shown
in Fig. 3.10(b); this is confirmed in Fig. 3.10(c), which indicates that |δn| ≤ δth is satisfied consecutively
for n ∈ (nfin −n≤th, nfin] with a long n≤th, and in Fig. 3.10(e), that shows that ∆kmax

n fluctuates around
0. Therefore, in this example, τ∗M is judged to be effectively forecasted.

Figure 3.11 is the second example for τ∗M ∈ (III). In this example, the occurrence rate is low and
keeps almost constant around λ0 = 0.0007 as shown in Fig. 3.11(d). Figure 3.11(a) indicates that the
kernel part has a peak and Figs. 3.11(b) and (c) show that the maximum peak time (τmax,n

M ) transitions
to around τ∗M , and it consecutively satisfies |δn| ≤ δth = 0.5 from long to immediately before the next
large event. This is also confirmed by ∆kmax

n ≈ 0 in Fig. 3.11(e). Thus in this case also the forecasting
is judged to be effective.

Unlike these two examples, in the third example in Fig. 3.12 for τ∗M ∈ (II), the time series is dominated
by the non-stationary activity as shown in Figs. 3.12(d) and (e). Although |δn| ≤ δth = 0.5 is satisfied
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only immediately before the large shock, τmax,n
M continues shifting and |δn| ≤ δth does not hold as shown

in Figs. 3.12(b), (c), and (e). Thus, the forecasting is not effective in this case.
Although these are only examples and not all updating proceeded in these ways, the examples suggest

that the stability of the estimate is related to the stationarity of the time series.

3.6.5 Statistical Analysis of the Effectiveness of Forecasting

We show the results of the statistical analysis on the effectiveness of forecasting. Only the cases of
nfin ≥ 30 were used in the analysis to ensure that the temporal information of lower intervals was fully
reflected in the estimate. Figure 3.13(a) shows the total number of upper intervals (N) obtained from
the test data for each τ∗M ∈ [100.5l, 100.5(l+1)) with l ∈ Z. Further, N30 represents the total number of
upper intervals such that nfin ≥ 30, which is shown with the ratio to N . The updates included in these
N30 upper intervals were analyzed.

Figures 3.13(b ‒ d) show the results of the statistical analysis with δth = 0.5. Figure 3.13(b) shows
the probability (Pfin) of n≤th > 0 (or |δnfin

| ≤ δth) for each τ
∗
M . The average of Pfin for the overall τ∗M is

about 0.52, and the Pfin for each τ∗M is about the same, except for τ∗M > 〈τM 〉 in which Pfin takes a higher
probability around 0.67. Of such n≤th > 0 cases, the proportion (P≥30) of those with relatively long
n≤th ≥ 30 is also shown in Fig. 3.13(b) (the probability distribution of n≤th is shown in Fig. K.13(a)).
Thus the regions of high P≥30 are overlapped with regimes ( I ) and (III), though the former is shifted
toward larger τ∗M . On the other hand, P≥30 is lower in regime (II); it gradually decreases as τ∗M gets
larger. This is consistent with the average of n≤th (〈n≤th〉, this average is taken for n≤th > 0), but also
with the average of its proportion to nfin (〈n≤th/nfin〉) as shown in Fig. 3.13(c). This implies that, as
the fraction of non-stationary times in [0, τ∗M ) increases in regime (II), the domination rate of n≤th in the
total nfin-updates decreases gradually. These properties are preserved for δth = 0.25 (Fig. K.14).

Figure 3.14 shows the joint probability density-mass functions of ∆ log10R and ∆kmax calculated
numerically for each τ∗M . The case kmax = 80 was excluded from the population. If τ∗M is in the regions of
high P≥30, the distribution is almost symmetrically concentrated near the origin. This implies that, when
the time series is dominated by stationarity (∆ log10R ≈ 0), the estimated value is stable (∆kmax ≈ 0).
On the other hand, if τ∗M is in regime (II), the probability density-mass function gradually has a region
in the second quadrant as τ∗M gets larger. This region indicates the existence of a non-stationary time
series in which the estimate has an increasing trend (∆kmax > 0).

These results present the following conclusions. First, the probability that the relative error is within
the threshold at the last update (|δnfin

| ≤ δth) is almost independent of the actual occurrence time (τ∗M ).
This suggests that the length of the upper interval can be estimated by the inverse probability density
function reflecting the temporal pattern of lower intervals, at the last update when the information of the
lower intervals can be utilized fully. Second, the stationarity of the time series is related to the stability
of the estimate; if the time series is non-stationary, it causes the estimate τmax

M to shift. Third, the
domination rate of stationarity in the time series determines the effectiveness of forecasting. Immediately
or long after the large event, the stationary time series is dominant. Therefore, based on the second point
mentioned above, the estimate becomes stable, which leads to an effective forecasting with a relatively
long n≤th. However, these regions are not identical to regimes ( I ) and (III). This is attributed to lag
until the ratio of the non-stationary region in the time series becomes dominant. On the other hand, in
regime (II), the non-stationarity becomes gradually dominant, which leads to the shifting of τmax

M and
shortening of n≤th.

Finally, we discuss the effectiveness of forecasting in terms of the duration time (τ≤th) during the
n≤th updates. Figure 3.13(d) shows the average of the duration time (〈τ≤th〉) and the average of its ratio
to the actual occurrence time (〈τ≤th/τ

∗
M 〉) for each τ∗M (the probability density of τ≤th is shown in Fig.

K.13(b)). Unlike 〈n≤th〉 in Fig. 3.13(c), 〈τ≤th〉 increases linearly as τ∗M gets larger, and it is sufficiently
long in regime (III). On the other hand, τ≤th is very short in regime ( I ); however, the ratio 〈τ≤th/τ

∗
M 〉 is

high (around 0.7). Therefore, from the perspective of the time interval, the forecasting is also considered
to be effective immediately or long after the large event.

3.7 Discussion and Conclusions

This chapter considered Bayes’ theorem and Bayesian updating on the inter-event times at different
magnitude thresholds in marked point processes. The analytical results for the stationary marked Poisson
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Figure 3.10: The first example of Bayesian updating and related amounts for the case where τ∗M is in
regime ( I ). (a) The kernel part for each update (n). The lower panel shows the enlarged view of the
upper panel near the peak. The dotted curve indicates pM (τM ). The vertical solid line indicates τ∗M and
vertical dotted line the average 〈τM 〉. (b) Evolutions of the estimate (τmax,n

M ) and the tolerance of error[
τmax,n
M

1+δth
,
τmax,n
M

1−δth

]
in Eq. (3.50) with δth = 0.5. The elapsed time from the last larger-magnitude event

than M is indicated by the blue dotted line. (c) Evolution of the relative error (δn). The orange band
indicates the tolerance range [−δth, δth]. (d) Evolution of the occurrence rate (Rn defined by Eq. (3.51)).
The magnitude of the event at each update is indicated by black bars. (e) Evolutions of the variation of
the log-occurrence rate (∆ log10Rn defined by Eq. (3.52)) and the variation of the log-estimate (∆kmax

n

defined by Eq. (3.53)).
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Figure 3.11: The second example for the case that τ∗M is in regime (III). At some updates, the kernel part
does not have the maximum peak and the estimate is not determined, which causes some jumps in the
time series. The inset in (e) shows ∆kmax

n at small update counts, indicating a rapid variation of kmax,n

at small n. Other descriptions of the figure are the same as in Fig. 3.10.
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Figure 3.12: The third example for the case that τ∗M is in regime (II). The descriptions of the figure are
the same as in Fig. 3.10.
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Figure 3.14: Joint probability density-mass functions of ∆ log10R and ∆kmax for each τ∗M .

process were used to apply Bayesian updating to the time series of the ETAS model for examining its
utility toward forecasting a large event using the temporal pattern of the smaller events.

First, Bayes’ theorem was considered for the general marked point process. Bayes’ theorem provides
the relationship between the conditional and inverse probability density functions for the lengths of one
upper interval and one lower interval. The inverse probability density function was represented by the
generalized forms of the inter-event time distribution and the conditional probability density function.
This inverse probability density function was derived analytically for the stationary marked Poisson
process, and the condition to have a peak was also found.

Bayes’ theorem was extended to Bayesian updating that yields the inverse probability density function
between the lengths of multiple consecutive lower intervals and the upper interval that includes them.
Although the inverse probability density function is different for the updating manner, we considered the
updating without the restriction on the position of the lower intervals. For the stationary marked Poisson
process, the inverse probability density function and its approximation function were derived, and the
latter approximation was shown to be reasonable using the distances.

Bayesian updating was applied to the time series of the ETAS model. We numerically analyzed
the approximation function and its kernel part. We used the maximum point of the kernel part as the
estimate of when the larger-magnitude event than the upper threshold will occur because the maximum
peaks of these two functions were shown to be not drastically different. The accuracy of the estimation
at each update was evaluated by the relative error with the actual time the large event happened (τ∗M );
the effectiveness of the forecasting throughout the series of updates was judged by the continuity of the
plausible estimations prior to the large event.

Statistical analysis indicated that the accuracy of the estimation at the last update was not drastically
dependent on τ∗M . This suggests that the inverse probability density function can estimate τ∗M in response
to the temporal pattern of minor events. However, the continuity of plausible estimation depended on
τ∗M . This is because the dominance rate of the non-stationary time series in which the estimate becomes
unstable varies with the elapsed time from the previous large event obeying the OU law. The stationarity
was dominant either immediately after or long after the previous major event. Therefore, the forecasting
by the Bayesian updating method can be effective for secondary disaster prevention in the former case,
and for long-term risk assessment in the latter case.

The approximation function derived for the stationary marked Poisson process was applied in Bayesian
updating for the time series of the ETAS model. This allows us to perform the update in the convenient

59



form of the product of the conditional probabilities. However, this implicitly assumes that there is no
correlation between events and lower intervals; such an assumption can be reasonable for the stationary
part of the time series, although it is not reasonable for the non-stationary part. This probably is one of
the reasons why forecasting was ineffective in the non-stationary regime.

In this study, we confirmed that the kernel part could be monomodal in the ETAS time series, which
was not for the inter-event time distribution in our parameter setting, suggesting the advantage of the
Bayesian approach for narrowing the possible range of the next large event timing down. Thus, we qualita-
tively demonstrated the superiority of the Bayesian approach to probabilistic forecasting by the renewal
process approach. However, this study did not compare their forecasting performance quantitatively.
Probabilistic ways such as using the hazard function can make such a quantitative comparison, and thus
it is necessary to further examine the inverse probability density or its approximation function in time
series with correlations between events; a detailed analysis of the correction term in the approximation
function will be necessary. The kernel part enables us only the point estimate at the peak time, and
therefore derivation of the entire approximation function is also significant for realizing point estimation
by average, interval estimation, and probabilistic risk assessment in the Bayesian framework. In Chapter
5, we consider the inverse probability density function in the simplest Bayes’ theorem for the time series
with weak inter-event correlation.

Although the statistical property of Bayesian updating was examined for only one set of ETAS param-
eters, it is considered to be different for activities generated by other parameter values. For example, for
the time series with the high background rate (λ0) that corresponds to taking up a large spatial area [78],
forecasting is considered to be less effective because in such time series, different mainshock-aftershocks
sequences overlap [78] and the correlations between the upper and lower intervals are weakened. Further,
if the background rate is low, forecasting is considered to be improved because a single mainshock-
aftershocks sequence is exposed [78], and the correlation is easily reflected in the conditional probability.
Forecasting is also considered to be improved for the time series with a large branching ratio (nbr); a
larger branching ratio boosts aftershocks for a mainshock [60], which increases the number of updates in
the Bayesian updating and thus is advantageous for forecasting.

In this study, only one lower threshold magnitude (m) was set for a given upper threshold (M).
Although the lower threshold m can be set freely in between [M0,M), the theoretical result for the
stationary marked Poisson process suggests that it is better to set m such that ∆m > log10 3/b; under
this condition, the inverse probability is monomodal other than the one by the delta function, and such
a peak is convenient for the estimation of τ∗M . This condition indicates that there is a trade-off between
the b-value and ∆m, and then, the range of lower thresholds that can be set varies with the b-value. One
approach for performing Bayesian updating using more temporal information of the lower intervals is to
set multiple lower thresholds (m1 < m2 < · · · (< M)), all of them satisfy the condition ∆m > log10 3/b.
Considering such an extension is important for applying the Bayesian updating method to the real
seismic catalogs in which the number of earthquakes is limited. It should be noted that the condition
∆m > log10 3/b is for the stationary marked Poisson process; finding the corresponding condition for the
time series of the ETAS model is future work.

Another idea to apply the Bayesian updating method to seismic catalogs while compensating for the
shortage of data is to use the ETAS model in combination. The ETAS model’s capability to generate
sufficient synthetic data with the parameter set determined for past seismic activity enables the prepara-
tion of precise statistical amounts necessary in the numerical Bayesian updating method. Moreover, it is
necessary to develop further ingenuity by studying the properties of the conditional and inverse probabil-
ity density functions through the analysis of seismic catalogs. With these auxiliaries, the application of
the Bayesian updating method to real seismic activity is expected to proceed while solving the limitation
of seismic data.

Another way to combine with the ETAS model is to replace the prior distribution of the Bayesian
updating with the inter-event time distribution derived from the ETAS model’s conditional intensity
function; such replacement would incorporate the seismicity information before the last major earthquake
in the Bayesian approach. From the viewpoint of probabilistic forecasting with the conditional intensity
function, this replacement can be a way to improve forecasting by taking into account the correlation
between a major earthquake and its preceding seismic pattern, which is typically not considered [65], by
combining the Bayesian approach. Note that, because this statement is based on the assumption that
such a correlation between a seismic pattern and its following large shock that the ETAS model does
not cover (for example, Refs. [68, 40]) can be managed by the conditional probability, this approach is
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not compatible with the method described in the previous paragraph to compensate for the shortage of
data utilizing the ETAS model. In this way, the Bayesian approach developed in this chapter possibly
improves the probabilistic forecasting by point process approach. Further examination of the Bayesian
approach using actual seismic catalog data is necessary to clarify the credibility of the assumption and
effectiveness of the approach.

Finally, extending the Bayesian approach to a spatiotemporal version is an important issue for more
practical forecasting while incorporating spatial seismic features, which will be discussed in Chapter 4
[3].
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Chapter 4

A Bayesian Inference Method for a
Large Magnitude Event in a
Spatiotemporal Marked Point
Process Representing Seismic
Activity

This chapter is based on Ref. [3], which is paper 3 in the list of author’s papers.

4.1 Introduction

Chapter 3 presented a Bayesian method to forecast the timing of a large event in marked point processes
in a way that improves the renewal process approach in Section 1.2.2 by incorporating the information on
small-scale events [2]. This Bayesian method also possibly provides a way to improve the point process
approach in Section 1.2.1 by taking into account the effect of temporal patterns on the subsequent major
event [2].

This chapter extends the scope of the Bayesian approach to the spatiotemporal marked point process,
as shown in Fig. 4.1, to forecast not only the occurrence time but the spatial position of a significant
future event incorporating the spatial pattern of epicenters. The main objective of this chapter is to
propose a mathematical framework for the Bayesian approach in spatiotemporal marked point processes,
which yields an alternative Bayesian method to the preceding study using the Bayesian network [97].
Based on the theory, we discuss the possible contributions of spatiotemporal interactions for forecasting.

Section 4.2 discusses the extensions of the conditional probability and Bayes’ theorem in the spatiotem-
poral marked point process. Section 4.3 considers Bayesian updating in the spatiotemporal marked point
process, and Section 4.4 discusses how space-time interactions contribute to Bayesian inference. Finally,
Section 4.5 is for discussion and conclusions.

τM
M
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x

X(a)

Time

M
ag
.

x

X(b)

x

S
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τm τm

Figure 4.1: Schematic of a spatiotemporal seismic activity represented by (a) a marked point process with
a magnitude as a mark, and (b) corresponding jumps of events in the spatial area S. The upper and lower
spatiotemporal pairs {X, τM} and {x, τm} are shown, and these form the combination {x, τm;X, τM}.
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4.2 Bayes’ Theorem in Spatiotemporal Marked Point Process

First, the conditional probability for the spatiotemporal marked point process is defined (Fig. 4.1). Let
τM (τm) represent the length of an inter-event time interval at the upper magnitude threshold M (the
lower magnitude threshold m(< M,M := m+∆m)). Further, let X(∈ S) (x(∈ S)) represent the spatial
position of the event at the right (left) end of an upper (lower) inter-event time interval (Fig. 4.1). Here
S is a closed region on the earth’s surface. Although there is no restriction on its size, we assume that
S encompasses seismogenic zones as centrally as possible; if a seismogenic zone lies on the edge of S,
only a limited portion of aftershocks following a mainshock at X can be considered, potentially impeding
precise probabilistic evaluation within this theory.

In the present chapter, the pair of the above-defined spatial position and time interval is referred to
as the (spatiotemporal) pair; {X, τM} is referred to as the upper (spatiotemporal) pair, and {x, τm} the
lower (spatiotemporal) pair. When the upper pair {X, τM} includes the lower pair {x, τm} as shown in
Fig. 4.1(a), these constitute the combination of the upper and lower spatiotemporal pairs {x, τm;X, τM}.
The magnitude of the event at x is exceptionally greater than M when the lower pair is located at the
leftmost in an upper pair, though otherwise, it is always less than or equal toM . Thus, pmM (x, τm|X, τM )
represents the spatiotemporal conditional probability density that a lower spatiotemporal pair is {x, τm}
under the condition that it is included in the upper spatiotemporal pair {X, τM}.

We consider Bayes’ theorem for the above-defined spatiotemporal conditional probability.
Let dNmM (x, τm;X, τM ) represent the number of the combinations of the upper and lower spatiotemporal
pairs such that the upper pair falls within [X,X+dX) and [τM , τM +dτM ), and the lower pair included
in it falls within [x,x+ dx) and [τm, τm + dτm), in the time series. For simplicity, dNmM (x, τm;X, τM )
is referred to as the number of the combination {x, τm;X, τM} without mentioning the infinitesimal
intervals, and hereafter, other numbers of spatiotemporal pairs or combinations denoted by dN are
referred to in the same way. dNmM (x, τm;X, τM ) can be expressed in two ways:

dNmM (x, τm;X, τM )/dxdτmdXdτM

= NMpM (X, τM )
τM

〈〈τm〉〉X,τM

pmM (x, τm|X, τM )

= Nmpm(x, τm)pMm(X, τM |x, τm). (4.1)

Here, NM (Nm) represents the total number of upper (lower) spatiotemporal pairs in the time series.
pM (X, τM ) (pm(x, τm)) yields the joint probability density that the upper (lower) pair is {X, τM}
({x, τm}). pMm(X, τM |x, τm) yields the inverse probability density that the upper pair is {X, τM}
under the condition that the lower pair {x, τm} is found within it. 〈〈τm〉〉X,τM represents the average
time interval of the spatiotemporal conditional probability (extension of Eq. (2.2)):

〈〈τm〉〉X,τM :=

∫
S

dx

∫ ∞

0

dτmτmpmM (x, τm|X, τM ).

From Eq. (4.1), Bayes’ theorem is derived as (extension of Eq. (3.4)):

pMm(X, τM |x, τm) = 10−b∆m τM
〈〈τm〉〉X,τM

pmM (x, τm|X, τM )

pm(x, τm)
pM (X, τM ), (4.2)

where the GR law (NM/Nm = 10−b∆m) is used.
The normalization condition of the inverse probability in Eq. (4.2) can be checked using the integral

equation with the spatiotemporal conditional probability in its kernel, which is derived below. Let
dNm(x, τm) represent the number of the spatiotemporal pairs {x, τm} in the time series, then dNm(x, τm)
can be expressed in two ways:

dNm(x, τm)/dxdτm = Nmpm(x, τm)

= NM

∫
S

dX

∫ ∞

0

dτM
τMpmM (x, τm|X, τM )

〈〈τm〉〉X,τM

pM (X, τM ).

Thus, the integral equation that connects the probability density functions of the upper and lower pair
is derived as (extension of Eq. (2.3)):

pm(x, τm) = 10−b∆m

∫
S

dX

∫ ∞

0

dτM
τMpmM (x, τm|X, τM )

〈〈τm〉〉X,τM

pM (X, τM ). (4.3)
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The inverse probability density function for only upper and lower time intervals or only upper and lower
spatial positions can be derived from the joint probability for the combination of an upper and a lower
spatiotemporal pair. Let pmM (x, τm;X, τM ) represent the joint probability density of the combination
{x, τm;X, τM}. The total number of the combinations of an upper and a lower spatiotemporal pair in
the time series is Nm, and therefore, pmM (x, τm;X, τM ) can be expressed in two ways using Eq. (4.1)
as follows:

pmM (x, τm;X, τM ) =
dNmM (x, τm;X, τM )

NmdxdτmdXdτM

= 10−b∆m τM
〈〈τm〉〉X,τM

pmM (x, τm|X, τM )pM (X, τM )

= pm(x, τm)pMm(X, τM |x, τm). (4.4)

Thus, Bayes’ theorem for time intervals already obtained in Chapter 3 (Eq. (3.4)) can be derived by
marginalizing the joint probability in Eq. (4.4) for x and X as:

pMm(τM |τm) = 10−b∆m τM
〈〈τm〉〉τM

pmM (τm|τM )

pm(τm)
pM (τM ).

Further, the integral equation for time intervals introduced in Chapter 3 (Eq. (2.3)) can also be
derived by marginalizing Eq. (4.3) for x and X, noting that the integrand of the r.h.s. of Eq. (4.3) is
the joint probability in Eq. (4.4), as:

pm(τm) = 10−b∆m

∫ ∞

0

dτM
τM

〈〈τm〉〉τM
pmM (τm|τM )pM (τM ).

Bayes’ theorem for spatial positions can also be derived. First, we define the following quantity:

〈n(x, τm)〉X,τM :=
τM

〈〈τm〉〉X,τM

pmM (x, τm|X, τM ). (4.5)

This is the average number of specific lower spatiotemporal pairs {x, τm} included in the upper pair
{X, τM}. Bayes’ theorem for the spatial position is obtained by marginalizing the joint probability in
Eq. (4.4) for τm and τM while using Eq. (4.5):

pMm(X|x) = 10−b∆m 〈n(x)〉X
pm(x)

pM (X). (4.6)

Here, 〈n(x)〉X is the average number of such events with magnitude ∈ (m,M ] that occur at x and are
in between two consecutive large events with magnitudes > M , the latter of which occurs at X. The
integral equation for the spatial position can be derived by marginalizing Eq. (4.3) for τm and τM using
Eq. (4.5) and noting again that the integrand in Eq. (4.3) is the joint probability in Eq. (4.4), as follows:

pm(x) = 10−b∆m

∫
S

dX〈n(x)〉XpM (X). (4.7)

The normalization condition for the inverse probability in Eq. (4.6) can be checked using Eq. (4.7). In
particular, consider the case where spatial positions and time intervals are independent. In this case, the
average number of lower intervals in an upper interval is 10b∆m according to the GR law, and therefore,
〈n(x)〉X = 10b∆mpmM (x|X). Thus, Eqs. (4.6) and (4.7) are simplified as:

pMm(X|x) = pmM (x|X)

pm(x)
pM (X),

pm(x) =

∫
S

dXpmM (x|X)pM (X).

4.3 Bayesian Updating in Spatiotemporal Marked Point Pro-
cess

We extend Bayes’ theorem to Bayesian updating. In this chapter, for simplicity, the sequence of con-

secutive lower spatiotemporal pairs {x1, τ
(1)
m , · · · ,xn, τ

(n)
m }, such that all the pairs are included in the
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same upper pair, is denoted by {x1:n, τ
(1:n)
m } (Fig. 4.2). When this sequence is included in the upper

pair {X, τM}, these constitute the combination of the upper and lower pairs {x1:n, τ
(1:n)
m ;X, τM}. Let

dNmM (x1:n, τ
(1:n)
m ;X, τM ) represent the total number of such a combination in the time series. Thus,

dNmM (x1:n, τ
(1:n)
m ;X, τM ) can be expressed in two ways:

dNmM (x1:n, τ
(1:n)
m ;X, τM )/dXdτMdx

ndτnm = NMpM (X, τM )〈n(x1:n, τ
(1:n)
m )〉X,τM

= NmRnpm(x1:n, τ
(1:n)
m )pMm(X, τM |x1:n, τ

(1:n)
m ). (4.8)

Here, Rn represents the proportion of the number of sequences of consecutive n lower pairs such that
all these pairs are included in the same upper pair in the time series to the total number of sequences
of consecutive n lower pairs in the time series. Thus, NmRn represents the total number of consecutive
n lower pairs belonging to the same upper pair and the total number of combinations of an upper and
consecutive n lower pairs in a time series. In the stationary marked Poisson process generated with a
constant occurrence rate in the ETAS model, Rn = (1− 〈τm〉/〈τM 〉)n−1

by the GR law (see Section
3.4.1).

Further, pm(x1:n, τ
(1:n)
m ) represents the joint probability density that a sequence of consecutive n

lower pairs belonging to the same upper interval takes {x1:n, τ
(1:n)
m }. pMm(X, τM |x1:n, τ

(1:n)
m ) repre-

sents the inverse probability density that the upper pair is {X, τM} when {x1:n, τ
(1:n)
m } is found within

it. 〈n(x1:n, τ
(1:n)
m )〉X,τM represents the average number of the sequence {x1:n, τ

(1:n)
m } in the upper pair

{X, τM}. From Eq. (4.8), the inverse probability density is:

pMm(X, τM |x1:n, τ
(1:n)
m ) = 10−b∆mR−1

n

〈n(x1:n, τ
(1:n)
m )〉X,τM

pm(x1:n, τ
(1:n)
m )

pM (X, τM ). (4.9)
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Figure 4.2: Schematic of spatiotemporal seismic activity showing time intervals and spatial positions of
events considered in the Bayesian updating; the upper pair {X, τM} and the consecutive lower pairs

{x1:n, τ
(1:n)
m } (n = 3 in the figure) included in it are indicated. These form the combination of upper and

lower pairs {x1:n, τ
(1:n)
m ;X, τM}.

We derive the inverse probability density for only time intervals or only spatial positions. Let

pmM (x1:n, τ
(1:n)
m ;X, τM ) represent the joint probability density that the combination of an upper and

consecutive lower spatiotemporal pairs is {x1:n, τ
(1:n)
m ;X, τM}, which can be expressed as:

pmM (x1:n, τ
(1:n)
m ;X, τM ) =

dNmM (x1:n, τ
(1:n)
m ;X, τM )

NmRndXdτMdxndτnm

= 10−b∆mR−1
n 〈n(x1:n, τ

(1:n)
m )〉X,τM pM (X, τM )

= pm(x1:n, τ
(1:n)
m )pMm(X, τM |x1:n, τ

(1:n)
m ). (4.10)

Thus, the inverse probability density function for time intervals is derived by marginalizing Eq. (4.10)
for X,x1, · · · ,xn,

pMm(τM |τ (1:n)m ) = 10−b∆mR−1
n

〈n(τ (1:n)m )〉τM
pm(τ

(1:n)
m )

pM (τM ). (4.11)

This is consistent with Eq. (3.23) in Chapter 3. On the other hand, the inverse probability density for

spatial positions can be derived by marginalizing Eq. (4.10) for τM , τ
(1)
m , · · · , τ (n)m ,

pMm(X|x1:n) = 10−b∆mR−1
n

〈n(x1:n)〉X
pm(x1:n)

pM (X). (4.12)
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4.4 Spatiotemporal Intercorrelation in Bayesian Inference

We examine how spatiotemporal correlations appear in Bayesian updating by comparing two cases of
correlations among spatial positions and time intervals as shown in Fig. 4.3. Variables connected by
an arrow in Fig. 4.3 are assumed to be correlated (meaning neither independent nor conditionally
independent given other variables), and variables not connected are assumed to be not only independent,
but conditionally independent given other variables. However, the conditional independence between the

lower time intervals (τ
(i)
m ’s) in the same upper time interval is not assumed given the length of their upper

time interval τM . In the first case, space-time correlations are not assumed (Fig. 4.3(a)), whereas in the
second case, correlations between spatial position and time interval indicated with the green arrows in
Fig. 4.3(b) are added.
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Figure 4.3: Two cases of correlations assumed between time intervals and spatial positions. Colored
arrows represent correlations between (red, solid) spatial positions, (blue, dot-dash) time intervals, and
(green, dotted) a time interval and a spatial position, respectively.

For the first case, Eq. (4.8) is rewritten as (see Appendix L.1):

dNmM (x1:n, τ
(1:n)
m ;X, τM )/dXdτMdx

ndτnm

= NMpM (X)pM (τM )〈n(τ (1:n)m )〉τM
n∏

i=1

pmM (xi|X)

= NmRnpMm(X|x1:n)pMm(τM |τ (1:n)m )

n∏
i=1

pm(xi)pm(τ (i)m ). (4.13)

Therefore, the Bayesian updating is expressed as the product of the following two respective updates for
the time interval and the spatial position.

pMm(τM |τ (1:n)m ) = 10−b∆mR−1
n

〈n(τ (1:n)m )〉τM∏n
i=1 pm(τ

(i)
m )

pM (τM ), (4.14)

pMm(X|x1:n) =

∏n
i=1 pmM (xi|X)∏n

i=1 pm(xi)
pM (X). (4.15)

For the second case, Eq. (4.8) is rewritten as (see Appendix L.2):

dNmM (x1:n, τ
(1:n)
m ;X, τM )/dXdτMdx

ndτnm = NMpM (X, τM )〈n(τ (1:n)m )〉X,τM

n∏
i=1

pmM (xi|X, τM )

= NmRnpMm(X, τM |x1:n, τ
(1:n)
m )

n∏
i=1

pm(xi)pm(τ (i)m ).

(4.16)

Thus, the inverse probability is:

pMm(X, τM |x1:n, τ
(1:n)
m ) = 10−b∆mR−1

n

〈n(τ (1:n)m )〉X,τM∏n
i=1 pm(τ

(i)
m )

∏n
i=1 pmM (xi|X, τM )∏n

i=1 pm(xi)
pM (X, τM ).

The joint probability is obtained by taking the ratio of Eq. (4.16) to NmRn, in the same way as Eq.
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(4.10).

pmM (x1:n, τ
(1:n)
m ;X, τM ) = 10−b∆mR−1

n 〈n(τ (1:n)m )〉X,τM pM (X, τM )

n∏
i=1

pmM (xi|X, τM )

= pMm(X, τM |x1:n, τ
(1:n)
m )

n∏
i=1

pm(xi)pm(τ (i)m ). (4.17)

Marginalizing Eq. (4.17) with respect to X or τM , the inverse probability density functions for τM and
X are obtained as follows.

pMm(τM |x1:n, τ
(1:n)
m ) = 10−b∆mR−1

n

〈n(τ (1:n)m )〉τM∏n
i=1 pm(τ

(i)
m )

∏n
i=1 pmM (xi|τM )∏n

i=1 pm(xi)
pM (τM ), (4.18)

pMm(X|x1:n, τ
(1:n)
m ) = 10−b∆mR−1

n

〈n(τ (1:n)m )〉X∏n
i=1 pm(τ

(i)
m )

∏n
i=1 pmM (xi|X)∏n

i=1 pm(xi)
pM (X). (4.19)

Equations (4.18) and (4.19) show that the terms representing the correlations between spatial position
and time interval are multiplied explicitly to the closed updates for time and space in Eqs. (4.14) and
(4.15), respectively.

4.5 Discusson and Conclusions

This chapter examined a Bayesian inference method of the occurrence time and location of the next
significant event in a spatiotemporal marked point process using occurrence patterns of smaller events.
As described in Section 1.1 in seismic activity, temporal quiescence, spatial gap, or activation (foreshocks)
is sometimes recognized to precede major earthquakes [6, 27, 5]. The question of whether the conditional
probability can quantitatively treat such qualitative spatiotemporal characteristics of seismic activity and
whether the Bayesian updating method can be used for better probabilistic forecasting in actual seismic
activity is one for the future.

The study in this chapter only presents a theoretical framework. To verify the effectiveness of this
framework for forecasting, numerical examination, as performed in Chapter 3, with a sufficient number
of synthetic seismic data that stochastic models (e.g., the HIST-ETAS model [53, 55]) or physical models
(e.g., the Olami-Feder-Christensen model [47]) can generate is necessary. Furthermore, for forecasting
actual earthquakes, it is required to examine the framework with seismic catalog data. The preliminary
analysis (see Appendix M) using a seismic catalog in Southern California [18, 19] does not show apparent
improvement in forecasting by adding spatial information (x) to the inverse probability. The cause of
this seems to be in setting the spatial domain S and the way to subdivide it. Improving this point is
important in future detailed analysis.

In this study, the spatiotemporal pair is defined in a way that builds upon Chapter 3, and Bayesian
updating is considered based on it. However, this definition includes exceptional events whose magnitude
exceeds M in the lower pair. Further, the information of the lower pair immediately before the next
large event is not used in real-time Bayesian updating. Therefore, in the practical use of the Bayesian
approach, it may be better to define the lower pair as a lower time interval and the spatial position of its
subsequent event whose magnitude ≤ M , in the same way as the upper pair. Bayesian updating based
on this definition should be considered excluding the rightmost lower pair in an upper pair.
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Chapter 5

Statistical Properties of Inter-event
Times in Seismic Time Series
Transformed by Occurrence Rate:
An Analysis from the Viewpoint of
Hierarchy in the Temporal Nature of
Seismicity

This chapter is based on Ref. [4], which is paper 4 in the list of author’s papers.

5.1 Introduction

Chapters 3 and 4 have shown a theoretical framework of the Bayesian approach and tested it using
synthetic time series of seismicity. However, the inverse probability and its approximation function have
not been derived for time series with inter-event correlations; the Bayesian approach has yet to achieve
probabilistic forecasting in actual seismic time series, and thus, examining the Bayesian framework using
seismic catalogs is necessary for its practical forecasting. Therefore, this chapter aims to examine the
properties of the conditional and inverse probabilities in the Bayesian approach using seismic catalogs.
As a first step in catalog analysis, the analysis is simplified in two aspects.

First, only Bayes’ theorem (Eq. (3.7)) is examined; it is interesting in relation to forecasting whether
the inverse probability shows seismicity-dependent unimodality even in this simplest case of Bayesian
updating, and it is essential to examine the conditional probability for considering general Bayesian
updating.

Second, the subject of analysis is restricted to the time series with weak inter-event correlation; such
time series can be easy to work on by perturbation from the analytical results for the stationary marked
Poisson process. As such, in this study, two kinds of time series inspired by the studies on the scaling
universality in the inter-event time distributions (described in Section 1.3.1) are analyzed: the stationary
time series and the aftershock sequence transformed by the occurrence rate. We regard the scaling of the
inter-event time distribution in Eq. (1.8) as a temporal transformation of these time series by smooth
functions of the event rate [27, 98, 99, 100] (Section 5.2 describes details), interpreting the universality
as the nature of the temporal fluctuations in the unfolding-transformed time series. This viewpoint
can avoid the problem pointed out in Section 1.3.1 and enables us to examine the scaling universality
following the original view. Such transformed time series are suitable for analyzing the Bayesian approach
in that the inter-event correlations are weak and enable us to consider the scaling universality in light
of the hierarchical property of seismic time series while including aftershock sequences. This way, the
properties of all three probability distributions associated with Bayes’ theorem (Eq. (3.7)) are analyzed,
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including their interrelationships.
Thus, this chapter examines seismic time series after temporal transformation to explore the charac-

teristics of the probability densities (the conditional and inverse probabilities and the inter-event time
distribution) in Bayes’ theorem (Eq. (3.7)); along the way, the universality of the inter-event time distri-
bution is discussed via the integral equation (2.3), based on the characteristics of the temporal hierarchy
of the seismic time series. Section 5.2 describes the temporal transformation procedure of seismic time
series, information on seismic catalogs and how to set the analysis range, the method to extract time series
from these catalogs, their temporal transformation, scaling property of inter-event time distributions of
after-transformed time series, and methods for analyzing the conditional probability of these time series.
Section 5.3 shows the results of catalog analysis relating to the conditional probability. Section 5.4, based
on the results in Section 5.3, derives the conditional probability, the scaling function of the inter-event
time distribution, and the inverse probability in this order and compares them with the results of catalog
analysis. Finally, Section 5.5 summarizes and concludes the study and presents some discussions.

5.2 Methods

5.2.1 Transformation of Time Series

This subsection describes the time series transformation applied in this chapter. Let tk and τk(:= tk+1−tk)
be the k-th event’s occurrence time and the k-th inter-event time in a time series, respectively. In the
scaling of Eq. (1.8) for an aftershock sequence, time intervals are transformed by instantaneous occurrence
rate as follows [80]:

τk 7→ R(tk+1)τk. (5.1)

However, this transformation has ambiguity in terms of the choice of time to take the occurrence rate
(any time between tk and tk+1 can be the argument of R(·) [80]). Instead, we apply the following
transformation that is a modification of Eq. (5.1):

τk 7→ R(tk+1)tk+1 −R(tk)tk. (5.2)

This is equivalent to converting the occurrence times:

tk 7→ R(tk)tk. (5.3)

In particular, for stationary time series (R(t) ≈ R (const.)) and aftershock sequences (R(t) ' Kt−p),
the transformation of Eq. (5.3) is:

tk 7→

{
Rtk (stationary),

Kt1−p
k (aftershock).

(5.4)

For these time series, the transformation in Eq. (5.4) is equivalent to transforming the time to the
following transformed time (the same transformation for aftershock sequences was already considered in
Ref. [27, 101]), except for the coefficient:

tk 7→ zk :=

∫ tk

tmin

R(s)ds, (5.5)

where tmin is its starting time (tmin = 0) for stationary time series and the lower bound of the time range
in which R(t) ' Kt−p holds for aftershock sequences. Actually, Eqs. (5.5) for the stationary time series
and the aftershock sequence (p 6= 1) are as follows:

tk 7→ zk =

{
Rtk (stationary),
Kt1−p

k

1−p − Kt1−p
min

1−p (aftershock).
(5.6)

The constant (Kt1−p
min /(1− p)) in Eq. (5.6) does not affect the inter-event time statistics in {zk}.

After these transformations using temporal variation trends (R(t)), the time series are aligned to
stationary time series with an average occurrence rate of 1. Thus, the temporal fluctuations in different
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time series become comparable with each other. The statistics of intervals for {zk} suggest the nature
of such fluctuations, and Eq. (1.8) can be regarded as implying the universality of such fluctuations.
This type of transformation has been used in the field of quantum chaos and is known as the unfolding
transformation [98, 99, 100]. In the following, the transformation described above is referred to as the
unfolding transformation or unfolding procedure.

Thus, this study performs the following transformation for the stationary and aftershock time series
in seismic catalogs:

tk 7→ wk =


tk (stationary),

t1−p
k (aftershock, p < 1),

−t1−p
k (aftershock, p > 1).

(5.7)

The unfolding procedure is completed by further scaling the transformed time series with the average
occurrence rate over the entire time series (wk 7→ zk := wk/〈w〉), which can be done by applying the
rescaling of the inter-event time distribution for these transformed time series. These time series ({wk})
are the objects of catalog analysis. Note that, hereafter in this chapter, for the inter-event times of the
transformed time series, the same symbol of τ is used as was used for the inter-event times before the
transformation.

5.2.2 Catalog Information and Procedure of Time Series Transformation

In the approach of this study, three seismic catalogs are used; one is the global Centroid Moment Tensor
(CMT) catalog [21, 22, 23], and the two are local catalogs in Southern California (SCEDC) [18, 19] and
Japan (JMA) [16, 17]. For each earthquake catalog, the author determined the space-time windows to
extract stationary and aftershock time series and the magnitude ranges for analysis while considering the
catalog completeness in the following way.

CMT Catalog

The global CMT catalog covering large earthquakes worldwide [21, 22, 23] was used. The moment
magnitude is unaffected by saturation at the large scale [Section 5.2 in Ref. [5]][13, 14, 15] and thus
is appropriate for this study, where the magnitude values are significant to examine the dependence of
statistics on cut-off magnitude. The CMT catalog starts from 01/01/1976, though, as shown in Fig.
5.1(a), the number of recorded events in 1976 is less than in other years, and thus the author chose the
term to analyze 01/01/1977 ‒ 12/31/2022. No spatial restriction was imposed. Figure 5.2(a) shows
p(M) and P (M) for the CMT catalog in the above period. The completeness magnitude Mc calculated

by the MBASS method [32] was 5.4. The figure also shows the b-value (b̂ hereafter) calculated for each
neighboring two points (at magnitude M and M + 0.1, where 0.1 is the increment of magnitude in

this chapter) of P (M), i.e., b̂ = −(log10 P (M + 0.1)/P (M))/0.1. Referring to these results (the range

larger than or equal to Mc, and where b̂ fluctuation is as small as possible, in particular, avoid the large
magnitudes where b̂ fluctuation becomes very large) and the apparent shape of the graph (log10 p(M)
versus M being close to the straight line the GR law indicates), the author determined the magnitude
range to set the cut-off magnitude in the following analysis to be 5.4 ≤M ≤ 7.5. The b-value calculated
in this magnitude range using the maximum likelihood estimate [33, 34] was about 0.990. The cumulative
number of earthquakes N(t) since 01/01/1977 at 00:00:00 in the above-determined space-time window
with magnitudes ≥ 5.4 is shown in Fig. 5.1(b); the whole time series can be judged to be almost
stationary by the nearly linear form of N(t), N(t) ∝∼ t, as in the preceding studies [79, 80] (though,
precisely speaking, there appears to be gradual increasing trend even for M ≥ 5.4 as observed in Fig.
5.1(a), which may due to the improvements in analysis method [22]).

Southern California Catalog

The Southern California catalog [18, 19] contains the earthquakes in the spatial range 112◦W ‒ 123◦W
and 29◦N ‒ 38◦N and the time domain 01/01/1981 ‒ 03/31/2022. The process to determine the space-
time and magnitude ranges to analyze from this catalog was as follows. First, the author divided the
spatial area into smaller cells of 0.5◦×0.5◦. Then, Mc was calculated by the MBASS method for each cell
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Figure 5.1: (a) Annual number of earthquakes recorded in the global CMT catalog (blue × symbol with
dotted line for only events with magnitude ≥ 5 and red + symbol with bold line for ≥ 5.4) and (b) the
cumulative number of earthquakes (N(t)) recorded in the CMT catalog with magnitude ≥ 5.4 against
the time (t) from January 1, 1977, at 00:00:00.
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Figure 5.2: (Red filled square) p(M), (Blue circle) P (M), and (Blue ×) b̂ for (a) CMT, (b) JS, (c) JA,
(d) SCA1, (e) SCA2, (f) SCA3, (g) SCS1, and (h) SCS2. The vertical dotted line shows the completeness
magnitude (Mc) calculated by the MBASS method [32]. The magnitude range to set the cut-off magnitude
is shaded by light blue, the dotted line shows the GR law with the b-values determined using the maximum
likelihood estimate [33, 34]. The horizontal line indicates the b-value for comparison with b̂.
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Figure 5.3: Spatial distribution of Mc calculated by the MBASS method for the Southern California
catalog of the time domain (a) 01/01/1981 ‒ 03/31/2022, (b) SCA1, (c) SCA2, (d) SCA3, (e) SCS1, and
(f) SCS2. The black dots show the epicenters of the earthquake with magnitude ≥ 3. The red quadrilateral
represents the spatial domain to be analyzed. Red × symbols in (b-d) indicate the mainshock epicenter
in each time domain. (g) N(t) for earthquakes with magnitude ≥ 3, from January 1, 1981, at 00:00:00;
the stationary domains (SCS1 and SCS2) are indicated by blue dotted lines and mainshock-aftershocks
(SCA1, SCA2, and SCA3) are by bold red curves.

with at least 100 events to check its spatial distribution; this process refers to the method used in Ref.
[40] (the same as described in Section 1.1). Figure 5.3(a) shows the distribution map of Mc. This result
suggests that the Mc at the periphery tends to take higher values (around 3 or higher) than the central
part, as preceding studies have already suggested [102, 37, 40]. Figure 5.3(g) shows N(t) for earthquakes
with magnitude ≥ 3; based on this figure, the author selected two stationary time series (SCS1 and
SCS2) and three mainshock-aftershock sequences (SCA1, SCA2, and SCA3; the aftershocks of Landers,
Hector Mine, and El Mayor-Cucapah earthquakes [103]) (see Table 5.1 for details on time domains). The
distributions of Mc were re-calculated for the earthquakes in each time window; Figures 5.3(b-f) show
the Mc map for each time domain. From Figs. 5.3(b-f), the author determined by sight the quadrilateral
area with the vertices at (120◦W, 34.5◦N), (118.5◦W, 36.5◦N), (117◦W, 36.5◦N), and (114.5◦W, 31.5◦N),
which is the spatial window excluding the periphery with high Mc as much as possible and including the
three mainshock epicenters; the earthquakes included in this area were the target of the analysis below.

After setting the space-time window by the above-mentioned process, the author determined the
magnitude ranges to set the cut-off magnitude for the two stationary time series. Referring to the Mc

values by the MBASS method and b̂ values, the author visually determined the magnitude range the GR
exponential decay holds (see Figs. 5.2(g, h) and Table 5.1). The maximum likelihood estimate yielded
the b-values in these ranges as summarized in Table 5.1. On the other hand, for the three mainshock-
aftershock sequences, the author further narrowed down the time domain in which R(t) ∝ t−p holds.
Figure 5.5 shows the number of aftershocks with magnitude ≥ 2 per day versus time (t) from each
mainshock. As shown in the figure, R(t) ∝ t−p holds for each aftershock sequence after sufficient time
passed from the mainshock. Based on the figure, the author chose the time domain where R(t) ∝ t−p

holds by sight and computed the p-values by fitting within these regimes (see Table 5.2 for details). This
procedure can exclude the time domain immediately after the mainshock, where Mc tends to become
large [38, 39]. In this way, the space-time windows for the aftershock regimes were set. For the events
within these space-time windows, the author determined the magnitude ranges and the b-values in the
same manner as for the stationary time series; see Figs. 5.2(d-f) for the magnitude frequency and Table
5.1 for the b-values.
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Figure 5.4: Spatial distribution of Mc calculated by the MBASS method for the JMA catalog around
the epicenter of Tohoku mainshock (shown by red × symbol) in the time domain (a) 01/01/2000 ‒
immediately before the mainshock time, (b) JS, and (c) JA. The black dots show the epicenters of
earthquakes with magnitude (a, b) ≥ 3 and (c) ≥ 4 in 140◦E ‒ 150◦E and 35◦N ‒ 42◦N (note that
the range shown is slightly wider than this) for each time domain. Inside the red rectangle is the spatial
domain to analyze. (d, e) N(t) for earthquakes with magnitude ≥ 3 in the area 140◦E ‒ 150◦E, 35◦N
‒ 42◦N from January 1, 2000, at 00:00:00 (JST); the bold red curve indicates the aftershock sequence
(JA) and the dotted blue lines stationary regimes (JS).

JMA Catalog

The JMA catalog [16, 17] covers earthquakes throughout Japan, and in this study, the author focused
on the spatial area around the Tohoku mainshock (M9) in 2011. First, the author provisionally set the
spatial domain 140◦E ‒ 150◦E and 35◦N ‒ 42◦N and the time domain 01/01/2000 ‒ 03/31/2022. Then,
the author examined the spatial distribution of Mc in the same way as the Southern California catalog,
before (from 01/01/2000 to immediately before the Tohoku mainshock time, Fig. 5.4(a)) and after (from
the Tohoku mainshock time to 03/31/2022, Fig. 5.4(c)) the Tohoku mainshock. Figures 5.4(a) and (c)
suggest that Mc are partially as high as 3 to 4. Although the cut-off magnitude 3 is somewhat low
compared to these results, the author examined N(t) for earthquakes with magnitude ≥ 3 as shown in
Figs. 5.4(d, e) and selected the stationary time domains (JS) and the aftershock sequence of the Tohoku
mainshock (JA) (see Table 5.1 for the respective time domains). Figure 5.4(b) shows the Mc distribution
in JS calculated by the MBASS method. Taking the results in Figs. 5.4(b, c) into account, the author
determined the spatial domain to analyze to the inside of the rectangle 140◦E ‒ 146◦E and 35◦N ‒
42◦N .

Figure 5.2(b) shows the magnitude frequency in the above-set space-time window of JS. As in the case
of Southern California, the author determined the magnitude range by visual inspection from the linear
part of Fig. 5.2(b) such that larger than Mc calculated by the MBASS method. On the other hand, for
JA, the author narrowed down the time domain to the regime obeying R(t) ∝ t−p; From the occurrence
rate graph in Fig. 5.5, the author visually determined such time domain to be 10 < t. After setting the
space-time window for JA, the author finally determined the magnitude range as other time series based
on Fig. 5.2(c). The magnitude ranges and the b-values for JS and JA are summarized in Table 5.1.

Time Series Transformation

Using the above-mentioned process, the author obtained four stationary time series (CMT, JS, SCS1, and
SCS2) and aftershock sequences (JA, SCA1, SCA2, and SCA3). The author applied the transformation
in Eq. (5.7) for these time series. Figure 5.6 shows the cumulative number of aftershocks (N̂(w)) against
the transformed time w(= ±t1−p). Note that the transformation is different for each aftershock sequence
depending on the p-value. After the transformation, one can see that N̂(w) increases linearly for the
transformed time w in the time ranges shown in Table 5.2. In the following, the author analyzes these
transformed aftershock time series (JA, SCA1, SCA2, SCA3) as well as the stationary time series (CMT,
JS, SCS1, SCS2). Hereafter, these unfolding-transformed time series are referred to by the names in Table
5.1. The author performed the catalog analysis for these time series by setting the cut-off magnitude in
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Table 5.1: Information on spatial domain, time domain, magnitude range set by the author, and the
b-value determined by the maximum likelihood estimate in the magnitude range, the total number of
earthquakes in the spatiotemporal domain with magnitude ≥ the lower limit of the magnitude range, of
seismic catalogs used in this study. For the mainshock-aftershock sequences (JA, SCA1, SCA2, SCA3),
the number of events is bracketed because the events to be analyzed are more limited (see Table 5.2).
The first part of JS includes events up to just before the M7.1 earthquake on May 26, 2003, at 18:24:33.42
(JST). Also, the second part of JS includes events up to April 30, 2008; the term is set to avoid activity
that could be considered as foreshocks prior to the M7.0 event on May 8, 2008, at 1:45:18.77 (JST). SCA1
includes events up to just before the Northridge earthquake (M6.7) on January 17, 1994, SCS1 just before
the Hector Mine earthquake (M7.1), SCS2 just before the El Mayor-Cucapah earthquake (M7.2), and
SCA3 just before the foreshock (M6.4) of the 2019 Ridgecrest M7.1 earthquake [103].

Catalog Name Spatial domain Time domain Magnitude range b-value Number
CMT CMT Whole world 01/01/1977 ‒ 12/31/2022 5.4 ≤M ≤ 7.5 0.990 24648
JMA JS 140◦E ‒ 146◦E 01/01/2000 ‒ 05/26/2003 3 ≤M ≤ 5 0.788 2737

35◦N ‒ 42◦N 08/01/2006 ‒ 04/30/2008 3 ≤M ≤ 5 1377
JA 03/11/2011 ‒ 03/31/2022 4 ≤M ≤ 5 0.984 (9162)

SCEDC SCA1 The area with vertices: 06/28/1992 ‒ 01/17/1994 2 ≤M ≤ 5 1.181 (17308)
SCS1 (120◦W, 34.5◦N), 01/01/1995 ‒ 10/16/1999 2 ≤M ≤ 5 1.148 9665
SCA2 (118.5◦W, 36.5◦N), 10/16/1999 ‒ 12/31/2001 2 ≤M ≤ 4.9 1.208 (9890)
SCS2 (117◦W, 36.5◦N), 01/01/2002 ‒ 04/04/2010 2 ≤M ≤ 5 0.965 10589
SCA3 (114.5◦W, 31.5◦N) 04/04/2010 ‒ 07/04/2019 2 ≤M ≤ 5 0.930 (18852)

Table 5.2: Time ranges of aftershock sequences to be analyzed. The p-value and the number of events
within the time range are also shown. p-values are calculated for events with magnitude ≥ minimum
magnitude in Table 5.1.

Name R(t) ∝ t−p range p-value Number
JA 10 < t 0.895 6706
SCA1 10 < t 1.061 12856
SCA2 100.5 < t < 102 1.005 3531
SCA3 10 < t 0.820 14978

increments of 0.1.

5.2.3 Scaling of Inter-event Time Distributions

Figure 5.7 shows the inter-event time distribution after rescaled by the average (Rm = 1/〈τm〉) as in
Eq. (1.8), for each unfolding-transformed time series. This figure is drawn using the following method,
which is equivalent to changing the bin width according to the inter-event time length [77]. First, the
inter-event times at cut-off magnitude m are transformed as τm 7→ σm := log10 τm. Let Ñm(σm) denote
the number of such transformed intervals of length within [σm, σm +∆σ) in the time series, where ∆σ is
fixed to 0.1 in this chapter. Then the probability density function of this transformed intervals (p̃m(σm))
is calculated as:

p̃m(σm) =
Ñm(σm)

Nm∆σ
.

pm(τm) is obtained by re-transforming p̃m(σm) by σm 7→ τm. By using the class mark (σm + 0.5∆σ) for
dσm/dτm = 1/(10σm ln 10),

pm(τm) =
1

10σm+0.5∆σ ln 10

Ñm(σm)

Nm∆σ
. (5.8)
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Figure 5.7: Rescaled inter-event time distributions by the average interval 〈τm〉 for the unfolding-
transformed time series of (a) CMT, (b) JS, (c) JA, (d) SCA1, (e) SCA2, (f) SCA3, (g) SCS1, and
(h) SCS2. For each time series, the results of several cut-off magnitudes are shown. The dotted curve is
the gamma distribution in Eq. (1.9).

In this way, the inter-event time distribution is drawn by plotting Eq. (5.8) against 10σm+0.5∆σ. Finally,
the results shown in Fig. 5.7 are obtained through further rescaling by 〈τm〉.

One can see that the rescaled distributions are around the same curve that is expressed in Eq. (1.9),
except for very short intervals (τm/〈τm〉 ≲ 10−2). For such short intervals, the rescaled distributions,
in many cases, tend to take larger values than those used in Eq. (1.9); this may be due in part to
the limitation in terms of accuracy, and such limitation is often removed by setting a minimum interval
(around 10 seconds [87] to 2 minutes [77]). Also, preceding studies provided theoretical explanations for
this trend using the ETAS model [83, 84, 85].

These characteristics observed in Fig. 5.7 are consistent with the results of preceding catalog analyses
[72, 73, 77]. Thus, the scaling property of the inter-event time distribution was also confirmed for the
unfolding-transformed time series.
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5.2.4 Method to Examine the Conditional Probability

The properties of the conditional probability are examined as the change in each component of the
representation Eq. (3.10) of the conditional probability from that for the stationary marked Poisson
Process. Correlations between events in seismic time series change these components from Eqs. (3.11)
and (3.14). The conditional probability in time series with weak inter-event correlations can be studied
by examining such changes. The subsequent section presents the findings from analyzing the unfolding-
transformed time series extracted in the preceding subsection using this approach.

5.3 Results of Catalog Analysis

5.3.1 Results for the Component ΨmM(i|τM)

Scaling Property for the Average of the Conditional Probability

First, the author shows the scaling property for the average of the conditional probability. By definition,
the length of an inter-event time interval at the upper cut-off magnitude (τM ) divided by this average
(〈〈τm〉〉τM ) is equal to the average number of intervals at the lower cut-off magnitude included in that
upper interval, i.e.,

τM
〈〈τm〉〉τM

=

∞∑
i=1

iΨmM (i|τM ). (5.9)

This demonstrates that the scaling property associated with Eq. (5.9) as well as the average of the
conditional probability is linked only to the component ΨmM (i|τM ).

Subtracting 1 from Eq. (5.9) yields the average number of magnitude ≥ m events included in the
inter-event time of length τM at the upper cut-off magnitudeM . Figure 5.8 shows the results after scaling
this average using the factor A∆m (in Eq. (3.12)) for magnitude and the average interval 〈τM 〉 for time,
across each time series. These results were obtained in the following way.

Define the transformed upper interval σM := log10 τM . For a set of cut-off magnitudes (m,M), let
ÑM (σM ) be the number of inter-event intervals at the upper cut-off magnitude, whose length is within
[σM , σM + ∆σ). Also, let Ñm(σM ) be the total number of inter-event intervals at the lower cut-off
magnitude included in these intervals at the upper cut-off magnitude. Then the result shown in Fig. 5.8
for a specific pair (m,M) is obtained by plotting the following against 10σM+0.5∆σ/〈τM 〉:

1

A∆m

(
Ñm(σM )

ÑM (σM )
− 1

)
. (5.10)

Figure 5.8 shows that the average numbers (τM/〈〈τm〉〉τM − 1) computed by the above way collapse
on a curve (ζ(y)) independent of the cut-off magnitudes (m,M), after rescaling by 〈τM 〉 and A∆m, as
follows:

τM
⟨⟨τm⟩⟩τM

− 1

A∆m
= ζ

(
τM
〈τM 〉

)
. (5.11)

Hereafter, the variable y := τM/〈τM 〉 is used.
Seismic catalogs have a limitation in the number of events. Therefore, in particular for the combination

of (m,M) with large ∆m, the number of sample data to calculate Eq. (5.10) becomes insufficient. This
leads to increased fluctuations in the results and makes it difficult to identify a trend. To obtain the scaling
function (ζ(y)) utilizing as many sample data as possible, the author used all sample data obtained from
the combinations of (m,M) with the same ∆m together as the population, based on the above result in
the following way.

Define the rescaled and transformed upper interval σ := log10 y. For all (m,M) with the same ∆m
(i.e., (m,M) = (m0,m0 + ∆m), (m1,m1 + ∆m), · · · , (mn,mn + ∆m), where mj = mmin + 0.1j (mmin

is the minimum magnitude in Table 5.1) and n is the upper limit of j for the given magnitude range
and ∆m), let N̂mj+∆m(σ) be the total number of rescaled and transformed inter-event time intervals of

length within [σ, σ +∆σ) at the cut-off magnitude mj +∆m. Also, let N̂mj (σ) be the total number of

77



10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(a)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

(5.4,5.8)
(5.8,6.2)
(6.2,6.6)
(6.6,7.0)
(7.0,7.4)
(5.4,6.2)
(5.7,6.5)
(6.0,6.8)

(6.3,7.1)
(6.6,7.4)
(5.4,6.6)
(5.6,6.8)
(5.8,7.0)
(6.0,7.2)
(6.2,7.4)
(5.4,7.0)

(5.5,7.1)
(5.6,7.2)
(5.7,7.3)
(5.8,7.4)
(5.9,7.5)
(5.4,7.4)
(5.5,7.5)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(b)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

(3.0,3.4)
(3.4,3.8)
(3.8,4.2)
(4.2,4.6)
(4.6,5.0)
(3.0,3.8)
(3.3,4.1)

(3.6,4.4)
(3.9,4.7)
(4.2,5.0)
(3.0,4.2)
(3.2,4.4)
(3.4,4.6)
(3.6,4.8)

(3.8,5.0)
(3.0,4.6)
(3.1,4.7)
(3.2,4.8)
(3.3,4.9)
(3.4,5.0)
(3.0,5.0)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(c)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

(4.0,4.2)
(4.2,4.4)
(4.4,4.6)
(4.6,4.8)
(4.8,5.0)
(4.0,4.4)
(4.2,4.6)
(4.4,4.8)
(4.6,5.0)

(4.0,4.6)
(4.1,4.7)
(4.2,4.8)
(4.3,4.9)
(4.4,5.0)
(4.0,4.8)
(4.1,4.9)
(4.2,5.0)
(4.0,5.0)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(d)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

(2.0,2.6)
(2.8,3.4)
(3.6,4.2)
(4.4,5.0)
(2.0,3.2)
(2.6,3.8)
(3.2,4.4)
(3.8,5.0)
(2.0,3.8)

(2.4,4.2)
(2.8,4.6)
(3.2,5.0)
(2.0,4.4)
(2.2,4.6)
(2.4,4.8)
(2.6,5.0)
(2.0,5.0)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(e)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

(2.0,2.6)
(2.8,3.4)
(3.6,4.2)
(4.3,4.9)
(2.0,3.2)
(2.6,3.8)
(3.2,4.4)
(3.7,4.9)

(2.0,3.8)
(2.4,4.2)
(2.8,4.6)
(3.1,4.9)
(2.0,4.4)
(2.2,4.6)
(2.4,4.8)
(2.5,4.9)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(f)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

(2.0,2.6)
(2.8,3.4)
(3.6,4.2)
(4.4,5.0)
(2.0,3.2)
(2.6,3.8)
(3.2,4.4)
(3.8,5.0)
(2.0,3.8)

(2.4,4.2)
(2.8,4.6)
(3.2,5.0)
(2.0,4.4)
(2.2,4.6)
(2.4,4.8)
(2.6,5.0)
(2.0,5.0)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(g)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

(2.0,2.6)
(2.8,3.4)
(3.6,4.2)
(4.4,5.0)
(2.0,3.2)
(2.6,3.8)
(3.2,4.4)
(3.8,5.0)
(2.0,3.8)

(2.4,4.2)
(2.8,4.6)
(3.2,5.0)
(2.0,4.4)
(2.2,4.6)
(2.4,4.8)
(2.6,5.0)
(2.0,5.0)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(h)

(τ
M

/<
<

τ m
>

>
τ M

-1
)/

A
∆m

τM/<τM>

(2.0,2.6)
(2.8,3.4)
(3.6,4.2)
(4.4,5.0)
(2.0,3.2)
(2.6,3.8)
(3.2,4.4)
(3.8,5.0)
(2.0,3.8)

(2.4,4.2)
(2.8,4.6)
(3.2,5.0)
(2.0,4.4)
(2.2,4.6)
(2.4,4.8)
(2.6,5.0)
(2.0,5.0)

Figure 5.8: Results of rescaled [τM/〈〈τM 〉〉τM − 1] for some pairs of specific cut-off magnitudes (m,M)
for (a) CMT, (b) JS, (c) JA, (d) SCA1, (e) SCA2, (f) SCA3, (g) SCS1, and (h) SCS2. Equation (5.13)
is also indicated by a black (dotted) line for reference.
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inter-event intervals at the cut-off magnitude mj included in these time intervals at the cut-off magnitude
mj +∆m. Then the result for ∆m is obtained by plotting the following against 10σ+0.5∆σ:

1

A∆m

( ∑n
j=0 N̂mj

(σ)∑n
j=0 N̂mj+∆m(σ)

− 1

)
. (5.12)

Such results for all possible ∆m set within the magnitude range in Table 5.1 are shown in Fig. 5.9 by
gray + symbols. In particular, the results for several ∆m values are indicated by colored symbols. These
results are nearly the same as those for the specific pairs of (m,M) in Fig.5.8, indicating that the scaling
property in Eq. (5.11) holds. The results also suggest that the method using the dependence on the
magnitude difference as in Eq. (5.12) can effectively extract the scaling function from the limited number
of seismic data, as long as the GR law holds.

The following linear functions are used as the fitting function of ζ(y):

ζ(y) ≈

{
αy + β (if y ≥ y0),

γy (if y < y0).
(5.13)

The parameter values (α, β, γ, y0) in Eq. (5.13) are different for each time series and can be determined
as follows. First, β was determined by fitting in the range y ∈ [10−2, 10−1]. Next, as ζ(y) ∼ αy for large
y, the author determined α by fitting in log-scale log10 ζ(y) ∼ log10 α+log10 y, in the range y ≥ 1. In the
same way, γ was determined by fitting in log-scale log10 ζ(y) ∼ log10 γ + log10 y, in the range y ≤ 10−2.
Lastly, y0 was determined as the intersection of the above two lines. The resulting parameter values are
summarized in Table 5.3, and the fitting curves with these parameter values are shown in Fig. 5.9 (and
also in Fig. 5.8 for reference).

Table 5.3: Parameter values (to six decimal places) in Eq. (5.13) for each time series.

Name α β γ y0
CMT 0.953828 0.069634 4.603897 0.019077
JS 0.979298 0.156119 28.882991 0.005595
JA 0.869569 0.340167 258.752423 0.001319
SCA1 0.822337 0.147506 17.838524 0.008669
SCA2 0.644104 0.075412 16.157159 0.004861
SCA3 1.106579 0.292309 172.511206 0.001705
SCS1 0.575125 0.279903 60.274019 0.004689
SCS2 0.681038 0.377327 81.000735 0.004698

Functional Form of ΨmM (i|τM )

Figure 5.10 shows the component ΨmM (i|τM ) for i ≤ 5 and ∆m = 0.5, 1.0, and 1.5 for the case of CMT.
The cases of other time series are shown in Figs. S1-(1) ‒ S1-(7). In the figure, the variable τM is scaled
by the average 〈τM 〉. Only the small ∆m results are shown because, when ∆m becomes large, the number
of samples for calculating the distribution is reduced, and it seemed insufficient to obtain clear outcomes.
The results in Fig. 5.10 were obtained in the following way.

Let ÑM (i|σM ) be the number of transformed time intervals at the upper cut-off magnitude (σM =
log10 τM ), whose length is within [σM , σM+∆σ), and each of them includes i pieces of inter-event intervals
at the lower cut-off magnitude. ΨmM (i|τM ) can be drawn by plotting the following against 10σM+0.5∆σ:

ÑM (i|σM )

ÑM (σM )
. (5.14)

The results shown in Figs. 5.10 and S1-(1) ‒ S1-(7) were obtained by further scaling the x-axis value by
the average, that is, plotting Eq. (5.14) against 10σM+0.5∆σ/〈τM 〉. In the figures, the results for several
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Figure 5.9: Results of [τM/〈〈τM 〉〉τM − 1] calculated by Eq. (5.12) for the mixed populations of (m,M)
with the same ∆m. Results of all ∆m are shown by gray + symbols. The black solid line shows αy + β
for y ≥ y0 and the black dotted line γy for y < y0 with the parameter values in Table 5.3.
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pairs of (m,M) are shown. The figures suggest that the probabilities ΨmM (i|τM ) of the same ∆m and i
collapse on nearly the same function (Ψ̂∆m(i|y)) after rescaling by 〈τM 〉:

ΨmM (i|τM ) = Ψ̂∆m (i|y) . (5.15)

Based on this scaling property, the author calculated Ψ̂∆m (i|y) by taking into consideration all the
sample data with the same ∆m and y, likewise Section 5.3.1. Let N̂mj+∆m(i|σ) be the number of rescaled
and transformed time intervals (σ = log10 y) of length within [σ, σ+∆σ) at the upper cut-off magnitude
(mj + ∆m), each of which includes i pieces of inter-event intervals at the lower cut-off magnitude mj .

Ψ̂∆m (i|y) was also drawn in Figs. 5.10 and S1-(1) ‒ S1-(7) by plotting the following against 10σ+0.5∆σ

by + symbols: ∑n
j=1 N̂mj+∆m(i|σ)∑n
j=1 N̂mj+∆m(σ)

. (5.16)

The results of Eq. (5.16) resemble those for particular combinations of (m,M) and thus support the
scaling property in Eq. (5.15).

The figures also indicate that ΨmM (i|τM )(=Ψ̂∆m(i|y)) can be described empirically by the following
negative binomial distribution with the scaling function ζ(y):

ΨmM (i|τM ) =
Γ(i− 1 +B∆mζ(y))

(i− 1)!Γ(B∆mζ(y))

(
B∆m

A∆m +B∆m

)B∆mζ(y)(
A∆m

A∆m +B∆m

)i−1

, (5.17)

where,

B∆m =
A∆m

b∆m (b∆m+ 2)
.

In the figures, Eq. (5.17) was drawn with the b-values listed in Table 5.1 and the parameter values listed
in Table 5.3. One can see that Eq. (5.17) describes the numerical results of ΨmM (i|τM ), though it tends
to deviate at the tail.

Note that Eq. (5.17) becomes the following Poisson distribution as ∆m→ 0:

ΨmM (i|τM ) −−−−→
∆m→0

(A∆mζ (y))
(i−1)

(i− 1)!
e−A∆mζ(y). (5.18)

In particular, when ζ(y) = y is identical to Eq. (3.11). However, such consistency does not hold for
∆m ≩ 0, and there is room for improvement in this respect.

Thus, the weak inter-event correlations cause two modifications in ΨmM (i|τM ) compared to the sta-
tionary Poisson process. First, the distribution form of ΨmM (i|τM ) changes to a negative binomial
distribution for ∆m > 0. Second, the scaling function ζ(y) deviates from ζ(y) = y. In particular,
when ∆m → 0, ζ(y) represents a perturbation from the stationary Poisson process caused by the weak
correlations.

5.3.2 Results for the Component ρmM(τm|2, τM) and the Assumption Regard-
ing ρmM(τm|i, τM) with i ≥ 3

As for the component ρmM (τm|i, τM ), the author quantifies its change from Eq. (3.14) by using dh
(i)
mM (τm, τM )

defined as in Eq. (5.19).

ρmM (τm|i, τM ) =
(i− 1)

τM

(
1− τm

τM

)i−2 (
1 + dh

(i)
mM (τm, τM )

)
θ(τM − τm). (5.19)

Note that, as pointed out in Section 5.3.1, the average of the conditional probability is determined only

by the component ΨmM (i|τM ). Therefore, the changes dh
(i)
mM (τm|τM ) affect the higher order moments

than 1 in the conditional probability.
In this study, the author examined only the case of i = 2. By the normalization condition and the

symmetry of ρmM (τm|2, τM ), dh
(2)
mM (τm, τM ) must satisfy the followings:∫ τM

0

dh
(2)
mM (τm, τM )dτm = 0,

dh
(2)
mM (τm, τM ) = dh

(2)
mM (τM − τm, τM ).

81



10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(a)

Ψ
m

M
(1

|τ
M

),
Ψ^

0
.5

(1
|y

)

y

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ψ
m

M
(2

|τ
M

),
Ψ^

0
.5

(2
|y

)

y

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ψ
m

M
(3

|τ
M

),
Ψ^

0
.5

(3
|y

)

y

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ψ
m

M
(4

|τ
M

),
Ψ^

0
.5

(4
|y

)

y

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ψ
m

M
(5

|τ
M

),
Ψ^

0
.5

(5
|y

)

y

m=5.4
m=5.7
m=6.0
m=6.3
m=6.6
m=6.9
superpose
Negative Binomial (y>y0)
Negative Binomial (y<y0)

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(b)

Ψ
m

M
(1

|τ
M

),
Ψ^

1
.0

(1
|y

)

y

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ψ
m

M
(2

|τ
M

),
Ψ^

1
.0

(2
|y

)

y

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ψ
m

M
(3

|τ
M

),
Ψ^

1
.0

(3
|y

)

y

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ψ
m

M
(4

|τ
M

),
Ψ^

1
.0

(4
|y

)

y

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ψ
m

M
(5

|τ
M

),
Ψ^

1
.0

(5
|y

)

y

m=5.4
m=5.6
m=5.8
m=6.0
m=6.2
m=6.4
superpose
Negative Binomial (y>y0)
Negative Binomial (y<y0)

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

(c)

Ψ
m

M
(1

|τ
M

),
Ψ^

1
.5

(1
|y

)

y

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ψ
m

M
(2

|τ
M

),
Ψ^

1
.5

(2
|y

)

y

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ψ
m

M
(3

|τ
M

),
Ψ^

1
.5

(3
|y

)

y

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ψ
m

M
(4

|τ
M

),
Ψ^

1
.5

(4
|y

)

y

10
-4

10
-3

10
-2

10
-1

10
0

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Ψ
m

M
(5

|τ
M

),
Ψ^

1
.5

(5
|y

)

y

m=5.4
m=5.5
m=5.6
m=5.7
m=5.8
m=5.9
superpose
Negative Binomial (y>y0)
Negative Binomial (y<y0)

Figure 5.10: ΨmM (i|τM ) and Ψ̂∆m(i|y) with i ≤ 5 for CMT, plotted against y(:= τM/〈τM 〉). The cases
of (a) ∆m = 0.5, (b) ∆m = 1.0, and (c) ∆m = 1.5 are shown. The results of ΨmM (i|τM ) for several
specific pairs of cut-off magnitude (m,M) are shown by open-colored symbols. The gray + symbols show
Ψ̂∆m(i|y) for mixed populations of (m,M) with the same ∆m. (Dotted) curves show Eq. (5.17) with
the parameter values listed in Tables 5.1 and 5.3.

82



The author also examined the distribution function of ρmM (τm|2, τM ):

PmM (τm|2, τM ) :=

∫ τm

0

ρmM (s|2, τM )ds,

which is τm/τM for the stationary marked Poisson process.
Figure 5.11 shows the numerical results of ρmM (τm|2, τM ) and PmM (τm|2, τM ) for CMT. The latter

was scaled by τM values in the x-axis direction. The results for other time series are shown in Figs. S2-(1)
‒ S2-(7). The results were obtained in the following way.

Define the transformed lower interval σm := log10 τm. Let ÑmM (σm;σM |i = 2) be the number
of the transformed inter-event time intervals at the lower cut-off magnitude, whose length falls within
[σm, σm + ∆σ) and each of them is included in the transformed inter-event time interval at the upper
cut-off magnitude (σM = log10 τM ) such that its length is within [σM , σM +∆σ) and it includes only two
(i = 2) inter-event intervals at the lower cut-off magnitude. Also, let Ñm(σM |i = 2) be the total number
of inter-event intervals at the lower cut-off magnitude, included in the inter-event intervals at the upper
cut-off magnitude such that its transformed length is within [σM , σM + ∆σ) and includes two intervals
at the lower cut-off magnitude. Finally, I denote the density ρmM (τm|2, τM ) after applying the above
variable transformations by ρ̃mM (σm|2, σM ), which is calculated as follows:

ρ̃mM (σm|2, σM ) =
ÑmM (σm;σM |i = 2)

Ñm(σM |i = 2)∆s
. (5.20)

ρmM (τm|2, τM ) is obtained by re-transforming this by σm 7→ τm and σM 7→ τM ,

ρmM (τm|2, τM ) =
1

10σm+0.5∆s ln 10

ÑmM (σm;σM |i = 2)

Ñm(σM |i = 2)∆s
. (5.21)

ρmM (τm|2, τM ) in Figs 5.11 and S2-(1) ‒ S2-(7) were drawn by plotting Eq. (5.21) against 10σm+0.5∆s

and 10σM+0.5∆s. Also, PmM (τm|2, τM ) can be calculated by adding ρ̃mM (σm|2, σM )∆s and was plotted
against 10σm+∆s/10σM+0.5∆s and 10σM+0.5∆s.

As shown in these figures, the densities ρmM (τm|2, τM ) are nearly the same regardless of (m,M).

In addition, ρmM (τm|2, τM ) ≈ 1/τM , suggesting that dh
(2)
mM (τm, τM ) ≈ 0. However, as shown in the

lower panels of the figures, dh
(2)
mM (τm, τM ) tends to take a positive value for small τm. This tendency

seems to reflect the temporal clustering of moderate aftershocks in stationary time series and secondary
aftershocks in transformed aftershock sequences.

dh(2)(τm, τM ) ≈ 0 implied by the figures reflects the weak inter-event correlations in the time series;

the situation seems to be the same for i ≥ 3, that is, dh
(i)
mM (τm, τM ) ≈ 0 for i ≥ 3. Thus, in the following,

the author assumes that inter-event correlations in these time series are sufficiently weak so as not to

affect the components ρmM (τm|i, τM ) and there is no change in ρmM (τm|i, τM ) (i.e., dh
(i)
mM (τm, τM ) ≈ 0

for i ≥ 2) from the stationary marked Poisson process. Note that this assumption should be re-considered
when dealing with time series that include prominent (secondary) aftershocks.

5.4 Derivation of the Probability Density Functions Related to
Inter-event Times

The analysis in the previous section yielded the following results and suggestions for unfolding-transformed
seismic time series: the component ΨmM (i|τM ) can be empirically described by the negative binomial
distribution (Eq. (5.17)) with the scaling function ζ(y) (which can be fit by the linear functions in
Eq. (5.13)) in the newly found scaling property (Eq. (5.11)), and the other component ρmM (τm|i, τM )
is almost unaffected by weak inter-event correlations and assumed to be the same as in the stationary
Poisson process. Based on them, this section derives the functional forms of probability densities in Bayes’
theorem (Eq. (3.7)) and checks whether the derived functions can describe the probability densities.

5.4.1 Conditional Probability

First, the conditional probability is derived. The conditional probability rescaled by the transformations
τm 7→ x := τm/〈τM 〉 and τM 7→ y (p̂mM (x|y)) is derived as in Eq. (5.22) (see Appendix N). Hereafter,
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Figure 5.11: Numerical results of (upper panels) ρmM (τm|2, τM ) and (lower panels) PmM (τm|2, τM ) for
several pairs of (m,M) with (a) ∆m = 0.5, (b) ∆m = 1.0, and (c) ∆m = 1.5, for CMT. The upper
(lower) panels show ρmM (τm|2, τM ) (PmM (τm|2, τM )) in a cross-section parallel to the τM (τm/τM )
axis. The colors in the upper (lower) panels indicate τm (τM ) values. The dotted black line in the
upper (lower) panels indicates ρmM (τm|2, τM ) = 1/τM (PmM (τm|2, τM ) = τm/τM ), which corresponds to

dh
(2)
mM (τm, τM ) = 0 in Eq. (5.19).

variable x is used with this definition.

p̂mM (x|y) = (A∆mζ(y) + 1)
−1

{
δ(y − x)

(
A∆m

A∆m +B∆m

)B∆mζ(y)

+θ(y − x)
[A∆mB∆m(y − x)ζ(y) +A∆m(x+ y) + 2B∆my]

(A∆mx+B∆my)2

×A∆mB∆mζ(y)

(
B∆my

A∆mx+B∆my

)B∆mζ(y)
}
. (5.22)

As Eq. (5.22) indicates, the rescaled conditional probability depends on ∆m.
To compare with Eq. (5.22), the author numerically obtained the conditional probability similarly

to Section 5.3.2, though the condition of i = 2 is removed. Let ÑmM (σm;σM ) be the number of the
transformed inter-event time intervals at the lower cut-off magnitude (σm = log10 τm), whose length is
within [σm, σm + ∆σ) and each of them is included in the transformed inter-event time interval at the
upper cut-off magnitude (σM = log10 τM ) of length within [σM , σM + ∆σ). This represents the total
number of pairs of σm and σM in the time series. Also, let p̃mM (σm|σM ) be the probability density of
σm under the condition that it is included in the inter-event time interval of transformed length σM at
the upper cut-off magnitude. Thus, p̃mM (σm|σM ) is calculated as follows:

p̃mM (σm|σM ) =
ÑmM (σm;σM )

Ñm(σM )∆σ
,

and pmM (τm|τM ) is:

pmM (τm|τM ) =
1

10σm+0.5∆σ ln 10

ÑmM (σm;σM )

Ñm(σM )∆σ
. (5.23)

p̂mM (x|y) can be drawn by plotting the following against (x, y):

p̂mM (x|y) = 〈τM 〉pmM (τm|τM ). (5.24)
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Figure 5.12: P̂mM (x|y) for the time series of CMT. Results for certain pairs of cut-off magnitudes (m,M)
with (a) ∆m = 0.4, (b) ∆m = 0.8, (c) ∆m = 1.2, and (d) ∆m = 1.6, are drawn in cross-sections for the
ranges of y shown in the figure. Results for the pairs of (m,M) are represented by colored open symbols.
Black + symbols show P∆m(x|y) where y = 10(j+0.5)∆σ, j ∈ Z. Among the j values for which P∆m(x|y)
is obtained, the values are denoted such that all results for the pairs of (m,M) displayed in the legend
are included within (10j∆σ, 10(j+1)∆σ) by j = j0, j1, · · · , jK . The ranges of y shown in the figure are
(10j∆σ, 10(j+1)∆σ) for j values nearest to the four points which are dividing [j0, jK ] into five equal parts.

Figure 5.12 shows P̂mM (x|y) defined below:

P̂mM (x|y) :=
∫ ∞

x

p̂mM (x′|y)dx′,

numerically calculated for the time series of CMT. In the figure, P̂mM (x|y) is shown in cross-section views
for various y ranges. The figure suggests that the conditional probability for the same ∆m collapse on
the same function, that is,

p̂mM (x|y) = p̂∆m(x|y). (5.25)

This is consistent with the implication by Eq. (5.22). The same scaling property was also found for other
time series, as shown in Figs. S3-(1) ‒ S3-(7).

Based on the scaling property in Eq. (5.25), the author calculated the conditional probability using
all the pairs of cut-off magnitudes with the same ∆m. Define the rescaled and transformed interval
ς := log10 x, and σ = log10 y. Let N̂mj ,mj+∆m(ς;σ) be the total number of the inter-event time intervals
of rescaled and transformed length within [ς, ς+∆σ) at the cut-off magnitude mj , that is included in the
inter-event time intervals of rescaled and transformed length within [σ, σ+∆σ) at the cut-off magnitude
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Figure 5.13: Equation (5.22) calculated with the parameter values from Table 5.3 (curves) and numerical
results of p∆m(x|y) by catalog analysis (symbols) for time series of (a) CMT, (b) JS, (c) JA, (d) SCA1,
(e) SCA2, (f) SCA3, (g) SCS1, and (h) SCS2. The value of ∆m is shown in the figure. Results are drawn
in cross-sections for y = 10(3j+0.5)∆σ, j ∈ Z. The color corresponds to the log10 y value, and its range is
shown in the color bar. Note that when the result of catalog analysis is not obtained for a j, only the
corresponding Eq. (5.22) is shown.

mj +∆m. The conditional probability for ∆m (p∆m(x|y)) is calculated as follows:

p∆m(x|y) = 1

10ς+0.5∆σ ln 10

∑n
j=0 N̂mj ,mj+∆m(ς;σ)∑n

j=0 N̂mj (σ)∆σ
. (5.26)

In Fig. 5.12, also P∆m(x|y) defined as follows is shown.

P∆m(x|y) :=
∫ ∞

x

p∆m(x′|y)dx′.

P∆m(x|y) is almost consistent with P̂mM (x|y), supporting the scaling property in Eq. (5.25) and the
superposition method in Eq. (5.26).

Figure 5.13 shows the results of Eq. (5.26) plotted against 10ς+0.5∆σ and Eq. (5.22) with the parameter
values listed in Table 5.3 at a given value of ∆m. The results for other ∆m values are summarized in
Figs. S4-(1) ‒ S4-(8). The figures show that the results of catalog analyses are described by Eq. (5.22).

5.4.2 Inter-event Time Distribution

Second, the scaling function (f(y) in Eq. (1.8)) of the inter-event time distribution is derived. Under

the assumption that dh
(i)
mM (τm, τM ) = 0 for i ≥ 2, the scaling functions f(y) and ζ(y) are shown to be

equivalent, and using Eq. (5.13) (see Appendix O),

f(y) =



 yβ0 e
αy0

eγy0−1
γ +

yβ
0 e

αy0

α1−β Γ (1− β, αy0)

 y−βe−αy (for y ≥ y0), eγy0

eγy0−1
γ +

yβ
0 e

αy0

α1−β Γ (1− β, αy0)

 e−γy (for y < y0).

(5.27)

Here Γ(·, ·) is the upper incomplete gamma function.
Figure 5.14 compares Eq. (5.27) with the rescaled inter-event time distributions for each time series.

Equation (5.27) was drawn using the parameter values in Table 5.3.
Equation (5.27) appears to be relatively complicated. However, Fig. 5.14 also shows that the over-

all shape, except for very short intervals, of the scaled distribution can be described by the gamma
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distribution in Eq. (5.28) that is the extension of f(y) in Eq. (5.27) for y ≥ y0 to y ∈ [0,∞) with
re-normalization:

f(y) =
α1−β

Γ(1− β)
y−βe−αy. (5.28)

5.4.3 Inverse Probability

Third, the inverse probability is derived by substituting the results in Sections. 5.4.1 and 5.4.2 into Bayes’
theorem (Eq. (3.7)). The rescaled inverse probability (p̂Mm(y|x)) was derived as follows (see Appendix
P):

p̂Mm(y|x) =
(
y
x

)−β
e−α(y−(A∆m+1)x)

(A∆m + 1)
2−β

{
δ(y − x)

(
A∆m

A∆m +B∆m

)B∆mζ(y)

+θ(y − x)
[A∆mB∆m(y − x)ζ(y) +A∆m(x+ y) + 2B∆my]

(A∆mx+B∆my)2

×A∆mB∆mζ(y)

(
B∆my

A∆mx+B∆my

)B∆mζ(y)
}
. (5.29)

As with the conditional probability, p̂Mm(y(> x)|x) depends on ∆m.
As in Section 5.4.1, the author numerically computed the inverse probability from catalog data as

follows. Let p̃Mm(σM |σm) be the probability density of the transformed inter-event time interval at the
upper cut-off magnitude (σM = log10 τM ) under the condition that inside of which the transformed time
interval of length σm(= log10 τm) is found. Thus, p̃Mm(σM |σm) is calculated as follows:

p̃Mm(σM |σm) =
Ñm(σm;σM )

Ñm(σm)∆σ
,

and pMm(τM |τm) is:

pMm(τM |τm) =
1

10σM+0.5∆σ ln 10

Ñm(σm;σM )

Ñm(σm)∆σ
. (5.30)

Thus the scaling of Eq. (5.30) yields p̂Mm(y|x):

p̂Mm(y|x) = 〈τM 〉pMm(τM |τm), (5.31)

and,

P̂Mm(y|x) :=
∫ ∞

y

p̂Mm(y′|x)dy′,

is shown for the case of CMT in Fig. 5.15 as sectional diagrams for several ranges of x. The results for
other time series are shown in Figs. S5-(1) ‒ S5-(7). The results suggest the property:

p̂Mm(y|x) = p̂∆m(y|x), (5.32)

as implied by Eq. (5.29).
As the ∆m dependence was confirmed, I calculated p̂∆m(y|x) taking into consideration all the pair of

(m,M) with equal ∆m as follows:

p∆m(y|x) = 1

10σ+0.5∆σ ln 10

∑n
j=0 N̂mj ,mj+∆m(ς;σ)∑n

j=0 N̂mj (ς)∆σ
. (5.33)

Figure 5.15 shows P∆m(y|x) :=
∫∞
y
p∆m(y′|x)dy′ and its consistency with P̂Mm(y|x) supports Eqs. (5.32)

and (5.33).
The results of Eq. (5.33) are shown in Fig. 5.16 against 10σ+0.5∆σ, along with Eq. (5.29) substituting

the parameter values in Table 5.3. Figure 5.16 shows only the results for a particular ∆m; see Figs.
S6-(1) ‒ S6-(8) for the results at other ∆m values. It can be seen that Eq. (5.29) illustrates the result
of catalog analysis for individual time series.
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Figure 5.14: Equations (5.27) (orange curve for y < y0 and cyan curve for y ≥ y0) and (5.28) (black
dotted curve) as well as numerical results of the rescaled inter-event time distributions by catalog analysis
(gray symbols, each symbol represents a result at the same cut-off magnitude as in Fig. 5.7) for time
series of (a) CMT, (b) JS, (c) JA, (d) SCA1, (e) SCA2, (f) SCA3, (g) SCS1, and (h) SCS2. Equations
(5.27) and (5.28) are calculated using the parameter values listed in Table 5.3.
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Figure 5.15: P̂Mm(y|x) for the time series of CMT. Results for some pairs of (m,M) with (a) ∆m = 0.4,
(b) ∆m = 0.8, (c) ∆m = 1.2, and (d) ∆m = 1.6 are shown by colored symbols in cross-sections in the
range of x indicated in the figure. Also, P∆m(y|x) :=
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shown by black + symbols. The x ranges indicated in the figure are determined by utilizing the same
method as outlined in the caption of Fig. 5.12.
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Figure 5.16: Equation (5.29) (curves) with the parameter values in Table 5.3 and numerical result of
pMm(y|x) by catalog analysis (symbols) for time series of (a) CMT, (b) JS, (c) JA, (d) SCA1, (e) SCA2,
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5.5 Discussion and Conclusions

This chapter examined the Bayesian forecasting framework of earthquakes’ timing using three seismic
catalogs toward its practical use. Following Corral’s method, the author extracted stationary (almost
constant occurrence rate) and aftershock (obeying OU occurrence rate) time series from three seismic
catalogs and transformed them into weak inter-event correlation ones. For these unfolding-transformed
time series, the author examined the simplest form of the Bayesian approach, Bayes’ theorem, composed
of three distribution functions: the conditional probability to quantify temporal hierarchy in time series,
the inverse probability directly related to forecasting, and the inter-event time distribution for which
scaling universality was re-examined.

A new scaling property on the temporal hierarchy of seismic time series was found by analyzing the
average of the conditional probability; the linear functions can fit its scaling function (ζ(y)), though
its fitting parameter values differ, reflecting seismic characteristics. The two functional components of
the conditional probability were analyzed; one can be empirically described by the negative binomial
distribution with the above scaling function (ζ(y)), and the other is almost unchanged from that of the
stationary marked Poisson process, which may be attributed to the weakness of inter-event correlation
of the unfolding-transformed time series.

Based on them, functional forms of the conditional probability and the scaling function (f(y)) of the
inter-event time distribution were derived. The theoretical derivation based on the present catalog analysis
suggested that the scaling functions for these probability distributions (ζ(y) and f(y)) are essentially
equivalent; the difference in the parameter values in the fitting linear functions of ζ(y) appears as that in
the scaling function f(y) of the inter-event time distribution, indicating the negative view of universality.
Finally, the inverse probability was derived from Bayes’ theorem. These derived distribution functions
could describe the characteristics of the results of catalog analysis, such as the functional form and peak
emergence in the inverse probability.

5.5.1 On the Scaling Universality in the Inter-event Time Distribution in
Seismicity

The derived scaling function of the inter-event time distribution was described as an exponential dis-
tribution for small intervals (y < y0) and a gamma distribution for large intervals (y ≥ y0). However,
the overall scaling function could be described just by the re-normalized latter gamma distribution. The
parameter values to characterize distributions are similar but different for each time series. These results
are consistent with the conclusions of the preceding studies in the following respects.

First, in the preceding studies [72, 73, 77], the (generalized) gamma distribution was used to fit the
results of catalog analysis, except for short intervals. Theoretical studies under some assumptions on
correlations between events derived the distribution near the generalized gamma distribution [83, 84, 85,
104]. Equation (5.28) provides another theoretical basis for the fitting instead of such approaches with
seismic model time series.

Second, theoretical studies using the ETAS model showed that the universality of the scaling function
f(y) is only approximate [83, 84, 85]. Our result is also consistent with them; the parameter values in
Eq. (5.27) or (5.28) were similar but slightly different, reflecting the characteristics of seismic activity
aggregated as the difference in ζ(y).

However, the difference in f(y) for each time series was not as pronounced as in the preceding numerical
study [78]. This is because the author restricted the analysis only to the stationary time series and
transformed aftershock sequences, in accordance with the original Corral’s method. The bimodality of
the inter-event time distribution pointed out in that study [78] seems to be manifested in the switching
of the distribution in Eq. (5.27), though it could not satisfactorily describe the catalog analysis at short

intervals (y < y0). A detailed study of dh
(i)
mM (τm, τM ), set to 0 in this study, may clarify this point.

These results on the scaling universality in the inter-event time distribution from the viewpoint of the
unfolding transformation indicate the following: such temporally unfolded time series are indistinguish-
able regardless of original seismic activity to the extent that their temporal property can be described in
the same gamma distribution with slightly different parameter values aggregating seismic character. This
conclusion about the temporal nature of the renewal process at a certain cut-off magnitude was derived
in the present study from that of the hierarchical relation at two different cut-off magnitudes, i.e., the
new scaling property of the conditional probability. Thus, this study extends the above conclusion to
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the level of the hierarchical structure of seismic time series; unfolding transformed seismic time series
are indistinguishable even at the hierarchical level to the extent that the same functional form of the
conditional probability can describe them.

5.5.2 On the Method of Unfolding Transformation of Seismic Time Series

The following problems still need to be solved with the method the author used in this chapter. Ap-
plying the unfolding procedure requires a smooth function representing the temporal variation trend of
occurrence rate. In studies of quantum chaos, such functions are given theoretically [98]. However, this
study does not have such a theoretical basis, and the temporal variation trends of occurrence rate are
given empirically.

This remains the ambiguity in judging whether an aftershock sequence is moderate and thus re-
garded as fluctuations in a stationary time series or a clear aftershock sequence. Preceding studies using
stochastic models considered all aftershock sequences to be the former; thus, there is no ambiguity in
this respect. However, in our approach, a modest aftershock sequence can be regarded as a sequence
such that its occurrence rate fluctuates around a smooth temporal variation described by the OU rate or
just a fluctuation in a stationary time series; a deviation from a constant occurrence rate. For example,
this study considered the secondary aftershocks in JA as the deviation in the unfolding-transformed time
series, though they could be considered as other aftershock activities. The fitting parameter values of ζ(y)
vary depending on which of the two is adopted, though at present, there is no clear way to determine.

In this way, the unfolding procedure applied in this study leaves some ambiguity in determining
the smooth function to describe the trend of the occurrence rate; our conclusion on the universality is
tentative in this respect. For a more detailed discussion, it is necessary to establish an objective method
to determine the smooth function of the occurrence rate trend adaptable to seismic activity, such as using
the moving average.

5.5.3 Inter-event Correlations Reflected in the Conditional Probability

The kind of inter-event correlations reflected in the conditional probability requires further examination.
The temporal clustering represented by the OU law seems the primary one. However, preceding studies
[40, 68] suggested other inter-event correlations; the conditional probability may reflect such correlations.
Clarifying this point is important for the theoretical understanding of the Bayesian approach and the
properties of the inter-event time distribution.

5.5.4 Property of the Inverse Probability and its Significance in Forecasting
Earthquakes

This chapter derived the inverse probability using the GR law and the new scaling property on the
hierarchical structure of seismic time series. Although the derivation was based not on analytically
rigorous probabilistic calculations but on empirical fitting, assumption, and approximation, this advances
the point estimate of the large-earthquake timing in time series with inter-event correlations in the
previous study [2] in Chapter 3 to probabilistic forecasting.

The derived inverse probability has a peak when ∆m is large. Such a feature enables us to narrow
the timing of future large earthquakes better than the inter-event time distribution, the prior probability
without such a peak. The inverse probability is shown to depend on the fitting parameters of ζ(y) and the
b-value reflecting differences in seismic characteristics by time series. Such difference led to the negative
conclusion on the scaling universality, though, on the other hand, it suggests the possibility of effective
forecasting using the inverse probability. That is, the inverse probability can reflect the characteristics of
seismic history in the space-time domain, including minor-scale ones, and varies depending on the length
of the lower interval. Therefore, the inverse probability can provide better forecasting than the existing
inter-event time distribution by reflecting additional information on the seismic history and the real-time
occurrence of small events.

Chapter 3 suggested that the forecasting is relatively ineffective when the non-stationary Omori ‒
Utsu relaxation process that causes inhibiting steady estimate is dominant in activity [2]. The unfolding
procedure may improve forecasting in such a relaxation process. This study suggested that the stationary
time series are indistinguishable from the unfolding-transformed aftershock sequences at the hierarchy
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level, and thus, the author expects that the Bayesian inference in the transformed aftershock sequence
improves to the same extent as other stationary time domains. Therefore, it is conceivable to apply
the unfolding transformation to seismic time series before performing Bayesian inference. In such an
approach, it is sufficient to consider a less daunting Bayesian framework for time series with weak inter-
event correlations. However, in this approach, the already-mentioned problem of determining the smooth
function of the occurrence rate remains; in this respect, it seems important to use the moving average in
real time.

In this way, the Bayesian approach is expected to contribute to improving the accuracy of probabilistic
forecasting of the earthquake’s timing. However, toward its practical use, it is significant to examine the
Bayesian method in a way that relaxes the two conditions imposed in this study. First, this study
considered Bayes’ theorem that yields the inverse probability given only one length of a lower inter-
event time as the condition; its extension to Bayesian updating is essential to utilize more information
on multiple intervals at the lower cut-off magnitude. Second, this study derived the inverse probability
under the condition that the inter-event correlation is weak. The author already discussed the Bayesian
approach in combination with the unfolding transformation, in which the theory for the time series with
weak inter-event correlation is enough. While this approach is advantageous in the theoretical analysis,
there remains difficulty in time series treatment. Another more straightforward approach is extending
the framework to a general seismic time series that includes notable aftershock activities, which can avoid
such difficulty, is theoretically intriguing, and may improve forecasting because such major aftershocks
possibly yield correlations between events that can more effectively work in the Bayesian approach. Thus,
further examination of the inverse probability in Bayesian updating using general seismic time series is
significant for more practical and effective probabilistic forecasting.

5.5.5 A Method to Use Limited Seismic Activity Data

The catalog analysis found that the conditional and inverse probabilities collapse on ∆m-dependent
functions after rescaling by the average inter-event times. The author utilized this property to use as
much data as possible from the limited seismic data. This method seems helpful for further research into
analyzing seismic time series with limited data.

However, the author points out that this approach only applies in the magnitude range the GR law
strictly holds. This can be seen, in particular, in the case of SCA3; as shown in Fig. 5.14(f), the tail
part of the theoretically derived scaling function (f(y)) deviated from the result of catalog analysis (a
similar trend is also observed in Figs. 5.14(c) and (h)). The cause of this deviation can be traced back
to the poor fitting parameter estimation in Eq. (5.13) due to the incomplete scaling collapse of ζ(y)
(Fig. 5.9(f)), and the fundamental cause is considered to be in the minor discrepancy in the magnitude

frequency relative to the exact GR law (which can be seen in the slight trend of b̂ in Fig. 5.2(f)). Thus,
while the method in this study is effective in compensating for the shortage of seismic data, it should be
noted that the results are sensitive to the accurate following of magnitude frequency to the GR law.
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Chapter 6

Conclusion

This chapter summarizes the contents of the thesis and discusses the future outlook.

Chapter 2 introduced a method to characterize the temporal hierarchy in marked point processes.
This Chapter considered only the magnitude and time of seismic activity (Fig. 1.2(c)). We considered
the conditional probability between inter-event times (τm and τM ) of point processes at different cut-off
magnitude M and m(< M) (see Fig. 1.2(c)) and the integral equation with the conditional probability
at its kernel that is linking the inter-event time distributions at different cut-off magnitudes (pm(τm) and
pM (τM )). Based on the hierarchical nature captured by the conditional probability, the properties of the
inter-event time distributions can be discussed by the integral equation. The property of the conditional
probability was examined using seismic catalogs, the mixture time series and the aftershock sequence
before and after the Tohoku mainshock in the local JMA catalog and the stationary time series in the
global PDE catalog. Based on the properties, the multi-fractal relation was derived from the integral
equation, and a qualitative explanation of the hyperbolic shape of the multi-fractal relation was given.
However, the theoretical approach could not reach a quantitative explanation, and after considering the
causes of the discrepancies between the theory and the catalog analysis, we concluded that the detailed
understanding of the conditional probability, the new amount introduced to characterize the hierarchy
of seismic time series, is necessary. Thus, this Chapter yielded new basic tools throughout this thesis to
consider the hierarchical structure of seismic activity, and a qualitative description based on the properties
found in the conditional probability was given for the multi-fractal relation for the empirical hierarchical
property of the inter-event time statistics. The functional form of the conditional probability is gradually
clarified in the subsequent chapters in considering the Bayesian method for probabilistic forecasting in
Chapter 3 and the analysis of the time series with weak inter-event correlations in Chapter 5.

Chapter 3 considered the Bayesian method to extend the renewal process approach for probabilistic
forecasting earthquake timing in Section 1.2.2 incorporating the information of small-scale earthquakes.
This Chapter continues to consider the magnitude and time aspects as in Fig. 1.2(c)). Bayes’ theorem
based on the conditional probability in Chapter 2 was first considered theoretically. Second, the extension
to Bayesian updating, which yields the inverse probability of the inter-event times at the upper threshold
magnitude (τM ), taking into consideration the multiple inter-event times at its lower threshold magnitude,
was considered for simple stationary marked Poisson processes, analytically. Toward the application of
Bayesian updating to the time series with inter-event correlations, the approximation function of the
inverse probability, which involves the product of the conditional probabilities, was also derived. Bayesian
updating was applied to the ETAS time series, and its effectiveness for forecasting large event timing
was statistically examined. The effectiveness of forecasting was shown to depend on the stationarity of
the time series; if the time series is dominated by the stationary activity, the estimate of the next large
event timing can be stable around the actual timing; though if the non-stationary relaxation process is
dominant, the estimate continues to shift while updating and thus effective forecasting is not achieved. In
particular, in two time regimes, immediately or long after a large event, the effectiveness was statistically
shown to be relatively good. Both time regimes are important for seismic risk assessment. On the other
hand, during the relaxation process of Omori ‒ Utsu aftershocks, the effectiveness worsens.

Although the prior distribution of the Bayesian updating, the inter-event time distribution, was almost
a monotonic function, the inverse probability was shown to have a peak, along with its condition, around
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the actual event time when the stationarity was dominant. This qualitatively suggests the superiority
of the Bayesian approach over the renewal process approach based on the inter-event time distribution.
However, the inverse probability itself was not derived for time series with inter-event correlations, which
was partially worked on in Chapter 5. Derivation of the inverse probability, or its approximation function,
is an important issue both for probabilistic forecasting as well as a quantitative comparison between these
two approaches. We have discussed a way to incorporate the correlation between seismic activity and
the subsequent major event into the point process approach by replacing the prior distribution with the
conditional intensity function of the ETAS model. As this is just a suggestion, a quantitative comparison
is necessary as well. The ineffectiveness of forecasting in the non-stationary regime suggested in this
Chapter is discussed in Chapter 5.

Chapter 4 extended the Bayesian framework considered in Chapter 3 to the spatiotemporal marked
point process as in Figs. 1.2(a, b) as well as (c). We extended Bayes’ theorem in Chapter 3 by considering
the extension of the conditional probability and the integral equation introduced in Chapter 2 to the
spatiotemporal version and further considered the theoretical framework of Bayesian updating. The
extension of the Bayesian framework in Chapter 4 is important for forecasting not only timing but
the place of future earthquakes, taking into consideration the seismic gaps or quiescence qualitatively
captured so far for quantitative forecasting. It was theoretically examined how the interaction between
the time intervals and the spatial locations of the different scale events affects the forecasting within
the Bayesian framework. As the preliminary analysis of the spatiotemporal Bayesian approach showed
unclear results, it is necessary to use a seismicity-like model time series such as the HIST-ETAS model
or the OFC model, which can prepare abundant data for statistical evaluation of the effectiveness of the
spatiotemporal Bayesian approach.

Chapter 5 examined the Bayesian framework theoretically considered and numerically tested in Chap-
ter 3 using seismic catalogs. The probability densities in Bayes’ theorem, the conditional probability, the
inter-event time distribution, and the inverse probability were examined using three seismic catalogs: the
global CMT catalog and the local JMA and Southern California catalogs. Only the seismic time series
temporally transformed by the occurrence rate was analyzed for ease of analysis and for consideration
of Corral’s scaling universality in the inter-event time distribution in terms of the hierarchical nature of
seismicity. The catalog analysis showed a new scaling property related to the conditional probability.
Based on that scaling property, the functional forms of the three probability densities were derived. The
derived inverse probability reproduces the characteristic of the catalog analysis, such as the peak shape.
Although the correlation between events is weak in the target time series in this Chapter, this result is
important for probabilistic forecasting in the Bayesian framework. The scaling universality of the inter-
event time distribution was also reconsidered, regarding it as a universality in the temporal fluctuation
in the unfolding transformed seismic time series.

The catalog analysis showed that the hierarchical structures captured by the conditional probability in
the unfolding transformed time series are indistinguishable between originally stationary and aftershock
time series. This suggests a possible way to improve the forecasting in the relaxation process in which
Bayesian inference was shown to be invalid in Chapter 3. Using the moving average and unfolding-
transforming the time series in real-time can be a way to improve the forecasting in the relaxation
process.

In this way, the present study examined the Bayesian approach in marked point processes for fore-
casting future large events. The most important remaining task is to derive the inverse probability or its
approximation function in Bayesian updating for time series with (strong or weak) inter-event correlations
and to compare it quantitatively with existing approaches. It is also interesting to apply the Bayesian
approach to other physical processes than seismic activity that can be represented by marked point
processes. In the process of considering the Bayesian framework, it is inevitable to better understand
the conditional probability and the integral equation that form the basis of this theory. It should also
contribute to a better understanding of the temporal properties of seismicity, including its hierarchical
nature, and further the complexity of seismic activity.
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Appendix A

Derivation of Eq. (2.24)

This Appendix is based on the Appendix in Ref. [1], paper 1 in the list of the author’s papers.
Here we show the process to derive the Eq. (2.24). First, by substituting τm = 〈τM 〉 = βMΓ(1+1/αM ),

Eq. (2.23) is rewritten in the form:(
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In order to derive the relation between αm and βm, the above equation is differentiated with respect to
M and taken the limit of ∆m→ 0 (or M → m). The l.h.s. and r.h.s. of the equation become:
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Finally, Eq. (2.24) is obtained by integrating both sides of Eq. (A.3) from m0 to m.
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Appendix B

Derivation of the Conditional and
Inverse Probability Density
Functions for the Stationary Marked
Poisson Process

This Appendix is based on the Appendix in Ref. [2], paper 2 in the list of the author’s papers.
This Appendix derives the conditional and inverse probability density functions analytically for the

stationary marked Poisson process.
First, we derive the conditional probability density function (Eq. (3.15)) by substituting Eqs. (3.11)

‒ (3.14) into Eq. (3.10). The denominator of Eq. (3.10) is:

∞∑
i=1

iΨmM (i|τM ) = A∆m
τM
〈τM 〉

+ 1,

and the numerator is:

∞∑
i=1

iρmM (τm|i, τM )ΨmM (i|τM ) = e
−A∆m

τM
⟨τM ⟩ δ(τM − τm)

+ e
−A∆m

τm
⟨τM ⟩

A∆m

〈τM 〉

∞∑
i=0

(i+ 2)

[
A∆m

τM
⟨τM ⟩

(
1− τm

τM

)]i
i!

e
−A∆m

τM
⟨τM ⟩

(
1− τm

τM

)
θ(τM − τm)

= e
−A∆m

τM
⟨τM ⟩ δ(τM − τm) + e

−A∆m
τm

⟨τM ⟩
A∆m

〈τM 〉

[
A∆m

τM
〈τM 〉

(
1− τm

τM

)
+ 2

]
θ(τM − τm).

Equation (3.15) is obtained by rearranging the above equations.
We confirm that Eq. (2.3) with this conditional probability in its kernel has the exponential distri-

bution (Eq. (3.9)) as the solution. By dividing both sides of Eq. (2.3) by Nm and rewriting it using
NM/Nm = 〈τm〉/〈τM 〉 as well as Eq. (3.15):

pm(τm) =
〈τm〉
〈τM 〉

∫ ∞

τm

[
e
−A∆m

τM
⟨τM ⟩ δ(τM − τm)

+
A∆m

〈τM 〉
e
−A∆m

τm
⟨τM ⟩

(
A∆m

τM − τm
〈τM 〉

+ 2

)
θ(τM − τm)

]
pM (τM ), (B.1)

where the following general relation is used.

τM
〈〈τm〉〉τM

=

∞∑
i=1

iΨmM (i|τM ).
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We show that the r.h.s. of Eq. (B.1) is equivalent to the l.h.s., pm(τm) = e−
τm

⟨τm⟩ /〈τm〉. Substitute

pM (τM ) = e
− τM

⟨τM ⟩ /〈τM 〉 into the r.h.s. of Eq. (B.1) and note that A∆m + 1 = 〈τM 〉/〈τm〉; the integral
involving the delta function (R1) is:

R1 =
〈τm〉
〈τM 〉2

e−
τm

⟨τm⟩ , (B.2)

and the integral involving the step function (R2) is:

R2 =
〈τm〉
〈τM 〉3

A∆me
−A∆m

τm
⟨τM ⟩

∫ ∞

τm

(
A∆m

τM − τm
〈τM 〉

+ 2

)
e
− τM

⟨τM ⟩ dτM

=
〈τm〉
〈τM 〉2

A∆m(A∆m + 2)e−
τm

⟨τm⟩ . (B.3)

Therefore, the r.h.s. of Eq. (B.1) is shown to be equivalent to the l.h.s. of Eq. (B.1) as follows:

R1 +R2 =
〈τm〉
〈τM 〉2

(1 +A∆m)
2
e−

τm
⟨τm⟩

=
1

〈τm〉
e−

τm
⟨τm⟩ . (B.4)

Second, we derive the inverse probability density function (Eq. (3.16)). From Eq. (3.15), the gener-
alized probability density functions for the stationary marked Poisson process are derived as:

zm(τm) =
τm

〈τm〉2
e−

τm
⟨τm⟩ ,

zM (τM ) =
τM

〈τM 〉2
e
− τM

⟨τM ⟩ ,

zmM (τm|τM ) =
τm
τM

e
−A∆m

τm
⟨τM ⟩

{
δ(τM − τm) +

A∆m

〈τM 〉

[
A∆m

τM
〈τM 〉

(
1− τm

τM

)
+ 2

]
θ(τM − τm)

}
.

Equation (3.16) is obtained by substituting the above equations in Eq. (3.7).
Derivative of Eq. (3.16) by τM is:

∂

∂τM
pMm(τM (> τm)|τm) = − 〈τm〉2

〈τM 〉5
A2

∆me
τm−τM
⟨τM ⟩

{
τM −

[
τm + 〈τM 〉

(
1− 2

A∆m

)]}
.

Therefore, the inverse probability density function has a peak at:

τmax
M = τm + 〈τM 〉

(
1− 2

A∆m

)
,

under the condition of τmax
M > τm, which is equivalent to:

∆m >
log10 3

b
.
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Appendix C

Derivation of Eq. (3.24) from Eq.
(3.23)

This Appendix is based on the Appendix in Ref. [2], paper 2 in the list of the author’s papers.
The summation part in the r.h.s. of Eq. (3.23) is:

∞∑
i=n

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

= ΨmM (n|τM )ρmM (τ (1)m |n, τM )

n∏
j=2

ρmM

(
τ (j)m |n− j + 1, τM −

j−1∑
k=1

τ (k)m

)

+

∞∑
i=n+1

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
.

The first term on the r.h.s. of the above equation is transformed by substituting Eqs. (3.11) ‒ (3.14) as:[
A∆m

τM
⟨τM ⟩

]n−1

(n− 1)!
e
−A∆m

τM
⟨τM ⟩

(n− 1)

τM

(
τM − τ

(1)
m

τM

)n−2
(n− 2)

τM − τ
(1)
m

(
τM − τ

(1)
m − τ

(2)
m

τM − τ
(1)
m

)n−3

· · ·
δ(τM −

∑n
i=1 τ

(i)
m )

τM −
∑n−2

i=1 τ
(i)
m

=

(
A∆m

〈τM 〉

)n−1

e
−A∆m

τM
⟨τM ⟩ δ

(
τM −

n∑
i=1

τ (i)m

)
. (C.1)
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The second term except the step function is also transformed as:

∞∑
i=n+1

(i− n+ 1)

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩

(i− 1)

τM

(
τM − τ

(1)
m

τM

)i−2

×
n∏

j=2

(i− j)

τM −
∑j−1

k=1 τ
(k)
m

(
τM −

∑j
k=1 τ

(k)
m

τM −
∑j−1

k=1 τ
(k)
m

)i−j−1

=

∞∑
i=n+1

(i− n+ 1)

(i− n− 1)!

(
A∆m

〈τM 〉

)i−1

e
−A∆m

τM
⟨τM ⟩

(
τM −

n∑
k=1

τ (k)m

)i−n−1

=

∞∑
i=0

i+ 2

i!

(
A∆m

〈τM 〉

)i+n

e
−A∆m

τM
⟨τM ⟩

(
τM −

n∑
k=1

τ (k)m

)i

=

(
A∆m

〈τM 〉

)n

e
−A∆m

∑n
i=1 τ

(i)
m

⟨τM ⟩

∞∑
i=0

i+ 2

i!

[
A∆m

〈τM 〉

(
τM −

n∑
k=1

τ (k)m

)]i
e
−A∆m

τM−
∑n

k=1 τ
(k)
m

⟨τM ⟩

=

(
A∆m

〈τM 〉

)n

e
−A∆m

∑n
i=1 τ

(i)
m

⟨τM ⟩

(
A∆m

τM −
∑n

i=1 τ
(i)
m

〈τM 〉
+ 2

)
. (C.2)

Finally, Eq. (3.24) is obtained by substituting Eqs. (C.1) and (C.2) in Eq. (3.23), with the denomi-
nator of the r.h.s. of Eq. (3.23):

n∏
i=1

pm(τ (i)m ) =
1

〈τm〉n
e−

∑n
i=1 τ

(i)
m

⟨τm⟩ .
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Appendix D

Another Bayesian Updating Method

This Appendix is based on the Appendix in Ref. [2], paper 2 in the list of the author’s papers.
In this Appendix, we consider another method of Bayesian updating from the one introduced in

Section 3.4; this method considers the consecutive lower intervals in the order of the appearance from
the last event with magnitude greater than M . We derive the inverse probability density function for
this updating method in the stationary marked Poisson process.

Let N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) be the total number of such upper intervals of length τM that include the

consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m } start from the leftmost one in the upper interval.

Further, we denote the inverse probability density function for this updating by p∗Mm(τM |τ (1)m , · · · , τ (n)m ).

We derive it by representing N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) in two ways as follows:

First, we derive N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) by counting the total number of the upper intervals of length

τM that include the leftmost consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m }. The position of the
first interval in the sequence of the consecutive lower intervals is fixed at the leftmost one in an upper

interval, and therefore, the number of the sequence {τ (1)m , · · · , τ (n)m } in the time series is:

NM

n∏
i=1

pm(τ (i)m )dτnm.

Among them, the number of sequences that belong to the same upper interval is:

NM

(
1− 〈τm〉

〈τM 〉

)n−1 n∏
i=1

pm(τ (i)m )dτnm.

Therefore, the first representation is obtained as:

N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) = NM

(
1− 〈τm〉

〈τM 〉

)n−1
(

n∏
i=1

pm(τ (i)m )

)
p∗Mm(τM |τ (1)m , · · · , τ (n)m )dτMdτ

n
m. (D.1)

This equation is rewritten using Eq. (3.9) in the explicit form as:

N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) = NM

(
1− 〈τm〉

〈τM 〉

)n−1
1

〈τm〉n
e−

∑n
i=1 τ

(i)
m

⟨τm⟩ p∗Mm(τM |τ (1)m , · · · , τ (n)m )dτMdτ
n
m.

(D.2)

Second, we derive N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) by counting the total number of consecutive lower intervals

that start from the leftmost one in the upper intervals of length τM . There is only one way for the sequence

of consecutive lower intervals of lengths {τ (1)m , · · · , τ (n)m } to be involved in each of the NMpM (τM )dτM
upper intervals of length τM . The probability of the occurrence of that sequence in the upper interval is,
when i(≥ n)-lower intervals are included in it:

ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
dτnm.
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Therefore, the second representation is obtained as:

N∗
mM (τM , τ

(1)
m , · · · , τ (n)m )

= NMpM (τM )

∞∑
i=n

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
dτMdτ

n
m.

This equation is rewritten in the explicit form using Eqs. (3.11) ‒ (3.14) in the same way as in Appendix
C.

N∗
mM (τM , τ

(1)
m , · · · , τ (n)m ) = NM

1

〈τM 〉
e
− τM

⟨τM ⟩ dτMdτ
n
m

(
A∆m

〈τM 〉

)n−1

×

[
e
−A∆m

τM
⟨τM ⟩ δ

(
τM −

n∑
i=1

τ (i)m

)
+

(
A∆m

〈τM 〉

)
e
−A∆m

∑n
i=1 τ

(i)
m

⟨τM ⟩ θ

(
τM −

n∑
i=1

τ (i)m

)]
. (D.3)

Finally, p∗Mm(τM |τ (1)m , · · · , τ (n)m ) is derived from Eqs. (D.2) and (D.3) as

p∗Mm(τM |τ (1)m , · · · , τ (n)m )

=
〈τm〉
〈τM 〉

[
A∆m

〈τM 〉
e
− τM−

∑n
i=1 τ

(i)
m

⟨τM ⟩ θ

(
τM −

n∑
i=1

τ (i)m

)
+ e−

τM−
∑n

i=1 τ
(i)
m

⟨τm⟩ δ

(
τM −

n∑
i=1

τ (i)m

)]
. (D.4)

This is different from Eq. (3.24), which reflects the difference whether the position of lower intervals is
specified.
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Appendix E

Derivation of Eq. (3.29)

This Appendix is based on the Appendix in Ref. [2], paper 2 in the list of the author’s papers.
First, we substitute Eqs. (3.11) ‒ (3.14) into Eq. (3.28):

PR(τm|τM ) = PL(τm|τM )

= e
−A∆m

τM
⟨τM ⟩ δ(τM − τm)

+

∞∑
i=2

(i− 1)

τM

(
1− τm

τM

)i−2

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩ θ(τM − τm).

In the above equation, the summation part of the term that includes the step function can be transformed
as:

∞∑
i=2

(i− 1)

τM

(
1− τm

τM

)i−2

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩

=
A∆m

〈τM 〉
e
−A∆m

τm
⟨τM ⟩

∞∑
i=0

[
A∆m

τM
⟨τM ⟩

(
1− τm

τM

)]i
i!

e
−A∆m

τM
⟨τM ⟩

(
1− τm

τM

)

=
A∆m

〈τM 〉
e
−A∆m

τm
⟨τM ⟩ .

Finally, Eq. (3.29) is obtained by rearranging the above equations.
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Appendix F

Derivation of Eq. (3.34)

This Appendix is based on the Appendix in Ref. [2], paper 2 in the list of the author’s papers.

In this Appendix, P (τ
(1)
m , · · · , τ (l)m |τM ) is derived for the stationary marked Poisson process. First, we

divide the summation in Eq. (3.33) into two parts:

P (τ (1)m , · · · , τ (l)m |τM ) =
∞∑
i=l

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

l∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

= ΨmM (l|τM )ρmM (τ (1)m |l, τM )

l∏
j=2

ρmM

(
τ (j)m |l − j + 1, τM −

j−1∑
k=1

τ (j)m

)

+

∞∑
i=l+1

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

l∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

This equation is further rewritten by substituting Eqs. (3.11) ‒ (3.14) in the same way as in Appendix
C. The second term on the r.h.s. except for the step function is:

∞∑
i=l+1

(
A∆m

τM
⟨τM ⟩

)i−1

(i− 1)!
e
−A∆m

τM
⟨τM ⟩

i− 1

τM

(
τM − τ

(1)
m

τM

)i−2 l∏
j=2

(i− j)

τM −
∑j−1

k=1 τ
(k)
m

(
τM −

∑j
k=1 τ

(k)
m

τM −
∑j−1

k=1 τ
(k)
m

)i−j−1

=

∞∑
i=l+1

1

(i− l − 1)!

(
A∆m

〈τM 〉

)i−1

e
−A∆m

τM
⟨τM ⟩

(
τM −

l∑
k=1

τ (k)m

)i−l−1

=

∞∑
i=0

1

i!

(
A∆m

〈τM 〉

)i+l

e
−A∆m

τM
⟨τM ⟩

(
τM −

l∑
k=1

τ (k)m

)i

=

(
A∆m

〈τM 〉

)l

e
−A∆m

∑l
i=1 τ

(i)
m

⟨τM ⟩

∞∑
i=0

[
A∆m

⟨τM ⟩

(
τM −

∑l
k=1 τ

(k)
m

)]i
i!

e
−A∆m

⟨τM ⟩ (τM−
∑l

k=1 τ (k)
m )

=

l∏
i=1

Pi(τ
(i)
m |τM ),

where Pi(τ
(i)
m |τM ) :=

(
A∆m

〈τM 〉

)
e
−A∆m

τ
(i)
m

⟨τM ⟩ .

Therefore:

P (τ (1)m , · · · , τ (l)m |τM ) =

(
A∆m

〈τM 〉

)l−1

e
−A∆m

τM
⟨τM ⟩ δ

(
τM −

l∑
i=1

τ (i)m

)
+

l∏
i=1

Pi(τ
(i)
m |τM )θ

(
τM −

l∑
i=1

τ (i)m

)
.
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Finally, because τM ≩
∑l

i=1 τ
(i)
m holds for l < n by the condition of Eq. (3.26):

P (τ (1)m , · · · , τ (l)m |τM ) =

l∏
i=1

Pi(τ
(i)
m |τM ).
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Appendix G

Derivation of Eq. (3.39)

This Appendix is based on the Appendix in Ref. [2], paper 2 in the list of the author’s papers.
In this Appendix, the approximation function of the inverse probability density function for the

stationary marked Poisson process (Eq. (3.39)) is derived. By substituting Eqs. (3.9), (3.15), and (3.34)
into Eq. (3.36):

pMm(τM |τ (1)m , · · · , τ (n)m )

=
〈τm〉
〈τM 〉

(
A∆m

τM
⟨τM ⟩ + 1

)
(
A∆m

⟨τm⟩
⟨τM ⟩

)n−1


n∏

i=1

e
−A∆m

τ
(i)
m

⟨τM ⟩ A∆m

⟨τM ⟩

[
A∆m

τM
⟨τM ⟩

(
1− τ (i)

m

τM

)
+ 2
]

1
⟨τm⟩e

− τ
(i)
m

⟨τm⟩

(
A∆m

τM
⟨τM ⟩ + 1

)


1

〈τM 〉
e
− τM

⟨τM ⟩

− 〈τm〉
〈τM 〉

(n− 1)(
A∆m

⟨τm⟩
⟨τM ⟩

)n−1

 n∏
i=1

(
A∆m

⟨τM ⟩

)
e
−A∆m

τ
(i)
m

⟨τM ⟩

1
⟨τm⟩e

− τ
(i)
m

⟨τm⟩

 1

〈τM 〉
e
− τM

⟨τM ⟩ , (G.1)

where the following relation is used.

τM
〈〈τm〉〉τM

=

∞∑
i=1

iΨmM (i|τM )

= A∆m
τM
〈τM 〉

+ 1.

The two products ({· · · } and [· · · ]) in Eq. (G.1) are respectively transformed as:

n∏
i=1

e
−A∆m

τ
(i)
m

⟨τM ⟩ A∆m

⟨τM ⟩

[
A∆m

τM
⟨τM ⟩

(
1− τ (i)

m

τM

)
+ 2
]

1
⟨τm⟩e

− τ
(i)
m

⟨τm⟩

(
A∆m

τM
⟨τM ⟩ + 1

)
=

(
A∆m

〈τm〉
〈τM 〉

)n
(

n∏
i=1

e
−A∆m

τ
(i)
m

⟨τM ⟩+
τ
(i)
m

⟨τm⟩

) n∏
i=1

A∆m
τM
⟨τM ⟩ + 1−

(
A∆m

τ (i)
m

⟨τM ⟩ − 1
)

A∆m
τM
⟨τM ⟩ + 1


=

(
A∆m

〈τm〉
〈τM 〉

)n
(

n∏
i=1

e
τ
(i)
m

⟨τM ⟩

)[
n∏

i=1

(
1−

τ
(i)
m − ⟨τM ⟩

A∆m

τM + ⟨τM ⟩
A∆m

)]
. (G.2)

n∏
i=1

(
A∆m

⟨τM ⟩

)
e
−A∆m

τ
(i)
m

⟨τM ⟩

1
⟨τm⟩e

− τ
(i)
m

⟨τm⟩

=

(
A∆m

〈τm〉
〈τM 〉

)n n∏
i=1

e
−A∆m

τ
(i)
m

⟨τM ⟩+
τ
(i)
m

⟨τm⟩

=

(
A∆m

〈τm〉
〈τM 〉

)n n∏
i=1

e
τ
(i)
m

⟨τM ⟩ . (G.3)
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Finally, Eq. (3.39) is derived by substituting Eqs. (G.2) and (G.3) into Eq. (G.1).
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Appendix H

Relation Between the Inverse
Probability Density Function and its
Approximation Function in the
Stationary Marked Poisson Process

This Appendix is based on the Appendix in Ref. [2], paper 2 in the list of the author’s papers.
In this Appendix, we discuss the relation between the inverse probability density function (Eq. (3.23))

and Eq. (3.36), i.e., the approximations made on Eq. (3.23) that correspond to the assumptions made
in Section 3.4.2 to derive Eq. (3.36).

The summation in Eq. (3.23) can be decomposed into:

∞∑
i=n

(i− n+ 1)ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

= −(n− 1)

∞∑
i=n

ΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)

+

∞∑
i=n

iΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
. (H.1)

The first term on the r.h.s. of Eq. (H.1) is equivalent to −(n−1)
∏n

i=1 Pi (Appendix F), and then, this
term formally coincides with the correction term in Eq. (3.36). Therefore, the second term corresponds
to the kernel part (Eq. (3.37)).

n-consecutive lower intervals must be included in only one upper interval. Under this condition,
three constraints are imposed on the lower intervals, which appear on the l.h.s. of Eq. (H.1) as follows:
(1) The number of lower intervals included in the upper interval must be larger than or equal to n.
Then, the summation is taken in the range of i ≥ n. (2) The way to choose the n-consecutive intervals
from the i-lower intervals in an upper interval is only (i − n + 1). If the first lower interval (or the
leftmost one in the sequence of the consecutive lower intervals) is in either remaining (n − 1) ways, the
sequence overflows from the upper interval. (3) The probability of the length of the j-th interval in the
consecutive lower intervals depends on the way other (k-th, 1 ≤ k < j) lower intervals appear, i.e., it

is dependent on the remained time τM −
∑j−1

k=1 τ
(k)
m and number of pieces of lower intervals (i − j + 1),

ρmM

(
τ
(j)
m |i− j + 1, τM −

∑j−1
k=1 τ

(k)
m

)
.

These constraints are relaxed in the derivation in Section 3.4.2. In the view in Section 3.4.2, the
upper intervals of length τM are collected and the new time series is generated as shown in Fig. 3.4.
For this new time series, the only constraint imposed on the lower intervals is that they are included in
the upper interval of length τM ; each interval is assumed to occur independently. Therefore, the three
constraints are changed in the following manner: (1) The new time series is generated by gathering all
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upper intervals of length τM , regardless of the number of lower intervals included in it. In addition, the
restriction on the range of the summation (i ≥ n) does not make much sense because the consecutive
lower intervals are not assumed to be within only one upper interval, i.e., it is expanded to i ≥ 1. (2) The
number of ways to choose the n-consecutive intervals from i-lower intervals is unchanged; this exceeds
the above mentioned upper limit (i− n+ 1) although such cases are subtracted by the first term on the
r.h.s. of Eq. (H.1), i.e., the correction term in Eq. (3.36). (3) The constraints imposed on the condition
in ρmM are removed; because the probability of the length of j-th interval is only not affected by other
lower intervals, the temporal part of ρmM is replaced by τM (Eq. (H.2)). In addition, the constraint on
the number of division can be eliminated by taking the average (Eq. (H.3)).

ρmM

(
τ (j)m |i− j + 1, τM −

j−1∑
k=1

τ (k)m

)
≈ ρmM

(
τ (j)m |i− j + 1, τM

)
(H.2)

≈
∑∞

i=1 iΨmM (i|τM )ρmM (τ
(j)
m |i, τM )∑∞

i=1 iΨmM (i|τM )
(H.3)

= pmM (τ (j)m |τM ).

Thus, ρmM ’s are simply replaced by the conditional probability density functions.
In this way, the approximate view in Section 3.4.2 implies the following replacement in the exact

inverse probability density function.

∞∑
i=n

iΨmM (i|τM )ρmM (τ (1)m |i, τM )

n∏
j=2

ρmM

(
τ (j)m |i− j + 1, τM −

n∑
k=1

τ (k)m

)

≈
∞∑
i=1

iΨmM (i|τM )

n∏
j=1

pmM (τ (j)m |τM )

=
τM

〈〈τm〉〉τM

n∏
j=1

pmM (τ (j)m |τM ).
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Appendix I

Distance between the Inverse
Probability Density Function and
the Inter-event Time Distribution

This Appendix is based on the Appendix in Ref. [2], paper 2 in the list of the author’s papers.
In this Appendix, we derive the distance between the inverse probability density function (Eq. (3.24))

and the inter-event time distribution (pM (τM )):

D(pMm||pM ) :=

∫ ∞

T

|pθ(τM , T )− pM (τM )|2 dτM , (I.1)

where,

pθ(τM , T ) =
〈τm〉
〈τM 〉2

(
1− 〈τm〉

〈τM 〉

)
e
− τM−T

⟨τM ⟩

(
A∆m

τM − T

〈τM 〉
+ 2

)
,

pM (τM ) =
1

〈τM 〉
e
− τM

⟨τM ⟩ .

By substituting these functions in Eq. (I.1), the distance is derived as:

D(pMm||pM ) =
〈τM 〉C2

1

4
+
C1C2(T )

2
+
C2(T )

2

2〈τM 〉
, (I.2)

where,

C1 =
1

〈τM 〉

(
1− 〈τm〉

〈τM 〉

)2

,

C2(T ) = 2
〈τm〉
〈τM 〉

(
1− 〈τm〉

〈τM 〉

)
− e

− T
⟨τM ⟩ .
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Appendix J

On the Cause of the Separation of
〈D′(papproxMm ||pM )〉 and 〈D′′(papproxMm ||pM )〉
at Large T

This Appendix is based on the Appendix in Ref. [2], paper 2 in the list of the author’s papers.
In this Appendix, we examine the cause of the separation between 〈D′(papproxMm ||pM )〉 and 〈D′′(papproxMm ||pM )〉

at long-elapsed time T . Let us compare Fig. 3.6 to Figs. K.6(a) and K.6(c) for N = 105. The separation
is suppressed compared to that shown in Fig. 3.6, which indicates that the fluctuations in the spline
functions of P1 caused by a relatively small number of samples in the calculation of P1 are suppressed
by increasing the sample data. This leads to the reduction of errors in the calculations (3.44), and to the
improvement of the calculation of distance in Eq. (3.46).

In addition, we tested numerical updating with N = 105 by excluding some larger columns of the
matrix P1, i.e., by using the following matrix P ′

1 with an integer lc:

P ′
1 =

[
[P1,jk]j=j

(k)
min,··· ,j

(k)
max

]
k=kmin,··· ,kmax−lc

. (J.1)

For this P ′
1, the interpolation and extrapolation procedures are conducted in the same way as in Section

3.5.1, and the numerical updating is executed.
Figures K.6(b) and K.6(d) show the results of the distance for such updating with (b) ∆τM = 0.1

and lc = 5, and (d) ∆τM = 0.025 and lc = 20. Compared to the results obtained using P1 in Figs.
K.6(a) and K.6(c), the separation is suppressed further. Combined with the results for the kernel part,
these results suggest the following; the number of samples to calculate P1 is so small compared to that
of the conditional probability (the number of sample is only one for an upper interval for P1 whereas
all the lower intervals included in an upper interval are used as a sample to calculate the conditional
probability), in particular for a large k, that its fluctuation becomes too large to compute the correction
term precisely.
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Appendix K

Supplementary Information for
Chapter 3

This Appendix is based on the Supplemental Material of Ref. [2], paper 2 in the list of the author’s
papers.

The following figures are provided in this Appendix. Figures K.1 ‒ K.7 present information regarding
the numerically generated stationary marked Poisson process. Figure K.1 shows inter-event time distri-
butions (pm(τm) and pM (τM )) and their interpolation and extrapolation functions. Figure K.2 shows
the conditional probability density function of the length of the lower intervals included in the upper
interval of length τM (pmM (τm|τM )) and its interpolation and extrapolation functions. Figure K.3 shows
the conditional probability density function of the leftmost lower interval length in the upper interval of
length τM (P1(τm|τM )) and its interpolation and extrapolation functions. Figure K.4 shows the average
number of lower intervals included in the upper interval of length τM (τM/〈〈τm〉〉τM ) and its interpolation
and extrapolation functions. Figure K.5 shows an example of Bayesian updating. Figure K.6 shows the
average distances between the distribution functions and the (part of) approximation functions including
the results of numerical Bayesian updating using statistical amounts calculated using the N = 105 time
series. Figure K.7 shows the joint probability mass function of the logarithm of the positions of the
maximum peak of the inverse probability density function and its approximation function calculated by
numerical Bayesian updating with N = 105. Figures K.8 ‒ K.14 are about the numerically generated
time series of the ETAS model. Figure K.8 shows pm(τm) and pM (τM ), and their interpolation and ex-
trapolation functions. Figure K.9 shows pmM (τm|τM ) and its interpolation and extrapolation functions.
Figures K.10 and K.11 show the conditional probability density functions of the leftmost and rightmost
lower interval length included in the upper interval of length τM (pL(τm|τM ) and pR(τm|τM ), respectively)
and their interpolation and extrapolation functions. Figure K.12 shows τM/〈〈τm〉〉τM and its interpo-
lation and extrapolation functions. Figure K.13 shows the probability distribution/density function of
n≤th and τ≤th for δth = 0.5. Figure K.14 shows the statistical results of the effectiveness of forecasting
for δth = 0.25.
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Figure K.1: Inter-event time distributions at magnitude thresholds m = 3 and M = 5 calculated for
the numerically generated stationary marked Poisson process, and their interpolation and extrapolation
functions. Symbols (+ and �) show the probability density functions obtained numerically. The intervals
between the symbols are interpolated by cubic spline functions represented by the black thin curves.
Further, outside of the range covered by the symbols are extrapolated by the fitting functions at the edge
represented by the red bold lines; constant function (ln p(τ) ≡ C) on the small side and the exponential
function (ln p(τ) = Aτ + B) on the large side. The parameter values (A,B,C) are determined by the
least squares method using 10 points at each end.
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Figure K.2: Conditional probability density function of the lower interval length (τm) included in the
upper interval of length τM for the stationary marked Poisson process, and its interpolation and extrap-
olation functions in (a) an oblique view and (b) a horizontal view parallel to the log10 τM -axis. Gray
curved surface is the part of the step function of Eq. (3.15). Symbols (+) represent the probability den-
sity function obtained numerically. For each τM , only data points with 30 or more points in the range of
τM > τm are displayed. The intervals between the symbols in the log10 τm-axis direction are interpolated
by cubic spline functions represented by the black thin curves. Outsides of the range covered by the
symbols in the log10 τm-axis direction are extrapolated by the fitting functions at the edge represented by
the colored bold lines (the color varies with log10 τM ); constant function (ln p(τ) ≡ C) on the small τm
side and the exponential function (ln p(τ) = Aτ + B) on the large τm side for each τM . The parameter
values (A,B,C) are determined by the least squares method using 10 points at each end for each τM .
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Figure K.3: Conditional probability density function of the leftmost lower interval length included in
the upper interval of length τM for the stationary marked Poisson process, and its interpolation and
extrapolation functions in (a) an oblique view and (b) a horizontal view parallel to the log10 τM -axis.
Gray curved surface shows the part of the step function of Eq. (3.29). The description of the figure is
the same as in Fig. K.2.
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Figure K.4: Average number of lower intervals included in the upper interval of length τM (τM/〈〈τM 〉〉τM )
for the stationary marked Poisson process, and its interpolation and extrapolation functions. Symbols
(�) indicate the results obtained numerically. The intervals between the symbols are interpolated by
cubic spline functions represented by the black thin curves. Outsides of the range covered by the symbols
are replaced or extrapolated by following functions represented by red bold lines; ln τM/〈〈τM 〉〉τM ≡ 0 on
the small side, whereas the fitting function τM/〈〈τM 〉〉τM = AτM +B on the large side with the parameter
values determined by the least squares method using 10 points at the end.
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Figure K.5: Examples of the Bayesian updating on a numerically generated stationary marked Poisson
process. In this example, the total number of updates between the events with a magnitude above
M was 73. The horizontal axis represents the elapsed time from the previous event with a magnitude
above M , and the vertical axis is the logarithmic scale of the inverse probability density function and
its approximation function for n = (a) 1, (b) 20, (c) 40, and (d) 60, respectively. Gray thin curve is
pM (τM ) and black vertical dotted line indicates the actual elapsed time of the next large event with
a magnitude above M . At each update, (Exact) the inverse probability density function (Eq. (3.24)),
(Approx) the approximation function (Eq. (3.39)), and (Kernel) its kernel part (Eq. (3.40)) are shown.
Further, the results with the numerical updating method (Eqs. (3.43) and (3.44)) are shown for the
approximation function and its kernel part; (Kernel, Numerical) represents the result of Eq. (3.43), and
(Approx, Numerical) is for Eqs. (3.43) and (3.44).
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Figure K.6: Average distances for elapsed time T from the last event greater than M . Each symbol
represents the same distance as in Fig. 3.6. The results of the numerical updating of 〈D′′〉 were calculated
using statistical amounts in Eq. (3.42) taken from the N = 105 time series with (a) ∆τM = 0.1 and
lc = 0, (b) ∆τM = 0.1 and lc = 5, (c) ∆τM = 0.025 and lc = 0, and (d) ∆τM = 0.025 and lc = 20.
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Figure K.7: Joint probability mass function of (k̂max, kmax,approx). kmax,approx was obtained using the
numerical updating method with statistical amounts in Eq. (3.42) taken from the N = 105 time series
with (a) ∆τM = 0.1 and lc = 0, (b) ∆τM = 0.1 and lc = 5, (c) ∆τM = 0.025 and lc = 0, and (d)
∆τM = 0.025 and lc = 20. For (a) and (b), the horizontal lines at kmax,approx = 80 and the vertical line

at k̂max = 80 correspond to cases when no peak is detected by the peak search. Further, for (c) and

(d), the lines at kmax,approx = 320 and at k̂max = 320 correspond to the no peak cases. The left panels

are results when the peak search was conducted in the range of τM > max{τ (1)m , · · · , τ (n)m } and the right
panels in the range of τM > T .
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Figure K.8: Inter-event time distributions at magnitude thresholds m = 3 and M = 5 calculated for the
numerically generated time series of the ETAS model, and their interpolation and extrapolation functions.
The description of the figure is the same as in Fig. K.1.
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Figure K.10: Conditional probability density function of the leftmost lower interval length included in
the upper interval of length τM for the numerically generated time series of the ETAS model, and its
interpolation and extrapolation functions. The description of the figure is the same as in Fig. K.3.
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Figure K.11: Conditional probability density function of the rightmost lower interval length included in
the upper interval of length τM for the numerically generated time series of the ETAS model, and its
interpolation and extrapolation functions. The description of the figure is the same as in Fig. K.3.
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Figure K.13: (a) Probability distributions (p(n≤th)) of the number of consecutive updates (n≤th) with
|δn| ≤ δth = 0.5 for each τ∗M . Only the cases with n≤th > 0 are included in the population. The
vertical dotted line indicates n≤th = 30. (b) Probability density function (p(τ≤th)) of the duration
time (τ≤th) during nth-updates with δth = 0.5 for each τ∗M . The distributions rescaled by the averages
(〈τ≤th〉 :=

∫∞
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τ≤thp(τ≤th)dτ≤th) are shown.
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Appendix L

Derivations in Chapter 4

This Appendix is based on the Supplemental Material of Ref. [3], paper 3 in the list of the author’s
papers.

This Appendix describes the process of deriving Eqs. (4.13) and (4.16) from Eq. (4.8) based on the
assumptions made in the two cases. In the following, i and j are integers in the range 1 ≤ i, j ≤ n.

L.1 Derivation of Eq. (4.13) for the First Case

The probability density functions and the average number (〈n(x1:n, τ
(1:n)
m )〉X,τM ) in Eq. (4.8) are respec-

tively rewritten as follows.

L.1.1 pM(X, τM)

As the spatial position (X) and time interval (τM ) in an upper spatiotemporal pair are assumed to be
independent:

pM (X, τM ) = pM (X)pM (τM ). (L.1)

L.1.2 pm(x1:n, τ
(1:n)
m )

As the lower spatial positions (xi) and time intervals (τ
(i)
m ) are assumed to be independent of each other:

pm(x1:n, τ
(1:n)
m ) =

n∏
i=1

pm(xi)pm(τ (i)m ). (L.2)

L.1.3 pMm(X, τM |x1:n, τ
(1:n)
m )

First, X and τM in an upper spatiotemporal pair are assumed to be conditionally independent given

{x1:n, τ
(1:n)
m }, and therefore:

pMm(X, τM |x1:n, τ
(1:n)
m ) = pMm(X|x1:n, τ

(1:n)
m )pMm(τM |x1:n, τ

(1:n)
m ). (L.3)

Furthermore, as the conditional independence of X and τ
(i)
m given {x1:n}:

pMm(X|x1:n, τ
(1:n)
m ) = pMm(X|x1:n), (L.4)

and the conditional independence of τM and xi given {τ (1:n)m }:

pMm(τM |x1:n, τ
(1:n)
m ) = pMm(τM |τ (1:n)m ). (L.5)

Therefore,
pMm(X, τM |x1:n, τ

(1:n)
m ) = pMm(X|x1:n)pMm(τM |τ (1:n)m ). (L.6)
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L.1.4 〈n(x1:n, τ
(1:n)
m )〉X,τM

By the assumption of the conditional independence of {x1:n} and {τ (1:n)m } given {X, τM}:

〈n(x1:n, τ
(1:n)
m )〉X,τM = pmM (x1:n|X, τM )〈n(τ (1:n)m )〉X,τM . (L.7)

Further, by the conditional independence of X and τ
(i)
m given τM :

〈n(τ (1:n)m )〉X,τM = 〈n(τ (1:n)m )〉τM . (L.8)

As τ
(i)
m and τ

(j)
m (i 6= j) are not conditionally independent given τM , Eq. (L.8) can not be further

transformed.
On the other hand, by the conditional independence of τM and xi given X,

pmM (x1:n|X, τM ) = pmM (x1:n|X), (L.9)

and because the conditional independence of xi and xj (i 6= j) given X is assumed, Eq. (L.9) is further
transformed as follows.

pmM (x1:n|X) =

n∏
i=1

pmM (xi|X). (L.10)

Therefore,

〈n(x1:n, τ
(1:n)
m )〉X,τM = 〈n(τ (1:n)m )〉τM

n∏
i=1

pmM (xi|X). (L.11)

Finally, Eq. (4.13) is obtained by substituting Eqs. (L.1), (L.2), (L.6), and (L.11) in Eq. (4.8).

L.2 Derivation of Eq. (4.16) for the Second Case

In this case, the (conditional) independence between X and τM is not assumed, and therefore, pM (X, τM )

and pMm(X, τM |x1:n, τ
(1:n)
m ) are unchanged. Further, due to the assumption of the independence between

lower spatial positions and time intervals, pm(x1:n, τ
(1:n)
m ) is rewritten in the same way as Eq. (L.2).

〈n(x1:n, τ
(1:n)
m )〉X,τM can also be rewritten in the same way as Eq. (L.7). However, because only the

conditional independence of xi and xj (i 6= j) given {X, τM} is assumed, the rewritings in Eqs. (L.8)
and (L.9) are not allowed. Therefore,

〈n(x1:n, τ
(1:n)
m )〉X,τM = 〈n(τ (1:n)m )〉X,τM

n∏
i=1

pmM (xi|X, τM ). (L.12)

Finally, Eq. (4.16) is obtained by substituting Eqs. (L.2) and (L.12) in Eq. (4.8).
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Appendix M

Preliminary Seismic Catalog
Analysis for Spatiotemporal
Bayesian Approach

This Appendix is based on the Supplemental Material of Ref. [3], paper 3 in the list of the author’s
papers.

This Appendix provides a preliminary examination of a seismic catalog in Southern California [18, 19].
We show the methods of catalog analysis and the numerical results of the inverse probability density
function in Eq. (4.18) with n = 1, pMm(τM |x, τm), in comparison with the inter-event time distribution
pM (τM ) and the inverse probability density function only for temporal information pMm(τM |τm). Note
that this analysis does not test the entire Bayesian approach: it only examines the inverse probability
density function in Bayes’ theorem that considers only one spatiotemporal lower pair.

The seismic catalog provides the information on the occurrence time, epicenter (corresponding to x
and X in the text), and magnitude of each earthquake in the spatial range of 29 ‒ 38 degrees north
latitude and 112 ‒ 123 degrees west longitude (corresponding to the spatial area S in Chapter 4). In
this analysis, the time range is from 01/01/1981 to 03/31/2022. Figure M.1 shows P (M) for earthquakes
recorded in the seismic catalog within the above spatiotemporal domain. P (M) can be fit by the GR
law, in particular in the range M ∈ [2.0, 5.0]. We focus our analysis on M ≥ 2.0 following the result in
Fig. M.1 and set the cut-off magnitude in this range, though note that the completeness magnitude (Mc)
fluctuates in space [37, 40, 102] and varies with time [38, 39], and thus it partially exceeds 2 set here. In
particular, the tendency of Mc to be higher at the edge of S [37, 40, 102] should be considered in further
study (refer to Section 1.1).

Figure M.2 shows the time series of magnitudes ≥ 2.0, and Fig. M.3 shows the corresponding epicen-
ters of earthquakes in the above-described spatiotemporal domain. Large red circles indicate the events
with a magnitude ≥ 5.0. The top five cells in terms of the number of events with a magnitude ≥ 5.0
are colored; region (1), 115◦ ‒ 115.5◦W , 32◦ ‒ 32.5◦N , region (2), 116◦ ‒ 116.5◦W , 34◦ ‒ 34.5◦N ,
region (3), 118.5◦ ‒ 119◦W , 34◦ ‒ 34.5◦N , region (4), 117.5◦ ‒ 118◦W , 35.5◦ ‒ 36.0◦N , and region
(5), 116.5◦ ‒ 117◦W , 34◦ ‒ 34.5◦N . We performed the analysis for the spatiotemporal marked point
process shown in Figs. M.2 and M.3. Note that the cut-off magnitudes were set to (m,M) = (2.0, 4.0)
and (m,M) = (2.0, 5.0). Also, when computing pMm(τM |x, τm), x’s in the same cell shown in Fig. M.3
were regarded to be identical.

Figure M.4 shows the results of pM (τM ), pMm(τM |τm), and pMm(τM |x, τm). pMm(τM |x, τm) for x in
the regions (1) to (5) are shown. pMm(τM |τm) and pMm(τM |x, τm) are shown in the range τm < τM and
are compared only in the range 10−1 ≤ τm < 10−0.9 as representative.

Although there is no significant peak in the inter-event time distribution (pM (τM )), a peak appears
in the inverse probability density function pMm(τM |τm). This shows that the additional information on
an inter-event time interval at the lower cut-off magnitude m can contribute to limiting the range of
the time to occur the next large earthquake (this can also be confirmed in Chapter 5). On the other
hand, the densities pMm(τM |x, τm) are not notably different from pMm(τM |τm), which indicates that the
spatial information on small earthquakes is not able to contribute significantly to the estimate of the
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Figure M.1: P (M) for the events in the seismic catalog. The magenta-colored line is the fitting with the
GR law in the range M ∈ [2.0, 5.0].
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Figure M.2: Time series of magnitudes for the events with a magnitude ≥ 2.0 in the seismic catalog.

large earthquakes’ timing. This result implies that it is necessary to be more careful in setting the spatial
area S and dividing it into tiny cells. Concerning the former, one may restrict S to the vicinity of a fault
zone to clarify the correlations between events. Concerning the latter, it is necessary to divide S into
tiny enough cells so that the correspondence between an epicenter x and a cell is sufficiently accurate.
Thus, our preliminary analysis suggested that the numerical examination of the spatiotemporal Bayesian
approach using seismic catalogs requires careful consideration of the spatial setting and the method of
its division.
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Figure M.3: Epicenters of earthquakes with magnitude ≥ 2.0 recorded in the seismic catalog in Southern
California [18, 19], from 01/01/1981 to 03/31/2022. The spatial area S is divided into cells by grid lines
drawn at 0.5◦ increments in longitude and latitude. Five cells are colored; (Orange) region (1), (Green)
region (2), (Cyan) region (3), (Blue) region (4), and (Purple) region (5).
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Figure M.4: Comparison between pM (τM ), pMm(τM |τm), and pMm(τM |x, τm), with the cut-off magni-
tudes (a) (m,M) = (2.0, 4.0), and (b) (m,M) = (2.0, 5.0). Lower panels are enlarged versions of the upper
panels. The figure shows the results of pMm(τM |x, τm) for x in Region (1) ‒ Region (5) indicated in Fig.
M.3. pMm(τM |τm) and pMm(τM |x, τm) are shown in cross sections for the range 10−1 ≤ τm < 10−0.9.
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Appendix N

Derivation of the Conditional
Probability in the Time Series with
Weak Inter-event Corrlation

This Appendix is based on the Appendix in Ref. [4], which is paper 4 in the list of author’s papers.
This Appendix shows the derivation of the conditional probability (Eq. (5.22)) by substituting Eqs.

(5.17) and (5.19) into Eq. (3.10). The denominator of Eq. (3.10) is, from the property of the negative
binomial distribution:

∞∑
i=1

iΨmM (i|τM ) = A∆mζ (y) + 1. (N.1)

On the other hand, the numerator is:

∞∑
i=1

iρmM (τm|i, τM )ΨmM (i|τM ) = δ(τM − τm)

(
A∆m

A∆m +B∆m

)B∆mζ(y)

+ θ(τM − τm)

∞∑
i=2

i(i− 1)

τM

(
1− x

y

)i−2 (
1 + dh

(i)
mM (τm, τM )

)
× Γ (i− 1 +B∆mζ (y))

(i− 1)!Γ (B∆mζ (y))

(
B∆m

A∆m +B∆m

)B∆mζ(y)(
A∆m

A∆m +B∆m

)i−1

.

(N.2)

The summation without dh
(i)
mM (τm, τM ) of the r.h.s. of Eq. (N.2) is transformed as follows:

∞∑
i=2

i(i− 1)

τM

(
1− τm

τM

)i−2
Γ (i− 1 +B∆mζ (y))

(i− 1)!Γ (B∆mζ (y))

(
B∆m

A∆m +B∆m

)B∆mζ(y)(
A∆m

A∆m +B∆m

)i−1

=

(
B∆m

A∆m+B∆m

)B∆mζ(y) (
A∆m

A∆m+B∆m

)
τMΓ (B∆mζ (y))

( ∞∑
i=0

Γ(i+ 1 +D)

i!
Ci+1 + 2

∞∑
i=0

Γ(i+D)

i!
Ci

)
, (N.3)

where,

C :=
A∆m

A∆m +B∆m

(
1− x

y

)
.

D := 1 +B∆mζ (y) .

The first infinite series in the r.h.s. of Eq. (N.3):

S1 = 2

∞∑
i=0

ai, where ai =
Γ(i+D)

i!
Ci, (N.4)
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satisfies the ratio test as follows:

lim
i→∞

∣∣∣∣ai+1

ai

∣∣∣∣ = lim
i→∞

∣∣∣∣ i+D

i+ 1

∣∣∣∣ |C| = ∣∣∣∣ A∆m

A∆m +B∆m

∣∣∣∣ ∣∣∣∣1− x

y

∣∣∣∣ < 1.

Therefore, the first infinite series converges as follows:

S1 = 2Γ(D)

[
1 +

D

1!
C +

D(D + 1)

2!
C2 + · · ·

]
= 2Γ(D)(1− C)−D. (N.5)

The second infinite series,

S2 =

∞∑
i=0

bi, where bi =
Γ(i+ 1 +D)

i!
Ci+1, (N.6)

also satisfies the ratio test as follows.

lim
i→∞

∣∣∣∣bi+1

bi

∣∣∣∣ = lim
i→∞

∣∣∣∣ i+ 1 +D

i+ 1

∣∣∣∣ |C| = ∣∣∣∣ A∆m

A∆m +B∆m

∣∣∣∣ ∣∣∣∣1− x

y

∣∣∣∣ < 1.

Equation (N.6) can be transformed in the following way:

S2 = C

∞∑
i=0

(i+D)Γ(i+D)

i!
Ci

= C

( ∞∑
i=0

Γ(i+ 1 +D)

i!
Ci+1 +D

∞∑
i=0

Γ(i+D)

i!
Ci

)
= CS2 + CDΓ(D)(1− C)−D

Therefore,
S2 = CDΓ(D)(1− C)−D−1. (N.7)

From Eqs. (N.5) and (N.7),

S1 + S2 = B∆mζ (y) Γ (B∆mζ (y))

[
(A∆m +B∆m)y

A∆mx+B∆my

]B∆mζ(y)+1

× [A∆mB∆m(y − x)ζ (y) +A∆m(x+ y) + 2B∆my]

(A∆mx+B∆my)
.

Equation (N.3) is rewritten as follows:

A∆mB∆mζ(y)

〈τM 〉

(
B∆my

A∆mx+B∆my

)B∆mζ(y) {A∆mB∆m(y − x)ζ (y) +A∆m(x+ y) + 2B∆my}
(A∆mx+B∆my)2

.

Therefore, the conditional probability when dh
(i)
mM (τm, τM ) ≡ 0 can be derived as follows:

pmM (τm|τM ) = (A∆mζ (y) + 1)
−1

{
δ(τM − τm)

(
A∆m

A∆m +B∆m

)B∆mζ(y)

+θ(τM − τm)
[A∆mB∆m(y − x)ζ (y) +A∆m(x+ y) + 2B∆my]

(A∆mx+B∆my)2

×A∆mB∆mζ(y)

〈τM 〉

(
B∆my

A∆mx+B∆my

)B∆mζ(y)
}
. (N.8)

Finally, Eq. (5.22) is obtained by performing the variable transformation τm 7→ x.
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Appendix O

Derivation of the Scaling Function of
the Inter-event Time Distribution

This Appendix is based on the Appendix in Ref. [4], which is paper 4 in the list of author’s papers.
This Appendix shows the derivation of the scaling function of the inter-event time distribution (Eq.

(5.27)). First, the conditional probability for ∆m → 0 is derived. From Eq. (5.18), the denominator of
Eq. (3.10) is:

∞∑
i=1

i
(A∆mζ (y))

(i−1)

(i− 1)!
e−A∆mζ(y) = A∆mζ (y) + 1. (O.1)

On the other hand, the numerator of Eq. (3.10) is, with dh
(i)
mM (τm, τM ) ≡ 0,

θ(τM − τm)

∞∑
i=2

i
(i− 1)

τM

(
1− x

y

)i−2
(A∆mζ (y))

(i−1)

(i− 1)!
e−A∆mζ(y) + δ(τM − τm)e−A∆mζ(y). (O.2)

The summation in Eq. (O.2) is rewritten as follows:

∞∑
i=0

(i+ 2)

τM

(
1− x

y

)i
(A∆mζ (y))

(i+1)

i!
e−A∆mζ(y)

=
1

τM
A∆mζ (y) e

−A∆mζ(y) x
y

∞∑
i=0

(i+ 2)

[
A∆mζ (y)

(
1− x

y

)]i
i!

e−A∆mζ(y)(1− x
y )

=
1

τM
A∆mζ (y) e

−A∆mζ(y) x
y

[
A∆mζ (y)

(
1− x

y

)
+ 2

]
.

Therefore, the conditional probability is:

pmM (τm|τM ) = (A∆mζ (y) + 1)
−1
{
e−A∆mζ(y)δ(τM − τm)

+
1

τM
A∆mζ (y) e

−A∆mζ(y) x
y

[
A∆mζ (y)

(
1− x

y

)
+ 2

]
θ(τM − τm)

}
. (O.3)

Equation (2.3) is rewritten into the relationship between the scaling functions (Eq. (O.4)) by Eqs.
(1.8), (O.1) and (O.3) with Nm/NM = 〈τM 〉/〈τm〉 = 10b∆m.

102b∆mf
(
10b∆mx

)
= e−A∆mζ(x)f(x) +A∆m

∫ ∞

x

ζ(y)

y
e−A∆mζ(y) x

y

[
A∆mζ(y)

(
1− x

y

)
+ 2

]
f(y)dy.

(O.4)
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Each term in Eq. (O.4) is then followed by operating lim∆m→0 ∂∆m:

∂∆m102b∆mf
(
10b∆mx

)
−−−−→
∆m→0

b ln 10 (2f(x) + xf ′(x)) ,

∂∆me
−A∆mζ(x)f(x) −−−−→

∆m→0
−b ln 10ζ(x)f(x),

∂∆mA∆m

∫ ∞

x

ζ(y)

y
e−A∆mζ(y) x

y

[
A∆mζ(y)

(
1− x

y

)
+ 2

]
f(y)dy

−−−−→
∆m→0

2b ln 10

∫ ∞

x

ζ(y)

y
f(y)dy.

Hence,

2f(x) + xf ′(x) = −ζ(x)f(x) + 2

∫ ∞

x

ζ(y)

y
f(y)dy. (O.5)

Equation (O.5) indicates the essential equivalence between f(y) and ζ(y).
Equation (O.5) is simplified using G(x) as defined in Eq. (O.6), as follows:

2G(x) = −xG′(x),

where,

G(x) := f(x)−
∫ ∞

x

ζ(y)

y
f(y)dy, (O.6)

Therefore, with a constant κ:

G(x) =
κ

x2
,

or,

f ′(x) +
ζ(x)

x
f(x) = −2κ

x3
.

Change the variable from x to y, and the solution is with a constant y0,

f(y) =

(
−
∫ y

y0

2κ

u3
e
∫ u
y0

ζ(v)
v dv

du+ f(y0)

)
e
−

∫ y
y0

ζ(v)
v dv

.

In particular, when κ = 0:

f(y) = f(y0) exp

(
−
∫ y

y0

ζ(u)

u
du

)
.

Using Eq. (5.13) suggested by the catalog analysis as ζ(y),

f(y) =

{
f(y0)y

β
0 e

αy0y−βe−αy (if y ≥ y0),

f(y0)e
γy0e−γy (if y < y0),

(O.7)

where f(y0) is determined by the normalization condition as:

f(y0) =

(
eγy0 − 1

γ
+
yβ0 e

αy0

α1−β
Γ (1− β, αy0)

)−1

. (O.8)

Hence, by Eqs. (O.7) and (O.8), the scaling function of the inter-event time distribution is derived as
Eq. (5.27).
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Appendix P

Derivation of the Inverse Probability
in the Time Series with Weak
Inter-event Correlation

This Appendix is based on the Appendix in Ref. [4], which is paper 4 in the list of author’s papers.
This Appendix shows the derivation of the inverse probability from Eq. (3.7) with Eqs. (5.28) and

(N.8).
From Eqs. (3.5) and (5.28), zm(τm) and zM (τM ) are:

zm(τm) =
α1−β

Γ(1− β)

1

〈τm〉
{(A∆m + 1)x}1−β

e−α(A∆m+1)x, (P.1)

zM (τM ) =
α1−β

Γ(1− β)

1

〈τM 〉
y1−βe−αy. (P.2)

Also, from Eqs. (3.5) and (N.8), zmM (τm|τM ) is:

zmM (τm|τM ) =

(
x

y

){
δ(τM − τm)

(
A∆m

A∆m +B∆m

)B∆mζ(y)

+θ(τM − τm)
[A∆mB∆m(y − x)ζ (y) +A∆m(x+ y) + 2B∆my]

(A∆mx+B∆my)2

×A∆mB∆mζ(y)

〈τM 〉

(
B∆my

A∆mx+B∆my

)B∆mζ(y)
}
. (P.3)

The inverse probability for dh
(i)
mM (τm, τM ) ≡ 0 is derived by substituting Eqs. (P.1), (P.2), and (P.3)

into Eq. (3.7):

pMm(τM |τm) =

(
y
x

)−β
e−α(y−(A∆m+1)x)

(A∆m + 1)
2−β

{
δ(τM − τm)

(
A∆m

A∆m +B∆m

)B∆mζ(y)

+θ(τM − τm)
[A∆mB∆m(y − x)ζ(y) +A∆m(x+ y) + 2B∆my]

(A∆mx+B∆my)2
A∆mB∆mζ(y)

〈τM 〉

(
B∆my

A∆mx+B∆my

)B∆mζ(y)
}
.

(P.4)

Finally, Eq. (5.29) is derived by performing the variable transformation τM 7→ y to Eq. (P.4).
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Appendix Q

Supplementary Information for
Chapter 4

This Appendix is based on the Supplemental Material of Ref. [4], which is paper 4 in the list of author’s
papers.

This Appendix provides the figures for the results related to the main text yet not shown. See the
caption of the corresponding figure in the main text for detailed descriptions of the figures.

Q.1 Figures S1- for ΨmM(i|τM), Ψ∆m(i|y), and the Negative Bino-
mial Distribution

Figures S1-(1) to S1-(7) show ΨmM (i|τM ), Ψ∆m(i|y), and the negative binomial distributions for each
time series with ∆m values: (a) ∆m = 0.5, (b) ∆m = 1.0, and (c) ∆m = 1.5, for Fig. S1-(1), S1-(3),
and S1-(5) ‒ S1-(7); (a) ∆m = 0.2, (b) ∆m = 0.4, (c) ∆m = 0.6, and (d) ∆m = 0.8 for Fig. S1-(2) and
S1-(4).
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Q.2 Figures S2- for ρmM(τm|2, τM) and PmM(τm/τM |2, τM)

Figures S2-(1) to S2-(7) show ρmM (τm|2, τM ) and PmM (τm/τM |2, τM ) for each time series. ∆m values
are: (a) ∆m = 0.5, (b) ∆m = 1.0, and (c) ∆m = 1.5 for Figs. S2-(1), S2-(3), and S2-(5) ‒ S2-(7); (a)
∆m = 0.2, (b) ∆m = 0.4, (c) ∆m = 0.6, and (d) ∆m = 0.8 for Figs. S2-(2) and S2-(4).
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Q.3 Figures S3- for P̂mM(x|y) and P∆m(x|y)
Figures S3-(1) to S3-(7) show P̂mM (x|y) and P∆m(x|y) with: (a) ∆m = 0.4, (b) ∆m = 0.8, (c) ∆m = 1.2,
and (d) ∆m = 1.6 for Fig. S3-(1); (a) ∆m = 0.2, (b) ∆m = 0.4, (c) ∆m = 0.6, and (d) ∆m = 0.8 for
Fig. S3-(2); (a) ∆m = 0.6, (b) ∆m = 1.2, (c) ∆m = 1.8, and (d) ∆m = 2.4 for Figs. S3-(3) ‒ S3-(7).
For Figs. S3-(3) ‒ S3-(7), the y ranges to display are chosen from j’s such that at least nmin of the
(m,M) pairs indicated in the figure’s legend fall within the range (10j∆σ, 10(j+1)∆σ), where nmin is 5 for
Figs. S3-(3), S3-(5) ‒ S3-(7) and 4 for Fig. S3-(4). Note that when the determined number of y ranges
is fewer than four, the identical y ranges are displayed multiple times.
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Q.4 Figures S4- for p̂∆m(x|y) and p∆m(x|y)
Figures S4-(1) to S4-(8) show p̂∆m(x|y) and p∆m(x|y) for each time series with: (a) ∆m = 0.4, (b)
∆m = 0.8, (c) ∆m = 1.2, and (d) ∆m = 1.6 for S4-(1), S4-(2); (a) ∆m = 0.2, (b) ∆m = 0.4, (c)
∆m = 0.6, and (d) ∆m = 0.8 for S4-(3); (a) ∆m = 0.6, (b) ∆m = 1.2, (c) ∆m = 1.8, and (d) ∆m = 2.4
for S4-(4) ‒ S4-(8).
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Q.5 Figures S5- for P̂Mm(y|x) and P∆m(y|x)
Figures S5-(1) to S5-(7) show P̂Mm(y|x) and P∆m(y|x) for each time series with: (a) ∆m = 0.4, (b)
∆m = 0.8, (c) ∆m = 1.2, and (d) ∆m = 1.6 for Fig. S5-(1); (a) ∆m = 0.2, (b) ∆m = 0.4, (c) ∆m = 0.6,
and (d) ∆m = 0.8 for Fig. S5-(2); (a) ∆m = 0.6, (b) ∆m = 1.2, (c) ∆m = 1.8, and (d) ∆m = 2.4 for
Figs. S5-(3) ‒ S5-(7). The displayed y ranges in Fig. S5-(4) are chosen from such j’ s that at least 5
of the (m,M)s indicated in the legend are in the range (10j∆σ, 10(j+1)∆σ). Note the same multi-times
display of identical x ranges as in Fig. S3-.
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Q.6 Figures S6- for p̂∆m(y|x) and p∆m(y|x)
Figures S6-(1) to S6-(8) show p̂∆m(y|x) and p∆m(y|x) for each time series with ∆m values: (a) ∆m = 0.4,
(b) ∆m = 0.8, (c) ∆m = 1.2, and (d) ∆m = 1.6 for Figs. S6-(1), S6-(2); (a) ∆m = 0.2, (b) ∆m = 0.4,
(c) ∆m = 0.6, and (d) ∆m = 0.8 for Fig. S6-(3); (a) ∆m = 0.6, (b) ∆m = 1.2, (c) ∆m = 1.8, and (d)
∆m = 2.4 for Figs. S6-(4) ‒ S6-(8).
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