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Preface

Second-order optimization methods, which utilize information from the Hessian matrix,

employ various real-world applications, including in statistics, machine learning, computer

vision, control systems, and scientific research. In this thesis, we introduce the utilization

of three specific types of second-order information: 1) a regularized limited memory BFGS

method with simultaneous use of line search, 2) reduction of variance of stochastic gradient

via the Barzilai-Borwein method and Barzilai-Borwein step size, and 3) a regularized

Nyström method.

Since the 1980s, second-order methods have gained popularity due to their ability to

achieve faster convergence compared to first-order methods. Nonetheless, the large data

sets involved in machine learning pose a challenge for large-scale optimization problems,

particularly in the computation and inversion of Hessian approximations. Despite extensive

research on Hessian approximation, there are still several significant issues that continue

to demand consideration and attention. These include the high memory storage, high

computational cost, and CPU time associated with many Hessian approximation techniques.

This imposes the development of novel or modified Hessian approximation techniques with

reduced memory and computational costs. Moreover, the selection of an optimal step size for

iterative algorithms remains an open problem in mathematical optimization. Recently, many

research methodologies concerning these issues have been studied well. These methodologies

tackle them using Hessian approximations with various regularization techniques, such

as using gradient information or trust region methods. Unlike conventional regularized

limited memory BFGS approaches, our method incorporates Wolfe line search and obtains a

regularized parameter. An inherent issue with the conventional method is its demand for a

high number of function evaluations. These studies motivated us to propose the regularized

limited memory BFGS method with the conditional use of Wolfe line search. As a result,

our strategy integrates the conditional employment of a strong Wolfe line search, enabling

the iteration to adopt longer step sizes under specific conditions.

Second-order techniques have huge scope in stochastic gradient methods. Given the

widespread use of stochastic gradient methods in machine learning and deep learning,

extensive research has been conducted on various stochastic gradient methods, revealing

issues related to variance induced by noise and stochasticity. Consequently, there is a
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substantial need to introduce methodologies aimed at reducing variance within stochastic

regimes. In response to this challenge, we propose the incorporation of second-order

information, specifically the Barzilai-Borwein approximation, into the search direction of the

variance-reduced stochastic gradient method for strongly convex objective functions. Then

we establish the generalized convergence using a unique bound over the Lipschitz continuity

of the second-order information under usual assumptions. Furthermore, we demonstrate

numerical experiments, showcasing their outstanding performance compared to existing

similar methods, especially for high-dimensional, dense datasets.

Moreover, a majority of Hessian approximations rely on first-order information, a

strategy that might be less effective for ill-conditioned problems. Usually, modifications

like regularization techniques are often employed with classical Newton’s method to tackle

ill-conditioned problems. However, computing the actual Hessian is not practical for large-

scale problems. One of the ideas is to obtain a low-rank Hessian approximation tailored

for datasets with huge feature spaces. In response to this challenge, we propose to

use the regularized Nyström method. Nyström method that extracts the second-order

information using a random column selection procedure, resulting in a low-rank Hessian

approximation. Subsequently, we integrate this approximation with a judiciously chosen

regularized parameter to enhance its efficacy. We subsequently establish probabilistic linear

convergence and an upper bound on the distance between the proposed approximation and

the Hessian for both convex and non-convex functions. Finally, we conduct numerical

comparisons with state-of-the-art existing methods, and the proposed approach yields

outstanding results.

The author hopes that the outcomes presented in the current thesis will serve as a valuable

contribution to ongoing research on second-order approximation techniques for large-scale

unconstrained optimization problems.

Hardik Tankaria

February 2024, Kyoto, Japan
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Chapter 1

Introduction

Optimization is a process to optimize something, or make the best. In applied mathematics,

the Mathematical optimization is an important branch that optimizes an objective function

under the given constraints. That is, it minimizes or maximizes a given objective function

subject to constraints on its variables. One of the subfields of mathematical optimization is

the Convex optimization which optimizes convex functions and is useful in many different

fields such as machine learning, signal processing, control systems, engineering, statistics,

finance, etc.

In the contemporary era marked by an exponential growth in data volume, there is

a compelling need to enhance the solving capacity of optimization algorithms. This is

particularly relevant, as various applications give rise to optimization problems characterized

by a large number of variables. A promising approach to addressing this challenge involves

developing efficient optimization algorithms tailored for large-scale problems.

This thesis is dedicated to exploring large-scale optimization problems. This chapter

will provide an introduction to different types of large-scale optimization problems, specific

solution methods, and outline the details of the thesis.

1.1 Large-scale optimization

Generally a mathematical optimization problem can be written as follows:

minimize
x∈Rn

f(x)

subject to gi(x) = 0, i ∈ E
gi(x) ≤ bi, i ∈ I

(1.1.1)

where the vector x = (x1, x2, . . . , xn) is n−dimensional and it is called the decision variables

or parameters of the problem, f is called the objective function of x that we want to optimize

(minimize or maximize), and gi’s are the constraints functions with the set E of indices for



4 Chapter 1 Introduction

equality constraints and the set I of indices for the inequality constraints, and constants bi

are the bounds of the constraints.

There are essentially two categories of optimization problems that primarily differ based

on the nature of the decision variables. Certain optimization problems necessitate their

decision variables to be exclusively integers or generally discrete variables, leading to what

is termed discrete optimization, where decision variables strive to make the optimal selection

from a finite set. On the other hand, continuous optimization permits its decision variables

to take real number values. In this thesis, our exclusive focus is on continuous optimization.

1.1.1 Constrained and unconstrained optimization

The general form of the objective function (1.1.1) can be classified into various optimization

problems according to the nature of constraints, such as linear, nonlinear, and convex, and

the smoothness of the functions.

Constrained optimization problems usually arise in applications where there are some

restrictions on the decision variables that play a crucial role in serving the goal of an

objective function.

On the other hand, there are many applications in which there are no such restrictions

on the decision variables, which is called the unconstrained optimization problem. Uncon-

strained optimization problems usually have E = I = ∅ in the objective function (1.1.1),

which can be written as follows:

min
x∈Rn

f(x). (1.1.2)

These issues can be cast as a reformulation of constrained optimization problems, wherein

the constraints are commonly substituted by the inclusion of penalizing functions to account

for constraint violations. These functions are commonly referred to as penalty functions.

Furthermore, numerous constrained optimization problems exist where constraints can be

disregarded, as their presence neither impedes the algorithm nor exerts any influence on the

solution.

In this thesis, we consider the unconstrained optimization problems, especially where the

objective function is nonlinear.

Next, we give some applications of the objective function that are useful in machine

learning, statistics, control systems, science, and engineering.

1.1.2 Applications

The optimization problem (1.1.1) has been extensively used in many applications such as

machine learning [70, 56], compressed sensing [19, 3, 20, 12], science [57, 90], statistics [57],
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etc. First, we see some basic optimization problems, such as least-squares and quadratic

programming problems.

(1) Least-squares: One of the applications of problem (1.1.1) is the unconstrained least-

squares problem. The problem of least squares can be defined as the sum of squared

terms:

min
x∈Rn

f(x) =
1

2
‖F (x)‖2, (1.1.3)

where each F : Rn → Rm, Euclidean norm of F at x is ‖F (x)‖ and m ≥ n. The

problem (1.1.3) can be seen in [10, 9, 82, 89, 7], where it is represented as the curve

fitting problem. Considering the curve fitting problem, let ai ∈ Rd be input data for

i = 1, . . . ,m, and bi ∈ R be the observation of data ai. If the fitting function is given

by h(x, ai) parametrized by x. Moreover, when n ≤ m, there may be no solution.

If we define,

F (x) :=

 h(x, a1)− b1
...

h(x, am)− bm

 ,

then problem (1.1.3) can be given as,

min
x∈Rn

m∑
i=1

[h(x, ai)− bi]2. (1.1.4)

Unconstrained least-squares convex problems are also used in the modern robotics [32]

which can be written as:

min
x∈Rn
‖Ax− b‖,

where A ∈ Rm×n and b ∈ Rm.

(2) Quadratic programming(QP): The QP usually occurs in engineering and in

computer vision [72, 123]. The QP problem can be given as follows:

minimize
1

2
x>Ax+ b>x,

subject to Qx = y, x ≥ 0, x ∈ Rn and A ∈ Rn×n is a positive definite matrix. In

the case where A = 0, resulting problem becomes the standard linear programming

problem. Also, with the conic constraint x ∈ K, it reduces to a quadratic conic

programming problem.

The primary objective of data mining and machine learning is to forecast the likelihood

of a particular outcome. Within this domain, two pivotal prediction problems emerge:
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regression and classification. Large-scale optimization problems manifest in scenarios like

curve fitting, notably in classification and regression tasks. Let us contemplate a large-scale

optimization problem formulated as a finite sum, defined as follows:

min
x∈Rd

f(x)
def
=

1

n

n∑
i=1

fi(x), (1.1.5)

where x ∈ Rd is a d-dimensional decision variable, n number of functions, and fi is the

component function. Also, fi represents the data point (ai, bi) that is,

fi = `(h(x, ai), bi), (1.1.6)

where ` is the loss function and is parametrized by the activation function h(x, ai). The

prediction can be obtained as `(h(x, ai), bi) = `(b̂i, bi), where b̂i = h(x, ai). One such standard

example is a linear function b̂i = x>ai + c with c > 0.

Classification: The classification [5] is a procedure for obtaining a model that helps

to divide data into multiple classes. Let ai ∈ Rd be a d-dimensional feature vector, and

bi ∈ {−1, 1}(binary) is the target (output) vector of the ith data sample. The classification

problem f(x) can be given by,

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x), (1.1.7)

where fi(x) = `(h(x, ai), bi), and ` is the loss function. The most-used loss function for ith

data can be defined as follows:

logistic loss: `(b̂i, bi) = log(1 + exp (−bib̂i)),
hinge loss: `(b̂i, bi) = (1− bib̂i)+,

exponential loss: `(b̂i, bi) = exp (−bib̂i).

Regression: Regression is a procedure for obtaining a model to determine the data

into continuous values instead of classes. That is, it maps the linear relationship between

dependent and independent variables. The classical regression loss functions for ith data

can be defined as follows:

squared loss: `(b̂i, bi) = (bi − b̂i)2,

huber loss: `(b̂i, bi) =

1
2
(bi − b̂i)2 for |bi − b̂i| ≤ δ,

δ(|bi − b̂i| − 1
2
δ), otherwise.
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Next, we discuss the generalized unconstrained regularized convex optimization problems,

which have the form of the main objective function (1.1.1) in addition to a regularized

function as follows:

min
x∈Rn

f(x) + g(x), (1.1.8)

where f is a usual loss function and g is a regularized function. In the case of ill-conditioned

problems, regularization technique [92, 21, 116] is used to improve the conditioning of the

problem. Tikhonov regularization, also known as squared `2-norm regularization, and `1-

norm regularization stand out as widely adopted regularizers. At this moment, we recite the

different regularizers and the loss function along with those regularizers.

(1) `1-regularizer: It is often used to shrink the solution so that the coefficient of less

important features to zero. i.e., to obtain a sparse solution [21, 114, 115, 124, 12, 126].

`1-regularization can be written as,

g(x) = λ‖x‖1, (1.1.9)

where x ∈ Rn and λ > 0 is the weight of the regularizer.

(1a) LASSO: LASSO stands for least absolute shrinkage selector operator [115, 47] where

loss function is the mean squared error along with the `1-regularization:

minimize
x∈Rd

1

n
‖Ax− b‖2

subject to ‖x‖1 ≤ c,

where c > 0. From now onwards, for the simplicity of the notation, we denote `2-norm

‖x‖2 as ‖x‖. Also, the above constrained problem can be written as an unconstrained

optimization problem:

min
x∈Rd

1

n
‖Ax− b‖2 + λ‖x‖1,

where λ > 0 and scalar λ usually decided via cross-validation. Considering regularized

objective function (1.1.8), the loss function f(x) = 1
n
‖Ax− b‖2, and g(x) = λ‖x‖1.

(2) `2-regularizer: Tikhonov regularization is often used to avoid overfitting [116, 117,

85, 61, 23]. However, larger regularizers may add weight and lead to underfitting.

`2-regularizer can be written as,

g(x) = λ‖x‖22, (1.1.10)

where x ∈ Rn and λ > 0 is the weight of the regularizer.
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(2a) Ridge regression: Ridge regression employs the mean squared error as a loss function

and puts in `2 regularization. The cost function can be given as follows:

minimize
x∈Rd

1

n
‖Ax− b‖2

subject to ‖x‖22 ≤ c,

where c > 0. Also, the above constrained problem can be written as an unconstrained

optimization problem:

min
x∈Rd

1

n
‖Ax− b‖2 + λ‖x‖22, (1.1.11)

where λ > 0 and scalar λ usually decided via cross-validation. Comparing (1.1.8),

which means f(x) = 1
n
‖Ax− b‖2, and g(x) = λ‖x‖2.

ℓ𝟏 - norm ℓ𝟐 - norm

Figure 1.1: Comparison between `1-norm and `2-norm regularizer

Figure (1.1) shows the `1-regularization with sparse solution and `2-regularization with

relatively dense solution.

(3) The mixed norm penalty [74, 63] improves the limitation of the `1-regularization

and works well to obtain the best of both `1 and `2-regularization, i.e., it obtains the

solution that is sparse at the group of parameters.

g(x) = λ1‖x‖1 + λ2‖x‖2,

where λ1, λ2 > 0 are the weights of the regularizers.
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(3a) Elastic net: Elastic net regression [128] combines both penalties `1 and `2 regulariza-

tion linearly. It can be given as:

min
x∈Rd

1

n
‖Ax− b‖2 + λ1‖x‖1 + λ2‖x‖2, (1.1.12)

where λ1, λ2 > 0. It is clear that f(x) = 1
n
‖Ax− b‖2 and g(x) = λ1‖x‖1 + λ2‖x‖2.

1.2 Existing solution methods and their pros and cons

In this section, we discuss the methods for solving nonlinear, large-scale, unconstrained

optimization problems. Predominantly, most of the classical solution methods rely on

Taylor’s series expansion. Such classical methods can be categorized into two categories:

first-order methods and second-order methods based on the first-order and second-order

Taylor expansions. In optimization, the procedure of minimizing objective function is an

iterative scheme that generates a point xk+1 incorporating a certain size of step at a particular

direction in the previous point such that f(xk+1) attains minimal value.

1.2.1 First order methods

We want to minimize the unconstrained objective (loss) function (1.1.1), f(x), which is

continuously differentiable. In this subsection, we discuss two classical gradient-based first-

order solution methods: the steepest descent gradient method and the conjugate gradient

method.

(1) Steepest descent method: It is one of the oldest classical optimization methods.

Given a continuously differentiable objective function f : Rn → R, steepest descent

gradient method [22, 8] update a step in the steepest direction is −∇f(x). The method

of steepest descent computes a sequence of iterate xk as,

xk+1 = xk − αk∇f(xk), k = 0, 1, 2, . . . (1.2.1)

where αk > 0 is called a stepsize. The steepest descent method always progresses

downhill, avoids saddle points, and works efficiently when the iterate xk is away from

the minimum. However, it becomes slower when iterate xk is near the minimum.

Moreover, the trajectory of linear search may not work well and might take “zigzag”

path. The steepest descent method converges with a linear rate [82, 79] which is

very slow for nonlinear problems. Poylak [94] proposed an idea to incorporate the

momentum term, which involves steps containing past gradients. This acceleration

technique is called the classical momentum. This technique helps to achieve stability
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and may accelerate convergence. Nesterov [84] proposed a modification in classical

momentum using the look ahead feature by projecting a gradient ahead of the current

step. This method is also known as Nesterov accelerated gradient (NAG).

(2) Conjugate direction method: The main motivation to propose this method was

to accelerate the convergence rate of the steepest descent method. The conjugate

direction method [59] is an iterative process that was originally developed to solve the

quadratic problem as part of optimization problems:

min
x∈Rn

φ(x)
def
=

1

2
x>Ax− b>x

assuming the matrix A is positive-definite. Then the gradient of φ equals

∇φ(x) = Ax− b def
= r(x),

with x = xk implies at the kth iteration. This method involves an iterative process that

converges to the solution while minimizing the computation cost using the conjugacy

property in its search direction. This property ensures that each iteration is orthogonal

to the previous ones. A collection of nonzero vectors {p0, p1, . . . , p`} is said to be

conjugate with respect to the symmetric positive definite matrix A if

p>i Apj = 0, for all i 6= j.

One can see that this collection of sets is linearly independent. The significance of this

method is that it can minimize φ(x) in n steps by sequentially minimizing it along with

distinct directions within a conjugate set. Let x0 be an initial point and {p0, p1, . . . , p`}
be a set of conjugate direction vectors, then the iteration of the sequence {xk} generated

by the conjugate direction method can be given as

xk+1 = xk + αkpk, (1.2.2)

where αk is the minimizer of the quadratic function φ(x) given by,

αk = − r>k pk
p>k Apk

.

(2.1) Conjugate gradient method: It is a conjugate direction method [45, 58]

that generates a vector pk using the previous vector pk−1 by applying the Gram-Schmidt

procedure to the gradient vectors. This CG method can be applied to nonquadratic
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problems:

min
x∈Rn

f(x),

and its iteration can be given as (1.2.2) where αk is a step size that can be obtained

by line search minimization

f(xk + αkpk) = min
α
f(xk + αpk),

and the search direction is written by

pk = −rk + βkpk−1, k = 1, . . . , d− 1, and p0 = −r0,

where βk is given by

βk =
r>k rk

g>k−1gk−1
.

Since it is memory-efficient, it is suitable for problems of large-scale optimization. The

CG method often exhibits fast convergence, particularly for well-conditioned problems.

However, convergence can be influenced by the choice of conjugacy parameter and line

search strategy, and it has limited applicability to non-linear problems [41, 79, 8].

1.2.2 Second order methods

In this subsection, we discuss the two most popular second-order methods: Newton’s method

and the quasi-Newton method. These two methods are powerful optimization techniques

that play an important role in solving nonlinear optimization problems.

(1) Newton’s method: The Newton’s method [37, 65] is a classical optimization method

that is known for its rapid convergence. The key idea is to approximate the objective

function with a quadratic form near the current iteration. Consider the problem of

solving an unconstrained optimization problem at x = x̄ given as a twice continuous

differentiable objective function (1.1.2), and the quadratic Taylor expansion of f(x)

can be given by:

f(x) ≈ p(x) := f(x̄) +∇f(x̄)>(x− x̄) +
1

2
(x− x̄)>∇2f(x̄)(x− x̄),

where ∇f(x) is the gradient and ∇2f(x̄) is the Hessian matrix (second-order partial

derivatives) of f(x). Minimizing a quadratic function p(x) by solving ∇p(x) = 0, we

get

∇p(x) = ∇f(x̄) +∇2f(x̄)(x− x̄),
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which solves this system of linear equations, implying

x = x̄− (∇2f(x̄))
−1∇f(x̄) (1.2.3)

which is called the Newton step at x = x̄, step size αk = 1 for the iterate x =

x̄ − αkp
N
k , and − (∇2f(x̄))

−1∇f(x̄) called the Newton direction pNk . Since it uses

the Hessian matrix or second-order information, Newton’s method gives an accurate

and direct approach to obtaining the minimum, particularly when the initial guess

is close to the optimal solution. However, the computational cost of computing the

Hessian matrix and inverting the Hessian matrix can be expensive, especially for high-

dimensional problems. The computational complexity of Newton’s method is O(n2+n3)

per iteration, and thus it is not acceptable for large-scale realms. Additionally, issues

may arise, such as whether the Hessian matrix may be singular or whether the Newton

direction may not the descent direction, depending on the properties of the objective

function. Consequently, the convergence analysis of Newton’s method folds into two

important aspects: local and global convergence. Local convergence deals with the

pure form (1.2.3) of the method near a nonsingular local minimum. Thus, when the

Hessian matrix is positive definite, Newton’s method converges quadratically [30, 29],

provided that the step size αk = 1 for all k. Whereas global convergence needs some

modifications to ensure the nonsingularity of the Hessian matrix, as we will see in the

further sections.

(2) Quasi-Newton method: Quasi-Newton methods [33, 34, 44, 69] are the milestone

in solving the nonlinear optimization problems. Originating with W.C. Davidon’s

development in the mid-1950s, as documented in the technical report [27]. However, its

formal recognition took more than 30 years until it got published in the SIAM journal

of Optimization [28]. The primary objective of the quasi-Newton methods is to get

rid of computationally intensive and expensive steps in the computation of Hessian

and its inverse in Newton’s method. Instead, quasi-Newton methods approximate the

Hessian matrix by introducing the matrix B using the difference in both gradient and

parameters. This strategic methodology enhances the optimization process and marks

the significant evolution of nonlinear optimization methodologies. Subsequently, we

examine the different variants of the quasi-Newton methods. There are 3 main variants

of quasi-Newton methods, 1) DFP, 2) BFGS, and 3) SR1. Consider the objective

function (1.1.2) in addressing the unconstrained optimization problem. Similar to

Newton’s method, quasi-Newton methods iterate as follows:

xk+1 = xk − αkB−1k ∇f(xk),
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where αk denotes step size computed using Armijo’s or Strong Wolfe line search, and

Bk = H−1k represents an approximation of the Hessian at xk. Typically, Bk is computed

using Bk−1, and the implementation of Bk from Bk−1 varies across the different quasi-

Newton methods. However, the pivot requirement for Bk is to satisfy

Bksk−1 = yk−1,

called the secant condition, where sk−1 = xk − xk−1 and yk−1 = ∇f(xk)− ∇f(xk−1).

The secant condition requires Bk to be symmetric positive definite, which is achievable

only if sk and yk adhere to the curvature condition,

s>k yk > 0.

This condition is easily satisfied when the objective function f(x) is strongly convex.

However, it requires some modifications for nonconvex functions. Also, to determine

the Bk+1 uniquely that satisfies the secant condition, being closest to the Bk, it requires

solving the problem.

min
B
‖B −Bk‖ (1.2.4)

subject to B = B>, Bsk = yk.

There are three different solutions for this problem, and it depends on the various

techniques as follows:

1) DFP method: The Davidon-Fletcher-Powell update is a unique solution

of (1.2.4) that is given by

Bk+1 = (I − ρkyks>k )Bk(I − ρksky>k ) + ρkyky
>
k ,

with

ρk =
1

y>k sk
. (1.2.5)

This formula, known as the DFP updating formula, was originally proposed by

Davidon in 1959 and subsequently studied, implemented, and popularized by

Fletcher and Powell. The inverse of B−1k = Hk, is calculated using the Sherman-

Morrison-Woodbury formula,

(A+ UV >)−1 = A−1 − A−1U(I + V >A−1U)−1V >A−1

(for A ∈ Rn×n, and U, V ∈ Rn×d) to obtain the inverse Hessian approximation Hk
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the resulting DFP update is

Hk+1 = Hk −
Hkyky

>
k Hk

y>k Hkyk
+
sks
>
k

y>k sk
.

Note that the final two terms on the right-hand side of the above equation consist

of rank-one matrices, which leads to a rank-two modification of Hk.

2) Broyden-Fletcher-Goldfarb-Shanno (BFGS) method: The BFGS

method [11, 43, 50, 104] discovered by four mathematicians Broyden, Fletcher,

Goldfarb, and Shanno. Similar to the DFP formula, the BFGS method imposes

similar conditions on Hk, and now the secant equation can be expressed as

Hk+1yk = sk,

and the BFGS update formula [34] for Hk+1 is:

Hk+1 = (I − ρksky>k )Hk(I − ρkyks>k ) + ρksks
>
K ,

with ρk defined in (1.2.5). However, this implementation is not computationally

efficient as it requires O(n2). We will see the less expensive variant of the BFGS

method.

3) SR1 method: As one can notice, both the DFP and BFGS methods update

the Bk+1 matrix with a rank-2 matrix. The symmetric-rank-1 or SR1 method

updates the simple rank-1 matrix, ensuring symmetry and satisfying the secant

equation. The usual form of SR1 update is

Bk+1 = Bk + σvv>,

where σ is ±1 and v is selected to ensure that Bk+1 satisfies the secant equation.

The unique rank-1 updating formula is given by:

Hk+1 = Hk +
(sk −Hkyk)(sk −Hkyk)

>

(sk −Hkyk)>yk
.

4) The Broyden class: This class is a sequence of updates, as follows:

Bk+1 = Bk −
Bksks

>
k Bk

s>k Bksk
+
yky

>
k

y>k sk
+ φk(s

>
k Bksk)vkv

>
k ,
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where φk is a scalar parameter and

vk =

[
yk
y>k sk

− Bksk
s>k Bksk

]
.

The quasi-Newton methods (specially DFP and BFGS) use Dennis-Moré condi-

tion [33]

lim
k→∞

‖∇f(xk) +∇2f(xk)pk‖
‖pk‖

= 0,

for super linear convergence [25, 18, 96] of general twice continuously differentiable

non linear function, where pk is descent direction. The convergence of BFGS and

DFP is somewhat slower than that of the quadratic convergence of Newton’s

method. Conn et al [26] studied the convergence for the SR1 in detail.

1.2.3 Limited memory quasi-Newton methods

The limited-memory quasi-Newton methods are one of the important tools to solve large

problems whose Hessian can be expensive to compute or dense. As the name implies,

“limited” memory, this method does not store the dense n × n matrices at each iteration

and approximates the Hessian using the limited number of past few updates.

1) Limited memory BFGS (L-BFGS) method: L-BFGS method [87, 78] offers a

vital solution and addresses storage and computational challenges. It computes the

approximated Hessian using modified Hk of BFGS using the certain number of vector

pairs (sk, yk) used in BFGS,

Hk+1 = (I − ρksky>k )Hk(I − ρkyks>k ) + ρksks
>
K .

L-BFGS algorithm obtains the matrix-vector product Hk∇f(xk) using the inner

products involving the last few vector pairs, say m a.k.a. memory vector pairs, and

at each iteration the last pair is replaced with the new pair, where m � n. To be

specific, at iteration xk, the set of vector pairs (sk, yk) for i = k−m, . . . , k− 1 and let

H0
k = γkI where

γk =
s>k−1yk−1

y>k−1yk−1
, (1.2.6)

be an initial matrix with the formula

Hk = (V >k−1 . . . V
>
k−m)H0

k (Vk−m . . . Vk−1)

+ ρk−m (V >k−1 . . . V
>
k−m+1)sk−ms

>
k−m(Vk−m+1 . . . Vk−1)

+ ρk−m+1 (V >k−1 . . . V
>
k−m+2)sk−ms

>
k−m(Vk−m+2 . . . Vk−1)
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+ . . .

+ ρk−1sk−1s
>
k−1,

where ρk = 1/y>k sk, and Vk = I − ρkyks
>
k . The computational cost of L-BFGS per

iteration is O(mn) and storage is O(mn), which is quite less expensive than O(n2)

when m� n.

1.2.4 Stochastic gradient methods

Stochastic gradient methods revolutionized optimization in the context of machine learning

through the efficient training of models on huge datasets. These methods provide a practical

and scalable approach to addressing the challenges of dealing with huge datasets with

less CPU time and less storage memory. In the past few decades, stochastic methods

have undergone significant advancements for real-world applications, finding utility in

stochastic gradient methods across diverse fields such as machine learning, healthcare,

financial modeling, computer vision, etc. Now, we see the two most popular methods 1)

stochastic gradient descent (SGD) method; and 2) stochastic variance reduced gradient

(SVRG) method. Consider a large-scale optimization problem (1.1.5),

min
x∈Rd

f(x)
def
=

1

n

n∑
i=1

fi(x),

where n is the number of samples in the given dataset and d is the dimension.

1) Stochastic gradient descent (SGD): Instead of computing the full gradient in the

steepest descent method, the SGD [98] updates the model parameters using a stochastic

estimate of the gradient. It computes one random individual training sample i ∈
{1, 2, . . . , n} uniformly and updates xk as

xk+1 = xk − αk∇fi(xk),

where ∇fi(xk) is a stochastic gradient computed at xk. Since it computes the gradient

of a single sample, it has a low per-iteration cost. To ensure global convergence, SGD

necessitates adopting a diminishing step size αk due to the variance introduced by the

stochastic gradient. However, this requirement often results in slow convergence. It

can be anticipated that by reducing the variance of the stochastic gradient, a constant

step size can be maintained, potentially resulting in a faster convergence rate. Similar

to gradient descent with momentum, a certain amount of research has been done to

incorporate the various momentum terms in SGD. However, in the last decade, a few
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methods focused on huge sparse datasets for machine learning and deep learning used

the concept of adaptive gradient or adaptive momentum. Adagrad (Adaptive Gradient

Algorithm) [40] is an optimization algorithm designed for machine learning tasks,

particularly in the context of training deep neural networks. It adapts the learning

rate for each parameter individually by scaling it inversely with the square root of the

sum of historical squared gradients. Root mean square propagation (RMSProp) [60]

algorithm employs a technique to make use of a moving average of the squared gradients

and then divide it by the square root mean, which helps scale the learning rate for each

parameter. Adaptive moment estimation, a.k.a. Adam [71] combines the benefits of

both RMSProp and Adagrad. Adam computes the moving average of both gradients

and squared gradients to adaptively compute the learning rates. These methods are

quite useful in various applications due to their low iteration cost and faster behavior.

2) Stochastic variance reduced gradient (SVRG): The stochastic variance reduced gra-

dient [64] builds upon the principles of SGD by reducing the variance of stochastic

gradient. The stochastic variance reduced gradient (SVRG) method [64] explicitly

decrese the variance via an unbiased estimate of gradient:

xk+1 = xk − αkpk,

where

pk = ∇fi(xk)−∇fi(x̃) +∇F (x̃),

and x̃ is the resultant vector at the end of the previous epoch (outer iteration). In

recent years, many researchers have focused on reducing the variance of stochastic

gradient methods while using a constant step size [125, 99, 31]. Stochastic average

gradient (SAG) [100, 99] employed biased updates, achieving a linear convergence rate.

Stochastic average gradient acceleration (SAGA) [31] improves SAG by applying an

unbiased estimate. Stochastic recursive gradient algorithm (SARAH) [86, 42] employs

an additional term to update the iterate using the full gradient into the outer loop of

the SVRG and take a step along to the accumulated direction of the past stochastic

gradient as in SAGA.

1.3 Globalization techniques

Globalization techniques in nonlinear optimization refer to strategies employed to ensure

that an optimization algorithm converges to a global minimum rather than getting trapped

in local minima. Given the intricacies of nonlinear optimization problems characterized by

intricate, non-convex objective functions featuring multiple local minima, the quest for the
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global optimum becomes a formidable challenge. Globalization techniques are designed to

enhance the algorithm’s ability to explore the solution space more thoroughly. Next, we see

some common globalization techniques in nonlinear optimization.

1.3.1 Line-search technique

Line search methods involve adjusting the step size at each iteration to find a balance between

exploring the solution space and converging towards the minimum. Usually, the iterative

methods take an iterate as

xk+1 = xk − αkpk,

where αk is the step size that decides how far it needs to move along direction pk. The most

common line search methods require pk to be the descent direction, i.e.,

∇f(xk)
>pk < 0.

To exactly minimize the objective function along the search direction, it is necessary to

minimize the problem:

φ(α) = f(xk + αpk), α > 0,

that requires too many gradients and function evaluations. Therefore, the condition

f(xk+1) < f(xk) is not enough to converge to an optimal point, and α should provide a

sufficient decrease in the objective function. Techniques such as backtracking line search

and Wolfe conditions are commonly used to determine suitable step sizes that ensure global

convergence.

1) Armijo condition: In order to obtain a sufficient decrease, Armijo’s condition is given

as

f(xk + αpk) ≤ f(xk) + c1α∇f(xk)
>
k , (1.3.1)

where α ∈ (0, 1). Moreover, this sufficient decrease is not enough, and we need to avoid

the short steps. This second requirement is called the curvature condition, where αk

satisfy

∇f(xk + αkpk)
>pk ≥ c2∇f(xk)

>pk, (1.3.2)

where c2 ∈ (c1, 1) and c1 is the constant from (1.3.1).

2) Wolfe conditions: Together, the conditions for sufficient decrease (1.3.1) and curva-

ture (1.3.2) are commonly referred to as the Wolfe conditions. However, to obtain the

iterate in the neighborhood of the local minimizer of φ, the strong Wolfe conditions
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require α satisfy

f(xk + αpk) ≤ f(xk) + c1α∇f(xk)
>
k ,

|∇f(xk + αkpk)
>pk| ≤ c2|∇f(xk)

>pk|,

with 0 < c1 < c2 < 1, and it helps to get rid of approaching towards the point far

minimum of φ.

1.3.2 Trust-region technique

Trust-region (TR) methods control the step size based on the behavior of the objective func-

tion within a specified trust-region. The algorithm adjusts the trust region size dynamically

to balance local exploration and global convergence. TR methods are particularly effective

when dealing with ill-conditioned problems. Consider the objective function (1.1.2). The TR

method creates a region surrounding the current iteration where the model has a suitable

representation of the objective function. To obtain this region, the quadratic model mk is

used, which is based on the Taylor series expansion of the objective function f around the

current iterate xk,

f(xk + p) = f(xk) +∇f(xk)
>p+

1

2
p>∇2f(xk + tp)p,

where t ∈ (0, 1) and mk is given by

mk(p) = f(xk) +∇f(xk)
>p+

1

2
p>Bkp,

where Bk is any approximation of Hessian. The trust-region method solves a subproblem to

obtain the next step. The subproblem can be given as

min
p∈Rn

mk(p)

s.t. ‖p‖ ≤ ∆k,

where ∆k is the trust-region radius. Solving this subproblem at each iteration can be

computationally expensive. Thus, practically, the TR method uses a ratio between the actual

reduction and predicted reduction, that is, the ratio of the difference in the objective function

and the quadratic modelmk, respectively. For search direction pk, the ratio of the TR method

can be given as

ρk =
f(xk)− f(xk + pk)

mk(0)−mk(pk)
.
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Whenever model mk and the function f have almost identical values, the ratio is close to

1. Hence, it is risk-free to increase the trust region for the next step. If ratio is negative,

then step is rejected as the updated function value f(xk + pk) is greater than the f(xk).

Thus, the step is rejected. There are many variants of the TR method, depending on the

approximation Bk and the direction. For example, in the case of Bk = ∇2f(xk), it is called

the TR-Newton method, and for the TR-CG method, the CG direction can be used with

the TR method.

1.3.3 Controlling the regularized parameter:

Consider the Newton’s method for solving an unconstrained optimization problem (1.1.2). In

the case where the Hessian ∇2f(xk) is not positive definite, the Newton direction is not the

descent direction. In order to obtain the nonsingular Hessian matrix, the popular strategy

is to modify Hessian by adding a positive diagonal matrix or a full matrix to the ∇2f(xk),

Bk = ∇2f(xk) + Ek,

where Ek can be decided accordingly so that Bk is sufficiently positive-definite. Broadly,

this process is called the regularization of Hessian, or more generally, regularized Newton

methods [95, 121]. The convergence properties of one of such regularized Newton methods

can be seen in [120]. Similar to the Newton’s method, there are numerous regularized methods

for various Hessian approximations Bk, in which they are regularized by a diagonal matrix

as follows:

Bk + λkI,

where the λk is the regularized parameter and Bk is regularized with a diagonal matrix

that is a multiple of the identity matrix. There are interesting techniques to control the

regularized parameter λk. Li et al. [77] proposed to obtain λ using the square root of the

norm of gradients.

1.4 Hessian approximation using randomized matrix:

In the latter years of the preceding decade, a novel and intriguing approach to approximating

the Hessian matrix emerged. While certain methods were already in existence, they were

originally designed for kernel approximation rather than Hessian approximation. This was

particularly applicable to linear kernels, which share similar properties with the Hessian

matrix. The overarching strategy involves the utilization of diverse randomized matrices

or conducting projections onto lower-dimensional subspaces to derive approximations of the

Hessian or its inverse.
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1.4.1 Random projection on subspace:

The fundamental concept is to acquire a low-rank Hessian approximation that does not

require huge computation like Newton’s method. Pilanci et al. [93] and Randomized Subspace

Newton [52] advocated for the use of randomized approximation by employing random

projections to a lower-dimensional subspace. This approach also incorporates random

projections and sub-sampling techniques. Subsequently, this trend led to the development

of various randomized methods for tackling large-scale optimization problems. A method

employing a similar strategy for obtaining randomized quasi-Newton updates was introduced

by Gower et al. [54]. The Nys-Newton method [111] proposed leveraging the Nyström

approximation to approximate the Hessian.

1.5 Motivations and contributions

As discussed earlier, second-order approximation methods have demonstrated efficacy in ad-

dressing extensive unconstrained optimization challenges. Despite the extensive exploration

of these methods, there are numerous issues that need to be considered. Some of these issues

can be listed as follows:

1) Optimal Hessian Approximation: Determining the most suitable Hessian approx-

imation according to the properties and structure of the objective function for both

convex and nonconvex scenarios.

2) Regularized Hessian Approximation: Identifying optimal techniques for acquiring

the regularized parameter in regularized Hessian approximations.

3) Variance Reduction in Stochastic Gradient: Developing strategies to mitigate

variance in stochastic gradient methods.

4) Hyperparameter Optimization: Defining optimal strategies for hyperparameter

optimization, particularly in the context of stochastic optimization methods, focuses

on parameters like learning rates.

In this thesis, we carry out our study in three parts. All parts do not have a direct

connection. However, each part is conceptually connected as a second-order approximation.

The first part focuses on the deterministic (in the sense that the computation of the

full gradient is affordable) method for regularized L-BFGS with line search. The second

part considers the reduction in variance of stochastic gradient (when the computation

of the full gradient is expensive) via second-order information. The third part focuses

on the randomized subspace approach to approximate the Hessian (when computation of

the partial Hessian is affordable) for both the deterministic and stochastic realms.



22 Chapter 1 Introduction

1.5.1 When the computation of the full gradient is affordable

addressing large-scale, unconstrained optimization problems. While the conventional L-

BFGS method relies on a line search to ensure global convergence, this approach can lead

to a substantial number of function evaluations. To mitigate this challenge, Sugimoto and

Yamashita [106] introduced the regularized L-BFGS, incorporating a trust-region ratio to

determine λ as outlined in Sugimoto’s master thesis. We extend this method by integrating

various techniques, including the nonmonotone technique and the simultaneous utilization

of Wolfe line search with strong conditions. Specifically, we calculate the step size using

Wolfe conditions only when the iteration fails to cause a sufficient decrease in the objective

function value. This adaptive strategy enables the iteration to take longer steps, helping

in the convergence process toward the optimal solution. We establish convergence, and we

present numerical results across various test problems, demonstrating the robustness of the

proposed method in solving a diverse set of problems.

1.5.2 When the computation of the full gradient is expensive

Motivated by the stochastic variance reduction gradient (SVRG) method, we aim to enhance

the incorporation of curvature information from the objective function. Our novel proposal

involves further variance reduction of stochastic gradients by integrating the Barzilai-Borwein

(BB) method into SVRG. Remarkably, to best of our knowledge, this marks the first instance

of leveraging a constant diagonal matrix as a search direction within any stochastic gradient-

type method. Notably different from other methods, which typically encompass information

from multiple eigenvalues, the BB approximation uniquely progresses in the direction of a

single eigenvalue. This distinction is evident when considering the properties of smoothness

and strongly convex functions. We introduce a BB step size and its variant, showcasing linear

convergence not only for our proposed method but also for other existing SVRG variants that

utilize second-order information. Numerical experiments performed on benchmark datasets

highlight that our proposed method, especially with a constant step size, outperforms existing

variance-reduced methods for specific test problems, especially those linked to dense datasets.

1.5.3 When the computation of the partial Hessian is affordable

Considering the approach of a randomized matrix, we introduce a novel regularized Nyström

method for addressing unconstrained optimization challenges within high-dimensional

feature spaces. Diverging from conventional second-order approximation methodologies,

such as quasi-Newton methods that heavily rely on first-order derivatives, our approach

strategically capitalizes on actual Hessian information. We propose a balanced strategy

through the incorporation of the regularized Nyström approximation for both strongly
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convex and non-convex function, which employs partial Hessian information in the form

of a thin column to approximate the Hessian, seamlessly integrating it with gradient

descent and stochastic gradient descent. A comprehensive convergence analysis is presented,

accompanied by an exploration of pertinent theoretical aspects. We conduct numerical

experiments, evaluating the proposed method’s performance across strongly convex functions

and non-convex function. Notably, our results reveal the method’s superior performance

in comparison to randomized subspace Newton and the approximation of the Newton

sketch, signifying significant advancements in optimization within high-dimensional feature

spaces. Furthermore, we extend our investigation to the practical application of brain

tumor detection, demonstrating the competitiveness of our method against established quasi-

Newton methods and underscoring its transformative potential in critical domains.

1.6 Outline of the thesis

The arrangement of this thesis is as follows:

In Chapter 2, we discuss preliminary concepts, encompassing fundamental definitions

of differentiability, convexity, and their properties, along with the essential optimality

conditions crucial for subsequent chapters.

Subsequently, we provide the Table 1.1 as a comprehensive overview of the thesis,

describing individual contributions within next chapters.

Table 1.1: Overview of thesis

Chapters Problem Based method Convergence

Ch. 3
Unconstrained

non-convex
Regularized Newton method &

L-BFGS method
Global

convergence

Ch. 4
Unconstrained
sum of strongly
convex function

Stochastic variance
reduced gradient method

& Barzilai-Borwein method

Linear
convergence

Ch. 5
Unconstrained

convex & non-convex
Nyström method

Linear & Global
convergence

In Chapter 3, we propose a regularized limited memory BFGS (L-BFGS) method to solve

a large-scale unconstrained optimization problem in which we use the trust-region ratio to

obtain the best regularized parameter along with strong Wolfe conditions. We provide the

convergence analysis of the proposed method under some mild assumptions. Finally, we

show the efficiency and robustness of the proposed method in numerical results on various

problems.
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In Chapter 4, we consider solving a large-scale optimization problem. We propose to

employ second-order information to further decrease the variance of stochastic variance

reduced gradient (SVRG). We employ the Barzilai-Borwein (BB) method in the search

direction of the SVRG. Moreover, we employ the BB method to obtain a better step size

by incorporating it into SVRG with second-order information. We establish the linear

convergence of strongly convex functions. The numerical results on large-scale datasets

showcase the effectiveness of the proposed algorithms.

In Chapter 5, we consider the approach of a randomized matrix to approximate the

Hessian. We use the Nyström approximation to obtain the low-rank Hessian approximation

for both strongly-convex and non-convex function. We propose the regularized Nyström

method for the unconstrained optimization problem. We show convergence and establish

various theoretical properties. We then demonstrate the numerical experiments by com-

paring the proposed method with existing state-of-the-art methods for various optimization

problems for strongly convex functions. Moreover, we show an application for detecting

a brain tumor in the MRI and demonstrate the numerical results to show the efficacy of

proposed algorithm.

Finally, in Chapter 6, we provide concluding remarks, explore potential extensions, and

outline future research.
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Chapter 2

Preliminaries

In this chapter, we give some basic concepts of convexity, differentiability, Lipschitz

continuity, and optimality conditions. In the last few subsections, we introduce the basic

properties of expectation and variance. In this chapter, most of the results largely follow

from the [7, 83, 89, 10].

2.1 Vectors and matrices

For a set S, an element x in the set S is denoted by x ∈ S. In this thesis, we consider

the Euclidean space (set of real numbers), which is denoted by R. For n-dimensional real

space, we denote Rn. Vectors of n-dimensional space are usually denoted by lowercase roman

characters and matrices by uppercase roman characters. Vector x ∈ Rn is column vector x

that is

x =


x1

x2
...

xn

 ,
where xi is the ith element of vector x. The transpose of vector x is the row vector denoted

by x> and it can be written as,

x> =


x1

x2
...

xn


>

=
[
x1 x2 . . . xn

]
.

We denote x ≤ 0 (x ≥ 0), to indicate component-wise notation, i.e., xi ≤ 0 (xi ≥ 0), for

all i ∈ {1, 2, . . . , n} and x < 0 (x > 0) indicates xi < 0 (xi > 0) for all i ∈ {1, 2, . . . , n}. Let

x and y be two n-dimensional real vectors in Rn, then its Euclidean inner product 〈x, y〉 is
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defined by

〈x, y〉 = x>y =
n∑
i=1

xiyi.

Euclidean norm (a.k.a. `2 norm) of vector x is defined as

‖x‖ =
√
x>x =

√
x21 + x22 + . . .+ x2n. It is easy to see that x>x > 0 and ‖x‖ = 0 if and only

if x = 0. Vectors x and y are called orthogonal if x>y = 0. The norm of vector ‖x + y‖ is

upper bound by ‖x‖ and ‖y‖, that is, ‖x + y‖ ≤ ‖x‖ + ‖y‖ called the triangle inequality.

For a vector x ∈ Rn,

(x)+ = max(0, x).

We denote the `1 norm of vector x ∈ Rn by ‖x‖1 = |x1|+ · · ·+ |xn|.

A ∈ Rm×n matrix of dimension m× n is an array of real numbers aij that is,

A =


a11 a12 . . . an1

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 ;

where elements of the matrix A are denoted by aij (which ith row and jth column). The

transpose of matrix A is A> can be written as,

A> =


a11 a21 . . . am1

a12 a22 . . . am2

...
...

...

a1n a2n . . . amn

 ;

where the elements of A> can be denoted by aji. When m = n, the matrix A is called

the square matrix. A square matrix A is called symmetric if A = A>. A square matrix

A ∈ Rn×n is called positive definite if there exists a positive scalar c such that

x>Ax ≥ x>x, for all x ∈ Rn.

A matrix A is positive semidefinite if

x>Ax ≥ 0.

A matrix A is called a nonsingular matrix for a vector b ∈ Rn, if there is a vector w ∈ Rn

such that Aw = b. A matrix A−1 is called an inverse of the nonsingular square matrix A,

such that A−1A = AA−1 = I, where I is an n-dimensional identity matrix. For two square
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invertible matrices A,B ∈ Rn×n, (AB)−1 = B−1A−1. The eigenvalues of square matrix A are

the scalars λi such that for a column vector x ∈ Rn, the value of matrix-vector multiplication

Ax is equal to λx, that is

Ax = λix, for all i ∈ {1, 2, . . . , n},

where λi is an eigenvalue of A corresponding to an eigenvector vector x. We define the `2

norm of a matrix A ∈ Rm×n as

‖A‖2 =
√
λmax(A>A),

where λmax is the largest eigenvalue of matrix A. The Frobenious norm matrix A ∈ Rm×n is

defined as

‖A‖F =

(
m∑
i=1

n∑
j=1

a2ij

)1/2

.

For two matrices A and B, the following inequality holds:

‖AB‖ ≤ ‖A‖‖B‖

where both matrices has consistent dimensions.

2.2 Convexity and differentiability

Definition 2.2.1. A subset C ⊆ Rn is said to be convex if

αx+ (1− α)y ∈ C, for all x, y ∈ C, ∀α ∈ [0, 1].

Definition 2.2.2. For a subset C ⊆ Rn, a scalar function f : C → R is said to be convex

if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀x, y,∈ C, α ∈ [0, 1].

Definition 2.2.3. For a subset C ⊆ Rn, a scalar function f : C → R is said to be strictly

convex if

f(αx+ (1− α)y) < αf(x) + (1− α)f(y), α ∈ [0, 1],

for all x, y,∈ C, when x 6= y.

Definition 2.2.4. For a subset C ⊆ Rn, a scalar function f : C → R is said to be µ-strongly
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convex if

f(αx+ (1− α)y) < αf(x) + (1− α)f(y)− α(1− α)µ

2
‖x− y‖2, α ∈ [0, 1],

for all x, y,∈ C, and µ > 0.

µ is called a strongly convex parameter.

Definition 2.2.5. Let f : Rn → R be a function and fix a vector x ∈ Rn, then

lim
α→0

f(x+ αei)− f(x)

α
,

where ei is the ith unit vector, where the ith element is 1 and all other components are 0.

If the above limit exists, it is the partial derivative of f at the vector x. It is denoted by

∂f(x)/∂xi. The function f : Rn → R is called differentiable if it is differentiable at all

x ∈ Rn.

Assuming a limit exists for all i ∈ {1, 2, . . . , n}, we introduce the gradient.

Definition 2.2.6. Let f : Rn → R be a differentiable function. The gradient of f at x is an

n-dimensional vector defined by

∇f(x) =


∂f(x)
∂x1
∂f(x)
∂x2
...

∂f(x)
∂xn

 ,

where ∂f(x)
∂xi

is a partial derivative of function f with respect to ith component xi.

If ∇f(x) is continuous, then f is said to be continuously differentiable on Rn. Also, such a

function is called a smooth function.

Definition 2.2.7. Let f : Rn → R be a twice differentiable function, then the Hessian matrix

∇2f(x) ∈ Rn×n of f at x is

∇2f(x) =


∂2f(x)

∂x21
· · · ∂2f(x)

∂x1∂xn
...

. . .
...

∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂x2n

 .
Definition 2.2.8. A differentiable function f : Rn → R is said to be a L-Lipschitz

continuous gradient if for a constant L > 0

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, for all x, y ∈ Rn.
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Let f : Rn → R be a differentiable function and its gradient is L-Lipschitz, then the following

conditions are equivalent to a Lipschitz continuous gradient.

1) ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y,

2) f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
‖y − x‖2, ∀x, y,

3) (∇f(x)−∇f(y))>(x− y) ≤ L‖x− y‖2, ∀x, y.

Proposition 2.2.1 ([10]). Let f : Rn → R be a differentiable function; then the function f

is convex if and only if

f(y) ≥ f(x) +∇f(x)>(y − x),∀x, y ∈ Rn.

The above inequality is strict if and only if f is strictly convex.

Let f : Rn → R be a differentiable function that is strongly convex with µ > 0, then the

following are equivalent.

1) f(αx+ (1− α)y) < αf(x) + (1− α)f(y)− α(1− α)µ

2
‖x− y‖2, α ∈ [0, 1],

2) f(y) ≥ f(x) +∇f(x)>(y − x) +
µ

2
‖y − x‖2, ∀x, y,

3) (∇f(x)−∇f(y))>(x− y) ≥ µ‖x− y‖2, ∀x, y.

2.3 Optimal solution and optimal conditions

In this subsection, we introduce the local and global minima and first and second order

optimality conditions of the unconstrained objective function (1.1.2). In a minimization

problem, we seek to get a global minimizer of the function f . Basically, it is a point where

the underlying function f attains its least value. However, it is not always possible to find

the global minima since we usually have only local information about f. Therefore, we seek

to get the minimum value of the function in some neighborhoods. More detailed information

can be found in [8, 89].

Definition 2.3.1. Let (1.1.2) be an unconstrained minimization problem. A vector x∗ is

said to be an unconstrained local minimum of a function f if there is a neighborhood N of

x∗ such that

f(x∗) ≤ f(x), ∀x ∈ N .

We say that x∗ is strict local minimizer if there exists a neighborhood S of x∗ such that the
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above inequality becomes strict, i.e.,

f(x∗) < f(x), ∀x ∈ S, with x 6= x∗.

Definition 2.3.2. Let (1.1.2) be an unconstrained minimization problem. A vector x∗ is

said to be an unconstrained global minimum of a function f , if f(x∗) attains its minimum

value, that is,

f(x∗) ≤ f(x), ∀x ∈ Rn.

Theorem 2.3.1 (Necessary optimality conditions [8]). Let (1.1.2) be an unconstrained

minimization problem and f , and x∗ be a local minimum of f . Assume that is continuously

differentiable in an open set N that contains x∗, then

∇f(x∗) = 0. (First order necessary condition)

Moreover, if ∇2f(x) exists and f is twice continuously differentiable in N , then

∇2f(x∗) is positive semidefinite. (Second order necessary condition)

Next, we introduce the sufficient condition, which is a certain condition on the derivative of

f such that it guarantees that x∗ is a local minimizer.

Theorem 2.3.2 (Second order sufficient condition [8]). Suppose that (1.1.2) be an objective

function and f is a twice continuously differentiable function. Let ∇2f(x) be a continuous

in a neighborhood of x∗ and x∗ is a strict local minimizer of f if ∇f(x∗) = 0 and ∇2f(x∗)

is positive definite.

Definition 2.3.3. Let (1.1.2) unconstrained minimization problem, and pk is some search

direction of some solution method. Then pk is called descent direction if

∇f(xk)
>pk < 0.

Theorem 2.3.3 ([89]). Let f be a convex function. Any local minimizer x∗ of f is a global

minimizer of f . Moreover, if f is differentiable, then any stationary point x∗ is also a global

minimizer of f.

Proposition 2.3.1. Let f be a continuously differentiable function, then the following

conditions are equivalent by strong convexity. µ is a strongly convex parameter, x∗ is a

minimizer, and f(x∗) is the optimal value of f .

1)
1

2
‖∇f(x)‖2 ≥ µ(f(x)− f(x∗)), ∀x.
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2) ‖∇f(x)−∇f(y)‖ ≥ µ‖x− y‖, ∀x, y.

3) f(y) ≤ f(x) +∇f(x)>(y − x) +
1

2µ
‖∇f(y)−∇f(x)‖2, ∀x, y.

4) (∇f(x)−∇f(y))>(x− y) ≤ 1

µ
‖∇f(x)−∇f(y)‖2, ∀x, y.

2.4 Expectation and Variance

In this section, we discuss the basic probability theory in terms of the gradient of the objective

function. First, let X be any discrete random variable.

Definition 2.4.1. The expectation of a random variable is the mean of the N values, i.e.,

E[X] =
∑
x

xfX(x) =
∑
x

xP(X = x),

where fX(x) is a probability function.

Definition 2.4.2. Let X be any random variable. Then the variance of X is the mean

squared deviation of a random variable from its mean, i.e.,

Var[X] = E[X2]− (E[X])2.

Next, consider a dataset X ∈ Rn×d that has n samples and d features or parameters.

Expectation of stochastic gradient: Let (1.1.5) be an unconstrained minimization

problem. Then, for a stochastic gradient method, let xk be the computed stochastic gradient

at ith sample, which is ∇fi(xk), then the expectation of the stochastic gradient is

E[∇fi(xk)] =
1

n

n∑
j=1

∇fj(xk) = ∇f(xk).

Thus, the expectation of the stochastic gradient is a full gradient.
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Chapter 3

A Regularized Limited Memory

BFGS method with simultaneous use

Wolfe line search for Large-Scale

Unconstrained Optimization

3.1 Introduction

Consider the problem of large-scale unconstrained optimization by recalling objective

function (1.1.1):

minimize
x ∈ Rn

f(x), (3.1.1)

where f : Rn → R is a twice-continuously differentiable function. In order to solve it, an

iteration of the quasi-Newton-type method can be given as

xk+1 = xk + dk,

where xk ∈ Rn is the kth iteration and dk ∈ Rn is search direction.

Classical solution approaches for solving (3.1.1), such as the steepest descent method,

Newton’s method, and the BFGS method [34, 89], prove unsuitable for large-scale problems.

The steepest descent method often shows convergence; the Newton’s method computes a

Hessian matrix and solves a linear equation at each iteration; and the BFGS method poses

challenges for large-scale problems due to requiring O(n2) memory for storing and computing

the approximate Hessian of f .

A prominent quasi-Newton method designed for large-scale problems is the limited

memory BFGS (L-BFGS) [78, 87], which efficiently utilizes stored limited memory pairs
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to approximate the Hessian of f . It stores the past m vector pairs of (sk−i, yk−i), i =

0, 1, . . . ,m− 1,, where

sk = xk+1 − xk, and yk = ∇f(xk+1)−∇f(xk),

and computes dk in O(mn) time.

The L-BFGS method incorporates the Wolfe line search to ensure global convergence.

However, the line search can sometimes require a greater number of function evalua-

tions. Some trust region methods (TR-method) ensure global convergence, but they require

a lesser number of function evaluations compared to the line search [14, 15, 80]. The

integration of the L-BFGS method with the TR-method [14, 15] demonstrates competitive

performance across various benchmark problems, notably decreasing the number of function

evaluations. However, the TR-method requires solving a constrained subproblem.

minimize f(xk) +∇f(xk)
Td+

1

2
dTBkd (3.1.2)

subject to ‖d‖ ≤ ∆k,

in all steps, where approximate Hessian Bk is obtained by L-BFGS and ∆k is the trust-region

radius. This process takes a significant amount of time to solve (3.1.2).

It is notably important that Burakov et al. [13] employ joint limited-memory and trust

region techniques.It exploits the eigenvalue decomposition of Bk in order to solve the TR-

subproblem.

In order to solve these issues, we consider utilizing a regularization technique instead

of the TR-method. This is motivated by the regularized Newton method proposed by Ueda

and Yamashita [120, 68, 119] and in regularized L-BFGS [106]. The regularized Newton

method calculates a search direction dk by solving the linear equations given below:

(∇2f(xk) + µkI)d = −∇f(xk), (3.1.3)

and regularized L-BFGS method computes a search direction dk as a

(Bk + µkI)d = −∇f(xk), (3.1.4)

where µk > 0. If Bk = ∇2f(xk) and µk aligns with the optimal Lagrange multiplier’s value

at a solution of problem (3.1.2), then dk serves as a solution to (3.1.2). Notably, the linear

equations (3.1.4) prove simpler compared to the subproblem (3.1.2) of TR-method.

In this chapter, we introduce a methodology that combines the regularized L-BFGS

method with the simultaneous use of Wolfe line search. We call the proposed method
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the regularized L-BFGS-SW method. A straightforward implementation involves utilizing

a solution to the subsequent equations as a search direction,

(Bk + µI)d = −∇f(xk), (3.1.5)

where Bk is an approximate Hessian given by a certain quasi-Newton method. However,

when Bk is calculated by the L-BFGS method, it is difficult to compute (Bk + µI)−1 2

Hence, regularized L-BFGS involves directly constructing (Bk + µI)−1 using the L-BFGS

method for

f(x) + µ‖x‖2,

In this context, we employ (sk, ŷk(µ)) with ŷk(µ) = yk + µsk, as opposed to (sk, yk). The

inclusion of µsk in ŷk(µ) serves as a regularization term. Consequently, the computation

of the search direction dk can be achieved in O(mn) time, mirroring the computational

efficiency of the traditional L-BFGS method.

A drawback of the regularized L-BFGS method is that a step dk sometimes becomes

small, and it causes a large number of iterations. To get a longer step, we propose two

techniques: a nonmonotone technique and simultaneous use of the Wolfe line search. Recall

that the step length given by the Wolfe condition is allowed to be larger than 1, and hence

the step can explore a larger area. Thus, if f(xk + αdk) < f(xk + dk) for α > 1, it would be

reasonable to find α via the Wolfe line search. We note that this chapter is an enhancement

of the unpublished paper [106] that does not exploit the line search. Due to the simultaneous

use of line search, the proposed method becomes more robust than that of [106], which we

report in a further section.

A limitation of the regularized L-BFGS method is the unit step length, leading to an

increased number of iterations. To address this, we introduce two techniques: a nonmonotone

approach and the simultaneous incorporation of the Wolfe line search. It’s worth noting that,

under the Wolfe condition, the step length can extend beyond 1, enabling exploration of a

larger region. Therefore, if f(xk + αdk) < f(xk + dk) for α > 1, determining α through

the Wolfe line search is a reasonable strategy. It’s crucial to highlight that this chapter

represents an advancement over the unpublished paper [106], which did not employ the line

search. The simultaneous application of the line search makes the proposed method more

robust than that presented in [106], as discussed in further section.

2Quite recently, Steck and Kanzow [66] proposed an efficient calculation technique for (Bk + µI)−1.
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3.2 The regularized L-BFGS method

In this section, we present the regularized L-BFGS technique, which oversees the regularized

parameter across each iteration. Here, xk represents the k-th iterative point, Bk denotes the

approximate Hessian of f(xk), and H−1k = Bk. Since regularized L-BFGS computes a search

direction dk as a solution to

(Bk + µI)dk = −∇f(xk). (3.2.1)

However, since the L-BFGS method updates Bk, constructing Bk explicitly poses challenges.

Furthermore, even if we manage to obtain Bk, solving the linear equation (3.2.1) in large-scale

scenarios demands a considerable amount of computational time.

In the regularized L-BFGS method, Bk +µI is considered an approximation of ∇2f(x) +

µI. Given that Bk is the approximate Hessian of f(xk), the matrix Bk + µI serves as

an approximate Hessian for f(x) + µ
2
‖x‖2. Unlike the L-BFGS method, which employs

the vector pair (sk, yk) to construct the approximate Hessian, where sk = xk+1 − xk and

yk = ∇f(xk+1) − ∇f(xk), the regularized L-BFGS method introduces a modification. In

this case, we use the gradients of f(x) + µ
2
‖x‖2 in the computation, leading to the adoption

of the modified vector ŷk(µ) instead of yk as follows:.

ŷk(µ) = (∇f(xk+1) + µxk+1)− (∇f(xk) + µxk) = yk + µ sk.

Consider Ĥk(µ) as a matrix constructed by the L-BFGS method utilizing m vector pairs

(si, ŷi(µ)), i = 1, . . . ,m, along with a suitable initial matrix Ĥ
(0)
k (µ). Consequently,

the computation of dk = −Ĥk(µ)∇f(xk) requires O(mn) time, which is similar to the

computational efficiency of the original L-BFGS. It’s noteworthy that Ĥk(µ) retains positive

definiteness if sTk ŷk(µ) > 0, and Ĥ
(0)
k is positive definite. In instances where sTk ŷk(µ) > 0 is

not satisfied, a potential substitution involves replacing ŷk(µ) with ỹk(µ).

ỹk(µ) = yk +

(
max

{
0,
−sTk yk
||sk||2

}
+ µ

)
sk.

Then, the inequality sTk ỹk(µ) > 0 always holds because

sTk ỹk(µ) = max{0, sTk yk}+ µ‖sk‖2 > 0.

Here, Ĥk(µ) represents the matrix constructed by the L-BFGS method using the initial

matrix Ĥ
(0)
k (µ) and the vector pairs (sk−i, ŷk−i(µ)), i = 1, · · · ,m. The corresponding

search direction is defined as dk(µ) = −Ĥk(µ)∇f(xk). In the conventional L-BFGS method,

γkI serves as the initial matrix H
(0)
k , where γk is a specific positive constant. Given that
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(B
(0)
k )−1 = H

(0)
k and Ĥ

(0)
k approximates (B

(0)
k + µI)−1, we may set the initial matrix Ĥ

(0)
k (µ)

as

Ĥ
(0)
k (µ) = (B

(0)
k + µI)−1 =

(
1

γk
+ µ

)−1
I =

γk
1 + γkµ

I. (3.2.2)

The regularized L-BFGS approach computes the subsequent iteration as xk+1 = xk + dk(µ)

without involving a step length. The parameter µ is controlled to ensure global convergence

following the methodology proposed in [120]. To determine a suitable search direction

and utilize the notion of updating the trust-region radius in the TR-method to control

µ. Specifically, it leverages the ratio of the reduction in the objective function value to that

of the model function value, defining a ratio function rk(dk(µ), µ) as

rk(dk(µ), µ) =
f(xk)− f(xk + dk(µ))

f(xk)− qk(dk(µ), µ)
, (3.2.3)

where qk : Rn × R→ R is given by

qk(dk(µ), µ) = f(xk) +∇f(xk)
Tdk(µ) +

1

2
dk(µ)T Ĥk(µ)−1dk(µ).

It is worth noticing that there is no requirement for an explicit computation of the matrix

Ĥk(µ)−1 in qk(dk, µ). Given that dk(µ) = −Ĥk(µ)∇f(xk), the expression

dk(µ)T Ĥk(µ)−1dk(µ) simplifies to −dk(µ)T∇f(xk). When the ratio rk(dk(µ), µ) is sizable,

indicating a significant reduction in the objective function f compared to the model

function, we opt for dk(µ) and decrease the parameter µ. Conversely, if rk(dk, µ) is small,

signifying a modest decrease in f(xk), we increase µ and recompute dk(µ). Now, we get

into the details of the regularized L-BFGS method, given in Algorithm 1.

Algorithm 1 Regularized L-BFGS

Step 0 Choose the parameters µ0, µmin, σ1, σ2, η1, η2,m such that 0 < µmin ≤ µ0, 0 < σ1 ≤
1 < σ2, 0 < η1 < η2 ≤ 1 and m > 0. Choose initial point x0 ∈ Rn and an initial matrix
Ĥ0
k . Set k := 0.

Step 1 If some stopping criteria are satisfied, then terminate. Otherwise, go to step 2.
Step 2
Step 2-0 Set lk := 0 andµ̄lk = µk.
Step 2-1 Compute dk(µ̄lk) using Algorithm 2.
Step 2-2 Computerk(dk(µ̄lk), µ̄lk). If rk(dk(µ̄lk), µ̄lk) < η1, then update µ̄lk+1

= σ2µ̄lk , set
lk = lk + 1, and go to Step 2-1. Otherwise, go to Step 3.

Step 3 If η1 ≤ rk(dk(µ̄lk), µ̄lk) < η2 then update µk+1 = µ̄lk . If rk(dk(µ̄lk), µ̄lk) ≥ η2 then
update µk+1 = max[µmin, σ1µ̄lk ]. Update xk+1 = xk + dk(µ̄lk). Set k = k + 1 and go to
Step 1.

In Step 2-1, we compute dk(µ) from (sk, ŷk(µ)) by the L-BFGS updating scheme in [87].
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The details of step 2-1 are given as follows:.

Algorithm 2 L-BFGS with (sk, ŷk(µ))

Step 0 Set p ← ∇f(xk).
Step 1 Repeat the following process with i = k − 1, k − 2, . . . , k − l;

ri ← τis
T
i p,

p← p− ri(yk + µsk),

where τi = (sTi (yk + µsk))
−1.

Step 2 Set q ← Ĥ0
k(µ)p.

Step 3 Repeat the following process with i = k − t, k − t+ 1, . . . , k − 1;

β ← τi(yk + µsk)
T q,

q ← q + (ri − β)si.

Step 4 Get the search direction by dk(µ) = −q.

Remark 3.2.1. Tarzangh and Peyghami [113] proposed the L-BFGS with,

ȳk = yk + βk
ωk
sTk u

u, (3.2.4)

where u ∈ Rn is a vector such that sTk u 6= 0, ωk = (2(f(xk)−f(xk+1))+(gk+gk+1)) and βk ∈
{0, 1, 2, 3}. The additional term β ωk

sTk u
u is considered a regularization. Note that [113] does

not control u for global convergence. Instead it adopts the usual line search.

It is crucial to note that the regularized parameter is pretty sensitive and requires a

balanced choice of regularized parameter as it significantly affects the trust-region ratio

and hence convergence. Also, it uses a few user-defined constants to tune the regularized

parameter µ. Therefore, the optimal trust-region ratio can be determine through a thoughtful

tuning process which involves with the experimenting with appropriate constants.

3.3 Regularized L-BFGS with simultaneous use with

Wolfe line search

The regularized L-BFGS method does not utilize a line search, and hence it cannot take a

longer step. Usually, the iterate with line search can be given as

xk+1 = xk + αkdk, (3.3.1)
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where αk is a step length. The usual L-BFGS [78, 87] uses a step length αk that satisfies the

Wolfe conditions,

f(xk + αkdk) ≤ f(xk) + c1αkd
T
k∇f(xk); (3.3.2)

dTk∇f(xk + αkdk) ≥ c2d
T
k∇f(xk); (3.3.3)

|dTk∇f(xk + αkdk)| ≤ c2|dTk∇f(xk)|, (3.3.4)

where 0 < c1 < c2 < 1. Please note that αk can exceed 1. Consequently, αkdk has

the potential for a significant reduction in f . Considering this, employing a line search in

addition to the regularization technique seems reasonable. However, determining αk is time

consuming, so it’s essential to avoid it if αkdk does not provide sufficient improvement.

To optimize the effectiveness of conditional use of line search, we rely on the curvature

condition (3.3.3), ensuring that the step is not too short. Following the completion of step

3 in Algorithm 1, we initially check whether xk + dk(µ) satisfies the curvature condition

(with αk = 1 in (3.3.3)) or not. If the condition is not satisfied, signifying that xk + dk(µ)

is a short step, we compute αk using the strong Wolfe condition. This computation aims to

facilitate a longer step. Specifically, we search for αk from xk+dk in the direction of dk so that

(3.3.2)-(3.3.4) hold with xk := xk+dk(µ), dk := dk(µ), and then set xk+1 = xk+(1+αk)dk(µ).

Next, we discuss the conditions under which we conduct the Wolfe line search. As

mentioned previously, we exploit the strong Wolfe condition (3.3.3) when the following

conditions hold,

dk(µ)T∇f(xk + dk(µ)) < c2dk(µ)T∇f(xk) and µ = µmin. (3.3.5)

Keep in mind that ‖dk(µmin)‖ ≥ ‖dk(µ)‖ holds when µ > µmin. Consequently, dk(µmin)

represents the most substantial step achievable when applying RL-BFGS alone. The

condition (3.3.5) indicates that whenever xk + dk(µmin) promises progress, we opt for an

extended step through a robust Wolfe line search. This approach, an augmentation of the

proposed method, is termed Regularized L-BFGS with Strong Wolfe Line Search (RL-BFGS-

SW). The RL-BFGS-SW method is introduced below.

For this process, we use sk and ŷk(µ) whenever the strong Wolfe line search is used. We

summarize the details of yk, ŷk(µ) and sk in Table 3.1.
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Algorithm 3 RL-BFGS with line search (RL-BFGS-SW)

Step 0 Choose the parameters µ0, µmin, σ1, σ2, η1, η2,m such that 0 < µmin ≤ µ0, 0 < σ1 ≤
1 < σ2, 0 < η1 < η2 ≤ 1 and m > 0. Choose initial point x0 ∈ Rn and an initial matrix
Ĥ0
k . Set k := 0.

Step 1 If some stopping criteria are satisfied, then terminate. Otherwise go to step 2.
Step 2
Step 2-0 Set lk := 0 and µ̄lk = µk.
Step 2-1 Compute dk(µ̄lk) by Algorithm 2.
Step 2-2 Compute rk(dk(µ̄lk), µ̄lk). If rk(dk(µ̄lk), µ̄lk) < η1, then update
µ̄lk+1

= σ2µ̄lk , set lk = lk + 1, and go to Step 2-1. Otherwise, go to Step 3.
Step 3 If η1 ≤ rk(dk(µ̄lk), µ̄lk) < η2 then update µk+1 = µ̄lk .

If rk(dk(µ̄lk), µ̄lk) ≥ η2 then update µk+1 = max[µmin, σ1µ̄lk ].
Step 4 If dk(µ)T∇f(xk + dk(µ)) < c2dk(µ)T∇f(xk) and µk = µmin,

then find αk by strong Wolfe line search and set xk+1 = xk + dk + αkdk,
otherwise xk+1 = xk + dk.

Step 5 Set k = k + 1 and go to Step 1.

Table 3.1: Comparison of yk, ŷk and sk.

L-BFGS RL-BFGS RL-BFGS-SW
(when line search is used)

xk+1 = xk + αkdk xk+1 = xk + dk(µ) xk+1 = xk + (αk + 1)dk(µ)
sk = αkdk sk = dk(µ) sk = (αk + 1)dk(µ)
yk = ∇f(xk+1)−∇f(xk) ŷk(µ) = yk + µkdk(µ) ŷk(µ) = yk + µk(αk + 1)dk(µ)

3.4 Global convergence

In this section, we show the global convergence of the regularized L-BFGS method with

certain modifications. First, we give a definition of Lipschitz continuity.

Definition 3.4.1 (Lipschitz continuity). Let S be a subset of Rn and f : S → R.

i) The function f is said to be Lipschitz continuous on S if there exists a positive constant

Lf such that

|f(x)− f(y)| ≤ Lf‖x− y‖ ∀x, y ∈ S.

ii) Suppose that the function f is differentiable. ∇f is said to be Lipschitz continuous on

S if there exists a positive constant Lg such that

‖∇f(x)−∇f(y)‖ ≤ Lg‖x− y‖ ∀x, y ∈ S.

Next, we need the following assumptions.
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Assumption 3.4.1.

(i) The objective function f is twice continuously differentiable.

(ii) The level set of f at the initial point x0 is compact, i.e., Ω = {x ∈ Rn|f(x) ≤ f(x0)} is

compact.

(iii) There exist positive constants M1 and M2 such that

M1‖z‖2 ≤ zT∇2f(x)z ≤M2‖z‖2 ∀x ∈ Ω and z ∈ Rn.

(iv) There exists a minimum fmin of f .

(v) There exists a constant γ such that γk ≥ γ > 0 for all k, where γk is a parameter in

(3.2.2).

These assumptions are similar to those for the global convergence of the original L-BFGS

method [78].

Under above assumptions, we have the following properties. First, let

G(x) = ∇2f(x), Gk = G(xk), Ḡk =

∫ 1

0

G(xk + τdk)dτ.

It then follows from mean value theorem that

yk = Ḡksk, (3.4.1)

as sk = xk+1 − xk = (xk + dk)− xk and yk = ∇f(xk+1)−∇f(xk) and hence we have

ŷk(µ) = yk + µsk = (Ḡk + µI)sk. (3.4.2)

It follows from Assumption 3.4.1 (iii) that λmin(Ḡk) ≥ M1 and λmax(Ḡk) ≤ M2. Therefore,

we have that

M1‖sk‖2 ≤ sTk yk ≤M2‖sk‖2,
1

M2

‖yk‖2 ≤ sTk yk ≤
1

M1

‖yk‖2, (3.4.3)

(M1 + µ)‖sk‖2 ≤ sTk ŷk(µ) ≤ (M2 + µ)‖sk‖2.

Given that the sequence xk is contained within the compact set Ω, and under the assumptions

in Assumption 3.4.1 (i) and (ii), where f is twice continuously differentiable, there exists a
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positive constant Lf such that

‖∇f(xk)‖ ≤ Lf for all k. (3.4.4)

Next, we get into the characteristics of the eigenvalues of B̂k(µ), the inverse of Ĥk(µ). It’s

important to note that the matrix B̂k(µ) is shaped by the BFGS formula, utilizing vector

pairs (sk, ŷk(µ)), with the initial matrix B̂
(0)
k (µ) = Ĥ

(0)
k (µ)−1. Thus, we have

B̂k(µ) = B̂
(m̃k)
k (µ)

B̂
(l+1)
k (µ) = B̂

(l)
k (µ)−

B̂
(l)
k (µ)sjls

T
jl
B̂

(l)
k (µ)

sTjlB̂
(l)
k (µ)sjl

+
yjl ŷ

T
jl

ŷTjlsjl
, l = 0, · · · , m̃k − 1

(3.4.5)

where m̃k = min{k + 1,m} and jl = k − m̃ + l. It is worth noting that these formulations

are used in [17, 78].

Our attention now shifts to the trace and determinant of B̂k(µ). Initially, we establish

that the trace of B̂
(l)
k (µ) is of the order O(µ).

Lemma 3.4.1. [106, Lemma 3.1]Suppose that Assumption 3.4.1 holds. Then,

tr(B̂
(l)
k (µ)) ≤M3 + (2m+ n)µ, l = 0, · · · , m̃k

where M3 = n
γ

+mM2.

Proof. The proof of this Lemma can be found in [112, Lemma 31].

The next lemma provides a lower bound the determinant of B̂k(µ). The following lemma

corresponds to [106, Lemma 3.2]. Since the proof of [106, Lemma 3.2] has a flaw, we give a

complete proof here.

Lemma 3.4.2. Suppose that Assumption 3.4.1 holds. Then,

det(B̂k(µ)) ≥M4µ
n,

where

M4 = min

{(
M1

M3 + (2m+ n)

)m̃
,

(
1

M3 + (2m+ n)

)m̃}
.

Proof. It is worth noting that the determinant of the updated approximate matrix

using the BFGS updating scheme possesses the following property, as established in [91, 96]:

det(B̂
(l+1)
k (µ)) = det(B̂

(l)
k (µ))

sTjl ŷjl(µ)

sTjlB̂
(l)
k (µ)sjl

.
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Then, we have

det(B̂k(µ)) = det(B̂
(0)
k (µ))

m̃−1∏
l=0

sTjl ŷjl(µ)

sTjlB̂
(l)
k (µ)sjl

= det(B̂
(l)
k (µ))

m̃−1∏
l=0

sTjl ŷjl(µ)

sTjlsjl

sTjlsjl

sTjlB̂
(l)
k (µ)sjl

≥ det(B̂
(0)
k (µ))

m̃−1∏
l=0

sTjl ŷjl(µ)

sTjlsjl

sTjlsjl

λmax(B̂
(l)
k (µ))sTjlsjl

= det(B̂
(0)
k (µ))

m̃−1∏
l=0

sTjl ŷjl(µ)

‖sjl‖2
1

λmax(B̂
(l)
k (µ))

.

Since B̂
(0)
k (µ) is symmetric positive-definite, Lemma 3.4.1 conveys that λmax(B̂

(l)
k (µ)) ≤

M3 + (2m+ n)µ. Furthermore, we have
sTjl
ŷjl (µ)

‖sjl‖
2 ≥M1 + µ from (3.4.3). Therefore, it follows

that

det(B̂k(µ)) ≥ det(B̂k(µ)(0))

(
M1 + µ

M3 + (2m+ n)µ

)m̃
= det

(
1 + γkµ

γk
I

)(
M1 + µ

M3 + (2m+ n)µ

)m̃
.

We have
M1 + µ

M3 + (2m+ n)µ
=

M1

M3 + (2m+ n)µ
+

µ

M3 + (2m+ n)µ
. (3.4.6)

If µ ≤ 1, then we have
M1

M3 + (2m+ n)µ
≥ M1

M3 + (2m+ n)
,

and if µ > 1, then we get

µ

M3 + (2m+ n)µ
=

1

M3/µ+ (2m+ n)
≥ 1

M3 + (2m+ n)
.

It then follows from (3.4.6) that(
M1 + µ

M3 + (2m+ n)µ

)m̃
≥M4,

where

M4 = min

{(
M1

M3 + (2m + n)

)m̃

,

(
1

M3 + (2m + n)

)m̃
}
.
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Consequently, we set

det(B̂k(µ)) ≥
(

1

γk
+ µ

)n
M4

≥ M4µ
n.

This completes the proof.

From the previous two lemmas, we get λmax(Ĥk(µ)) → 0 as µ → ∞. The next lemma

corresponds to [106, Lemma 3.3]. Since the proof given in [106, Lemma 3.3] has a flaw, we

give a complete proof here.

Lemma 3.4.3. Suppose that Assumption 3.4.1 holds. Then, for all k ≥ 0,

λmax(Ĥk(µ)) ≤M5
1

µ
, ∀µ ∈ [µmin,∞),

where

M5 =
1

M4

(
M3

µmin

+ (2m+ n)

)n−1
.

Furthermore, limµ→∞ λmax(Ĥk(µ)) = 0.

Proof. We have from Lemmas 3.4.1 and 3.4.2 that

tr(B̂k(µ)) ≤ M3 + (2m+ n)µ,

det(B̂k(µ)) ≥ M4µ
n.

Since B̂k(µ) is symmetric positive-definite, we have

tr(B̂k(µ)) ≥ λmin(B̂k(µ))

det(B̂k(µ)) ≤ λmin(B̂k(µ)){λmax(B̂k(µ))}n−1.

Therefore, we have

λmin(B̂k(µ)) ≥ det(B̂k(µ))

{λmax(B̂k(µ))}n−1

≥ M4µ
n

{(M3 + (2m+ n)µ)}n−1
.

It then follows from Assumption 3.4.1 (v) that

λmax(Ĥk(µ)) =
1

λmin(Ĥ−1k (µ))
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=
1

λmin(B̂k(µ))

≤ {(M3 + (2m+ n)µ)}n−1

M4µn

=
1

M4

(
M3 + (2m+ n)µ

µ

)n−1
1

µ
. (3.4.7)

Since µ ≥ µmin, we have

M3 + (2m+ n)µ

µ
=
M3

µ
+ (2m+ n) ≤ M3

µmin

+ (2m+ n).

It then follows from (3.4.7) that

λmax(Ĥk(µ)) ≤ 1

M4

(
M3

µmin

+ (2m+ n)

)n−1
1

µ

= M5
1

µ
.

Hence, we have

lim
µ→∞

λmax(Ĥk(µ)) = 0.

This completes the proof.

Now, we give an upper bound for ‖dk(µ)‖.

Lemma 3.4.4. [106, Lemma 3.4]Suppose that Assumption 3.4.1 holds. Then,

‖dk(µ)‖ ≤ Ud,

where

Ud =
LfM5

µmin

.

Proof. The proof of this theorem can be found in [112, Lemma 34].

Lemma 3.4.4 indicates that

xk + νdk(µ) ∈ Ω + B(0, Ud), ∀ν ∈ [0, 1], ∀µ ∈ [µmin,∞), ∀k ≥ 0.

Furthermore, considering the compactness of Ω + B(0, Ud) and the twice-continuity differen-

tiability of f , the gradient ∇f(xk) is Lipschitz continuous on Ω + B(0, Ud). In other words,
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there exists a positive constant Lg such that

‖∇2f(xk)‖ ≤ Lg ∀xk ∈ Ω + B(0, Ud). (3.4.8)

Next, we advocate the behaviors of µ that satisfy the termination criteria rk(dk(µ), µ) ≥ η1

in the inner iterations of Step 2-2 in Algorithm 1.

Lemma 3.4.5. [106, Lemma 3.5]Suppose that Assumption 3.4.1 holds. Then, we have

f(xk)− f(xk + dk(µ))− η1(f(xk)− qk(dk(µ), µ))

≥ 1

2
((2− η1)λmin(Ĥk(µ)−1)− Lg)‖dk(µ)‖2.

Proof. The proof of this Lemma can be found in [112, Lemma 35].

From Lemma 3.4.5, if µ satisfies

λmin(Ĥ−1k (µ)) ≥ Lg
2− η1

, (3.4.9)

then we have

rk(dk(µ), µ) ≥ η1, (3.4.10)

that is, the inner loops of Algorithm 1 must terminate.

Next, we provides an upper bound of the parameter µk.

Lemma 3.4.6. [106, Lemma 3.6]Suppose that Assumption 3.4.1 holds. Then, for any k ≥ 0,

µ∗k ≤ Uµ,

where

Uµ = σ2M5
Lg

2− η1
.

Proof. The proof of this theorem can be found in [112, Lemma 36]. Note that we

have used σ2 [112] instead of γ2 [106].

Next, we give a lower bound for the reduction in the model function qk.

Lemma 3.4.7. [106, Lemma 3.7]Suppose that Assumption 3.4.1 holds. Then, we have

f(xk)− qk(dk(µ), µ) ≥ M6‖∇f(xk)‖2,

where

M6 =
1

2(M3 + (2m+ n)µmin)
.
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Proof. The proof of this Lemma can be found in [112, Lemma 37].

This lemma provides a lower bound for the reduction in the objective function value when

xk is not a stationary point.

Lemma 3.4.8. [106, Lemma 3.8] Suppose that Assumption 3.4.1 holds. If there exists a

positive constant εg such that ‖∇f(xk)‖ ≥ εg, then we have f(xk) − f(xk+1) ≥ ρε2g, where

ρ = η1M6.

Proof. The proof of this Lemma can be found in [112, Lemma 38].

Next, we prove the main theorem of this section.

Theorem 3.4.1. [106, Theorem 3.1]Suppose that Assumption 3.4.1 holds. Then,

lim infk→∞ ‖∇f(xk)‖ = 0 or there exists K ≥ 0 such that ‖∇f(xK)‖ = 0.

Proof. The proof of this theorem can be found in [112, Theorem 31].

It is important to note that since f(xk + dk(µ)) > f(xk + (1 +αk)dk(µ)) from (3.3.2) and

(3.3.5), Algorithm 3 also has the global convergence property.

3.5 Implementation issues

Based, the trust-region ratio of the regularized L-BFGS does not demonstrate satisfactory

improvement, causing notable rise in the regularized parameter µ for certain large-scale test

problems. Both scenarios culminate in a limited step, demanding a considerable number

of iterations to converge on a solution. To address this challenge, we apply two techniques

similar to RL-BFGS, accompanied by a discussion on how to appropriately set γk in the

initial matrix Ĥ
(0)
k [112, Section 4.3] and nonmonotone decreasing technique [112, Section

4.2].

3.5.1 Nonmonotone decreasing technique

In Algorithm 1, we govern the regularized parameter µ to ensure the descent condition

f(xk+1) < f(xk). However, µ can occasionally become excessively large, especially for certain

ill-posed problems, leading to a need for an extensive number of function evaluations. To

address this challenge, we introduce the concept of a nonmonotone line search technique [55,

107]. This modification involves replacing the ratio function rk(dk(µ), µ) with the following

new ratio function r̄k(dk(µ), µ):

r̄k(dk(µ), µ) =
max0≤j≤m(k) f(xk−j)− f(xk + dk(µ))

f(xk)− qk(dk(µ), µ)
,
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where

m(0) = 0, 0 ≤ m(k) ≤ min{m(k − 1) + 1,M},

and M is a nonnegative integer constant. This modification retains the global convergence

of the regularized L-BFGS method.

In the upcoming numerical experiments detailed in the subsequent section, we employ the

original ratio function rk(dk(µ), µ) for k < M . However, for k ≥ M , we switch to utilizing

the new ratio function r̄k(dk(µ), µ).

3.5.2 Scaling initial matrix

The regularized L-BFGS method utilizes the initial matrix in each iteration, as given below:

Ĥ
(0)
k (µ) =

γk
1 + γkµ

I.

The parameter γk indicates the scale of ∇2f(x). Thus, we use the scaling parameter γk used

in [6, 15, 87, 97, 105], that is, we set

γk =
sTk−1yk−1

‖yk−1‖2
.

It is known that the L-BFGS method with such scaling in the initial matrix has significant

performance [15, 87]. Note that it demands γk > 0 to ensure the positive-definiteness of

Ĥ
(0)
k (µ). If sTk−1yk−1 < α‖sk−1‖2, then we set γk = α ‖sk−1‖2

‖yk−1‖2
, where α is a small positive

constant.

3.6 Numerical results

In this section, we compare the L-BFGS, the regularized L-BFGS (RL-BFGS), and the

regularized L-BFGS with line search (RL-BFGS-SW). We also compare our method with

the existing regularized L-BFGS [113]. For the regularized ones, we adopt the nonmonotone

techniques and the initial matrix discussed in Section 4. We have used the MCSRCH (line

search routine) and parameters of the original L-BFGS [88] to find a step length in the

RL-BFGS-SW.

We have solved 297 problems chosen from CUTEst [51]. All algorithms were coded in

MATLAB 2018a. We have used an Intel Core i5 1.8GHz CPU with 8 GB of RAM on Mac

OS X. We have chosen an initial point x0 given in CUTEst.

We set the termination criteria as,
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‖∇f(xk)‖
max(1, ‖xk‖)

< 10−5 or nf > 50000 or k > 50000 or µk > 1015, (3.6.1)

where nf is the number of function evaluations. We regard the trails as failing when nf >

50000, the number of iterations exceeds 50000, or µk > 1015.

We compare the algorithms with the distribution function proposed in [38]. Let S be a

set of solvers, and let PS be a set of problems that can be solved by all algorithms in S. We

measure the required evaluations to solve problem p by solver s ∈ S as tp,s, and the best tp,s

for each p as t∗p, which means t∗p = min{tp,s|s ∈ S}. The distribution function F Ss (τ), for a

method s is defined by,

F Ss (τ) =
|{p ∈ PS |tp,s ≤ τt∗p}|

|PS |
, τ ≥ 1. (3.6.2)

The algorithm whose F Ss (τ) is close to 1 is considered to be superior compared to other

algorithms in S.

3.6.1 Numerical behavior for some parameters in RL-BFGS

Since the RL-BFGS uses several parameters, we need to investigate the effect of these

parameters so that we can choose the optimal ones. First, we consider σ1 and σ2 that

control regularized parameters. We perform numerical experiments with 9 different sets of

(σ1, σ2) in Table 3.2. The remaining parameters are set to

η1 = 0.01, η2 = 0.9, µmin = 1.0× 10−3,m = 7,M = 10.

Table 3.2 shows the number of successes and rate of success for all 297 problems. Figure 3.1

shows the distribution function of these parameter sets in terms of CPU time.

Table 3.2: The number of success and rate of success at each (σ1, σ2).

P σ1 σ2 Number of successes Success rate (%)

P1 0.1 2.0 254 85.52
P2 0.1 5.0 259 87.2
P3 0.1 10.0 265 89.22
P4 0.2 2.0 254 85.52
P5 0.2 5.0 255 85.85
P6 0.2 10.0 257 86.53
P7 0.5 2.0 249 83.83
P8 0.5 5.0 253 85.18
P9 0.5 10.0 254 85.52

From Table 3.2 and Figure 3.1 it is clear that (σ1, σ2) = (0.1, 10.0) is the best. Therefore,
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we set σ1 = 0.1 and σ2 = 10.0 for all further experiments.

Next, we compare the number m of vector pairs in the L-BFGS procedure. Note that

the original L-BFGS usually choose it in 3 ≤ m ≤ 7 [87]. Thus, we compare m = 3, 5, 7.

The remaining parameters are set to

σ1 = 0.1, σ2 = 10, η1 = 0.01, η2 = 0.9, µmin = 1.0× 10−3,M = 10.

Table 3.3: The number of success and rate of success at each m.

Memory Number of successes Success rate (%)

3 246 82.82
5 253 85.18
7 265 89.22

From Table 3.3 we see that m = 7 is the best, also Figure 3.2 shows that m = 7 is initially

better in terms of CPU time. Therefore, we set m = 7 for further experiments. Finally, we

compare the behavior of nonmonotone parameters M . We compare M = 0, 4, 6, 8, 10, 12.

Note that M = 0 implies the usual monotone decreasing case. The remaining parameters

are set to

σ1 = 0.1, σ2 = 10, η1 = 0.01, η2 = 0.9, µmin = 1.0× 10−3,m = 7.

Figure 3.3 shows the distribution function of the nonmonotone parameter in terms of the

CPU time.

From Table 3.4 and Figure 3.3 it is clear that M = 10 is better. Therefore, we use

M = 10 in the next section.

Table 3.4: The number of success and rate of success at each M .

Nonmonotone Number of successes Success rate (%)

Monotone(M=0) 257 86.53
4 261 87.87
6 263 88.55
8 264 88.88
10 265 89.22
12 264 88.88

3.6.2 Comparisons of RL-BFGS-SW, RL-BFGS and L-BFGS

method

We compare the RL-BFGS-SW, the RL-BFGS, and the L-BFGS methods in terms of the

number of function evaluations and CPU time. For all numerical experiments, the parameters
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Figure 3.1: Comparison of (σ1, σ2).
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Figure 3.2: Comparison of m = 3, 5, 7.
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Figure 3.3: Comparison of M.

in RL-BFGS and RL-BFGS-SW are as follows:

η1 = 0.01, η2 = 0.9, µmin = 1.0× 10−3,M = 10,m = 7, σ1 = 0.1, σ2 = 10.

Figures 3.4 and 3.5 shows the results of the number of successes and rate of successes

for PS in terms of function evaluations and CPU time, respectively. Here S is the set of

problems that are solved by all three algorithms. Figure 3.4 shows that L-BFGS can solve

83.5% of test problems while RL-BFGS and RL-BFGS-SW can solve 89.22% and 87.87% of

problems, respectively. On the other hand, Figure 3.4 shows that L-BFGS is faster than

the regularized ones for the solved problems in terms of the number of function evaluations

for 75% of problems. However, RL-BFGS and RL-BFGS-SW can capture attention with

the ability to solve 89.22% and 87.87% respectively, as the height of the profile performance

shows for τ > 4. Moreover, Figure 3.5 shows that all solvers take almost equal time to solve
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Figure 3.4: Comparison of nf .
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Figure 3.5: Comparison of CPU time.

83.5% of the problems.

The above numerical results indicate that the numerical behaviors of the RL-BFGS and

the RL-BFGS-SW are almost the same. To see the differences, we present the numerical

results, which compare the performance of each algorithm.

We first observed that the RL-BFGS-SW performs the line search for 65 problems and

does not use it for the remaining problems. Then, we check the results for those 65 problems

and compare them in terms of function evaluations. We found that RL-BFGS-SW requires

fewer number function evaluations than RL-BFGS for 39 test problems, while RL-BFGS

requires fewer number of function evaluations than RL-BFGS-SW for 26 test problems among

65 test problems. Now we compare our methods with the existing regularized L-BFGS
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Figure 3.6: Comparison of nf .

methods [113], (see Remark 3.2.1). Note that the chapter proposed several updated rules of

βk in (3.2.4). We chose two methods, RLQNWB and RLQNWB-L among them since they are
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Table 3.5: Test functions [51]

Problem Dim Problem Dim Problem Dim
ARGLINA 200 ARWHEAD 1000 BDQRTIC 1000
BIGGSB1 1000 BROWNAL 200 BROYDN7D 500
BRYBND 5000 CHAINWOO 10000 COSINE 10000
CRAGGLVY 100 DIXMAANA 9000 DIXMAANB 9000
DIXMAANC 9000 DIXMAAND 9000 DIXMAANE 9000
DIXMAANF 9000 DIXMAANG 3000 DIXMAANH 3000
DIXMAANJ 3000 DIXMAANK 3000 DIXMAANL 3000
DIXON3DQ 500 DQDRTIC 10000 DQRTIC 1000
ENGVAL1 1000 EDENSCH 1000 EG2 1000
CHNROSNB 50 FMINSRF2 5625 FMINSURF 1024
GENHUMPS 5000 GENROSE 1000 LIARWHD 10000
MANCINO 100 MODBEALE 50 MOREBV 5000
NONCVXU2 500 NONCVXUN 100 NONDIA 10000
NONDQUAR 2000 OSCIPATH 10000 MSQRTALS 529
MSQRTBLS 529 PENALTY1 200 PENALTY2 50
POWELLSG 5000 QUARTC 1000 SCHMVETT 1000
SINQUAD 200 SPARSQUR 10000 SPMSRTLS 4999
TOINTGOR 50 TOINTGSS 5000 TOINTPSP 50
TQUARTIC 5000 VAREIGVL 1000 WOODS 10000
TRIDIA 500 POWER 500 - -

superior to the other update rules. To compare the proposed methods with the RLQNWB

and RLQNWB-L, we used the numerical results provided by Peyghami and Tarzanagh [113]
3. We solved 59 test problems in Table 3.5, and provided performance profiles in terms of

function evaluations. We set the termination criteria as,

‖∇f(xk)‖ ≤ 10−5 or µk > 1015,

or the number of iterations and function evaluations exceeds 10,000 and 50,000, respectively.

We first note that RL-BFGS and RL-BFGS-SW were unable to solve a problem

CHAINWOO. Figure 3.6 shows that both RL-BFGS and RL-BFGS-SW take the fewer

number of function evaluations and slightly outperform the RLQNWB and RLQNWB-L,

respectively.

Remark 3.6.1. Quite recently, Steck and Kanzow [66] proposed a similar regularized L-

BFGS method that computes (Bk + µI)−1 explicitly. They reported that their method

outperformed the proposed RL-BFGS without line search because of (Bk + µI)−1.

3http://wp.kntu.ac.ir/peyghami/pdf/MRLBFGS.rar

http://wp.kntu.ac.ir/peyghami/pdf/MRLBFGS.rar
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3.7 Conclusions

In this chapter, we introduced the regularized L-BFGS method with the simultaneous use of

Wolfe line search. We established global convergence under suitable assumptions and delved

into various implementation considerations. The numerical experiments demonstrated that,

in an overall comparison, the proposed method successfully addresses more problems than

the original L-BFGS.
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Chapter 4

A Stochastic Variance Reduced

Gradient using Barzilai-Borwein

Techniques as Second Order

Information

In this chapter, our focus lies on elevating the Stochastic Variance Reduced Gradient (SVRG)

method by incorporating the curvature information from the objective function. We suggest

a variance reduction in stochastic gradients using the computationally efficient Barzilai-

Borwein (BB) method, integrating it into the search direction of SVRG. Furthermore,

we introduce a BB-step size variant. Our work establishes a linear convergence theorem,

applicable not just to our proposed method but also to other existing SVRG variants

incorporating second-order information.

One of the important tasks of supervised machine learning is to solve the empirical risk

minimization problem [102]. In this chapter, we focus on empirical risk minimization defined

as

min
w∈Rd

F (w) =
1

n

n∑
i=1

fi(w; ai, bi), (4.0.1)

where fi(w; a, b) : Rd → R represents the composition of a loss function ` and a prediction

function h parametrized by w, denoted as fi(w; ai, bi) = `(h(w; ai); bi).

For simplicity, we use fi(w) as shorthand for fi(w; ai, bi). For instance, in the context of

least squares regression with n training samples (ai, bi)
n
i=1, where ai ∈ Rd and bi ∈ R, the loss

function is expressed as fi(w) = (wTai− bi)2. Similarly, for `2-regularized logistic regression,

the formulation is fi(w) = log(1 + exp (−biaTi w)) + λ
2
‖w‖22, where λ is an `2-regularized

parameter, and ai ∈ Rd, bi ∈ −1, 1 correspond to samples in a binary classification problem.

Massive amount of data presents a prevalent challenge when minimizing the objective
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function F with a large n. We focus on minimizing the average of a twice continuously

differentiable and strongly convex function, i.e., each fi(w) being both strongly convex and

twice continuously differentiable. Large-scale machine learning problems pose computational

challenges due to extensive training data. To address these challenges, efficient optimization

techniques are imperative.

The classical full gradient method [22] computes the full gradient as the name indicates

and uses iterations of the form as follows:

wk+1 = wk − ηk∇F (wk) = wk −
ηk
n

n∑
i=1

∇fi(wk), (4.0.2)

where ηk is a stepsize. The convergence rate of the full gradient is sublinear for convex

functions and linear for strongly convex functions. However, its computational cost is high,

involving the computation of n gradients ∇fi at each iteration. As an alternative, a widely

adopted approach for solving large-scale optimization problems is using stochastic gradient

methods, which employ either a single or a small subset (mini-batch) of training data in

each iteration. The stochastic gradient descent (SGD) [98] chooses a single training sample

i ∈ {1, 2, . . . , n} uniformly at random and updates wk as follows:

wk+1 = wk − ηk∇fi(wk), (4.0.3)

For global convergence, SGD requires a diminishing step size ηk, leading to slow convergence

due to the variance of the stochastic gradient. By reducing the variance of the stochastic

gradient, we aim to enable a constant step size, potentially resulting in a faster convergence

rate.

In the previous decade, numerous researchers have dedicated efforts to mitigate the

variance of the stochastic gradient while maintaining a constant step size [64, 125, 99, 31].

Stochastic average gradient (SAG)[100, 99] introduced biased updates, achieving a linear

convergence rate. Stochastic Average gradient accelerated (SAGA)[31] improved upon SAG

by utilizing an unbiased estimate. Additionally, there has been notable exploration in the

realm of dual minimization [103, 127]

The stochastic variance reduced gradient [64] (SVRG) method explicitly reduces

the variance through an unbiased estimate of the gradient:

SV RG wk+1 = wk − ηkvk, (4.0.4)

where vk = ∇fi(wk) − ∇fi(w̃) + ∇F (w̃) and w̃ is the resultant vector at the end of the

previous epoch. Johnsan and Zhang [64] showed that the variance of vk is diminishing as wk

approaches a solution, and hence the sequence converges linearly with a constant step size.
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However, the standard SVRG does not exploit the information on the Hessian of F.

Considerable effort has been dedicated to stochastic variance-reduced gradient methods

incorporating second-order information. It is noteworthy that second-order information can

be applied in two distinct ways. The conventional approach involves utilizing the second-

order approximation of the objective function, as seen in methods like stochastic quasi-

Newton [101, 16, 81] and SVRG-BB [110].

wk+1 = wk − ηkB−1k gi(wk), (4.0.5)

where gi(wk) is any stochastic gradient that uses first-order information such that E[gi(wk)] =

∇F (wk) and Bk is an approximation of the Hessian [∇2f(w)].

An alternative way to use second-order information is to further reduce the variance via

the variance reduction technique of the stochastic gradient as

wk+1 = wk − ηk(vk + (∇2F (w̃)−∇2fit(w̃))(wk − w̃)), (4.0.6)

where vk = ∇fit(wk)−∇fit(w̃) + F (w̃).

Gower et al.[53] introduced SVRG-2, a variant of SVRG leveraging second-order

information to control the variance of stochastic gradient (4.0.6). This method computes

the Hessian at a cost of O(nd2), and its theoretical analysis indicates superior variance

reductions, achieving convergence in a small number of epochs. The authors also proposed

various Hessian approximations, including low-rank and diagonal Hessians. It is important

to note that, in scenarios with a small dimension d, using SVRG-2 [53] with the true Hessian

may be feasible. However, SVRG-2 might become time-consuming when dealing with a

large d. Additionally, the linear convergence of diagonal and low-rank approximations is not

demonstrated in [53].

In order to address these issues, we propose the Barzilai-Borwein approximation [6] to

further control the variance using SVRG.

Table 5.1 shows the clarification among the various variants of SVRG, which are first and

second order methods with variance reduction through first and second order information.

Table 4.1: Various variance reduced methods

First-order model Second-order model

Variance reduction via
first-order information

SVRG [64] SVRG-BB [110]

Variance reduction via
second-order information

SVRG-2 and
SVRG-2D [53], SVRG-2BB

(Proposed)

SVRG-2BBS (Proposed)
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4.1 The existing methods: SVRG and SVRG-2

In this section we introduce the SVRG [64] and the SVRG-2 [53].

Generally, the stochastic gradient methods attempt to estimate the true gradient

accurately. Since the expectation of the stochastic gradient ∇fi(w) is the true gradient

∇F (w), i.e., E[∇fi(w)] = 1
n

∑n
i=1∇fi(w) = ∇F (w), i ∈ {1, . . . , n}. Thus, in order to get the

best estimate of the stochastic gradient, it is natural to apply variance reduction techniques.

First we give a common framework of SVRG and SVRG-2.

Algorithm 4

Parameters: update frequency m and step size η, g̃ is gradient of F at w̃
Initialize w̃0

1. for k = 1, 2, . . .
2. w̃ = w̃k−1
3. g̃ = 1

n

∑n
i=1∇fi(w̃)

4. Ã is given
5. w0 = w̃
6. for t = 1, . . . ,m
7. Randomly pick it ∈ {1, . . . , n}
8. Ãit such that E[Ãit ] = Ã is given
9. wt = wt−1 − η (∇fit(wt−1)−∇fit(w̃) + g̃ + (Ã− Ãit)(wt−1 − w̃))
10. end for
11. option 1 w̃k = wm

option 2 w̃k = wt for randomly chosen t ∈ {0, . . . ,m− 1}
12. end for
Output w̃k = wm

The search direction of Algorithm 1 uses ∇fit(w̃) at w̃ for a current epoch k, and w̃ does

not update till the next epoch k. If w̃ does not change much, then it leads to slow convergence.

Therefore it is important to use the matrices Ã and Ait which is computationally affordable

and satisfies following properties:

1. Unbiased estimate of Ãit , that is

E[Ãit ] = Ã.

2. Approximation of Ãit and Ã such that,

Ãit ≈ ∇2fit(w̃) and Ã ≈ ∇2F (w̃).

From property 1, we have E(∇fit(wt−1)−∇fit(w̃) + g̃ + (Ã− Ãit)(wt−1 − w̃)) = ∇F (wt−1),

and hence we can expect that Algorithm 1 finds a solution. The property 2 is to reduce the

variance of wt.
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Algorithm 1 includes the well-known SVRG and its variants as follows:

SVRG [64] : Ã = Ãit = 0, (4.1.1)

SVRG-2 [53] : Ã = ∇2f(w̃), Ãit = ∇2fit(w̃) with option 1, (4.1.2)

SVRG-2D [53] : Ã = diagonal(∇2f(w̃)), Ãit = diagonal(∇2fit(w̃)) with option 1, (4.1.3)

where a diagonal(G) denotes a diagonal matrix whose diagonal entries are G, that is

Gi,j =

gi,j if the i = j

0 otherwise.
(4.1.4)

The SVRG proposed [64] to computes a variance-reduced gradient where the gradient of F

at w̃, i.e., g̃ does not update till the end of the epoch. Hence, the reduction of the variance

is not much, which causes slow convergence. Moreover, it needs to use a smaller step size to

maintain linear convergence.

The SVRG-2 proposed by Gower et. al. [53] exploits the difference of Hessian (∇2F (w̃)−
∇2Fi(w̃)) by multiplying with (wt − w̃), which uses the current parameter wt and updates

at every iteration. In practice, when the Hessian is sparse or d is small, calculating ∇2F (w̃)

and computing ∇2F (w̃)(wt−1 − w̃) is computationally tractable. However, when d is large,

it is not a good idea to use original Hessian since it costs O(nd2).

The SVRG-2D proposed by Gower et. al. [53] computes the diagonal Hessian, which does

not perform well as seen in section 5.

4.2 SVRG-2 with the Barzilai-Borwein approximation

In this section, we first introduce the standard BB-method [6], then we propose to use the

BB-method as Ã and Ãit in Algorithm 4 to further reduce the variance. Finally, we propose

to use BB-step size along with the proposed BB variant of SVRG-2.

4.2.1 Barzilai-Borwein method

In this section we recall the Barzilai and Borwein method [6] for solving unconstrained

optimization deterministically.

Barzilai and Borwein [6] proposed a two-point step size gradient method [6] which is

also known as the BB-method. This method is popular to solve unconstrained optimization

problems which is motivated from the quasi-Newton methods.
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Consider the unconstrained optimization problem:

min
w
f(w),

where f is a differentiable function.

The quasi-Newton method [89] solve minimization problem by using the approximate

Hessian which needs to satisfy the secant equation. The quasi-Newton method takes the

iteration of the form:

wk+1 = wk − ηkB−1k ∇f(wk),

where Bk is an approximation of the Hessian matrix of f at the wk. The approximate Hessian

Bk needs to satisfy the following secant equation [89]:

Bks
k = yk,

where sk = wk − wk−1 and yk = ∇f(wk) − ∇f(wk−1) for k ≥ 1. The well-known BFGS

method requires O(d2) time and space complexities for computing Bk.

In practice when d is large, it is time consuming to compute the Bk. The BB-method

restricts Bk as Bk = 1
αk

I, with α > 0 and gets αk by the secant equation in the least square

sense, i.e.,

min
α

∥∥∥∥ 1

α
sk − yk

∥∥∥∥2 , (4.2.1)

Note that when (sk)>yk > 0 the solution of (4.2.1),

αk =
‖sk‖2

(sk)Tyk
.

Then it is clear that,

Bk =
(sk)Tyk

‖sk‖2
I. (4.2.2)

An alternative way to get αk can be given as follows.

min
α

∥∥sk − αyk∥∥2 ,
and the solution is given by,

αk =
(sk)

T
yk

‖yk‖2
, Bk =

‖yk‖2

(sk)Tyk
I. (4.2.3)

Remark 4.2.1. Note that when f is strongly convex, we have (sk)>yk > 0.
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4.2.2 SVRG-2 with the Barzilai-Borwein method (SVRG-2BB)

In this subsection, we propose Algorithm 1 with the BB-methods (4.2.2). The previous

subsection introduced two different approximations of Bk of (4.2.2) and (4.2.3). We adopt

the (4.2.2) for the rest of the chapter because (4.2.2) is convenient for convergence analysis.

Now we propose to use the BB-method for a Hessian approximation along with Algorithm

1. We call it the SVRG-2BB method.

SVRG-2BB: Algorithm 1 with (4.2.2) for the approximate Hessian of fi(w), that is

Ãk =
(sk)Tyk

‖sk‖2
I =

1

n

n∑
i=1

(sk)T (∇fi(w̃k)−∇fi(w̃k−1))
‖sk‖2

, (4.2.4)

Ãkit =
(sk)T (∇fit(w̃k)−∇fit(w̃m−1))

‖sk‖2
, (4.2.5)

where sk = w̃k − w̃k−1 and yk = ∇F (w̃k) − ∇F (w̃k−1). Hence, SVRG-2BB is Algorithm 4

with (4.2.4) in step 4 and (4.2.5) in step 8.

It is easy to see that E[Ãkit ] = Ãk for the above approximations derived from the BB-

method. Since the approximate Hessian of BB-method is αkI, we can treated Ãk and Ãkit as

scalars. Then, it is clear that (Ã − Ãit)(wt−1 − w̃) is the same direction of the (wt−1 − w̃),

and vt given as

vt = ∇fit(wt−1)−∇fit(w̃) + g̃ − Ãk−1it
(wt−1 − w̃) + Ãk−1(wt−1 − w̃), (4.2.6)

where computational costs is O(n) when ∇fit(w) is provided.

Remark 4.2.2. It is important to note that (sk)Tyk = (wk−wk−1)T (∇f(wk)−∇f(wk−1)) > 0

is not necessarily true when the objective function is not convex. In order to handle this issue,

we give a simple remedy to use SVRG-2BB as follows:

Āk = max

{
(sk)T (yk)

‖sk‖2
, δ

}
,

where δ > 0.

4.2.3 SVRG-2BB with a Barzilai-Borwein step size (SVRG-2BBS)

In this subsection, we propose SVRG-2BB with the BB-step size. The typical acceleration

technique of the SVRG is to use a quasi-Newton method as the quadratic model of the
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objective function and generate an iterate as

wk+1 = wk − ηkB−1k (∇fi(wk)−∇fi(w̃) +∇F (w̃)), (4.2.7)

where Bk is either Hessian or approximate Hessian of the objective function (4.0.1) at

previous epoch. One of such methods is SVRG-BB [110] which employs the second-order

via the information from BB-method and ηk = 1/m. SVRG-BB updates B−1k as follows,

B−1k :=
‖sk‖2

(sTk yk)
I,

where sk = w̃k−1− w̃k−2, yk = ∇F (w̃k−1)−∇F (w̃k−2) and m is the length of an epoch. Note

that SVRG-BB is regarded as Algorithm 4 with

ηk =
B−1k
m

=
1

m
· ‖sk‖

2

(sTk yk)
.

Similarly, we exploit the idea of using BB-step size with SVRG-2BB so that we can make

use of the gradient information and parameters to further reduce the variance, i.e., to make

the most use of gradient information from the BB-method. We call it SVRG-2BBS.

SVRG-2BBS: SVRG-2BB with variable stepsize ηtk defined by

ηtk =
ξt
m1

‖w̃k−1 − w̃k−2‖2

((w̃k−1 − w̃k−2)T (g̃k−1 − g̃k−2))
, (4.2.8)

where ξt > 0.

Note that SVRG-BB [110] computes the BB-stepsize per epoch. Whereas in SVRG-

2BBS, we control and update the BB-step size by multiplying an appropriate constant ξt.

Note also that the denominator of the BB-step size in (4.2.8) usually becomes very large

since the number of samples m = 2n is large. To overcome the difficulty, we modify ηk by

multiplying ξt and by replacing constant m with m1.

Remark 4.2.3. It is noteworthy to mention that the update frequency in the inner for loop

of SVRG-2BBS is m = 2n (i.e., similar to SVRG). We replaced m with m1 only in the

stepsize ηtk of SVRG-2BBS and not in the update frequency.

4.3 Convergence analysis

In this section, we show the linear convergence of Algorithm 4 when F is strongly convex.
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We first analyze the difference in the variances of the SVRG and Algorithm 4. We make

the following assumptions.

Assumption 4.3.1. Each fi is µi-strongly convex, i.e., there exists µi > 0 such that

fi(w) ≥ fi(z) +∇fi(z)T (w − z) +
µi
2
‖z − w‖2 ∀w, z ∈ Rd.

Moreover the gradient of each fi is L-Lipschitz continuous, i.e.,

‖∇fi(w)−∇fi(z)‖ ≤ L‖w − z‖ ∀w, z ∈ Rd.

Under this assumption, it is clear that ∇F (w) is also L-Lipschitz continuous:

‖∇F (w)−∇F (z)‖ ≤ L‖w − z‖ ∀w, z ∈ Rd. (4.3.1)

Next lemmas are useful for our analysis. We omit its proof since it is directly follows

from (4.3.1).

Lemma 4.3.1. If fi is L-Lipschitz continuous, then

(w − z)T (∇fi(w)−∇fi(z)) ≤ L‖w − z‖2,

and hence sTy ≤ L‖s‖2 for s = w − z and y = ∇fi(w)−∇fi(z).

The next lemma gives the result of the Lipschitz continuous Hessian.

Lemma 4.3.2. [83] If each fi : Rd → R be twice continuous differentiable with L̃t-Lipschitz

continuous Hessian, then for any w, y ∈ Rd we have,

‖∇fit(w)−∇fit(z)−∇2fit(w)(w − z)‖ ≤ L̃t
2
‖w − z‖2.

Next two Lemmas give results from the strongly convexity.

Lemma 4.3.3. [83] If each fi is µ-strongly convex, then for any w, y ∈ Rd we have

‖fi(w)− fi(z)‖ ≥ µi‖w − z‖.

Lemma 4.3.4. [83] If F is µ-strongly convex function, w∗ is a minimum F (w),

F (w)− F (w∗) ≥
µ

2
‖w − w∗‖2

for all w ∈ Rd.
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Now we compare the variance of the SVRG-2 method with that of the original SVRG.

Let vsvrgt = ∇fit(wt−1)−∇fit(w̃) +∇F (w̃) for the SVRG. Recall that E[vsvrgt ] = ∇F (wt−1).

Moreover we have

E[‖vsvrgt −∇F (wt−1)‖2] = E[‖∇fit(wt−1)−∇fit(w̃) +∇F (w̃)−∇F (wt−1)‖2]
= E[‖∇fit(wt−1)−∇fit(w̃)− E[∇fit(wt−1)−∇fit(w̃)]‖2]
≤ E[‖∇fit(wt−1)−∇fit(w̃)‖2]
= O(‖wt−1 − w̃‖2), (4.3.2)

where the inequality follows from the fact that E[‖ξ−E[ξ]‖2] = E[‖ξ‖2]−‖E[ξ]‖2 ≤ E[‖ξ‖2].
Let v2ndt = ∇fit(wt−1)−∇fit(w̃)+∇F (w̃)+(∇2F (w̃)−∇2fit(w̃))(wt−1 − w̃) for the SVRG-2

method. We see that E[v2ndt ] = ∇F (wt−1). Moreover we have

E[‖v2ndt −∇F (wt−1)‖2]
= E[‖(∇fit(wt−1)−∇fit(w̃) +∇F (w̃))−∇2fit(w̃)(wt−1 − w̃)

+∇2F (w̃)(wt−1 − w̃)−∇F (wt−1)‖2]
= E[‖(∇fit(wt−1)−∇fit(w̃)−∇2fit(w̃)(wt−1 − w̃))

− E[‖∇fit(wt−1)−∇fit(w̃)−∇2fit(w̃)(wt−1 − w̃)‖]‖2]
≤ E[‖(∇fit(wt−1)−∇fit(w̃)−∇2fit(w̃)(wt−1 − w̃))‖2]
= O(‖wt−1 − w̃‖4), (4.3.3)

where the first inequality follows from the fact that E[‖ξ − E[ξ]‖2] = E[‖ξ‖2] − ‖E[ξ]‖2 ≤
E[‖ξ‖2], and the last inequality follows from Lemma 4.3.2 with z = wt−1 and w = w̃.

The inequality (4.3.2) and (4.3.3) suggests that the variance of v2ndt is smaller than that of

vsvrgt when wt−1 is close to w̃. To reduce the computational cost, Algorithm 4 exploits Ãk−1

and Ãk−1it
as ∇F (wk−1) and ∇Fit(wk−1). However, we do not have the variance bound (4.3.2)

for arbitrary Ãk−1 and Ãk−1it
.

Thus we suppose the following assumption on Ãk−1 to prove the linear convergence of

Algorithm 4.

Assumption 4.3.2. There exists a positive constant α such that for all t and k,

E
[
‖(∇fit(wt−1)−∇fit(w̃)− Ãk−1it

(wt−1 − w̃))‖2
]
≤ αE

[
‖∇fit(wt−1)−∇fit(w̃)‖2

]
(4.3.4)

Note that, due to (4.3.3), SVRG-2 satisfies Assumption 4.3.2 when wt−1 is close to w̃.

The next lemma gives the bound of the gradient difference, and it is useful for further

analysis.
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Lemma 4.3.5. [64] Suppose that Assumption 4.3.1 holds. Let w∗ = minw fi(w)− f(w∗)−
∇fi(w∗)T (w − w∗). Then

1

n

n∑
i=1

‖∇fit(w)−∇fit(w∗)‖2 ≤ 2L[F (w)− F (w∗)]. (4.3.5)

Under Assumptions 4.3.1 and 4.3.2, we provide an upper bound on the variance.

Lemma 4.3.6. Suppose that Assumptions 4.3.1 and 4.3.2 hold. Let vt be

vt = (∇fit(wt−1)−∇fit(w̃) + g̃)+(Ãk−1 − Ãk−1it
)(wt−1 − w̃) (4.3.6)

Then variance E[‖vt −∇F (wt−1)‖2] is bounded by 4αL(F (wt−1)− F (w∗) + F (w̃)− F (w∗)).

Proof. Recall that vt is an unbiased estimate of ∇F (wt−1), i.e., E[vt] = ∇F (wt−1).

Then its variance can be calculated as

E[‖vt −∇F (wt−1)‖2]
= E[‖(∇fit(wt−1)−∇fit(w̃) + g̃)− Ãk−1it

(wt−1 − w̃) + Ãk−1(wt−1 − w̃)−∇F (wt−1)‖2]
= E[‖(∇fit(wt−1)−∇fit(w̃)− Ãk−1it

(wt−1 − w̃))

− E[∇fit(wt−1)−∇fit(w̃)− Ãk−1it
(wt−1 − w̃)]‖2]

≤ E[‖(∇fit(wt−1)−∇fit(w̃)− Ãk−1it
(wt−1 − w̃))‖2].

Under the Assumption 4.3.2, it is easy to see that we have

E[‖vt −∇F (wt−1)‖2] ≤ αE[‖∇fit(wt−1)−∇fit(w̃)‖2]
≤ α(2E[‖∇fit(wt−1)−∇fit(w∗)‖2] + 2E[‖∇fit(w̃)−∇fit(w∗)‖2])
≤ 4αL(F (wt−1)− F (w∗) + F (w̃)− F (w∗)). (4.3.7)

where the last inequality follows from the Lemma 4.3.5.

Now we proceed to prove the main result. The proof is similar to [64]. For the completeness,

we give the proof.

Theorem 4.3.1. Consider Algorithm 4 with option-2. Suppose that Assumptions 4.3.1 and

4.3.2 hold. Let w∗ be the optimal solution of the problem (4.0.1), and m is sufficiently large

so that

β =

[
1

µη(1− ηL(2α + 1))m
+

2Lηα

1− ηL(2α + 1)

]
< 1,
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then we have linear convergence in expectation:

E[F (w̃k)− F (w∗)] ≤ βk E[F (w̃0)− F (w∗)].

Proof. Let vt = (∇fit(wt−1) −∇fit(w̃) + g̃)+(Ãk−1 − Ãk−1it
)(wt−1 − w̃) be the search

direction in the k-th epoch of Algorithm 4. Then,

E[‖vt‖2] = E[‖vt −∇F (wt−1) +∇F (wt−1)−∇F (w∗)‖2]
= E[‖vt −∇F (wt−1)‖2] + E[‖∇F (wt−1)−∇F (w∗)‖2]
≤ 4αL(F (wt−1)− F (w∗) + F (w̃)− F (w∗)) + 2L[F (wt−1)− F (w∗)] (4.3.8)

= 2L(2α + 1)[F (wt−1)− F (w∗)] + 4αL[F (w̃)− F (w∗)]

= 2L[(2α + 1)(F (wt−1)− F (w∗)) + 2α(F (w̃)− F (w∗))], (4.3.9)

where the first inequality follows from the Lemma 4.3.6 and Lemma 4.3.5.

Now we bound the distance of wt to w∗.

E[‖wt − w∗‖2]
= E[‖wt−1 − ηvt − w∗‖2]
= ‖wt−1 − w∗‖2 − 2η E((wt−1 − w∗)Tvt) + η2 E[‖vt‖2]
= ‖wt−1 − w∗‖2 − 2η(wt−1 − w∗)T∇F (wt−1) + η2E[‖vt‖2]
≤ ‖wt−1 − w∗‖2 − 2η[F (wt−1)− F (w∗)]

+ 2η2L[(2α + 1) (F (wt−1)− F (w∗)) + 2α (F (w̃)− F (w∗))]

= ‖wt−1 − w∗‖2 − 2η(1− ηL(2α + 1)) [F (wt−1)− F (w∗)]

+ 4αη2L [F (w̃)− F (w∗)], (4.3.10)

where the first inequality is obtained by the convexity of F . By summing the previous

inequality over t = 0, 1, . . . ,m − 1 and taking expectation with all the history using option

2 at epoch k, we have

E[‖wm − w∗‖2] + 2η(1− ηL(2α + 1))m E[F (w̃k)− F (w∗)]

≤ E[‖w0 − w∗‖2] + 4αη2Lm E[F (w̃)− F (w∗)]

and

E[‖w̃ − w∗‖2] + 4Lmη2α E[F (w̃)− F (w∗)]

≤ 2

µ
E[F (w̃)− F (w∗)] + 4αη2Lm E[F (w̃)− F (w∗)]



4.3 Convergence analysis 69

= 2

(
1

µ
+ 2Lmη2α

)
E[F (w̃)− F (w∗)],

where the second inequality uses the strong convexity of F . Finally, we have

E[F (w̃k)− F (w∗)] ≤
[

1

µη(1− ηL(2α + 1))m
+

2Lηα

1− ηL(2α + 1)

]
E[F (w̃k−1)− F (w∗)].

(4.3.11)

which implies,

E[F (w̃k)− F (w∗)] ≤ βk E[F (w̃0)− F (w∗)]

with

β =

[
1

µη(1− ηL(2α + 1))m
+

2Lηα

1− ηL(2α + 1)

]
.

Next we consider Algorithm 4 with option-1.

Theorem 4.3.2. Consider Algorithm 4 with option-1. Suppose that Assumptions 4.3.1

and 4.3.2 hold. Let w∗ be the optimal solution of the problem (4.0.1), and

γ =

[
(1− 2ηµ(1− ηL(2α + 1)))m +

2αηL2

µ(1− ηL(2α + 1))

]
. (4.3.12)

Then for k-th epoch, we have

E‖w̃k − w∗‖2 ≤ γ ‖w̃k−1 − w∗‖2. (4.3.13)

Proof. We bound the distance of wt to w∗ using (4.3.10),

E[‖wt − w∗‖2]
= ‖wt−1 − w∗‖2 − 2η(1− ηL(2α + 1)) [F (wt−1)− F (w∗)] + 4αη2L [F (w̃)− F (w∗)]

≤ ‖wt−1 − w∗‖2 − 2η(1− ηL(2α + 1)) [∇F (wt−1)
T (wt−1 − w∗)]

+ 4αη2L [∇F (w̃)T (w̃ − w∗)]
≤ ‖wt−1 − w∗‖2 − 2ηµ(1− ηL(2α + 1))‖wt−1 − w∗‖2 + 4αη2L2 ‖w̃ − w∗‖2

= (1− 2ηµ(1− ηL(2α + 1)))‖wt−1 − w∗‖2 + 4αη2L2 ‖w̃ − w∗‖2, (4.3.14)

where the first inequality follows from the convexity of F , the second inequality follows from

the strong convexity of F and the Lipschitz continuity of ∇F .
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By applying the above inequality over the t and w̃k−1 = w0 and w̃k = wm, we have

E[‖w̃k − w∗‖2]
≤ [1− 2ηµ(1− ηL(2α + 1))]m‖w̃k−1 − w∗‖2

+ 4αη2L2

m∑
j=1

[1− 2ηµ(1− ηL(2α + 1))]j‖w̃k−1 − w∗‖2

<

[
(1− 2ηµ(1− ηL(2α + 1)))m +

2αηL2

µ(1− ηL(2α + 1))

]
‖w̃k−1 − w∗‖2

= γ ‖w̃k−1 − w∗‖2

Hence, the linear convergence follows,

E[‖w̃k − w∗‖2] < γ ‖w̃k−1 − w∗‖2.

Note that γ is less than 1 when the stepsize η is sufficiently small. Then w̃ converges

wt linearly. Next, we show that Assumption 4.3.2 holds for the SVRG-2, SVRG-2D, and

the SVRG-2BB variants, that is, these methods converge linearly. For the rest of analysis,

we consider ∇2Fi is to be Lipschitz continuous with constant L̃i such that L̃ = maxi L̃i and

µ = mini µi for strong convexity of F .

Lemma 4.3.7. Suppose that there exists M such that ‖wt−1 − w̃‖2 ≤M. Suppose also that

∇2Fi is Lipschitz continuous with constant L̃i. Then Assumption 4.3.2 holds with

α =
L̃2

4µ2
M

for the SVRG-2, where L̃ = maxi L̃i and µ = mini µi.

Proof. Note that the SVRG-2 uses the original Hessian, i.e., Ãk−1it
= ∇2fit(w̃k−1).

Then from Lemma 4.3.2, we have

‖(∇fit(wt−1)−∇fit(w̃)−∇2fit(w̃k−1)(wt−1 − w̃))‖ ≤ L̃it
2
‖wt−1 − w̃‖2. (4.3.15)

Moreover the strong convexity of ft with modules µt implies

µit‖wt−1 − w̃‖ ≤ ‖∇fit(wt−1)−∇fit(w̃)‖.



4.3 Convergence analysis 71

From the above inequalities we have

E[‖(∇fit(wt−1)−∇fit(w̃)−∇2fit(w̃k−1(wt−1 − w̃))‖2]

≤

[
L̃2
it

4µ2
it

‖wt−1 − w̃‖2
]
E[‖∇fit(wt−1)−∇fit(w̃)‖2] (4.3.16)

≤

[
L̃2
it

4µ2
it

M

]
E[‖∇fit(wt−1)−∇fit(w̃)‖2] (4.3.17)

≤

[
L̃2

4µ2
M

]
E[‖∇fit(wt−1)−∇fit(w̃)‖2]. (4.3.18)

Now we proceed to see Assumption 4.3.2 for the SVRG-2BB and the SVRG-2D.

Lemma 4.3.8. For SVRG-2BB and SVRG-2D, Assumption 4.3.2 holds with α = 4L2

µ
, where

µ = mini µi.

Proof. First, we give the bound of the approximate Hessian obtained by the SVRG-

2BB and the SVRG-2D separately.

i) Let Ãkit obtained by the BB method, i.e.,

Ãkit =
(sk)T (∇fit(w̃k)−∇fit(w̃m−1))

‖sk‖2
,

where sk = w̃k−w̃k−1, yk = ∇fit(w̃k)−∇fit(w̃k−1) and it ∈ {1, . . . , n} chosen randomly.

From the Lemma 4.3.1, we have

|(∇fi(w)−∇fi(y))T (w − y)| ≤ ‖∇fi(w)−∇fi(y)‖‖w − y‖ ≤ L‖w − y‖2 (4.3.19)

Therefore, we have ‖Ãkit‖ ≤ L.

ii) Let Ãkit be obtained by diagonal Hessian. Since fi has Lipschitz gradient and it is twice

differentiable, we have

‖∇2fi(w)‖2 ≤ L.

Since Ãit be a diagonal Hessian of the true Hessian, we have

‖Ãit‖2 ≤ ‖∇2fit(w)‖2 ≤ L.

Consequently, we have ‖Ãit‖2 ≤ L for both the SVRG-2BB and the SVRG-2D.
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Now we proceed to determine the α.

‖(∇fit(wt−1)−∇fit(w̃)− Ãk−1it
(wt−1 − w̃))‖2

≤ 2‖∇fit(wt−1)−∇fit(w̃)‖2 + 2‖Ak−1it
(wt−1 − w̃)‖2

≤ 2L2‖wt−1 − w̃‖2 + 2L2‖wt−1 − w̃‖2

≤ 4L2‖wt−1 − w̃‖2

≤ 4L2

µit
‖∇fit(wt−1)−∇fit(w̃)‖2

≤ 4L2

µ
‖∇fit(wt−1)−∇fit(w̃)‖2,

where the first inequality uses ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2, and the second inequality follows

from the Lipschitz continuity of the ∇fit . Therefore, α = 4L2

µ
for the SVRG-2BB and the

SVRG-2D.

We have proved the linear convergence for SVRG-2, for SVRG-2BB, and for SVRG-

2D. Finally, we prove the linear convergence of SVRG-2BBS. Recall that SVRG-2BBS is

option-1 of SVRG-2BB with the BB-step size ηtk. Recall also that Theorem 4.3.1 and 4.3.2

hold for Algorithm 4 with the fixed stepsize η. We can prove the linear convergence of the

SVRG-2BBS similar to these theorems.

Theorem 4.3.3. Suppose that ξt ∈ (ξ0, ξ1) where 0 < ξ0 ≤ ξ1, and assume that η0 and η1

satisfy 1− η1L(2α + 1) > 0 and (1− 2η0µ(1− η1L(2α + 1))) ∈ [0, 1). Then SVRG-2BBS is

linearly convergent in expectation:

E[‖w̃k − w∗‖2] ≤ γ̃k‖w̃0 − w∗‖2, (4.3.20)

where

γ̃ =

[
(1− 2η0µ(1− η1L(2α + 1)))m +

2αη21L
2

η0µ(1− η1L(2α + 1))

]
.

Proof. Let ηtk be a BB-step size in SVRG-2BBS, that is

ηtk = ϑk ξt =
ξt
m1

‖w̃k−1 − w̃k−2‖2

((w̃k−1 − w̃k−2)T (g̃k−1 − g̃k−2))
,

where gk = ∇F (w̃k), and ξ is small positive constant. Note that ηtk varies at each iteration.

We first obtain the lower and upper bounds of ηtk using the L-Lipschitz continuity of

∇F (w) and the strong convexity of F (w).

µ‖w̃k−1 − w̃k−2‖2 ≤ (gk−1 − gk−2)T (w̃k−1 − w̃k−2) ≤ L‖w̃k−1 − w̃k−2‖2.
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From the above inequalities, it is easy to see that ηtk has lower and upper bound as follows:

ξ0
m1L

≤ ηtk ≤
ξ1
m1µ

.

Let η0 = ξ0
m1L

and η1 = ξ1
m1µ

. In a way similar to show (4.3.10), we can show that

E[‖wt − w∗‖2] ≤ ‖wt−1 − w∗‖2 − 2η0(1− η1L(2α + 1)) [F (wt−1)− F (w∗)]

+ 4αη21L [F (w̃)− F (w∗)].

In a way similar to the arguments in the proof of Theorem 4.3.2, summing the inequality

over t = 0, . . . ,m− 1 and taking the expectation of the history, yield

E[‖w̃k − w∗‖2] ≤ [1− 2η0µ(1− η1L(2α + 1))]m‖w̃k−1 − w∗‖2

+ 4αη21L
2

m∑
j=1

[1− 2η0µ(1− η1L(2α + 1))]j‖w̃k−1 − w∗‖2

(4.3.21)

=

[
(1− 2η0µ(1− η1L(2α + 1)))m +

2αη21L
2

η0µ(1− η1L(2α + 1))

]
‖w̃k−1 − w∗‖2

= γ̃‖w̃k−1 − w∗‖2

Hence, we have the linear convergence, that is

E[‖w̃k − w∗‖2] < γ̃ ‖w̃k−1 − w∗‖2.

4.4 Numerical results

In this section, we present the numerical results for the proposed algorithms.

First, we discuss the experiment setup for the numerical experiments. We performed all

experiments on MATLAB R2018a on Intel(R) Xeon(R) CPU E7-8890 v4 @ 2.20GHz with 96

cores, and we used SGDLibrary [67] to perform the existing algorithms. We solve standard

learning problems, that is, the `2-logistic regression:

min
w
F (w) =

1

n

n∑
i=1

log
[
1 + exp(−biaTi w)

]
+
λ

2
‖w‖2, (4.4.1)
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and the `2-squared SVM:

min
w
F (w) =

1

2n

n∑
i=1

([
1− biaTi w

]
+

)2
+
λ

2
‖w‖2, (4.4.2)

where ai ∈ Rd is feature vector and bi ∈ {±1} is target label of the i-th sample, and λ is a `2

regularizer. We performed numerical experiments on benchmark datasets given in Table 5.3.

The datasets are binary classification problems available on LIBSVM [24].

Table 4.2: Details of the datasets used in the experiments

Dataset Dimension Training Model

ijcnn1 22 49990 SVM
mnist-38 784 11,982 SVM
adult 123 32,561 LR
gisette 5000 6000 LR
covtype 54 464808 LR

4.4.1 Comparison of ξt

We first conduct the numerical experiments on the three different possibility of ξt for the

generalized BB step size in SVRG-2BBS. Recall that the step size ηtk in SVRG-2BBS is given

as,

ηtk =
ξt
m1

‖w̃k−1 − w̃k−2‖2

((w̃k−1 − w̃k−2)T (g̃k−1 − g̃k−2))
, (4.4.3)

and ξt is computed differently as given in Table 4.3, where ξt is of the form of decay ξt = c1
1+c2T

,

T is current iterate T = km + t, c1 is initial stepsize and c2 = η0λ and in the case of fix ξt,

we use grid search with ξt = c1. Figure 4.1 shows the comparison of M1, M2, and M3 on the

Table 4.3: Generalized variants of SVRG-2BBS

Methods m1 ξt type

M1 2n fix ξ1
M2 n decay ξt
M3 1 decay ξt

adult, covtype, and gisette datasets for the `2-regularized logistic regression with λ = 10−3.

We tuned step size for all methods via grid search c1 ∈ {101, 100, 10−1, 10−2, 10−3, 10−4, 10−5}
and we set m = 2n (where n is sample size) as in SVRG [64]. From Figure 4.1 we see that

M1 and M3 perform better among all three methods. Therefore, in the further experiments,

we use M1 and M3 for comparison with SVRG-2BB and the other existing methods.

Considering the step-size of M2 and the experiments presented in Figure 4.1, one can

note that the choice of m1 = n seems excessively large as decreasing ξt results in a rapid
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Figure 4.1: Comparison of M1, M2, and M3 with λ = 10−3 on adult, covtype, and gisette.

reduction in the step-size ηtk. Consequently, ηtk becomes too small across all experiments,

leading to almost null updates and proving ineffective in reducing the value of the objective

function.

4.4.2 Comparison of SVRG, SVRG-BB, SVRG-2D, and the pro-

posed methods

Next, we compare SVRG, SVRG-BB, and SVRG-2D with the proposed methods SVRG-2BB

and SVRG-2BBS (M1 and M3).

We explain the experimental setup. We tuned the stepsize η for all methods via grid

search η ∈ {100, 10−1, 10−2, 10−3, 10−4, 10−5} for SVRG, SVRG-2D, SVRG-2BB, SVRG-BB,

and ξT ∈ {100, 10−1, 10−2, 10−3, 10−4, 10−5} for SVRG-2BBS (M1 and M3). It is essential to

note that SVRG-BB highly depends on the initial step size η0 as can be seen in the numerical

results of [110]. This implies that even though we are using adaptive step size, we still need

to hunt for the best initial (parameter) step size. Therefore, we are not benefiting from the

SVRG-BB in terms of reducing the number of initial parameters, which does not outperform

the SVRG-2BB, SVRG, and SVRG-2D.

For all methods, we set m = 2n. We present the optimiality gap with epoch and CPU

time. Also, we present the variance information with epochs for each dataset. The variance

is calculated as ‖vk −∇f(wk)‖2, where vk is search direction at t = 0 of the k-th epoch.

We present numerical results in Figures 4.2-4.6. Each column of the figure represents the

results for each dataset. In the figures in the first row of each column, the x-axis denotes

epochs, and the y-axis denotes the optimality gap F (w̃k) − F (w∗), where w∗ is obtained

by limited memory BFGS method. In the second row of each column, the x-axis denotes

CPU time and the y-axis denotes the optimality gap. In the figures of the third row of each

column, the x-axis denotes epochs, and the y-axis denotes the variance ‖vk −∇f(wk)‖2.
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(a) covtype (λ = 10−3)
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Figure 4.2: Comparison on covtype dataset

We conduct numerical experiments on covtype, gisette and adult for the `2-regularized

logistic regression with λ = {10−3, 10−4, 10−5} in Figure 4.2, Figure 4.3 and Figure 4.4,

respectively. Figure 4.5 shows the numerical experiments on mnist38 for the `2-regularized

squared SVM with λ = {10−3, 10−4, 10−5}, where we used binary class using those samples

whose target classes were 3 and 8. Figure 4.6 shows the numerical experiments on ijcnn1

for the `2-regularized squared SVM with λ = {10−3, 10−4}.
The figures for the `2-regularized logistic regression show that SVRG with second-order

information outperforms pure SVRG. SVRG-2BB outperforms all methods when d is large

(i.e., when the ratio of n/d is close to 1) and λ is small. SVRG-2D performs better only on

small λ = 10−3 for the covtype dataset where n is large and d is very small. However, on the

remaining datasets, SVRG-2D performs similarly to SVRG. As the variance of SVRG-BB

and SVRG-2BBS is fluctuating, the BB-stepsize can be quite unstable.
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The fugues for the `2-regularized squares SVM show that SVRG is unable to outperform

other methods. Figure 4.5 shows SVRG-2D performs well in the initial epochs; however,

SVRG-2BB, SVRG-2BBS (M1 and M3), and SVRG-BB perform similarly in the later epochs.

Figure 4.6 shows that SVRG-2BB, SVRG-2BBS (M1 and M3), and SVRG-BB outperform

SVRG and SVRG-2D for λ = 10−3.
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Figure 4.3: Comparison on gisette dataset
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Figure 4.4: Comparison on adult dataset
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Figure 4.5: Comparison on mnist38 dataset
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Figure 4.6: Comparison on ijcnn1 dataset
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4.5 Conclusions

In this chapter, we proposed a method for reducing the variance of stochastic gradients

using the Barzilai-Borwein approximation. We then incorporate the BB-step size of SVRG-

BB [110] with SVRG-2BB. When the objective function is strongly convex, we proved the

linear convergence of Algorithm 4 which includes SVRG-2BB, SVRG-2 [53], diagonal Hessian

approximation SVRG-2D [53], SVRG-2BBS. We conducted the numerical experiments on

the benchmark datasets and showed that the proposed method with a constant step size

performs better than the existing variance-reduced methods for some test problems. In

terms of optimal cost with respect to both CPU time and epoch, experimental results on

benchmark datasets show that the SVRG-2BB performs stable.
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Chapter 5

A Regularized Nyström method for

Large-scale Unconstrained

Optimization

5.1 Introduction

Efficiently optimizing diverse functions holds paramount importance in machine learning,

especially with the surge in data volume. Managing large-scale optimization problems has

emerged as a critical task. This chapter introduces a solution to this challenge by employing

the Nyström approximation to approximate the Hessian matrix of the objective function.

Our methodology targets the resolution of large-scale unconstrained optimization problems,

characterized by the following form:

min
w∈Rd

f(w), (5.1.1)

where f is twice continuously differentiable and convex. (We provide the dedicated section for

non-convex function in further section). The classical second-order optimizers like Newton’s

method yield quadratic convergence in solving (5.1.1). However, their applicability diminishes

in high-dimensional optimization scenarios due to substantial per-iteration expenses and

memory demands. To tackle this challenge, we present a method for low-rank Hessian

approximation employing the iterative use of the Nyström method or, more broadly, a

random column subset selection method to approximate the Hessian. This approach serves

as a computationally efficient alternative, addressing the constraints posed by traditional

second-order optimizers in high-dimensional problems.
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5.1.1 Background

To optimize problem (5.1.1), first-order optimization methods such as stochastic gradient

descent (SGD) [98], AdaGrad, stochastic variance-reduced gradient (SVRG) [64], Adam [71],

and the stochastic recursive gradient algorithm (SARAH), possibly augmented with

momentum, are preferred for large-scale optimization problems owing to their more

affordable computational costs, which are linear in dimensions per epoch O(nd), where n is

the number of data samples. However, the convergence of the first-order methods is notably

slow, and they are sensitive to hyperparameter choices and ineffective for ill-conditioned

problems.

In contrast, Newton’s method does not depend on the parameters of specific problems

and requires only minimal hyperparameter tuning for self-concordant functions, such as

`2-regularized logistic regression. However, Newton’s method involves a computational

complexity of Ω(nd2 + d2.37) [2] per iteration and thus is not suitable for large-scale settings.

To reduce this computational complexity, the subsampled Newton’s method and random

projection (or sketching) are commonly used to reduce the dimensionality of the problem

and solve it in a lower-dimensional subspace. The subsampled (a.k.a. mini-batch) Newton

method performs well for large-scale but relatively low-dimensional problems by computing

the Hessian matrix on a relatively small sample. However, it is time-consuming for high-

dimensional problems. Randomized algorithms [76, 93] estimate the Hessian in Newton’s

method using a random embedding matrix S ∈ Rm×n, HS(w) := X>S>SX, where X is a

matrix satisfying X>X = ∇2f(w). Specifically, their approximation used the square root

of the generalized Gauss-Newton (GGN) matrix as a low-rank approximation instead of

deriving it from actual curvature information, whereas S is a random projection matrix of

size m×n and m is given by a user. Moreover, the Newton sketch [93] requires a substantially

large sketch size, which can be as big as some multiple of the dimension d of w, which is not

ideal and overmatches the objective of a low-rank Hessian approximation.

Recently, Derezinski et al. [36] proposed the Newton-LESS method, which is based on

the leverage score-specified embeddings. It sparsified the Gaussian sketching and reduced

the computational cost, with similar convergence properties as the dense Gaussian sketching.

Gower et al. [52] proposed the randomized subspace Newton (RSN) method. RSN is

the randomized subspace Newton that computes the sketch of Hessian by sampling the

embedding matrix S and approximating the Hessian as S(S>HS)†S>.

Talwalkar in his thesis [108] proposed the Nyström logistic regression algorithm, where the

Nyström method is used to approximate the Hessian of the regularized logistic regression.

Thus, it can be regarded as a variant of Nyström-SGD. However, the thesis [108] only

considered regularized logistic regression, in which the Hessian can be explicitly obtained,

with deterministic optimization. In contrast, we propose the regularized Nyström method
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for deterministic and stochastic optimization, such that the value of the regularizer depends

on the norm of the gradient or stochastic gradient, respectively. We also show its theoretical

aspects in terms of rank and the number of randomly picked columns.

The limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm [78] is a

widely used quasi-Newton method. More specifically, it estimates the Hessian inverse using

the past difference of gradients and updates. The online BFGS (oBFGS) [101] method is a

stochastic version of regularized BFGS and L-BFGS with gradient descent. Kolte et al. [73]

proposed two variants of a stochastic quasi-Newton method incorporating a variance-reduced

gradient. The first variant used a sub-sampled Hessian with singular value thresholding. The

second variant used the LBFGS method to approximate the Hessian inverse. The stochastic

quasi-Newton method (SQN) [16] used the Hessian vector product computed on a subset of

each mini-batch instead of approximating the Hessian inverse from the difference between the

current and previous gradients, as in LBFGS. SVRG-SQN [81] also incorporated variance-

reduced gradients.

5.2 Nyström approximation and its properties

Dealing with large datasets, the computational complexity of second-order optimization

methods poses a significant challenge. Consequently, there is a necessity to explore Hessian

approximation techniques that are both computationally viable and theoretically grounded.

In the past few decades, researchers have delved into diverse matrix approximation methods.

A prevailing strategy involves attaining a low-rank approximation by strategically selecting

specific components of the original matrix through various methodologies. One such popular

method in this context is the Nyström approximation [39], initially introduced for the kernel

approximation. The Nyström approximation is a low-rank approximation of a positive

semidefinite matrix that leverages partial information from the original matrix to construct

an approximate matrix of lower rank. The Nyström method can be categorized as a

variant of the column subset selection problem. Talwalkar [109] proposed minimizing the

error using low-coherence bounds of the Nyström method. Michel Derezinski [35] proposed

improvements in the approximation guarantees of column subset selection and the Nyström

method using spectral properties.

Definition 5.2.1 (Nyström approximation). Let H ∈ Rd×d be a symmetric positive semi-

definite matrix. Then, choose m columns of H randomly to form a d × m matrix C. Let

m × m be a matrix M such that it is formed by the intersection of those m columns and

corresponding m rows of H. Mk is the best k-rank approximation of M . A k-rank Nyström
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approximation Nk of H can be defined as

Nk = CM †
kC
>, (5.2.1)

where M †
k is a pseudo-inverse of Mk. Letting H = ∇2f(w) to be a Hessian matrix of the

objective function (5.1.1), following theorem shows the distance between the Hessian H and

the Nyström approximation N of H.

Theorem 5.2.1. [39, Theorem 3] Let H be a d×d matrix and let Nk = CM †
kC
> be a k-rank

(k ≤ m) is a Nyström approximation [39, Algorithm 2] by sampling m columns of H with

probabilities {pi}di=1 such that

pi =
H2
ii∑d

i=1H
2
ii

. (5.2.2)

Let r = rank(M) and let Hk be the best k-rank approximation of the H. In addition, let

ε > 0 and ϑ = 1 +
√

8 log(1/%). If k < r, and (a) m ≥ 64kϑ2/ε4, (b) m ≥ 4ϑ2/ε4, then with

probability at least 1− %

‖H −Nk‖ν ≤ ‖H −Hk‖ν + ε
d∑
i=1

H2
ii, (5.2.3)

for (a) ν = F (Frobenius) and (b) ν = 2 (spectral). If k ≥ r, then Mk = M and

‖H −Nr‖2 ≤ ε
d∑
i=1

H2
ii,

in expectation and with high probability.

We denote above upper bound as UNys = ‖H −Hk‖ν + ε
∑d

i=1H
2
ii for the rest of chapter.

An alternative way to define a k-rank Nyström approximation is via a zero-one sampling

matrix.

Remark 5.2.1. Consider an instance of a function f(w) = `(Aw), where A ∈ Rn×d and

` : Rn → R has separable form such that `(Aw) =
∑n

i=1 `i(〈ai, w〉). The Hessian of f can be

computed as ∇2f(w) = X>X, where X = diag{`′′i }ni=1A.

The zero-one matrix W ∈ Rd×m can be constructed as follows.

Wi,j =


1 if the i-th column is chosen in

the j-th random trail of choosing columns,

0 otherwise.

(5.2.4)



5.2 Nyström approximation and its properties 87

We can write the Nystöm approximation using zero-one matrix as follows:

C(Mk)
†C> = (HW )(W>HW )†k(HW )>. (5.2.5)

Drineas and Mahoney [39] shows that the uniform sampling case of scaled Nyström brings

the same expression as the (5.2.5). It can be defined as follows:

C(Mk)
†C> = (HWD)((WD)>HWD)†k(HWD)>,

where D ∈ Rm×m is a scaling matrix that has diagonal entries 1/
√
mpil , pil is a probability

P(il = i) = pi given in (5.2.2) of the Theorem 5.2.1 and il is a column chosen in lth

independent trail. Moreover, C := HW , which is the sampled column matrix of the true

Hessian, and M := W>HW , which is the intersection matrix in (5.2.1). However, if we let

m = k and then in the case of uniform sampling, the probability pi = 1/d, and scaling matrix

have diagonal entries Dii =
√

d
m

which obtains the approximation (5.2.1) that is exactly the

same as (5.2.5).

Let S = WD and one can compute Nyström approximation using S. Note that the

generalized Nyström method analyzed in [46, 49, 118] considers the theory with the Gaussian

and various interesting random matrices S. Therefore, we also consider S to be a Gaussian

random matrix.

Lemma 5.2.1. [48] Let S be a d×m random matrix such that sij are independently sampled

from the normal distribution N(0, 1/m), then there exists C > 0 such that

‖S>S‖ ≤ C d
m
.

with probability at least 1− 2 exp (−m), where C is an absolute constant.

One can prove above lemma from the [122, Theorem 4.6.1]. For the rest of theoretical

analysis, we consider the matrix S to be a generalized random matrix given in Lemma 5.2.1.

5.2.1 Approximation of Hessian by Nyström approximation

In this section, we first define a formulation of the Nyström approximation for the objective

function (5.1.1) and propose the regularized Nyström algorithm for the unconstrained

optimization problem.

Let H = ∇2f(w) be a Hessian of the objective function, and we pick Ω ⊆ {1, 2, . . . , d}
indices uniformly at random such that m = |Ω| and compute the Nyström approximation as

Nk = CM †
kC
> = ZZ>, (5.2.6)
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where C ∈ Rd×m is a matrix consisting of m columns (m� d) of H, M is m×m intersection

matrix of m columns and m rows with same indices, and the rank of M is k ≤ m. We first

obtain the best k rank approximation using the singular value decomposition (SVD) of Mk

as Mk = UkΣkU
>
k , Uk ∈ Rm×k are singular vectors and Σk ∈ Rk×k consisting of k singular

values. Then we compute the pseudo-inverse M †
k = UkΣ

−1
k U>k . Using UΣ

−1/2
t from the

pseudo-inverse of M and C, we compute Z = CUkΣ
−1/2
k ∈ Rd×k, and we get Nk = ZZ>.

Note that the number of columns m is a hyperparameter.

Example 5.2.1. `2-regularization: In this example, we present the relation between the

`2 regularization and a fixed rank Nyström approximation. Consider the `2 regularized

optimization problem:

min
w∈Rd

{
f(w) :=

n∑
i=1

fi(w) +
λ

2
‖w‖2

}
, (5.2.7)

where each fi is convex, twice continuously differentiable, and λ > 0, and hence f is a

strongly convex function. Then the Hessian of the `2-regularized function can be given

as H =
∑n

i=1∇2fi(w) + λI and λmin(∇2f(w)) ≥ λ. For this problem, we have C =

S> (
∑n

i=1∇2fi(w)) + λS>I and M = S> (
∑n

i=1∇2fi(w))S + λS>S ∈ Rm×m, where S is

S = WD with the zero-one matrix W given in (5.2.4), and D is a scaling matrix. When

S has rank m, matrix M becomes positive definite, and hence it becomes the fixed-ranked

Nyström approximation, which also helps in the convergence to get the minimum eigenvalue

of M−1. Hence, we can write it as

N = CM−1C>

for fixed rank Nyström approximation.

5.3 A Regularized Nyström-gradient method

The second-order optimization methods often utilize the regularized approximated Hessian.

The regularized parameters can be obtained through approaches such as the trust-region

method or by adaptively determining the regularization parameter based on the gradient

information. These approaches have been explored in previous works such as [77, 120, 112],

which propose iterative formulations similar to Chapter 3:

wt+1 = wt − ηt(At + ρtI)−1∇f(wt), (5.3.1)

where, At represents a Hessian approximation, and ρt > 0 is a regularized parameter.

Now, consider At to be Nyström approximation Nt in equation (5.3.1). To ensure non-

singularity and obtain a descent direction, we compute a regularized Nyström approximation.
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Then we can write an iterate of the regularized Nyström approximation as

wt+1 = wt − ηt(Nt + ρtI)−1∇f(wt). (5.3.2)

Since we are approximating the Hessian using Nyström method augmented with a

regularizer in a similar quasi-Newton framework that uses the multiple of gradient in

the search direction, we call our novel method “A Regularized Nyström gradient method

(NGD)”. The regularized parameter ρt > 0 is determined based on the gradient information.

Specifically, we set ρt = c1‖∇f(wt)‖γ as similar to given in [120], where c1 > 0. We consider

ρt to be either c1
√
‖∇f(wt)‖ for γ = 1/2, c1‖∇f(wt)‖ for γ = 1, or c1‖∇f(wt)‖2 for γ = 2

as shown in Table 5.1. We denote ∇f(wt) = gt for the rest of the chapter.

Table 5.1: Relation between proposed methods and value of γ

Proposed methods Value of γ Regularizer ρt Regularized
Nyström

NGD γ = 1/2 ρt = c1‖gt‖1/2 Nt + c1‖gt‖1/2
NGD1 γ = 1 ρt = c1‖gt‖1 Nt + c1‖gt‖1
NGD2 γ = 2 ρt = c1‖gt‖2 Nt + c1‖gt‖2

To efficiently compute the inverse of (Nt + ρt) given in (5.3.2), we use the Sher-

man–Morrison–Woodbury identity as

pt = (Nt+ρtI)−1gt=
1

ρt
gt−QtZ

>
t gt, (5.3.3)

where pt is search direction at tth iteration, Nt is Nyström approximation computed at wt,

gt is a gradient computed at wt and Qt = 1
ρ2t
Zt(Ik + 1

ρt
Z>t Zt)

−1. Here, (Ik + 1
ρt
ZtZ

>
t ) ∈ Rk×k,

and its inverse can be computed much more quickly than the inverse of (Nt + ρtI) directly.

We use the backtracking line search with Armijo’s line search rule that finds a step size

ηt = α(`) = τα(`−1), starting from ` = 0, the initial step size η0 = α(0), and finds the least

positive integer ` ≥ 0 and increased ` by `+ 1 until the

f(wt + α(`)pt) ≤ f(wt) + α(`)βg>t pt, (5.3.4)

holds, where α, β ∈ (0, 1). Next, we introduce the main algorithm.

The efficiency of the method depends on both the rank of the Hessian and the choice of

the sketching matrix S. For example, if the sketch size goes to 1, then the method reduces

to a scaled gradient descent. Next, we discuss the computational complexity of the proposed

algorithm.



90 Chapter 5 A Regularized Nyström method

Algorithm 5 A Regularized Nyström-Gradient Algorithm

1: Initialize Initial parameters w0, desired rank |Ω| = m, α, β ∈ (0, 1), and maximum
iterations tmax

2: t← 0
3: repeat
4: gt = ∇f(wt)
5: randomly pick indices set Ω ⊆ {1, 2, . . . , d} such that m = |Ω|
6: compute Ct (Ω columns of the Hessian)
7: compute Zt using (5.2.6) and compute ρt
8: Qt = 1

ρ2t
Zt(Ik + 1

ρt
ZT
t Zt)

-1

9: Compute (Nt + ρtI)−1gt using (5.3.3)
10: Use backtracking line search with Armijo’s rule to find ηt using (5.3.4)
11: wt+1 = wt − ηtpt
12: t = t+ 1
13: until t = tmax or some termination criteria is satisfied
14: return wt

5.3.1 Computational complexity

Here, we analyze the per-iteration computational complexity of the proposed method for the

fixed-rank Nyström approximation on `2-regularized objective function.

Consider an `2-regularized logistic regression objective function as given in Equa-

tion (4.4.1). First-order methods like gradient descent require O(dn) computations to

determine the gradient. Meanwhile, second-order methods such as Newton’s method entail

a complexity of O(nd2) for computing the Hessian and an additional O(d3) for obtaining

its inverse. Consequently, the total cost of employing the full Newton’s method sums up to

O(d3 + nd2).

In contrast, the proposed approach incurs a cost of O(ndm) for computing Ct. The cost

of computing the SVD of Mt = UtΣtU
>
t is O(m3). Since Σt is diagonal, pseudo-inverse

can be computed by just inverting diagonal elements, which is negligible as m � d, and

O(dm2 + m3) for the computation of Zt. Lastly, the cost of Qt costs O(dm2 + m3) for

the Sherman-Morrison update (ZtZ
>
t + ρtI)−1gt. Thus, the overall computational cost per

iteration stands at O(dm2+m3+ndm), which is directly proportional to that of the first-order

method and significantly smaller than that of Newton’s method.

5.3.2 Regularized Nyström as Newton sketch

In this section, we introduce an alternate definition of the Nyström approximation. The

Nyström approximation can be obtained by sampling the embedding (random sketch) matrix.

We further show that the resultant formulation of an alternate definition of the Nyström
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approximation can be interpreted as a Newton sketch-based method [93, 76]. Consider the

Nyström approximation and let H = X>d×nXn×d and zero-one d × m matrix W in (5.2.4)

with CX = XW . Let SVD of XW be ÛΣ̂tV̂
>, and M = (C>XCX) = V̂ Σ̂t

2
V̂ >. Then,

similar to [39, Lemma 4] we obtain,

C(Mk)
†C> = (HW )(W>HW )†k(HW )>

= (X>CX)(C>XCX)†k(X
>CX)>

= X>(ÛΣ̂tkV̂
>)(V̂ Σ̂t

−2
k V̂ >)(V̂ Σ̂tkÛ

>)X

= X>ÛkÛ
>
k X, (5.3.5)

where Ûk is the k−rank matrix. The right-hand side of (5.3.5) is similar to the Newton

sketch [93] with two differences: 1) embedding matrix P depends on the size of n and not

d, whereas the zero-one matrix W ∈ Rd×m depends on the d and 2) the natural orthogonal

matrix Ûk in the proposed method is replaced by a randomized embedding matrix P> ∈
Rn×m, which is expected to be orthogonal in principle. i.e., E[P>P ] = I, whereas the

proposed method produces the natural orthogonal matrix; i.e., Û Û> = I. Consequently,

Newton-Sketch needs a large and thick column matrix P (assuming most data has n > d)

to approximate the Hessian.

If we let X>X = ∇2f(w) then, our approximation is of the form of

HW = X>Û Û>X + ρI (5.3.6)

More generally, the approximation given above can be written in the form of an embedding

matrix as follows: Let Y = ρId, and let Y 1/2 =
√
ρ · Id be a d× d matrix. Then, by defining

the embedding matrix, S̄ =

[
Û>m×n 0m×d

0d×n Id

]
and partial Hessian H̄ =

[
X>

Y 1/2

]
, we get

HS = H̄>S̄>S̄H̄,

which is identical to the (5.3.6) and hence H−1S is non-singular, where HS is the Nyström

approximation for HS.

5.4 Convergence analysis

In this section, we provide the analysis that is based on selecting the number of columns, m,

in the Nyström approximation. We investigate the distance between the Newton’s direction

and the NGD’s search direction that is based on the rank of matrix M . We further prove the

linear convergence of the proposed algorithm. Moreover, in the last subsection, we discuss
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the closeness of the inverse of regularized Nyström with the inverse of Hessian. This analysis

offers insights into the overall convergence behavior of the algorithm. It is important to note

that our convergence analysis is based on the objective function defined in equation (5.2.7).

Next, we provide the convergence analysis. First, we need following assumptions.

Assumption 5.4.1. i) The objective function (5.2.7) is twice continuously differentiable and

f is Lg-smooth, i.e.,

‖∇2f(wt)‖ ≤ Lg, ∀ wt ∈ Rd. (5.4.1)

ii) The objective function (5.2.7) is strongly convex.

Assumption 5.4.2. St is a random matrix whose entries are independently sampled Normal

distribution with mean 0 and variance 1/m, satisfies

‖S>S‖ ≤ C d
m
,

for some C > 0.

Assumption 5.4.3. For dimension d, we have a constraint on the value of m such that

m = o(d).

Note that Assumption 5.4.3 is important, as in the case where m = d, the Nyström

approximation results in the Hessian, i.e., HH†H = H and it turns out to be the Newton’s

method.

In the next lemma, we obtain a lower bound of the minimum eigenvalue and an upper

bound of the maximum eigenvalue of (Nt + ρtI)−1.

Lemma 5.4.1. Suppose that Assumption 5.4.1, and 5.4.2 hold. Let wt iterate obtained by

Algorithm 5, and for some m, the maximum and minimum eigenvalues of (Nt + ρtI)−1 are

given as

λmin[(Nt + ρtI)−1] ≥ 1
CL2

gd

mλ
+ c1‖gt‖γ

, and λmax[(Nt + ρtI)−1] =
1

c1‖gt‖γ
. (5.4.2)

Proof. First we obtain the bound on minimum eigenvalue of (Nt + ρI)−1.

λmin[(Nt + ρtI)−1] =
1

λmax(Nt + ρtI)

≥ 1

λmax(HtSt(S>HtS
†
t )S

>Ht) + ρtI

≥ 1

‖Ht‖2‖S>t St‖‖(S>HtSt)−1‖+ ρt
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≥ 1

L2
g

(Cd
m

) (
1
λ

)
+ ρt

(5.4.3)

=
1

CL2
gd

mλ
+ c1‖gt‖γ

,

where the third inequality follows from the ‖H‖ ≤ Lg, Lemma 5.2.1, and since f is strongly

convex and m� d, (S>HS) � λI. Now we find obtain the bound on maximum eigenvalue

of (Nt + ρI)−1.

λmax[(Nt + ρtI)−1] =
1

λmin(Nt + ρtI)

=
1

ρt

=
1

c1‖gt‖γ
.

Since Nt is positive semi-definite ρt is minimum eigenvalue of (Nt + ρtI). This completes

the proof.

5.4.1 Linear convergence

Next, we discuss a lemma related to search direction to obtain the linear convergence.

Lemma 5.4.2. Let pt be a descent direction of Algorithm 5 at iteration t, then

g>t pt ≤ −ρt‖pt‖2.

Proof. Let pt = −(Nt + ρtI)−1gt be a search direction. Next, consider

−g>t pt = g>t (Nt + ρtI)−1gt

= ((Nt + ρtI)−1gt)
>(Nt + ρtI)(Nt + ρtI)−1gt

= pt(Nt + ρtI)pt

≥ ρt‖pt‖2,

where the last inequality comes from the fact that Nt is positive semidefinite.

This completes the proof.
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Assumption 5.4.4. For all x,y, the gradient is Lipschitz, i.e.,

‖∇f(x)−∇f(y)‖ ≤ Lg‖x− y‖.

Finally, in the next theorem, we prove the linear convergence.

Theorem 5.4.1. Suppose that Assumption 5.4.1 - 5.4.4 hold. Let {w} be a sequence

generated by Algorithm 5 and w∗ be the optimal point. Then there exists 0 < ξ < 1, with

probability at least 1− 2 exp (−m), we have

f(wt+1)− f(w∗) ≤ ξ (f(wt)− f(w∗)),

where

ξ =

(
1− 4β(1− β)

mλ2ρt
Lg(CdL2

g +mλρt)

)
.

Proof. Since ∇f is Lipschitz continuous, we have

f(wt+1) ≤ f(wt) + g>t (wt+1 − wt) +
Lg
2
‖wt+1 − wt‖2

= f(wt) + ηtg
>
t pt +

η2tLg
2
‖pt‖2.

Let u2 = −g>t pt, then using Lemma 5.4.2, we have ‖pt‖2 ≤ −g>t pt
ρt

= u2

ρt
, and we get

f(wt+1) ≤ f(wt) + ηtg
>
t pt +

η2tLg
2
‖pt‖2

≤ f(wt) + ηt(−u2) +
η2tLg
2ρt

u2

= f(wt)− ηt
(

1− ηtLg
2ρt

)
u2.

Hence the exit condition of backtracking line search f(wt + ηtpt) ≤ f(wt) + βηtg
>
t pt satisfies

if we take (
1− ηtLg

2ρt

)
= β,

and step size ηt = 2(1− β)ρt/Lg. Therefore, it stops when ηt ≥ 2ρt/Lg and we have

f(wt+1) ≤ f(wt)− 2β(1− β)
ρt
Lg
u2. (5.4.4)
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Since u2 = −g>t pt, and from Lemma 5.4.1,

u2 = −g>t pt = g>t (Nt + ρtI)−1gt ≥
mλ

CdL2
g +mλρt

‖gt‖2.

Hence, by (5.4.4) we get

f(wt+1) ≤ f(wt)− 2β(1− β)
mλρt

Lg(CdL2
g +mλρt)

‖gt‖2. (5.4.5)

Subtracting f(w∗) from both sides of (5.4.5), and from strong convexity of f , we have

‖gt‖2 ≥ 2λ(f(wt)− f(w∗)), which implies

f(wt+1)− f(w∗) ≤ f(wt)− f(w∗)− 4β(1− β)
mλ2ρt

Lg(CdL2
g +mλρt)

(f(wt)− f(w∗))

=

(
1− 4β(1− β)

mλ2ρt
Lg(CdL2

g +mλρt)

)
(f(wt)− f(w∗)).

This completes the proof.

5.5 Stochastic variant of the regularized Nyström gra-

dient method

In this section, we discuss the stochastic variant of the Nyström gradient. In the context

of machine learning, it is usual to work with a large number of samples, making it

computationally challenging to compute the full gradient at every iteration. To address

this challenge, we employ the stochastic gradient with the Nyström approximation. In this

stochastic variant of the NGD, given a mini-batch B, we compute the stochastic gradient

gt,τ = ∇fB(wt) for tth iteration of τ th epoch and compute the regularized Nyström Nτ + ρτI,

once per epoch with regularized parameter ρτ = c1‖gt−1,τ‖γ 9. We compute the search

direction with ρτ as follows:

pt−1 = (Nτ+ρτI)−1gt−1,τ =
1

ρτ
gt−1,τ−QτZ

>
τ gt−1,τ , (5.5.1)

where Qτ = 1
ρ2τ
Zτ (I + 1

ρτ
ZT
τ Zτ )

-1 and Zτ similar to (5.2.6). Furthermore, we use the

diminishing step size ηt for the stochastic variant. Next, we present the Algorithm 6 for

9that the regularizer ρτ is stochastic gradient and not full gradient. We update the ρτ in the beginning

of the epoch τ , with ∇fB(wt) of (τ − 1)th epoch.
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a stochastic variant of a regularized Nyström method and we call this variant NSGD.

Table 5.2: Search direction and γ in for NSGD

Proposed methods Regularizer ρ (Value of γ) Search direction
NSGD ρτ = c1‖gt−1,τ‖γ (γ = 1/2) pt−1 = (Nτ + ρτ )

−1gt−1,τ

Algorithm 6 A regularized Nyström with stochastic gradient: NSGD Algorithm

Parameters: Update frequency ` and initial step size η0

1: Initialize w0, τ = 1
2: for t = 1, 2, . . . do
3: randomly pick batch B ∼ {1, . . . , n}
4: gt-1,τ = ∇fB(wt-1)
5: if (t− 1) mod ` = 0 then
6: randomly pick indices set Ω ⊆ {1, 2, . . . , d} such that m = |Ω|
7: compute Cτ (Ω columns of the Hessian) at wt−1
8: compute Zτ similar to (5.2.6) and compute ρτ
9: Qτ = 1

ρ2τ
Zτ (I + 1

ρτ
ZT
τ Zτ )

-1

10: τ = τ + 1
11: end if
12: Compute pt−1 using (5.5.1)
13: wt = wt−1 − ηtpt−1
14: end for

Remark 5.5.1. Note that ρτ = 0 even when full gradient is not zero. Thus, we use ρτ =

max(c4, ‖gt−1,τ‖), where c4 is some small positive constant.

5.6 Non-convex case

In this section, we consider the non-convex case of the objective function. While there is

a significant amount of research on developing low-rank Hessian approximated methods for

convex function [78, 87, 121, 52], there has been less focus on non-convex function [120, 48].

Standard Nyström method conventionally targets symmetric positive semi-definite (SPSD)

matrix, but it encounters an issue in the non-convex domain as non-convex function does

not produce the SPSD Hessian. In order to tackle this issue, we incorporate an additional

term to tackle the negative eigenvalues of Hessian. Featuring an additional term helps to

obtain a SPSD matrix with a fixed-rank regularized Nyström approximation.
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5.6.1 Nyström approximation for non-convex function and algo-

rithm

Now consider a `2-regularized objective function (5.2.7)

f(w) =
n∑
i=1

fi(w) +
λ

2
‖w‖2, (5.6.1)

where each fi is twice continuously differentiable and non-convex and λ > 0. Let Hf =∑n
i=1∇2fi(w) and S ∈ Rd×m be a zero-one random matrix similar to (5.2.4).

C = HS = ∇2f(w)S = HfS + λS (5.6.2)

M = S>HS = S>
(
Hf + λI

)
S = S>HfS + λI.

Note that S>S = Id. Since Hf is the Hessian of a non-convex function, the eigenvalues of

S>HfS can be non-positive. In order to tackle this issue, we use the regularization term

µ = c2 max(0,−λmin(S>HfS)), and c2 > 0.

M + µI = S>HS + c2 max(0,−λmin(S>HfS))

= S>HfS + c2 max(0,−λmin(S>HfS)) + λI, (5.6.3)

and we get positive definite matrix M + µI and λmin(M + µI) = λ. Finally, the fixed rank

Nyström-type approximation is given by

N = (C(M + µI)−1C>).

Since the minimum eigenvalue of M + µI is λ, N is a fixed-rank Nyström-type SPSD

low-rank approximation. Moreover, (M + µI)−1 is always an m ×m matrix, and m is the

fixed rank, which is a user-defined parameter. Moreover, we need a non-singular matrix to

compute the search direction. We compute ρt = c1‖gt‖γ, where γ can be 1/2, 1 or 2 and

c1 > 0.

B = N + ρI

= C(M + µI)−1C> + c1‖gt‖γI
= C(M + µI)−1C> + ρtI. (5.6.4)
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To obtain the inverse of B, we apply the Sherman-Morrison-Woodbury formula for tth

iteration. We obtain the following search direction:

pt = −B−1t gt

= −(Nt + ρI)−1gt

= − 1

ρt
gt +

1

ρ2t
QtC

>
t gt, (5.6.5)

where Qt = Ct(Mt + µtI + 1
ρt
C>t Ct)

−1.

As we mentioned in the section on strongly convex, (5.3.1) is similar to RL-BFGS-SW

given in Chapter 3. In Chapter 3, we used the strong Wolfe condition, and here we used

backtracking line search.

Next, we demonstrate the algorithm of regularized Nyström method 7 as fixed rank

regularized Nystrr̈om for non-convex function.

Remark 5.6.1. It is worth mentioning that calculating the eigenvalues of S>HfS is

affordable because it is an m × m matrix and m is much smaller than d. Also, inverting

matrix M + µI is not a burden as it is a m×m matrix.

Algorithm 7 A regularized Nyström for non-convex function

1: Initialize Initial parameters w0, desired rank |Ω| = m, α, β ∈ (0, 1), and maximum
iterations tmax

2: t← 0
3: repeat
4: gt = ∇f(wt)
5: randomly pick indices set Ω ⊆ {1, 2, . . . , d} such that |Ω| = m
6: Compute Mt and obtain µt
7: Compute Qt search direction using (5.6.5),

pt = −(Nt + ρtI)−1gt

.
8: Compute step size using Armijo’s rule: Find least positive integer `t such that

f(wt + α(`t)pt) ≤ f(wt) + α(`t)βg>t pt

9: Set ηt = α(`t), wt+1 = wt + ηtpt, and t = t+ 1.
10: until t = tmax or some termination criteria is satisfied
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5.6.2 Global convergence

In this section, we provide the global convergence analysis. First, we need following

assumptions.

Assumption 5.6.1. i) The objective function (5.2.7) is twice continuously differentiable.

ii) Let w0 be an initial point and the level set of the objective function Γ := {w ∈ Rd : f(w) ≤
f(w0)} is compact and {w} ∈ Γ.

iii) There exists a minimum fmin of f .

Since we are using Armijo’s backtracking rule to have f(wt+1) ≤ f(wt), for any t ∈ N,

implies that the sequence {wt} generated by the proposed algorithm 7 is included in the

level set Γ. Similarly, from Assumption 5.6.1(i) and (ii), there exists Lg > 0 such that for

all w ∈ Γ,

‖∇2f(wt)‖ ≤ Lg, ∀t ∈ Γ. (5.6.6)

Moreover, from Assumption 5.6.1(ii) it follows that there exists Ug > 0 such that

‖gt‖ ≤ Ug, ∀t ≥ 0, (5.6.7)

and assume that there exists ε > 0 such that ε ≤ ‖gt‖. Note that one can always assume

ε > 0,

ε ≤ ‖gt‖, (5.6.8)

when wt 6= w∗, where w∗ is the optimal point.

Lemma 5.6.1. Suppose that Assumption 5.4.2 and 5.6.1 hold. Let wt iterate obtained by

Algorithm 5, and for some m, the maximum and minimum eigenvalues of (Nt + ρtI)−1 are

bounded

λmin[(Nt + ρtI)−1] ≥ λm

L2
gCd+mλc1U

γ
g
, and λmax[(Nt + ρtI)−1] ≤ 1

c1εγ
. (5.6.9)

Proof. This Lemma can be prove similar to Lemma 5.4.1, and from assumptions it is

easy to see that

λmin[(Nt + ρtI)−1] =
1

CL2
gd

mλ
+ c1‖gt‖γ

≥ λm

L2
gCd+mλc1U

γ
g
,

and similarly,

λmax[(Nt + ρtI)−1] =
1

c1‖gt‖γ
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≤ 1

c1εγ
.

Since Nt is positive semi-definite ρt is minimum eigenvalue of (Nt + ρtI). This completes

the proof.

Lemma 5.6.2. Suppose that Assumption 5.6.1 holds. Assume that there exists ε > 0 such

that ε ≤ ‖gt‖. Then the search direction pt satisfies

‖pt‖ ≤ b(ε), (5.6.10)

where

b(ε) := c4 max

(
U1−γ
g ,

1

εγ−1

)
.

Proof. From (5.6.7), we have ‖gt‖ ≤ Ug and ε ≤ ‖gt‖. We prove this with two cases

of of γ.

• case 1: γ ≤ 1. In this case, the computing upper bound of search direction pt, we

have

‖pt‖ ≤
‖gt‖
ρt

=
‖gt‖
c1‖gt‖γ

,

= c4‖gt‖1−γ

≤ c4U
1−γ
g ,

where c4 = 1/c1.

• case 2: γ > 1, implies 1− γ < 0, and hence we get

‖pt‖ ≤ c4‖gt‖1−γ

≤ c4
εγ−1

.

It follows from above cases that

‖pt‖ ≤ c4 max

(
U1−γ
g ,

1

εγ−1

)
. (5.6.11)

This completes the proof.

From above Lemma, we have wt + τpt ∈ Γ + B(0, b(ε)), ∀τ ∈ [0, 1]. The compactness of
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Γ +B(0, b(ε)) and f is twice continuously differentiable, it follows that there exists UH > 0

such that

‖∇2f(w)‖ ≤ UH , ∀w ∈ Γ +B(0, b(ε)). (5.6.12)

Next, we obtain a step size that is related to a constant that satisfies the Armijo’s rule.

Lemma 5.6.3. Suppose that Assumption 5.4.2, 5.4.3, and 5.6.1 hold, and there exists ε > 0

such that ‖gt‖ ≥ ε. Then, the step size ηt > 0

ηt ≤
2(1− β)λmc21ε

2γ

(U2
Hc3d+mλc1U

γ
g )UH

, (5.6.13)

satisfies Armijo’s rule (5.3.4).

Proof. Since f is twice continuously differentiable, we consider a 2nd order Taylor’s

theorem, there exists τt ∈ [0, 1] such that

f(wt + ηtpt) = f(wt) + ηtg
>
t pt +

1

2
η2t p
>
t ∇2f(wt + τtηtpt)pt.

Adding βηtg
>
t pt both side and rearranging above equation, computing pt and using

Lemma 5.6.1, we get

f(wt)− f(wt + ηtpt) + βηtg
>
t pt

= (β − 1)ηtg
>
t pt −

1

2
η2t p
>
t ∇2f(wt + τtηtpt)pt

=
ηtUH
2c21ε

2γ

(
2(1− β)λmc21ε

2γ

(U2
Hc3d+mλc1U

γ
g )UH

− ηt
)
‖gt‖2

≥ 0.

Lemma 5.6.4. Suppose that Assumption 5.4.2, 5.4.3, and 5.6.1 hold and there exists ε > 0

such that ‖gt‖ ≥ ε. Then the step size ηt satisfies the lower bound

ηt ≥ ηmin(ε), (5.6.14)

where

ηmin(ε) = min

(
1,

2(1− β)αλmc21ε
2γ

(U2
Hc3d+mλc1U

γ
g )UH

)
.

Proof. Proof can be establish using previous Lemma 5.6.3 and Armijo’s rule.
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In the next lemma, when f(wt) 6= fmin, we provide a lower bound on the reduction in

the difference between two consecutive values of f .

Lemma 5.6.5. Suppose that Assumption 5.4.2, 5.4.3, and 5.6.1 hold and there exists ε > 0

such that ‖gt‖ ≥ ε, then with probability at least 1− 2 exp (−m), we have

f(wt)− f(wt+1) ≥ U1ε
2,

where

U1 :=
βηmin(ε)λm

U2
Hc3d+mλc1U

γ
g
.

Proof. From Armijo’s rule and using previous Lemma 5.6.4, it follows that

f(wt)− f(wt+1) ≥ −βηtg>t pt
= βηtg

>
t (Nt + ρtI)−1gt

≥ βηmin(ε)λmin[(Nt + ρtI)−1]‖gt‖2

= U1ε
2. (5.6.15)

This completes the proof.

Theorem 5.6.1. Suppose the Assumption 5.4.2, 5.4.3, and 5.6.1 hold. Then with the

probability at least 1− 2t exp (−m),

lim inf
t→∞

‖gt‖ = 0,

or there exists a t > 0, such that ‖gt‖ = 0.

Proof. Since iterate is similar to the Chapter 3, the proof of this theorem can be

given in a similar way to the Theorem 3.4.1.

Further theoretical properties are explored in the Appendix, specially dedicated to this

chapter. Appendix is structured into the three sections. In the initial section, we discuss the

theorem of exact Nyström. The subsequent section focuses on establishing an upper bound

on the distance between the search direction of Newton’s method and NGDs. Finally, the

third section provides an upper bound in terms of the closeness of proposed approximation

to the regularized Hessian inverse.
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5.7 Numerical experiments

In this section, we demonstrate the numerical results for the proposed algorithms explained

in the previous sections.

First, we discuss the experiment setup for the numerical experiments. We performed

Figure experiments on MATLAB R2018a on Intel(R) Xeon(R) CPU E7-8890 v4 @ 2.20GHz

with 96 cores and Figure on MATLAB R2019a on Intel(R) Xeon(R) CPU E5-2620 v4 @

2.10GHz with 32 cores. We implemented the existing and proposed methods in MATLAB

using the SGDLibrary [67]. We solve standard learning problems, that is, the `2-logistic

regression:

min
w
F (w) =

1

n

n∑
i=1

log
[
1 + exp(−biaTi w)

]
+
λ

2
‖w‖2,

where ai ∈ Rd is feature vector and bi ∈ {±1} is target label of the i-th sample, and λ is

a `2 regularizer. We evaluated the numerical experiments on benchmark datasets given in

Table 5.3. The datasets are binary classification problems, and all datasets are available on

LIBSVM [24]. We demonstrate the performance of the proposed and existing methods on

the `2-regularized logistic regression problem. We optimize the constant c1 in regularizer

ρt = c1‖gt‖γ using a grid search c1 ∈ {100, 10−1, 10−2, 10−3}. For each method, the best-

performing model was selected based on the minimum cost error of the training.

Table 5.3: Details of the datasets used in the experiments

Dataset Dim Train Test Density
adult1 123 + 1 32,561 16,281 0.1128
gisette1 5, 000 + 1 6,000 1,000 0.9910
epsilon1 2, 000 + 1 50,000 50,000 1
real-sim1 20, 958 + 1 57,909 14,400 0.0024
w8a1 300 + 1 49,749 14,951 0.0388

First we study the performance of NGD, NGD1 and NGD2 to see the behaviour of

different ρ = c1‖gt‖γ, where γ = 1/2 for NGD, γ = 1 for NGD1, and γ = 2 for NGD2.

We computed the `2-regularized logistic regression with λ = 10−5 on the ijcnn1 and adult

datasets.

Figure 5.1 shows the training cost and test error with CPU time for adult and ijcnn1.

Moreover, it shows that NGD1 outperforms NGD and NGD2 for adult dataset, and NGD

outperforms NGD1 and NGD2 for ijcnn1 dataset. Therefore, in the next subsection, we

consider NGD and NGD1 to compare the behavior with varying numbers of selected columns.

1Available at LIBSVM [24] https://www.csie.ntu.edu.tw/cjlin/libsvm/

https://www.csie.ntu.edu.tw/cjlin/libsvm/
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Figure 5.1: First two figures(from left) shows the experiments on adult for m = 25 and last
two figures shows the experiments on ijcnn1 for m = 5. (a) and (c) shows the cost with
respect to CPU time. (b) and (d) shows the test error with respect to CPU time.

5.7.1 Comparison of strength for varying numbers of selected

columns

In this subsection, we demonstrate the comparison of various sketch sizes (no. of selected

columns) for high-density data gisette and sparse data w8a on logistic regression with

λ = 10−5 to observe the robustness of the proposed methods. We keep the same c1

in ρt for each dataset to compare the different numbers of selected columns. Figure 5.2

shows the numerical performance for the gisette dataset and computed the NGD1 for

m = 50(1%), 250(5%), 500(10%) and m = 1000(20%). As shown in Figure 5.2, due to

the high density, only m = 250(5%) of columns are sufficient to get the minimum value

of the objective function within the comparative CPU time. Also, similar behavior can be

observed in the test error as well. When m = 1000, the decrement in the value of the

gradient norm surpasses all cases of m < 1000. Additionally, m = 250 and m = 500 perform

a similar reduction in the value of the norm of the gradient.
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Figure 5.2: Column comparison on gisette dataset

Figure 5.3 shows the numerical performance on the w8a dataset and computed NGD

for m = 30(10%), 60(20%), 100(33%) and m = 150(50%). Figure 5.3 shows that due to

sparse data, it requires picking more number columns to obtain the minimum value of the

objective function in the comparative CPU time. All cases of m exhibit almost similar test

errors. When m = 150 and m = 100, the decrement in the value of the norm of gradient is

comparable, whereas for the cases m = 30 and m = 60, it does not decrease significantly.

5.7.2 Comparison with randomized subspace Newton

In this subsection, we compare the NGDs with the randomized subspace Newton (RSN) [52].

RSN computes the iterate with wt+1 = wt − (1/L)St(S
>
t HtSt)

†S>t gt with a sketch matrix

St ∈ Rd×m. To have a fair comparison of the subspace Newton, we compute the RSN

with Armijo’s rule with backtracking line search (instead of 1/L) and compute the RSN

exactly as given in [52, definition 4] for generalized linear models. Also, we keep the same

value of m for both NGDs and RSN. We compute the logistic regression with λ = 10−5.

We compare NGDs and RSN in Figure 5.4 for realsim data with m = 2000, Figure 5.5

for gisette data with m = 250, and Figure 5.6 for w8a data with m = 30. As shown in

Figure 5.4 to 5.6, RSN is unable to outperform the proposed methods. For the realsim data,

as shown in Figure 5.4, NGD1 outperforms all methods in terms of achieving the minimum
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Figure 5.3: Column comparison on w8a dataset

cost, and NGD2 outperforms all methods in terms of test error. For the gisette data, in

Figure 5.5, NGD1 outperforms all methods in terms of achieving minimum cost and test

error. Finally, for the w8a dataset, Figure 5.6, NGD outperforms all methods in terms of

achieving minimum cost, and NGD1 outperforms at the later stage in terms of test error. In

conclusion, it is observable that the Nyström approximation is better than the approximation

of RSN because RSN only captures a limited set of m2 elements from the Hessian, whereas

Nyström captures a substantially larger set of dm elements of the Hessian. This makes the

Nyström approximation more comprehensive and accurate of the Hessian matrix.

5.7.3 Comparison of Newton Sketch and Nyström approximation

In this subsection, we compare the NGDs with the Newton sketch(NS) [93]. As explained

in Section 5.3.2, the proposed method can be represented as the NS method with

certain structure modifications. Hence, we compare the raw Nyström with the Hessian

approximation of NS in terms of closeness with the Hessian. NS computes the Hessian

approximation as (∇2f(w)1/2)>P>P (∇2f(w)1/2), and it is important to note that the

P ∈ Rm×n, where n is the number of samples and m is the sketch size. In this comparison,

we keep the same value of m for both Nyström and NS. In Figure 5.7 we conduct numerical

experiments on w8a, realsim and gisette datasets. We provide a comparison of the norm
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Figure 5.4: Comparison with RSN for realsim dataset with m = 2000
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Figure 5.5: Comparison with RSN for gisette dataset with m = 250
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Figure 5.6: Comparison with RSN for w8a dataset with m = 30

difference with Hessian and its CPU time as m increases. We conduct these numerical

experiments on the logistic regression. It is important to note that we use the logistic

regression for the realsim, and gisette without `2 regularization. For the w8a dataset, we

keep the `2-regularized logistic regression with λ = 10−5. Hence, the rank of H for w8a data

is full. In Figure 5.7, (a) and (d) show the performance on the w8a dataset, (b) and (e)

show the performance on the realsim dataset, and (c) and (f) show the performance on the

gisette dataset. The top row shows the CPU time of computing the Nyström approximation

and Newton sketch, and the bottom row shows the distance with Hessian as m increases,

where H is the Hessian.

As shown in Figure 5.7 (a) and (d), Nyström approximation outperforms the Newton

sketch as m increases with the less CPU time for w8a in lesser CPU time compared to NS.

Similarly, in Figure 5.7(b) and (e), the Nyström approximation can approach the Hessian as

m increases, specifically after m = 8000. Since Nyström involves the inverse of the m ×m
matrix, it takes more CPU time after m = 5000. Whereas in Figure 5.7(c) and (f), the norm

of distance between Hessian and Nyström decreases significantly when m ≈ 1000 and takes

more CPU time after m ≈ 1000 compared to NS. However, we do not need to compute

Nyström for large numbers of m, as we have seen in Figure 5.2 and 5.3 that about 5%

to 15% of d can give sufficient decrease in the objective function. From the performance
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Figure 5.7: Comparison between Nyström and Newton sketch

illustrated in Figure 5.7, two significant observations can be made. Firstly, one can observe

in Figure 5.7(d) that the Theorem A.1 pertaining Nyström bound of exactness holds true

practically and becomes almost zero as the number of columns m covers all of the columns

(i.e., rank of H). Secondly, it is worth noting that the random matrix in the Newton sketch

P ∈ Rm×n depends on the n which is usually larger than dimension d, whereas the Newton
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sketch [93] usually requires a thick random matrix as compared to the thin random matrix

S of Nyström approximation.

5.7.4 Comparison with existing deterministic methods

We compared the proposed methods NGD, NGD1, and NGD2 with the existing classical

first-order gradient descent and the state of the art second-order Hessian approximation

method L-BFGS method [78]. The memory used in the L-BFGS method was set to 20. We

report the training cost on the training dataset and testing set (test error) for each iteration

and the CPU time cost per iteration. Also, we show the norm of the gradient with respect

to iterations. Figure 5.8 shows the performance of experiments on logistic regression with

λ = 10−5 on giestte dataset with m = 500. As shown in Figure 5.8, NGD1 outperforms all

other methods in terms of both CPU time and iterations in terms of both training cost and

the norm of gradient. L-BFGS takes more CPU time compared to all variants of NGDs at

the cost of 10−5. Also, GD shows improvements after the 20th iteration and outperforms in

terms of the test error, and NGD2 shows some increment in the test accuracy after the 30th

iteration. In Figure 5.9, we conduct the experiments on logistic regression with λ = 10−5

on epsilon dataset with m = 200. Figure 5.9 shows that the NGDs are performing almost

similarly and outperform the L-BFGS and GD in terms of the training cost, testing error,

and test accuracy. Also, NGD and NG1 outperform all of the methods in terms of the norm

of the gradient.

5.7.5 Numerical experiments for stochastic regularized Nyström

gradient

We compare the proposed stochastic variant NSGD with stochastic gradient descent

method and stochastic second order approximation optimization methods, namely, SVRG-

LBFGS [73], SVRG-SQN [81], and SQN [16]. The memory used in the L-BFGS method

was set to 20, which is a commonly used value [73, 16]. Figure 5.10 shows that NSGD

outperforms existing methods in terms of the training cost for the a8a dataset. However, it

could not achieve a better test error compared to SVRG-SQN and SVRG-LBFGS. Moreover,

SVRG-SQN outperforms NSGD and other existing methods in terms of both training cost

and test error for epsilon dataset.

5.7.6 Numerical experiments for non-convex function

In this subsection, we demonstrate the regularized Nyström method for non-convex function.

We compare the proposed method against gradient descent, a regularized randomized
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Figure 5.8: Experiments on the gisette dataset with m = 500.

subspace method(RS-RNM) [48], and regularized Newton method(RNM) [120]. We test

these methods on the problem of support vector regression as follows:

f(w) =
1

n

n∑
i=1

`(yi − x>i w) + λ‖w‖2, (5.7.1)

where (xi, yi) ∈ Rd × {0, 1}, i ∈ {1, 2, . . . , n} is training example. We keep `2 regularized

parameter to be 10−5. For the loss function, we use Geman-McClure loss function [4] as

follows:

`(w) =
2w2

w2 + 4
.

We compute the experiments on gisette dataset with c1 = 1, c2 = 2, and randomly pick

500 columns m =500 per iteration. We keep γ = 1/2 for all regularized methods, and

compute regularized Newton method [120](RNM-GS) with Armijo backtracking line search

with search direction:

p
(RNM−GS)
t = −(∇2f(wt) + c2 max(0,−λmin(∇2f(wt)) + c1‖∇f(wt)‖γ)∇f(wt),

where γ = 1/2 and GS in RNM-GS represents the gamma-square root. We compute

regularized randomized subspace method [48](RS-RNM-GS) with Armijo backtracking line
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Figure 5.9: Comparison for epsilon dataset with m = 200

search with search direction:

p
(RS−RNM−GS)
t = −St(S>t HtSt+ c2 max(0,−λmin(S>t ∇2f(wt)St)+ c1‖∇f(wt)‖γ)−1St∇f(wt),

where γ = 1/2 and GS in RS-RNM-GS represents the gamma-square root. For use gradient

descent(GD) with Armijo backtracking line search the search direction is given as p
(GD)
t =

−∇f(wt).

In Figure 5.11, we illustrate experiments conducted on the gisette dataset. A comparison

in the top left and top right corners reveals that RNM-GS significantly reduces the function

value over iterations. However, it consumes considerably more CPU time compared to

other methods. In the case of RS-RNM-GS, it demonstrates the ability to optimize the

objective function, yet NGD surpasses GD and RS-RNM-GS. Similarly, NGD outperforms

other methods, and RS-RNM-GD achieves satisfactory test accuracy. Finally, the norm of

the gradient against iterations in the bottom right corner indicates that NGD performs well,

being less efficient than RNM-GS but more efficient than RS-RNM-GS.
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Figure 5.10: First two from left shows the experiments on a8a dataset and two from right
shows the experiments on epsilon dataset

5.8 Application: Tumor detection

Brain MRI serves as the primary diagnostic tool for various brain disorders, including tumor

detection. As the diagnostic landscape embraces the sophistication of deep neural networks,

the preference for first-order optimizers in deep learning becomes evident. However, when

confronted with limited sample sizes, training a stable and generalized model with an

extensive parameter set using first-order optimizers poses challenges. Our focus lies in

scrutinizing brain MRI images specifically for the purpose of brain tumor detection. This

dataset comprises 253 MRI images, encompassing 155 cases with tumors and 98 instances

of a healthy brain. The dimension of this dataset is 1000. We employ a transfer learning

strategy for tumor detection, a technique extensively applied in brain MRI and biological

scenarios characterized by a limited sample size. Within deep models, the lower layers are

dedicated to generic tasks like edge detection, while the upper layers are tailored for specific

tasks. Consequently, the conventional approach involves fine-tuning exclusively the upper

layers. The goal is to minimize the objective function:

min
w
f(w), where f(w) =

n∑
i=1

fi (w),
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Figure 5.11: Experiments on gisette dataset for `2 regularized Geman-McClure loss m=500

Figure 5.12: Sample Images from MRI dataset [1], Top row: Tumor, Bottom row: Healthy

where w ∈ Rd and f : Rd → R, and fi is the loss function corresponding to ith sample is the

logistic regression for brain tumor classification problem. i.e., The data has d dimensions

and n samples. We propose an NGD algorithm for fine-tuning the top layers of pre-trained

deep networks. Specifically, we compute a partial column Hessian of size (d×m) with m� d

uniformly randomly selected variables (d is the number of parameters), then use the Nyström
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method to approximate the full Hessian matrix.
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Figure 5.13: Comparison of NGDs with existing methods on MRI datase (m = 200)

Figure 5.13 shows that NGD1 outperforms other methods in terms of training cost in

the least CPU time. Newton’s method outperforms in terms of decreasing the norm of the

gradient. Additionally, all NGDs are giving competitive behavior to each other in terms of

the norm of gradient. GD and L-BFGS are not able to give competitive results in terms of

test accuracy and test error. Also, all NGDs and Newton’s method have the upper hand in

achieving better test accuracy and test error.

5.9 Conclusions

In this chapter, we introduce the regularized Nyström method to approximate Hessian

and propose both deterministic and stochastic optimization methods to solve the objective

function. We present the comprehensive convergence analysis and certain results using the

distance between the Hessian and Nyström approximations. Furthermore, we conducted

extensive numerical experiments to evaluate the performance of the proposed methods with

RSN [52], NS [93], and other existing first-order and quasi-Newton methods. From the

numerical results, the proposed methods demonstrate robustness, efficiently approximating

the Hessian by selecting approximately 5%(in high-density scenarios) and 15-20%(in high-
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sparsity scenarios) of the dimension. Moreover, we employ the proposed method for an

application involving brain tumor detection. The results in this application highlight the

promising impact of our proposed methods in real-world scenarios.
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Chapter 6

Conclusions and future works

6.1 Conclusions

In this thesis, we developed diverse strategies to solve the large-scale unconstrained

optimization problems for both deterministic and stochastic scenarios. We summarized

chapter-wise conclusions.

In chapter 3, we addressed a scenario where the computation of a full gradient is feasible.

Our proposal introduces a novel approach by simultaneously employing Wolfe line search with

the regularized L-BFGS method. This innovation aims to handle the challenge of reducing

the number of function evaluations while determining the optimal step size for large-scale,

unconstrained optimization problems. By efficiently integrating Wolfe line search in cases

where the iterate fails to satisfy the curvature condition, the proposed method facilitates the

computation of larger steps. This proposition introduces a novel perspective on utilizing line

search techniques, specifically through the conditional use of Wolfe line search. Numerical

experiments demonstrate that RL-BFGS-SW solves a similar number of problems as RL-

BFGS but exhibits enhanced capabilities in solving certain large-scale problems with fewer

function evaluations.

In chapter 4, we moved to a case where the computation of the full gradient is costly.

We proposed a novel idea and introduced a unique approach by employing the Barzilai-

Borwein (BB) method as a Hessian approximation to further reduce the variance of the

stochastic gradient in empirical risk minimization problems for strongly convex functions.

Unlike similar methods that use different Hessian approximations containing information

about multiple eigenvalues, the BB-method represents a constant diagonal matrix. This

means the BB-approximation maintains the same constant value on the diagonal, signifying

an approximation focused on a specific eigenvalue. This proposal explored the unexplored

concept of using the BB method in matrix-vector multiplication with a vector of parameters.

Theoretically, it is sound to use the BB method as it satisfies both strongly convexity and
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Lipschitz continuity of the gradient. It has similar convergence properties as the similar

existing methods. This proposal shows its efficiency for dense and high-dimensional datasets,

as the BB-approximation becomes too small when the gradient is near the optimal point.

We establish linear convergence not only for the proposed methods but also for SVRG-2 and

SVRG-2D [53], leveraging a unique lemma. Moreover, we propose the utilization of the BB-

method as a BB-step size with certain parameter modifications. Numerical experiments with

these variants demonstrate performance similar to existing methods. However, SVRG-2BB

exhibits exceptional and stable performance on specific benchmark datasets, particularly

when dealing with dense data and high dimensions.

In chapter 5, we considered a case where partial Hessian information is affordable.

Our novel approach introduces a Regularized Nyström method that leverages the Nyström

method to approximate the Hessian for both deterministic and stochastic large-scale

unconstrained strongly convex optimization problems. Shifting away from the conventional

use of first-order methods for Hessian approximation, the Nyström method provides actual

Hessian information with computational and memory costs similar to L-BFGS. This makes

the deterministic regularized Nyström method robust and outperforms the existing similar

methods. Theoretical analysis establishes bounds representing the distance between the

proposed approximation and the Hessian, indicating the strong Hessian approximation

generated by the proposed method. Numerical experiments affirm the excellent performance

of the proposed method in all scenarios for the deterministic case and outperform existing

state-of-the-art methods. In addition, regularized Nyström method outperforms the existing

methods in the classification problem of tumor detection as an application for brain MRI.

This shows that the proposed method can be useful in various real-world applications.

As we summarized above, we have made several contributions to solving large-scale,

unconstrained optimization problems. However, there are many challenges that remain to

be addressed. Finally, in the next subsection, we discuss some future work based on the

current achievements and further challenges involved in the proposed methods.

6.2 Future works

In this subsection, we present a glimpse of both ongoing efforts and future developments

that are somewhat related to the work presented in previous chapters of this thesis.

6.2.1 Unstable Nyström approximation and its

Levenberg-Marquardt variant

In the regularized Nyström method of Chapter 5, the Nyström approximation calculates

a partial column Hessian of size (d × m) with m � d, using randomly selected column
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indices. Subsequently, it employs regularized Nyström to obtain a distinctive solution for

the search direction. However, the search direction might face instability issues due to the

low-rank structure, especially when the regularization parameter is small. To ensure a stable

search direction, we are working on proposing a Levenberg-Marquardt-type method for the

Nyström approximation.

• Regularized Nyström explained in subsection 5.2.1 of Chapter 5 solves the system of

linear equations to find search direction:

(ZZT + ρI)d = −g,

where ZZT is Nyström approximation given in (5.2.6), ρ > 0 is a regularized

parameter, and g is a gradient.

• Note that when ρ is small, the solution d can be unstable.

• One solution is to use the Levenberg-Marquardt (LM) technique as a solution to the

following subproblem:

d ∈ argmin ‖ZZTd + g‖2 + ρ‖d‖2,

• which gives a stable solution:

(ZZTZZT + ρI)d = −ZZTg.

• Finally, a Nyström-LM variant is given as:

d = −(ZZTZZT + ρI)−1ZZTg.

• In order to make sure the direction is decent, we add the parameter δ > 0 as follows:

d = −(ZZTZZT + ρI)−1(ZZT + δI)g.

• Finally, Nyström-LM can be obtained as:

B = (ZZTZZT + ρI)−1(ZZT + δI), (6.2.1)

and it can be incorporated into certain gradient methods to obtain a quasi-Newton-type

update.
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6.2.2 Modifying the initial matrix of L-BFGS with Nyström like

methods

While L-BFGS performs effectively with large-scale convex optimization problems, the

Hessian approximation using the L-BFGS matrix can exhibit significant changes based

on the initial matrix. Given the successful performance of both regularized L-BFGS and

Nyström methods in large-scale unconstrained problems, a proposal is made to leverage the

Nyström method for initializing the L-BFGS matrix. This integration is explored within the

framework of regularized L-BFGS, accompanied by suitable modifications.

The L-BFGS-SW explained in Chapter 1 in subsection 1.2.3 computes the approximated

Hessian at iteration xk using the last m memory vector pairs (sk, yk) for i = k−m, . . . , k−1

and the initial matrix H0
k = γkI where

γk =
s>k−1yk−1

y>k−1yk−1
, (6.2.2)

is an initial matrix with sk = xk+1−xk and yk = ∇f(xk+1)−∇f(xk). The idea is to employ

a robust initial matrix such as the Nyström approximation

H0
k = HkSk(S

>
k HkSk)

†S>k Hk, (6.2.3)

or randomized subspace Newton

H0
k = Sk(S

>
k HkSk)

†S>k , (6.2.4)

instead of γk, where Sk ∈ Rd×m is a random matrix. Once we have modified the initial

matrix, we may employ it in various techniques that use the L-BFGS method.

6.2.3 Tackling heterogeneous data challenges: Future directions

into distributed, federated, and multi-objective optimiza-

tion

Future work in the realm of distributed, federated, and multi-objective optimization is

paramount, as these areas hold crucial significance. Distributed optimization serves as a

pivotal tool with diverse applications in fields such as machine learning, autonomous systems,

and networking. The exponential growth in data and the prevalence of cloud computing and

edge devices underscore the necessity of employing distributed optimization for the efficient

utilization of computational resources. Addressing this imperative, there is a substantial need

to propose distributed variants of optimization methods tailored to the unique challenges
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posed by different application domains.

The distributed nature of the optimization process allows for parallel computation,

enabling each computing node to optimize its local objective function based on its specific

dataset and problem context. However, the emergence of heterogeneous data poses a

significant challenge to this process. Consequently, there is a motivation to explore solutions

that address the relationships between the diverse distributions present in the data across

various devices or nodes by incorporating novel concepts like optimal transport.

Federated learning, conceptualized as a privacy-preserving form of distributed optimiza-

tion, is a noteworthy area of focus. As part of my future work, I intend to investigate the

application of Nyström-type approximation to resolve federated learning problems. This

approach not only contributes to solving the challenge of heterogeneity but also aids in

reducing communication between the central server and local devices.

A recent study [62] discovered that shared attributes, such as decentralized and parallel

computation, between distributed optimization and multi-objective optimization indicate

potential synergies and possibilities for their integration. This observation opens avenues

for exploring the convergence of these approaches, emphasizing the need for further research

and development in this dynamic and interdisciplinary field.
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Appendix: Theoretical properties of a

regularized Nyström method of

Chapter 5

A Exactness of Nyström approximation

Here, we present a result to obtain the distance between Hessian and Nyström approximation

based on the size of the number of columns m or rank of M . [75] showed a stronger result

in the following theorem:

Theorem A.1. [75, Theorem 3] Suppose H ∈ Rd×d is positive semi-definite matrix and

rank(H) = r ≤ d. Consider the Nyström approximation N = CM †C> and rank(M ) = r ≤
m ≤ d, where m is the number of columns picked randomly. Then the Nyström approximation

is exact. i.e.,

‖H −N‖F = 0,

where ‖.‖F is the Frobenious norm.

Note that ‖A‖2 ≤ ‖A‖F for any matrix A. From the above theorem, it is easy to see

that Nyström approximation produces the exactly same singular values when rank(M ) = r.

Hence, we can expect to achieve the same convergence as the Newton’s method or superlinear

convergence, at least when the number of columns chosen is m ≥ r and rank(H) =

rank(M ) = r. Moreover, it tells us that when rank(M ) < r, we cannot achieve quadratic

convergence since the distance between Hessian and Nyström is bounded from above and

not exactly zero.

Remark A.1. To have the least possible value of m (i.e.,m = r) that satisfies the

above theorem, we need to choose exactly those r independent columns of H which is

difficult due to the randomness involved in choosing m. In short, when rank(H) = r, it

becomes a feature selection problem to choose the r independent columns that will form a

Nyström approximation. The usual convergence gives a probabilistic convergence due to the
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randomness involved in m and the convergence rate depends on the size of the number of

randomly chosen columns m = |Ω|.

B Bound on the difference between NGD’s search

direction and Newton’s direction

Lemma B.1. Suppose that Assumption 5.4.1 holds. Let {w} be a sequence generated by

Algorithm 5. If

m > 64kϑ/ε4,

then

‖pt − pNt ‖ ≤
1

λ
(UNys + c1‖gt‖γ)‖pt‖,

with probability at least 1 − %, where UNys is an upper bound of ‖Ht − Nt‖ given in

Theorem 5.2.1. Moreover, if rank(M) = rank(H), then

‖pt − pNt ‖
‖pt‖

≤ c1
λ
‖gt‖γ,

with probability at least 1− % given in Theorem 5.2.1.

Proof. Let the direction of the Newton’s method be pNt = −∇2f(wt)
−1gt and

regularized Nyström direction is pt = −(Nt + ρtI)−1gt. Since f is strongly convex,

λmin(∇2f(w)) ≥ λ, let ∇2f(w) = H . Then we have ‖H−1
t ‖ ≤ 1

λ
for t > 0. Next, the

distance between the directions can be given as:

‖pt − pNt ‖ = ‖H−1
t (Htpt + gt) ‖

= ‖H−1
t (Ht − (Nt + ρtI))pt‖

≤ ‖H−1
t ‖‖ (Ht − (Nt + ρtI))pt‖

= ‖H−1
t ‖‖ (Ht −Nt)pt − (ρtI)pt‖

≤ ‖H−1
t ‖‖ (Ht −Nt)pt‖+ ‖H−1

t ‖‖ρtpt‖
≤ ‖H−1

t ‖‖Ht −Nt‖‖pt‖+ c1‖H−1
t ‖‖gt‖γ‖pt‖. (B.1)

• case a) In this case, we discuss the distance ‖pt − pNt ‖, when m > 64kϑ/ε4

(Theorem 5.2.1) or rank(Mt) < rank(Ht).

Using Theorem 5.2.1 in the (B.1), we get

‖pt − pNt ‖ ≤ ‖H−1‖‖Ht −Nt‖‖pt‖+ c1‖H−1
t ‖‖gt‖γ‖pt‖
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≤ 1

λ
(UNys + c1‖gt‖γ)‖pt‖,

where ‖H−1
t ‖ ≤ 1

λ
, and ‖Ht −Nt‖ ≤ UNys.

• case b) For this case, we obtain a result when rank(M) = rank(H).

Using the Theorem A.1 in (B.1), we get

‖pt − pNt ‖ ≤ ‖H−1‖‖Ht −Nt‖‖pt‖+ c1‖H−1
t ‖‖gt‖γ‖pt‖

= c1‖H−1
t ‖‖gt‖γ‖pt‖.

Hence, we get
‖pt − pNt ‖
‖pt‖

≤ c1‖H−1‖‖gt‖γ ≤
c1
λ
‖gt‖γ,

where ‖H−1
t ‖ ≤ 1

λ
.

This completes the proof.

Remark B.1. H may not be the full rank matrix if f is not a strongly convex function.

Then disregarding Assumption 5.4.1 for case (b) in above lemma holds for d = m if f strongly

convex function and may be m < d if f not strongly convex function.

C Closeness to the Hessian inverse

In this subsection, we discuss the closeness of the inverse of regularized Nyström approxi-

mation with the Hessian inverse. Let H be the Hessian of the objective function (5.1.1) and

we consider the regularized Newton’s method regularized by any ρ > 0. Then, the inverse of

Hessian is given by (H + ρI)−1w = (∇2f(w) + ρI)−1 at w. Let the regularized Nyström at

w be given by (ZwZ
>
w + ρI)−1. The distance of the regularized inverse matrix is then given

as

‖(ZwZ
>
w + ρI)−1 − (H + ρI)−1w ‖ ≤

‖Jw‖
ρ(‖Jw‖+ ρ)

, (C.1)

where 0 < ‖Jw‖ = ‖H −ZwZ
>
w‖ ≤ ‖H −Hk‖+ ε

∑d
i=1(Hii)

2; which follows from (5.2.3),

whereas (C.1) follows from [46, Proposition 3.1].

Note that the rank of Hessian can be possibly r when the objective function is not `2

regularized.
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