
Studies on Network Graph Analysis
with Decision Diagram Structures

Kengo Nakamura

Abstract

This dissertation is devoted to network analysis problems, which fall into
theoretically difficult computational complexity classes such as NP-complete,
NP-hard, and #P-complete. The difficulty often comes from the fact that a
network infrastructure provides its service with a combination of its compo-
nents, resulting in a combinatorial explosion of computational time. With
the help of binary decision diagrams (BDDs) and similar structures that can
represent the set of combinatorial objects compactly, we develop practically
efficient algorithms for various network analysis problems.

First, we address the problem of computing equilibrium of combinatorial
congestion games. Combinatorial congestion games can model the selfish be-
havior of users of network infrastructures, and computing their equilibrium
is essential for congestion analysis of network infrastructures where users act
selfishly. There are many scenarios in which the computation of equilibrium
falls in difficult complexity classes, e.g., budgeted routing and multi-location
communication. We address the equilibrium computation of general combi-
natorial congestion games by making use of zero-suppressed binary decision
diagrams (ZDDs) along with Frank–Wolfe-style iterative algorithms. We the-
oretically prove the convergence rate for obtaining ε-approximate equilibrium
and empirically validated that the proposed method can efficiently compute
equilibrium on the computationally tough scenarios.

Next, we delve into network reliability analysis, which reveals the robust-
ness of network infrastructures against the failures of network components.
Traditionally, network reliability is defined as the probability that the spec-
ified vertices are connected, and existing approaches using BDDs provide
relatively fast algorithms although computing it is #P-complete. We first
address the network reliability evaluation for client-server model, which is
equivalent to evaluate network reliability repetitively for every node. Al-
though the exiting approach requires separate BDD for every node, we have
only one BDD-like structure to evaluate all the reliability values, yielding ex-
treme efficiency. Then, we propose faster exact computation algorithms for
more enhanced reliability measures. First, we consider the expected number

i

of connected nodes or node pairs, which is suitable for the reliability mea-
sures of the whole network. Although this requires an evaluation of reliability
for every pair of nodes, we again have only one BDD-like structure to evalu-
ate them. We provide theoretical and empirical computational time analysis
as well as applications for critical link identification and server placement.
Next, we address the problem of computing variance of network reliability
when each network component also has a variance (an uncertainty) in its
working probability. We develop an efficient computation algorithm using
a BDD and reveal the behavior of the uncertainty in network reliability for
the first time. Finally, we propose an efficient algorithm for computing un-
reliability per outage scale, i.e., the number of disconnected nodes, which is
useful in designing network infrastructures. The proposed algorithm builds
a multi-terminal variant of BDD, and its practical efficiency is verified by
real-world network topologies.

Finally, we consider subgraph counting problems that counts the num-
ber of subgraphs of an input graph satisfying some graph constraints. This
can be used for evaluating the importance of every component (vertex) in
a network, but this requires solving this computationally difficult problem
repetitively when such an importance measure is computed for every vertex.
By extending the network reliability evaluation algorithm for client-server
model described above, we propose an efficient algorithm that does not re-
quire repetitive construction of decision diagrams for each vertex. The run-
time of the proposed method is theoretically and empirically compared with
the existing approach.

ii

Acknowledgements

First, I would like to express my deepest gratitude to my supervisor, Shin-
ichi Minato, for his continuous support to my research works. Although he
had much busy schedule, he has always paid attention to my works as well
as my Ph.D. student days by discussing with me and the other members
in our laboratory. Especially, he gave invaluable comments on the problem
settings and the algorithms on the works that are the building blocks of
this dissertation. Also, he understood my circumstance that I am also an
employee of a company and gave much efforts to make my Ph.D. student
days delightful.

Next, I would like to express my appreciation to my collaborators: Shin-
saku Sakaue, Norihito Yasuda, Takeru Inoue, Masaaki Nishino, Kunihiko
Sadakane, Kotaro Matsuda, Shuhei Denzumi, Naoki Kobayashi, Tsutomu
Hirao, Hidetaka Kamigaito, Manabu Okumura, Masaaki Nagata, and Ry-
oma Onaka. Some of the joint works with them become the building blocks
of this dissertation. Especially, I am grateful to Masaaki Nishino, Norihito
Yasuda, Takeru Inoue, and Shinsaku Sakaue for their continuous support to
my research and working life. Also, I am thankful to my previous supervi-
sors, Takayasu Matsuo and Kunihiko Sadakane. Without their supervision
in my bachelor and master student days, I might not enter into the world of
scientific research.

Next, I would like to sincerely thank current and former members of
our laboratory. Especially, I am grateful to Jun Kawahara, Yuni Iwamasa,
and Ryosuke Matsuo for giving me insightful comments on my works and
supporting my everyday life in our laboratory. I am also grateful to Hiromi
Emoto and Shou Ooba for their valuable suggestions on my research.

Next, I would like to express my thanks to my family and friends for their
continuous support and encouragement.

Finally, I thank JSPS KAKENHI Grant Number JP20H05963 for sup-
porting the works in Chapters 5–9 and JST CREST Grant Number JP-
MJCR22D3 for supporting the works in Chapters 6, 8, and 9. I am also
grateful to Grant-in-Aid for Transformative Research Areas (A) Algorithmic

iii

Foundations for Social Advancement (AFSA project) for holding invaluable
research events many times.

iv

List of Publications

Publications Included in This Dissertation

This dissertation includes contents of the following six publications.

Refereed Conference Proceedings

1. (Chapter 3) Kengo Nakamura, Shinsaku Sakaue, and Norihito Ya-
suda.
Practical Frank–Wolfe Method with Decision Diagrams for Computing
Wardrop Equilibrium of Combinatorial Congestion Games.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence
(AAAI 2020), pp. 2200–2209, 2020.
doi:10.1609/aaai.v34i02.5596

© 2020, Association for the Advancement of Artificial Intelligence
(www.aaai.org)

2. (Chapter 5) Kengo Nakamura, Takeru Inoue, Masaaki Nishino, and
Norihito Yasuda.
Efficient Network Reliability Evaluation for Client-Server Model.
In Proceedings of the 2021 IEEE Global Communications Conference
(IEEE GLOBECOM 2021), pp. 1–6, 2021.
doi:10.1109/GLOBECOM46510.2021.9685283

© 2021 IEEE
Figure 4.1a in Chapter 4 is also extracted from this publication.

3. (Chapter 6) Kengo Nakamura, Takeru Inoue, Masaaki Nishino, Nori-
hito Yasuda, and Shin-ichi Minato.
A Fast and Exact Evaluation Algorithm for the Expected Number of
Connected Nodes: an Enhanced Network Reliability Measure.
In Proceedings of the 2023 IEEE International Conference on Com-
puter Communications (IEEE INFOCOM 2023), pp. 1–10, 2023.

v

https://dx.doi.org/10.1609/aaai.v34i02.5596
www.aaai.org
https://dx.doi.org/10.1109/GLOBECOM46510.2021.9685283

doi:10.1109/INFOCOM53939.2023.10228897

© 2023 IEEE

4. (Chapter 7) Kengo Nakamura, Takeru Inoue, Masaaki Nishino, and
Norihito Yasuda.
Impact of Link Availability Uncertainty on Network Reliability: Anal-
yses with Variances.
In Proceedings of the 2022 IEEE International Conference on Commu-
nications (IEEE ICC 2022), pp 2713–2719, 2022.
doi:10.1109/ICC45855.2022.9838781

© 2022 IEEE

5. (Chapter 8) Kengo Nakamura, Takeru Inoue, Masaaki Nishino, Nori-
hito Yasuda, and Shin-ichi Minato.
Exact and Efficient Network Reliability Evaluation per Outage Scale.
In Proceedings of the 2023 IEEE International Conference on Commu-
nications (IEEE ICC 2023), pp. 4564–4570, 2023.
doi:10.1109/ICC45041.2023.10279779

© 2023 IEEE

6. (Chapter 9) Kengo Nakamura, Masaaki Nishino, Norihito Yasuda,
and Shin-ichi Minato.
CompDP: A Framework for Simultaneous Subgraph Counting Under
Connectivity Constraints.
In Proceedings of the 21st International Symposium on Experimental
Algorithms (SEA 2023), LIPIcs Vol. 265, pp 11:1–11:20, 2023.
doi:10.4230/LIPIcs.SEA.2023.11

© 2023 Kengo Nakamura, Masaaki Nishino, Norihito Yasuda, and
Shin-ichi Minato
Licensed under Creative Commons Attribution 4.0 International license

Other Refereed Publications

The author also published the following papers, which are not included in
this dissertation. The contents of papers 1.–3. were included in the author’s
master thesis. Although the papers 8. and 9. are related to the contents
dealt in this dissertation, they are not included in this dissertation because
the first authors of these papers are not the author of this dissertation.

1. Kengo Nakamura and Kunihiko Sadakane.
Space-Efficient Fully Dynamic DFS in Undirected Graphs.

vi

https://dx.doi.org/10.1109/INFOCOM53939.2023.10228897
https://dx.doi.org/10.1109/ICC45855.2022.9838781
https://dx.doi.org/10.1109/ICC45041.2023.10279779
https://dx.doi.org/10.4230/LIPIcs.SEA.2023.11
https://creativecommons.org/licenses/by/4.0/

Algorithms, Vol. 12(3), No. 52, 2019.
doi:10.3390/a12030052

2. Kengo Nakamura and Kunihiko Sadakane.
A Space-efficient Algorithm for the Dynamic DFS Problem in Undi-
rected Graphs.
In Proceedings of the 11th International Conference and Workshops on
Algorithms and Computation (WALCOM 2017), LNCS Vol. 10167, pp.
295–307, 2017.
doi:10.1007/978-3-319-53925-6 23

3. Kengo Nakamura.
Fully Dynamic Connectivity Oracles under General Vertex Updates.
In Proceedings of the 28th International Symposium on Algorithms and
Computation (ISAAC 2017), LIPIcs Vol. 92, pp. 59:1–59:12, 2017.
doi:10.4230/LIPIcs.ISAAC.2017.59

4. Kotaro Matsuda, Shuhei Denzumi, Kengo Nakamura, Masaaki Nishino,
and Norihito Yasuda.
Approximated ZDD Construction Considering Inclusion Relations of
Models.
In Proceedings of the Special Event on Analysis of Experimental Algo-
rithms (SEA2 2019), LNCS Vol. 11544, pp. 265–282, 2019.
doi:10.1007/978-3-030-34029-2 18

5. Naoki Kobayashi, Tsutomu Hirao, Kengo Nakamura, Hidetaka Kami-
gaito, Manabu Okumura, and Masaaki Nagata.
Split or Merge: Which is Better for Unsupervised RST Parsing?
In Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2019), pp. 5797–5802, 2019.
doi:10.18653/v1/D19-1587

6. Kengo Nakamura, Shuhei Denzumi, and Masaaki Nishino.
Variable Shift SDD: A More Succinct Sentential Decision Diagram.
In Proceedings of the 18th International Symposium on Experimental
Algorithms (SEA 2020), LIPIcs Vol. 160, pp. 22:1–22:13, 2020.
doi:10.4230/LIPIcs.SEA.2020.22

7. Masaaki Nishino, Norihito Yasuda, and Kengo Nakamura.
Compressing Exact Cover Problems with Zero-Suppressed Binary De-
cision Diagrams.
In Proceedings of the 30th International Joint Conference on Artificial

vii

https://dx.doi.org/10.3390/a12030052
https://dx.doi.org/10.1007/978-3-319-53925-6_23
https://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.59
https://dx.doi.org/10.1007/978-3-030-34029-2_18
https://dx.doi.org/10.18653/v1/D19-1587
https://dx.doi.org/10.4230/LIPIcs.SEA.2020.22

Intelligence (IJCAI 2021), pp. 1996–2004, 2021.
doi:10.24963/ijcai.2021/275

8. Shinsaku Sakaue and Kengo Nakamura.
Differentiable Equilibrium Computation with Decision Diagrams for
Stackelberg Models of Combinatorial Congestion Games.
In Proceedings of the 35th Conference on Neural Information Processing
Systems (NeurIPS 2021), pp. 9416–9428, 2021.
Available at NeurIPS proceedings

9. Ryoma Onaka, Kengo Nakamura, Takeru Inoue, Masaaki Nishino, Nori-
hito Yasuda, and Shinsaku Sakaue.
Exact and Scalable Network Reliability Evaluation for Probabilistic
Correlated Failures.
In Proceedings of the 2022 IEEE Global Communications Conference
(IEEE GLOBECOM 2022), pp. 5547–5552, 2022.
doi:10.1109/GLOBECOM48099.2022.10001640

10. Masaaki Nishino, Kengo Nakamura, and Norihito Yasuda.
Generalization Analysis on Learning with a Concurrent Verifier.
In Proceedings of the 36th Conference on Neural Information Processing
Systems (NeurIPS 2022), 2022.
Available at NeurIPS proceedings

viii

https://dx.doi.org/10.24963/ijcai.2021/275
https://proceedings.neurips.cc/paper/2021/hash/4e4b5fbbbb602b6d35bea8460aa8f8e5-Abstract.html
https://dx.doi.org/10.1109/GLOBECOM48099.2022.10001640
https://proceedings.neurips.cc//paper_files/paper/2022/hash/1af83ab66b4f07a3f55788e67dab5782-Abstract-Conference.html

Contents

1 Introduction 1

1.1 Combinatorial Congestion Games 2

1.2 Network Reliability Analysis 4

1.3 Subgraph Counting . 7

1.4 Notation and Terminology . 8

1.5 Organization . 9

2 Background of Decision Diagrams 11

2.1 Boolean Functions and Families of Sets 11

2.2 Binary Decision Diagrams (BDDs) 12

2.3 Zero-suppressed Binary Decision Diagrams (ZDDs) 14

2.4 Operations on DDs . 15

2.5 Top-Down Construction Methods 17

3 Equilibrium Computation of Combinatorial Congestion Games 21

3.1 Introduction . 21

3.1.1 Contribution . 23

3.1.2 Related Work . 24

3.2 Problem Settings . 25

3.2.1 Frank–Wolfe Algorithm 27

3.3 Proposed Method . 28

3.3.1 Linear Optimization with ZDDs 28

3.3.2 Full Correction . 30

3.3.3 Approximate Wardrop Equilibrium 30

3.4 Experiments . 32

3.4.1 Synthetic Instances . 32

3.4.2 Real-world Instances 34

3.5 Conclusion . 36

3.6 Appendix: Detailed Implementation of Full-correction 36

ix

4 Background of Network Reliability Analysis 41
4.1 Network Model . 41

4.1.1 Comparison with Other Models 42
4.2 K-Terminal Network Reliability 43

4.2.1 Literature Overview on Computing K-Terminal Net-
work Reliability . 44

4.3 Computing K-Terminal Network Reliability with BDDs 45
4.3.1 Pseudocode . 48
4.3.2 Complexity . 48

5 Network Reliability Evaluation for Client-Server Model 53
5.1 Introduction . 53
5.2 Problem Statement . 55
5.3 Method . 55

5.3.1 Construction of Diagram 56
5.3.2 Level-wise Reliability Computation 57
5.3.3 Top-Down and Bottom-Up Dynamic Programming . . 59
5.3.4 Complexity . 61

5.4 Experiments . 63
5.5 Related Work . 66
5.6 Conclusion . 67

6 Fast Evaluation for the Expected Number of Connected Nodes 69
6.1 Introduction . 69

6.1.1 Literature Review . 70
6.1.2 Our Contribution . 71

6.2 Problem Statement . 72
6.3 Method . 73

6.3.1 Partition and Level-wise Formula 74
6.3.2 DP Formulas . 78
6.3.3 Procedures of Algorithm 81
6.3.4 Preprocessing . 81
6.3.5 Summary of Our Proposed Method 83

6.4 Complexity . 83
6.5 Applications . 85

6.5.1 Critical Link Identification 85
6.5.2 Optimal Server Placement 86

6.6 Experiments . 86
6.6.1 Elapsed Time for ECN+ (T ′ = ∅) and ECP 87
6.6.2 Elapsed Time for ECN+ (T ′ 6= ∅) with Server Placement 90
6.6.3 ECP Values and Critical Links 90

x

6.7 Related Work . 91
6.8 Conclusion . 93

7 Variance Analysis on Network Reliability 95
7.1 Introduction . 95

7.1.1 Background . 95
7.1.2 Literature Review . 96
7.1.3 Research Challenges and Our Contributions 96

7.2 Problem Statement . 97
7.3 Method . 99

7.3.1 Random Variables for Dnodes 99
7.3.2 Proposed Method . 100
7.3.3 Complexity . 103
7.3.4 Preprocessing . 104

7.4 Experiments . 104
7.4.1 Computational Time 104
7.4.2 Analyses on Variance of Reliability 106

7.5 Conclusion . 108

8 Efficient Computation of Scale-wise Network Unreliability 111
8.1 Introduction . 111
8.2 Problem Statement . 113

8.2.1 Straightforward Approach Using HH Method 114
8.3 Method . 115

8.3.1 Naive Exhaustive Enumeration 116
8.3.2 Equivalence to Reduce Computation 116
8.3.3 Partition and Number-map 118
8.3.4 Proposed Method . 120
8.3.5 Complexity . 122

8.4 Experiments . 123
8.4.1 Network Topologies Used in Experiments 123
8.4.2 Computation Time . 123
8.4.3 Scale-Wise Unreliability in Real Networks 124

8.5 Related Work . 126
8.6 Conclusion . 127

9 Framework for Simultaneous Subgraph Counting under Con-
nectivity Constraints 129
9.1 Introduction . 130

9.1.1 Related Works . 131
9.1.2 Organization of Chapter 132

xi

9.2 Problem Statement . 133
9.3 Overview and High-level Idea 134

9.3.1 Overview of the Proposed Algorithm 134
9.3.2 Intuition and Idea . 135

9.4 Path Product and Frontier-based Search 136
9.4.1 Path Product on ZDD 136
9.4.2 Frontier-based Search 138

9.5 Details of Proposed Method 140
9.5.1 Computation with Intermediate Level of Diagram . . . 140
9.5.2 Dynamic Programming 141
9.5.3 Intersection with Base Set 144

9.6 Complexity Analysis . 146
9.7 Experiments . 148
9.8 Conclusion . 150
9.9 Appendix . 151

9.9.1 Treatment of Degree 1 Vertices 151
9.9.2 Detailed Results for Romegraph Dataset 152

10 Conclusion 155
10.1 Essence and Future Direction 156

xii

Chapter 1

Introduction

Contemporary society greatly depends on several network infrastructures,
such as telecommunication, transportation (road and train networks), elec-
tric power, and cloud computing. Analysis of such network infrastructures
is frequently performed both in construction time and operating time. For
example, in designing networks, congestion or reliability analysis is used for
evaluating the performance of designed network topologies in order to choose
the better one, and in operating networks, criticality analysis is used for de-
tecting the weak network components that should be reinforced. Mathemat-
ically, most network infrastructures can be modeled as a graph with vertices
and edges, where each edge connects two vertices.

The feature of a network infrastructure is that it provides its service with
a combination of its components. For example, in a telecommunication net-
work, two nodes can be communicated when there is a route between them
that consists of multiple links, i.e., wires and fibers. Another example is an
electric power distribution network where power is distributed from a sub-
station through some switches. This suggests that when analyzing network
infrastructures, it is often indispensable to consider the combinations of net-
work components. In other words, when a network infrastructure is modeled
as a graph, the combinations of vertices and edges should be involved in
formulating the analysis of networks. More formally, many network analysis
problems can be formulated with a set of combinations of vertices and edges.
A typical example is the shortest-path problem; it can be formulated as the
problem of choosing the path with smallest cost from the set of paths from
source to destination, where a path can be seen as a combination of edges.

We here observe that the set of combinations may contain an exponen-
tially many objects. Fortunately, this does not cause difficulty for some
network analysis problems. For example, although there are exponentially
many possible paths from source to destination, the shortest-path problem

1

CHAPTER 1. INTRODUCTION

can be solved in polynomial time with respect to the number of vertices and
edges, meaning that it can be solved efficiently. However, unfortunately, some
other network analysis problems are known to be computationally difficult.
That is, these problems fall in NP-complete, NP-hard, or #P-complete, all of
which are computational complexity classes known to be difficult. For these
problems, polynomial time algorithms must not exist unless P = NP.

To alleviate such difficulty, there exist approaches to represent the set of
combinatorial objects in a compressed and tractable form. The most promi-
nent approach among them is to use binary decision diagram (BDD) [Bryant,
1986] or its variant zero-suppressed binary decision diagram (ZDD) [Minato,
1993] to represent the set of combinatorial objects. Although their represen-
tation size generally remains exponential, it is verified on both theoretical
and practical sides that their size will be much smaller when they represent
the set of combinatorial objects stemming from a real-world sparse graph
topologies. Moreover, BDDs and ZDDs are not only compact representa-
tions of the set of combinatorial objects, but also efficient tools for solving
queries about the representing set. That is, BDDs and ZDDs can answer
some queries about the representing set in polynomial time with respect to
their size. In other words, once the set of combinatorial objects is compiled
into a BDD or a ZDD, it can be used as a succinct index of the represent-
ing set. With such features, BDDs and ZDDs have succeeded in various
network analysis problems including network reliability analysis [Hardy et
al., 2007; Herrmann, 2010], network reliability optimization [Nishino et al.,
2018], influence spread computation [Maehara et al., 2017], power distribu-
tion network verification [Inoue et al., 2015], and finding and enumerating
balanced electoral district division [Kawahara et al., 2017a].

These problems have similarity in that each of them is not a problem to
extract only one combination from the set. Since a BDD or a ZDD retains
all the combinatorial objects in the set, it exhibits its strength when we
have to repetitively query the set or even enumerate or count it, and all
the problems described above fall in such problems. By expanding this line
of research while keeping in mind the above observation, we address the
following problems in this dissertation.

1.1 Combinatorial Congestion Games

Congestion games are game-theoretic non-cooperative games that model the
selfish behavior of players in resource allocation scenarios. Among them,
the combinatorial congestion game is a variant where each player chooses
a combination of resources, which is called strategy, selfishly. It can model

2

1.1. COMBINATORIAL CONGESTION GAMES

various network infrastructures; for example, in a road network, each driver
travels from source to destination selfishly, i.e., by choosing the fastest path,
and in a telecommunication network, each pair of users communicates by
using the fastest route according to routing protocol. Here, each resource in
congestion games correspond to the link in the network, or equivalently the
edge in the graph.

In congestion games, the cost of a resource increases with the rise of the
number of players using it, which corresponds to the situation that each
link becomes congested and incurs more cost when many people use it. If
some resources become more costly and another strategy becomes more cost-
effective, players have incentive to change their own strategies. Eventually,
the situation will be achieved that all the players experience the same cost
and no other strategies have smaller cost. This situation is called (Wardrop)
equilibrium, and it can be regarded as the ultimate congestion state induced
by the selfish players. Therefore, computing equilibrium of combinatorial
congestion games is important for the congestion analysis of network infras-
tructures where users act selfishly.

One famous example of combinatorial congestion games is selfish rout-
ing [Roughgarden, 2005], where the each player chooses a path between
source and destination. This models the user’s selfish behavior to move be-
tween source and destination as fast as possible. For selfish routing, efficient
methods for computing equilibrium were developed [Fabrikant et al., 2004;
Thai, 2017] by a reduction to polynomial-time-solvable problems. However,
when the set of strategies becomes more complex, equilibrium computation
becomes suddenly difficult such as NP-hard and APX-hard. Such examples
include budgeted selfish routing [Jahn et al., 2005], where each strategy is a
path satisfying a budget (knapsack) constraint, and multi-location commu-
nication [Imase and Waxman, 1991], where each strategy is a Steiner tree
connecting the vertices to communicate.

In Chapter 3, we practically address the problem of computing equilib-
rium of general combinatorial congestion games by utilizing ZDDs and vari-
ants of Frank–Wolfe algorithm [Frank and Wolfe, 1956]. As in [Sandholm,
2001], the equilibrium computation can be seen as a convex minimization
problem constrained by a complex polytope defined from the set of strate-
gies. We address this problem with repetitive linear minimization on a ZDD
representing the set of strategies, which is used as a subroutine of Frank–
Wolfe-style iterative algorithm [Lacoste-Julien and Jaggi, 2015]. We theo-
retically prove the convergence rate for the proposed algorithm to achieve
ε-approximate Wardrop equilibrium, meaning that all the players experience
cost no more than the minimum cost plus ε. We also validated the useful-
ness of the proposed method with budgeted selfish routing and multi-location

3

CHAPTER 1. INTRODUCTION

communication settings.

1.2 Network Reliability Analysis

Network reliability [Moskowitz, 1958] is an indicator for the robustness of a
network against failures of network components. Network reliability analysis
is fundamental in designing and evaluating network infrastructures, espe-
cially for communication networks. Since emerging standards such as sixth-
generation mobile communication system (6G) requires extremely high relia-
bility up to 99.99999% (seven 9s), it is crucial for network design and analysis
to rigorously evaluate network reliability without approximation.

When a network is modeled as a graph, the failures of network compo-
nents can be considered as the stochastic presence (working) or absence (fail-
ing) of edges [Moskowitz, 1958]. For network infrastructures, the most basic
requirement for providing service between two nodes in the network is that
these nodes are connected with only the correctly working links [Nojo and
Watanabe, 1987, 1993; Tollar and Bennett, 1995]. Therefore, the basic def-
inition of network reliability, called K-terminal network reliability (K-NR)
given a subset K of vertices, is defined as the probability that the specified
vertices K called terminals are connected with only the working edges un-
der stochastic failures of edges. Despite of its simple definition, computing
K-NR is known to fall in #P-complete [Valiant, 1979], a computationally
difficult class. A practically fast K-NR computation algorithm using BDDs
was proposed by Hardy et al. [2007], which can evaluate K-NR of networks
with around 200 links.

This dissertation deals with the following four topics of network reliability
analysis. The first one accelerates K-NR evaluations for modern network
infrastructures, while the latter three propose new reliability measures and
faster exact computation algorithms for them.

Reliability Evaluation under Client-Server Model

Some modern network infrastructures follow a client-server model. Typi-
cal example is a cloud service where services are provided from servers to
browsers (clients). Since each client works independently, the reliability
should be evaluated separately for every client to meet service level agree-
ment. That is, we should compute the probability that a client is connected
to servers for every client. We call this problem CSNR problem. Since even
single computation of K-NR is a computationally tough task, the CSNR
problem incurs much more computational cost as it needs K-NR evaluation

4

1.2. NETWORK RELIABILITY ANALYSIS

O(n) times where n is the number of vertices.
In Chapter 5, we propose an efficient algorithm for solving CSNR prob-

lem. The proposed algorithm relies on the construction of BDD-like struc-
ture. However, unlike the existing approach where a BDD is built by [Hardy
et al., 2007] for every client, we need only one data structure to compute
all the reliability values. As a result, the proposed algorithm solves the
CSNR problem O(n) times faster than the existing approach. Moreover, as
a by-product, we can derive a faster algorithm for computing single K-NR
compared to the existing method [Hardy et al., 2007] when the number of
terminals is small. The efficiency of the proposed method was empirically
verified on both synthetic and real-world network topologies; the proposed
method is two-orders-of-magnitude faster than the existing approach in solv-
ing CSNR problem. In addition, the proposed method succeeded in solving
CSNR problem within a reasonable time on the real-world topologies with
400–850 links, on which even single K-NR computations had not been con-
ducted yet.

Expected Number of Connected Nodes and Node Pairs

Let us consider an evaluation of the whole network infrastructure. Tradition-
ally, the all-terminal network reliability (All-NR), the probability that all the
vertices are connected each other, has been used as a reliability measure of
the whole network [Hardy et al., 2005; Chaturvedi, 2016; Gaur et al., 2021].
However, the All-NR sometimes exhibits a counter-intuitive value, and so
enhanced reliability measures for an entire network are in demand. When a
network follows client-server model, which let users (clients) to access shared
resources (servers), the number of clients that are connected to servers is
a reasonable performance measure. When a network falls in point-to-point
(P2P) infrastructures, which let users to access each other, the number of
connected node pairs becomes a reasonable performance measure. Under the
stochastic failure of links, their expected numbers should be good reliability
measures for the whole network.

In Chapter 6, the expected number of connected nodes (ECN) and the
expected number of connected node pairs (ECP) are defined based on the
above observation. Although computing ECP involves O(n2) times of K-NR
computation, it needs running the method of Hardy et al. [2007] O(n2) times
or running the method proposed in Chapter 5 O(n) times, where n is the
number of vertices. Unlike this, the proposed method in Chapter 6 builds
only one BDD-like data structure and perform elaborated dynamic program-
ming to obtain ECP value. As a result, regarding the ECP computation,
the proposed method runs in O(n) times faster compared to the method in

5

CHAPTER 1. INTRODUCTION

Chapter 5. Moreover, the proposed method can also obtain the ECN val-
ues for every vertex; the precise problem definition is in Chapter 6. The
efficiency of the proposed method is again verified on both synthetic and
real-world network topologies; the ECP of an 821-link real-world network
topology was computed in only 10 seconds with the proposed method, while
the other methods did not finish the computation within an hour.

Moreover, two applications of the proposed method are exhibited in Chap-
ter 6. First, we consider a problem of finding critical links with respect to
ECP value in a similar way as the other criticality problems [Kuo et al., 2007;
Inoue, 2019], and develop an algorithm for solving this using automatic dif-
ferentiation [Griewank and Walther, 2008]. We empirically verified that the
proposed algorithm can find critical links of P2P infrastructures. Second, we
consider a server placement problem, that is, the problem of placing a server
to maximize ECN. We demonstrated that the proposed method can solve
this problem in 70–10000 times faster.

Variance of Network Reliability

Traditionally, the K-NR is computed under the assumption that the proba-
bility that each link works is precisely known. However, this does not hold
in real situations; for example, the optical fiber’s lifespan is estimated as a
distribution [Aso et al., 2012]. This arises a natural question: how the uncer-
tainty in each link’s probability affects the uncertainty in network reliability
measures?

Chapter 7 addresses this issue by focusing on variances. We define the
problem of computing the variance of K-NR when the variance of each edge’s
working probability is given. Although this seems more difficult than just
computing K-NR that itself is #P-complete, we develop an efficient algo-
rithm for solving this problem by using BDDs. More specifically, we use the
BDD built by the method of Hardy et al. [2007], but we perform more com-
plicated dynamic programming to obtain the value of variance. Empirically,
the proposed method can compute the variance of K-NR in less than 0.1
seconds for real network topologies with 100–200 links.

The magnitude and behavior of the variance of K-NR is also empirically
examined in Chapter 7. It reveals us that for most cases, the variance of K-
NR remains at most in the same order as the variance of edge’s probability.
Moreover, even if one link’s variance of probability becomes significant, its
effect on the variance of K-NR is marginal. These properties are desirable
for network design, and they constitute an evidence for rigorously computing
the network reliability measures.

6

1.3. SUBGRAPH COUNTING

Scale-Wise Unreliability

When an outage of communication network occurs, its scale, i.e., signifi-
cance, is usually measured by the number of affected users or nodes [Tollar
and Bennett, 1995; Matsukawa and Funakoshi, 2010]. To avoid serious out-
ages, network operators often specify admissible outage probability for each
outage scale. Although there are some works for approximately comput-
ing such scale-wise reliability [Taka and Abe, 1994; Watanabe et al., 2003]
by restricting the stochastic failure scenarios of edges, rigorous evaluation is
needed for designing networks satisfying the above requirements, as described
in Section 1.2.

In Chapter 8, we formally define the problem of computing unreliability
for each outage scale, called scale-wise unreliability. We propose an algorithm
for precisely computing scale-wise unreliability. This algorithm constructs an
extension of BDD called multi-terminal BDD, and probability computation is
performed by dynamic programming on the built structure. As a result, the
probability of every scale can be computed simultaneously. Empirically, the
proposed method can evaluate scale-wise unreliability of real-world network
topologies with nearly 200 links in at most 1.3 hours.

Note that the work in Chapter 6 is similar to this work in that the ex-
pected outage scale can easily evaluated by ECN computation of Chapter 6.
However, we empirically confirmed in Chapter 8 that just computing the
expected outage scale does not reveal the scale-wise unreliability since the
scale-wise unreliability decays bumpy with respect to the outage scale, mean-
ing that an interpolation of scale-wise unreliability from the expected outage
scale is difficult.

1.3 Subgraph Counting

Subgraph counting problem computes the (possibly weighted) number of sub-
graphs of an input graph that satisfy some constraints. The traditional K-NR
computation [Moskowitz, 1958] falls in this problem where the constraint is
of the form “the terminal vertices are connected each other”. Other than net-
work reliability analysis, the subgraph counting is regarded as a fundamental
problem in computer science [Bax, 1994; Alon et al., 1997; Flum and Grohe,
2004; Curticapean, 2018]. Although there are a few exceptions such as span-
ning trees (countable in polynomial time by matrix-tree theorem; see [Tutte,
2001]), subgraph counting problem becomes #P-complete for many graph
constraints.

In network infrastructures, subgraph counting problem can be used for

7

CHAPTER 1. INTRODUCTION

evaluating importance of every network component. For example, in a com-
munication network where two vertices s and t are communicating, the com-
munication route forms s, t-simple path. Thus, the number of s, t-simple
paths that passes through another vertex v can be regarded as the impor-
tance of vertex v because it equals the number of lost communication routes
when v fails. Other examples include multi-location communication [Imase
and Waxman, 1991] where Steiner trees are counted and power distribution
network [Inoue et al., 2015] where rooted spanning forests are counted.

However, to evaluate importance measure for every vertex, we have to
solve multiple subgraph counting problems corresponding to every vertex.
Since even computing single count value is a cumbersome task, solving it
multiple times may incur prohibitively large computation time.

In Chapter 9, we first formally define the problem of computing multi-
ple subgraph count values for every vertex by focusing on connectivity con-
straints, which require that some pairs of vertices are connected for each
and other pairs are disconnected for each. Then, by extending the work in
Chapter 5, we propose an efficient algorithm for solving the above problem.
Like the algorithm in Chapter 5, only one ZDD is built to obtain multi-
ple subgraph count values. The resulting algorithm can deal with various
graph constraints such as simple paths, cycles, Steiner trees, and rooted
spanning forests. Theoretically, the proposed method runs in O(n) times
faster than the existing approach where a ZDD is built separately for every
vertex by [Kawahara et al., 2017b]. Empirically, the proposed method solves
the above problem about 10–20 times faster than the existing approach for
many graph constraints.

1.4 Notation and Terminology

First, we introduce notations used in this dissertation. In all of the subse-
quent chapters in this dissertation, the network topology is modeled as an
undirected graph G = (V,E) with n = |V | vertices and m = |E| edges1.
The objects related to BDDs, ZDDs, and similar structures, are denoted by
typewriter letters, e.g., B, Z, N, A, n, r, R. For example, a BDD and a ZDD
are typically denoted as B and Z. Real-valued vectors are denoted by bold
italic letters, such as x,y, s,d; they are mainly used in Chapter 3. Random
variables are denoted by bold capital roman letters, such as P,Q,R; they
are mainly used in Chapter 7. The objects that can be regarded as a set of
combinatorial objects are often denoted by calligraphic letters. For example,

1In Chapters 2 and 3, m represents the cardinality of item set. This is because in the
subsequent chapters, the item set in Chapter 2 equals the edge set E that has m edges.

8

1.5. ORGANIZATION

Chapter 1

Chapter 2

Congestion games

Chapter 3

Network reliability analysis
Chapter 4

Chapter 5

Chapter 6

Chapter 7 Chapter 8

Subgraph counting

Chapter 9

Chapter 10

Figure 1.1: Dependence structure of this dissertation.

a family of subsets of general item set is often denoted by I and a set of
subsets of edges by E .

Next, we introduce some terminologies to avoid confusion. Since the
structures of BDDs and ZDDs are directed graphs, it should not be confused
with the graph G = (V,E) that is an abstracted network topology. Thus, we
call the vertices and edges in BDDs, ZDDs, and similar structures as dnode
and arc. Moreover, the terms node and link are used when our focus is
on applications for networked infrastructures, and vertex and edge are used
when our focus is on the abstracted network model or the algorithms working
on the network model.

1.5 Organization

The rest of this dissertation is organized as follows. Chapter 2 describes
the background of BDDs and ZDDs, which will be used in the subsequent
chapters. Chapter 3 addresses the equilibrium computation of combinatorial
congestion games. Chapter 4 presents the background of network reliability
analysis, which will be used in Chapters 5–8. Chapter 5 is about the network
reliability evaluation under client-server model, and Chapter 6 is devoted
to the efficient computation of the expected number of connected nodes or
connected pairs. Chapter 7 proposes an algorithm for computing the variance
of network reliability, and Chapter 8 addresses the computation of scale-wise
unreliability. Chapter 9 presents an efficient method for solving multiple
subgraph counting problems under similar connectivity constraints. Finally,
Chapter 10 concludes this dissertation. The dependence structure of this
dissertation is depicted in Figure 1.1.

9

CHAPTER 1. INTRODUCTION

10

Chapter 2

Background of Decision
Diagrams

This chapter describes an overview on BDDs, binary decision diagrams, and
ZDDs, zero-suppressed binary decision diagrams. These are data structures
that are repetitively used in this dissertation.

As described in Chapter 1, in the area of network analysis, when the
problems are formulated mathematically, families of subgraphs, i.e., sets of
subsets of edges, appear frequently. For example, in the congestion analysis
of telecommunication networks, we should choose a path or a tree connecting
communication sites whose cost is the smallest. Here, a path or a tree can
be seen as a subgraph of the original network graph, and this problem can
be seen as choosing the most cost-effective one from the set of all subgraphs
connecting communication sites. Since there are at most 2m subgraphs for
a graph with m edges, explicitly storing them is usually prohibitive even for
graphs of moderate size. Decision diagrams explained in this chapter can
sometimes remedy this issue; they are data structures designed to compactly
store a family of subgraphs, or more generally a family of subsets. Below we
first explain the relation between families of sets and Boolean functions, since
BDDs were originally designed to efficiently represent Boolean functions.
Then, we explain the structures and semantics of BDDs and ZDDs. After
that, we focus on operations and efficient construction methods for BDDs
and ZDDs.

2.1 Boolean Functions and Families of Sets

Given binary variables x1, . . . , xm, Boolean function f is a function that maps
every assignment of x1, . . . , xm into a binary value true or false. Boolean

11

CHAPTER 2. BACKGROUND OF DECISION DIAGRAMS

functions are basically described by Boolean expressions composed of binary
variables and Boolean operators such as logical AND (∧), logical OR (∨),
and logical NOT (¬).

Given item set I = {a1, . . . , am}, family of sets I ⊆ 2I is a set of subsets
of I. Family of sets can be described in extensional notation, i.e., described
as an explicit list of all the subsets in I, or as an expression in cooperation
with some set operators such as set union (∪), set intersection (∩), and set
join (t). Here the set join is an operation for two sets I and J defined as:
I t J := {a ∪ b | a ∈ I, b ∈ J}.

We can relate these two concepts. For Boolean functions, since there
are two assignments, true or false, for each variable xi, there are 2m assign-
ments for the set of variables x1, . . . , xm. For families of sets, there are 2m

subsets of I since we can choose whether ai is included in or excluded from
the subset for each item ai. These observations lead to the following cor-
respondence with Boolean functions and families of subsets: Given Boolean
function f , we consider a family of sets If satisfying the condition that for any
I ′ = {ai1 , . . . , aik} ⊆ I, I ′ ∈ If if and only if f evaluates to true by assigning
xi1 , . . . , xik true and the other binary variables false. In other words, If is
the family of subsets collecting the assignments of binary variables where f
evaluates to true. This constitutes one-to-one correspondence with Boolean
functions (with m binary variables) and families of subsets (of the set with
m items), and we can now identify them. Although BDDs were originally de-
signed for representing Boolean functions and ZDDs were originally designed
for representing families of subsets, we can now regard them as representing
the objects of the same class.

2.2 Binary Decision Diagrams (BDDs)

A Binary Decision Diagram [Bryant, 1986], abbreviated as BDD, is a rooted
directed acyclic graph (DAG)-shaped data structure to compactly represent
a Boolean function. BDD B = (N, A) has dnode set N and arc set A; here,
as described in Section 1.4, we call the nodes of BDD as dnode. The root
dnode is denoted by r ∈ N. Dnode set N has two terminal dnodes > and ⊥
that have no outgoing arcs and other internal dnodes. Each internal dnode
has exactly two outgoing arcs, lo-arc and hi-arc, and the dnodes pointed by
them are called lo-child and hi-child, respectively. For internal dnode n ∈ N,
the lo-child and hi-child of n are denoted by lo(n) and hi(n), respectively.
Each internal dnode also has an integer ranging [1,m] called label, and is
denoted by lb(n). For convenience, we let the labels of terminals as m + 1.
The size |B| of BDD B is defined by the number of dnodes |N|. We impose

12

2.2. BINARY DECISION DIAGRAMS (BDDS)

the following ordered property: for any internal dnode n, its label must be
smaller than the children’s one, i.e., lb(n) < lb(lo(n)) and lb(n) < lb(hi(n))
must hold. Thanks to the ordered property, the BDD structure can be seen
as a DAG layered by dnodes’ labels; dnodes with smaller label are placed on
a higher layer.

Given BDD B, we can associate for each dnode of B a Boolean function in
a recursive manner, and the Boolean function fB represented by B is defined
as follows.

Definition 2.1. Given BDD B = (N, A), Boolean function fn represented by
dnode n ∈ N is defined as follows:

• If n = > or ⊥, fn = true or false, respectively. Here, true and false are
identity functions that evaluate true and false.

• Otherwise, fn = (¬xlb(n) ∧ flo(n)) ∨ (xlb(n) ∧ fhi(n)), where flo(n) and fhi(n)
are the Boolean functions represented by dnodes lo(n) and hi(n).

The Boolean function fB represented by B is defined as the Boolean function
fr represented by root dnode r ∈ N.

The above definition stands on Boolean functions. We can also consider
the associated family of subsets by considering the set of paths from root to
terminal. Given path R from root r to terminal > in BDD B, the subsets
satisfying the following conditions are associated: (i) If R traverses hi-arc
outgoing from dnode with label i, ai ∈ I must be included. (ii) If R traverses
lo-arc outgoing from dnode with label i, ai ∈ I must not be included. (iii) If
R does not traverse any dnode with label i, we can freely choose the inclusion
of ai ∈ I. Then, the family of subsets represented by BDD B is the union of
associated subsets of all the paths from r to >.

For example, Figure 2.1a depicts the BDD representing the family of
subsets of {a1, . . . , a5} such that the cardinality is less than or equal to 2.
In other words, the BDD in Figure 2.1a represents a Boolean function that
evaluates to true if and only if the number of binary variables assigned to
true is less than or equal to 2. Each internal dnode is drawn as a circle with
a label inside it, and solid and dashed lines indicate hi- and lo-arcs. In this
BDD, the path 1-(lo)-2-(hi)-3-(lo)-4-(lo)-> corresponds to two subsets {a2}
and {a2, a5}; since it does not pass through any dnode with label 5, it does
not care whether a5 is included.

13

CHAPTER 2. BACKGROUND OF DECISION DIAGRAMS

(a) (b) (c)1

2 2

3 3 3

4 4

5

> ⊥

1

2 2

3 3

4 4

5

⊥ >

i=1

2

3

4

5

6

0

0 1

0 1 2

1 2

2

> ⊥

Figure 2.1: (a) BDD of the family of subsets of {a1, . . . , a5} such that the
cardinality is less than or equal to 2. The integer inside an circle is a label,
and solid and dashed lines indicate hi- and lo-arcs, respectively. (b) ZDD of
the same family of subsets. (c) Result of Construct(Cardinality2) when
m = 5. The integer inside a dnode is a configure, i.e., the k′ value.

2.3 Zero-suppressed Binary Decision Diagrams

(ZDDs)

A Zero-suppressed Binary Decision Diagram [Minato, 1993], abbreviated as
ZDD, is also a rooted DAG-shaped data structure. It was originally intended
to compactly represent a sparse family of subsets, that frequently appears
in real applications. ZDDs can be considered as a variant of BDDs, and the
structure of a ZDD is identical to that of a BDD. That is, ZDD Z = (N, A)
has dnode set N and arc set A where the dnode set consists of two terminal
dnodes >,⊥ and the other internal dnodes that have two outgoing arcs. Here
we use the term “dnode” since the structural property is identical. We also
borrow the following structural terms of BDDs for ZDDs: lo-arc, hi-arc, lo-
child, hi-child, and label. The ordered property is also imposed for ZDDs,
i.e., for any internal dnode n ∈ N, lb(n) < lb(lo(n)) and lb(n) < lb(hi(n)) must
hold. The size |Z| of ZDD Z is again defined by the number of dnodes |N|.

The difference of ZDDs and BDDs comes from the semantics. Given ZDD
Z, we can associate for each dnode of Z a family of subsets in a recursive
manner, and the family IZ of subsets represented by Z is defined as follows.

Definition 2.2. Given ZDD Z = (N, A), family In of subsets represented by
dnode n ∈ N is defined as follows:

• If n = > or ⊥, In = {∅} or ∅, respectively. Here, {∅} is the set
containing only an empty set, while ∅ is simply an empty set.

• Otherwise, In = Ilo(n) ∪ [{alb(n)} t Ihi(n)], where Ilo(n) and Ihi(n) are the
families of subsets represented by dnodes lo(n) and hi(n).

14

2.4. OPERATIONS ON DDS

The family IZ of subsets represented by Z is defined as the family Ir of subsets
represented by root dnode r ∈ N.

The difference can be more clearly stated by viewing from the set of paths
from root to terminal as in Section 2.2. Given path R from root r to terminal
> in ZDD Z, a subset satisfying the following conditions is associated: Item
ai ∈ I is included if and only if R traverses hi-arc outgoing from dnode
with label i. The difference of ZDDs and BDDs appears in the treatment of
skipped labels; in BDD, for skipped label i, we can freely choose the inclusion
of ai, while in ZDD, we must exclude ai.

For example, Figure 2.1b depicts the ZDD representing the family of sub-
sets of {a1, . . . , a5} such that the cardinality is less than or equal to 2. In this
ZDD, the path 1-(lo)-2-(hi)-3-(lo)-4-(hi)-> corresponds to subset {a2, a4}.
Unlike BDD, only single subset is associated with a path from root to > in
a ZDD.

2.4 Operations on DDs

One of the features BDDs and ZDDs have is that they can solve various
problems related to Boolean functions or families of subsets in polynomial
time with respect to the size of them. Here, we focus on two problems, linear
optimization problem and weighted model counting problem. We describe
these problems with families of subsets.

We consider the situation that family I of subsets of I is given in some
form, e.g., in the form of a BDD or a ZDD. Then, these problems are defined
as follows.

Problem 2.3. Given weight wa ∈ R for every item a ∈ I, linear optimization
problem is to compute subset I ′ ∈ I minimizing the sum of weights. In other
words, this problem computes

argmin
I′∈I

∑
a∈I′

wa. (2.1)

If there are multiple subsets that minimize (2.1), we can choose an arbitrary
one from them.

Problem 2.4. Given weights w+
a , w

−
a ∈ R for every item a ∈ I, weighted

model counting problem is to compute

∑
I′∈I

[(∏
a∈I′

w+
a

)
·
(∏
a∈I\I′

w−a

)]
. (2.2)

15

CHAPTER 2. BACKGROUND OF DECISION DIAGRAMS

As regards the first problem, when we set all weights wa to 1, this problem
computes the subset in I with the smallest number of items. As regards the
second problem, when we set all weights w+

a , w
−
a to 1, the value (2.2) equals

the number of subsets in I.

If I is given explicitly, i.e., I is given in an extensional notation, these
problems can be solved in O(|I||I|) time by scanning all the subsets in I.
Although it is linear in |I|, since I has generally an exponential number of
subsets, its bound is prohibitively large. Meanwhile, if I is given implicitly,
these problems typically fall in computationally tough complexity classes.
For example, if I is the set of edges in an undirected graph and I is defined
as the family of subgraphs of T -Steiner trees where T is the subset of vertices,
Problem 2.1 is exactly the minimum Steiner tree problem, which is known
to be NP-complete.

However, if a BDD or a ZDD representing I is given, we can solve these
problems in linear time with respect to the size of the decision diagram; e.g.,
see [Knuth, 2011].

Theorem 2.5. Suppose that BDD B representing I is given. Then, Prob-
lems 2.3 and 2.4 can be solved in O(|B|) time.

Theorem 2.6. Suppose that ZDD Z representing I is given. Then, Prob-
lems 2.3 and 2.4 can be solved in O(|Z|) time.

These can be solved by a dynamic programming (DP) on the decision
diagram structures; for BDDs, the algorithms are much similar to Algorithms
C and B in [Knuth, 2011], and those are also much similar for ZDDs. For
readers who are not familiar with decision diagrams, we briefly describe the
algorithm for solving these problems with a ZDD.

For the linear optimization problem (Problem 2.3), as described in Sec-
tion 2.3, each subset in I corresponds to a path from root r to terminal > in
ZDD. Therefore, we try to solve the linear optimization by finding the short-
est path from r to >. Here, we associate arcs’ length as follows: First, we set
the length of each lo-arc to 0. Second, we set the length of each hi-arc outgo-
ing from the dnode with label i to wai , since traversing this hi-arc means the
inclusion of item ai. Then, the desired answer is the subset corresponding to
the shortest path from r to >. Since ZDD is a DAG, the shortest path can
be computed in linear time with respect to its size by computing, for each
dnode n, the shortest path length from r in a top-down manner.

For the weighted model counting problem (Problem 2.4), we consider
computing partial sums associated with dnodes in a bottom-up manner.

16

2.5. TOP-DOWN CONSTRUCTION METHODS

More specifically, for dnode n ∈ Z, we consider the following sum:

DP[n] :=
∑
I′∈In

[(∏
a∈I′

w+
a

)
·
(∏
a∈{alb(n),...,am}\I′

w−a

)]
, (2.3)

where In is the family of subsets associated with dnode n defined in Def-
inition 2.2. Although (2.3) is the sum of potentially exponentially many
products, DP has the following recursive formula:

DP[n] = w−alb(n) ·
(

lb(lo(n))∏
i=lb(n)+1

w−ai

)
·DP[lo(n)] +w+

alb(n)
·
(

lb(hi(n))∏
i=lb(n)+1

w−ai

)
·DP[hi(n)].

(2.4)
Starting from DP[>] = 1 and DP[⊥] = 0 and computing DP in a bottom-up

manner, we can obtain the value of (2.2) by (
∏lb(r)−1

i=1 w−ai) ·DP[r], where r is
the root dnode.

2.5 Top-Down Construction Methods

In Section 2.4, we observe that once the BDD or ZDD is built, we can solve
some difficult problems regarding the family of subsets. The remaining is
how to build BDDs and ZDDs. One choice is bottom-up construction where
a decision diagram is built from a recursive composition of small decision di-
agrams. It may be a nice choice when the family of subsets (or the Boolean
function) is represented as a mathematical expression (or a Boolean expres-
sion).

However, for network analysis applications, such a situation is rare. For
example, in the congestion analysis of telecommunication networks, the fam-
ily I will be defined as the set of all paths or all Steiner trees. In such a case,
top-down construction of decision diagrams may be a good choice.

As far as we know, the idea of top-down construction originates in the
paper of Sekine et al. [1995], where their focus was on the computation of
Tutte polynomial of the graph. Now their method can be seen as constructing
a BDD representing the family of all the spanning trees. Since then, top-down
construction algorithms for various families of subsets have been developed.
Among them, the most famous one is Knuth’s Simpath algorithm [Knuth,
2011], which builds a ZDD representing the family of all the simple s, t-paths.
By expanding such research, Kawahara et al. [2017b] proposed frontier-based
search, which can build a ZDD of various graph structures such as connected
component, Steiner tree, and rooted spanning forest. Hereafter, we explain
the framework of top-down construction in accordance with the paper of

17

CHAPTER 2. BACKGROUND OF DECISION DIAGRAMS

Iwashita and Minato [2013]. Note that since we can build ZDDs by only
minor modifications, we first explain the framework for constructing BDDs,
and then we explain the difference when ZDDs are constructed.

We start with a naive construction of BDD. We order the items a1, . . . , am
and we consider the process of determining one by one whether ai is excluded
from or included in the subset one by one. By repetitively trying this process
with different choices, a binary decision tree is generated. At the i-th level
of this tree, all the subsets of I<i := {a1, . . . , ai−1} are enumerated, which we
call i-th subsets. After all, the leaves corresponding to the subsets included
in the desired family are marked >, while the other leaves are marked ⊥.
Finally, BDD can be built by merging identical subtrees of it.

The top-down construction [Iwashita and Minato, 2013] refines this idea
by introducing configures of i-th subsets. Configures define equivalence
classes among i-th subsets. More specifically, we design specific configures
for every i-th subset with respect to the desired family I of subsets satisfying
the following conditions:

(i) For any two i-th subsets X, Y ⊆ I<i whose configures are identical, for
any Z ⊆ I≥i := {ai, . . . , am}, X∪Z and Y ∪Z are equivalent in whether
it is included in I.

(ii) For any two i-th subsets X, Y ⊆ I<i whose configures are identical, the
configures of (i + 1)-st subsets X and Y , and those of X ∪ {ai} and
Y ∪ {ai}, must be identical for each.

Regarding condition (ii), for configure s of i-th subset, the configures of
(i + 1)-st subsets made by excluding or including ai are called lo- and hi-
child configures, respectively.

If such a configure can be designed for the desired family I of subsets, the
procedure of top-down construction can be described as Algorithm 2.1. Here
Li is the set of all the dnodes with label i. S.Root and S.Child procedures
are designed for every class S of desired families. Root() returns the level
and the configure of the root of decision tree, and Child(〈i, s〉, f ∈ {lo, hi})
receives configure s of i-th subset and returns the f -child configure (with its
level) of s. Note that Child can return 〈m+ 1, 0〉 only if all the descendants
are ⊥, and 〈m + 1, 1〉 only if all the descendants are >. First, in Lines 2–
3, the root dnode r is created by the Root procedure. After that, all the
created dnodes are scanned in a top-down manner (Lines 4–5). In Line 8, the
f -child configure of n’s configure is generated. If Child returns 〈m+ 1, 0〉 or
〈m + 1, 1〉, we set the appropriate terminal to the f -child of n (Lines 9–10).
Otherwise, we search a dnode of label i whose configure is the generated
one (Line 12). If such a dnode exists, we set it to the f -child of n (Line 13).

18

2.5. TOP-DOWN CONSTRUCTION METHODS

Algorithm 2.1: Top-down construction framework.

1 procedure Construct(S):
2 〈i0, s0〉 ← S.Root()
3 Create root dnode r ∈ Li0 whose configure is s0
4 for i = i0 to m do
5 foreach n ∈ Li do
6 foreach f ∈ {lo, hi} do
7 s← (n’s configure)
8 〈i′, s′〉 ← S.Child(〈i, s〉, f)
9 if 〈i′, s′〉 = 〈m+ 1, 0〉 then Set ⊥ to the f -child of n

10 else if 〈i′, s′〉 = 〈m+ 1, 1〉 then Set > to the f -child of n
11 else
12 if ∃n′ ∈ Li′ s.t. configure is s′ then
13 Set n′ to the f -child of n
14 else
15 Create dnode n′′ ∈ Li′ whose configure is s′

16 Set n′′ to the f -child of n

Algorithm 2.2: Procedures for the family of subsets whose cardi-
nality is less than or equal to k.

1 procedure Cardinalityk.Root():
2 return 〈1, 0〉
3 procedure Cardinalityk.Child(〈i, k′〉, f):
4 if f = hi then k′ ← k′ + 1
5 if k′ > k then return 〈m+ 1, 0〉
6 else if k′ + (m− i) ≤ k then return 〈m+ 1, 1〉
7 else return 〈i+ 1, k′〉

Otherwise, a new dnode n′′ with label i′ and configure s′ is generated (Line 15)
and we set it to the f -child of n (Line 16). Compared to the decision tree
where (i+1)-st subsets are generated from i-th subsets directly, Algorithm 2.1
generates the configures of (i+ 1)-st subsets from those of i-th subsets.

As a brief example, we design configures for a family of subsets whose
cardinality is less than or equal to k. For such a class of families, we can take
an integer indicating the cardinality of i-th subset as a configure. At root,
the configure of an empty set is simply 0. For a dnode whose configure is k′,
the lo-child configure is k′ and the hi-child configure is k′+1. If the configure
exceeds k, we can return 〈m + 1, 0〉 since the cardinality must exceed k. If
the label is i and the configure is smaller than or equal to k − (m − i + 1),
we can return 〈m+ 1, 1〉 since the cardinality never exceeds k even if all the
remaining items in I≥i = {ai, . . . , am} are included in the subset. Now the
Root and Child procedures can be described as Algorithm 2.2.

19

CHAPTER 2. BACKGROUND OF DECISION DIAGRAMS

Figure 2.1c depicts the resultant BDD of Construct(Cardinality2) with
m = 5. In other words, the construction of a BDD representing family of
subsets whose cardinality is less than or equal to 2 is drawn in Figure 2.1c.
The integer inside each dnode (rounded squares) indicates the k′ value.

Finally, we mention the difference when ZDDs are constructed. Indeed,
even for ZDDs, the framework of top-down construction described in Algo-
rithm 2.1 remains unchanged. The difference appears in the specification of
Child procedure when 〈m+ 1, 1〉 is returned. In constructing ZDD, Child
returns 〈m + 1, 1〉 only if the descendant reached by excluding all the re-
maining items in I≥i+1 is > and all the other descendants are ⊥. This comes
from the difference of BDDs and ZDDs described in the last paragraph of
Section 2.3; in BDD, for skipped label i, we can freely choose the inclusion
of ai, while in ZDD, we must exclude ai.

20

Chapter 3

Equilibrium Computation of
Combinatorial Congestion
Games

Computation of equilibria for congestion games has been an important re-
search subject. In many realistic scenarios including network congestion
analysis, each strategy of congestion games is given by a combination of ele-
ments that satisfies certain constraints; such games are called combinatorial
congestion games. For example, given a road network with some toll roads,
each strategy of routing games is a path (a combination of edges) whose total
toll satisfies a certain budget constraint. Generally, given an item set of n
elements, the set of all such strategies, called the strategy set, can be large
exponentially in n, and it often has complicated structures; these issues make
equilibrium computation very hard. In this chapter, we propose a practical
algorithm for such hard equilibrium computation problems. We use ZDDs
to compactly represent strategy sets, and we develop a Frank–Wolfe-style it-
erative equilibrium computation algorithm whose per-iteration complexity is
linear in the size of the ZDD representation. We prove that an ε-approximate
Wardrop equilibrium can be computed in O(poly(m)/ε) iterations, and we
improve the result to O(poly(m) log ε−1) for some special cases. Experiments
confirm the practical utility of the proposed method.

3.1 Introduction

Congestion games form an important subclass of non-cooperative games since
they can model various resource allocation scenarios where every user acts
selfishly. Motivated by a wide variety of applications, computation of equilib-

21

CHAPTER 3. EQUILIBRIUM COMPUTATION OF COMBINATORIAL
CONGESTION GAMES

ria for congestion games, which enable us to examine structures of equilibria
(e.g., the price of anarchy), has been an attracting research subject. In many
practical congestion games including network congestion analysis, each strat-
egy forms a subset of a finite ground set, I := {a1, . . . , am}, and the set of
all strategies, or the strategy set, can be large exponentially in m. We call
such games combinatorial congestion games. A typical example is selfish
routing [Roughgarden, 2005]: Given a graph with edge set I = E and origin-
destination pair (s, t), each player chooses an s–t path selfishly to go from s
to t as fast as possible. In this case, the strategy set is the collection of all
s–t paths that is a family of subsets of E, whose size is generally exponen-
tial in m. For the standard selfish routing, efficient equilibrium computation
methods have been developed [Fabrikant et al., 2004; Thai, 2017]. These
methods handle the huge strategy sets by utilizing efficient polynomial-time
algorithms for the min-cost flow or shortest path problems. In more general
settings, however, strategy sets can have more complicated structures, for
which such polynomial-time algorithms are unavailable. Below we list two
such examples:

Budgeted Selfish Routing.

We consider a variant of selfish routing based on [Jahn et al., 2005]: The
graph representing a road network has some edges corresponding to toll roads,
and players do not choose s–t paths whose total toll is too expensive. Namely,
each strategy must satisfy a certain budget constraint. Given a cost value for
each edge, which indicates the degree of congestion, to find the minimum-cost
s–t path is at least as hard as the NP-hard knapsack problem.

Multi-location Communication.

We consider the multi-location communication problem on a network based
on [Imase and Waxman, 1991]. Let I be an edge set E of a graph representing
the communication network. Each edge connects two cities, and there are
some special cities called terminals. In this game, a player is a group of
people who are in the terminals and have a multi-person conference. Each
strategy is a Steiner tree that includes all the terminals, and each player
chooses a Steiner tree selfishly to minimize communication delay. Given the
degree of delay for each edge, the problem of finding the Steiner tree with
the smallest delay reduces to the APX-hard minimum Steiner tree problem.

Congestion games have many other applications related to resource al-
location on networks [Shakkottai et al., 2007; Han et al., 2012], and their
combinatorial variants can naturally appear in practice. Therefore, to de-

22

3.1. INTRODUCTION

velop practical equilibrium computation methods that can handle various
combinatorial strategy sets is important for advancing studies into real-world
congestion games. However, we are currently missing such general methods
due to the difficulty of dealing with a wide variety of huge and complicated
strategy sets.

3.1.1 Contribution

We develop a practical equilibrium computation algorithm for combinatorial
congestion games. Motivated by the fact that many real-world games have a
huge number of players, we employ the continuous-player setting [Sandholm,
2001], where there are infinitely many players with an infinitesimal mass. As
elucidated later, equilibrium computation for such games can be reduced to
constrained potential function minimization problems, which are generally
NP-hard due to the complicated structures of strategy sets. We address this
hardness by using ZDDs [Minato, 1993] explained in Section 2.3, which can
represent various combinatorial strategy sets compactly. We minimize po-
tential functions with a Frank–Wolfe-style iterative algorithm [Lacoste-Julien
and Jaggi, 2015] that utilizes the compact ZDD representation. In practice,
since the algorithm is performed with finite precision, output solutions gen-
erally have objective errors. Fortunately, however, we can prove that the
solutions achieve an ε-approximate Wardrop equilibrium. Below we detail
our contributions:

• We propose a Frank–Wolfe-style iterative equilibrium computation al-
gorithm for continuous-player combinatorial congestion games, whose
per-iteration complexity is linear in the total size of ZDDs representing
strategy sets.

• We prove that our algorithm outputs an ε-approximate Wardrop equi-
librium in O(poly(m)/ε) iterations if potential functions have differen-
tiability, convexity, and Lipschitz-continuous gradient. We also improve
the result to O(poly(m) log ε−1) with some additional assumptions.

• We validate the proposed method via experiments. The results demon-
strate that our method is useful for practical equilibrium computation
problems.

While ZDDs can generally be large exponentially in m, their empirical
sizes are often small enough for practical use. Moreover, ZDD sizes can
sometimes be polynomial in m. In such cases, our method can compute an

23

CHAPTER 3. EQUILIBRIUM COMPUTATION OF COMBINATORIAL
CONGESTION GAMES

ε-approximate Wardrop equilibrium in O(poly(m)/ε) (or O(poly(m) log ε−1))
time.

Our method can also compute the social optimum as in Section 3.2.
Therefore, our method can be used for examining the price of anarchy, which
is defined by the ratio of the total cost value of the equilibrium to that of
the social optimum.

3.1.2 Related Work

Continuous-player games and their connection to continuous optimization
have been widely studied. Beckmann et al. [1956] first used a convex opti-
mization formulation to study traffic equilibria. Sandholm [2001] established
a general framework of continuous-player games characterized as potential
function minimization, called potential games, but combinatorial strategy
sets were not considered. As regards the combinatorial setting, many existing
works are devoted to selfish routing [Roughgarden, 2005]: Roughgarden and
Tardos [2002] studied the inefficiency of equilibria, or the price of anarchy.
Convergence of various dynamics to equilibria were also studied in [Fischer
and Vöcking, 2004; Blum et al., 2006; Fischer et al., 2010]. Fabrikant et al.
[2004] developed a polynomial-time algorithm for computing an approximate
equilibrium. Optimization-based algorithms, including the Frank–Wolfe al-
gorithm, for equilibrium computation have also been widely studied [Vliet,
1987; Bar-Gera, 2002; Correa and Stier-Moses, 2011; Thai, 2017]; note that
the work in this chapter is the first that shows the relationship between the
precision of a Frank–Wolfe-style algorithm and approximate Wardrop equi-
libria. Congestion games other than selfish routing have also been studied
[Altman et al., 2006; Shakkottai et al., 2007; Han et al., 2012], but those
did not consider addressing the computational hardness caused by the huge
and complicated strategy sets. Jahn et al. [2005] addressed a computation-
ally hard problem of finding system-optimal flow for the budgeted routing
setting. Their approach is, however, based on a linear integer programming
formulation specialized for the budgeted routing setting, while our method
can work with various combinatorial strategy sets that can be represented
with ZDDs, e.g., see [Kawahara et al., 2017b].

The Frank–Wolfe algorithm [Frank and Wolfe, 1956], a.k.a. conditional
gradient algorithm, is a well-established algorithm for constrained convex
minimization, and it has recently been attracting much attention thanks
to the useful convergence analysis based on the duality gap [Jaggi, 2013].
Lacoste-Julien and Jaggi [2015] studied several variants of the Frank–Wolfe
algorithm and proved their global linear convergence under some assump-
tions; our method uses one of the variants called the fully-corrective Frank–

24

3.2. PROBLEM SETTINGS

Wolfe algorithm. Abernethy and Wang [2017] studied the Frank–Wolfe algo-
rithm from a perspective of zero-sum games; note that their research direction
is different from ours. As explained in Section 3.2.1, a typical bottleneck of
the Frank–Wolfe algorithm is a linear optimization step. While this bottle-
neck can be resolved in some cases [Lacoste-Julien et al., 2013; Kerdreux et
al., 2018; Braun et al., 2019], these techniques do not work in our case with
huge and complicated strategy sets.

3.2 Problem Settings

Let [r] := {1, . . . , r} be the set of populations. We consider the combinatorial
setting: Given a finite ground set I := {a1, . . . , am}, each strategy is given
by S ⊆ I, i.e., a subset of I. For each p ∈ [r], we define strategy set
Sp := {S1, . . . , S|Sp|} ⊆ 2I . Given any S ⊆ I, we let 1S ∈ {0, 1}m denote
an indicator vector whose i-th entry is 1 if ai ∈ S and 0 otherwise. We
sometimes abuse the notation and regard 1S in the same light as S.

We then explain the continuous-player setting. Each p ∈ [r] has infinitely
many players with an infinitesimal mass; let wp ∈ R be the total mass. We
assume

∑
p∈[r]w

p = 1 without loss of generality. Let zpS ∈ [0, 1] denote the

proportion of players who choose strategy S ∈ Sp; we have
∑

S∈Sp z
p
S = 1.

Consequently, wpzpS represents the mass of players in p who choose S ∈ Sp.
We call zp = (zpS1

, . . . , zpS|Sp|) a strategy profile of p and z = (z1, . . . ,zr) a

strategy profile.

We finally explain the congestion game setting. Given any strategy profile
z, we let xp =

∑
S∈Sp z

p
S1S ∈ [0, 1]n for each p ∈ [r] and x = (x1, . . . ,xr).

Note that the i-th entry of y :=
∑

p∈[r]w
pxp, denoted by yi, represents the

mass of players who choose strategies including ai ∈ I. For any p ∈ [r],
the cost of strategy S ∈ Sp is given by cS(y) :=

∑
i:ai∈S ci(yi), where ci(θ)

(θ ∈ [0, 1]) is a function that indicates the cost of using ai ∈ I when the
mass of players using ai ∈ I is θ. For convenience, we also define cost
functions on Rrn as CS(x) := cS(

∑
p∈[r]w

pxp). Each player chooses a strategy
selfishly to minimize the cost. We define potential function Φ : Rn → R as
Φ(y) :=

∑
i:ai∈I

∫ yi
0
ci(θ)dθ. Note that we have ci(y) = ∇Φ(y)i and cS(y) =

∇Φ(y)>1S. We impose some assumptions on the cost and potential functions
as summarized below; particularly, we assume Φ(·) to be convex. As in
[Sandholm, 2001], strategy profile z achieves an equilibrium iff it satisfies
the KKT condition; thanks to the convexity of Φ(·), it is characterized as a

25

CHAPTER 3. EQUILIBRIUM COMPUTATION OF COMBINATORIAL
CONGESTION GAMES

minimizer of

minimize
z≥0

Φ

∑
p∈[r]

wp
∑
S∈Sp

zpS1S

 (3.1)

subject to
∑
S∈Sp

zpS = 1 (∀p ∈ [r]). (3.2)

Since z generally consists of exponentially many variables, to directly solve
this problem is too expensive; hence we consider reformulating it. We define
V := S1 × · · · × Sr. Since the Cartesian products “×” and convex hulls
“conv(·)” are commutative, we have conv(S1) × · · · × conv(Sr) = conv(V),
and so the above problem can be equivalently rewritten as

minimize
x=(x1,...,xr)∈Rrm

F (x) := Φ

∑
p∈[r]

wpxp

subject to x ∈ conv(V),

(3.3)

which has rm variables. We aim to solve this problem in what follows. Note
that, for any p ∈ [r], the gradient of F (x) w.r.t. xp, denoted by ∇pF (x), is
given by wp∇Φ(y) ∈ Rn, where y =

∑
p∈[r]w

pxp.

We need some remarks. Although the minimizer, x, of (3.3) indicates the
proportion of players choosing ai ∈ I for each p ∈ [r], it does not give us
strategy profile z. Fortunately, however, the Frank–Wolfe-style algorithms
output a solution as a convex combination of vertices, which enable us to
obtain a strategy profile (see, Section 3.3.2). As in [Roughgarden, 2005], we
can confirm that any minimizer of (3.3) has the following uniqueness of cost
values: Given any two minimizers, x1 and x2, of (3.3), we have ci(y1) =
ci(y2) (∀i : ai ∈ I), where yj =

∑
p∈[r] x

p
j (j = 1, 2). Therefore, the total

cost of an equilibrium,
∑

i:ai∈I yi ·ci(yi), can be uniquely computed by solving
(3.3). Furthermore, computation of the social optimum can be formulated
in almost the same manner as (3.3): We minimize Ψ(y) :=

∑
i:ai∈I yi · ci(yi)

instead of Φ(y), which our method can (approximately) solve under some
assumptions detailed below. The price of anarchy can be computed as the
ratio of those two total costs.

Assumptions on Cost and Potential Functions. We assume ci(·) (∀i :
ai ∈ I) to be non-decreasing on [0, 1], which implies that Φ(·) and F (·) are
convex on [0, 1]n and [0, 1]rm, respectively. We also make the following as-
sumptions to guarantee the convergence the Frank–Wolfe-style algorithm.

26

3.2. PROBLEM SETTINGS

Let w := maxp∈[r]w
p and w := minp∈[r]w

p. We assume Φ(·) to have L-
Lipschitz-continuous gradient (L > 0) on [0, 1]n, which is equivalent to L-
Lipschitz-continuity of ci : [0, 1] → R (∀i : ai ∈ I); i.e., |ci(y1) − ci(y2)| ≤
L|y1 − y2| for any y1, y2 ∈ [0, 1]. This is a common assumption (see, e.g.,
[Fabrikant et al., 2004]). Note that, if Φ(·) has L-Lipschitz-continuous gra-
dient, F (·) also has Lipschitz-continuous gradient with constant Lw ≤ L. In
Theorem 3.2, we obtain an improved result by assuming F (·) to be strongly
convex with some constant µ > 0: F (x + d) ≥ F (x) + 〈∇F (x),d〉 + µ

2
‖d‖22

for any x,d ∈ Rrm. Note that, if Φ(·) is µ-strongly convex, then F (·) is also
strongly convex with constant µw. Below we present a standard example
setting satisfying the above assumptions.

When computing the social optimum, we need additional assumptions as
in [Roughgarden, 2005]. We assume ci(·) to be differentiable and semi-convex
(i.e., y · ci(y) is convex w.r.t. y) on [0, 1], which makes Ψ(·) differentiable and
convex. We also assume Ψ(·) to have Lipschitz-continuous gradient.

Example: Budgeted Selfish Routing. Given a graph with edge set
I = E, edge weights T1, . . . , Tm (where Ti can be considered as a toll of ei),
origin-destination pairs (s1, t1), . . . , (sr, tr), and budget value W , each player
at sp selfishly chooses an sp–tp path whose total weight is at most W . In
this case, each strategy S ∈ Sp is an edge subset that forms an sp–tp path
and satisfies

∑
i:ai∈S Ti ≤ W . If the congestion degree of each edge i ∈ I

increases linearly in the amount of traffic, the cost function of ai ∈ I is
given by ci(yi) = Aiyi + Bi with some Ai, Bi ≥ 0. The potential function
is Φ(y) =

∑
i:ai∈I

∫ yi
0
ci(θ)dθ =

∑
i∈I(

1
2
Aiy

2
i + Biyi), which is differentiable

and convex. Note that each ci(·) is Ai-Lipschitz continuous and that Φ(·) is
strongly convex with constant mini:ai∈I Ai. Furthermore, Ψ(y) =

∑
i:ai∈I yi ·

ci(yi) =
∑

i:ai∈I(Aiy
2
i + Biyi) is differentiable, convex, and has Lipschitz-

continuous gradient with constant 2×maxi:ai∈I Ai.

3.2.1 Frank–Wolfe Algorithm

In this section, we review Frank–Wolfe algorithm [Frank and Wolfe, 1956].
The Frank–Wolfe algorithm is an effective approach to constrained convex
minimization problem minx∈D f(x), whereD ⊆ Rm is a convex feasible region
and f(·) is a convex objective function. Specifically, given an initial point
x0 ∈ D, we update it for k = 0, . . . , K as follows:

1. sk ∈ argminv∈D 〈∇f(xk),v〉,

2. xk+1 = (1− γk)xk + γksk,

27

CHAPTER 3. EQUILIBRIUM COMPUTATION OF COMBINATORIAL
CONGESTION GAMES

where γk is usually set to 2
k+2

. It is known that xk converges to an opti-
mal solution, x∗, at a rate of O(poly(m)/k) if f(·) has Lipschitz-continuous
gradient [Frank and Wolfe, 1956; Jaggi, 2013]. Therefore, if the linear opti-
mization problem on D can be solved, we can obtain a sequence of solutions
that converges to x∗.

Frank–Wolfe-style algorithms require to solve linear optimization prob-
lems time and again as in Step 1, and thus how to solve it heavily affects
the efficiency of the algorithms. For the case of standard selfish routing,
the linear optimization can be solved efficiently with algorithms for finding
the shortest path, but this is not always the case with other settings. For
example, if Sp (p ∈ [r]) is a collection of Steiner trees on a given graph with
terminals, to solve the linear optimization problem on D = conv(V) is at least
as difficult as the APX-hard minimum Steiner tree problem. Note that, while
the Frank–Wolfe algorithm accepts additive errors when solving the linear
optimization [Jaggi, 2013], the error value must converge to 0 as k increases.
To achieve this is still difficult particularly when the linear optimization is
APX-hard, which is true if Sp is the collection of Steiner trees. Jaggi [2013]
also mentioned the difficulty of performing the Frank–Wolfe algorithm for
the case where the linear optimization step is NP-hard. In Section 3.3.1, we
address this hardness by using ZDDs.

3.3 Proposed Method

A high-level sketch of our method is as follows: We first construct ZDD ZSp

that represent Sp for each p ∈ [r], and then we perform the fully corrective
Frank–Wolfe algorithm (FCFW) by utilizing the ZDD representation of the
strategy sets. Our algorithm, described in Algorithm 3.1, consists of two
main building blocks: Linear optimization with ZDDs (Step 8) and update
of solutions (Step 12), called full correction, which we detail in Sections 3.3.1
and 3.3.2, respectively. Section 3.3.2 also explains how to obtain a strategy
profile, and we prove that the obtained solution achieves an ε-approximate
Wardrop equilibrium in Section 3.3.3.

3.3.1 Linear Optimization with ZDDs

In Step 8, we need to solve spk ∈ argminu∈Sp 〈∇Φ(yk),u〉 for each p ∈ [r].
Note that, since 〈∇Φ(yk),u〉 is linear with respect to u and ∇pF (xk) =
wp∇Φ(yk) holds, we can rewrite the linear optimization as the optimization
problem on the polytope: spk ∈ argminu∈conv(Sp) 〈∇pF (xk),u〉. Hence sk :=
(s1k, . . . , s

r
k) ∈ argminv∈conv(V) 〈∇F (xk),v〉 holds, which implies that Step 8

28

3.3. PROPOSED METHOD

Algorithm 3.1: FCFW with ZDDs for equilibrium computation

1 Construct ZS1 , . . . , ZSr

2 Choose Sp ∈ Sp for p ∈ [r]
3 Let xp0 = 1Sp , Ap0 = {Sp}, and zpSp = 1 for p ∈ [r]
4 x0 = (x1

0, . . . ,x
r
0)

5 for k = 0 to K do
6 yk =

∑
p∈[r] w

pxpk
7 foreach p ∈ [r] do
8 Compute spk ∈ argminu∈Sp 〈∇Φ(yk),u〉 by DP on ZSp

9 Let dpk = spk − xpk and gpk = 〈−∇Φ(yk),dpk〉
10 if maxp∈[r] g

p
k ≤ ε then

11 return xk, {Apk}p∈[r], and {{zpS}S∈Ap
k
}p∈[r]

12 Execute Correction(xk, {Apk}p∈[r], {s
p
k}p∈[r], ε) to get

xk+1 = (x1
k+1, . . . ,x

r
k+1), {Apk+1}p∈[r], and {{zpS}S∈Ap

k+1
}p∈[r]

Algorithm 3.2: Correction(xk, {Apk}p∈[r], {spk}p∈[r], ε)
1 Find xk+1 = (x1

k+1, . . . ,x
r
k+1) , {Apk+1}p∈[r], and {{zpS}S∈Ap

k+1
}p∈[r] satisfying

the following conditions:

1. xpk+1 =
∑
S∈Ap

k+1
zpS1S for p ∈ [r].

2. F (xk+1) ≤ minγ∈[0,1] F (xk + γ(sk − xk)), where sk = (s1k, . . . , s
r
k).

3. maxp∈[r] maxu∈Ap
k+1

〈
−∇Φ(yk+1),xpk+1−u

〉
≤ε, where yk+1 =

∑
p∈[r] w

pxpk+1.

can be seen as the linear optimization step of the Frank–Wolfe algorithm in
Section 3.2.1. Since this linear optimization problem is generally hard to solve
as mentioned in Section 3.2.1, we consider performing this step efficiently by
utilizing ZDDs.

Indeed, given ZSp , spk ∈ argminu∈Sp 〈∇Φ(yk),u〉 can be solved in linear
time with respect to |ZSp | since it is equivalent to solve linear optimization
problem (Problem 2.3) with family Sp and weights ∇Φ(yk).

This ZDD-based linear optimization is suitable as a subroutine of Frank–
Wolfe-style algorithms since, once ZDDs are constructed, we can reuse them
for k = 0, . . . , K. To the best of our knowledge, this is the first Frank–
Wolfe-style algorithm that takes advantages of ZDDs. The complexity of
Step 8, which is the most expensive step, is linear in the total size of ZDDs:∑

p∈[r] |Zp|. We mention here the ZDD size. In general, the ZDD size, and
the complexity of its construction, are exponential in n, but its empirical
size is often small enough for practical use. Moreover, if S is defined on a
graph with a constant path-width, the resulting ZDD size and construction
complexity can be poly(m) [Inoue and Minato, 2016; Kawahara et al., 2017b].

29

CHAPTER 3. EQUILIBRIUM COMPUTATION OF COMBINATORIAL
CONGESTION GAMES

3.3.2 Full Correction

We here detail Step 12, which computes xk+1 via full correction (Algorithm
3.2). For each p ∈ [r], Apk ⊆ Sp represents a subset of strategies such that
xpk =

∑
S∈Ap

k
zpS1S with some zpS ∈ (0, 1]; we call Apk the active set. Note that,

if xk is the output solution, the strategy profile of each p ∈ [r] (or non-zero
entries of zp ∈ [0, 1]|S

p|) is obtained as {zpS}S∈Ap
k
.

Roughly speaking, the full-correction step minimizes F (·) on conv({A1
k ∪

{s1k}}× · · ·×{Ark ∪{srk}}), which can be formulated as convex minimization
on a probabilistic simplex. An implementation of a similar full-correction
step is presented in [Krishnan et al., 2015], which uses a Frank–Wolfe-style
algorithm called the away-steps Frank–Wolfe, and our full-correction step
can be implemented by modifying it as detailed in Appendix 3.6. With the
implementation of the full-correction step, we have |Apk| ≤ k. Therefore,
while the size of a strategy profile is generally exponential in m, the strategy
profile obtained by Algorithm 3.1 for each p ∈ [r] is at most as large as the
number of iterations, which can be bounded as in Theorem 3.2.

The fully corrective update of the current solution is more expensive than
that of the standard Frank–Wolfe algorithm (Step 2 in Section 3.2.1). How-
ever, thanks to this full-correction step, FCFW achieves a better convergence
result for strongly convex objective functions, which we will use in the proof
of Theorem 3.2. Empirically, although the full-correction step increases the
per-iteration computation time, it decreases the number of iterations by a
great margin, which often reduces the total computation time. In our case,
FCFW is a suitable choice because the full-correction step is typically far
cheaper than the linear optimization with ZDDs, which means it is effective
to reduce the number of iterations via full correction. Furthermore, thanks to
the third condition of Algorithm 3.2, we can prove that the output solution
attains an ε-approximate Wardrop equilibrium as shown below.

3.3.3 Approximate Wardrop Equilibrium

Let x = (x1, . . . ,xp) be the obtained solution. For each p ∈ [r], we let
Ap be the active set and {zpS}S∈Ap be the strategy profile; we have xp =∑

S∈Ap z
p
S1S. If our algorithm is performed with infinite precision (ε = 0),

the output attains the following Wardrop equilibrium for every p ∈ [r]:
CS(x) ≤ CS′(x) for any S ∈ Ap and S ′ ∈ Sp. Namely, no player has an
incentive to change his/her strategy. Unfortunately, since ε = 0 is impossible
in practice, the obtained solution does not always satisfy the above condi-
tion. Fortunately, however, we can show that the output of Algorithm 3.1
achieves an ε-approximate Wardrop equilibrium as follows:

30

3.3. PROPOSED METHOD

5 10 15 20
M

104

108

1012

1016

S
iz
e

Strategy-set size

ZDD size

(a) BSR, Sizes (semi-log)

5 10 15 20
M

0

10000

20000

T
im

e
(m

s)

Enumeration

ZDD construction

(b) BSR, Construction times

5 10 15 20
M

0

10000

20000

30000

40000

T
im

e
(m

s)

Baseline

Our method

(c) BSR, FCFW times

5 10 15 20
M

1013

1028

1043

1058

S
iz
e

Strategy-set size

ZDD size

(d) MC, Sizes (semi-log)

5 10 15 20
M

0

500

1000

1500

2000
T
im

e
(m

s)

Enumeration

ZDD construction

(e) MC, Construction times

5 10 15 20
M

0

2000

4000

6000

T
im

e
(m

s)

Baseline

Our method

(f) MC, FCFW times

Figure 3.1: Figures 3.1a–3.1c show the results of BSR instances, and Figures
3.1d–3.1f show those of MC instances. Figures 3.1a and 3.1d indicate the
sizes of strategy sets and ZDDs; the strategy-set sizes are computed by DP
on ZDDs. Figures 3.1b and 3.1e show the times required for constructing
ZS and enumerating all S ∈ S, where the enumerated strategy sets are used
by the baseline method. Figures 3.1c and 3.1f present the running times
of FCFW (Algorithm 3.1) performed with the baseline and our methods,
where each curve and error band indicate the mean and standard deviation,
respectively, over 50 random instances.

Theorem 3.1. Fix any p ∈ [r]. Algorithm 3.1 outputs x satisfying CS(x)−
ε ≤ CS′(x) + ε for any S ∈ Ap and S ′ ∈ Sp.

Proof. Let y =
∑

p∈[r]w
pxp. Thanks to Step 10, we have

〈∇Φ(y),xp〉 ≤ min
u∈Sp
〈∇Φ(y),u〉+ ε = min

S′∈Sp
CS′(x) + ε.

From the third condition in Algorithm 3.2, we obtain

〈∇Φ(y),xp〉 ≥ max
u∈Ap

〈∇Φ(y),u〉 − ε = max
S∈Ap

CS(x)− ε.

Combining these inequalities, we obtain the claim.

The number of iterations for computing the ε-approximate Wardrop equi-
librium can be bounded as follows:

31

CHAPTER 3. EQUILIBRIUM COMPUTATION OF COMBINATORIAL
CONGESTION GAMES

Theorem 3.2. Algorithm 3.1 stops after O(poly(m)/ε) iterations. If F (·)
is strongly convex and the reciprocal of the pyramidal width [Lacoste-Julien
and Jaggi, 2015] of conv(V) is O(poly(m)), it stops after O(poly(m) log ε−1)
iterations.

Proof. If F (·) has differentiability, convexity, and Lipschitz-continuous gra-
dient, the maxv∈conv(V) 〈∇F (xk), (xk − v)〉 value, so-called the duality gap,
is bounded by O(poly(m)/k) as in [Jaggi, 2013]. This fact implies that∑

p∈[r]w
pgpk ≤ ε holds after k = O(poly(m)/ε) iterations. Since each gpk is

non-negative, we see that the algorithm stops after at most
⌈
k/minp∈[r]w

p
⌉

=
O(poly(m)/ε) iterations. We then obtain the improved result under the
assumptions. Note that since

∑
p∈[r]w

p = 1, the third condition in Algo-

rithm 3.2 implies maxv∈conv(A1
k+1×···×A

r
k+1)
〈−∇F (xk+1),xk+1 − v〉 ≤ ε, which

means that the so-called away gap is less than or equal to ε (see, [Lacoste-
Julien and Jaggi, 2015]). Consequently, the procedures of Algorithms 3.1
and 3.2 completely recover those of FCFW, and so, if the reciprocal of
the pyramidal width is O(poly(m)), the duality gap can be bounded by
O(exp(−Θ(k/poly(m)))) as in [Lacoste-Julien and Jaggi, 2015]. Therefore,
the algorithm stops after O(poly(m) log ε−1) iterations.

Lacoste-Julien and Jaggi [2015] conjectured that the pyramidal width is
lower bounded by Ω(1/

√
m) in general. Under the conjecture, its reciprocal

is O(
√
m), and so the corresponding assumption in Theorem 3.2 is satisfied.

3.4 Experiments

We evaluate the proposed method via experiments. In Section 3.4.1, we
show the empirical efficiency of our method with synthetic instances. In
Section 3.4.2, we demonstrate that our method can work with real-world
instances. For constructing ZDDs, we use Graphillion [Inoue et al., 2016].
All the algorithms are implemented in C++, and the codes are complied
with clang++ (Apple LLVM v10.0.0). We set the ε value of our algorithm to
10−10. All the experiments are conducted on a 64-bit macOS (High Sierra)
machine with 2.5 GHz Intel Core i7 CPU (single thread) and 16 GB RAM.

3.4.1 Synthetic Instances

We consider budgeted selfish routing (BSR) and multi-location communi-
cation (MC) instances on undirected grid graphs with 6 × h edges (h =
1, 2, . . . , 20); I is the edge set with m = 13h + 6 edges. For simplicity, we
consider the symmetric case (r = 1), and we omit index p ∈ [r]; e.g., S1

32

3.4. EXPERIMENTS

1 2 3 4 5
α

103

104

105

106

107

S
iz
e Strategy-set size

ZDD size

(a) Sizes

1 2 3 4 5
α

0

1000

2000

3000

T
im

e
(m

s)

Enumeration

ZDD construction

(b) Construction times

Figure 3.2: Figure 3.2a shows the strategy-set and ZDD sizes for the BSR
instances with h = 5 and α = 1.0, 1.5, . . . , 5.0. Figure 3.2b indicates the
times required for constructing ZS and enumerating all S ∈ S.

is denoted by S. In BSR instances, each S ∈ S is an s–t path satisfying a
budget constraint,

∑
i:ai∈S Ti ≤ W , where s and t are placed on the diagonal

corners of the grid. Edge toll Ti (i ∈ I) is chosen uniformly at random from
{0, 1, . . . , 10}, and we let W = 5α × (6 + h); note that, if α = 1, W corre-
sponds to the total weight of the shortest s–t path on average. The choice of
α affects the sizes of S and ZS . Figure 3.2a presents their sizes for the case
with h = 5 and α = 1.0, 1.5, . . . , 5.0, where S includes all s–t paths when
α ≥ 4.5. In Figure 3.2b, we also present the times required for constructing
ZS and enumerating all S ∈ S. Note that, while |S| increases with α, this is
not always the case with |ZS |, implying that our ZDD-based method can be
applied to BSR instances with large W values. In the following experiments,
we let α = 2. In MC instances, S is the collection of all Steiner trees con-
necting four terminals placed on the corners of the grid. With both BSR and
MC instances, we use cost functions defined as ci(θ) = Aiθ+ 1 (i ∈ I), where
Ai is drawn uniformly at random from [0, 10]. We make 50 random copies of
cost functions, and all results that can vary with the objective function (i.e.,
those related to FCFW) are shown by the mean and standard deviation cal-
culated over the 50 random instances. As a baseline method, we employ the
following enumeration-based algorithm: We first enumerate all S ∈ S and
then execute FCFW (Algorithm 3.1) whose linear optimization step (Step 8)
is performed by choosing the best one from the enumerated S. By comparing
our ZDD-based method with the baseline, we examine how much the use of
ZDD makes the algorithm efficient.

Figure 3.1 presents the results. The baseline method does not work with
BSR and MC instances with h ≥ 8 and h ≥ 3, respectively, due to memory

33

CHAPTER 3. EQUILIBRIUM COMPUTATION OF COMBINATORIAL
CONGESTION GAMES

(a) BSR, p = 1 (b) BSR, p = 2 (c) BSR, p = 3 (d) BSR, p = 4

(e) MC, p = 1 (f) MC, p = 2 (g) MC, p = 3 (h) MC, p = 4

Figure 3.3: Each figure illustrates the topology of TW Telecom network.
Figures 3.3a–3.3d: For each p = 1, . . . , 4, the square and triangular vertices
indicate sp and tp, respectively, and the colored (bold) sp–tp path is the most-
used strategy. Figures 3.3e–3.3h: For each p = 1, . . . , 4, the square vertices
indicate the terminals, and the colored (bold) Steiner tree is the most-used
strategy.

shortage; note that the strategy-set sizes of those instances are calculated by
using ZDDs. We see that ZDDs are far smaller than strategy sets, and ZDD
construction can be performed far more efficiently than the enumeration of
strategies. Thanks to the compactness of ZDDs, our method runs far faster
than the baseline method. Our method is about 236 and 984 times faster
than the baseline in the BSR instance with h = 7 and MC instance with
h = 2, respectively.

3.4.2 Real-world Instances

We consider BSR and MC instances on a real-world network. We use TW
Telecom dataset of Internet Topology Zoo [Knight et al., 2011], which is a
U.S. communication network. The original network has some isolated vertices
and multiple edges; we remove them and obtain a graph with 71 vertices and
115 edges. Figure 3.3 presents the topology of the graph. In both BSR and
MC instances, we let r = 4 and (w1, w2, w3, w4) = (0.4, 0.3, 0.2, 0.1), and we
use cost function ci(θ) = Aiθ

2+Bi; i.e., the cost increases quadratically in the
mass of players. We let Bi be the Euclid distance of edge i and Ai = BiUi,
where Ui is drawn uniformly at random from [0, 100]. In the BSR instance,
(s1, t1), . . . , (s4, t4) are placed as in Figures 3.3a–3.3d. We set edge weight wi
at bBi(100 − Ui)e. For each p = 1, . . . , 4, budget value W p is set at 100Lp,
where Lp is the length of the shortest sp–tp path with respect to edge length

34

3.4. EXPERIMENTS

Table 3.1: Strategy-set sizes, ZDD sizes, and ZDD construction times for
real-world instances.

p Strategy-set size ZDD size Time (ms)

BSR

1 9.099× 105 3.925× 104 2340
2 2.725× 106 8.382× 104 4474
3 6.219× 105 3.504× 104 2565
4 9.426× 104 9.941× 103 485.9

MC

1 9.796× 1028 9.315× 104 121.5
2 4.286× 1028 7.930× 104 81.04
3 8.462× 1028 8.315× 104 102.5
4 9.281× 1028 8.798× 104 152.0

Bi. In the MC instances, the terminals are placed as in Figures 3.3e–3.3h.

We apply our method to the instances and study the obtained results.
Table 3.1 presents the strategy-set size, ZDD size, and ZDD construction
time for each p = 1, . . . , 4; notably, with the MC instance, ZDDs are about
1024 times smaller than the strategy sets. Additionally, FCFW takes 2391 ms
and 3316 ms for BSR and MC instances, respectively. In total, our method
computes approximate equilibria in 1.226 × 104 ms and 3773 ms for BSR
and MC instances, respectively. Since our method can output a strategy
profile, we can obtain the most-used strategy for each p = 1, . . . , 4 as in
Figure 3.3. We see that the strategy of each p tends to avoid using the
same edges (resource) to each other. For example, in Figures 3.3g and 3.3h,
the leftmost vertex is chosen as a terminal, which has two edges, and each
strategy in p = 3 and 4 use one of the two edges that is different from each
other. This result implies that the players successfully avoid congestion at
the equilibria, and so the price-of-anarchy (PoA) values are expected to be
close to 1; i.e., the equilibria are almost as efficient as the social optima.
In fact, the PoA values of the BSR and MC instances are both about 1.01,
which are obtained by computing the social optima with our method. Figure
3.4 presents the decrease in maxS∈Ap

k
CS(xk)−minS′∈Sp CS′(xk) values over

the iterations for p = 1, . . . , 4, which converge to 0 at a rate of O(poly(m)/k)
(or O(exp(−Θ(k/poly(m))))) as in Theorems 3.1 and 3.2. Consistent with
the theoretical results, the values converge to 0 very quickly as k increases.

35

CHAPTER 3. EQUILIBRIUM COMPUTATION OF COMBINATORIAL
CONGESTION GAMES

0 10 20
k

0

200

400

600

D
iff
er
en
ce

of
co
st
s p = 1

p = 2

p = 3

p = 4

(a) BSR

0 10 20 30
k

0

500

1000

D
iff
er
en
ce

of
co
st
s p = 1

p = 2

p = 3

p = 4

(b) MC

Figure 3.4: maxS∈Ap
k
CS(xk) − minS′∈Sp CS′(xk) values (p = 1, . . . , 4) for

real-world instances.

3.5 Conclusion

We developed a practical Frank–Wolfe-style equilibrium computation method
for continuous-player combinatorial congestion games, which utilizes the em-
pirical compactness of ZDDs. We proved that the algorithm computes an
ε-approximate Wardrop equilibrium in O(poly(m)/ε) (or O(poly(m) log ε−1))
iterations. Experiments demonstrated that our algorithm is useful for com-
puting and studying equilibria of realistic continuous-player combinatorial
congestion games, for which alternative methods are prohibitively costly.

3.6 Appendix: Detailed Implementation of

Full-correction

We here detail the implementation of the full-correction step (Algorithm 3.2).
As mentioned before, full correction Correction(x, {Ap}p∈[r], {sp}p∈[r], ε)
is, roughly speaking, performed by minimizing F (·) on conv((A1 ∪ {s1}) ×
· · · × (Ar ∪ {sr})). Since this feasible region is again a convex hull of some
points in Rrm, the full correction can also be performed with Frank–Wolfe-
style algorithms. For example, Krishnan et al. [2015] implemented the full-
correction step with the away-steps Frank–Wolfe (AFW) [Lacoste-Julien and
Jaggi, 2015], a variant of the Frank–Wolfe algorithm that achieves linear con-
vergence for strongly convex functions. More precisely, they performed the
full correction with AFW whose stopping criterion requires the away gap,
as well as the Frank–Wolfe gap (or the duality gap), to be small enough;
thus they guaranteed that the conditions required in the full-correction step
of [Lacoste-Julien and Jaggi, 2015, Algorithm 4] is satisfied. The conditions

36

3.6. APPENDIX: DETAILED IMPLEMENTATION OF
FULL-CORRECTION

Algorithm 3.3: AFWCorrection(x, {Ap}p∈[r], {sp}p∈[r], ε):
Modified AFW-based full correction.
1 x0 = x = (x1, . . . ,xr)
2 foreach p ∈ [r] do
3 Bp = Ap ∪ {sp} and Ap0 = Ap
4 for l = 0 to L do
5 yl =

∑
p∈[r] w

pxpl
6 foreach p ∈ [r] do

7 Let spl ∈ argminu∈Bp 〈∇Φ(yl),u〉 and dp,FWl = spl − xpl
8 Let vpl ∈ argmaxu∈Ap

l
〈∇Φ(yl),u〉 and dp,Al = xpl − vpl

9 if maxp∈[r]
〈
−∇Φ(yl),d

p,FW
l + dp,Al

〉
≤ ε then

10 return xl as xk+1, {Apl }p∈[r] as {Apk+1}p∈[r], and {{zpS}S∈Bp}p∈[r]
11 gFWl =

∑
p∈[r] w

p
〈
−∇Φ(yl),d

p,FW
l

〉
12 gAl =

∑
p∈[r] w

p
〈
−∇Φ(yl),d

p,A
l

〉
13 if gFWl ≥ gAl then

14 dl = (d1,FW
l , . . . ,dr,FWl) and γmax = 1

15 else

16 dl = (d1,A
l , . . . ,dr,Al) and γmax = minp∈[r] z

p
vp
l
/(1− zp

vp
l
)

17 γl ∈ argminγ∈[0,γmax] F (xl + γdl)

18 Update xl+1 = xl + γldl
19 Update {zpS}S∈Bp accordingly for p ∈ [r] (see [Lacoste-Julien and Jaggi, 2015])
20 Update Apl+1 = {S ∈ Bp | zpS > 0} for p ∈ [r]

required by our full correction (Algorithm 3.2) are analogous to those of
[Lacoste-Julien and Jaggi, 2015, Algorithm 4], but they have a slight dif-
ference. Below we detail the difference and explain how to implement the
full-correction step that works for our case.

In the original full-correction step of [Lacoste-Julien and Jaggi, 2015, Al-
gorithm 4], the away gap is defined on the full dimension, which corresponds
to Rrm in our case, and thus the aforementioned AFW-based full correction
performed on Rrm works. In our case, however, the third condition of Al-
gorithm 3.2 requires the away gap maxu∈Ap

k+1

〈
−∇Φ(yk+1),x

p
k+1 − u

〉
to be

small enough for every p ∈ [r]; this is the difference to be considered. Note
that, since the “max” is taken for each p ∈ [r], the away gap of each p ∈ [r]
is not guaranteed to be small no matter how small the away gap on Rrm is;
this is the reason why the original full correction does not work. Thus, we
consider modifying the AFW algorithm to make it work for our use. The
pseudocode of our AFW-based full correction is presented in Algorithm 3.3.
The differences from the original AFW-based full correction [Krishnan et al.,
2015] is as follows: We maintain the active set Apl for each p ∈ [r], instead of

37

CHAPTER 3. EQUILIBRIUM COMPUTATION OF COMBINATORIAL
CONGESTION GAMES

the one defined on Rrm, and the away direction, dp,Al , is computed for each
p ∈ [r] in Step 8. Note that, as with the original full correction of [Krishnan
et al., 2015], we employ the stopping criterion that requires the away and
Frank–Wolfe gaps to be small (Step 9). The other parts are almost the same
as those of AFW [Lacoste-Julien and Jaggi, 2015]. In Steps 15 and 16, we
use ∇pF (x) = wp∇Φ(y) (∀p ∈ [r]) to compute the Frank–Wolfe gap, gFWl ,
and away gap, gAl , defined on Rrn. The resulting modified AFW exhibits the
same convergence behavior as the standard AFW as follows:

Theorem 3.3. After l iterations of Algorithm 3.3, the Frank–Wolfe gap (FW
gap) satisfies gFWl ≤ O(poly(m)/l). Let B := B1×· · ·×Br. If F (·) is strongly
convex and the reciprocal of the pyramidal width of conv(B) is O(poly(m)),
then we have gFWl ≤ O(exp(−Θ(l/poly(m)))) after l iterations. Moreover,

the FW gap of each p ∈ [r], defined by gp,FWl :=
〈
−∇Φ(yl),d

p,FW
l

〉
, also

converges at the same rates.

Note that, once the convergence of the FW gap of each p ∈ [r] is ob-

tained, the away gap of each p ∈ [r], defined by gp,Al :=
〈
∇Φ(yl),d

p,A
l

〉
,

also asymptotically converges to 0 as follows: Since xpl is can be written

as
∑

S∈Ap
l
zpS1S in each iteration, xpl +

zpS
1−zpS

(xpl − 1S) = 1
1−zpS

xpl −
zpS

1−zpS
1S ∈

conv(Bp) holds for any S ∈ Bp. Therefore, the definition of the FW gap im-

plies
〈
−∇Φ(yl),

zpS
1−zpS

(xpl − 1S)
〉

=
zpS

1−zpS
〈−∇Φ(yl), (x

p
l − 1S)〉 ≤ gp,FWl for

any S ∈ Bp. From the definition of the away gap and Apl ⊆ Bp, if we let
ζpl := minS∈Ap

l
zpS > 0, we have ζpl g

p,A
l ≤ gp,FWl . Hence the away gap converges

to 0 if the FW gap does. To conclude, Algorithm 3.3 can update the input
so as to satisfy the third condition in Algorithm 3.2. We can easily confirm
that the first and second conditions are also satisfied due to the procedure
of AFW (Algorithm 3.3).

Proof of Theorem 3.3. We first see that the convergence of gFWl implies that
of the individual FW gaps (gp,FWl (p ∈ [r]) in the statement of Theorem 3.3).
Since spl ∈ argminu∈conv(Bp) 〈∇Φ(yl),u〉 and xpl ∈ conv(Bp), we have gp,FWl =

〈−∇Φ(yl), s
p
l − xpl 〉 ≥ 0 for all p ∈ [r]. Since gFWl =

∑
p∈[r]w

pgp,FWl , we have

gp,FWl ≤ gFWl /mp. Therefore, individual gaps gp,FWl (p ∈ [r]) converge to 0 if
gFWl does.

Next, we show the O(poly(m)/l) convergence by following the argument
of [Lacoste-Julien and Jaggi, 2015]. Let x∗ be the minimizer of F (·) on
conv(B) and hl = F (xl) − F (x∗) be the suboptimality gap. Since F (·) has

38

3.6. APPENDIX: DETAILED IMPLEMENTATION OF
FULL-CORRECTION

L-Lipschitz-continuous gradient and convexity, for any γ ∈ [0, γmax],

F (xl+1) ≤ F (xl + γdl)

≤ F (xl) + γ 〈∇F (xl),dl〉+ γ2L‖dl‖2/2
≤ F (xl)− γgFWl + γ2LD2/2 (3.4)

holds, where D is the diameter of conv(B); note that D ≤ O(poly(m)) holds.
The third inequality is due to 〈∇F (xl),dl〉 = min{−gFWl ,−gAl } ≤ −gFWl
(see, Step 13) and ‖dl‖ ≤ D. By subtracting F (x∗) from both sides, we
obtain hl+1 ≤ hl − γgFWl + γ2LD2/2. Below we discuss the convergence by
using the number of steps where the line search (Step 17) does not result in
γ = γmax; such steps are called good steps, and the number of good steps
among the first l steps, denoted by G(l), can be lower bounded as follows:
In a step with γ = γmax (called a drop step), we set at least one of zpS > 0 to
zero, which means the sum of the sizes of active sets decreases by at least one.
Thus, the number of drop steps among the first l steps is upper bounded by∑

p∈[r] |Ap|+ (l −∑p∈[r] |Ap|)/2, which implies G(l) ≥ (l −∑p∈[r] |Ap|)/2 =

Θ(l). Following the proof of [Jaggi, 2013, Theorems 1 and 2], we can show
that gFWl = O(poly(m)/G(l)) = O(poly(m)/l) holds; hence the first clam is
obtained.

Finally, we prove the linear convergence under the assumptions of the
strong convexity and bounded pyramidal width. We define error vector el :=
x∗−xl and its normalized version êl := el/‖el‖. Thanks to the argument of
[Lacoste-Julien and Jaggi, 2015, Section 2.1], we have

hl − hl+1 ≥
µ

L‖dl‖2
〈−∇F (xl),dl〉2

〈−∇F (xl), êl〉2
hl (3.5)

if the l-th iteration is a good step. Since 〈−∇F (xl),dl〉 ≥ max{gFWl , gAl } ≥
(gFWl + gAl)/2 = 〈−∇F (xl), sl − vl〉 /2, where sl := (s1l , . . . , s

r
l) and vl :=

(v1
l , . . . ,v

r
l), we have

hl − hl+1 ≥
µ

4LD2

〈−∇F (xl), sl − vl〉2

〈−∇F (xl), êl〉2
hl. (3.6)

Here, vl ∈ Rrn is selected from A1
l × · · · × Arl to maximize 〈∇F (xl),vl〉.

Moreover, we can regard A1
l × · · · × Arl as the active set of xl ∈ Rrn since∑

u1∈A1
l

· · ·
∑

ur∈Ar
l

z1u1 · · · zrur(u1, . . . ,ur) = xl, (3.7)

∑
u1∈A1

l

· · ·
∑

ur∈Ar
l

z1u1 · · · zrur = 1. (3.8)

39

CHAPTER 3. EQUILIBRIUM COMPUTATION OF COMBINATORIAL
CONGESTION GAMES

Therefore, by using [Lacoste-Julien and Jaggi, 2015, Theorem 3], we can
show that 〈−∇F (xl), sl − vl〉 / 〈−∇F (xl), êl〉 is lower bounded by pyramidal
width δ > 0 of B. Consequently, we obtain the geometric decrease of the
suboptimality gap: hl+1 ≤ (1 − µ

4L
(δ
D

)2)hl. Therefore, if 1/δ ≤ O(poly(m)),
we have hl = O(exp(−Θ(G(l)/poly(m)))) = O(exp(−Θ(l/poly(m)))). The
linear convergence of the FW gap gFWl can be obtained from [Lacoste-Julien
and Jaggi, 2015, Theorem 2], which shows gFWl ≤ O(D

√
hl).

As mentioned in Section 3.3.3, δ is conjectured to be lower bounded by
Ω(1/

√
m) [Lacoste-Julien and Jaggi, 2015]. More precisely, the pyramidal

width of the rm-dimensional unit cube {0, 1}rm is 1/
√
rm, and it is con-

jectured in [Lacoste-Julien and Jaggi, 2015] that the pyramidal width does
not increase when an another vertex is added. Following the conjecture, the
pyramidal width of any B is at least 1/

√
rm.

40

Chapter 4

Background of Network
Reliability Analysis

As described in Chapter 1, network reliability analysis reveals the robustness
of network service against the failure of network components. Although the
network reliability can be defined in various way on various assumptions, we
here describe the basic network model where the failure is occurred on the
links of the network stochastically independently. Chapters 5–8 are based
on this stochastic model. We also describe a traditional network reliability
measure, named K-terminal network reliability (given subset K of vertices),
defined on the above model. Then, we overview the literature on computing
K-terminal network reliability. Finally, we describe a modern method for
computing K-terminal network reliability with BDDs in detail.

4.1 Network Model

First, we define the network model used in the subsequent chapters in the
same way as [Moskowitz, 1958]. A network is modeled as an undirected net-
work G = (V,E) with vertex set V and edge set E. The graph G has n
vertices and m edges, i.e., n = |V | and m = |E|. For example, for telecom-
munication networks, vertices V correspond to network nodes including, e.g.,
packet gateways, servers, base stations, and switches, and edges E correspond
to network links each connecting two network nodes. Additionally, we are
given probability pe ∈ [0, 1] for each edge e ∈ E, which is called an availability
of edge e.

We consider two states for network links: working or failing. We represent
these states by the presence of edge e ∈ E: e is present if e is correctly
working, and e is absent otherwise. The following assumption is the key

41

CHAPTER 4. BACKGROUND OF NETWORK RELIABILITY
ANALYSIS

property of the network model.

Assumption 4.1. Each edge e ∈ E is present with probability pe and absent
with probability 1− pe, and the state of e (present or absent) is stochastically
independent of the other edges’ states.

From the viewpoint of networks, this is equivalent to the situation where
each network link e fails with probability 1 − pe independent of the other
network links. We call this model an independent failure model.

Hereafter we represent by E ′ ⊆ E the state of the graph that the edges
in E ′ ⊆ E are present and the other edges (E \ E ′) are absent. Under
Assumption 4.1, we can express the probability that the state is E ′ ⊆ E as
follows:

Pr(E ′) =
∏
e∈E′

pe ·
∏

e∈E\E′
(1− pe). (4.1)

4.1.1 Comparison with Other Models

We here mention some other network models. Since the proposal of inde-
pendent failure model in [Moskowitz, 1958], it has been widely assumed for
most studies of network reliability analysis. From the viewpoint of networks,
this assumption can be considered as focusing on the behavior of ordinary
times. That is, in ordinary times, each network component fails accidentally
regardless of the other network components, which can be modeled with the
independent failure model. Also, Assumption 4.1 corresponds to observing
the long-term behavior of networks. That is, in long-term view, each network
component’s failure can be seen as an independent stochastic process.

Conversely, when a huge disaster such as earthquake or flood occurs and
the short-term behavior is concerned, we should consider correlated failure
model where the failure of some network components are stochastically cor-
related. For example, when an earthquake occurs, the network components
near the epicenter will be likely to fail simultaneously. Such a model has
emerged around 2010, e.g., [Xiao et al., 2009; Xing, 2008; Shrestha et al.,
2012; Neumayer and Modiano, 2016]. However, as shown later, the analy-
sis on independent failure model itself is a computationally hard task, and
the correlated failure model seems much harder. Therefore, almost all the
models in these works assume some additional assumptions. One of the most
prominent assumptions is that the network components in the disaster area
must fail. Although such an assumption can remove the stochastic nature,
the network model becomes fairly unrealistic.

To sum up, the network model with Assumption 4.1 focuses on the long-
term behavior of ordinary times, and may not be applicable for short-term

42

4.2. K-TERMINAL NETWORK RELIABILITY

disaster scenarios. However, even for the latter scenarios, we believe that
assuming independent failures with averaged availabilities pe is a reasonable
choice since even the existing correlated failure models have some unrealistic
assumptions.

At the end, we mention that the network model in this dissertation as-
sumes that the vertices, i.e., the network nodes, work perfectly. This is
justified by the fact that for some network infrastructures, the node failure
probability is far less than the link failure probability. For example, it is
known that in optical networks, the former is less than the latter by order
of magnitude [Segovia et al., 2008]. However, there are also network mod-
els where the network nodes also fail independently, e.g., [Kuo et al., 2007;
Kawahara et al., 2019]. The support for vertex failures is an important future
work of this dissertation, as described in Chapter 10.

4.2 K-Terminal Network Reliability

Assuming the independent (edge) failure model in Section 4.1, we define the
traditional network reliability measure. In network infrastructures, the most
fundamental requirement for network users is that the network nodes related
to these users are connected with only the correctly working links [Nojo and
Watanabe, 1987, 1993; Tollar and Bennett, 1995]. From the viewpoint of the
network model in Section 4.1, it is equivalent to that the specified vertices are
connected with only the present edges. Given the set K of specified vertices
called terminals, K-terminal network reliability is defined as follows.

Definition 4.2. A K-terminal network reliability R(K) is the probability
that terminals, i.e., the vertices in K, are interconnected with the present
edges under the independent failure model. Let EK be the family of subgraphs
of G such that the vertices in K are interconnected. Then, the K-terminal
network reliability can be represented as

R(K) =
∑
E′∈EK

Pr(E ′) =
∑
E′∈EK

[∏
e∈E′

pe ·
∏

e∈E\E′
(1− pe)

]
. (4.2)

We abbreviate the K-terminal network reliability as K-NR. Here we ob-
serve that (4.2) is much similar to the weighted model counting value (2.2).
Indeed, computing (4.2) is identical to solving the weighted model counting
problem with the family I = EK and the weights w+

e = pe and w−e = 1− pe.
Note that some special cases of K-NR problems have particular names.

First, the K-NR with |K| = 2 is called two-terminal network reliability,
which we abbreviated as 2-NR. Second, the K-NR with K = V is called
all-terminal network reliability, which we abbreviated as All-NR.

43

CHAPTER 4. BACKGROUND OF NETWORK RELIABILITY
ANALYSIS

4.2.1 Literature Overview on Computing K-Terminal
Network Reliability

We here overview the complexity results and existing methods for computing
the K-NR until the method using top-down construction of BDDs (explained
in Section 4.3) emerged.

First, we mention the complexity of computing K-NR. We can easily
verify that the K-NR computation is in #P, the complexity class of prob-
lems that are equivalent to count the number of accepted paths of a non-
deterministic polynomial-time Turing machine. In 1979, Valiant [1979] proved
that the K-NR computation is #P-complete, the most difficult problem
among #P problems. Since #P-complete problems are at least as hard as
NP-complete problems, and thus they are not solved in polynomial time
unless at least P=NP, computing K-NR is much harder problem.

Next, we review some traditional existing methods. The most naive so-
lution is to enumerate all the subgraphs in EK and compute R(K) directly
with (4.2) like [Wing and Demetriou, 1964]. However, since there are 2m

subgraphs for a graph with m edges, such a method becomes suddenly in-
tractable with the increase of graph size.

Since then, there are attempts to represent (4.2) as a sum of fewer and
disjoint products. This approach is called sum-of-disjoint products. Here
we focus on 2-NR problems. As seen in Section 2.1, for the family EK of
subgraphs, we can consider the corresponding Boolean function fK . Since
simplification methods for Boolean functions have been extensively studied
in circuit community, applying similar approaches to fK can be considered.
In [Fratta and Montanari, 1973], by enumerating all simple paths between
the two terminals in a graph, fK is decomposed into the disjoint disjunction
of the (relatively) small number of conjuncts. This admits the computation
of R(K) by the sum of the (relatively) small number of products of pe and
(1−pe). Later, similar decomposition methods were proposed by enumerating
all tie-sets [Rosenthal, 1977] or all cut-sets [Tsukiyama et al., 1980]. Although
originally they can compute only 2-NRs, they can also compute K-NR in
combination with some logic synthesis techniques.

Another line of research [Wood, 1986] tried to decompose EK (or fK) one
by one by the case analysis on whether each edge is present or absent. This
approach is called factoring. Let us choose an edge e ∈ E and we conduct a
case analysis described above. Edge e is present with probability pe, and if
e is present, we can consider the reduced graph G ∗ e made by contracting
edge e of G. Edge e is absent with probability (1 − pe), and if e is absent,
we can consider the reduced graph G− e made by removing edge e from G.

44

4.3. COMPUTING K-TERMINAL NETWORK RELIABILITY WITH
BDDS

Then, the reliability RG on graph G can be decomposed as

RG = pe ·RG∗e + (1− pe) ·RG−e, (4.3)

where RG∗e is the reliability on graph G ∗ e and RG−e is that on graph
G−e. After contracting or removing an edge, a number of graph simplification
techniques have employed. By the repetitive application of decomposition
(4.3) and graph simplification, we can compute R(K) with a smaller number
of arithmetic operations.

We here mention a representing two graph simplification techniques from
[Wood, 1986]: degree 1 vertex elimination and degree 2 vertex elimination.
Regarding the former one, let v ∈ V be a vertex with degree 1 and let ev
be the only edge incident to v. Then, RG(K), the K-terminal reliability on
graph G, can be represented as

RG(K) =

{
RG−v(K) (v /∈ K)

pev ·RG−v(K \ {v}) (v ∈ K)
, (4.4)

where G− v is the graph obtained by removing vertex v (and edge ev) from
G. Regarding the second one, let v ∈ V \K be a vertex with degree 2 and
let e1v, e

2
v be the two edges incident to v. Then, let us consider a graph G′

made by concatenating edges e1v, e
2
v into one edge e′ and remove the vertex

v. We set pe′ = pe1v · pe2v . Then,

RG(K) = RG′(K). (4.5)

Note that these graph simplification techniques can also be employed as a
preprocessing for the original graph G.

Indeed, the method of Hardy et al. [2007] using top-down construction
of BDDs is basically based on the factoring approach. Now it is known
that this method is far faster than the sum-of-disjoint product and factoring
approaches explained in this section.

4.3 Computing K-Terminal Network Relia-

bility with BDDs

In the factoring approach, many identical graphs emerge by repetitively re-
moving or contracting edges. If the reliability is computed for a graph and an
identical graph has emerged in the subsequent computation, we can reuse the
result. Hardy et al. [2007] tried to capture the identicalness by focusing on
the connectivity among only a limited number of vertices. Later, Herrmann

45

CHAPTER 4. BACKGROUND OF NETWORK RELIABILITY
ANALYSIS

[2010] improved their algorithm in terms of memory efficiency, but the core
procedure is almost identical. Therefore, we hereafter call their method HH
method. In our view, HH method can be explained as the top-down construc-
tion method of a BDD representing EK . Since HH method forms a basis for
some algorithms in the following chapters, we explain HH method in detail
following the framework in Section 2.5.

As in Section 2.5, we start with a naive method. We order the edges in
graph G: e1, . . . , em. Then, we consider the process of determining whether
ei is present or absent one by one. This generates a binary decision tree
where all the i-th subsets of E<i := {e1, . . . , ei−1} are enumerated at the i-th
level. Here we observe that determining the state of ei corresponds to the
factoring approach where we decide whether ei is contracted or removed.

To design configures for i-th subsets, we focus on the connectivity among
vertices on the subgraph induced by the present edges. This is because in the
factoring approach, the vertices connected with the present edges are merged
into one vertex since the present edges are contracted. If the connectivity
among vertices are identical for two i-th subsets X, Y ∈ E<i, i.e., for any
two vertices u, v, whether u and v are connected is identical on the subgraph
induced by X and that induced by Y , they produce the same resultant graph
and thus we can identify them. This means that the connectivity among
vertices can be used as a configure for building the BDD representing EK .

Hardy et al. [2007] further refines this idea by focusing on the connectivity
among only a limited subset of vertices called frontiers1. Regarding i-th
subsets, E<i is the set of processed edges, i.e., the edges the states (present
or absent) are already determined, and E≥i := E \ E<i = {ei, . . . , em} is the
set of unprocessed edges. We define the subsets of vertices regarding the i-th
subsets as follows.

Definition 4.3. The i-th frontiers Fi is the subset of vertices appearing in
both the processed edges E<i and the unprocessed edges E≥i. Similarly,
the i-th processed vertices Ai is the subset of vertices appearing in only the
processed edges E<i, and the i-th unprocessed vertices Bi is the subset of
vertices appearing in only the unprocessed edges E≥i.

Intuitively, the reason why we can focus on the connectivity among only
the frontiers can be explained as follows. Let v ∈ Ai be a processed vertex.
Since v is not incident to the unprocessed edges E≥i, if v is not connected to
another vertex u with the present edges X ⊆ E≥i and eventually connected

1In their paper [Hardy et al., 2007], it is called boundary set. In this dissertation, we
call this frontiers according to the frontier-based search [Kawahara et al., 2017b], but their
definitions are identical.

46

4.3. COMPUTING K-TERMINAL NETWORK RELIABILITY WITH
BDDS

to u by determining the remaining edges’ states, its connection must go
through a frontier vertex w ∈ Fi. This means that (I) if v is not connected
to any frontiers with the present edges X ⊆ E≥i, v never be connected to
any further vertex by adding the edges in E≥i, and (II) if v is connected to
a frontier vertex w ∈ Fi, v can be identified with w in terms of connectivity.

We formally define some notions used for the configure as follows.

Definition 4.4. The i-th partition of an i-th subset X ⊆ E<i is defined as
follows: If all the vertices in K are interconnected on the subgraph induced
by X, the partition is > (called >-pruned partition). Otherwise, if there is a
vertex in K ∩Ai that is not connected to any frontier in Fi on the subgraph
induced by X, the partition is ⊥ (called ⊥-pruned partition). Otherwise, the
partition is defined as the set of blocks that partitions Fi. Here two vertices
u, v ∈ Fi are in the same block if and only if they are connected on the
subgraph induced by X.

The i-th partition determines the connectivity among frontiers Fi. Since
we should also keep track of the connectivity to terminals K, we prepare the
following additional notion.

Definition 4.5. For i-th subset X ⊆ E<i whose i-th partition is P , suppose
that P is not a pruned partition. Let mark be a mapping from the blocks in
P to either true or false. For block B ∈ P , mark(B) = true if and only if
vertices in B are connected with at least one vertex in K on the subgraph
induced by X. We call mark as a mark.

Now we can verify that the pair of partition and mark constitutes a
configure for building the BDD representing EK .

Theorem 4.6. For any two i-th subsets X, Y ⊆ E<i whose i-th partitions
and marks are identical for each, for any Z ⊆ E<i, X ∪ Z and Y ∪ Z
are equivalent in whether the terminals K are interconnected on the induced
subgraph.

Theorem 4.7. For any two i-th subsets X, Y ⊆ E<i whose i-th partitions
and marks are identical for each, the pairs of (i + 1)-st partition and mark
of X, Y ⊆ E<i+1, and those of X ∪ {ei}, Y ∪ {ei} ⊆ E<i+1, are also pairwise
identical for each.

Theorem 4.6 corresponds to the condition (i) in Section 2.5 and Theo-
rem 4.7 corresponds to the condition (ii).

47

CHAPTER 4. BACKGROUND OF NETWORK RELIABILITY
ANALYSIS

4.3.1 Pseudocode

Algorithm 4.1 is the Root and Child procedures for constructing the BDD
of EK ; calling Construct(ConnectedK) constructs the BDD representing
EK (also see Algorithm 2.1). Here, BPv stands for the block of P containing
vertex v. At root, since the only 1st subset is ∅ ⊆ E<1 = ∅, the partition
is empty and the mark is also empty (Line 2). Given configure (P ,mark),
we modify it to make a child configure as follows. First, for each vertex
u newly entering into the frontier, we insert the block consisting of only u
to P (Line 5). The newly added block’s mark is true if and only if u is
terminal (Line 6). If f = hi, which means that the edge ei is determined
to be present, and the blocks containing v and v′ are different where v and
v′ are the endpoints of ei, we merge these blocks (Lines 7–8). The merged
block’s mark is the disjunction of the marks of these blocks (Line 9). Here,
if P contains only one marked block and all the vertices in K appear in E<i,
i.e., K ⊆ Ai ∪Fi, then we can go to >-pruned partition since all the vertices
in K are interconnected (Lines 11–12). After that, for each vertex u leaving
from the frontier, we remove u from the block containing u (Lines 14–15).
If this block is empty and it is marked true, then we can go to ⊥-pruned
partition since it means that the vertices in K connected to this block are
left isolated. (Line 17–18). The empty and false-marked blocks are simply
removed (Line 20). The resultant (P ,mark) is the f -child configure (Line 21).

After the BDD BK representing EK is built, we can compute R(K) value
by a DP on BK since it is equivalent to solve the weighted model counting
problem on EK as mentioned in Section 4.2.

Figure 4.1 depicts a running example of HH method, where the input
graph is given in the top dnode of Figure 4.1a. Here, each block in a partition
is represented as a squared parentheses [] with vertex ids inside it. If a block’s
mark is true, ∗ is associated on upper-right of this block. Although we draw
multiple terminals, ⊥ and >, in Figure 4.1b in order to avoid complication,
all the > (⊥) dnodes are identical. We observe that three 3rd subsets, {},
{e1}, and {e2}, are merged into one dnode in Figure 4.1a since they have the
same partition.

4.3.2 Complexity

Here we derive time complexity bounds for computing K-NR by HH method.
Let WF = maxi |Fi| be the maximum size of frontier, which we called fron-
tier width. First of all, the time complexity can be bounded by the size of
resultant BDD.

48

4.3. COMPUTING K-TERMINAL NETWORK RELIABILITY WITH
BDDS

Algorithm 4.1: Procedures for the family of subgraphs that con-
nects the vertices in K.
1 procedure ConnectedK .Root():
2 return 〈1, (∅, ∅)〉
3 procedure ConnectedK .Child(〈i, (P,mark)〉, f):
4 foreach u ∈ {v, v′} \ Fi do // ei = {v, v′}
5 Insert [u] as a new block of P // u:vertex entering into frontier

6 mark([u])← true if u ∈ K; false otherwise

7 if f = hi and BPv 6= BPv′ then
8 Make new block B by merging BPv and BPv′
9 mark(B)← mark(BPv) ∨mark(BPv′)

10 Remove blocks BPv , BPv′ from P and corresponding entries mark(BPv),

mark(BPv′)
11 if P contains only one marked block and K ⊆ Ai ∪ Fi then
12 return 〈m+ 1, 1〉 // All vertices in K are connected

13 foreach u ∈ {v, v′} \ Fi+1 do // u:vertex leaving from frontier

14 B ← BPu
15 Remove u from B
16 if B is empty then
17 if mark(B) = true then
18 return 〈m+ 1, 0〉 // some vertices in K are left isolated

19 else
20 Remove block B from P and corresponding entry mark(B)

21 return 〈i+ 1, (P,mark)〉

Lemma 4.8. Let BK be the BDD built by Construct(ConnectedK). Then,
HH method can compute R(K) in O(WF |BK |) time.

Proof. Since the weighted model counting problem can be solved in O(|BK |)
time according to Theorem 2.5, we move our focus on the construction of
BK , i.e., Construct(ConnectedK). For each dnode n in BK , lo- and hi-child
configures are made through Child procedure. Each child configure can be
made in O(|Fi|) = O(WF) time by maintaining the partition as an integer
sequence of length |Fi| (see [Hardy et al., 2007]). Also, by maintaining dnode
list Li with a hash map whose key is the configure, we can find the dnode
with the desired configure (Line 12 of Algorithm 2.1) in O(WF) time. Thus,
the overall cost for Construct(ConnectedK) is bounded by O(WF |BK |).

We can also bound the size of BK by using WF .

Lemma 4.9. |BK | ≤ m · EWF
· 2WF , where Ek is the k-th Bell number, the

number of possible partitions of a set with cardinality k.

Proof. For i-th subsets, we consider the number of possible configures. The
number of possible partitions is bounded by E|Fi| = O(EWF

). For each block

49

CHAPTER 4. BACKGROUND OF NETWORK RELIABILITY
ANALYSIS

e1 is presente1 is absent

3

2 4

5

6

1

Merged state

[1][2]* [1 2]*

[2]*[3] [2 3]*

e2 is absent present absent present

i=1
F1 = {}

1.0

0.8

0.64

0.2

0.36

e1
e2

e3
e4
e5

e6
e7

i=2
F2 = {1,2}

i=3
F3 = {2,3}

(a) Part of built diagram

[1][2]∗ [1 2]∗

[2]∗[3] [2 3]∗

⊥ > [3]∗[4]∗ >
[3]∗[4]∗ >

⊥ [4]∗[5]∗

⊥ [5]∗[6]∗

⊥ >
(b) Full diagram

Figure 4.1: (a) First three levels of the constructed diagram of
Construct(ConnectedK), where K consists of the filled vertices (© 2021
IEEE). (b) Full constructed diagram of Construct(ConnectedK).

of each partition, we can choose the mark value, meaning that there are at
most O(2|Fi|) = O(2WF) patterns of mark for every partition. Thus, the
number of possible configures is bounded by O(EWF

·2WF). By accumulating
it with i = 1, . . . ,m, the lemma holds.

Combining Lemmas 4.8 and 4.9, we immediately obtain the time com-
plexity bound.

Theorem 4.10. HH method can compute R(K) in O(m ·WF · EWF
· 2WF)

time.

For special cases, 2-NR and All-NR, we can further refine the time com-
plexity.

Corollary 4.11. When |K| = 2, HH method can compute R(K) in O(m ·
W 3
F · EWF

) time.

Proof. If |K| = 2, the number of blocks marked true is at most 2. Thus, the
number of mark patterns for every partition is at most O(|Fi|2) = O(W 2

F).
The remaining proof is the same as Theorem 4.10.

Corollary 4.12. When K = V , HH method can compute R(K) in O(m ·
WF · EWF

) time.

Proof. If K = V , all the blocks in a partition are marked true, and thus
the number of mark patterns for every partition is exactly 1. The remaining
proof is the same as Theorem 4.10.

50

4.3. COMPUTING K-TERMINAL NETWORK RELIABILITY WITH
BDDS

Since the Bell number Ek grows exponentially with respect to k and WF

becomes Ω(n) in the worst case (e.g., cliques), the aforementioned bounds
are generally exponential. However, for typical network topologies, we can
sometimes obtain WF significantly smaller than n and m by carefully ma-
nipulating the order of edges e1, . . . , em. In such cases, the above bounds
become fairly small.

Indeed, the frontier width WF is closely related to path-width Wp [Robert-
son and Seymour, 1983] of the graph. In short, the path-width indicates how
dissimilar the graph is to a path. Its value is 1 if the graph is just a path, 2
for cycles, and n for a clique with n nodes. We can compute an edge order
satisfying WF = Wp from the optimal path-decomposition of graph G [In-
oue and Minato, 2016]. Although obtaining optimal path-decomposition is
generally NP-hard, we can use a beam-search-based path-width optimiza-
tion heuristics [Inoue and Minato, 2016] to obtain a good edge order. In the
experiments of the following chapters, we used [Inoue and Minato, 2016] to
obtain an edge order.

51

CHAPTER 4. BACKGROUND OF NETWORK RELIABILITY
ANALYSIS

52

Chapter 5

Network Reliability Evaluation
for Client-Server Model

As described in Chapter 4, since network reliability evaluation is a com-
putationally heavy task, several methods have been proposed to efficiently
perform it. However, modern network infrastructures follow the client-server
model, where many clients are served independently, so we have to evalu-
ate the network reliability for every set consisting of the servers and each
client. This evaluation process involves repetitive evaluations while changing
the set, which imposes a heavy burden on network operators. This chapter
proposes a method that efficiently performs network reliability evaluation for
the client-server model. Since our method is designed to evaluate reliability
for multiple clients without explicit repetition, the computational complexity
does not increase compared to the case where existing methods evaluate re-
liability for a single client. Numerical experiments using datasets of various
topologies, including real communication networks, reveal great efficiency.
Our method is more than 100 times faster than an existing method that
requires repeated evaluation, e.g., it takes only 27 seconds to compute the
reliability for 670 clients on a large network with 821 links.

5.1 Introduction

Today’s network infrastructures usually follow the client-server model. For
example, cloud services are provided from web servers to browsers (clients)
distributed in a network, and electric power is delivered from a substation
(server) to consumers (clients) through a power distribution network. Since
clients are served independently, their reliability should also be evaluated
independently to assess their service level agreement. However, this evalua-

53

CHAPTER 5. NETWORK RELIABILITY EVALUATION FOR
CLIENT-SERVER MODEL

(a) K-NR.

…

(b) CSNR.

Figure 5.1: K-NR and CSNR problems (k = 3). (a) K-NR computes the
probability of connecting the set of terminals (black). (b) CSNR computes
the probability of connecting each client (red) with the fixed servers (blue).

tion task is very challenging for network operators, because computationally
heavy network reliability (K-NR) evaluations have to be solved for many
clients. Here, a terminal set of K-NR (Figure 5.1a) corresponds to each
set consisting of servers and variable clients (Figure 5.1b). Since this new
problem generalizes K-NR for variable clients with fixed servers, we call it K-
terminal network reliability for fixed servers and variable clients (abbreviated
as CSNR problem, where CS stands for client-server) in this dissertation. To
the best of our knowledge, no method has been proposed to efficiently solve
CSNR problem.

Although the method is efficient for K-NR, we have to repeat it for every
client in CSNR problem.

This chapter proposes a dynamic programming (DP) method to solve
CSNR problem. Surprisingly, the computational complexity of the proposed
method is the same as that of the HH method (explained in Section 4.3),
even though our method solves CSNR problem that computes O(n) K-NRs
while the HH method computes only one K-NR. The contributions in this
chapter are summarized as follows:

• We design an efficient method for solving CSNR problem that first con-
structs a decision diagram-like structure downward by only considering
servers and then computes reliability for every client while scanning the
diagram upward. This process involves no repetition for clients, and it
imposes no overhead in terms of computational complexity. In addition,
the search process allows our method to solve K-NR more efficiently
than does the HH method when the number of terminals is a small
constant.

• The proposed method is evaluated numerically with synthetic graphs
and real communication networks. As predicted by the computational
complexity, our method runs much faster than the HH method in solv-
ing CSNR problems. Our method outperforms the HH method by more

54

5.2. PROBLEM STATEMENT

than 100 times; e.g., for a topology with 821 links and 670 clients, our
method takes less than 27 seconds to solve CSNR problem, while the
repeated use of the HH method finishes only 2% of the clients in an
hour.

5.2 Problem Statement

We consider the independent failure network model described in Section 4.1:
an undirected graph G = (V,E) with n = |V | vertices and m = |E| edges
and an availability pe ∈ [0, 1] for every edge e ∈ E are given. In this chapter,
we also use the standard definition of K-terminal network reliability R(K)
defined in Section 4.2.

For the CSNR problem, we are additionally given the set T ⊆ V of source
vertices.

Problem 5.1 (CSNR problem). The CSNR problem is to compute R(T ∪
{v}) for every destination v ∈ V \T 1. That is, for every vertex v ∈ V \T , we
compute the probability R(T ∪{v}) that v is connected to all the vertices in
T .

Note that this chapter assumes all vertices except sources are considered
as destinations, since this situation maximizes the computational load; the
proposed method works even when only a subset is destinations.

For simplicity, we impose some assumptions on G: G has no self-loops,
and all vertices in G have a degree not less than 2. Note that these assump-
tions can be easily removed by preprocessing. First, the existence of self-loop
edges does not affect the reliability measure. Second, the degree 1 vertices
can be removed by degree 1 vertex elimination mentioned in Section 4.2.1.
By recursively removing degree 1 vertices, we obtain a graph with only de-
gree ≥ 2 vertices, or a singleton graph. The network reliability of the original
graph can be recovered by applying (4.4) recursively.

5.3 Method

Indeed, the proposed method is based on HH method [Hardy et al., 2007;
Herrmann, 2010] explained in Section 4.3. To compute R(K), in HH method,
a BDD BK representing EK is built by using the top-down construction frame-
work, and then the value R(K) is computed by DP on the built BDD BK .

1To be agnostic on infrastructure types, we introduce the neutral terms “sources” and
“destinations” instead of servers and clients, respectively.

55

CHAPTER 5. NETWORK RELIABILITY EVALUATION FOR
CLIENT-SERVER MODEL

Similarly, the proposed method also builds a diagram that is similar to BDD
and perform DP on it. However, unlike HH method, all the reliability values,
R(T ∪ {v}) for all v ∈ V \ T , can be computed by single diagram and the
subsequent DP. We here describe the intuition behind the proposed method.

In solving CSNR problem with HH method, for every v ∈ V \T we build
BDD BT∪{v} representing the family ET∪{v} of subgraphs, the subgraphs such
that the vertices in T ∪ {v} are interconnected, and perform DP on BT∪{v}.
However, since the constraints imposed on ET∪{v} have similarity in that
at least the vertices in T must be interconnected, the built BDDs BT∪{v}
also have similarity in their structures. Therefore, we first try to extract
the common part of them by building a decision diagram-like structure only
considering the sources T . Then, we try to perform the computation of each
v by a more sophisticated DP on the built diagram.

To enable the latter part, we consider using the configures utilized in
the top-down construction phase also in the DP phase. In HH method, the
configures are simply discarded after the top-down construction phase since
each state of the subsequent DP is just a dnode of the resultant BDD as
described in Section 2.4. Meanwhile, in the proposed method, we consider a
DP such that each state is a block of the configure within each dnode.

5.3.1 Construction of Diagram

We first describe the construction of diagram. As described above, we con-
sider only the sources T in building the diagram. We use almost the same
definition for partition as HH method (Definition 4.4), but we omit the >-
pruned partition. Precisely, the partition in the proposed method is defined
as follows.

Definition 5.2. The i-th partition of an i-th subset X ⊆ E<i is defined as
follows: If there is a vertex in T∩Ai that is not connected to any frontier in Fi
on the subgraph induced by X, the partition is ⊥ (called ⊥-pruned partition).
Otherwise, the partition is defined as the set of blocks that partitions Fi. Here
two vertices u, v ∈ Fi are in the same block if and only if they are connected
on the subgraph induced by X.

The mark is defined in precisely the same way as Definition 4.5, where
K is substituted for T . For the sake of completeness, we again state the
definition of marks.

Definition 5.3. For i-th subset X ⊆ E<i whose i-th partition is P , suppose
that P is not a pruned partition. Let mark be a mapping from the blocks
in P to either true or false. For block B ∈ P , mark(B) = true if and only

56

5.3. METHOD

if vertices in B are connected with at least one vertex in T on the subgraph
induced by X. We call mark as a mark.

We here explain the reason why we omit the >-pruned partition. In
CSNR problem, we compute the probability that the vertices in T ∪ {v} are
interconnected. To compute this probability, it is not a sufficient condition
that only the vertices in T are interconnected. Therefore even after the
vertices in T are interconnected, we should keep track of the connectivity
among the other vertices. To realize this, we omit the >-pruned partition.
In contrast, if some vertices in T are left isolated, i.e., some portion of the
vertices in T are determined to be disconnected from the other vertices in T ,
there is no chance that the vertices in T ∪ {v} are interconnected for any v.
Thus, ⊥-pruned partition is kept considered.

Indeed, since the built diagram does not contain >, the resultant diagram
only represents an empty set when seeing it as a BDD since there are no paths
between the root dnode and >. However, since the resultant diagram has
much similar structure to a BDD, we again follow the top-down construction
framework in Section 2.5 to describe the procedure.

We describe the procedures for building diagram in Algorithm 5.1. Note
that this procedure is almost identical to Algorithm 4.1: the only difference
is that we do not perform >-pruning when all the vertices in T are connected.

For example, given the graph presented in Figure 5.2a and T = {2, 4}, the
resultant diagram is drawn in Figure 5.2b. Here, we again use the notation
for blocks and marks as in Section 4.3.

5.3.2 Level-wise Reliability Computation

We next describe how to compute R(T ∪ {v}) using the built diagram. As
described in Section 2.4, in computing K-NR with HH method, the answer
is obtained from the root dnode of the diagram after bottom-up DP is per-
formed. However, since we have to compute R(T ∪ {v}) for every v, the
DP computation must be performed O(n) times if we decide to retrieve an
answer from the root dnode. To avoid this, we consider retrieving answers
from intermediate levels of the diagram.

More specifically, let us focus on the i-th level of the diagram, i.e., the
dnodes with label i, Li such that v ∈ Fi. Note that such i always exists
for any v ∈ V if all vertices in G have degree ≥ 2; e.g., v ∈ Fi′ such that
ei′−1 is the first edge containing v within the edge order. Let DP↓[n] be the
probability such that the configure of i-th subset becomes that of n. Then

57

CHAPTER 5. NETWORK RELIABILITY EVALUATION FOR
CLIENT-SERVER MODEL

Algorithm 5.1: Procedures for constructing diagram to solve
CSNR problem.

1 procedure CSNRT .Root():
2 return 〈1, (∅, ∅)〉
3 procedure CSNRT .Child(〈i, (P,mark)〉, f):
4 foreach u ∈ {v, v′} \ Fi do // ei = {v, v′}
5 Insert [u] as a new block of P // u:vertex entering into frontier

6 mark([u])← true if u ∈ T ; false otherwise

7 if f = hi and BPv 6= BPv′ then
8 Make new block B by merging BPv and BPv′
9 mark(B)← mark(BPv) ∨mark(BPv′)

10 Remove blocks BPv , BPv′ from P and corresponding entries mark(BPv),

mark(BPv′)
11 foreach u ∈ {v, v′} \ Fi+1 do // u:vertex leaving from frontier

12 B ← BPu
13 Remove u from B
14 if B is empty then
15 if mark(B) = true then
16 return 〈m+ 1, 0〉 // some vertices in T are left isolated

17 else
18 Remove block B from P and corresponding entry mark(B)

19 return 〈i+ 1, (P,mark)〉

we can rewrite R(T ∪ {v}) as follows:

R(T ∪ {v}) = Pr(v is connected with all v′ ∈ T)

=
∑

n∈Li DP↓[n] · Pr(v is connected to all v′ ∈ T | n),
(5.1)

where the second term is the conditional probability given that the configure
of i-th subset E<i becomes that of n.

Regarding the second term, we define the probability DP↑[n, B] that, given
dnode n and block B of the partition inside the configure of n, vertices in
block B is connected to all the vertices in T with the edges in the subset
of E≥i (unproceeed edges). Such probability can be consistently defined due
to the following observation. Given two i-th subsets X, Y ⊆ E<i whose
corresponding configures are identical, for any subset Z of E≥i, X ∪ Z and
Y ∪Z are equivalent in whether v is connected to all the vertices in T on the
induced subgraph. This can be verified by imaginarily marking block BPnv , the
block of Pn containing vertex v, and then applying the HH method [Hardy
et al., 2007; Herrmann, 2010], where Pn is the partition inside the configure
of n. Moreover, based on the above argument, the probability of the second
term is the same even if v is replaced with any other vertex in BPnv .

58

5.3. METHOD

e1
e2

e3
e4
e5

e6
e7

1

2

3

4

5

6

(a) Graph

i=1

2

3

4

5

6

7

1.0

[1][2]*
.5775/.8

.2 [1 2]*
.9444

.8

[2]*[3]
.8/.7219

.36 [2 3]*
.9805

.64

[3][4]*
.9024/1.0

.288 [3]*[4]*
.9024/.9024

.128 [3 4]*
1.0

.512

[3][4]*
.512/1.0

.0576 [3]*[4]*
.512/.512

.0256 [3 4]*
1.0

.8448

[4]*[5]
1.0/.64

.2266 [4]*[5]*
.64/.64

.0205 [4 5]*
1.0

.6758

[5][6]*
.8/1.0

.1352 [5]*[6]*
.8/.8

.1812 [5]*[6]
1.0/.8

.0164 [5 6]*
1.0

.5407

(b) Built diagram

Figure 5.2: (a) Example of graph. Filled vertices indicate that they are in
T . (b) Diagram of proposed method with the graph presented in (a) given
that T = {2, 4} and the probability calculation along with this diagram when
pi = 0.8 for all edges. Solid and dashed lines indicate that the edge is working
and failing, respectively. Here ⊥-pruned partitions are omitted.

Using this, (5.1) can be rewritten as

R(T ∪ {v}) =
∑
n∈Li

DP↓[n] · DP↑[n,BPnv] (v ∈ Fi). (5.2)

5.3.3 Top-Down and Bottom-Up Dynamic Program-
ming

The remaining discussion is how to compute DP↓[n] and DP↑[n, B]. Regarding
the former, DP↓[n] can be represented by the DP↓ values of the parent dnodes
of n. Here, the parent dnodes of dnode n is the dnodes such that at least
one of lo- and hi-child dnodes is n. Specifically, the following equation holds,
where i = lb(n):

DP↓[n] = (1− pei−1
) ·
∑

n′∈Li−1:lo(n′)=n

DP↓[n
′] + pei−1

·
∑

n′∈Li−1:hi(n′)=n

DP↓[n
′]. (5.3)

By starting with DP↓[r] = 1 for root dnode r, all DP↓ values can be computed
using (5.3) in a top-down manner.

59

CHAPTER 5. NETWORK RELIABILITY EVALUATION FOR
CLIENT-SERVER MODEL

As for the latter, we formally consider the correspondence between blocks
of successive dnodes.

Definition 5.4. Given partition P inside the configure of dnode n and f ∈
{lo, hi}, assume that f -child of n is not ⊥. Let P ′ be the partition inside the
configure of the f -child dnode of n. For block B ∈ P , we define an f -child
block of B as follows: (1) If B contains vertex v in Fi+1, it is defined as BP

′

v ,
i.e., the block of P ′ containing v. (2) If no such vertex exists, the lo-child
block is defined as ∅, i.e., lo-child block is not exist. For hi-child block, let
ei = {u,w}. If w ∈ Fi+1 and u ∈ B, it is defined as BP

′

w . If u ∈ Fi+1 and
w ∈ B, it is defined as BP

′

u . Otherwise, it is defined as ∅. We write the lo-
and hi-child blocks of B as lo(B) and hi(B).

For example, let us focus on the partition of dnode of level 5 P = [3][4]
in Figure 5.2. For B = [4], lo(B) = hi(B) = [4]. For B = [3], lo(B) = ∅ since
vertex 3 is not in F6. However, lo(B) = [5] because e5 = {3, 5} and vertex 5
is in F6. Now we observe that if ei is absent, block B of the partition inside
the dnodes in Li is connected to all T vertices iff lo(B) is connected to all T
vertices. If ei is present, lo(B) of the above argument is replaced with hi(B).
Thus, DP↑[n, B] can be written as

DP↑[n, B] = (1− pelb(n)) · DP↑[lo(n), lo(B)] + pelb(n) · DP↑[hi(n), hi(B)], (5.4)

if both lo(n) and hi(n) are not ⊥; here, we let DP↑[·, ∅] = 0. This enables us
to compute DP↑[n, B] in a bottom-up manner.

If lo(n) = ⊥, DP↑[lo(n), lo(B)] in (5.4) is replaced with 0 except for the
case when all T vertices are appeared in E<i and B is the only marked
block in P . In such a case, all T vertices are already connected to B and
thus DP↑[lo(n), lo(B)] is replaced with 1. The same argument also holds
for the case where hi(n) = ⊥. There are corner cases for computing DP↑
when hi(n) = ⊥ and neither endpoint of ei is in Fi+1. Let ei = {u,w} and
assume that all T vertices are appeared in E<i and that BPu 6= BPw . First, if
BPu is the only marked block, DP↑[n,B

P
u] = 1 and DP↑[n,B

P
w] = pelb(n) since

the vertices in BPw can eventually connected to all the T vertices only when
elb(n) is present. Second, if BPu and BPw are the only two marked blocks,
then DP↑[n,B

P
u] = DP↑[n,B

P
w] = pelb(n) since the vertices in these blocks can

eventually connected to all the T vertices only when elb(n) is present.
Figure 5.2 depicts DP↓[n] and DP↑[n, B] for all dnodes and blocks when

pi = 0.8 for all edges. The shaded box in the upper-right corner indicates
DP↓[n], and DP↑[n, B] is written inside the white box. By focusing on L5, we
can compute R(T ∪ {3}) as .288 · .9024 + .128 · .9024 + .512 · 1.0 = .8874.
Other reliability values can be computed with different levels. Note that even

60

5.3. METHOD

if there are multiple levels whose frontier vertices contain v, we can choose
any one of them to compute R(T ∪ {v}) because the computed value will
be identical. We also note that (5.2) holds even for v ∈ T , which yields the
value of R(T).

Algorithm 5.2 is the pseudocode for the DP and level-wise reliability
computations. Lines 1–8 compute DP↓[n] via top-down DP and lines 9–20
compute DP↑[n, B] via bottom-up DP. The reliability computation is per-
formed in lines 22–25. Finally, r[v] stores the value RG,p(T ∪ {v}) for each
destination v.

5.3.4 Complexity

We first consider the size of the search diagram and then analyze the com-
plexity of our algorithm. We again use the frontier width defined as WF =
maxi |Fi|.
Lemma 5.5. The number of dnodes in the diagram is at most O(m · 2WF ·
EWF

), where El is the l-th Bell number.

Proof. At level i, there are at most E|Fi| patterns on the blocks and 2|Fi|

patterns on the marks. Thus, the number of i-th level partitions is at most
2|Fi| · E|Fi|. The overall size is bounded by

∑m
i=1 2|Fi| · E|Fi| = O(m · 2WF ·

EWF
).

This leads to the complexity of our proposed algorithm.

Theorem 5.6. Algorithms 5.1 and 5.2 can solve CSNR problem in O(m ·
WF · 2WF · EWF

) time.

Proof. This follows from the fact that for each dnode n, the processing of
configures in Algorithm 5.1 is performed in O(|Fi|) time, and the DP com-
putations of DP↓[n] and DP↑[n, ·] are also in O(|Fi|) time. The former holds
because all operations in Algorithm 5.1 can be performed in O(|Fi|) time for
n. The latter can be verified because there are at most O(|Fi|) values (DP↓[n]
and DP↑[n, ·]) to be computed and they are each computed in constant time
via (5.3) and (5.4).

The complexity of Theorem 5.6 is the same as that of the HH method for
solving K-NR. Regarding the CSNR problem, the proposed method is O(n)
times faster than the HH method. Moreover, when k = |T | + 1 is assumed
to be a constant, a better time complexity can be achieved.

Theorem 5.7. If k = |T | + 1 is assumed to be a constant, Algorithms 5.1
and 5.2 can solve CSNR problem in O(m ·W k

F · EWF
) time.

61

CHAPTER 5. NETWORK RELIABILITY EVALUATION FOR
CLIENT-SERVER MODEL

Algorithm 5.2: DP and level-wise reliability computation.

1 DP↓[r]← 1 // Start with root dnode r

2 for i← 2 to m do
3 foreach n ∈ Li do DP↓[n]← 0 // Init DP↓
4 for i← 1 to m do // Top-down DP

5 foreach n ∈ Li do
6 foreach f ∈ {lo, hi} do
7 if f(n) 6= ⊥ then
8 DP↓[f(n)] += f(pi) · DP↓[n] // (5.3)

// here lo(pi) = 1− pi and hi(pi) = pi
9 for i← m to 2 do // Bottom-up DP

10 foreach n ∈ Li do
11 for B ∈ Pn do DP↑[n, B]← 0 // Init DP↑
12 foreach f ∈ {lo, hi} do
13 if f(n) = ⊥ then
14 if (Ai ⊇ T) and (Pn contains only one marked block) then
15 DP↑[n, B∗] += f(pi) for marked block B∗

16 if (Ai ⊇ T) and (f = hi) and (|Fi \ Fi+1| = 2) then
ProcessCornerCase(i, n)

17 else // f(n) 6= ⊥
18 for B ∈ Pn do
19 if f(B) 6= ∅ then
20 DP↑[n, B] += f(pi) · DP↑[f(n), f(B)] // (5.4)

21 foreach v ∈ V \ T do // Level-wise Rel. Computation

22 Choose i ∈ {1, . . . ,m} s.t. v ∈ Fi
23 r[v]← 0
24 foreach n ∈ Li do

25 r[v] += DP↓[n] · DP↑[n,BPn

v] // (5.2)

26 procedure ProcessCornerCase(i, n):

27 if BPn

u 6= BPn

w then // ei = {u,w}
28 if BPn

u is the only marked block or BPn

u ,B
Pn

w are the only two marked blocks
then

29 DP↑[n,B
Pn

u] += pi
30 if BPn

w is the only marked block or BPn

u ,B
Pn

w are the only two marked blocks
then

31 DP↑[n,B
Pn

w] += pi

62

5.4. EXPERIMENTS

Proof. For this scenario, we can say that the size of the search diagram is at
most O(m ·W k−1

F ·EWF
). This is because, at level i, the number of patterns

of the marks is at most
∑min{k−1,|Fi|}

t=0

(|Fi|
t

)
= O(W k−1

F). Following the proof
of Theorem 5.6, the overall complexity is O(m ·W k

F · EWF
).

Theorem 5.7 includes the computation of 2-NRs for multiple destinations
as a special case (k = 1). When k = |K| is constant, we can prove that the
HH method [Hardy et al., 2007; Herrmann, 2010] could evaluate K-NR in
O(m ·W k+1

F ·EWF
) time in the same way as the proof of Corollary 4.11. This

means that, when k is small, although our method can compute reliabilities
for n−k+1 destinations, the time complexity is O(WF) times faster than the
single reliability computation with the HH method. This difference comes
from the fact that our method marks the blocks with T , while the HH method
marks them with T ∪ {v}.

As described in Section 4.3.2, the frontier width WF is closely related to
the path-width Wp and the path decomposition.

5.4 Experiments

We compared the proposed method and the HH method [Hardy et al., 2007;
Herrmann, 2010] with respect to the consumed time for solving CSNR prob-
lem. We also compared the performance for evaluating K-NR to exam-
ine the effect of complexity results in Section 5.3.4. The proposed method
is implemented in C++11. For HH method, we used TdZdd (available
at https://github.com/kunisura/TdZdd), which implements the improved
variant [Herrmann, 2010]. All codes were compiled by g++-9.1.0 with -O3

-DNDEBUG options. Experiments were conducted on a single thread of a Linux
machine with Intel Xeon E7-8880 2.20 GHz CPU and 3072 GB RAM; note
that, as described later, both methods used less than 65 GB of memory, ex-
cept for one instance. The implementation and all data used in this section
are available at https://github.com/nttcslab/cs-reliability.

We used both synthetic and real graphs as tested instances. The synthetic
graphs are the grid graphs; Grid-wxh denotes a grid graph with w × h ver-
tices. For these, we used the edge ordering of Iwashita et al. [Iwashita et al.,
2013], which is known to be better for DP on grid graphs. The real graphs are
from the Internet Topology Zoo [Knight et al., 2011] and Rocketfuel [Spring
et al., 2004] datasets. For these, we extracted the largest connected compo-
nent, removed self-loops, and recursively removed the degree 1 vertices. We
decided the edge ordering according to the beam-search based method [Inoue
and Minato, 2016]. For each graph, we computed the betweenness central-

63

https://github.com/kunisura/TdZdd
https://github.com/nttcslab/cs-reliability

CHAPTER 5. NETWORK RELIABILITY EVALUATION FOR
CLIENT-SERVER MODEL

T
ab

le
5.

1:
C

on
su

m
ed

ti
m

e
fo

r
so

lv
in

g
C

S
N

R
p
ro

b
le

m
:

p
ro

p
os

ed
m

et
h
o
d

v
s.

T
d
Z

d
d
,

a
m

o
d
er

n
im

p
le

-
m

en
ta

ti
on

of
th

e
H

H
m

et
h
o
d
.

C
S
N

R
(s

ec
.)

or
ig

in
al

p
re

p
ro

ce
ss

ed
k

=
2(
|T
|=

1)
k

=
6(
|T
|=

5)
k

=
11

(|T
|=

10
)

In
st

an
ce

n
m

n
m
W

F
O

u
rs

T
d
Z

d
d

O
u
rs

T
d
Z

d
d

O
u
rs

T
d
Z

d
d

G
ri

d
-7

x
14

98
17

5
98

17
5

7
0
.1

7
17

.6
9

0
.5

7
22

.4
2

0
.4

5
18

.9
5

G
ri

d
-7

x
28

19
6

35
7

19
6

35
7

7
0
.3

1
90

.8
4

1
.0

4
12

4.
18

1
.2

1
11

4.
14

G
ri

d
-7

x
42

29
4

53
9

29
4

53
9

7
0
.5

3
22

1.
00

1
.8

1
32

4.
94

1
.7

8
29

8.
82

G
ri

d
-8

x
8

6
64

11
2

64
11

2
8

0
.2

4
22

.8
9

0
.7

1
24

.2
3

0
.9

5
19

.7
1

G
ri

d
-1

0x
10

10
0

18
0

10
0

18
0

10
1
0
.7

8
>

1h
4
8
.7

6
>

1h
6
3
.9

6
>

1h
G

ri
d
-1

2x
12

14
4

26
4

14
4

26
4

12
3
2
0
.7

4
>

1h
2
3
0
9
.5

5
>

1h
3
4
6
5
.4

0
>

1h

In
te

ro
u
te

11
0

14
6

10
2

13
8

7
0
.0

2
2.

12
0
.0

4
2.

13
0
.0

5
1.

88
T

at
aN

ld
14

5
18

6
13

6
17

7
6

0
.0

1
0.

99
0
.0

2
1.

11
0
.0

1
0.

51
K

d
l

75
4

89
5

68
0

82
1

12
6
.5

5
>

1h
2
4
.4

8
>

1h
2
6
.8

2
>

1h

R
o
ck

et
fu

el
-1

22
1

31
8

75
8

17
8

61
8

12
1
5
.3

8
>

1h
1
2
.5

2
20

32
.5

1
1
2
.4

3
26

19
.3

5
R

o
ck

et
fu

el
-1

75
5

17
2

38
1

14
6

35
5

12
2
2
.1

8
>

1h
1
0
5
.3

0
>

1h
4
8
.6

5
>

1h
R

o
ck

et
fu

el
-3

25
7

24
0

40
4

13
9

30
3

12
6
9
.0

8
>

1h
4
0
0
.9

7
>

1h
6
1
1
.0

6
>

1h
R

o
ck

et
fu

el
-3

96
7

20
1

43
4

16
6

39
9

13
1
2
8
.3

3
>

1h
2
7
7
.6

1
>

1h
2
1
3
.0

4
>

1h
R

o
ck

et
fu

el
-6

46
1

18
2

29
4

10
0

21
2

10
6
.2

1
15

65
.1

7
9
.5

1
73

3.
77

3
.8

9
18

2.
64

64

5.4. EXPERIMENTS

T
ab

le
5.

2:
C

on
su

m
ed

ti
m

e
fo

r
ev

al
u
at

in
g
K

-N
R

:
p
ro

p
os

ed
m

et
h
o
d

v
s.

T
d
Z

d
d
.

K
-N

R
(s

ec
.)

or
ig

in
al

p
re

p
ro

ce
ss

ed
k

=
2

k
=

6
k

=
11

In
st

an
ce

n
m

n
m
W

F
O

u
rs

T
d
Z

d
d

O
u
rs

T
d
Z

d
d

O
u
rs

T
d
Z

d
d

G
ri

d
-7

x
14

98
17

5
98

17
5

7
0
.1

9
0.

33
0.

51
0
.3

5
0.

39
0
.3

0
G

ri
d
-7

x
28

19
6

35
7

19
6

35
7

7
0
.2

9
0.

49
0.

95
0
.6

4
1.

03
0
.5

9
G

ri
d
-7

x
42

29
4

53
9

29
4

53
9

7
0
.4

7
0.

79
1.

66
1
.0

4
1.

59
1
.0

1
G

ri
d
-8

x
8

6
64

11
2

64
11

2
8

0
.2

1
0.

44
0.

65
0
.4

9
0.

80
0
.3

5
G

ri
d
-1

0x
10

10
0

18
0

10
0

18
0

10
9
.1

8
42

.5
6

4
4
.3

9
56

.2
3

57
.9

7
5
4
.3

7
G

ri
d
-1

2x
12

14
4

26
4

14
4

26
4

12
2
8
4
.1

1
15

35
.8

2
2
1
0
5
.0

8
>

1h
3
1
3
9
.1

9
>

1h

In
te

ro
u
te

11
0

14
6

10
2

13
8

7
0
.0

2
0.

05
0
.0

4
0
.0

4
0.

04
0
.0

3
T

at
aN

ld
14

5
18

6
13

6
17

7
6

0
.0

1
0.

02
0.

02
0
.0

1
0
.0

1
0
.0

1
K

d
l

75
4

89
5

68
0

82
1

12
5
.5

7
16

4.
55

1
9
.3

8
24

8.
36

2
3
.9

5
24

7.
99

R
o
ck

et
fu

el
-1

22
1

31
8

75
8

17
8

61
8

12
1
2
.5

5
30

.8
8

1
0
.8

3
13

.3
2

1
1
.0

6
12

.2
0

R
o
ck

et
fu

el
-1

75
5

17
2

38
1

14
6

35
5

12
1
9
.8

0
11

6.
32

87
.3

6
7
0
.2

3
44

.8
5

4
2
.7

1
R

o
ck

et
fu

el
-3

25
7

24
0

40
4

13
9

30
3

12
5
6
.7

0
10

8.
63

3
6
0
.4

9
78

4.
34

49
6.

69
2
2
4
.9

1
R

o
ck

et
fu

el
-3

96
7

20
1

43
4

16
6

39
9

13
1
0
3
.5

8
34

6.
81

2
2
3
.5

0
39

9.
75

1
7
7
.5

1
24

2.
20

R
o
ck

et
fu

el
-6

46
1

18
2

29
4

10
0

21
2

10
5
.5

9
19

.0
7

7.
56

3
.8

1
3.

33
2
.0

1

65

CHAPTER 5. NETWORK RELIABILITY EVALUATION FOR
CLIENT-SERVER MODEL

ity [Freeman, 1977] of each vertex and chose |T | = 1, 5, 10 vertices with
higher centrality as sources T of the CSNR problem, because sources should
be deployed in an easily accessible “center” of the network. For the K-NR
problem, we chose k = 2, 6, 11 vertices with higher betweenness centrality as
terminals K. Since the original data [Knight et al., 2011; Spring et al., 2004]
do not include the working probability pi of each ei, it was chosen uniformly
at random from [0.9, 0.95] according to the literature [Elshqeirat et al., 2015;
Botev et al., 2012; Xiao et al., 2009; Nishino et al., 2018; Inoue, 2019]. We
set the time limit of each run to 1 hour.

Table 5.1 shows the results for CSNR problem. The results demonstrate
that our method can solve CSNR problem 30–400 times faster than the ex-
isting method. Notably, our method successfully computed all reliability
measures within 1 hour even for larger graphs, e.g., those having more than
200 edges and WF = 12, 13. Although the K-NR problem on Rocketfuel
graphs with more than 200 edges has not yet been solved to our knowledge,
our method can solve more difficult CSNR problem in a reasonable time.
Regarding the results of Grid-7xh, the computation time is roughly O(h)
for our method and O(h2) for TdZdd. This is because the complexity for
a graph with constant WF is O(m) for our method and O(mn) for the HH
method. As for the memory usage, in solving a Grid-12x12 (|T | = 10) in-
stance, our method used 341.2 GB while TdZdd used 177.3 GB when the
computation expired. The second largest peak memory usage was recorded
for Rocketfuel-3257, in which our method used 64.2 GB and TdZdd used
61.3 GB.

As for the K-NR problem, we summarize the results in Table 5.2. Our
method is faster than TdZdd for all instances with k = 2 and graphs having
large WF with k = 6, 11. This reflects the complexity result of Theorem 5.7:
When k is small, our method is O(WF) times faster than the HH method.
On the other hand, since the HH method has pruning techniques that are
not used in our methods, namely 1-pruning when all terminals are connected
and 0-pruning when v is disconnected, the HH method is sometimes faster
in solving K-NR when k is large or WF is small.

5.5 Related Work

As described in Chapter 4, Hardy et al. [2007] proposed a basic method,
and Herrmann [2010] improved the equivalence decision of states, but their
computational complexity is the same. Several reliability problems extending
K-NR have been studied: e.g., reliability optimization [Nishino et al., 2018],
reliability for any k terminals of n vertices [Li et al., 2009], reliability under

66

5.6. CONCLUSION

routing constraints [Hayashi and Abe, 2008], and reliability under disjoint-
paths constraints [Inoue, 2019]. Despite that rich body of literature, no work
has studied CSNR problem.

To reduce the computation costs, approximate solutions like a Monte
Carlo simulation have been studied [Gertsbakh and Shpungin, 2009], but
other works [Nishino et al., 2018; Inoue, 2019] showed that the deviation of
the Monte Carlo approach is often more than double. Canale et al. [2014]
proposed F-Monte Carlo, which estimates the probability of rare events accu-
rately, but depends on an unrealistic assumption, i.e., that all links are likely
to fail with equal probability. Khan et al. [2014] approximately enumerated
destinations whose reliability for any source exceeds a given threshold. The
problem seems similar to ours, but reliability values are not given, so we
cannot quantitatively assess the risk of each destination.

5.6 Conclusion

The work in this chapter made two contributions: (1) An efficient method
was proposed for CSNR problem, with a time complexity that is the same as
the existing method for K-NR, that is, our method can solve CSNR problem
O(n) times faster than the existing method; and (2) We revealed the method’s
practical efficiency with real networks that have hundreds of edges. In future
work, we will elaborate our method for specific infrastructures.

67

CHAPTER 5. NETWORK RELIABILITY EVALUATION FOR
CLIENT-SERVER MODEL

68

Chapter 6

Fast Evaluation for the
Expected Number of
Connected Nodes

Several network infrastructures are required to keep all nodes connected, al-
though these nodes are occasionally disconnected due to failures. Thus, the
expected number of connected node pairs (ECP) during an operation period
is a reasonable reliability measure in network design. However, no work
has studied ECP due to its computational hardness; we have to solve the
tough reliability evaluation problem for O(n2) times where n is the number
of nodes in a network. This chapter proposes an efficient method that exactly
computes ECP. Our method performs dynamic programming just once with-
out explicit repetition for each node pair and obtains an exact ECP value
weighted by the number of users at each node. A thorough complexity analy-
sis reveals that our method is faster than the method in Chapter 5, which can
be transferred to ECP computation, by O(n). Numerical experiments using
real topologies show great efficiency; e.g., our method computes the ECP of
an 821-link network in ten seconds; the existing method and the method in
Chapter 5 cannot complete it in an hour. This chapter also presents two
applications: critical link identification and optimal server placement.

6.1 Introduction

This chapter categorizes network infrastructures into two types: point-to-
point (P2P) infrastructures, which allow their users to access each other
(e.g., telecommunication and transportation), and client-server type (CS)
infrastructures, which let users access a shared server (e.g., cloud comput-

69

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

ing and power). Infrastructures are required to keep all users connected to
each other or a server [Nojo and Watanabe, 1987, 1993; Tollar and Bennett,
1995], but network components (e.g., links) can occasionally fail, disconnect-
ing some users. Thus, the number of users that were able to connect during
operation is a reasonable performance measure, and its expected number is
a good reliability measure in network design. This chapter mainly studies
the expected number of connected node pairs (ECP) for P2P infrastructures
and also examines the expected number of connected nodes (ECN) for CS
infrastructures. Infrastructures can be effectively enhanced by reinforcing
links that have the greatest impact on the ECP or ECN [Frank, 1992]. The
performance of CS infrastructure can be optimized by adding another server
to a location where ECN is maximized [Sahoo et al., 2016]. Since network
infrastructures are usually very large and important, evaluation methods of
ECN and ECP must be scalable and accurate.

6.1.1 Literature Review

Historically, the all-terminal network reliability (All-NR), i.e., the probability
of connecting all nodes (see Section 4.2), has been studied as a reliability
measure of an entire network [Hardy et al., 2005; Chaturvedi, 2016; Gaur et
al., 2021]. However, All-NR often yields counter-intuitive reliability values.
Network (a) in Figure 6.1 is reliable overall, although only the right-most
node is likely to be disconnected. All-NR is affected by this right-most node,
resulting in a very poor value, while ECP is reasonably high, reflecting the
reliable clique on the left side. Network (b) in Figure 6.1 is vulnerable due
to an unreliable bridge, and the ECP becomes fairly low. ECP distinguishes
networks by considering the number of affected node pairs.

The connected nodes and connected pairs have often been counted in net-
work vulnerability analysis [Albert et al., 2000; Cohen et al., 2001; Magoni,
2003; Smith and Song, 2020; Neumayer and Modiano, 2010, 2011; Agarwal et
al., 2010; Rahnamay-Naeini et al., 2011; Manzano et al., 2011; Oostenbrink
and Kuipers, 2017; Natalino et al., 2017; Al Mtawa et al., 2021]. These past
studies focused on severe events such as natural disasters, wars, or epidemics
to evaluate the impact on the number of connected nodes. However, they
ignored the average utility of the network in the long run. On the contrary,
this chapter studies the expected number of connected nodes/pairs during a
long operation period of ordinary times.

To the best of our knowledge, no work has studied ECP assuming long
operation periods, perhaps due to very high computational cost. As de-
scribed in Section 4.1, infrastructures in ordinary times are usually modeled
as independent failure model [Moskowitz, 1958], in which each edge fails

70

6.1. INTRODUCTION

(a) (b)

Figure 6.1: Example P2P infrastructures to illustrate the difference between
All-NR and ECP. Networks (a) and (b) have ten nodes (45 node pairs).
Solid and dashed links fail independently with 10% and 50% probabilities,
respectively. All-NR is 0.4999 for network (a) and 0.4994 for network (b),
almost identical. ECP is 40.49 (0.8998 as normalized by pair counts) for
network (a) and 32.49 (0.7720) for network (b), distinguishing them.

independently with a given probability. Under this model, the ECP can be
obtained as the sum of 2-NRs for all vertex pairs, i.e., 1

2

∑
u,v∈V :u6=v R({u, v}),

where V is the set of vertices and R({u, v}) is 2-NR (the probability of con-
necting two vertices, u and v). Unfortunately, as described in Section 4.2.1,
even computing single R({u, v}) is a computationally tough problem known
as #P-complete [Valiant, 1979]. It is very hard to solve the #P-complete
problem (2-NR) for all pairs O(n2) times where n is the number of vertices,
and this difficulty prevented past studies from examining the ECP. Note that
past studies on severe events described in the previous paragraph only dealt
with a polynomial number of network states that could occur after the event.

We here mention that the method proposed in Chapter 5, which we call
CSNR method in this chapter, can be used for computing ECP. By setting the
sources as T = {u}, the CSNR problem (Problem 5.1) becomes computing
R({u, v}) for every v ∈ V . Thus, by solving CSNR problems with T =
{u} for every u, we can compute R({u, v}) for all vertex pairs, yielding
the ECP value. Ultimately, the CSNR method allows us to compute ECP in
O(mnW 2

FBW) time by running it O(n) times, where WF is the frontier width.
Using the CSNR method, we conducted preliminary experiments to compute
ECP for the 821-link network. However, we were not able to complete it even
with a one-hour time limit.

6.1.2 Our Contribution

This chapter proposes an efficient method that exactly computes ECP and
presents two applications.

• This chapter develops a method that computes ECP in O(mW 2
FBW)

71

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

time. Since the proposed method is equivalent to O(n2) 2-NRs, it is
faster than the HH method by O(n2WF) and the CSNR method by
O(n). In addition, our method is designed to specify node weights
to represent user counts at each node, which is a favorable feature
for practical use. Our method’s computation time was experimentally
measured with real communication network topologies. The results
show that it computed the ECP of an 821-link network in just ten
seconds.

• Application 1: the critical link identification problem. Using the pro-
posed method with an automatic differentiation technique [Griewank
and Walther, 2008], we can compute the criticality of each link in a
P2P infrastructure. Our criticality, defined based on the ECP, was
compared with the All-NR’s criticality [Kuo et al., 2007; Inoue, 2019]
and well-known network centrality indices [Koschützki et al., 2005].
Numerical evaluation with actual topologies reveals that the existing
measures likely identify links less critical for ECP, implying that our
criticality measure is required to effectively reinforce networks.

• Application 2: the optimal server placement problem. By exploiting
our ECP method, which can compute ECNs for every node, we can
efficiently select the optimal node on which another server is added
to a CS infrastructure. Numerical experiments with actual topologies
show that our method is 70–10,000 times faster than existing methods.

The rest of this chapter is organized as follows. Section 6.2 defines a
problem common to ECP computation and two applications. Section 6.3
develops a method that exactly and efficiently solves the problem, and Sec-
tion 6.4 analyzes the time complexity. Section 6.5 describes how to utilize
the method for the applications, and Section 6.6 numerically evaluates our
method with its applications. Sections 6.7 and 6.8 discuss related work and
our conclusions.

6.2 Problem Statement

We use an independent failure model described in Section 4.1. However,
to be suited for our purpose, we define a network reliability measure a bit
different from the K-NR. We define R0(T, v) of vertices T ⊆ V and vertex
v ∈ V as the probability that v is connected to at least one of the vertices
in T on the subgraph of G induced by present edges. R0(T, v) is different
from K-NR R(T ∪ {v}) in that the former only requires that v is connected

72

6.3. METHOD

to at least one vertex in T , while the latter requires that v is connected to
all the vertices in T . Note that R0({u}, v) is the 2-NR of vertices u and v.
Let ET,v ⊆ 2E be a family of subgraphs such that v is connected to at least
one vertex in T . Then, R0(T, v) can be written as

R0(T, v) =
∑

E′∈ET,v

Pr(E ′) =
∑

E′∈ET,v

[∏
e∈E′

pe ·
∏

e∈E\E′
(1− pe)

]
. (6.1)

Note that we define R0(T, v) = 1 if v ∈ T .
For our setting, we are additionally given node weight wv for each node

v ∈ V . We define the (weighted) expected number of connected nodes (ECN)
of T , denoted by S0(T), as

S0(T) :=
∑
v∈V

wv ·R0(T, v). (6.2)

Moreover, we can define the (weighted) expected number of connected node
pairs (ECP) as

1

2

∑
u,v∈V :u6=v

wuwvR({u, v}) =
1

2

∑
u∈V

(
wuS0({u})− w2

u

)
. (6.3)

We also define a normalized ECP (NECP) as the value of ECP divided by
1
2

∑
u,v∈V :u6=v wuwv. Since the value of NECP is at most 1 regardless of n, it is

convenient for comparisons with different topologies. Now the core problem
we consider, called the ECN+ problem, can be described as follows.

Problem 6.1 (ECN+). We are given each vertex’s weight wv for v ∈ V and
vertex set T ′ ⊆ V , which might be an empty set. The task is to compute
S0(T

′ ∪ {u}) for every u ∈ V \ T ′.

By solving ECN+ with T ′ = ∅, we can obtain the value of ECP by (6.3).
Case T ′ 6= ∅ is needed for solving the optimal server placement problem, as
described in Section 6.5.

6.3 Method

In the CSNR method of Chapter 5, which computes the 2-NR between a
vertex and every other vertex, each network reliability value is decomposed
as a sum over the partial subsets of the edges (i-th subsets), and bidirectional
dynamic programming (DP) (top-down and bottom-up DP) are performed
to compute their values. The proposed method in this chapter employs a

73

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

similar approach, but we have a different DP table and an elaborated dynamic
programming (DP) computations for the ECN+ problem. Hereafter, we
derive mathematical formulas for solving the ECN+ problem in Sections 6.3.1
and 6.3.2. The whole procedure of our proposed algorithm is described in
Section 6.3.3 and its preprocessing in Section 6.3.4. Finally, we summarize
the key points of our method and briefly compare it with the existing methods
in Section 6.3.5.

6.3.1 Partition and Level-wise Formula

Decomposition of R0(T
′ ∪ {u}, v) over Partitions

Before considering the computation of S0(T
′ ∪ {u}), we return to individual

R0(T
′ ∪ {u}, v). A naive way to compute R0(T

′ ∪ {u}, v) is to enumerate all
the subsets in ET ′∪{u},v. Then, R0(T

′ ∪ {u}, v) can be computed by (6.1).
In a similar way as Section 5.3.2, we introduce another view for computing

R0(T
′∪{u}, v). Let T ′+u ∼ v be a (probabilistic) event where v is connected

to u or at least one vertex in T ′. By definition, R0(T
′∪{u}, v) = Pr(T ′+u ∼

v). We also consider an event where the present edges in E<i are X<i ⊆ E<i.
Since such events are mutually exclusive for different X<i, we have

R0(T
′ ∪ {u}, v) =

∑
X⊆E<i

Pr(X) · Pr(T ′ + u ∼ v|X), (6.4)

where the first factor is the probability that the present edges in E<i are just
X and the second factor is the conditional probability given that the present
edges in E<i are X.

We cannot directly compute the second factor. However, if we can define
equivalence classes for the i-th subsets where conditional probability Pr(T ′+
u ∼ v|X) is identical within the same equivalence class, we can rewrite (6.4)
as

R0(T
′ ∪ {u}, v) =

∑
n∈Li

Pr(n) · Pr(T ′ + u ∼ v|n), (6.5)

where Li is a set of the equivalence classes of the i-th subsets, the first factor is
the probability that the working edges in E<i are in equivalence class n, and
the second factor is the conditional probability given class n. We eventually
show we can define such equivalence class by again considering configure for
i-th subsets.

We can say Pr(T ′ + u ∼ v|X) = Pr(T ′ + u ∼ v|Y) for X, Y ∈ E<i if for
every Z ⊆ E≥i, X ∪Z and Y ∪Z are equivalent in that they are included in
ET ′∪{u},v. Since ET ′∪{u},v only considers the connectivity among vertices, X
and Y are equivalent if their connectivities among vertices are identical, i.e.,

74

6.3. METHOD

their induced connected components are equal. Moreover, even in this case
we can focus on the connectivity among frontier vertices. This is because
every vertex v that does not appear in E≥i can be identified with a frontier
vertex v′ if v is connected to v′, or can be ignored if it is not connected
to any frontier vertices. This introduces a partition very similar to that in
Sections 4.3 and 5.3 (i.e., Definitions 4.4 and 5.2). However, to be suited for
our problem where the vertices in T ′ have a particular roll, the definition here
is different from them in that the vertices connected to at least one vertex in
T ′ are regarded as special.

Definition 6.2. A partition for i-th subset X ⊆ E<i is a partitioning of
frontier vertices Fi into blocks that consist of exactly one possibly empty
special block and other normal blocks. Vertex v ∈ Fi is in a special block
if and only if v is connected to at least one vertex in T ′ on the subgraph
induced by X. Two vertices x, y ∈ Fi, which are not in the special block, are
in the same normal block if and only if they are connected on the subgraph
induced by X. For partition P , we describe the special block as SP and the
block containing v ∈ Fi as BPv .

A partition is represented as a list of blocks. The special block and each
normal block are represented by curly brackets ({ }) and square brackets
([]) with vertex ids inside them. For example, F3, i.e., the third frontier
vertices of the graph of Figure 6.2a, are vertices 2 and 3, and the third
subsets and their corresponding partitions are drawn in Figure 6.2b. Here
the partitions of three third subsets {}, {e1}, and {e2} are equal, {2}[3], and
their conditional probabilities are identical. Now each partition constitutes
an equivalence class for the i-th subsets, and (6.5) holds where Li is a set of
partitions of i-th subsets.

Formula for ECN S0(T
′ ∪ {u})

Next we decompose S0(T
′ ∪ {u}) =

∑
v∈V wvR0(T

′ ∪ {u}, v) into factors
related to the partitions and blocks explained above. By using (6.5) and
exchanging the summation order, we have

S0(T
′ ∪ {u}) =

∑
P∈Li

∑
v∈V

wv · Pr(P) · Pr(T ′ + u ∼ v|P). (6.6)

Now we focus on an integer i such that u ∈ Fi. Note that hereafter we assume
that graph G has no self-loops and that the degree of each vertex in V \ T ′
is at least 2; by proper preprocessing described in Section 6.3.4, any network
can satisfy this assumption. If so, there is at least one level i such that u ∈ Fi

75

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

(a)
e1
e2

e3
e4
e5

e6
e7

1

2

3

4

5

6

(b) {}

{2}[3]

{e1}

{2}[3]

{e2}

{2}[3]

{e1, e2}

{2 3}

(c) {}

{2}[1] {1 2}

{2}[3] {2 3}

{}[3][4] {4}[3] {3}[4] {3 4}

{}[3][4] {}[3 4] {4}[3] {3}[4] {3 4}

{5}[4] {4 5}

{5}[6] {5 6}

{}

Figure 6.2: (a) Example of graph G: Filled vertices are in T ′. (b) Third
subsets for graph (a) and their corresponding partitions. Red vertices are in
F3. (c) All possible partitions generated from graph of (a). Solid and dashed
lines indicate the connection from P to PHI and P LO.

in the same argument as Section 5.2. We further decompose the sum over
v ∈ V in (6.6) into that over v ∈ Fi∪Bi and that over v ∈ V \ (Fi∪Bi) = Ai;
recall that Ai and Bi are the vertices that do not appear in E≥i and E<i,
respectively. By case analysis on whether v ∈ Fi ∪ Bi or v ∈ Ai, we can
represent Pr(P) · Pr(T ′ + u ∼ v|P) with terms related to BPu , the block of P
containing u. Hereafter, we write the present edges in E ′ ⊆ E as present(E ′).
Moreover, we write the subgraph of G induced by E ′ ⊆ E as G[E ′]. These
notations are used for the sake of simplicity in the explanation

For v ∈ Bi ∪ Fi, when v ∈ Fi, v is connected to u or some vertices in T ′

on G[present(E<i)] if and only if BPv = BPu or BPv = SP . Otherwise, v may be
connected to u or some vertices in T ′ with G[present(E)] = G[present(E<i)∪
present(E≥i)], i.e., when present edges in E≥i are added to G[present(E<i)].
This happens if and only if v is connected to one of the vertices in BPu or T ′

by the addition of present(E≥i). We write the event where v is connected to
some vertices in a block B or T ′ as T ′+B ∼≥i v, where the subscript means
that they are connected by the addition of present(E≥i). Finally, we have

Pr(P)·Pr(T ′ + u ∼ v|P)=Pr(P)·Pr(T ′ + BPu ∼≥i v|P).

Here we define Pr(T ′ + BPu ∼≥i v|P) = 1 when v ∈ Fi and BPv = BPu or
BPv = SP .

For v ∈ Ai, there are the following three cases depending on present(E<i).
First, if v is connected to some vertices in T ′ on G[present(E<i)], we can say

76

6.3. METHOD

v is connected to the special block SP . Second, if v is not connected to
any vertices in T ′ but connected to some vertices in Fi on G[present(E<i)],
v may eventually be connected to u or some vertices in T ′ depending on
G[present(E≥i)]. Otherwise, v is never connected to u or any vertices in T ′.
Here v is connected to at most one block of P on G[present(E<i)] since if v is
connected to multiple blocks, these blocks should be interconnected via v that
contradicts the definition of partition. Therefore, Pr(P) · Pr(T ′ + u ∼ v|P)
equals ∑

B∈P

Pr(P) · Pr(v ∼<i B|P) · Pr(T ′ + BPu ∼≥i B|P).

Here, v ∼<i B is the event where v is connected with block B on the subgraph
G[present(E<i)] and T ′+B ∼≥i B′ is the event where block B′ is eventually
connected to block B or any vertices in T ′ on G[present(E)], i.e., by adding
present(E≥i) into G[present(E<i)]. To reflect the first case, we define Pr(T ′+
BPu ∼≥i SP |P) = 1. Note that Pr(P) · Pr(v ∼<i B|P) = Pr(P , v ∼<i B),
which is the joint probability that the partition of i-th subset present(E<i)
is P and v ∼<i B.

Finally, by taking the summation over v ∈ Ai and v ∈ Fi ∪ Bi, we have
the following formula.

Theorem 6.3. We define the following values for partition P of an i-th
subset and its blocks B,B′ ∈ P:

pi↓(P) := Pr(P), (6.7)

qi↑(P , B,B′) := Pr(T ′ +B ∼≥i B′|P), (6.8)

Ri↓(P , B) :=
∑
v∈Ai

wv · Pr(P , v ∼<i B), (6.9)

Ti↑(P , B) :=
∑

v∈Fi∪Bi

wv · Pr(T ′ +B ∼≥i v|P). (6.10)

Then S0(T
′ ∪ {u}) equals∑

P∈Li

[∑
B∈P

(
Ri↓(P , B) · qi↑(P ,BPu , B)

)
+ pi↓(P) · Ti↑(P ,BPu)

]
. (6.11)

Note that we can also obtain other metrics from (6.7)–(6.10). One can
easily show that S0(T

′) =
∑

v∈V wvR0(T
′, v) and R0(T

′, v) for v ∈ V \ T ′ are
represented as

S0(T
′) = Rm+1

↓ (Psi, SP
si

) (Psi ∈ Lm+1), (6.12)

R0(T
′, v) =

∑
P∈Li

pi↓(P) · qi↑(P , SP ,BPv) (v ∈ Fi), (6.13)

77

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

where Psi is the only one (m + 1)-st partition. These values will be used in
the preprocessing; see Section 6.3.4.

6.3.2 DP Formulas

If pi↓, q
i
↑, R

i
↓, and Ti↑ are computed for all i, Theorem 6.3 enables us to solve

ECN+ without repetitively starting the computation from scratch for each
u ∈ V \ T ′. This is achieved by choosing level iu such that u ∈ Fiu for every
u ∈ V \ T ′ and computing S0(T

′ ∪ {u}) with (6.11). To compute the p↓,
q↑, R↓, and T↑ values, we first derive the relations among the partitions and
their blocks of i-th and (i + 1)-st subsets. Note that from the viewpoint
of the top-down construction of diagram (Section 2.5), it is equivalent to
consider the Child procedure where the configure is the partition defined in
Definition 6.2. Using them, we derive DP formulas for computing all these
values.

Child Partitions and Blocks

For an i-th subset X, we can consider two successive (i + 1)-st subsets, X
and X ∪ {ei}. In a similar manner, we derive two child partitions from a
partition.

Definition 6.4. Let P be a partition of i-th subset X ⊆ E<i. We define the
lo-child partition lo(P) and hi-child partition hi(P) of P as the partitions of
(i+ 1)-st partitions X<i and X<i ∪ {ei}, respectively.

lo(P) and hi(P) are uniquely determined regardless of the choice of X in
Definition 6.4. This is because if X and Y have identical connectivity among
Fi, both (X, Y) and (X ∪ {ei}, Y ∪ {ei}) have identical connectivity among
Fi+1 for each pair. Note that this corresponds to the configure’s condition
(II) in Section 4.3.

We also define the correspondence between blocks of successive partitions
in a similar manner as Chapter 5 (i.e., Definition 5.4).

Definition 6.5. Let P be a partition and let B ∈ P be a block. We define
lo-child block lo(B) and hi-child block hi(B) as follows: For a special block,
we define f(SP) = Sf(P) for f ∈ {lo, hi}. For normal block B, if it contains at
least one vertex v in Fi+1, f(v) := Bf(P)

v for f ∈ {lo, hi}, i.e., the block of f(P)
containing v. Otherwise, lo(B) = hi(B) := ∅, i.e., no child blocks, except for
the following case: If B contains one endpoint of ei and another endpoint v′

is in Fi+1, hi(B) := B
hi(P)
v′ .

Note that the difference comes from the existence of special block in
Definition 6.2: the child blocks of special block are always special blocks.

78

6.3. METHOD

Top-down DP

Now we focus on p↓ and R↓. For the first subsets, since F1 = ∅, we have
only one partition Pro = {} consisting of an empty special block. For this,
p1↓(Pro) = 1 and R1

↓(Pro, SP
ro

) = 0 by definition. We compute all p↓ and R↓
values from p1↓, R

1
↓ to pm+1

↓ , Rm+1
↓ , i.e., in a top-down manner, by the formulas

for computing pi+1
↓ and Ri+1

↓ from pi↓ and Ri↓.

First, p↓ can be computed in the same way as DP↓ in Chapter 5. The
partition of (i+1)-st subset present(E<i+1) is P if and only if (i) the partition
of i-th subset present(E<i) is P ′ such that lo(P ′) = P and ei is absent, or
(ii) that is P ′ such that hi(P ′) = P and ei is present. Thus, we have

pi+1
↓ (P) =

∑
f∈{lo,hi}

[
f(pei) ·

∑
P ′∈Li:f(P ′)=P

pi↓(P ′)
]
, (6.14)

where we define hi(pe) = 1− lo(pe) = pe for e ∈ E.

Next we focus on R↓. Given partition P of (i+1)-st subset present(E<i+1)
and its block B, we have similar formula as (6.14):

Pr(P , v ∼<i+1 B) =
∑

f∈{lo,hi}

[
f(pei)·

∑
P ′∈Li:f(P ′)=P

∑
B′∈P ′:f(B′)=B

Pr(P ′, v∼<iB′)
]
.

(6.15)
Note that we here use the fact that events P , v ∼<i B1 and P , v ∼<i B2 for
B1, B2 ∈ P , B1 6= B2 are mutually exclusive since v is connected to at most
one block on G[present(E<i)].

To compute Ri+1
↓ , we decompose the sum over v ∈ Ai+1 in (6.9) into that

over v ∈ Ai and that over v ∈ Ai+1 \Ai. The former can be represented with
Ri↓ by using (6.15). For the latter, Pr(P ′, v ∼<i B′) = Pr(P ′) if B′ = BP

′

v and
0 otherwise. Finally, we have

Ri+1
↓ (P , B) =

∑
f∈{lo,hi}

[
f(pei) ·

∑
P ′∈Li:f(P ′)=P

∑
B′∈P ′:f(B′)=B

Ri↓(P ′, B′)
]

+
∑

v∈Ai+1\Ai

∑
f∈{lo,hi}

[
wv · f(pei) ·

∑
P ′∈Li:f(P ′)=P,f(BP

′
v)=B

pi↓(P ′)
]
,

(6.16)

where the first and second terms are derived from the former and the latter.
Note that there are corner cases where v ∈ Ai+1 \ Ai has only degree 1. In
such cases, since v /∈ Fi, we cannot define block BP

′

v of partition P ′. Here,
since v ∈ T ′ by assumption, we can define f(BP

′

v) = Sf(P ′) for computing the
second term of (6.16).

79

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

Bottom-up DP

Next we focus on q↑ and T↑. For the (m+ 1)-st subsets, since Fm+1 = ∅, we
have only one partition Psi = {} consisting of only an empty special block.

For this, qm+1
↑ (Psi, SP

si

, SP
si

) = 1 and Tm+1
↑ (Psi, SP

si

) = 0 by definition. Our

goal now is to compute all q↑ and T↑ values from qm+1
↑ , Tm+1

↑ to q1↑, T
1
↑, i.e.,

in a bottom-up manner.
We first consider the computation of qi↑ from qi+1

↑ . Given two blocks
B,B′ ∈ P where P is a partition of an i-th subset, basically T ′ + B ∼≥i B′
if (i) ei is absent and T ′ + lo(B) ∼≥i+1 lo(B′), or (ii) ei is present and
T ′ + hi(B) ∼≥i+1 hi(B′). By cooperating with the trivial case that B′ = B
or B′ = SP (in such cases T ′ +B ∼≥i B′ must hold),

qi↑(P , B,B′) =

1 (B′ ∈ {B, SP})∑
f∈{lo,hi}

f(pei) · qi+1
↑ (f(P), f(B), f(B′)) (otherwise). (6.17)

In the second case, we define qi↑(P , ∅, B′) = qi↑(P , SP , B′) for any B′ ∈ P and
qi↑(P , B, ∅) = 0 for any B ∈ P ∪ {∅}; such values can easily be derived from
the definition (6.8).

Note that, as with the case with the computation of DP↑ in Chapter 5,
there is a corner case for computing qi↑. When ei is present, ei connects two
different normal blocks B and B′, and hi(B) and hi(B′) are both ∅, B and B′

are eventually connected on G[present(E)], but this case is not considered in
(6.17). In such a case, we set qi↑(P , B,B′) = pei .

Finally, we derive the formula for T↑. We can have similar analyses as q↑
for Pr(T ′ +B ∼≥i v|P):

Pr(T ′ +B ∼≥i v|P) =
∑

f∈{lo,hi}

f(pei) · Pr(T ′ + f(B) ∼≥i+1 v|f(P)). (6.18)

To compute Ti↑ from Ti+1
↑ , we decompose the sum over v ∈ Fi ∪Bi in (6.10)

into that over v ∈ Fi+1 ∪Bi+1 and v ∈ (Fi ∪Bi) \ (Fi+1 ∪Bi+1) = Ai+1 \Ai.
The former can be represented with Ti+1

↑ values by using (6.18). For the
latter,

Pr(T ′ +B ∼≥i v|P) = Pr(T ′ +B ∼≥i BPv |P) = qi↑(P , B,BPv).

Finally, we have

Ti↑(P , B) =
∑

f∈{lo,hi}

f(pei) · Ti+1
↑ (f(P), f(B)) +

∑
v∈Ai+1\Ai

wv · qi↑(P , B,BPv). (6.19)

80

6.3. METHOD

Algorithm 6.1: Procedures for constructing diagram of partitions

1 procedure ECNPT ′ .Root():
2 return 〈1,Pro := {}〉
3 procedure ECNPT ′ .Child(〈i,P〉, f):
4 foreach x ∈ {v, v′} \ Fi do // ei = {v, v′}
5 if x ∈ T ′ then Insert x into SP , the special block of P
6 else Insert [x] as a new normal block of P
7 if f = hi then

8 Merge BPv and BPv′ ; if either is a special block, the merged one is also special
9 foreach x ∈ {v, v′} \ Fi+1 do

10 Remove x from BPx
11 Remove all empty normal blocks from P f

12 return 〈i+ 1,P〉

Note that in computing the first term of (6.19), we set Ti↑(P , ∅)=Ti↑(P , SP)
by considering the definition (6.10). As with R↓, if v ∈ Ai+1 \ Ai has only
degree 1, we define BPv = SP for computing the second term of (6.19).

6.3.3 Procedures of Algorithm

To compute the p↓, q↑, R↓, and T↑ values by (6.14)–(6.19), we should know
set Li of the partitions of i-th subsets for every i. We should also compute
the child partitions and blocks for every partition. However, it is not known
in advance. Therefore, we enumerate all possible partitions from a given
graph. Thanks to the similarity in the definition of partitions, we can achieve
these computations with the diagram construction framework described in
Section 2.5 although the resultant diagram is neither a BDD nor a ZDD.
We describe the procedures for the diagram construction in Algorithm 6.1.
Since similar procedures are employed for the HH and CSNR methods (Algo-
rithms 4.1 and 5.1), we omit these details. For example, Figure 6.2c depicts
the diagram of partitions generated from the graph of Figure 6.2a. Here the
correspondences between partitions are also drawn.

After that, the p↓ and R↓ values are computed from i = 1 to m + 1 by
(6.14) and (6.16), the q↑ and T↑ values are computed from i = m+ 1 to 1 by
(6.17) and (6.19), and then every S0(T

′ ∪ {u}) value is computed by (6.11).

6.3.4 Preprocessing

In Section 6.3.1, we have assumed that the graph has no self-loops and the
degree of every vertex in V \ T ′ is at least 2. Here we deal with the case
where self-loops or such vertices exist. First, since the self-loops do not affect

81

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

the connectivity among vertices, we can safely remove them from G.
Now we consider the case where x ∈ V \ T ′ has degree 1. Let ex = {x, y}

be the only edge incident to x, and let G − x be the graph obtained by
removing x from G. We can represent RG

0 (T ′ ∪ {u}, v), R0 on graph G, with
pex and RG−x

0 (·, ·), R0 on G− x, by the analysis like Moskowitz [1958]:

RG
0 (T ′ ∪ {u}, v) =

1 (u = v = x)

pex ·RG−x
0 (T ′ ∪ {y}, v)

+ (1− pex)RG−x
0 (T ′, v)

(v 6= u = x)

pex ·RG−x
0 (T ′ ∪ {u}, y) (u 6= v = x)

RG−x
0 (T ′ ∪ {u}, v) (otherwise).

This enables us to represent S0(T
′∪{u}) on G, denoted by SG0 (T ′∪{u}),

with the values of RG−x
0 . That is,

SG0 (T ′ ∪ {u}) = wx ·RG
0 (T ′ ∪ {u}, x) +

∑
v∈V \{x}

wv ·RG
0 (T ′ ∪ {u}, v)

=

wx + pex ·
∑

v∈V \{x}

wv ·RG−x
0 (T ′ ∪ {y}, v) (u = x)

wxpex ·RG−x
0 (T ′ ∪ {u}, y)

+
∑

v∈V \{x}

wv ·RG−x
0 (T ′ ∪ {u}, v) (u 6= x).

Using this, SG0 (T ′ ∪ {u}) can be computed by solving ECN+ on G − x as
follows: We define new vertex weight values for v ∈ V \ {x} as

w′v =

{
wy + wxpex (v = y)

wv (v 6= y),
(6.20)

and compute (S ′)G−x0 (T ′∪{u}) =
∑

v∈V \{x}w
′
vR

G−x
0 (T ′∪{u}, v) for every u ∈

(V \T ′)\{x}. Then we can prove that SG0 (T ′∪{u}) equals (S ′)G−x0 (T ′∪{u})
for u ∈ (V \ T ′) \ {x}, and SG0 (T ′ ∪ {x}) equals

wx[1− p2ex − pex(1− pex)RG−x(T
′, y)]

+ pex · (S ′)G−x0 (T ′ ∪ {y}) + (1− pex)(S ′)
G−x
0 (T ′). (6.21)

Note that (S ′)G−x0 (T ′) and RG−x
0 (T ′, y) can be obtained from (6.12) and

(6.13).
There are cases such that (V \T ′)\{x} still contains vertices with degree

1. If so, we recursively remove such a vertex and set new weights as (6.20).
After recursion stops, we can use our proposed algorithm. Finally, the answer
can be recovered by recursively applying (6.21).

82

6.4. COMPLEXITY

6.3.5 Summary of Our Proposed Method

We summarize the key points of our method. Our method relies on excel-
lent ideas from two methods: the subset equivalency based on connectivity
among frontier vertices (HH method in [Hardy et al., 2007]), and the i-th
subsets used to compute the reliability for every vertex (CSNR method in
Chapter 5). However, the proposed method’s design is completely new to
introduce our new building blocks, which are the accumulated probabilities
(R↓ and T↑) and related DP formulas (6.16) and (6.19). They enable us to
compute ECN for every vertex. To incorporate them, we entirely renovated
the whole procedure, e.g., the decomposition formula (6.11) and other DP
computations.

6.4 Complexity

Here we analyze the time complexity of our algorithm. As in previous
chapters, let WF = maxi |Fi| be the maximum number of frontier vertices.
Before considering the time complexity, we bound the maximum number
M = maxi |Li| of partitions of i-th subsets.

Lemma 6.6. When T ′ 6= ∅, M = O(WFEWF
), where EWF

is the WF -th Bell
number. When T ′ = ∅, M = O(BWF

).

Proof. From the definition, the i-th partition is a partitioning of Fi into a
special block and normal blocks. The number of partitioning of Fi is at most
B|Fi| ≤ EWF

. For each, the number of candidates for the special block is at
most WF + 1 (including the case the special block is empty). Thus, M is
bounded by O(WFEWF

).
When T ′ = ∅, the special block is always empty, and thus the i-th par-

tition is truly a partitioning of Fi into normal blocks. Thus, in such a case,
M is bounded by EWF

.

Now we bound the running time of our algorithm.

Theorem 6.7. Our proposed method runs in O(mW 2
FM) time.

Proof. With the maintenance of partitions like the existing method [Hardy
et al., 2007], we can enumerate each partition in O(WF) time. Since at
most O(mM) partitions are generated in total, the overall cost is bounded
by O(mWFM). For each P ′ ∈ Li, pi↓(P ′) appears two times in total on

the right-hand side of (6.14) (when computing pi+1
↓ (lo(P ′)) and pi+1

↓ (hi(P ′))).
Since there are O(mM) values for p↓, (6.14) costs O(mM) time in total. For

83

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

computing R↓, there are O(mWFM) values to compute since each partition
has at most WF +1 blocks. For each P ′ ∈ Li and B′ ∈ P ′, Ri↓(P ′, B′) appears
at most two times in the first term of (6.16). Thus, the first term of (6.17)
costs O(mWFM) time in total. The second term costs O(nM) time in total
since for every v ∈ V , it costs at most O(M) time in total. Since G is
connected and thus n = O(m), the overall cost for computing R↓ is bounded
by O(mWFM). Computing q↑ and T↑ costs O(mW 2

FM) and O(mWFM),
since there are O(mW 2

FM) and O(mWFM) values to compute, and each
value can be computed in constant time by (6.17) and (6.19). Finally, (6.11)
can be computed in O(WFM) time for each u ∈ V , and thus O(nWFM) =
O(mWFM) time in total. Thus, the overall time complexity is O(mW 2

FM).

Corollary 6.8. Our proposed algorithm runs in O(mW 3
FEWF

) time. When
T ′ = ∅, it runs in O(mW 2

FEWF
) time.

We now compare it with the existing method. We consider four problems:
2-NR, which computes single R({u, v}) for given u, v ∈ V ; CSNR problem
with |T | = 1, which computes R({u, v}) for given v ∈ V and all u ∈ V ; ECN+
problem with T ′ = ∅; and ECN+ problem with T ′ 6= ∅. Table 6.1 compares
the complexity. Since computing an ECP value can be done by solving ECN+
problem with T ′ = ∅, we also consider such a problem denoted as “ECP”
in Table 6.1. The proposed method in this chapter can solve ECN+ with
T ′ = ∅, i.e., ECP, in O(n2WF) times faster than the HH method [Hardy et
al., 2007] and O(n) times faster than the CSNR method (Chapter 5).

Note that by using the HH method and the operations on BDDs, we can
solve the ECN+ problem with T ′ 6= ∅ as follows. First, we fix v ∈ V \ T ′
and compute B{t′},v, which is the BDD that represents E{t′},v, by the HH
method for each t′ ∈ T ′. Second, we compute BT ′,v :=

∨
t′∈T ′ B{t′},v, which

is the disjunction (logical OR) of all B{t′},v, by Apply algorithm [Bryant,
1986] on BDDs. Here BDD BT ′v represents ET ′,v. Finally, for every u ∈
V \ T ′, R0(T

′ ∪ {u}, v) is computed by building BDD B{u},v representing
E{u},v by the HH method, building BT ′,v ∨ B{u},v representing ET ′∪{u},v by the
Apply algorithm, and performing DP on this BDD. We call this the HH+
method. Unfortunately, analyzing its time complexity is difficult, denoted
by (unknown) in Table 6.1, since the HH+ method involves BDD operations,
whose time complexity heavily depends on the given data.

As described in Section 4.3.2, the frontier width WF is closely related to
the path-width Wp and the path decomposition.

84

6.5. APPLICATIONS

Table 6.1: Comparison of time complexity.

2-NR CSNR (|T |=1)
ECN+ (T ′=∅)

ECN+ (T ′ 6=∅)
ECP

HH O(mW 3
FEWF

) O(mnW 3
FEWF

) O(mn2W 3
FEWF

) (unknown)
CSNR O(mW 2

FEWF
) O(mW 2

FEWF
) O(mnW 2

FEWF
) -

Proposed O(mW 2
FEWF

) O(mW 2
FEWF

) O(mW 2
FEWF

) O(mW 3
FEWF

)

6.5 Applications

6.5.1 Critical Link Identification

This subsection defines three criteria for measuring link criticality with re-
spect to ECP. The essentiality of edge e represents the impact of e’s fail-
ure on a reliability measure R∗ [Kuo et al., 2007]. The general definition
is MR∗ − R∗|¬e, where MR∗ is the possible maximum value of R∗ for the
topology and R∗|¬e is the value of R∗ given that edge e is absent. Thus,
the essentiality of edge e with respect to ECP is defined as CECP

e (e) :=
1
2

∑
u6=v wuwv − ECP|¬e. In the following, we show the computation method

and time complexity of computing CECP
e (e) values for all e ∈ E.

Theorem 6.9. The values of CECP
e (e) for all e ∈ E can be computed in

O(mW 2
FEWF

) time, which is identical with just computing the ECP value.

We only describe how to compute ECP|¬e. Seeing R0(T, v) in (6.1) as a
function of pe by fixing all other pe′ values as constants, it becomes just a
linear function of pe, and so are S0(T) and ECP. Thus, ECP can be repre-
sented as ∂ECP

∂pe
· pe + ECP|¬e, and we have ECP|¬e = ECP − ∂ECP

∂pe
· pe for

every e ∈ E. Next, we discuss ∂ECP
∂pe

. Since our algorithm never performs

non-differentiable operations (such as taking max) in the DP computation,
we can use automatic differentiation [Griewank and Walther, 2008], which
automatically constructs a procedure for computing derivatives from an al-
gorithm, to get ∂ECP

∂pe
values for every e ∈ E: that is, the partial differential

coefficient of ECP with respect to pe. Since ECP is scalar-valued, automatic
differentiation can be performed in the same complexity as computing ECP
due to the cheap gradient principle [Griewank and Walther, 2008].

The other criticality metrics are defined as follows [Inoue, 2019]. The
augmentability of e, which indicates the impact of edge augmentation on
ECP, is given as CECP

a (e) := ECP|e, where ECP|e is the ECP value given
that e works, which can be computed by ECP+ ∂ECP

∂pe
(1−pe). The contribution

85

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

of e to ECP is CECP
c (e) := pe·ECP|e

ECP
. These criticality metrics for every e ∈ E

can also be computed in O(mW 2EWF
) time.

6.5.2 Optimal Server Placement

Although there are many criteria for assessing the reliability of server place-
ment in a CS infrastructure, the most fundamental requirement for each user
is the connectivity to servers, i.e., the existence of a path between a user and
any server. In this view, the reliability of server placement under proba-
bilistic CS network can be measured by the expected number of connected
users, i.e., the ECN. Therefore, we define the server placement problem to
determine where a new server is placed for maximizing the reliability for the
new set of servers.

Problem 6.10. Given T ′ ⊆ V , the server placement problem is to compute
u ∈ V \ T ′ that maximizes S0(T

′ ∪ {u}).

The server placement problem can be solved as an ECN+ problem by
choosing vertex u that maximizes S0(T

′ ∪ {u}). Due to Corollary 6.8, when
the first server is added to the infrastructure, the time complexity is as
follows.

Theorem 6.11. The server placement problem of T ′ = ∅ can be solved in
O(mW 2

FEWF
) time.

When some servers are already placed and we want to add another one,
the time complexity is as follows.

Theorem 6.12. The server placement problem of T ′ 6= ∅ can be solved in
O(mW 3

FEWF
) time.

6.6 Experiments

We numerically evaluated our method with two applications. Our proposed
method and the existing methods were implemented in C++11 and compiled
by g++-4.8.5 with -O3 option. Experiments were conducted on a single
thread of a Linux machine with AMD EPYC 7763 2.45 GHz CPU and 2048
GB RAM. We set the time limit of every run to 1 hour. We set all vertex
weights wv to 1 throughout this section.

86

6.6. EXPERIMENTS

6.6.1 Elapsed Time for ECN+ (T ′ = ∅) and ECP

We first compared our method, the CSNR method, and the HH method with
respect to the elapsed time for solving ECN+ with T ′ = ∅, i.e., computing
ECP. As described later, for real topology graphs, we prepared two imple-
mentations for the HH method, HH(1) and HH(2), differing in how they de-
termine edge ordering. All methods involved the preprocessing of recursively
removing degree 1 vertices. Additionally, for the HH methods, since each
R0(u, v) is computed separately, we also conducted the degree 2 vertex elimi-
nation in Section 4.2.1 other than u and v for every u, v pair, which may dras-
tically decrease the computation time for the HH method. We implemented
the HH method with TdZdd (https://github.com/kunisura/TdZdd).

We used all the topology graphs used in Chapter 5 as test instances,
including synthetic graphs and real communication networks. Grid-wxh is
a grid graph with w × h vertices. The real networks are from the Inter-
net Topology Zoo [Knight et al., 2011] and Rocketfuel [Spring et al., 2004]
datasets. For them, we extracted the largest connected component and re-
moved all the self-loops. For the grid graphs, we used the edge ordering
of [Iwashita et al., 2013], which is known to be better for the DP on grid
graphs, for all the methods: Ours, CSNR, and HH(1). For the real networks,
we used beam-search based heuristics [Inoue and Minato, 2016] to determine
the edge ordering, and its consumed time is included in the computational
time. Ours, CSNR, and HH(1) computed the edge ordering only once after
removing the degree 1 vertices, while HH(2) computed it for every u, v pair;
HH(2) optimized the edge ordering for every u, v pair, but it repeatedly ex-
ecuted the time-consuming beam-search. Each pe was chosen uniformly at
random from [0.9, 0.95] according to the literature [Elshqeirat et al., 2015;
Botev et al., 2012; Xiao et al., 2009; Nishino et al., 2018; Inoue, 2019] because
original data do not include them.

Table 6.2 shows the result. Here we also show the number of vertices (n),
the number of edges (m), and the frontier width of the original graph (WF)
computed by beam-search [Inoue and Minato, 2016]. The proposed method
computed ECP for all the graphs within an hour, and the other methods
could not. Even for graphs solvable by the existing methods, our method is
about 4–400 times faster than the CSNR method and about 70–4000 times
faster than the HH method. This clearly indicates the extreme efficiency of
our method. In addition, our method runs faster for the graphs with smaller
WF value. This reflects the complexity analysis of Section 6.4. Note that
peak memory usage, 160.7 GB, of the proposed method was recorded for
Rocketfuel-3257, where CSNR, HH(1), and HH(2) used 182.9, 151.5, and
218.1 GB (resp.) when time expired.

87

https://github.com/kunisura/TdZdd

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

T
ab

le
6.

2:
C

om
p
u
te

d
va

lu
es

of
N

E
C

P
an

d
A

ll
-N

R
,

an
d

el
ap

se
d

ti
m

es
fo

r
so

lv
in

g
E

C
N

+
w

it
h
T
′
=
∅.

C
om

p
u
te

d
va

lu
e

T
′
=
∅

(s
ec

.)

P
ro

p
os

ed
C

S
N

R
H

H
(1

)
H

H
(2

)
In

st
an

ce
n

m
W
F

N
E

C
P

A
ll
-N

R

G
ri

d
-7

x
14

98
17

5
7

0.
99

89
0.

95
43

0
.0

8
9.

34
55

4.
79

-
G

ri
d
-7

x
28

19
6

35
7

7
0.

99
93

0.
93

91
0
.1

8
47

.5
7

>
1h

-
G

ri
d
-7

x
42

29
4

53
9

7
0.

99
94

0.
92

54
0
.2

7
11

3.
39

>
1h

-
G

ri
d
-8

x
8

64
11

2
8

0.
99

88
0.

96
70

0
.1

7
12

.5
0

46
8.

14
-

G
ri

d
-1

0x
10

10
0

18
0

10
0.

99
92

0.
96

51
4
.7

4
67

7.
95

>
1h

-
G

ri
d
-1

2x
12

14
4

26
4

12
0.

99
92

0.
94

85
1
4
9
.2

8
>

1h
>

1h
-

In
te

ro
u
te

11
0

14
6

7
0.

95
72

0.
29

22
0
.1

0
0.

43
7.

27
11

8.
72

T
at

aN
ld

14
5

18
6

7
0.

94
75

0.
20

27
0
.1

4
0.

67
19

.3
9

29
0.

54
K

d
l

75
4

89
5

12
0.

87
59

3.
36

5e
-6

8
.6

1
>

1h
>

1h
>

1h

R
o
ck

et
fu

el
-1

22
1

31
8

75
8

12
0.

90
72

9.
58

1e
-6

1
1
.8

1
23

58
.2

7
>

1h
>

1h
R

o
ck

et
fu

el
-1

75
5

17
2

38
1

12
0.

97
14

0.
11

43
2
0
.3

9
>

1h
>

1h
>

1h
R

o
ck

et
fu

el
-3

25
7

24
0

40
4

14
0.

90
38

2.
11

6e
-4

6
5
9
.2

0
>

1h
>

1h
>

1h
R

o
ck

et
fu

el
-3

96
7

20
1

43
4

16
0.

96
49

3.
82

8e
-2

4
9
4
.9

5
>

1h
>

1h
>

1h
R

o
ck

et
fu

el
-6

46
1

18
2

29
4

10
0.

91
47

9.
03

2e
-4

0
.4

5
54

.2
7

31
60

.0
4

17
58

.2
4

88

6.6. EXPERIMENTS

T
ab

le
6.

3:
E

la
p
se

d
ti

m
es

fo
r

so
lv

in
g

E
C

N
+

w
it

h
T
′
6=
∅.

T
′
6=
∅

(s
ec

.)

k
=

2
(|T
′ |=

1)
k

=
3

(|T
′ |=

2)
k

=
4

(|T
′ |=

3)
k

=
5

(|T
′ |=

4)
In

st
an

ce
n

m
W

P
ro

p
os

ed
H

H
+

P
ro

p
os

ed
H

H
+

P
ro

p
os

ed
H

H
+

P
ro

p
os

ed
H

H
+

G
ri

d
-7

x
14

98
17

5
7

0
.2

1
20

78
.8

2
0
.3

5
22

67
.5

3
0
.3

1
22

28
.5

8
0
.3

1
22

23
.2

3
G

ri
d
-7

x
28

19
6

35
7

7
0
.6

7
>

1h
0
.6

5
>

1h
0
.9

6
>

1h
0
.9

6
>

1h
G

ri
d
-7

x
42

29
4

53
9

7
0
.6

5
>

1h
1
.2

3
>

1h
1
.1

9
>

1h
1
.1

9
>

1h
G

ri
d
-8

x
8

64
11

2
8

0
.2

1
17

54
.9

2
0
.5

8
18

47
.4

0
0
.5

7
18

16
.4

8
0
.5

7
18

48
.0

1
G

ri
d
-1

0x
10

10
0

18
0

10
1
3
.5

3
>

1h
1
0
.1

6
>

1h
2
2
.0

5
>

1h
2
3
.8

4
>

1h
G

ri
d
-1

2x
12

14
4

26
4

12
2
1
4
.4

1
>

1h
7
1
3
.5

5
>

1h
7
0
7
.9

7
>

1h
7
0
9
.1

6
>

1h

In
te

ro
u
te

11
0

14
6

7
0
.1

0
71

.3
5

0
.1

0
71

.2
2

0
.1

1
77

.4
2

0
.1

1
78

.4
4

T
at

aN
ld

14
5

18
6

7
0
.1

5
18

4.
80

0
.1

5
18

4.
89

0
.1

5
14

2.
12

0
.1

5
14

1.
03

K
d
l

75
4

89
5

12
9
.2

3
>

1h
9
.1

8
>

1h
1
1
.8

3
>

1h
1
0
.9

1
>

1h

R
o
ck

et
fu

el
-1

22
1

31
8

75
8

12
1
2
.5

3
>

1h
1
7
.5

0
>

1h
1
7
.6

3
>

1h
3
8
.5

4
>

1h
R

o
ck

et
fu

el
-1

75
5

17
2

38
1

12
2
2
.4

7
>

1h
2
6
.0

2
>

1h
9
0
.9

2
>

1h
9
2
.0

8
>

1h
R

o
ck

et
fu

el
-3

25
7

24
0

40
4

14
6
8
3
.2

5
>

1h
6
8
4
.7

8
>

1h
6
8
3
.8

6
>

1h
6
8
4
.1

9
>

1h
R

o
ck

et
fu

el
-3

96
7

20
1

43
4

16
2
2
2
3
.5

9
>

1h
7
9
6
.6

3
>

1h
2
2
9
2
.8

3
>

1h
2
2
9
3
.5

1
>

1h
R

o
ck

et
fu

el
-6

46
1

18
2

29
4

10
1
.4

1
>

1h
1
.5

3
>

1h
1
.5

1
>

1h
1
.5

1
>

1h

89

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

6.6.2 Elapsed Time for ECN+ (T ′ 6= ∅) with Server
Placement

We next measured the elapsed time for solving ECN+ when T ′ 6= ∅. We com-
pared our method, the factoring approach of AboElFotoh et al. [AboElFo-
toh et al., 2005], and the HH+ method described in Section 6.4. We im-
plemented the Apply algorithm in the HH+ method with SAPPOROBDD
(https://github.com/Shin-ichi-Minato/SAPPOROBDD).

We used the same graphs, the edge ordering, and the pe values as Sec-
tion 6.6.1. Assume a scenario where servers are added to a CS infrastructure
one by one (Section 6.5.2). The server set after k-th step (k = 1, 2, . . .) was
denoted by T ′k, and we defined T ′0 = ∅. At the k-th step, we selected the
optimal vertex u∗ ∈ V \ T ′k−1 by solving the server placement problem max-
imizing S0(T

′
k−1 ∪ {u}), and set T ′k = T ′k−1 ∪ {u∗}. We measured the elapsed

time to determine T ′k as shown in Table 6.3.
First, since the factoring approach [AboElFotoh et al., 2005] could not

solve any instances within an hour, we omitted it from Table 6.3. Our method
again solved all the instances within an hour, and the other method could
not. Our method is 70–10,000 times faster than the HH+ method even for
the instances solved by it. Compared to case T ′ = ∅, our method is up to just
six times slower. This reflects the complexity result of Corollary 6.8 where
our method runs O(WF) times slower when T ′ 6= ∅. Note that peak memory
usage, 407.0 GB, of the proposed method was recorded for Rocketfuel-3967
and k = 5 (|T ′| = 4).

6.6.3 ECP Values and Critical Links

Finally, we compared the ECP values computed in Section 6.6.1 and the
All-NR values. In addition, we computed the link criticality with respect to
ECP and compared it with other criticality measures.

Table 6.2 shows the NECP and All-NR values. Here we used NECP
because we compared it with different topologies. There are some topology
pairs such that All-NR is larger for one topology and NECP is larger for
another (e.g., Grid-7x14 and Grid-7x42, or TataNld and Rocketfuel-1755).
This indicates that although computing All-NR is easier than ECP, All-NR
cannot be an alternative measure for ECP. We also observe that the All-NR
values are too small for some real topologies. This is because these topologies
have some pendant edges, i.e., the edges connected to degree 1 vertices. Such
edges have less impact on NECP since their failure only disconnects one
vertex from the other.

For the criticality, we considered a situation where we wanted to select

90

https://github.com/Shin-ichi-Minato/SAPPOROBDD

6.7. RELATED WORK

a few links to be reinforced to improve ECP. For this purpose, ECP aug-
mentability CECP

a is appropriate since it indicates the impact of edge aug-
mentation on ECP. To observe the difference of the ECP augmentability
and other criticality measures, we selected three real networks, Interoute,
TataNld, and Rocketfuel-6461, computed their criticality measures, and se-
lected top-5 or top-10 critical edges with respect to these criticality measures.
Other criticality measures included All-NR augmentability [Inoue, 2019] (de-
noted as CNR

a) and current-flow betweenness centrality [Brandes and Fleis-
cher, 2005] (denoted as CCBC). Intuitively, CNR

a indicates the impact of edge
augmentation on the probability that all the vertices are connected, and CCBC

indicates the amount of traffic of links when all the vertex pairs are commu-
nicated. To implement automatic differentiation, we used Adept [Hogan,
2014].

Figure 6.3 depicts the result. The edges selected by CNR
a and CCBC are

generally different from those selected by CECP
a . To improve ECP, the follow-

ing two factors should be considered: (a) the number of vertex pairs whose
paths pass through this edge, and (b) the absence of alternative reliable paths
when this edge fails. CNR

a fails to consider (a) since All-NR only considers
whether all vertices are connected, and so typically CNR

a chooses pendant
edges. CCBC fails to consider (b), and so typically CCBC chooses some “cen-
ter” edges that have many alternative reliable paths. CECP

a can consider both
factors: For example, in Interoute (left column of Figure 6.3), the rightmost
part is only connected by red edges, and thus these are selected as critical by
CECP
a , although other critical measures do not select them. In Rocketfuel-

6461 (right column of Figure 6.3), the leftmost part is only connected by the
red “bridge” edge and thus it is selected as critical by CECP

a .

Note that during the computation of CECP
a for every edge of these graphs,

less than triple computational time elapsed compared with just computing
the ECP value.

6.7 Related Work

Network reliability evaluation has been studied for decades, as described
in Section 4.2.1. However, evaluation methods for R0(T, v) in (6.1) with
|T | > 1 have rarely been investigated. To the best of our knowledge, only
AboElFotoh et al. [2005] studied it, although they relied on an inefficient
factoring approach, as shown in the experiments.

Several papers have studied network behaviors under severe events. Re-
searchers in the field of complex networks revealed that scale-free networks,
including network infrastructures, are quite vulnerable (i.e., divided into

91

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

To
p-

5

Interoute TataNld Rocketfuel-6461

To
p-

10

ECP augmentability All-NR augmentability Current-flow betweenness centrality

Figure 6.3: Top-5 and top-10 critical edges chosen by three criticality
measures: ECP augmentability (red), All-NR augmentability (yellow), and
current-flow betweenness centrality (blue).

small connected components) against attacks on high-degree nodes [Albert
et al., 2000; Cohen et al., 2001; Magoni, 2003]. Researchers of operations
research studied the interdiction problem, which brings down a network
(e.g., degrades its shortest path or its maximum flow) with minimum at-
tacks [Smith and Song, 2020]. In the field of communication networks, re-
searchers investigated network conditions after severe events such as nat-
ural disasters [Neumayer and Modiano, 2010, 2011; Agarwal et al., 2010;
Rahnamay-Naeini et al., 2011; Manzano et al., 2011; Oostenbrink and Kuipers,
2017; Natalino et al., 2017; Al Mtawa et al., 2021]. These studies often
counted the number of connected nodes to measure the damage. They used
normalized reliability measures, e.g., the average content accessibility (the
ratio of clients connected to a resource (server)) [Natalino et al., 2017] or the
average two-terminal reliability (the ratio of node pairs connected to each
other) [Neumayer and Modiano, 2010, 2011; Agarwal et al., 2010; Rahnamay-
Naeini et al., 2011; Manzano et al., 2011; Oostenbrink and Kuipers, 2017;
Al Mtawa et al., 2021]. These reliability measures have similarity with ECN
and ECP in their definitions, but the past studies only examined a few (a
polynomial number of) failed states of a network that could happen after the
event and could not compute the expected number of connected nodes/pairs
during a long operation period.

Although a rich body of literature exists on optimal resource (server)

92

6.8. CONCLUSION

placement problems [Sahoo et al., 2016], they have not been investigated
from the viewpoint of network reliability due to its computational hardness.
Migov [2019] studied an optimal placement problem in which the locations
of data sinks are determined based on the connectivity with sensors in a
wireless sensor network. Unfortunately, they relied on an inefficient factoring
approach [AboElFotoh et al., 2005] and only examined a network with fewer
than 100 edges.

Methods to identify critical links in a probabilistic network have been
studied [Kuo et al., 2007; Inoue, 2019], but they are based on traditional
network reliability measures, not ECP. Network centrality indices, which
were introduced to identify influential nodes or links in a complex network,
are usually defined based on paths and node degrees [Koschützki et al., 2005].
As shown in the experiments, these indices cannot represent the criticality
against ECP.

6.8 Conclusion

This chapter proposed an efficient method that exactly computes ECP, the
expected number of connected node pairs, under an independent failure
model. The proposed method is more efficient than the CSNR method in
Chapter 5 by O(n). This chapter presents two important applications in net-
work design: critical link identification and optimal server placement. Nu-
merical evaluation shows that our method outperforms the state-of-the-art
by several orders of magnitude in terms of computational efficiency. Future
work will include an extension to support node failures, an analysis using
node weights with population, and an unified failure model that represents
both ordinary times and severe events.

We have provided public access to their code and data at https://

github.com/nttcslab/fast-ecp-ecn.

93

https://github.com/nttcslab/fast-ecp-ecn
https://github.com/nttcslab/fast-ecp-ecn

CHAPTER 6. FAST EVALUATION FOR THE EXPECTED NUMBER
OF CONNECTED NODES

94

Chapter 7

Variance Analysis on Network
Reliability

Traditionally, network reliability has been evaluated on the assumption that
the availability of each link is precisely given. However, in reality, it may
be given with a degree of uncertainty, e.g., with variance, which must be
propagated into the network reliability. To the best of our knowledge, no
literature has investigated this issue because, since even computing the relia-
bility itself belongs to a computationally tough class, computing the variance
seems much harder.

This chapter proposes an efficient algorithm to compute the variance of
the network reliability given the variance in link availability. We experi-
mentally verify the performance of the proposed algorithm and show that it
can compute the variance of network reliability within 0.1 seconds for real
topologies with nearly 200 links. We also perform extensive analyses on the
variance of network reliability and reveal that network reliability tends to
be accurate and that the variance in reliability does not significantly exceed
the variance in link availability. Even when some links have a substantial
variance in availability, the impact on network reliability is marginal.

7.1 Introduction

7.1.1 Background

As described in Section 4.2, network reliability is defined as the probability
that a path of working links exists between any pair of specified nodes assum-
ing each link fails independently and stochastically [Moskowitz, 1958; Boesch
et al., 2009]. Here, network reliability has traditionally been evaluated under

95

CHAPTER 7. VARIANCE ANALYSIS ON NETWORK RELIABILITY

the assumption that the availability of each link is given precisely (link avail-
ability is the probability that the link is working). In reality, however, it may
be given with a degree of inaccuracy or estimated with some error; e.g., the
lifetime of an optical fiber is estimated as a distribution [Aso et al., 2012],
and a degree of confidence is often given to regression predictions made by
machine learning. If the link availability has errors, e.g., variance, the net-
work reliability evaluated based on them should also have variance, but no
literature has investigated this issue. Previous studies only dealt with the
reliability value itself without an accuracy measure like variance. In practice,
the accuracy of network reliability can be vital: Assuming two networks, one
with 99% reliability and a standard deviation of 1% and another with 98.5%
reliability and a standard deviation of 0.1%, which is a more stable infras-
tructure? The latter is probably preferred. Unfortunately, such a comparison
was impossible in the past because the accuracy was not evaluated.

7.1.2 Literature Review

Although “variance” has been studied in the context of network reliabil-
ity [Cancela and El Khadiri, 1995; Cancela et al., 2014; Robledo et al., 2020],
these studies were only concerned with it as a sampling error in Monte Carlo
estimation of network reliability. Therefore, even if networks have links with
significant uncertainty in availability, they basically ignore the impact on
network reliability.

Agrawal et al. [2019] investigated network survivability (i.e., network reli-
ability in the broad sense) using real disaster statistics. Although this study
relied on different statistics, the uncertainty was not considered in reliability
analysis.

In recent years, the research community on network reliability has often
addressed the problem where the routes of newly added links are decided to
minimize the damage factor and cost given a geographic damage rate [Tapol-
cai et al., 2021; Oostenbrink and Kuipers, 2021]. This chapter complements
these studies. Although the availability of additional links is subject to un-
certainty due to a lack of operational experience, the work of this chapter
allows us to evaluate their impact on network reliability.

7.1.3 Research Challenges and Our Contributions

Currently, there are two challenges related to the accuracy of network relia-
bility given uncertainty in link availability.

• Behavior of the variance of network reliability (VoR): The most critical

96

7.2. PROBLEM STATEMENT

issue is that no one knows the accuracy of the network reliability when
the link availability has variance. It is also unknown how the variance
of link availability is related to VoR. Does VoR tend to be larger than
availability variance of each link? How does VoR behave when the link
availability variance or the network size changes? How small should
the link availability variance be to keep VoR within a specified range?

• VoR computation: There is no known method for evaluating VoR. Is
it possible to develop a method with sufficient scalability for practical
use? The computation of network reliability belongs to a computa-
tionally tough class called #P-complete [Valiant, 1979] as described in
Section 4.2.1, and VoR computation is unlikely to be easier, although
its hardness is unknown.

In this chapter, we propose an algorithm that computes VoR and analyze
it from several perspectives. The contributions are summarized as follows.

• Computation method: This chapter proposes an efficient algorithm
for computing VoR using BDD and DP. The HH method [Hardy et
al., 2007] in Section 4.3, which compute the reliability itself, utilize
DP with BDD dnodes as states; we compute VoR by designing novel
DP with BDD dnodes pairs as states. This chapter also analyzes the
computational complexity, which is much smaller than that of the naive
method for the sparse topologies common in infrastructures. Numerical
experiments show that VoR can be computed within 0.1 seconds even
for a large real topology with nearly 200 links.

• Empirical analyses of VoR: This chapter empirically finds a good prop-
erty of network reliability where VoR does not greatly exceed the vari-
ance of the link availability. This means that the network reliability is
as accurate as each link availability, notwithstanding the influence of
several links. This chapter also finds another property where even if the
variance of availability is quite significant for some links, the impact on
VoR is marginal. This means that the network reliability tends to be
robust against some links’ significant uncertainty in availability. Over-
all, network reliability tends to be accurate even under uncertainty in
link availability, which is a desirable property for network design.

7.2 Problem Statement

We use an independent failure model described in Section 4.1 and a standard
K-terminal network reliability in Section 4.2. The difference comes from how

97

CHAPTER 7. VARIANCE ANALYSIS ON NETWORK RELIABILITY

the edge availability, the probability that an edge e ∈ E is present, is defined.
In standard definition (Section 4.1), it is given as a real value pe ∈ [0, 1],
meaning that the probability of presence is exactly pe. In this problem,
to reflect the uncertainty, we let an edge availability follow a probability
distribution of mean pe and variance σ2

e . That is, the edge availability of
edge e ∈ E is given as a random variable Pe with mean pe and variance
σ2
e . To ensure independence among the edges’ states (present or absent),

it is assumed that Pe and Pe′ are statistically independent for e 6= e′. By
substituting pe with Pe in the definition of K-terminal network reliability
((4.2) in Section 4.2), the K-NR also becomes a random variable R(K)
defined as

R(K) =
∑
E′∈EK

[∏
e∈E′

Pe ·
∏

e∈E\E′
(1−Pe)

]
. (7.1)

Recall that EK is the family of subgraphs of G such that the vertices in K
are interconnected.

Hereafter, we use E[·], Var[·], and Cov[·, ·] as expectation, variance, and
covariance with respect to P1, . . . ,Pm. Then by fixing Pi = pi, the conven-
tional K-NR equals E[R(K)]. The problem solved in this chapter can be
posed as follows.

Problem 7.1 (VoR computation). Given terminals K and each edge’s pi
and σ2

i , the VoR computation problem is to compute VoR Var[R(K)], which
represents the uncertainty in network reliability given the variances of edge
availabilities.

Let us consider a simple example of triangle graph: G is a graph with 3
vertices V = {1, 2, 3} and 3 edges E = {e1 = (1, 2), e2 = (2, 3), e3 = (1, 3)},
and K = {1, 2}. Then, R(K) = Pe1 + (1 − Pe1)Pe2Pe3 . Suppose that all
mean and variance values of link availabilities are identical, i.e., pei = p and
σ2
ei

= σ2 for all i. Even under such assumption, VoR Var[R(K)] becomes
complicated:

σ2(1− 4p3 + 3p4) + σ4(1− 2p+ 3p2) + σ6.

This example shows us that even for small networks, the computation of VoR
becomes a cumbersome task, and the behavior of VoR value is hard to grasp.

A naive way to compute VoR is to use (7.1) to decompose it:

Var[R(K)] = Var[
∑

X∈EK P(X)] =
∑
X∈EK

∑
Y ∈EK

Cov[P(X),P(Y)],

where P(E ′) for E ′ ⊆ E is defined as

P(E ′) =
∏
e∈E′

Pe ·
∏

e∈E\E′
(1−Pe).

98

7.3. METHOD

Since each Cov[P(X),P(Y)] can be computed in O(m) time with pi and σ2
i ,

Var[R(K)] can be computed in O(m|EK |2) time once all the states in EK are
enumerated. However, such a method becomes intractable for graphs with
only dozens of links since |EK | grows exponentially with m.

7.3 Method

The proposed method can be divided into two parts: (i) constructing a
BDD [Bryant, 1986] that represents EK by the HH method Hardy et al.
[2007] and (ii) computing E[R(K)] and Var[R(K)] using the built BDD.
Since we have already explained the HH method in Section 4.3, we omit the
procedures for the former part, but we first introduce an important notion,
random variables associated with dnodes. Then we describe the latter part
in Section 7.3.2 and analyze the computational complexity of the proposed
method in Section 7.3.3.

7.3.1 Random Variables for Dnodes

As shown in Section 4.3, we can construct BDD BK representing EK in a
top-down manner by calling Construct(ConnectedK) (see Algorithms 2.1
and 4.1). Note that we may further reduce the size of BK by reduce oper-
ation [Bryant, 1986]. After construction, we consider associating a random
variable for every dnode in BK . Recall that in the standard problem setting,
the K-NR value can be obtained by a bottom-up DP on BK and examine
the root value since evaluating K-NR is equivalent to solve the weighted
model counting problem. In this algorithm, we compute a kind of partial
sum for every dnode n and store it as DP[n]. More specifically, we conduct
the following bottom-up DP computation:

DP[>] = 1, DP[⊥] = 0,

DP[n] = (1− pelb(n))DP[lo(n)] + pelb(n)DP[hi(n)].
(7.2)

Eventually, K-NR R(K) equals DP[r] of root dnode r.
Similar to this, we associate random variable Rn for every dnode n satis-

fying the following equations. For n = >,⊥, which mean the terminals are
already disconnected or all connected, respectively, we define

R> = 1, R⊥ = 0. (7.3)

For internal node n, we define

Rn = (1−Pelb(n))Rlo(n) + Pelb(n)Rhi(n). (7.4)

99

CHAPTER 7. VARIANCE ANALYSIS ON NETWORK RELIABILITY

(a)
e1

e2

e3

e4

e5

(b) 1
2 2

3 3

4 4
5

⊥ >

Figure 7.1: (a) Example of undirected graph G. Black vertices indicate they
are terminals. (b) BK for graph and terminals in (a). Here lo- and hi-arcs
are drawn with dashed and solid lines, respectively, and label of each dnode
is drawn inside the circle.

Since (7.3) and (7.4) imitates the standard DP computation (7.2), eventually
R(K) = Rr holds where r is the root dnode.

7.3.2 Proposed Method

The proposed method computes VoR Var[R(K)] using the BDD BK . The key
point is that we consider the covariances among the random variables asso-
ciated with dnodes, i.e., Cov[Rn,Rn′] for the pair of BDD dnodes n, n′. Since
Rr equals R(K), its variance can be rewritten as Var[Rr] = Cov[Rr,Rr].
The proposed method computes Cov[Rn,Rn′] by decomposing it into the co-
variances of the child dnodes, e.g., Cov[Rlo(n),Rhi(n′)], which can be seen as
a DP whose states are pairs of BDD dnodes.

Before proceeding to our method, we derive two equations for the covari-
ances. Lemma 7.2 is a well-known formula, and Lemma 7.3 generalizes the
variance of two independent random variables, which we will prove.

Lemma 7.2. Let X,Y,Z, and W be random variables. Then,

Cov[X + Y,Z + W] = Cov[X,Z] + Cov[X,W]

+ Cov[Y,Z] + Cov[Y,W].
(7.5)

Lemma 7.3. Let X,Y,Z, and W be random variables such that X and Z,
Y and W, and XY and ZW are pairwise independent for each. Then,

Cov[XZ,YW] = (E[X]E[Y] + Cov[X,Y])Cov[Z,W]

+ Cov[X,Y]E[Z]E[W].
(7.6)

Proof. Left-hand side equals

E[XYZW]− E[XZ]E[YW]

= E[XY]E[ZW]− E[X]E[Y]E[Z]E[W],

100

7.3. METHOD

where we use independentness of the random variables. Right-hand side also
equals

E[XY]Cov[Z,W] + Cov[X,Y]E[Z]E[W]

= E[XY](E[ZW]− E[Z]E[W])

+ (E[XY]− E[X]E[Y])E[Z]E[W]

= E[XY]E[ZW]− E[X]E[Y]E[Z]E[W].

Using them, we derive equations for the decomposition of Cov[Rn,Rn′].
First of all, if n ∈ {>,⊥}, Cov[Rn,Rn′] = 0 since R> and R⊥ are just
constants. The same argument holds for the case n′ ∈ {>,⊥}. Hereafter, we
consider the case that both n and n′ are internal nodes. Let Qe = 1−Pe (e ∈
E) be a random variable. Then,

E[Pe] = pe, E[Qe] = 1− pe,
Var[Pe] = Var[Qe] = σ2

e , Cov[Pe,Qe] = −σ2
e .

(7.7)

When n and n′ have identical label i = lb(n) = lb(n′), we see

Cov[Rn,Rn′]

= Cov[QeiRlo(n) + PeiRhi(n),QeiRlo(n′) + PeiRhi(n′)]

= Cov[QeiRlo(n),QeiRlo(n′)] + Cov[QeiRlo(n),PeiRhi(n′)]

+ Cov[PeiRhi(n),QeiRlo(n′)] + Cov[PeiRhi(n),PeiRhi(n′)]

from (7.4) and Lemma 7.2. Here we observe that Rlo(n) and Rlo(n′) are poly-
nomials of Pej and Qej (j = i + 1, . . . ,m) since BDDs have the ordered
property. Therefore, they are independent of Qei and Q2

ei
, enabling us to

use Lemma 7.3 to decompose Cov[QeiRlo(n),QeiRlo(n′)]. Other terms can be
decomposed in the same manner, and we finally have

Cov[Rn,Rn′]

= (q2ei + σ2
ei

)Cov[Rlo(n),Rlo(n′)]

+ (peiqei − σ2
ei

)(Cov[Rlo(n),Rhi(n′)] + Cov[Rhi(n),Rlo(n′)])

+ (p2ei + σ2
ei

)Cov[Rhi(n),Rhi(n′)]

+ σ2
ei

(E[Rhi(n)]− E[Rlo(n)])(E[Rhi(n′)]− E[Rlo(n′)]),

(7.8)

where qe = 1−pe. Note that E[Rn] can be computed in a bottom-up manner
with the following equation, which is obtained by taking expectation of both
sides of (7.4):

E[Rn] = qelb(n)E[Rlo(n)] + pelb(n)E[Rhi(n)]. (7.9)

101

CHAPTER 7. VARIANCE ANALYSIS ON NETWORK RELIABILITY

Algorithm 7.1: VoR computation using BDD.

Input: BDD BK = (N, A) and mean pe and variance σ2
e of e’s availability.

Output: Variance of network reliability Var[R(K)].
1 e[>]← 1.0, e[⊥]← 0.0 // e[n] := E[Rn]
2 foreach n ∈ N \ {>,⊥} in bottom-up order do
3 e[n]← qelb(n) · e[lo(n)] + pelb(n) · e[hi(n)] // (7.9); qe = 1− pe
4 return Cov(r, r) // r: root node of BK
5 function Cov(n, n′): // Computes Cov[Rn,Rn′]
6 if (n ∈ {>,⊥}) ∨ (n′ ∈ {>,⊥}) then // Base case

7 return 0
8 if c[(n, n′)] or c[(n′, n)] exists then // Already computed

9 return c[(n, n′)] or c[(n′, n)] // Return cached value

10 i← min{lb(n), lb(n′)}
11 if lb(n) < lb(n′) then // lb(n) is smaller

12 c[(n, n′)]← qei · Cov(lo(n), n′) + pei · Cov(hi(n), n′) // (7.10)

13 else if lb(n) > lb(n′) then // lb(n′) is smaller

14 c[(n, n′)]← qei · Cov(n, lo(n′)) + pei · Cov(n, hi(n′)) // (7.10)

15 else // n and n′ have the same label

16 c[(n, n′)]← (q2ei + σ2
ei) · Cov(lo(n), lo(n′))

+ (peiqei − σ2
ei) · (Cov(lo(n), hi(n′)) + Cov(hi(n), lo(n′)))

+ (p2ei + σ2
ei) · Cov(hi(n), hi(n′))

+ σ2
ei · (e[hi(n)]− e[lo(n)])(e[hi(n′)]− e[lo(n′)]) // (7.8)

17 return c[(n, n′)] // Return computed value

When i = lb(n) < lb(n′), we can derive more simple formula. By just applying
(7.4) for Rn and using Lemmas 7.2 and 7.3, we have

Cov[Rn,Rn′] = qeiCov[Rlo(n),Rn′] + peiCov[Rhi(n),Rn′]. (7.10)

The case lb(u) > lb(v) is treated similarly. By recursively using (7.8) and
(7.10), we can decompose Var[R(K)] = Cov[Rr,Rr] into small parts. We
apply such decompositions until at least one node of the pair becomes > or
⊥. To speed-up computation, we store the value of Cov[Rn,Rn′] for dnode
pair (n, n′) once it is computed.

The pseudocode for our algorithm is given in Algorithm 7.1. Lines 1–
3 compute e[n] = E[Rn] for each n ∈ N; here the expectation of reliability
E[R(K)] = e[r] is also computed. The main part is Cov(n, n′): a recursive
procedure for computing Cov[Rn,Rn′]. We use cache c to store the computed
value of Cov[Rn,Rn′] in c[(n, n′)]. Line 6 deals with the base case; if at least
one of n and nDD′ is a terminal, the covariance is zero. Line 8 is the case
where Cov[Rn,Rn′] was already computed. Lines 11 and 13 use (7.10) since
their labels are different, and Line 15 uses (7.8) since they are identical.

102

7.3. METHOD

7.3.3 Complexity

Here we analyze the computational complexity of the proposed method.

Theorem 7.4. Given BDD BK, Algorithm 7.1 runs in O(|BK |2) time.

Proof. The computation of e in Lines 1–3 costs O(|BK |) time. The value of
each cache entry c[(n, n′)] can be computed in constant time without the re-
cursive calls of Cov(·, ·). Since there are at most O(|BK |2) entries to compute,
the overall running time is bounded by O(|BK |2).

Combining Theorem 7.4 and Lemma 4.9 gives the time complexity for
computing VoR: O(m24WFE2

WF
) time where m is the number of edges, WF

is the frontier width, and EWF
is the WF -th Bell number. It seems that the

computational time of VoR with our algorithm is proportional to the square
of the number of links when the frontier width is assumed to be a constant.
However, we can sharpen this bound since Lemma 4.9 just provides the sizes
of normalized BDD. A BDD is normalized if for every n ∈ N \ {>,⊥}, both
lo(n) and hi(n) are either a terminal node or a node whose label is lb(n) +
1. Given normalized BDD BK , Algorithm 7.1 computes c[(n, n′)] for only
pairs of nodes whose labels are identical. This is verified as follows: First,
Cov(r, r) is called, in which lb(r) = lb(r) holds. Next, when Cov(n, n′) with
lb(n) = lb(n′) is called, all recursive calls Cov(lo(n), lo(n′)), Cov(lo(n), hi(n′)),
Cov(hi(n), lo(n′)), and Cov(hi(n), hi(n′)) in Line 16 satisfy that both arguments
of Cov has an identical node or they involve terminal nodes. This leads to
sophisticated complexity of Algorithm 7.1.

Theorem 7.5. If the given BDD BK is normalized, Algorithm 7.1 runs in
O(
∑m

i=1 |Li|2) time, where |Li| is the number of dnodes with label i.

Recalling the proofs of Lemma 4.9 and Corollaries 4.11 and 4.12, we can
say |Li| = O(2WFEWF

) for general cases, |Li| = O(W 2
FEWF

) for |K| = 2, and
|Li| = O(EWF

) for |K| = n. This leads to the following result.

Corollary 7.6. Given graph G, terminals K, and edge order whose fron-
tier width is WF , we can compute the variance Var[R(K)] of the reliability
in O(m4WFE2

WF
) time. When |K| = 2, the time complexity is bounded by

O(mW 4
FE

2
WF

), and when |K| = n, it is bounded by O(mE2
WF

).

This suggests that for graphs with a bounded path-width Wp, the compu-
tational time of VoR is linear to the number of edges, since we can determine
edge order with WF = Wp ([Inoue and Minato, 2016]; also see Section 4.3.2).
We later experimentally confirm this in Section 7.4.1.

103

CHAPTER 7. VARIANCE ANALYSIS ON NETWORK RELIABILITY

7.3.4 Preprocessing

We consider preprocessing the input graph G before constructing the BDD
BK to accelerate our method. That is, the degree 1 vertex elimination. Since
this operation sometimes decreases the path-width of G, it may lead to a
substantial speed-up of our method.

Suppose w is a degree 1 vertex in G and let ew = {u,w} be the only
edge incident to w. Then, the network reliability (7.1) on G (denoted by
RG(·)) can be represented by that on G − w (denoted by RG−w(·)), the
graph obtained by deleting w and ew from G:

RG(K) =

{
PewRG−w(K ∪ {u} \ {w}) (w ∈ K),

RG−w(K) (w /∈ K).
(7.11)

By recursively removing degree 1 vertices, we obtain a graph with only de-
gree ≥ 2 vertices or a graph with a single vertex; we denote this by G′.
The recursive application of (7.11) gives the following form: RG(K) =
Pei1
· · · · · Peil

RG′(K ′). After computing the mean and variance of RG′(K ′)

by the proposed method, those of RG(K) can immediately be computed
with the following well-known formulas: given mutually independent random
variables X and Y, E[XY] = E[X]E[Y] and Var[XY] = Var[X](E[Y])2 +
(E[X])2Var[Y] + Var[X]Var[Y].

7.4 Experiments

7.4.1 Computational Time

We first measured the elapsed time to compute VoR to confirm the efficiency
of our algorithm and the complexity results in Section 7.3.3. The proposed
method and the naive method described in Section 7.2 were implemented in
C++11. Note that both our method and the naive method employed the
preprocessing described in Section 7.3.4. All the codes were compiled by
g++-4.8.5 with -O3 -DNDEBUG options. The experiments were conducted on
a single thread of Linux machine with AMD EPYC 7763 2.45 GHz CPU and
2048 GB RAM; note that we used less than 8 GB of memory during our
experiments. To precisely measure the consumed time of VoR computation,
we measured the time after building BDD BK for the proposed method and
the time after enumerating the states in EK for the naive method. Note that
for our method, the cost of building BDD BK with HH method was less than
250 and 13 ms for grid and real instances (described later), respectively, and
was negligible compared to the running time of Algorithm 7.1.

104

7.4. EXPERIMENTS

We used both grid and real graphs as tested instances. Grid-wxh de-
notes a grid graph with w× h vertices. For them, we used the edge ordering
of [Iwashita et al., 2013], which is based on a path-decomposition of width
min{w, h} and is known to build smaller BDDs for grid graphs. The real ones
are from Internet Topology Zoo [Knight et al., 2011] datasets. For them, we
extracted the largest connected component, removed the self-loops, and se-
lected graphs with more than 100 and less than 200 edges. We determined
the edge ordering based on a beam search based path-width optimization [In-
oue and Minato, 2016] because no better rigid ordering is known for them.
For each graph, we considered three k values, that is, the number of termi-
nals: two-terminals (k = 2), half-terminals (k = b|V |/2c), and all-terminals
(k = |V |). For each k, we made 20 terminal sets K1, . . . , K20 by randomly
choosing k vertices for each, computed Var[R(Kj)] for each j, and then aggre-
gated the average and standard deviation of the computational times. Note
that for k = |V |, we simply computed Var[R(V)] 20 times and aggregated the
computational times. Since the original data [Knight et al., 2011] do not in-
clude mean pe and variance σe of the availability of e, pe was chosen uniformly
at random from [0.9, 0.95] based on the literature [Elshqeirat et al., 2015;
Botev et al., 2012; Xiao et al., 2009; Nishino et al., 2018; Inoue, 2019], and
σe was set to 0.01. The implementation and all data used in this section are
available at https://github.com/nttcslab/variance-net-reliability.

First, the naive method did not finish the computation of VoR for all
terminals of the Grid-4x4 graph (the smallest graph we tested) within an
hour even after all the states in EK are enumerated. On the other hand,
our method computed VoR within 20 seconds for every instance. Since this
clearly shows our algorithm’s efficiency over the naive method, hereafter we
only focus on the results of our method.

Table 7.1 shows the result, where WF is the frontier width. It can be
observed that VoR can be computed in less than 0.1 seconds for all the
graphs from Internet Topology Zoo. We can also see that although the
Grid-6x60 graph has many vertices and edges, VoR can be computed in a
reasonable time because its frontier width remains small. In Table 7.1, the
standard deviation of the two-terminal setting (k = 2) is basically larger
than those of other settings. This is because when k = 2, the BDD size |BK |
changes drastically in proportion to how far the selected two terminals are
in the original graph G. Since the computational time heavily depends on
the BDD size, it also deviates.

Figure 7.2 depicts the computational time for the Grid-6xh graphs. Since
the frontier width of the Grid-6xh graph can be always 6 regardless of h
and the number of edges is O(h), it is expected from Corollary 7.6 that
the computational complexity is also O(h). Figure 7.2 clearly indicates this

105

https://github.com/nttcslab/variance-net-reliability

CHAPTER 7. VARIANCE ANALYSIS ON NETWORK RELIABILITY

Table 7.1: Consumed time (mean and standard deviation in seconds) for
computing VoR with the proposed method.

Instance n m WF k = 2 k = b|V |/2c k = |V |
Grid-4x4 16 24 4 <1 ms <1 ms <1 ms
Grid-5x5 25 40 5 0.004±0.002 0.009±0.005 0.002±0.000
Grid-6x6 36 60 6 0.116±0.084 0.290±0.136 0.033±0.001
Grid-6x30 180 324 6 3.331±2.204 3.198±0.398 0.283±0.004
Grid-6x60 360 654 6 6.991±2.931 6.388±0.671 0.569±0.004
Grid-7x7 49 84 7 4.969±2.953 8.519±2.642 0.764±0.006

Interoute 110 146 6 0.007±0.004 0.023±0.015 0.005±0.000
Ion 125 146 5 <1 ms 0.002±0.000 <1 ms
DialtelecomCz 84 151 5 <1 ms <1 ms <1 ms
Deltacom 113 161 6 0.008±0.005 0.023±0.008 0.006±0.000
TataNld 145 186 6 0.017±0.010 0.020±0.007 0.010±0.000
UsCarrier 158 189 5 <1 ms 0.001±0.001 <1 ms

tendency; the computational time is roughly O(h) rather than O(h2) (from
Theorem 7.4) for all the settings.

7.4.2 Analyses on Variance of Reliability

In this section, we analyzed VoR with the graphs used in Section 7.4.1. First,
we plotted in Figure 7.3 the values of the standard deviation of reliability,
which is the square root of VoR and is hereafter abbreviated as

√
VoR, com-

puted in the experiments in Section 7.4.1. In Section 7.4.1, the standard
deviation σe of the availability was set to 0.01 for every edge. Here

√
VoR

does not exceed 0.01 for a large portion of reliability measures, and it never
exceeds twice of 0.01. It is shown that network reliability has roughly the
same accuracy as the availabilities of edges, and it becomes more accurate
for many cases. Figure 7.3 also suggests that there is no clear correspondence
between the number of terminals k and

√
VoR.

Next, we observed the robustness of VoR as follows: We computed
√

VoR
for all terminals (k = |V |) with the same pe and σe values in Section 7.4.1,
except that one σe∗ value was set to 0.1, 10 times larger than the original
value, which means the variance of the availability of e∗ ∈ E became quite
significant. We conducted the above computation for every edge e∗ ∈ E and
drew how many times

√
VoR increased as a heatmap. Figure 7.4 depicts such

heatmaps for Grid-6x6, Grid-6x30, and the graphs from Internet Topology

106

7.4. EXPERIMENTS

 0

 2

 4

 6

 8

 10

 12

 0 12 24 36 48 60

E
la

p
se

d
 t

im
e

(s
)

h (height of grid)

k=2
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 12 24 36 48 60

E
la

p
se

d
 t

im
e

(s
)

h (height of grid)

k=|V|/2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 12 24 36 48 60

E
la

p
se

d
 t

im
e

(s
)

h (height of grid)

k=|V|

Figure 7.2: Consumed time (mean and standard deviation in seconds) for
computing VoR of Grid-6xh graphs with our method.

Zoo; a darker color means that
√

VoR increased more when its availability’s
variance increased. Figure 7.4 shows that for almost all edges e∗,

√
VoR only

increased marginally even if σi∗ became 10 times larger, which indicates the
robustness of VoR. It is also observed that the edges with a greater impact
on VoR correspond to the critical edges, e.g., a bridge edge whose failure
immediately disconnected some terminals.

Finally, we analyzed the effect of the pe and σe values on VoR. We ob-
served the expectation and the VoR for all terminals when all pe have iden-
tical value p and all σe also have identical value σ. We conducted the above
computation for various p and σ values. Figure 7.5 plots the reliability and√

VoR for all terminals as a function of p when σ is set to 0.01, . . . , 0.04.
Figure 7.5 shows a tendency that

√
VoR became larger when the reliability

value rapidly increased with respect to p, but it again suggests that its value
remains in the same degree as σ, the uncertainty in each edge’s availability.
We also see that

√
VoR is almost proportional to σ for every p value.

107

CHAPTER 7. VARIANCE ANALYSIS ON NETWORK RELIABILITY

UsCarrier
TataNld

Deltacom
DialtelecomCz

Ion
Interoute
Grid-7x7

Grid-6x60
Grid-6x30
Grid-6x6
Grid-5x5
Grid-4x4

 0 0.005 0.01 0.015 0.02
Standard deviation of reliability (√VoR)

k=2
k=|V|/2

k=|V|

Figure 7.3: Values of standard deviation of reliability (
√

VoR) computed in
experiment of Section 7.4.1. Standard deviation of each edge’s availability
(0.01) is indicated by a dashed line.

7.5 Conclusion

This chapter made the following two contributions: (i) We proposed an algo-
rithm that computes VoR with analyses of computational complexities. Its
practical utility was confirmed by experiments, in which our algorithm com-
puted VoR within 0.1 seconds for real network topologies with nearly 200
links. (ii) We conducted empirical analyses for VoR. Such analyses revealed
its good properties. Its value is the same degree as the variance of the link
availability, and it exhibits robustness against some links’ significant variance
of availability.

As future works, we will develop algorithms for computing VoR under
other variants of network models. One direction is to consider vertex failures
as well as link failures [Kawahara et al., 2019]. Another direction is to deal
with dependent failures of links and vertices by getting rid of the assumption
of independentness, e.g., [Xiao et al., 2009; Botev et al., 2012].

108

7.5. CONCLUSION

1 2 3 4 5

Figure 7.4: Heatmaps indicating how many times
√

VoR for all terminals
increased when standard deviation of availability of an edge became 10 times
larger (from 0.01 to 0.1): Grid-6x6, Grid-6x30 (first row), Interoute, Ion,
DialtelecomCz (second row), Deltacom, TataNld and UsCarrier (third row).

109

CHAPTER 7. VARIANCE ANALYSIS ON NETWORK RELIABILITY

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

Grid-6x6

Interoute

R
el

ia
b
il

it
y

Mean of link availability (p)

√VoR (σ=0.04)
√VoR (σ=0.03)
√VoR (σ=0.02)
√VoR (σ=0.01)

Reliability

Figure 7.5: All-terminal reliability and its standard deviation (
√

VoR) when
mean (p) and standard deviation (σ) of availabilities are all identical. Width
of vertical slice represents twice of

√
VoR.

110

Chapter 8

Efficient Computation of
Scale-wise Network
Unreliability

In communication networks, the significance of an outage is measured mainly
by its scale (number of disconnected nodes). To avoid serious outages, op-
erators design their networks so that the reliability meets the specification
for each outage scale, where the more significant the outage, the less likely
it is to occur. Although such a scale-wise unreliability has been evaluated
with rough approximation, sixth-generation (6G) mobile communication re-
quires more accurate reliability evaluation with seven 9’s accuracy. Unfor-
tunately, accurate scale-wise reliability evaluation is a computationally very
tough problem, so no previous literature has studied evaluation methods rig-
orous enough. This chapter proposes an efficient algorithm to exactly com-
pute the probability for each number of disconnected nodes. The proposed
algorithm performs the scale-wise unreliability evaluation in a DP manner
without redundant repetition for each outage scale. Numerical experiments
using real network topologies show its great efficiency, e.g., our algorithm
computes exact probabilities for every outage scale in just two hours for a
network with nearly 200 links. We also provide several interesting insights
on the reliability of real topologies from the scale-wise perspective, since our
work is the first to present the scale-wise unreliability of real large topologies.

8.1 Introduction

The significance of a communication network outage is traditionally mea-
sured by the duration and scale (number of affected users) [Tollar and Ben-

111

CHAPTER 8. EFFICIENT COMPUTATION OF SCALE-WISE
NETWORK UNRELIABILITY

e1

e2

e3

e4

e5

1

2

3

4

(a) Example network

10
-2

10
-1

10
0

 1 2 3

Requirement

Evaluation

S
ca

le
-w

is
e

u
n
re

li
ab

il
it

y
Outage scale

(b) Scale-wise unreliability

Figure 8.1: (a) Example communication network. (b) Scale-wise unreliability
of network (a).

nett, 1995; Matsukawa and Funakoshi, 2010]. For example, an outage that
affects 900,000 user minutes in the US or that affects 30,000 users for one
hour in Japan is considered “significant” and must be reported to the net-
work’s supervisory agency [Federal Communications Commission; Ministry
of Internal Affairs and Communications]. To avoid significant outages, opera-
tors first specify a reliability requirement, i.e., the distribution of admissible
outage probability for each scale [Nojo and Watanabe, 1987; Fukuda and
others, 2020] (Figure 8.1b). Then, operators design their networks to meet
the requirement, i.e., restrict the reliability of a network under design to a
level within the requirement [Nojo and Watanabe, 1993].

Conventionally, scale-wise network reliability has been evaluated approx-
imately assuming a limited number of outage scenarios [Taka and Abe,
1994; Watanabe et al., 2003]. However, the requirements of sixth-generation
(6G) mobile communications feature the “extreme high reliability” up to
99.99999% [Alwis et al., 2021; NTT Docomo, 2022], which requires network
reliability evaluation methods to be rigorous without approximation. In ad-
dition, accurate reliability evaluation has to be performed for every outage
scale. To our knowledge, no work has successfully performed scale-wise reli-
ability evaluation in a precise manner.

Let us see an example of network shown in Figure 8.1a, where every edge
fails with 10% probability and we assume an independent failure model.
The All-NR, i.e., the probability that all nodes are connected, is 97.686%.
However, the traditional definition of network reliability does not take into
account outage scales.

The problem studied in this chapter is also conceptually outlined in Fig-
ure 8.1. The red node 1 plays the role of a “server” (e.g., a packet gateway
or edge server), and the other nodes (e.g., edge/aggregation switches or base

112

8.2. PROBLEM STATEMENT

stations) need to be connected to the server. Network outage occurs if some
nodes are disconnected from the server. The outage scale is defined by the
number of disconnected nodes in this chapter. In Figure 8.1, if e1 and e2 are
absent and the others are present, nodes 2, 3, and 4 are disconnected, so the
outage scale is 3 and the state probability is 0.93 × 0.12 = 0.00729. Here,
there are 8 states where the outage scale is 3, and the total probability of
scale-3 outage states is 0.01. Our problem is to draw the probability distribu-
tion per outage scale, as shown in Figure 8.1b. The probability distribution
is called the scale-wise unreliability in this dissertation.

The contributions of this chapter are summarized as follows.

• This chapter analyzes why existing network reliability evaluation meth-
ods are unsuitable for scale-wise unreliability evaluation. The existing
methods evaluate reliability only for a specified subset of nodes, so we
need to perform an existing method for each of an exponential number
of node combinations.

• Based on the above analysis, we develop an algorithm to exactly eval-
uate the scale-wise unreliability. The proposed algorithm is designed
as a DP to track connected client counts without explicitly managing
an exponential number of combinations. The time complexity analysis
shows that our algorithm does not depend on the exponential factor of
node counts.

• Numerical experiments using real communication network topologies
show that our algorithm successfully evaluates the scale-wise unrelia-
bility for a large network of nearly 200 links within a few minutes in
most cases and within 100 minutes at most. In addition, because this is
the first work to present the scale-wise unreliability of real topologies,
we offer interesting insights on network reliability from the scale-wise
perspective.

Note that this chapter focuses on scale-wise unreliability evaluation, so how to
specify reliability requirements is out of the study’s scope [Nojo and Watan-
abe, 1987; Fukuda and others, 2020] (dashed line in Figure 8.1b).

8.2 Problem Statement

We use an independent failure model described in Section 4.1. For the prob-
lem in this chapter, vertex sets T,C ⊆ V called server vertex set and client
vertex set are given. Here, our focus is on the number of client vertices that
fail to connect with any vertex in T . Let U(n′) (n′ = 0, . . . , |C|) be the

113

CHAPTER 8. EFFICIENT COMPUTATION OF SCALE-WISE
NETWORK UNRELIABILITY

probability that exactly n′ vertices out of the vertices in C fail to connect
with the vertices in T . This probability can be written as

U(n′) =
∑

E′∈E=n′

Pr(E ′) =
∑

E′∈E=n′

[∏
e∈E′

pe ·
∏

e∈E\E′
(1− pe)

]
, (8.1)

where E=n′ is the family of edge subsets E ′ ⊆ E such that the number of
vertices in C that do not connect to any vertex in T on the subgraph induced
by E ′ is exactly n′. In other words, E ′ ∈ E=n′ if and only if n′ client vertices
are disconnected from servers when the edges in E ′ are present and the others
are absent. The scale-wise unreliability, denoted by S(n′) for n′ = 1, . . . , |C|,
is the probability that more than or equal to n′ vertices out of the vertices
in C fail to connect with any vertex in T , and it can be represented as

S(n′) =

|C|∑
k=n′

U(k). (8.2)

Formally, the problem we solve in this chapter can be described as follows.

Problem 8.1 (Scale-wise unreliability computation). Given server vertex set
T and client vertex set C, the task is to compute scale-wise unreliability S(n′)
for every n′ = 1, . . . , |C|.

For example, for the graph of Figure 8.2a and T = {1}, C = V , E=3 =
{{}, {e3}, {e4}, {e3, e4}, {e5}, {e3, e5}, {e4, e5}, {e3, e4, e5}}. If every edge has
an availability 0.9, we have S(3) = U(3) = 0.01. Similarly, we have S(2) =
U(2) + U(3) = 0.0118 and S(1) = 0.02314.

8.2.1 Straightforward Approach Using HH Method

For evaluating S(n′) with scale n′ = 1, when |T | = 1, U(0) = 1 − S(1)
equals the (C ∪ T)-terminal network reliability, i.e. the probability that
all the vertices in C ∪ T are interconnected. Since computing it is #P-
complete [Valiant, 1979], this connection reveals us that the computation of
scale-wise unreliability is #P-hard, a computationally challenging class. In
contrast, it can be computed by the HH method described in Section 4.3.
This method can easily be adopted for the case |T | ≥ 2 by combining with
Apply algorithm [Bryant, 1986] on BDDs. Similar to this, each client vertex’s
probability of connecting to servers, i.e., R0(T, v) for client vertex v, can also
be computed by their methods or the method in Chapter 6. Note that
R0(T, v) is defined at (6.1) in Section 6.2.

114

8.3. METHOD

However, computing R0(T, v) for every client v is not sufficient to evaluate
S(n′) for n′ ≥ 2. Consider the probabilistic event that vertex v ∈ C is
connected to some vertices in T . Such events are stochastically dependent
on different vertices v 6= v′. For example, for the graph of Figure 8.2a, if
vertices 2 and 3 are not connected to vertex 1, vertex 4 cannot be connected to
vertex 1. Therefore, running HH method O(n) times or running the method
in Chapter 6 is not sufficient to evaluate the scale-wise unreliability.

A straightforward way to solve it is to examine, for each subset V ′ ⊆ C of
vertices, the probability that the vertices in V ′ are connected to servers and
other client vertices are disconnected from servers. This probability can also
be computed by the HH method combined with the Apply algorithm [Bryant,
1986] on BDDs. All S(n′) values can be computed by conducting this com-
putation for all of the subsets V ′ ⊆ C. However, since there are 2|C| vertex
subsets, the computational cost is prohibitively large. We empirically com-
pare this method, as the baseline method, with the proposed method in
Section 8.4.

8.3 Method

We try to compute U(n′) values for every n′ = 0, 1, . . . , |C| since the scale-
wise unreliability value S(·) can easily be recovered by (8.2). Now, recall the
HH method to compute K-NR. In HH method, configures that is enough
to distinguish whether all the vertices in K are interconnected are designed,
and the top-down construction method described in Section 2.5 is used. As
a result, BDD BK representing EK is built. The resulting diagram collects
the edge subsets in EK as the paths from root r to > terminal, and in fact,
the other edge subsets are collected as the path from root to ⊥ terminal
Therefore, we can see BK as a data structure to classify the edge subsets into
those in EK and the others.

The proposed method extends this idea: we try to construct a data struc-
ture to classify the edge subsets with respect to the number of client vertices
disconnected from any servers. Since there are |C|+1 cases, from 0 to |C|, for
the number of client vertices, this can be achieved by preparing |C|+1 kinds
of terminals instead of only two terminals (> and ⊥). To build such data
structures, we modify the top-down construction framework of Section 2.5.
Below we start our detailed explanation with a naive exhaustive enumera-
tion for the sake of completeness since the built data structure is no longer
a standard BDD.

115

CHAPTER 8. EFFICIENT COMPUTATION OF SCALE-WISE
NETWORK UNRELIABILITY

(a) (b)e1

e2

e3

e4

e5

1

2

3

4
+e1

+e2 +e2

+e3

+e4

+e5

* * * *

3 3 3 3 3 3 3 3 2 1 2 0 1 0 0 0 2 2 1 0 1 0 0 0 1 0 0 0 1 0 0 0

Figure 8.2: (a) Example of graph G: Filled vertices are in T . Here all vertices
are client vertices. (b) Exhaustive enumeration of edge subsets on graph (a),
where it forms a complete binary tree. Dashed and solid lines indicate ei is
excluded and included, respectively.

8.3.1 Naive Exhaustive Enumeration

We start with a naive way to compute U(n′) for every n′. Given predefined
edge order e1, . . . , em, we choose whether ei is present or absent one by one
according to this order. This process can be seen as traversing a binary deci-
sion tree like Figure 8.2b. After determining every edge’s state, we can count
the number of client vertices disconnected from the server vertices as in the
terminals, i.e. the bottom, of the tree like Figure 8.2b. The probability that
edges in E ′ ⊆ E are present and the others are absent can be computed by
the following path product : From root to terminal, if a solid line is traversed
at the i-th step, pei is multiplied, and if a dashed line is traversed at the i-th
step, (1− pei) is multiplied. The probability U(n′) can be obtained from the
sum of path products of all the paths from root to n′ terminals. For example,
the probability that edges {e1, e3, e5} are present and the others are absent
equals the path product of the path (solid)-(dashed)-(solid)-(dashed)-(solid)
from the root, pe1(1−pe2)pe3(1−pe4)pe5 , which is added to U(0) because this
path arrives at “0” terminal.

8.3.2 Equivalence to Reduce Computation

Since there are 2m edge subsets, such a procedure is intractable even for
graphs with dozens of edges. To accelerate computation, we identify some
edge subsets by defining configures. For example, on the 4th level of Fig-
ure 8.2b, four vertices marked with an asterisk (*) have an identical pattern
of terminals, “1 0 0 0.” We show that such an equivalence can reduce the
computation.

116

8.3. METHOD

We now define the equivalency. As in Chapter 4, let E<i := {e1, . . . , ei−1},
E≥i := {ei, . . . , em}, and we call the subset of E<i an i-th subset. All of the
i-th subsets are now enumerated at the i-th level of a binary decision tree
like Figure 8.2b. We consider the following condition for the i-th subsets X
and Y :

(*) For any Z ⊆ E≥i, the number of client vertices disconnected
from any server with edges in X∪Z and that with edges in Y ∪Z
are equal.

Note that this can be seen as an extension of condition (i) on configures
to construct standard BDD described in Section 2.5. Condition (i) requires
distinguishing two cases whether the subset is in a desired family, while
condition (*) requires distinguishing |C|+ 1 cases.

Given i-th subset X, let E=n′X ⊆ 2E≥i be the family of subsets Z ⊆ E≥i
such that the number of clients disconnected from servers on the subgraph
induced by X ∪Z is exactly n′, and let X = {X1, . . . , Xt} be the i-th subsets
satisfying condition (*) with each other. Condition (*) tells us that E=n′Xj

=

E=n′Xk
for j 6= k and n′ = 0, . . . , |C|. So, we let E=n′X := E=n′Xj

by arbitrarily
choosing j. Thus, on the binary decision tree like Figure 8.2b, the subtrees
rooted at X1, . . . , Xt are identical.

Now we consider merging these subtrees into one rooted at a new dnode
X to make a diagram. Even after merging them, U(n′) equals the sum of
path products from root to n′ terminals. This is because merging them does
not change the set of paths from root to n′ terminals; the path in the binary
decision tree passing through Xi corresponds to that in the DAG passing
through X .

Moreover, we can reduce the computation by this diagram. Among all
the path products contributing to U(n′), those passing through any of X ∈ X
can be represented as∑

X∈X

[∏
e∈X

pe ·
∏

e∈E<i\X

(1−pe) ·
∑

Z∈E=n′
X

[∏
e∈Z

pe ·
∏

e∈E≥i\Z

(1−pe)
]]

=
∑
X∈X

[∏
e∈X

pe ·
∏

e∈E<i\X

(1−pe)
]
·
∑

Z∈E=n′
X

[∏
e∈Z

pe ·
∏

e∈E≥i\Z

(1−pe)
]
, (8.3)

since E=n′Xj
= E=n′X for all j. By considering the diagram, the first factor is

the sum of path products from root to X , and the second factor is that of
path products from X to any n′ terminal. Here, the point is that the second
factor of (8.3) needs to be computed only once instead of computed for every
Xj.

117

CHAPTER 8. EFFICIENT COMPUTATION OF SCALE-WISE
NETWORK UNRELIABILITY

In the following, Section 8.3.3 discusses the configure to detect such equiv-
alence and Section 8.3.4 describes the procedures of the proposed algorithm.

8.3.3 Partition and Number-map

In the following, we define two concepts, partition and number-map, for an
i-th subset. Our goal is to prove that if the partition and number-map are
identical for different i-th subsets, they satisfy condition (*) (Theorem 8.4).
In other words, our goal is to prove that they can be used as a configure.
Eventually, the definition of partition is precisely the same as in Chapter 6
(Definition 6.2), while the number-map is a newly proposed concept in this
chapter.

It is obvious that two i-th subsets X and Y satisfy condition (*) if the
connectivities among vertices are identical, i.e., for any two vertices u, v ∈ V ,
whether u and v are connected is equivalent for two subgraphs (V,X) and
(V, Y). However, such a condition is a bit excessive. Here we focus on an
i-th subset X. We again use frontier vertices Fi, processed vertices Ai, and
unprocessed vertices Bi defined in Definition 4.3. We extract the connectivity
among frontier vertices as the partition (Definition 8.2). In addition, since
condition (*) counts the number of vertices disconnected from servers, we
also keep track of the number of connected vertices of each frontier vertex,
which constitutes the number-map (Definition 8.3).

First, we define the partition.

Definition 8.2. A partition for the i-th subset X ⊆ E<i is a partitioning of
the i-th frontier vertices Fi into blocks consisting of exactly one special block
and other normal blocks. Vertex v ∈ Fi is in a special block if and only if
v is connected to at least one vertex in T on the subgraph induced by X.
vertices u, v ∈ Fi not contained in a special block are in the same normal
block if and only if they are interconnected on the subgraph induced by X.
For partition P , its special block is denoted by SP and the block containing
vertex v ∈ Fi is denoted by BPv .

Next, we define the number-map.

Definition 8.3. For the i-th subset X whose partition is P , let num be a
mapping from each block of P to an integer value defined as follows: For spe-
cial block SP , num(SP) is the number of vertices in C connected with some
vertices in T on the subgraph induced by X. For normal block B, num(B)
is the number of vertices in C included in the corresponding connected com-
ponent on the subgraph induced by X. We call this num a number-map.

118

8.3. METHOD

(a) (b)

{e1}

{2}1[3]1

{e2}

{3}1[2]1

{e1, e3}

{2 3}2

{e2, e3}

{2 3}2

{}0

{1}0[2]1 {1 2}1

>3 {3}1[2]1 {2}1[3]1 {2 3}2

{3}1[2]1 {2}1[3]1 {2 3}2 *

{3}1[4]1 {3}1[4]2 >2 {4}2[3]1 {3}2[4]1 {2 3}2

>2 >1 >2 >0 >1 >0 >1 >0 >0 >0

Figure 8.3: (a) Examples of 4th subsets of graph (a) and their partitions and
number-maps. Red vertices are 4th frontier vertices. (b) Decision diagram
with partitions and number-maps on the graph of Figure 8.2(a).

The special block and each normal block are represented by curly brackets
({}) and square brackets ([]) with vertex ids inside them, respectively. The
value of number-map of each block is written on the upper-right of it; for
example, {1 4}2 [3]5 means that the partition is {1 4}[3] and the number-
map is num = {{1 4} 7→ 2, [3] 7→ 5}. Figure 8.3a depicts some examples
of the 4th subsets and its corresponding partitions and number-maps. Note
that F4 = {2, 3}. Here, the partitions and number-maps of {e1, e2} and
{e1, e3} are identical.

Now we prove the following.

Theorem 8.4. For two i-th subsets X and Y , suppose that their partitions
and number-maps are identical for each. Then, condition (*) holds.

Proof. Given W ⊆ E<i and Z ⊆ E≥i, let VW,Z ⊆ V \ Ai be the vertices
that are not connected to any server with the edges in W but connected to
servers by adding the edges in Z. Since X and Y have the same partition,
the connectivity among V \Ai is identical, i.e., for u, v ∈ V \Ai, u and v are
connected on the subgraph induced by X if and only if they are connected
on the subgraph induced by Y . Moreover, since the edges in E≥i are not
incident to the vertices in Ai, VX,Z = VY,Z for any Z ⊆ E<i.

Let (P , num) be the partition and the number-map of X and Y , and let B
be the set of the blocks of P containing at least one vertex in VX,Z(= VY,Z).
Then, the number of client vertices connected to servers with the edges in
X ∪ Z equals

num(SP) +
∑
B∈B

num(B) + |(VX,Z \ Fi) ∩ C|, (8.4)

119

CHAPTER 8. EFFICIENT COMPUTATION OF SCALE-WISE
NETWORK UNRELIABILITY

where the first term is the number of already connected clients on the sub-
graph induced by X, the second factor is that of newly connected clients
in Ai ∪ Fi by adding the edges in Z, and the third factor is that of newly
connected clients in V \ (Ai ∪ Fi). Since VX,Z = VY,Z , the number of client
vertices connected to servers with the edges in Y ∪ Z also equals (8.4).

Theorem 8.4 suggests that two subsets X, Y ⊆ E<i can be identified if
the partition and the number-map are identical. Moreover, we can easily
derive the following.

Lemma 8.5. Let X, Y be the i-th subsets whose partitions and number-maps
are identical. Then, the partitions and number-maps of X, Y and those of
X ∪ {ei}, Y ∪ {ei} (seen as (i+ 1)-st subsets) are also identical for each.

This can be proved in a similar way as Theorem 8.4: X and Y have the
same connectivity among V \Ai, so X and Y (or X ∪{ei} and Y ∪{ei}) also
have the same connectivity among V \ Ai+1. The number of client vertices
connected to each block is also the same for X and Y (orX∪{ei} and Y ∪{ei})
since the number-map is identical. Theorem 8.4 and Lemma 8.5 constitutes
a basis for using the pair of partition and number-map as a configure to
construct a diagram.

8.3.4 Proposed Method

First, we describe the top-down construction of diagram. Since we construct a
diagram with many terminals, we slightly modify the top-down construction
framework. We prepare |C| + 1 kinds of terminals, >0,>1, . . . ,>|C|. >k
means that the number of disconnected clients from servers is exactly k.
The top-down construction framework is altered so that we set >k instead
of setting > or ⊥ when receiving 〈m + 1, ·〉. The modified framework is in
Algorithm 8.1.

The next step is to design Root and Child procedures. Since the parti-
tion’s definition is identical to that in Chapter 6, we can borrow the same pro-
cedure for updating partition as Algorithm 6.1. The maintenance of number-
map is similar to that of mark defined in Definition 5.3: the mark maintains
whether each block is connected to any vertex in T , while the number-map
maintains the number of connected clients to each block.

We describe the procedure for constructing diagram in Algorithm 8.2.
Finally, ConstructMulti(ScaleUnreliabilityT,C) constructs the diagram.
Figure 8.3b is the built diagram when the input graph is Figure 8.2a.

The remaining is how to compute all the U(n′) values using this diagram.
This is almost identical to the top-down DP computation demonstrated in

120

8.3. METHOD

Algorithm 8.1: Top-down construction framework.

1 procedure ConstructMulti(S):
2 〈i0, s0〉 ← S.Root()
3 Create root dnode r ∈ Li0 whose configure is s0
4 for i = i0 to m do
5 foreach n ∈ Li do
6 foreach f ∈ {lo, hi} do
7 s← (n’s configure)
8 〈i′, s′〉 ← S.Child(〈i, s〉, f)
9 if 〈i′, s′〉 = 〈m+ 1, k〉 for some k then Set >k to the f -child of n

10 else
11 if ∃n′ ∈ Li′ s.t. configure is s′ then
12 Set n′ to the f -child of n
13 else
14 Create node n′′ ∈ Li′ whose configure is s′

15 Set n′′ to the f -child of n

Algorithm 8.2: Constructing decision diagram.

1 procedure ScaleUnreliabilityT,C .Root():

2 return 〈1, (Pr := {}, {SPr 7→ 0})〉
3 procedure ScaleUnreliabilityT,C .Child(〈i, (P, num)〉, f):
4 foreach x ∈ {v, v′} \ Fi do // ei = {v, v′}
5 if x ∈ T then

6 Insert x into SP

7 if x ∈ C then num(SP) += 1
8 else
9 Insert [x] as a new normal block of P

10 num([x])← 1 if x ∈ C; 0 otherwise

11 if f = hi and BPv 6= BPv′ then
12 Merge BPv and BPv′ into a new block B; if either is a special block, B is

special

13 num(B)← num(BPv) + num(BPv′)

14 Remove entries num(BPv) and num(BPv′)
15 foreach x ∈ {v, v′} \ Fi+1 do // Completed vertices

16 Remove x from BPx
17 Remove all empty normal blocks from P and all corresponding entries from

num

18 if all vertices in T are processed and SP is empty then

19 return 〈m+ 1, |C| − num(SP)〉
20 else
21 return 〈i+ 1, (P, num)〉

121

CHAPTER 8. EFFICIENT COMPUTATION OF SCALE-WISE
NETWORK UNRELIABILITY

Algorithm 8.3: DP computation.

1 Set all DP and r values to zero except that DP[r]← 1 for root r
2 for i← 1 to m do
3 foreach n ∈ Li do
4 foreach f ∈ {lo, hi} do
5 DP[f(n)] += f(pei) · DP[n] // (8.5); hi(pe) = 1− lo(pe) = pe
6 Output every DP[>n′] value as U(n′)

Chapters 5 and 6. Recall that U(n′) can be computed as the sum of path
products of all the paths from root r to >n′ terminal. Thus, for dnode n,
let DP[n] be the sum of path products of all the paths from root r to n.
Similar to DP↓ in Chapter 5, we have the following recursive formula, where
i = lb(n):

DP[n] = (1−pei−1
) ·
∑

n′∈Li−1:lo(n′)=n

DP[n′]+pei−1
·
∑

n′∈Li−1:hi(n′)=n

DP[n′]. (8.5)

Similarly, U(n′) equals∑
i

[
(1−pei) ·

∑
n∈Li:lo(n)=>n′

DP[n] + pei ·
∑

n∈Li:hi(n)=>n′

DP[n]

]
. (8.6)

Algorithm 8.3 performs these computations.
Finally, the proposed algorithm can be summarized as follows: First, we

construct a decision diagram by ConstructMulti(ScaleUnreliabilityT,C)
with Algorithms 8.1 and 8.2. Then, we compute every U(n′) value with
Algorithm 8.3.

8.3.5 Complexity

We derive a time complexity bound for the proposed algorithm. We again
use the frontier width WF = maxi |Fi| in the analysis.

Theorem 8.6. The proposed algorithm runs in O(mW 2
FEWF

(|C| + 1)WF)
time, where EWF

is WF -th Bell number.

Proof. The number of possible partitions of Fi is at most (|Fi| + 1)B|Fi| =
O(WFEWF

) because the number of divisions of Fi is at most E|Fi| and for
each division the number of candidates for the special block is at most |Fi|+1
(including the case where the special block is empty). Similarly, the number
of possible number-maps for each partition is at most (|C|+1)WF , since each
num value ranges from 0 to |C|. Thus, there are at most O(mWFEWF

(|C|+

122

8.4. EXPERIMENTS

1)WF) pairs of partition and number-map for the graph. For each dnode, i.e.,
for each pair of partition and number-map, Algorithm 8.2 costs O(WF) time
and Algorithm 8.3 costs O(1) time.

Generally, the frontier width WF is far smaller than n and m, i.e., the
numbers of vertices and edges. This makes the proposed algorithm much
faster than the baseline method.

8.4 Experiments

8.4.1 Network Topologies Used in Experiments

We first mention the topologies used in the experiments. The network
topologies were derived from the Internet Topology Zoo [Knight et al., 2011]
dataset. From each topology, we extracted the largest connected component
and removed all the self-loops that do not affect the connectivity among ver-
tices. Topologies of more than 30 edges were taken as instances, except for
one overly large graph with 895 edges (Kdl).

Servers were determined in the same way as Chapter 5: For each graph,
we computed the betweenness centrality [Freeman, 1977] of each vertex and
chose |T | = 1, 5, 10 vertices with higher centrality as servers T . This is
because servers, e.g., packet gateways and edge servers, are located so that
they are easily accessible from clients [Zhang et al., 2021]. Clients were always
set to C = V , i.e., all the vertices, because this maximizes the computational
load for both methods. Each working probability pe is decided as follows: (I)
If both endpoints of edge e have information of the latitude and longitude, we
computed geodesic distance d (km) between them and set pe = 1− 4.863d×
10−6, following the reliability statistics of optical fiber and amplifier [Segovia
et al., 2008]. (II) Otherwise, pe is set to the average availability of edges of
type (I). Note that 82.4% of the edges are type (I).

8.4.2 Computation Time

We evaluated the proposed method and the baseline method (Section 8.2.1)
by the computation time needed to evaluate all U(n′) values. All meth-
ods were implemented in C++11 and compiled by g++-4.8.5 with -O3 op-
tion. For the baseline method, we used TdZdd (https://github.com/
kunisura/TdZdd) for implementing [Hardy et al., 2007] and SAPPOROBDD
(https://github.com/Shin-ichi-Minato/SAPPOROBDD) for implementing
BDD manipulations. Throughout the experiment, we used a single thread
of a Linux machine with AMD EPYC 8863 2.45 GHz CPU and 2048 GB

123

https://github.com/kunisura/TdZdd
https://github.com/kunisura/TdZdd
https://github.com/Shin-ichi-Minato/SAPPOROBDD

CHAPTER 8. EFFICIENT COMPUTATION OF SCALE-WISE
NETWORK UNRELIABILITY

of RAM; note that the proposed method used less than 64 GB of memory
except for one topology (Interoute). We set the time limit of each run to 12
hours. The edge order is commonly determined for both methods according
to beam-search based heuristics [Inoue and Minato, 2016].

Table 8.1 shows the results. Here TO indicates that the computation
was not finished within the time limit. It is obvious from Table 8.1 that
the proposed method is far more efficient than the baseline method. For
topologies of less than 100 edges, each computation of the proposed method
was finished within a second, while that of the baseline exceeded the time
limit in about half of the instances. Even for topologies with more than 100
vertices and edges, the proposed method computed all U(n′) values within
two hours for Interoute and within 20 minutes for other topologies. Here
the consumed time of the proposed method heavily depends on WF rather
than n and m; it is consistent with the complexity results in Section 8.3.5.
It is also observed that both methods ran faster when |T | is large. For the
baseline method, this is because the server vertices can be safely ignored
when considering all vertex subsets of clients. For the proposed method, the
reason is as follows: When there are more servers, more additional vertices
tend to be connected with servers, which means that they are in the special
block. This decreases the variety of the pair of partition and number-map
and thus the computational cost also decreases.

Typically, the proposed method was also efficient in terms of memory
usage; e.g., for Intranetwork |T | = 1 instance, the proposed method used less
than 32 MB while the baseline needs more than 6 GB. Note that the peak
usage of the proposed method was 200.2 GB recorded by Interoute |T | = 1.

8.4.3 Scale-Wise Unreliability in Real Networks

Here, for the first time, we present scale-wise unreliability for the real topolo-
gies; it has never been published before, including approximate evaluation.
Figure 8.4 plots the scale-wise unreliability S(n′), i.e., the probability that
more than or equal to n′ vertices are disconnected from servers, for each
scenario of topologies with more than 100 edges. The results show that
the scale-wise unreliability greatly varies among topologies. Deltacom and
UsCarrier show high unreliability for small n′ (x-axis), but this decreases
rapidly with n′. This indicates that large-scale failures are unlikely to occur.
On the contrary, TataNld, Ion, and DialtelecomCz show a rapid decrease in
unreliability for small n′ but show high plateaus in large n′. This indicates
that they usually have few outages but can have significant failures with a
low probability. Our algorithm is the first to show differences in scale-wise
unreliability, and it opens up a new avenue in the research of network relia-

124

8.4. EXPERIMENTS

Table 8.1: Computation time for scale-wise unreliability in seconds.

|T | = 1 |T | = 5 |T | = 10

Instance n m WF Ours Base Ours Base Ours Base

Funet 26 30 3 <0.1 2.8 <0.1 1.0 <0.1 0.1
Darkstrand 28 31 3 <0.1 9.4 <0.1 1.3 <0.1 0.2
Sunet 26 32 3 <0.1 2.9 <0.1 1.2 <0.1 0.1
Shentel 28 35 3 <0.1 9.8 <0.1 1.1 <0.1 0.2
Bren 37 38 2 <0.1 6478.2 <0.1 1472.2 <0.1 328.6
NetworkUsa 35 39 3 <0.1 1215.1 <0.1 118.6 <0.1 9.7
IowaStatewideFiberMap 33 41 4 <0.1 486.3 <0.1 111.7 <0.1 19.0
PionierL1 36 41 3 <0.1 2570.7 <0.1 308.3 <0.1 89.5
LambdaNet 42 46 3 <0.1 TO <0.1 11855.5 <0.1 723.2
Intranetwork 39 51 3 <0.1 19364.3 <0.1 1533.9 <0.1 122.5
RoedunetFibre 48 52 4 <0.1 TO <0.1 TO <0.1 TO
Ntelos 47 58 4 <0.1 TO <0.1 TO <0.1 17237.5
Palmetto 45 64 5 0.6 TO 0.1 TO <0.1 TO
UsSignal 61 78 4 0.2 TO 0.1 TO <0.1 TO
Missouri 67 83 4 0.1 TO <0.1 TO <0.1 TO
Switch 74 92 5 0.7 TO 0.1 TO <0.1 TO
VtlWavenet2008 88 92 3 0.1 TO 0.1 TO <0.1 TO
RedBestel 84 93 3 <0.1 TO <0.1 TO <0.1 TO
Intellifiber 73 95 5 0.5 TO 0.1 TO <0.1 TO
VtlWavenet2011 92 96 3 0.1 TO 0.1 TO <0.1 TO
Oteglobe 83 99 4 0.2 TO 0.1 TO <0.1 TO
Interoute 110 146 7 4602.7 TO 977.1 TO 11.2 TO
Ion 125 146 5 16.7 TO 13.0 TO 0.8 TO
DialtelecomCz 138 151 5 9.2 TO 2.1 TO 2.0 TO
Deltacom 113 161 6 74.9 TO 6.5 TO 5.3 TO
TataNld 145 186 6 775.6 TO 80.8 TO 24.5 TO
UsCarrier 158 189 5 19.8 TO 18.1 TO 4.8 TO

bility.
Here, we provide further detailed discussion of the results.

• Probabilities in Figure 8.4 are plotted with log-scale, so they tell us
that S(n′) decays roughly exponentially with respect to the outage
scale. However, their decay stagnates at some points. This suggests
that interpolation among them may lead to a significant under- or over-
estimate of probabilities, even when S(n′) values are sparsely obtained
at some points.

• For all topologies, the effect of |T | is not significant when the outage
scale is relatively small. This is because these real topology include
many pendant edges, i.e., the edges connecting vertices with degree 1.
Failure of such a edge immediately disconnects one vertex, so its outage

125

CHAPTER 8. EFFICIENT COMPUTATION OF SCALE-WISE
NETWORK UNRELIABILITY

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 20 40 60 80 100

Interoute

S
ca

le
-w

is
e

u
n
re

li
ab

il
it

y

|T|=1
|T|=5

|T|=10

 25 50 75 100 125

Ion

 25 50 75 100 125

DialtelecomCz

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 20 40 60 80 100

Deltacom

S
ca

le
-w

is
e

u
n
re

li
ab

il
it

y

Outage scale
 25 50 75 100 125

TataNld

Outage scale
 30 60 90 120 150

UsCarrier

Outage scale

Figure 8.4: Scale-wise unreliability, i.e., probabilities that more than or equal
to n′ clients are not connected to servers. Filled circle indicates S(1) value.

would be difficult to resolve even if we put more servers.

• Although longer edges have lower availability (Section 8.4.1), Inter-
oute, the largest network across Europe and North America, is not
the least reliable, whereas DialtelecomCz, the smallest one within the
Czech Republic, is not the most reliable for the whole outage scale.
This indicates that network reliability strongly depends on topological
properties, not their reach.

8.5 Related Work

The research community has studied network reliability evaluation methods
for many years, as described in Section 4.2.1. The fastest CSNR method
(in Chapter 5) does not construct BDDs, which are required for the baseline
method in Section 8.2.1, so we use HH method [Hardy et al., 2007] for a
baseline; note that even if we could use the CSNR method for the baseline,
the large gap of several orders of magnitude in Section 8.4 could not be
compensated.

126

8.6. CONCLUSION

Some studies have examined outage scales. Researchers on complex net-
works revealed that scale-free networks, including the Internet, can be divided
into small connected components against attacks on high-degree nodes [Al-
bert et al., 2000; Cohen et al., 2001; Magoni, 2003]. Researchers on com-
munication networks investigated devastating network statuses after severe
accidents [Neumayer and Modiano, 2010; Oostenbrink and Kuipers, 2017;
Al Mtawa et al., 2021; Yano et al., 2022]. Although these studies often
counted the number of connected nodes to measure the damage, they only
considered a limited number of failure scenarios and did not evaluate a scale-
wise unreliability. The algorithm in Chapter 6 can be used for evaluating the
expected number of connected nodes, which can be regarded as computing
the expected number of outage scale in our problem. However, as demon-
strated in the experiments, the distribution of scale-wise unreliability cannot
be recovered from only the expected number of outage scale.

8.6 Conclusion

This chapter studied an efficient algorithm to precisely evaluate scale-wise
unreliability. The proposed algorithm computed the probability of every
outage scale using DP. Numerical experiments show that our algorithm suc-
cessfully dealt with real large-scale topologies within two hours. Future
work includes extending the algorithm to support an outage scale based
on user counts. We have provided public access to their code and data
at https://github.com/nttcslab/scale-wise-unrel.

127

https://github.com/nttcslab/scale-wise-unrel

CHAPTER 8. EFFICIENT COMPUTATION OF SCALE-WISE
NETWORK UNRELIABILITY

128

Chapter 9

Framework for Simultaneous
Subgraph Counting under
Connectivity Constraints

The subgraph counting problem is a graph counterpart of the weighted model
counting problem, which computes the number of subgraphs of a given graph
that satisfy some constraints. Among various constraints imposed on a graph,
those regarding the connectivity of vertices, such as “these two vertices must
be connected,” have great importance since they are indispensable for de-
termining various graph substructures, e.g., paths, Steiner trees, and rooted
spanning forests. In this view, the subgraph counting problem under con-
nectivity constraints is also important because counting such substructures
often corresponds to measuring the importance of a vertex in network infras-
tructures. However, we must solve the subgraph counting problems multiple
times to compute such an importance measure for every vertex. Convention-
ally, they are solved separately by constructing a BDD or a ZDD for each
problem. However, even solving a single subgraph counting is a computation-
ally hard task, preventing us from solving it multiple times in a reasonable
time. In this chapter, we propose a DP framework that simultaneously counts
subgraphs for every vertex by focusing on similar connectivity constraints.
Experimental results show that the proposed method solved multiple sub-
graph counting problems about 10–20 times faster than the existing approach
for many problem settings.

129

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

9.1 Introduction

Given graph G = (V,E), the subgraph counting problem computes the (pos-
sibly weighted) count of the subgraphs of G that satisfy some constraints
such as each vertex’s degree and the existence of cycles. More specifically,
given edge weights w+

e , w
−
e ∈ R for e ∈ E, this problem (exactly) computes

the following value:

W (E) :=
∑
E′∈E

[∏
e∈E′

w+
e ·

∏
e∈E\E′

w−e

]
, (9.1)

where E ⊆ 2E is a family of the subsets of edges, i.e., subgraphs, that satisfy
given constraints. This problem can be seen as a graph counterpart of the
weighted model counting problem defined in Problem 2.4.

When E = EK , i.e., the family of subgraphs such that all the vertices in K
are interconnected, and we set w+

e = pe and w−e = 1− pe, this is identical to
computingK-NR. Thus, the K-NR computation is a specific case of subgraph
counting problem. Other than network reliability computation, this problem
has been studied as a fundamental task in computer science [Bax, 1994; Alon
et al., 1997; Flum and Grohe, 2004; Curticapean, 2018].

Here, we focus on a connectivity constraint, which is a topological con-
straint requiring that some pairs of vertices are connected and other pairs are
disconnected. A kind of connectivity constraint is imposed when we compute
K-NR. A connectivity constraint is also fundamental in determining various
graph substructures, such as paths, Steiner trees, spanning trees, and rooted
spanning forests, in combination with other constraints, as described in Sec-
tion 9.2. Counting these substructures also has great importance, especially
for evaluating the importance of a vertex. For example, as seen in Chap-
ter 3, paths and Steiner trees on communication networks correspond to the
routing of point-to-point and multi-site communication. Thus, the number
of paths or Steiner trees passing vertex v is an importance measure for v
in this communication network, since its failure causes the lost of this num-
ber of communication routing. A cycle passing through source vertex s and
another vertex v constitutes a vertex-disjoint two paths between s and v,
and counting such cycles corresponds to the number of non-blocking pairs of
communication routings from s to v [Inoue, 2019]. A rooted spanning forest
(RSF) rooted at r1, . . . , rk corresponds to a (electrical) distribution network
whose substations are located at r1, . . . , rk [Inoue et al., 2015]. When we add
a new substation to v, the number of RSFs rooted at r1, . . . , rk, v (given other
constraints such as electric constraints) provides flexibility of the distribution
network.

130

9.1. INTRODUCTION

In evaluating such an importance measure for every vertex v, we generally
have to solve the subgraph counting problem for every v. That is, we must
compute multiple count values W (Ev1), . . . ,W (Evn) for different families of
subgraphs Ev1 , . . . , Evn . However, the subgraph counting problem is generally
#P-complete as seen in Section 4.2.1 (saying that K-NR computation is #P-
complete). Even a practically fast algorithm for computing W (E) described
below may take several minutes or more for a graph with hundreds of edges.
Subgraph counting for every vertex described above seems computationally
much more difficult since we have to repeatedly solve cumbersome counting
tasks.

This chapter extends the CSNR algorithm in Chapter 5 to propose a prac-
tically fast algorithm for simultaneously counting subgraphs for every vertex
(formally defined in Section 9.2). Here, “simultaneously” means that we build
only one data structure for obtaining all count values W (Ev1), . . . ,W (Evn).
Our contribution is summarized as follows:

• We formally defined the subgraph counting problem for every vertex
under similar connectivity constraints.

• The proposed method enables us to simultaneously count such graph
substructures as paths, cycles, Steiner trees, and RSFs by sophisticated
dynamic programming (DP) on the built data structure.

• Complexity analyses show that the proposed method solves subgraph
counting for every vertex O(n) times faster than the baseline method
that separately solves each counting, where n is the number of vertices.

• We empirically confirmed that the proposed algorithm solved subgraph
counting for every vertex around 10–20 times faster than the baseline
method.

9.1.1 Related Works

We have already give the literatures on computing K-NR, a kind of subgraph
counting problem, in Chapter 4. Thus, we here examine literatures for other
subgraph counting problems. The simplest method enumerates all the sub-
structures [Read and Tarjan, 1975; Shioura et al., 1997] such as paths and
spanning trees. Especially, the enumeration of spanning trees [Shioura et
al., 1997] corresponds to computing the Tutte polynomial of a graph, which
can be used for many kinds of graph counting problems. However, since
there might be an exponential number of substructures, enumeration sud-
denly becomes intractable with the growth of graph size. For practically fast

131

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

counting, indexing the constrained subgraphs into BDD-like structures has
also been studied, as described in Section 2.5. Sekine et al. [1995] designed
an algorithm to build a BDD representing all the spanning trees to compute
the Tutte polynomial. Knuth [2011] proposed a very efficient scheme called
Simpath that indexes all the simple paths in a ZDD, which can be used for
counting simple paths. By expanding such research, Kawahara et al. [2017b]
proposed a frontier-based search (FBS), which can build a ZDD of various
graph substructures. Since ZDD also allows a simple DP for counting as seen
in Section 2.4, FBS can be used for practically fast subgraph counting. The
proposed algorithm is also based on FBS. Subgraph counting is also studied in
the context of parameterized complexity theory [Flum and Grohe, 2004; Cur-
ticapean, 2018], although their interest often focuses on theoretical aspects.
To the best of our knowledge, no works have outperformed the BDD/ZDD-
based methods in practically solving subgraph counting problems, including
network reliability evaluations.

The CSNR algorithm in Chapter 5 essentially solves counting problems
for every vertex and runs much faster than the baseline where each client’s
reliability is computed separately. However, it can only deal with the con-
straints of the form “all the specified vertices are connected” and cannot
accept the constraints of disconnection and others. The proposed algorithm
in this chapter can be seen as an extension of CSNR algorithm. Technically,
the proposed method can deal with these constraints by utilizing the ZDD
structures [Minato, 1993] and the FBS [Kawahara et al., 2017b]. While the
CSNR algorithm relies on a BDD-like structure that is not truly a BDD, we
build a legitimate ZDD by FBS, enabling us to combine such existing ZDD
algorithms as Apply [Minato, 1993] and subsetting [Iwashita and Minato,
2013].

9.1.2 Organization of Chapter

The rest of this chapter is organized as follows. Section 9.2 describes the pre-
liminary and the formal statement of the problem we solved. Section 9.3 gives
the overview of the proposed method. Section 9.4 introduces the ZDD and
the frontier-based search that are used in the proposed method. Section 9.5
details the proposed method, and Section 9.6 analyzes the computational
complexity of it. Section 9.7 empirically compares the proposed method
with the baseline in terms of computational time, and Section 9.8 gives a
conclusion.

132

9.2. PROBLEM STATEMENT

9.2 Problem Statement

Before proceeding to our problem statement, we introduce a notion that
represents the connectivity constraint in the same manner as [Kawahara et
al., 2017b]. As described in Section 9.1, a connectivity constraint requires
that some pairs of vertices are connected and other pairs are disconnected.
We represent the connectivity constraint by subpartition C of vertex set V
of graph G = (V,E), where a subpartition of V is a set of pairwise disjoint
subsets of V . C imposes the following constraints: (i) for any pair of vertices
v, v′ in the same set in P , they must be connected, and (ii) for any pair of
vertices v, v′ in different sets in P , they must not be connected.

We extend the notion by introducing exactly one wildcard ∗, which will
be replaced by a vertex to represent various connectivity constraints. Let
C∗ be a subpartition of V ∪ {∗} that must contain exactly one ∗. For v ∈
V , let C∗[v] be the connectivity constraint obtained by substituting ∗ in
C∗ with v. Additionally, let C∗[] be the connectivity constraint obtained
by simply removing ∗ from C. Note that if v ∈ V is already present in
C∗, C∗[v] equals (i) C∗[] if v is in the same set in C∗ that contains ∗; or
(ii) an inconsistent constraint. For example, for C∗ = {{v1, v2, ∗}, {v3}},
C∗[v4] = {{v1, v2, v4}, {v3}}, C∗[v2] = C∗[] = {{v1, v2}, {v3}}, and C∗[v3] is an
inconsistent constraint.

Now we proceed to the problem definition. In our problem, we are given
connected undirected graph G = (V,E) with n = |V | vertices and m = |E|
edges, connectivity constraint C∗ containing exactly one wildcard ∗, family F
of subgraphs, i.e., subsets of edges, and weights w+

e , w
−
e ∈ R for each e ∈ E.

For connectivity constraint C, let E(C) be the family of subgraphs satisfying
C. Our goal is to compute the following value

count(v) := W (F ∩ E(C∗[v])) for every v ∈ V . (9.2)

The problems described in Section 9.1 can be covered by our problem.

• Path: Given s, t ∈ V , we set C∗ = {{s, t, ∗}} and let F be a family
of subgraphs where (i) the degree of s and t is 1, and the others have
degree 0 or 2, and (ii) there are no cycles. Then count(v) equals the
number of simple s, t-paths that pass through v.

• Cycle: Given s ∈ V , we set C∗ = {{s, ∗}}, and let F be a family of
subgraphs where (i) the degree of each vertex is 0 or 2, and (ii) there is
exactly one connected component. Then count(v) equals the number
of cycles starting from s that pass through v.

133

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

• Steiner tree: Given T ⊆ V , we set C∗ = {T ∪{∗}} and let F be a family
of subgraphs where there are no cycles and exactly one connected com-
ponent. Then count(v) equals the number of T -Steiner trees containing
v, where T -Steiner trees are the trees connecting all the T vertices.

• Rooted spanning forest : Given T = {r1, . . . , rk} ⊆ V , we set C∗ =
{{r1}, . . . , {rk}, {∗}}, and let F be a family of subgraphs where (i)
every vertex has degree at least 1, (ii) there are no cycles, and (iii)
there are exactly (k+ 1) connected components. Then count(v) equals
the number of rooted spanning forests rooted at r1, . . . , rk and v.

In addition, the CSNR problem in Chapter 5 (Problem 5.1) essentially counts
the subgraphs where given vertex set T ⊆ V and vertex v are connected for
every v and can be recovered by C∗ = {T ∪{∗}} and F = 2E. Although here
we list only topological constraints for F , we can also impose non-topological
constraints with F , such as knapsack constraints.

9.3 Overview and High-level Idea

The proposed method can be seen as an extension of CSNR method in Chap-
ter 5 combined with FBS. Indeed, the proposed method is similar to CSNR
method in that we first construct a decision diagram in a top-down man-
ner and then perform a DP using configures. However, as described in Sec-
tion 9.1.1, a legitimate ZDD is built by the proposed method, while a diagram
not truly a BDD or a ZDD is built by CSNR method. The configure of FBS
is more elaborated than that of the CSNR method (Definitions 5.2 and 5.3),
so we should have more elaborated DP than the CSNR method. Moreover,
since the computed values are no longer probabilities in the problem in this
chapter, we completely renew the argument not to rely on probability. At
first, we give an overview of the proposed algorithm. Then, we describe the
intuition and high-level idea behind the proposed algorithm.

9.3.1 Overview of the Proposed Algorithm

First, we explain case F = 2E. Given connectivity constraint C∗, the base-
line method, which separately computes the count value for every v by
FBS [Kawahara et al., 2017b], builds a ZDD with connectivity constraint
C∗[v] for every v ∈ V . By FBS with C∗[v], a ZDD representing E(C∗[v]) is
built and allows a simple DP for computing count(v) = W (E(C∗[v])). The
details of FBS are explained in Section 9.4.

134

9.3. OVERVIEW AND HIGH-LEVEL IDEA

Graph G

Connectivity constraint
C∗

Base set F ZDD ZF

FBS with C∗
(Sect. 9.4.2)

Intersection
(Sect. 9.5.3)

ZDD Z
· representing F ∩ E(C∗[])
· comp/vset in each dnode

ZDD Z
· p↓, q↑, r↑ values in each dnode

DP with comp/vset (Sect. 9.5.2)

Levelwise
computation
with p↓, q↑, r↑

(Sect. 9.5.1)

count(v1)

count(v2)

count(vn)

.

..

...

Figure 9.1: Overview of proposed algorithm.

More specifically, the proposed method builds a ZDD by FBS. However,
unlike the baseline method, we build only one ZDD Z for C∗, which represents
E(C∗[]). Instead, we retain the information used in the FBS for building Z,
comp and vset in each dnode of Z, both of which are discarded after the
FBS in the baseline method. Since comp and vset provide rich information
for connectivity among vertices, we fully exploit them to perform a more
elaborated DP, yielding for each dnode of Z three kinds of values, p↓, q↑, and
r↑. Their definitions are described in Section 9.5.1. By using them, we can
compute count(v) values for every v ∈ V . Since the computation of p↓, q↑,
r↑, and count(v) can be performed in time proportional to the execution of
FBS, the proposed algorithm runs faster than the baseline. We fully describe
the computation of the count(v) values in Section 9.5.1 and those of p↓, q↑,
and r↑ (the DP procedure) in Section 9.5.2.

Finally, we deal with case F 6= 2E. For it, we first construct ZDD ZF
by the existing methods. Then, we construct one ZDD Z that represents
F ∩ E(C∗[]) whose dnodes have comp and vset. This can be performed by
exploiting existing techniques of constructing a ZDD of set intersection, such
as Apply [Minato, 1993] and subsetting [Iwashita and Minato, 2013]. After
Z is built, we can perform the same DP scheme as above. We describe taking
the set intersection in Section 9.5.3. An overview of the proposed method is
given in Figure 9.1.

By changing base set F and connectivity constraint C∗, the proposed
algorithm can solve various subgraph counting problems, as in Section 9.2.
We named our proposed algorithm compDP since it fully uses information
comp.

9.3.2 Intuition and Idea

We describe the high-level idea behind the proposed algorithm. As described
later, ZDD, which is a rooted and layered directed acyclic graph, represents
a family of subgraphs as the set of paths from the root to a terminal dnode.

135

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

By defining the path product of a path by the weights along this path (precise
definition is later), the count value equals the sum of path products of these
paths. Note that the argument based on path product instead of probabil-
ity is suited for the problem considered in this chapter. The intuitive for
the proposed algorithm is as follows: Let Ev = F ∩ E(C∗[v]). To compute
count(v) = W (Ev) for every v ∈ V , it is sufficient to build a ZDD represent-
ing Ev for every v. However, since Ev and Ew (v 6= w) are similar families
stemming from the common constraint C∗, the ZDDs representing them also
are expected to exhibit similar structures. We use such similarities to reduce
the computation.

More specifically, we use the following step-by-step ideas: First, since
E(C∗[v]) ⊆ E(C∗[]) for any v ∈ V , F ∩ E(C∗[v]) is represented by the subset
of the paths within the ZDD representing F ∩ E(C∗[]). Second, these paths
can be decomposed into former and latter parts; the former is the paths from
the root to a specific layer, and the latter is the paths from the specific layer
to the terminal. The count value count(v) can be represented by the sums of
path products of the former part and those of the latter part. Third, when
considering such a decomposition for every v ∈ V , we can reuse the values of
“the sums of path products of the former part” (p↓ in the proposed algorithm)
and “those of the latter part” (q↑ and r↑ in the proposed algorithm). Thus,
by pre-computing them by a DP, we can compute count(v) for every v ∈ V
with these values.

9.4 Path Product and Frontier-based Search

As a preliminary, we first define the path product on ZDD. Then, we explain
the FBS in detail.

9.4.1 Path Product on ZDD

Let Z = (N, A) be a ZDD representing the family of edge subsets, i.e., sub-
graphs. We define some notions for representing paths on Z. For n ∈ N, let
lo-arc(n) and hi-arc(n) be the lo- and hi-arcs outgoing from n. For n, n′ ∈ N,
RZ(n, n

′) denotes the set of paths from n to n′. Recall that, given a predefined
order of edges e1, . . . , em, ZDD Z represents a family of subgraphs EZ ⊆ 2E

by RZ(r,>) where r ∈ N is the root dnode. For path R in Z, we associate
subset E(R) ⊆ E where ei ∈ E(R) if and only if R traverses a hi-arc outgo-
ing from a dnode with label i. We say E(R) the corresponding subgraph of
R. Then EZ = {E(R) | R ∈ RZ(r,>)}. For example, in Figure 9.2b, path
1-(hi)-2-(lo)-3-(lo)-4-(hi)-5-(hi)-> indicates that {e1, e4, e5} ∈ EZ.

136

9.4. PATH PRODUCT AND FRONTIER-BASED SEARCH

(a) (c)

(b)

e1

e2

e3

e4

e5

1

2

3

4

1
2 2

⊥ 3 3 3

4 4 4

⊥ 5 5 5

⊥ >

/{1, 4, ∗}

{1}{2}/{1, 4, ∗} {1, 2}/{1, 4, ∗}

⊥ {2}{3}/{3, 4, ∗} {2}{3}/{2, 4, ∗} {2, 3}/{2, 3, 4, ∗}

{2}{3}/{3, 4, ∗} {2}{3}/{2, 4, ∗} {2, 3}/{2, 3, 4, ∗}

⊥ {3}{4}/{3, 4, ∗} {3}{4}/{4, ∗} {3, 4}/{3, 4, ∗}

⊥ > > > > >

Figure 9.2: (a) Example of graph. (b) Example of (normalized) ZDD. Dashed
and solid lines indicate lo- and hi-arcs, and an integer inside a dnode repre-
sents a label. (c) ZDD made by FBS where C∗ = {{1, 4, ∗}}. Two subparti-
tions of vertices inside a dnode represent comp and vset.

We here derive the normalized property for ZDDs in the same way as
Section 7.3.3. A ZDD is normalized if for every n ∈ N \ {>,⊥}, both lo(n)
and hi(n) are either a terminal dnode or a dnode whose label is lb(n) + 1.
For normalized ZDD, we define the path product as follows. Let Z be a
normalized ZDD, and let R ∈ RZ(n, n

′) be an arbitrarily chosen path. Given
weights w+

e , w
−
e ∈ R for every e ∈ E, we define the path product of R by

ΠR :=
∏

e∈E(R)

w+
e ·

∏
e∈{elb(n),...,elb(n′)−1}\E(R)

w−e . (9.3)

In other words, ΠR is the product of w+
e for the edges in E(R) and w−e for

the edges not in E(R). We also define value p↓(n) for ZDD dnode n by
the sum of path products of the paths in RZ(r, n). By definition, W (EZ)
equals p↓(>). Moreover, although p↓(n) is defined as the sum of a possibly
exponential number of path products, its value can efficiently be computed
by a DP. Simple calculation shows the following equation for a dnode other
than r or ⊥:

p↓(n) =
∑

n′:lo(n′)=n

w−elb(n) · p↓(n
′) +

∑
n′:hi(n′)=n

w+
elb(n)
· p↓(n′). (9.4)

Starting with p↓(r) = 1, by applying (9.4) in a top-down manner along Z, we
can compute the value of p↓(>) = W (EZ) in time proportional to the number
of dnodes in Z.

137

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

9.4.2 Frontier-based Search

A frontier-based search (FBS) [Kawahara et al., 2017b] is an efficient method
for constructing a normalized ZDD that represents a family of subgraphs
satisfying some constraints. Below we explain its procedure of given connec-
tivity constraint C (without ∗) using the top-down construction framework
of Section 2.5.

Similar to the partition used in previous chapters, we again focus on the
connectivity among a limited subset of vertices. More specifically, we focus
on the frontier vertices Fi defined in Definition 4.3 and the vertices appearing
in the connectivity constraint C. Let VC be the set of vertices appearing in
connectivity constraint C. The goal of the configure design for FBS is to
represent the connectivity among Fi ∪ VC.

In FBS, the connectivity among Fi∪VC is maintained by two subpartitions
of vertices: comp and vset. Here comp maintains the connectivity among
Fi while vset maintains the connectivity among the sets in comp and the
vertices in VC. More specifically, comp is a partition of Fi such that v, v′ ∈ Fi
are in the same set if and only if they are connected, and vset maintains
the connectivity constraint such that the vertices in the same set must be
connected and those in different sets must be disconnected. Here comp[v]
denotes the set in comp containing v, and as is the same with vset[v]. We
use the pair of comp and vset as a configure.

The Root and Child procedures of FBS is given in Algorithm 9.1. At
root, we have an empty comp since F1 = ∅ and vset = C requiring connectivity
constraint C (Lines 1–2). In Child procedure, let ei = {v, v′} be the current
edge. Let Vvset be the vertices appearing in vset and vset[v] (v ∈ Vvset) be
the set in vset containing v. If we include ei but both endpoints of ei are in
Vvset and the sets in vset containing these endpoints are different (Line 4),
we must not connect them and thus we immediately return ⊥ as a child
(Line 5). Then, for every vertex u that are newly entered into frontier, we add
a component consisting of only u as a new component of comp (Lines 6–7).
If we include ei and the components that contains the endpoints are different
(Line 8), we merge these two components (Line 9). Here, if one endpoint u
appears in vset and the other u′ does not appear in vset, we add the vertices
in the component containing u′ one into the set in vset containing u, since
now they are connected and thus u′ and the vertices in the same component
must satisfy the same connectivity constraint as u (Lines 10–11). Then, for
every vertex u leaving from frontier (Line 12), we must care the case where
the component including u is left isolated (Line 13). If u appears in vset but
{u} does not appear in vset, this means that the set in vset containing u has
another vertex w. Eventually u must be connected to w, but this cannot be

138

9.4. PATH PRODUCT AND FRONTIER-BASED SEARCH

Algorithm 9.1: Frontier-based search for connectivity constraint C.
Underlined part in is added if it is used for a subroutine of proposed
method.
1 procedure FBSC .Root():
2 return 〈1, (∅, C)〉
3 procedure FBSC .Child(〈i, (comp, vset)〉, f): // ei = {v, v′}
4 if f = hi and v, v′ ∈ Vvset and vset[v] 6= vset[v′] then
5 return 〈m+ 1, 0〉 // v and v′ must not be connected

6 foreach u ∈ {v, v′} \ Fi do // Vertices entering the frontier

7 comp← comp ∪ {{u}} // Add u as an isolated vertex

8 if f = hi and comp[v] 6= comp[v′] then // Connecting two components

9 Merge comp[v] and comp[v′] into one
10 if v ∈ Vvset and v′ /∈ Vvset then Add vertices in comp[v′] to vset[v]
11 if v /∈ Vvset and v′ ∈ Vvset then Add vertices in comp[v] to vset[v′]
12 foreach u ∈ {v, v′} \ Fi+1 do // Vertices leaving from frontier

13 if {u} ∈ comp then // Component containing u leaves frontier

14 if u ∈ Vvset and {u} /∈ vset and {u, ∗} /∈ vset then

15 return 〈m+ 1, 0〉 // u must be connected to w ∈ vset[u] \ {u}
16 Remove u from comp and vset if exists
17 Remove empty subset from comp and vset if exists
18 if i = m then return 〈m+ 1, 1〉 // All conditions are satisfied

19 else return 〈i+ 1, (comp, vset)〉

satisfied since the component including u is left isolated. Thus, in this case
we immediately return ⊥ as a child (Line 15). Afterwards, u is removed from
comp and vset (Lines 16–17). Finally, the resulting pair of comp and vset is
returned as an f -child configure except that when i = m, all constraints are
satisfied and thus we return > (Lines 18–19).

For example, Figure 9.2c is the result of FBS given the graph in Fig-
ure 9.2a and the constraint that vertices 1 and 4 must be connected. Note
that we here ignore the ∗ mark in Figure 9.2c. We now focus on the left, 2nd
level dnode: “{1}{2}/{1,4}”. Here comp = {1}{2} denotes two components,
the one including 1 and the one including 2, and vset = {1, 4} represents
that 1 and 4 must be connected. If we exclude e2 = {1, 3}, the component
including 1 is left isolated because F3 = {2, 3} does not include 1. How-
ever, since this contradicts that 1 and 4 must be connected, the lo-child is
⊥ (pruned). If we include e2, the component including 1 becomes one that
includes 3 at the next level. The constraint that 1 and 4 must be connected
can be rewritten as that 3 and 4 must be connected. Thus, hi-child’s comp
is {2}{3} and vset is {3,4}.

139

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

9.5 Details of Proposed Method

First, we assume F = 2E; this assumption is removed in Section 9.5.3. As
in Section 9.3, the proposed method first builds ZDD Z representing E(C∗[]).
To explain the meaning and procedure for this, we observe the relationship
between C∗[] and C∗[v]. Let V ∗C∗ be the vertices in the set in C∗ containing
∗, and let V ¬C∗ be the other vertices present in C∗. From the definition, C∗[v]
imposes the following additional constraint on C∗[]:

(#v) v must be connected with the vertices in V ∗C∗ , and v must
be disconnected from the vertices in V ¬C∗ .

That is, E(C∗[v]) = {E ′ | E ′ ∈ E(C∗[]), E ′ satisfies (#v)}. Now the con-
straint C∗[v] is decomposed into (#v) and C∗[], where (#v) involves only the
connectivity around v and C∗[] represents the other constraints. The fact
that (#v) concerns only the connectivity around v enables us to compute
count(v) for every v with only one ZDD Z representing E(C∗[]), as described
in the subsequent sections.

Meanwhile, during the procedure of FBS, we must remember which set
in vset corresponds to the set in C containing ∗ since we use it for the sub-
sequent computation. To achieve this, we just consider ∗ in C∗ a special
vertex. More specifically, we let the root’s vset as C∗ (instead of C) in Line 2
of Algorithm 9.1 and add the underlined part of Line 14. By adding the
underlined part, we simply discards ∗ even if vset[v] contains ∗. Thus, Z

finally represents E(C∗[]), while each vset has at most one set containing ∗.
For example, Figure 9.2c is the result of FBS given the graph in Figure 9.2a
and the constraint C∗ = {{1, 4, ∗}}.

9.5.1 Computation with Intermediate Level of Diagram

Let Rv be the set of the paths in RZ(r,>) whose corresponding subgraphs
satisfy (#v). As stated above, count(v) equals the sum of path products of
the paths in Rv. Here we focus on i-th level Li of Z where v ∈ Fi.1 For dnode
n ∈ Li with label i, let Rv,n be the set of paths in Rv passing through n.
Since Z is normalized, every r-> path in Z passes exactly one dnode in Li.
Thus, we have Rv =

⋃
n∈LiRv,n and Rv,n∩Rv,n′ = ∅ for n 6= n′, meaning that

count(v) =
∑
R∈Rv

ΠR =
∑
n∈Li

∑
R∈Rv,n

ΠR.

1If v’s degree is more than 1, there is at least one i such that v ∈ Fi, as described in
Section 5.3.2. The treatment of degree 1 vertices is in Section 9.9.1.

140

9.5. DETAILS OF PROPOSED METHOD

We further decompose
∑

R∈Rv,n
ΠR by focusing on n ∈ Li. Hereafter, we

write comp and vset retained in dnode n as n.comp and n.vset. Since n.comp
maintains the connectivity among Fi, the sets in n.comp are indeed connected
components. Because the connectivity around v can be translated into that
around connected component B = n.comp[v], (#v) can be restated as a
constraint on B = n.comp[v]:

(#′B) Connected component B must be connected with the ver-
tices in V ∗C∗ , and B must be disconnected from the vertices in
V ¬C∗ .

Let Rn,B ⊆ RZ(n,>) be the set of paths such that R′ ∈ Rn,B if and only
if E(R) ∪ E(R′) satisfies (#′B) for an arbitrarily chosen R ∈ RZ(r, n). Rn,B

is well-defined, i.e., kept unchanged regardless of the choice of R because
E(R)’s connectivity among components and the vertices in V ∗C∗ ∪ V ¬C∗ is com-
pletely determined in n.vset. This means that Rv,n can be written as direct
product RZ(r, n) t Rn,n.comp[v] where A t B := {a ∪ b | a ∈ A, b ∈ B}. In
other words, every path R ∈ Rv,n can be decomposed into R′ ∈ RZ(r, n) and
R′′ ∈ Rn,n.comp[v]. From the definition of path product, ΠR = ΠR′ΠR′′ . Thus,
by defining q↑(n, B) as the sum of path product of the paths in Rn,B, the
following holds:∑

R∈Rv,n

ΠR =
∑

R′∈RZ(r,n)

∑
R′′∈Rn,n.comp[v]

ΠR′ΠR′′ = p↓(n) · q↑(n, n.comp[v]). (9.5)

Finally, count(v) can be represented as

count(v) =
∑
n∈Li

∑
R∈Rv,n

ΠR =
∑
n∈Li

p↓(n) · q↑(n, n.comp[v]). (9.6)

By choosing i such that v ∈ Fi for every v, we can compute count(v) for
every v by (9.6) if p↓ and q↑ are computed. In the next section, we show that
q↑ can be computed by DP.

9.5.2 Dynamic Programming

First, we define a correspondence of the components in comp between n and
its child dnodes in a similar manner as the correspondence between blocks
of partitions (see Definition 5.4).

Definition 9.1. Let n ∈ Li be a dnode of a normalized ZDD whose label is i,
and let f be either lo or hi. Assuming that the f -child of n is not a terminal,
for B ∈ n.comp, we define the f -child of B as follows: (i) If B contains vertex

141

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

v in Fi+1, the f -child is n′.comp[v], where n′ is the f -child of n. (ii) If no such
vertex exists, the lo-child of B is ∅, i.e., no corresponding component. For
hi-child, let v, v′ be the endpoints of ei. If v′ ∈ Fi and v ∈ B, the hi-child of
B is hi(n).comp[v′]. If v ∈ Fi and v′ ∈ B, the hi-child of B is hi(n).comp[v].
Otherwise, the hi-child of B is ∅. We write the lo- and hi-child of B as lo(n)
and hi(n).

Intuitively, for f ∈ {lo, hi}, f(B) is a component in f(n).comp that repre-
sents the same component as B.

We derive a formula for q↑(n, B) by decomposing the set of paths Rn,B.
Since every path in Rn,B passes either lo-arc(n) or hi-arc(n), we have a case
analysis. Let q−↑ (n, B) (q+↑ (n, B)) be the sum of path products of the paths

in Rn,B that traverse lo-arc(n) (hi-arc(n)). We have q↑(n, B) = q−↑ (n, B) +

q+↑ (n, B).

We now focus on q−↑ (n, B), which means that ei is excluded. If lo(n) = ⊥,
constraint E(C∗[]) is not satisfied, so no path in Rn,B passes through lo-arc(n).
Thus, q−↑ (n, B) = 0. Otherwise, lo(B) is defined as in Definition 9.1. If
lo(B) 6= ∅, since lo(B) is the same component as B, constraint (#′B) is
satisfied if and only if constraint (#′lo(B)) for lo(n) is satisfied. Thus, the set of

paths inRn,B that traverse lo-arc(n) can be written as {lo-arc(n)}tRlo(n),lo(B).
This means that q−↑ (n, B) = w−ei · q↑(lo(n), lo(B)).

The remaining case is lo(n) 6= ⊥ and lo(B) = ∅. In this case, the com-
ponent B does not exist in the next level Li+1 and thus we cannot translate
constraint (#′B) into the one concerning the lo-child lo(n). In other words, we
must judge whether constraint (#′B) is satisfied with only the information
on n. Fortunately, it is possible because n.vset completely determines the
connectivity among B ∈ n.comp and V ∗C∗ ∪ V ¬C∗ .

We have case analysis on how B is connected with V ∗C∗ ∪ V ¬C∗ ; how to
distinguish these cases are described later. If B is connected with some (but
not all) vertices in V ∗C∗ , it violates the constraint C∗[] that all the vertices
in V ∗C∗ are connected. If B is connected with both the vertices in V ∗C∗ and
those in V ¬C∗ , it again violates the constraint C∗[] that the vertices in the
different sets of C∗[] are disconnected. Therefore, since at least C∗[] is not
violated by R′ ∈ RZ(r, n), only one of the three cases must hold: (i) B is
disconnected from any vertex in C∗, (ii) B is connected with all the vertices
in V ∗C∗ , and (iii) B is connected with some vertices in V ¬C∗ . When V ∗C∗ 6= ∅,
only case (ii) satisfies (#′B). When V ∗C∗ = ∅, case (i) also satisfies (#′B). For
both scenarios, the set of paths in Rn,B that traverse lo-arc(n) can be written
as {lo-arc(n)} t RZ(lo(n),>), since (#′B) is always satisfied regardless of the
choice of the path from lo(n) to >. By defining r↑(n) as the sum of path
products of the paths in RZ(n,>) for any dnode n, q−↑ (n, B) = w−ei · r↑(lo(n))

142

9.5. DETAILS OF PROPOSED METHOD

for these cases. To sum up, the following holds:

q−↑ (n, B) =

w−elb(n) · q↑(lo(n), lo(B)) (lo(n) 6= ⊥, lo(B) 6= ∅)
w−elb(n) · r↑(lo(n)) (lo(n) 6= ⊥, lo(B) = ∅,

case (ii) or (case (i) and V ∗C∗ = ∅))
0 (otherwise)

.

(9.7)
Note that the recurrence formula for r↑ can easily be derived from the defi-
nition in the same way as the formula (9.4) for p↓:

r↑(>) = 1, r↑(⊥) = 0, r↑(n) = w−elb(n) · r↑(lo(n)) + w+
elb(n)
· r↑(hi(n)). (9.8)

The remaining is how to distinguish the cases (i)–(iii). Since the connec-
tivity among B and the vertices in C∗ is stored in n.vset, it can be achieved
by the comparison of B and n.vset. Similar to the notions V ∗C∗ and V ¬C∗ , let
V ∗n.vset be the vertices in the set in n.vset containing ∗ and let V ¬n.vset be the
other vertices present in n.vset. Then, case (i) holds when the vertices in B
do not exist in n.vset. Case (ii) holds when B has a dnode in V ∗n.vset. Case (iii)
holds when B has a dnode in V ¬n.vset. Let us see the example by Figure 9.2c.
If we perform FBS with C∗ = {{1, 4, ∗}}, the center dnode of 5th level, say n,
becomes {3}{4}/{4, ∗}. When traversing lo-arc(n), both {3} and {4} leave
from the frontier. Here {3} falls into case (i) and {4} falls into case (ii), thus
we have q−↑ (n, {3}) = 0 and q−↑ (n, {4}) = w−e5 · r↑(lo(n)) = w−e5 · r↑(>) = w−e5 .

Almost the same equation holds:

q+↑ (n, B) =

w+
elb(n)
· q↑(hi(n), hi(B)) (hi(n) 6= ⊥, hi(B) 6= ∅)

w+
elb(n)
· r↑(hi(n)) (hi(n) 6= ⊥, hi(B) = ∅,

case (ii) or (case (i) and V ∗C∗ = ∅))
0 (otherwise)

,

(9.9)
except for the following corner case. Let ei = {v, v′}. We consider the
case where v, v′ /∈ Fi+1 and n.comp[v] leaves the frontier with case (i).
When V ∗C∗ 6= ∅, if v′ ∈ V ∗n.vset or n.comp[v′] leaves the frontier with case (ii),
q+↑ (n, n.comp[v]) = w+

ei
·r↑(hi(n)) since n.comp[v] is finally connected with V ∗C∗ .

Similarly, when V ∗C∗ = ∅, if v′ ∈ V ¬n.vset or n.comp[v′] leaves the frontier with
case (iii), q+↑ (n, n.comp[v]) = 0 since n.comp[v] is finally connected with V ¬C∗ .

Algorithm 9.2 describes the pseudocode for DP. After p↓, q↑ and r↑ val-
ues are computed by Algorithm 9.2, the count(v) value for every v can be
obtained by (9.6).

143

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

Algorithm 9.2: CompDP: dynamic programming with information
of comp.

1 r.p↓ ← 1, set all other p↓ values to 0, >.r↑ ← 1, ⊥.r↑ ← 0, set all q↑ values to 0

2 for i← 1 to m do // Top-down DP

3 foreach n ∈ Li do
4 if lo(n) 6= ⊥ then p↓(lo(n)) += w−ei · p↓(n) // (9.4)

5 if hi(n) 6= ⊥ then p↓(hi(n)) += w+
ei · p↓(n)

6 for i← m to 1 do // Bottom-up DP

7 foreach n ∈ Li do
8 r↑(n)← w−ei · r↑(lo(n)) + w+

ei · r↑(hi(n)) // (9.8)

9 foreach B ∈ n.comp do
10 if lo(n) 6= ⊥ and lo(B) 6= ∅ then // (9.7), 1st case

11 q−↑ (n, B)← w−ei · q↑(lo(n), lo(B))

12 else if lo(n) 6= ⊥ and (B ∩ V ∗n.vset 6= ∅ or (V ∗C∗ = ∅ and B ∩ V ¬n.vset = ∅))
then

13 q−↑ (n, B)← w−ei · r↑(lo(n)) // (9.7), 2nd case

14 if hi(n) 6= ⊥ and hi(B) 6= ∅ then // (9.9), 1st case

15 q+↑ (n, B)← w+
ei · q↑(hi(n), hi(B))

16 else if hi(n) 6= ⊥ and (B ∩ V ∗n.vset 6= ∅ or (V ∗C∗ = ∅ and B ∩ V ¬n.vset = ∅))
then

17 q+↑ (n, B)← w+
ei · r↑(lo(n)) // (9.7), 2nd case

18 Process corner cases

9.5.3 Intersection with Base Set

Next we generalize for case F 6= 2E. In the previous sections, we used the
fact that C∗[v] is a constraint made by adding another constraint (#v) to
C∗[]. This also holds even if F is constrained, i.e., F ∩ E(C∗[v]) = {E ′ |
E ′ ∈ F ∩ E(C∗[]), E ′ satisfies (#v)}. Therefore, by constructing ZDD Z

representing F ∩E(C∗[]) with the information of comp and vset, we can reuse
the discussions in Sections 9.5.1 and 9.5.2 and run Algorithm 9.2 on Z to
obtain count(v) for every v ∈ V . More specifically, let Z′ be the normalized
ZDD of E(C∗[]) built by FBS with C∗. Then Z should be a normalized ZDD
representing F ∩E(C∗[]) that satisfies the following condition for every i: for
any i-th subgraph E ′ ⊆ E<i, if E ′ corresponds to i-th level dnodes n in Z and
n′ in Z′, n must have the same comp and vset as n′.

After building ZF that represents F by some means, Z can be built by
combining FBS with the existing methods. One approach is to use Apply [Mi-
nato, 1993]. First, we build Z′ representing E(C∗[]) by FBS. Then by taking
the set intersection of ZF and Z′ with Apply while keeping the information of
comp and vset, we can construct Z. The other is to use subsetting [Iwashita
and Minato, 2013]. It enables us to directly construct Z from ZF in a similar

144

9.5. DETAILS OF PROPOSED METHOD

Algorithm 9.3: Frontier-based search for connectivity constraint C
along with subsetting on ZF .

1 procedure FBSsubsetC,ZF .Root():
2 return 〈1, (∅, C, rF)〉 // rF: ZF’s root

3 procedure FBSsubsetC,ZF .Child(〈i, (comp, vset, base)〉, f): // ei = {v, v′}
4 if f = hi and i < lb(base) then
5 return 〈m+ 1, 0〉 // No further subgraphs in F
6 if i = lb(base) then
7 base← (base’s f -child) // base proceeds to child dnode

8 if base = ⊥ then
9 return 〈m+ 1, 0〉 // No further subgraphs in F

10 if f = hi and v, v′ ∈ Vvset and vset[v] 6= vset[v′] then
11 return 〈m+ 1, 0〉 // v and v′ must not be connected

12 foreach u ∈ {v, v′} \ Fi do // Vertices entering the frontier

13 comp← comp ∪ {{u}} // Add u as an isolated vertex

14 if f = hi and comp[v] 6= comp[v′] then // Connecting two components

15 Merge comp[v] and comp[v′] into one
16 if v ∈ Vvset and v′ /∈ Vvset then Add vertices in comp[v′] to vset[v]
17 if v /∈ Vvset and v′ ∈ Vvset then Add vertices in comp[v] to vset[v′]
18 foreach u ∈ {v, v′} \ Fi+1 do // Vertices leaving from frontier

19 if {u} ∈ comp then // Component containing u leaves frontier

20 if u ∈ Vvset and {u} /∈ vset and {u, ∗} /∈ vset then
21 return 〈m+ 1, 0〉 // u must be connected to w ∈ vset[u] \ {u}
22 Remove u from comp and vset if exists
23 Remove empty subset from comp and vset if exists
24 if i = m then return 〈m+ 1, 1〉 // All conditions are satisfied

25 else return 〈i+ 1, (comp, vset)〉

manner as the FBS. For the sake of completeness, we explain the subsetting
approach in detail.

The FBS with subsetting can be described as Algorithm 9.3. Here the
red part is newly added elements that are not included in Algorithm 9.1.
Given ZDD ZF that represents the base set F and connectivity constraint C,
it constructs a ZDD that represents F ∩ E(C). We add base to a configure,
which records the current position of dnode in ZF . Starting with rF where
rF is the root dnode of ZF , we traverse the lo-arc of ZF if ei is excluded in the
FBS and its hi-arc of if ei is included in the FBS. We now record the present
dnode in ZF as n.base for each dnode n. If it reaches ⊥ in ZF , there are no
further subgraphs in F , and so pruning is executed. Note that Algorithm 9.3
a bit complicated than the above explanation since we also cope with the
case where ZF is not normalized.

145

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

9.6 Complexity Analysis

We here conduct a complexity analysis of the proposed algorithm. For con-
nectivity constraint C possibly including ∗, let ZFBS(C) be a ZDD built by
FBS with C, let cC be the number of sets in P , and let vC be the number of
vertices in C (excluding ∗). We also use frontier width WF = maxi |Fi|.

First, we bound the running time of our algorithm by the ZDD size.

Proposition 9.2. Our proposed algorithm runs in O(WF · |ZF ||ZFBS(C∗)|)
time.

Proof. By storing comp and vset as an integer sequence whose length is WF

as described in Chapter 4, FBS with an intersection runs in O(WF · |Z|) time
where Z is the resultant ZDD. Since |Z| can be bounded by the product of
|ZF | and |ZFBS(P)| [Minato, 1993], |Z| = O(|ZF ||ZFBS(C∗)|) in the proposed
algorithm. For each dnode n, p↓(n), r↑(n), and q↑(n, B) can be computed
in constant time, and there are at most WF sets in comp. Thus, the DP
computation is completed in O(WF · |Z|) time. The complete computation of
count(v) can be done in O(|Z|) time; by choosing i such that ei is the first
edge containing v for every v, each level of Z is scanned at most twice for
computing count(v) for every v.

Next we bound the ZDD sizes. The bound of |ZFBS(C)| for C excluding
∗ is given in Proposition 9.3 and that of |ZFBS(C∗)| for C∗ including ∗ is in
Proposition 9.4.

Proposition 9.3. The size of ZFBS(C) for connectivity constraint C excluding
∗ is bounded by O(mEWF

·min{(cC + 1)WF , (WF + 1)vC}), where EWF
is the

WF -th Bell number.

Proof. We consider the number of possible patterns for the comp and vset
pair. We focus on an i-th level. Since comp is simply a partition of Fi, the
number of possible patterns for it is E|Fi|. The number of possible patterns
for vset can be bounded in two ways. First, vset retains the information of
how the components in vset are connected to each set in P . Each component
of comp is connected to at most one set in C, since if more than two sets
are connected, connectivity constraint C is violated. Since there are at most
|Fi| components, the number of vset patterns is bounded by (cC + 1)|Fi|,
where +1 deals with the case where no component is connected to any sets
in C. Second, vset can be seen as retaining the information of how the
vertices in C are connected to the component in comp. Thus, the number
of vset patterns is bounded by (|Fi| + 1)vC , where +1 deals with the case
where a vertex in C is not connected to any component in comp. To sum

146

9.6. COMPLEXITY ANALYSIS

up, the number of patterns of the comp and vset pair can be bounded by
O(E|Fi| ·min{(cC + 1)|Fi|, (|Fi|+ 1)vC}).

Since there are m levels and |Fi| ≤ WF , the overall size is bounded by
O(mEWF

·min{(cC + 1)WF , (WF + 1)vC}).
Proposition 9.4. For connectivity constraint C∗ including ∗, |ZFBS(C∗)| ≤
cC∗ |ZFBS(C∗[])|.
Proof. Since running Algorithm 9.1 with C∗ and C∗[] yields the same repre-
senting family of sets, E(C∗[]), we only have to address the number of patterns
of comp and vset. The only difference is that when running FBS with C∗, we
must determine which set in vset has ∗. Since there are at most cC∗ sets in
vset, there will be at most cC∗ patterns of vset for a dnode in ZFBS(C∗[]) when
running FBS with C∗. Thus, |ZFBS(C∗)| ≤ cC∗ |ZFBS(C∗[])| holds.

Combining Propositions 9.2–9.4 yields the following theorem.

Theorem 9.5. The proposed algorithm runs in O(WF · cC∗ |ZF ||ZFBS(C∗[])|)
time, which is bounded by O(|ZF | ·mcC∗ ·WF ·DWF

·min{(cC∗ + 1)WF , (WF +
1)vC∗}).

If WF can be considered as a constant, the proposed algorithm runs in
O(mcC∗ |ZF |) time.

We compare this complexity with the baseline method where we sepa-
rately build a ZDD representing F∩E(C∗[v]) by FBS. The overall complexity
is O(WF ·

∑
v |ZF ||ZFBS(C∗[v])|), analyzed in the same way as Proposition 9.2,

which is bounded by O(|ZF |·mn·WF ·DWF
·min{(cC∗+1)WF , (WF +1)vC∗+1}).

If WF is constant, it is O(|ZF |mn). Compared with Theorem 9.5, the pro-
posed method runs faster by an O(n) factor.

Here we mention the ZDD sizes. The complexity bounds of the proposed
and baseline methods heavily depend on ZF ’s size. Here |ZF | also remains
small for various constraints if WF is small. For example, the constraints
appeared in the example of Section 9.2, e.g., the degree constraints and the
existence of cycles, can all be represented as a ZDD whose size is proportional
to m if WF is constant [Sekine et al., 1995; Knuth, 2011; Kawahara et al.,
2017b]. This boosts the effectiveness of both the proposed and baseline
methods for practical use because WF is often much smaller than n and m
for graphs in real worlds. Moreover, |Z| is often much smaller than expected
from the above analysis, as demonstrated by Kawahara et al. [2017b].

We close this section by mentioning the space complexity of the pro-
posed and the baseline methods. The proposed algorithm uses at most
O(WF · |ZF ||ZFBS(C∗)|) words of space, since it retains O(WF) words of in-
formation for each dnode of ZFBS(C∗). The baseline method typically uses at

147

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

most O(WF · |ZF ||ZFBS(C∗[v])|) words of space for the computation of count(v).
If it is assumed that |ZFBS(C∗[v])| is close to |ZFBS(C∗[])|, the space complexity
of the baseline method is at most only O(cC∗) times smaller due to Proposi-
tion 9.4.

9.7 Experiments

We empirically compared the proposed and the baseline methods with respect
to the computational time. Here the baseline method is to separately build a
ZDD by FBS for each constraint. Both methods were implemented in C++
and compiled by g++ with -O3 option. We used TdZdd (https://github.
com/kunisura/TdZdd) for the baseline method, which is a highly optimized
C++ library for FBS. We also used TdZdd for the proposed method to
construct ZDD ZF of base set. Experiments are conducted on a single thread
of a Linux machine with AMD EPYC 7763 2.45 GHz CPU and 2048 GB
RAM; note that we used less than 256 GB of memory during the experiments.
We set the time limit of every run to 600 seconds.

We used both synthetic graphs and real benchmarks as tested graphs.
The synthetic ones are grid graphs; Grid-wxh represents a grid graph with
w×h vertices. For the others, we used the Rocketfuel [Spring et al., 2004] and
Romegraph datasets (retrieved from http://www.graphdrawing.org/data.

html). Rocketfuel was also used in Chapters 5 and 6. From Romegraph, we
chose all the graphs with n = 100: there were 140 such graphs. Identical
edge ordering was used for both methods, and it was decided as follows: For
the grid graphs, we used the edge ordering of Iwashita et al. [2013], which is
better for the DP on grid graphs. For the other graphs, we used beam-search
heuristics [Inoue and Minato, 2016] to determine the edge ordering.

We evaluated four problem settings in Section 9.2: path, cycle, Steiner
tree, and rooted spanning forest (RSF). The given vertices for these settings
were determined as follows. Let d(v, v′) be the shortest distance between
vertices v and v′. For the path problem, we chose the most distant vertex
pair as s, t, i.e., s, t satisfies d(s, t) = maxv,v′ d(v, v′). For the cycle problem,
we chose the graph center as s, i.e., s ∈ argminv maxv′ d(v, v′). For the other
problems, we chose four vertices as T such that the sum of the distances
between distinct vertices,

∑
v,v′∈T :v 6=v′ d(v, v′), is maximized.

Table 9.1 shows the result for the grid graphs and the Rocketfuel dataset.
For all the graphs and problem settings solved by both methods within the
time limit, the proposed method ran about 10–20 times faster than the base-
line method. The complexity analyses in Section 9.6 suggest that the pro-
posed method becomes faster than the existing method when n is large.

148

https://github.com/kunisura/TdZdd
https://github.com/kunisura/TdZdd
http://www.graphdrawing.org/data.html
http://www.graphdrawing.org/data.html

9.7. EXPERIMENTS

T
ab

le
9.

1:
C

om
p
u
ta

ti
on

al
ti

m
e

fo
r

gr
id

gr
ap

h
s

an
d

R
o
ck

et
fu

el
d
at

as
et

in
se

co
n
d
s

P
at

h
C

y
cl

e
S
te

in
er

tr
ee

R
S
F

In
st

an
ce

n
m

W
F

O
u
rs

B
as

e
O

u
rs

B
as

e
O

u
rs

B
as

e
O

u
rs

B
as

e

G
ri

d
-8

x
8

64
11

2
8

0
.0

6
0.

48
0
.0

6
0.

54
4
.9

3
29

.8
7

8
.8

7
38

.1
7

G
ri

d
-8

x
16

12
8

23
2

8
0
.1

6
2.

54
0
.1

6
2.

81
1
4
.1

6
18

3.
16

2
5
.7

2
23

4.
17

G
ri

d
-8

x
24

19
2

35
2

8
0
.2

6
6.

29
0
.2

7
6.

86
2
3
.2

7
47

0.
60

4
2
.8

1
>

60
0

G
ri

d
-8

x
32

25
6

47
2

8
0
.3

6
11

.7
3

0
.3

8
12

.6
5

3
2
.5

5
>

60
0

6
0
.2

8
>

60
0

G
ri

d
-9

x
9

81
14

4
9

0
.2

2
2.

13
0
.2

2
2.

34
4
0
.1

3
29

8.
57

6
2
.4

4
39

7.
57

G
ri

d
-1

0x
10

10
0

18
0

10
0
.7

8
9.

70
0
.8

9
11

.6
9

2
8
4
.1

7
>

60
0

4
3
0
.0

4
>

60
0

G
ri

d
-1

1x
11

12
1

22
0

11
2
.8

8
42

.2
6

3
.2

2
50

.9
7

>
60

0
>

60
0

>
60

0
>

60
0

G
ri

d
-1

2x
12

14
4

26
4

12
1
1
.2

4
18

3.
87

1
5
.2

5
24

1.
94

>
60

0
>

60
0

>
60

0
>

60
0

G
ri

d
-1

3x
13

16
9

31
2

13
4
5
.5

1
>

60
0

5
6
.2

5
>

60
0

>
60

0
>

60
0

>
60

0
>

60
0

R
o
ck

et
fu

el
-1

22
1

31
8

75
8

10
1
5
7
.0

1
>

60
0

1
1
1
.5

2
>

60
0

1
8
1
.3

8
>

60
0

>
60

0
>

60
0

R
o
ck

et
fu

el
-1

75
5

17
2

38
1

12
4
3
.9

4
>

60
0

3
2
.4

8
>

60
0

>
60

0
>

60
0

>
60

0
>

60
0

R
o
ck

et
fu

el
-6

46
1

18
2

29
4

10
3
.6

6
65

.6
4

4
.8

0
12

8.
86

7
1
.1

0
>

60
0

9
5
.4

7
>

60
0

149

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

Path

#(solved) (out of 140):
Proposed: 138
Baseline: 126

P
ro

p
o
s
e
d
 m

e
th

o
d
 (

s
)

Baseline method (s)
 0.01 0.1 1 10 100

Cycle

#(solved) (out of 140):
Proposed: 138
Baseline: 126

Baseline method (s)
 0.01 0.1 1 10 100

Steiner tree

#(solved) (out of 140):
Proposed: 116
Baseline: 78

Baseline method (s)
 0.01 0.1 1 10 100

RSF

#(solved) (out of 140):
Proposed: 113
Baseline: 78

Baseline method (s)

Figure 9.3: Computational time for Romegraph dataset: Blue points indicate
instances solved by both methods, and red points indicate those solved only
by proposed method. Solid black lines indicate elapsed time for both methods
is identical, and dashed lines indicate proposed method is 10 times faster than
baseline method.

Table 9.1 exhibits such a tendency. For example, for the Grid-8xh graphs,
the proposed method becomes much faster than the baseline method when
n = 8h is increased. In addition, both methods ran faster for graphs with
smaller WF value, reflecting the complexity analyses.

Figure 9.3 plots the result for the Romegraph dataset and also describes
the number of graphs solved by each method within the time limit. Here
each point corresponds to a graph, where the blue ones are those solved
by both methods and the red ones are those solved only by the proposed
method. Although the computational time itself varied from less than 0.01
to 600 seconds, for almost all the graphs the proposed method ran about
10–20 times faster than the existing method. This ratio is kept because the
graphs all have the same number of vertices: 100. We give detailed results
for Romegraph in Section 9.9.2.

9.8 Conclusion

We proposed a novel framework, compDP, for solving multiple subgraph
counting problems with similar connectivity constraints simultaneously. A
complexity analysis showed that the proposed method ran O(n) times faster
than the baseline approach, and the experiments revealed the efficiency of
the proposed method.

As a future work, we will consider dealing with the reachability in di-
rected graphs. There are approaches for building BDDs of reachability con-
straints [Maehara et al., 2017; Suzuki et al., 2018], and we want to consider
whether they can be incorporated into our framework.

150

9.9. APPENDIX

9.9 Appendix

9.9.1 Treatment of Degree 1 Vertices

As in Section 9.5.1, we can compute the count(v) value by focusing on the
i-th level of Z where v ∈ Fi. However, if v’s degree is 1, no such i exists. Let
ei = {v, v′} be the only edge incident to v. Then for i′ < i, v is not present
in E≥i′ , and for i′ ≥ i, it is not present in E<i′ , so no frontier contains v.
Therefore, we have an alternative formula for computing count(v) like (9.6).
Let us focus on i-th level where ei = {v, v′} is the only edge incident to v.

First, we address the case where the other endpoint, v′, is in Fi. Let
n ∈ Li be an arbitrarily chosen i-th level dnode of Z. Since ei is the only
edge incident to v, if ei is excluded, v remains as an isolated vertex. Thus,
if V ∗C∗ 6= ∅, constraint (#v) will never be satisfied. Otherwise, if V ∗C∗ = ∅,
constraint (#v) is always satisfied. In this case, the set of paths in RZ(r,>)
that passes n whose corresponding subgraph satisfies (#v), i.e., Rv,n, can
be written as RZ(r, n) t {lo-arc(n)} t RZ(lo(n),>). The sum of their path
products is p↓(n) · w−ei · r↑(lo(n)) given that lo(n) 6= ⊥. If ei is included, v
is connected with v′, and so condition (#v) is met if and only if condition
(#′B) for B = n.comp[v′] is met. In this case, the set of paths in RZ(r,>)
that passes n whose corresponding subgraph satisfies (#v) can be written
as RZ(r, n) t R+

n,n.comp[v′], where R+
n,B is the set of paths in Rn,B that passes

through hi-arc(n). The sum of their path products is p↓(n) · q+↑ (n, n.comp[v′])

using the notion q+↑ introduced in Section 9.5.2. The value count(v) can be
computed by their sum over n ∈ Li:

count(v) =
∑
n∈Li

p↓(n) · q+↑ (n, n.comp[v′])

+

{
0 (V ∗C∗ 6= ∅)∑

n∈Li:lo(n)6=⊥ p↓(n) · w−ei · r↑(lo(n)) (V ∗C∗ = ∅) .
(9.10)

The remaining issue is how to cope with case v′ /∈ Fi. For it, we can
assume v′ ∈ Fi+1; otherwise, v′ is also a degree 1 vertex that means graph
G consists of only ei since G is connected, which is trivial. The case where
ei is excluded is treated in the same way as above. If ei is included, let n

be an arbitrary i-th level dnode of Z. Since v is connected with v′, con-
straint (#v) is met if and only if constraint (#′B) for B = lo(n).comp[v′]
is met. Therefore, the set of paths in RZ(r,>) that passes n whose corre-
sponding subgraph satisfies (#v) can be written as RZ(r, n) t {hi-arc(n)} t
Rhi(n),hi(n).comp[v′], given that hi(n) 6= ⊥. The sum of their path products is

151

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

Table 9.2: Comparison of the number of solved graphs in Romegraph dataset
within time limit for each frontier width.

Path Cycle Steiner tree RSF

WF #(graphs) Ours Base Ours Base Ours Base Ours Base

6 3 3 3 3 3 3 3 3 3
7 7 7 7 7 7 7 7 7 7
8 26 26 26 26 26 26 26 26 26
9 28 28 28 28 28 28 27 28 28
10 33 33 33 33 33 33 15 33 14
11 25 25 24 25 24 18 0 15 0
12 10 10 5 10 5 1 0 1 0
13 6 6 0 6 0 0 0 0 0
14 2 0 0 0 0 0 0 0 0

Total 140 138 126 138 126 116 78 113 78

p↓(n) ·w+
ei
· q↑(hi(n), hi(n).comp[v′]). The value count(v) can be computed by

count(v) =
∑

n∈Li:hi(n)6=⊥

p↓(n) · w+
ei
· q↑(hi(n), hi(n).comp[v′])

+

{
0 (V ∗C∗ 6= ∅)∑

n∈Li:lo(n)6=⊥ p↓(n) · w−ei · r↑(lo(n)) (V ∗C∗ = ∅) .
(9.11)

9.9.2 Detailed Results for Romegraph Dataset

Next we describe a detailed experimental results for the Romegraph dataset,
which has 140 graphs whose number of dnodes is exactly 100. With beam-
search heuristics [Inoue and Minato, 2016], the frontier width WF of each
graph ranges from 6 to 14. The number of graphs per value of WF is described
in Table 9.2.

Table 9.2 also shows the number of graphs solved within the time limit
for each method, each problem setting, and each frontier width value. In
addition, Figure 9.4 plots the computational time for the Romegraph dataset
aggregated by frontier width WF . For both methods, the graphs with a larger
WF value are clearly difficult to solve, i.e., time-consuming; this outcome
reflects the complexity results in Section 9.6. However, our proposed method
can also treat graphs with a larger WF value than the baseline method. This
again clearly indicates the efficiency of our proposed method.

152

9.9. APPENDIX

 0.01

 0.1

 1

 10

 100

 6 8 10 12

Path

E
la

p
s
e
d
 t
im

e
 (

s
)

WF

 6 8 10 12

Path

WF

 6 8 10 12

Cycle

WF

Proposed

 6 8 10 12

Cycle

WF

 6 8 10 12

Steiner tree

WF

 6 8 10 12

Steiner tree

WF

Baseline

 6 8 10 12

RSF

WF

 6 8 10 12

RSF

WF

Figure 9.4: Computational time for Romegraph dataset aggregated by fron-
tier width WF . Blue points indicate results of proposed method, and red
points indicate results of baseline method.

153

CHAPTER 9. FRAMEWORK FOR SIMULTANEOUS SUBGRAPH
COUNTING UNDER CONNECTIVITY CONSTRAINTS

154

Chapter 10

Conclusion

In this dissertation, we have delved into three areas of network analysis prob-
lems: combinatorial congestion games, network reliability analysis, and sub-
graph counting problems. Although all of the problems dealt in this disser-
tation fall into computationally difficult complexity classes such as NP-hard
and #P-complete, we proposed a practically fast algorithm for every prob-
lem by fully using the BDDs and similar structures. First, we summarize the
contributions and possible future directions of each chapter.

Chapter 3: Equilibrium Computation of Combinatorial Conges-
tion Games. We have developed a practically fast iterative equilibrium
computation method for general continuous-player combinatorial congestion
games. The proposed method combines ZDDs for representing strategy sets
with Frank–Wolfe-style iterative optimization algorithms. Experiments re-
vealed the practical efficiency of the proposed method for realistic situations.

Future directions include the optimization of equilibrium to reach better
social cost by modifying the parameters within network infrastructure design.
This problem is addressed by the subsequent work [Sakaue and Nakamura,
2021], where the proposed algorithm again uses ZDDs to represent strategy
sets along with a differentiable modification of Frank–Wolfe-style algorithm.

Chapter 5: Network Reliability Evaluation for Client-Server Model.
An efficient algorithm for the CSNR problem, which is equivalent to compute
K-NR O(n) times, has been developed whose time complexity is the same
as just computing single K-NR with the existing method. Its practical effi-
ciency was verified by experiments with grid and real-world topologies with
hundreds of edges. As a future work, it should be examined to extend the
work to compute network reliability for every pair of vertices, which corre-
sponds to the network reliability evaluation for point-to-point infrastructures.

155

CHAPTER 10. CONCLUSION

Chapter 6: Fast Evaluation for the Expected Number of Con-
nected Nodes. An extremely efficient algorithm for computing ECP or
equivalently multiple ECNs has been developed. Experiments confirmed its
practical efficiency; the proposed method can compute ECP of complicated
real-world network topologies with hundreds of edges within around ten min-
utes. Applications for critical link identification and server placement have
also been exhibited. Future direction includes the support of vertex failures
and analyses of ECP and ECN values using real-world population data.

Chapter 7: Variance Analysis on Network Reliability. We have de-
veloped an efficient algorithm for computing VoR with BDDs; it computed
the VoR of real-world topologies with around 200 edges within 0.1 seconds.
We have also conducted empirical analyses on VoR, which reveals us the
smallness and robustness of VoR that are desirable for network design. Com-
puting VoR under different network models such as vertex failure and depen-
dent failure should be the future works of this chapter.

Chapter 8: Efficient Computation of Scale-wise Network Unreli-
ability. We have established an efficient algorithm to compute scale-wise
network unreliability by constructing multi-terminal variant of BDDs. Nu-
merical experiments verified that the scale-wise unreliability of the real-world
topologies with up to 200 edges can be computed within 1.3 hours. We have
also plotted the scale-wise unreliability of real topologies, which unveils some
interesting properties. As a future work, the support for an outage scale with
user count instead of vertex count is in demand.

Chapter 9: Framework for Simultaneous Subgraph Counting un-
der Connectivity Constraints. We have proposed a novel framework for
solving multiple subgraph counting with similar connectivity constraints si-
multaneously. The computational time of the proposed algorithm is analyzed
both theoretically and empirically. Specifically, the proposed algorithm runs
an order-of-magnitude faster than the existing approach for graphs with 100
vertices for various graph constraints. As a future direction, it should be con-
sidered whether reachability constraints in directed graphs can be handled
in similar way as this work.

10.1 Essence and Future Direction

Now we conclude this dissertation by summarizing the essences of preced-
ing chapters and showing the future directions related to all of the chapters.

156

10.1. ESSENCE AND FUTURE DIRECTION

Generally, the size of a BDD or a ZDD representing a family of subsets is
exponential with respect to the size of the base item set. However, when the
desired family stems from a graph with smaller path-width, the BDD’s size
can be bounded theoretically, and it remains small empirically. This property
makes BDDs and similar structures desirable for network analysis problems
since the network is often modeled as a sparse graph whose path-width is typ-
ically small. By developing an elaborated procedure working on the decision
diagram structures that represent the family of subgraphs stemming from
a sparse graph, we have proposed a practically efficient algorithm for every
problem. The time complexity of every algorithm is theoretically bounded
with the frontier-width value WF that can be equal to the path-width Wp.

From the viewpoint of algorithmic aspects, the algorithms proposed in
this dissertation are accomplished by expanding both the construction proce-
dures of data structures and the dynamic programming procedures on them.
In constructing decision diagram structures, we are basically based on the
top-down construction method described in Section 2.5 since it is suitable for
constructing a DD structure of a family of subgraphs. However, in some chap-
ters, we carefully manipulate the construction procedure to be suited for the
subsequent dynamic programming computation. For example, in Chapter 8,
we construct a multi-terminal variant of BDD to compute the scale-wise un-
reliability. In dynamic programming procedures, we are focusing on the fact
that the decision diagram structures represent the family of subgraphs in a
recursive manner as in Chapter 2. That is, as well as the whole decision dia-
gram structure represents a family of subgraphs, each dnode in the structure
also represents a family of subgraphs. This enables us to develop elaborated
dynamic programming procedures working on them by keeping track of what
is computed for every dnode. For example, in Chapter 7, we associate ev-
ery dnode with a random variable corresponding to the family of subgraphs
represented by this dnode and compute the covariances among these random
variables by dynamic programming. Other examples are Chapters 5, 6, and
9: here, we associate every dnode with probabilities, accumulated probabili-
ties, or more generally count values corresponding to the represented family
of subgraphs and develop top-down and bottom-up dynamic programming
procedures. These ingredients make the decision diagram structures suitable
for practically solving network analysis problems in an exact manner.

The future direction of this dissertation is as follows. First, although
we only deal with edge-induced subgraphs, we should also deal with vertex-
induced subgraphs. For example, in network reliability analysis, the failure
of a network node can be modeled with an absence of a vertex, which arouses
the treatment for vertex-induced subgraphs. Although there are some works
for treating vertex-induced subgraphs with BDDs and ZDDs (e.g., [Kawa-

157

CHAPTER 10. CONCLUSION

hara et al., 2019]), whether such works can be combined with the algorithms
proposed in this dissertation should be verified for each. Second, although all
of the proposed algorithms in this dissertation deal with undirected graphs,
the support for directed graphs is in demand. For example, the network
reliability analysis on directed graphs is equivalent to the analysis of infor-
mation spread [Maehara et al., 2017], which is important for the analysis of
social networks. There are some works for constructing a BDD or a ZDD
representing a family of subgraphs of a directed graph, e.g., [Maehara et al.,
2017; Suzuki et al., 2018]. The algorithms in Chapters 3 and 7 may work
for the BDDs constructed by the above algorithm. However, we should con-
sider whether the top-down and bottom-up DP framework in Chapters 5, 6,
and 9 can be incorporated into these works. Since we use the fact that the
connectivity in an undirected graph is an equivalence relation in this frame-
work and the reachability in a directed graph is not an equivalence relation,
it may be not straightforward. Also, we should newly consider the decision
diagram construction considering the outage scale on a directed graph like
Chapter 8.

158

Bibliography

Jacob D. Abernethy and Jun-Kun Wang. On Frank–Wolfe and equilibrium
computation. In Proc. of Advances in Neural Information Processing Sys-
tems 30 (NIPS 2017), pages 6584–6593. Curran Associates, Inc., 2017.

Hosam M. F. AboElFotoh, Sundararaja S. Iyengar, and Krishnendu
Chakrabarty. Computing reliability and message delay for cooperative
wireless distributed sensor networks subject to random failures. IEEE
Transactions on Reliability, 54(1):145–155, 2005.

Pankaj K. Agarwal, Alon Efrat, Shashidhara K. Ganjugunte, David Hay,
Swaminathan Sankararaman, and Gil Zussman. Network vulnerability
to single, multiple, and probabilistic physical attacks. In Proc. of IEEE
Military Communications Conference (MILCOM 2010), pages 1824–1829,
2010.

Anuj Agrawal, Vimal Bhatia, and Shashi Prakash. Network and risk model-
ing for disaster survivability analysis of backbone optical communication
networks. Journal of Lightwave Technology, 37(10):2352–2362, 2019.

Yaser Al Mtawa, Anwar Haque, and Hanan Lutfiyya. Migrating from legacy
to software defined networks: A network reliability perspective. IEEE
Transactions on Reliability, 70(4):1525–1541, 2021.

Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and attack
tolerance of complex networks. nature, 406(6794):378–382, 2000.

Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given
length cycles. Algorithmica, 17:209–223, 1997.

Eitan Altman, Thomas Boulogne, Rachid El-Azouzi, Tania Jiménez, and
Laura Wynter. A survey on networking games in telecommunications.
Computers and Operations Research, 33(2):286–311, 2006.

159

Chamitha De Alwis, Anshuman Kalla, Quoc-Viet Pham, Pardeep Kumar,
Kapal Dev, Won-Joo Hwang, and Madhusanka Liyanage. Survey on 6G
frontiers: Trends, applications, requirements, technologies and future re-
search. IEEE Open Journal of the Communications Society, 2:836–886,
2021.

Osamu Aso, Toshio Matsufuji, Takuya Ishikawa, Masateru Tadakuma,
Soichiro Otosu, Takeshi Yagi, and Masato Oku. Inference of the optical
fiber lifetime for mechanical reliability. Furukawa Review, 42:1–6, 2012.

Hillel Bar-Gera. Origin-based algorithm for the traffic assignment problem.
Transportation Science, 36(4):398–417, 2002.

Eric T. Bax. Algorithms to count paths and cycles. Information Processing
Letters, 52(5):249–252, 1994.

Martin Beckmann, C. B. McGuire, and Christopher B. Winsten. Studies in
the Economics of Transportation. Yale University Press, 1956.

Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret:
On convergence to Nash equilibria of regret-minimizing algorithms in rout-
ing games. In Proc. of the 25th Annual ACM Symposium on Principles of
Distributed Computing (PODC 2006), pages 45–52. ACM, 2006.

Francis T. Boesch, Appajosyula Satyanarayana, and Charles L. Suffel. A
survey of some network reliability analysis and synthesis results. Networks,
54(2):99–107, 2009.

Zdravko I. Botev, Pierre L’Ecuyer, and Bruno Tuffin. Dependent failures in
highly reliable static networks. In Proc. of the 2012 Winter Simulation
Conference (WSC 2012), pages 1–12, 2012.

Ulrik Brandes and Daniel Fleischer. Centrality measures based on current
flow. In Proc. of Annual Symposium on Theoretical Aspects of Computer
Science (STACS 2005), pages 533–544. Springer, 2005.

Gábor Braun, Sebastian Pokutta, and Daniel Zink. Lazifying conditional
gradient algorithms. The Journal of Machine Learning Research, 20(71):1–
42, 2019.

Randal E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, C-35(8):677–691, 1986.

160

Eduardo Canale, Franco Robledo, Pablo Romero, and Pablo Sartor. Monte
Carlo methods in diameter-constrained reliability. Optical Switching and
Networking, 14:134–148, 2014.

Héctor Cancela and Mohamed El Khadiri. A recursive variance-reduction
algorithm for estimating communication-network reliability. IEEE Trans-
actions on Reliability, 44(4):595–602, 1995.

Héctor Cancela, Mohamed El Khadiri, Gerardo Rubino, and Bruno Tuffin.
Balanced and approximate zero-variance recursive estimators for the net-
work reliability problem. ACM Transactions on Modeling and Computer
Simulation, 25(1), 2014.

Sanjay Kumar Chaturvedi. Network reliability: measures and evaluation.
John Wiley & Sons, 2016.

Reuven Cohen, Keren Erez, Daniel Ben-Avraham, and Shlomo Havlin.
Breakdown of the internet under intentional attack. Physical review letters,
86(16):3682, 2001.

José R. Correa and Nicolás E. Stier-Moses. Wardrop equilibria. In Wiley En-
cyclopedia of Operations Research and Management Science. Wiley Online
Library, 2011.

Radu Curticapean. Counting problems in parameterized complexity. In
Proc. of the 13th International Symposium on Parameterized and Exact
Computation (IPEC 2018), pages 1:1–1:18, 2018.

Basima Elshqeirat, Sieteng Soh, Suresh Rai, and Mihai Lazarescu. Topology
design with minimal cost subject to network reliability constraint. IEEE
Transactions on Reliability, 64(1):118–131, 2015.

Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity
of pure Nash equilibria. In Proc. of the 36th Annual ACM Symposium on
Theory of Computing (STOC 2004), pages 604–612. ACM, 2004.

Federal Communications Commission. Network Out-
age Reporting System (NORS). https://www.fcc.gov/

network-outage-reporting-system-nors.

Simon Fischer and Berthold Vöcking. On the evolution of selfish routing. In
Proc. of the 12th European Symposium on Algorithms (ESA 2004), pages
323–334. Springer-Verlag, 2004.

161

https://www.fcc.gov/network-outage-reporting-system-nors
https://www.fcc.gov/network-outage-reporting-system-nors

Simon Fischer, Herald Räcke, and Berthold Vöcking. Fast convergence to
Wardrop equilibria by adaptive sampling methods. SIAM Journal on
Computing, 39(8):3700–3735, 2010.

Jörg Flum and Martin Grohe. The parameterized complexity of counting
problems. SIAM Journal on Computing, 33(4):892–922, 2004.

Marguerite Frank and Philip Wolfe. An algorithm for quadratic program-
ming. Naval Research Logistics Quarterly, 3(1–2):95–110, 1956.

András Frank. Augmenting graphs to meet edge-connectivity requirements.
SIAM Journal on Discrete Mathematics, 5(1):25–53, 1992.

Luigi Fratta and Ugo Montanari. A Boolean algebra method for computing
the terminal reliability in a communication network. IEEE Transactions
on Circuit Theory, 20(3):203–211, 1973.

Linton C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40:35–41, 1977.

Narumi Fukuda et al. On network quality design. In Japan Network Op-
erators Group Meeting 46, 2020. https://www.janog.gr.jp/meeting/

janog46/wp-content/uploads/2020/06/janog46-quality.pdf#page=

31, in Japanese.

Vaibhav Gaur, Om Prakash Yadav, Gunjan Soni, and Ajay Pal Singh
Rathore. A literature review on network reliability analysis and its en-
gineering applications. Proceedings of the Institution of Mechanical Engi-
neers, Part O: Journal of Risk and Reliability, 235(2):167–181, 2021.

Ilya B. Gertsbakh and Yoseph Shpungin. Models of network reliability: anal-
ysis, combinatorics, and Monte Carlo. CRC press, 2009.

Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation. Society for Industrial and
Applied Mathematics, 2008.

Zhu Han, Dusit Niyato, Walid Saad, Tamer Başar, and Are Hjørungnes.
Game Theory in Wireless and Communication Networks: Theory, Models,
and Applications. Cambridge University Press, 1st edition, 2012.

Gary Hardy, Corinne Lucet, and Nikolaos Limnios. Computing all-terminal
reliability of stochastic networks with binary decision diagrams. In 11th
International Symposium on Applied Stochastic Models, pages 1469–74,
2005.

162

https://www.janog.gr.jp/meeting/janog46/wp-content/uploads/2020/06/janog46-quality.pdf#page=31
https://www.janog.gr.jp/meeting/janog46/wp-content/uploads/2020/06/janog46-quality.pdf#page=31
https://www.janog.gr.jp/meeting/janog46/wp-content/uploads/2020/06/janog46-quality.pdf#page=31

Gary Hardy, Corinne Lucet, and Nikolaos Limnios. K-terminal network re-
liability measures with binary decision diagrams. IEEE Transactions on
Reliability, 56(3):506–515, 2007.

Masahiro Hayashi and Takeo Abe. Evaluating reliability of telecommuni-
cations networks using traffic path information. IEEE Transactions on
Reliability, 57(2):283–294, 2008.

Johannes U. Herrmann. Improving reliability calculation with augmented
binary decision diagrams. In Proc. of the 24th IEEE International Confer-
ence on Advanced Information Networking and Applications (AINA 2010),
pages 328–333, 2010.

Robin J. Hogan. Fast reverse-mode automatic differentiation using expression
templates in c++. ACM Transactions on Mathematical Software, 40(4):1–
16, 2014.

Makoto Imase and Bernard M. Waxman. Dynamic Steiner tree problem.
SIAM Journal on Discrete Mathematics, 4(3):369–384, 1991.

Yuma Inoue and Shin-ichi Minato. Acceleration of ZDD construction for
subgraph enumeration via pathwidth optimization. Technical Report TCS-
TR-A-16-80, Division of Computer Science, Hokkaido University, 2016.

Takeru Inoue, Norihito Yasuda, Shunsuke Kawano, Yuji Takenobu, Shin-
ichi Minato, and Yasuhiro Hayashi. Distribution network verification for
secure restoration by enumerating all critical failures. IEEE Transactions
on Smart Grid, 6(2):843–852, 2015.

Takeru Inoue, Hiroaki Iwashita, Jun Kawahara, and Shin-ichi Minato.
Graphillion: software library for very large sets of labeled graphs. Inter-
national Journal on Software Tools for Technology Transfer, 18(1):57–66,
2016.

Takeru Inoue. Reliability analysis for disjoint paths. IEEE Transactions on
Reliability, 68(3):985–998, 2019.

Hiroaki Iwashita and Shin-ichi Minato. Efficient top-down ZDD construction
techniques using recursive specifications. Technical Report TCS-TR-A-13-
69, Division of Computer Science, Hokkaido University, 2013.

Hiroaki Iwashita, Yoshio Nakazawa, Jun Kawahara, Takeaki Uno, and Shin-
ichi Minato. Efficient computation of the number of paths in a grid graph
with minimal perfect hash functions. Technical Report TCS-TR-A-13-64,
Division of Computer Science, Hokkaido University, 2013.

163

Martin Jaggi. Revisiting Frank–Wolfe: Projection-free sparse convex op-
timization. In Proc. of the 30th International Conference on Machine
Learning (ICML 2013), volume 28, pages 427–435. PMLR, 2013.

Olaf Jahn, Rolf H. Möhring, Andreas S. Schulz, and Nicolas E. Stier-Moses.
System-optimal routing of traffic flows with user constraints in networks
with congestion. Operations Research, 53(4):600–616, 2005.

Jun Kawahara, Takashi Horiyama, Keisuke Hotta, and Shin-ichi Minato.
Generating all patterns of graph partitions within a disparity bound. In
Proc. of the 11th International Conference and Workshops on Algorithms
and Computation (WALCOM 2017), pages 119–131, 2017.

Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shin-ichi Minato.
Frontier-based search for enumerating all constrained subgraphs with com-
pressed representation. IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences, E100-A(9):1773–1784, 2017.

Jun Kawahara, Koki Sonoda, Takeru Inoue, and Shoji Kasahara. Efficient
construction of binary decision diagrams for network reliability with im-
perfect vertices. Reliability Engnierring & System Safety, 188:142–154,
2019.

Thomas Kerdreux, Fabian Pedregosa, and Alexandre d’Aspremont. Frank–
Wolfe with subsampling oracle. In Proc. of the 35th International Con-
ference on Machine Learning (ICML 2018), volume 80, pages 2591–2600.
PMLR, 2018.

Arijit Khan, Francesco Bonchi, Aristides Gionis, and Francesco Gullo. Fast
reliability search in uncertain graphs. In Proc. of the 17th International
Conference on Extending Database Technology (EDBT 2014), pages 535–
546, 2014.

Simon Knight, Hung X. Nguyen, Nickolas Falkner, Rhys Bowden, and
Matthew Roughan. The Internet Topology Zoo. IEEE Journal on Se-
lected Areas in Communications, 29:1765–1775, 2011.

Donald E. Knuth. The art of computer programming: Vol. 4A. Combinatorial
Algorithms, Part 1. Addison-Wesley Professional, 2011.

Dirk Koschützki, Katharina Anna Lehmann, Leon Peeters, Stefan Richter,
Dagmar Tenfelde-Podehl, and Oliver Zlotowski. Centrality indices. In
Network analysis, pages 16–61. Springer, 2005.

164

Rahul G. Krishnan, Simon Lacoste-Julien, and David Sontag. Barrier Frank–
Wolfe for marginal inference. In Proc. of Advances in Neural Information
Processing Systems 28 (NIPS 2015), pages 532–540. Curran Associates,
Inc., 2015.

Sy-Yen Kuo, Fu-Min Yeh, and Hung-Yau Lin. Efficient and exact reliability
evaluation for networks with imperfect vertices. IEEE Transactions on
Reliability, 56(2):288–300, 2007.

Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence
of Frank–Wolfe optimization variants. In Proc. of Advances in Neural
Information Processing Systems 28 (NIPS 2015), pages 496–504. Curran
Associates, Inc., 2015.

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick Pletscher.
Block-coordinate Frank–Wolfe optimization for structural SVMs. In Proc.
of the 30th International Conference on Machine Learning (ICML 2013),
volume 28, pages 53–61. PMLR, 2013.

Ruiying Li, Ning Huang, and Rui Kang. A new parameter and its algorithm
for network connection reliability: k/N-terminal reliability. In Proc. of
the 1st International Conference on Future Information Networks (ICFIN
2009), pages 259–262, Oct 2009.

Takanori Maehara, Hirofumi Suzuki, and Masakazu Ishihata. Exact compu-
tation of influence spread by binary decision diagrams. In Proc. of the 26th
International World Wide Web Conference (WWW 2017), pages 947–956,
2017.

Damien Magoni. Tearing down the internet. IEEE Journal on Selected Areas
in Communications, 21(6):949–960, 2003.

Marc Manzano, Eusebi Calle, and David Harle. Quantitative and qualitative
network robustness analysis under different multiple failure scenarios. In
Proc. of 3rd International Congress on Ultra Modern Telecommunications
and Control Systems and Workshops (ICUMT 2011), pages 1–7, 2011.

Tatsuya Matsukawa and Hiroyuki Funakoshi. Analyzing failure frequency
and severity in communication networks. In Proc. of the Annual Reliability
and Maintainability Symposium (RAMS 2010), pages 1–6, 2010.

Denis A. Migov. New index for wireless sensor network reliability analysis.
In Proc. of the 2019 IEEE 2nd International Conference on Automation,

165

Electronics and Electrical Engineering (AUTEEE 2019), pages 334–337,
2019.

Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combi-
natorial problems. In Proc. of the 30th ACM/IEEE Design Automation
Conference (DAC 1993), pages 272–277, 1993.

Ministry of Internal Affairs and Communications. Reporting System
for Telecommunication Outages. https://www.soumu.go.jp/main_

content/000665005.pdf#page=48. in Japanese.

Fred Moskowitz. The analysis of redundancy networks. Transactions of the
American Institute of Electrical Engineers, Part I: Communication and
Electronics, 77(5):627–632, 1958.

Carlos Natalino, Aysegul Yayimli, Lena Wosinska, and Marija Furdek. Con-
tent accessibility in optical cloud networks under targeted link cuts. In
Proc. of the 2017 International Conference on Optical Network Design
and Modeling (ONDM 2017), pages 1–6, 2017.

Sebastian Neumayer and Eytan Modiano. Network reliability with geograph-
ically correlated failures. In Proc. of the 29th Conference on Computer
Communications (INFOCOM 2010), pages 1–9, 2010.

Sebastian Neumayer and Eytan Modiano. Network reliability under ran-
dom circular cuts. In Proc. of the 2011 IEEE Global Telecommunications
Conference (GLOBECOM 2011), pages 1–6, 2011.

Sebastian Neumayer and Eytan Modiano. Network reliability under geo-
graphically correlated line and disk failure models. Computer Networks,
94:14–28, 2016.

Masaaki Nishino, Takeru Inoue, Norihito Yasuda, Shin-ichi Minato, and
Masaaki Nagata. Optimizing network reliability via best-first search over
decision diagrams. In Proc. of the 2018 IEEE Conference on Computer
Communications (INFOCOM 2018), pages 1817–1825, 2018.

Satoshi Nojo and Hitoshi Watanabe. Reliability specification for communi-
cation networks based on the failure-influence. In Proc. of the IEEE Global
Communications Conference (GLOBECOM 1987), pages 1135–1139, 1987.

Satoshi Nojo and Hitoshi Watanabe. Incorporating reliability specifications
in the design of telecommunication networks. IEEE Communications Mag-
azine, 31(6):40–43, 1993.

166

https://www.soumu.go.jp/main_content/000665005.pdf#page=48
https://www.soumu.go.jp/main_content/000665005.pdf#page=48

NTT Docomo. 5G evolution and 6G. Whitepaper, 2022.

Jorik Oostenbrink and Fernando Kuipers. Computing the impact of disasters
on networks. SIGMETRICS Performance Evaluation Review, 45(2):107–
110, oct 2017.

Jorik Oostenbrink and Fernando Kuipers. Going the extra mile with disaster-
aware network augmentation. In Proc. of the 2021 IEEE Conference on
Computer Communications (INFOCOM 2021), pages 1–10, 2021.

Mahshid Rahnamay-Naeini, Jorge E. Pezoa, Ghady Azar, Nasir Ghani, and
Majeed M. Hayat. Modeling stochastic correlated failures and their effects
on network reliability. In Proc. of the 20th International Conference on
Computer Communications and Networks (ICCCN 2011), pages 1–6, 2011.

R. C. Read and R. E. Tarjan. Bounds on backtrack algorithms for listing
cycles, paths, and spanning trees. Networks, 5(3):237–252, 1975.

Neil Robertson and P. D. Seymour. Graph minors. I. excluding a forest.
Journal of Combinatorial Theory, Series B, 35(1):39–61, 1983.

Franco Robledo, Pablo Romero, Pablo Sartor, Luis Stabile, and Omar Viera.
A survivable and reliable network topological design model. In Reliability
and Maintenance, chapter 6. IntechOpen, 2020.

Arnie Rosenthal. Computing the reliability of complex networks. SIAM
Journal on Applied Mathematics, 32(2):384–393, 1977.

Tim Roughgarden and Éva Tardos. How bad is selfish routing? Journal of
the ACM, 49(2):236–259, 2002.

Tim Roughgarden. Selfish Routing and the Price of Anarchy. The MIT Press,
2005.

Jagruti Sahoo, Mohammad A Salahuddin, Roch Glitho, Halima Elbiaze,
and Wessam Ajib. A survey on replica server placement algorithms for
content delivery networks. IEEE Communications Surveys & Tutorials,
19(2):1002–1026, 2016.

Shinsaku Sakaue and Kengo Nakamura. Differentiable equilibrium computa-
tion with decision diagrams for Stackelberg models of combinatorial con-
gestion games. In Proc. of the 35th Conference on Neural Information
Processing Systems (NeurIPS 2021), pages 9416–9428, 2021.

167

William H. Sandholm. Potential games with continuous player sets. Journal
of Economic Theory, 97(1):81–108, 2001.

Juan Segovia, Eusebi Calle, Pere Vila, Jose Marzo, and Janos Tapolcai.
Topology-focused availability analysis of basic protection schemes in opti-
cal transport networks. Journal of Optical Networking, 7(4):351–364, Apr
2008.

Kyoko Sekine, Hiroshi Imai, and Seiichiro Tani. Computing the Tutte poly-
nomial of a graph of moderate size. In Proc. of the 6th International Sym-
posium on Algorithms and Computation (ISAAC 1995), pages 224–233,
1995.

Srinivas Shakkottai, Eitan Altman, and Anurag Kumar. Multihoming of
users to access points in WLANs: A population game perspective. IEEE
Journal on Selected Areas in Communications, 25(6):1207–1215, 2007.

Akiyoshi Shioura, Akihisa Tamura, and Takeaki Uno. An optimal algorithm
for scanning all spanning trees of undirected graphs. SIAM Journal on
Computing, 26(3):678–692, 1997.

Akhilesh Shrestha, Liudong Xing, Yan Sun, and Vinod M. Vokkarane. Infras-
tructure communication reliability of wireless sensor networks considering
common-cause failures. Intenational Journal of Performability Engineer-
ing, 8(2):141–150, 2012.

J. Cole Smith and Yongjia Song. A survey of network interdiction models
and algorithms. European Journal of Operational Research, 283(3):797–
811, 2020.

Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Mea-
suring ISP topologies with Rocketfuel. IEEE/ACM Transactions on Net-
working, 12(1):2–16, 2004.

Hirofumi Suzuki, Masakazu Ishihata, and Shin-ichi Minato. Exact computa-
tion of strongly connected reliability by binary decision diagrams. In Proc.
of the 12th Annual International Conference on Combinatorial Optimiza-
tion and Applications (COCOA 2018), pages 281–295, 2018.

Masahiro Taka and Takeo Abe. Network reliability design techniques to im-
prove customer satisfaction. IEEE Communications Magazine, 32(10):64–
68, 1994.

168

János Tapolcai, Zsombor L. Hajdú, Alija Pašić, Pin-Han Ho, and Lajos
Rónyai. On network topology augmentation for global connectivity un-
der regional failures. In Proc. of the 2021 IEEE Conference on Computer
Communications (INFOCOM 2021), pages 1–10, 2021.

Jerome Thai. On learning Game-Theoretical models with Application
to Urban Mobility. PhD thesis, UC Berkeley, 2017. ProQuest ID:
Thai berkeley 0028E 17598. Merritt ID: ark:/13030/m59s6nbq. Retrieved
from https://escholarship.org/uc/item/3b61v84v.

Eric S. Tollar and Jay M. Bennett. Network outage impact measures for
telecommunications. In Proc. of the 1st IEEE Symposium on Computers
and Communications (ISCC 1995), pages 120–126, 1995.

Shuji Tsukiyama, Isao Shirakawa, Hiroshi Ozaki, and Hiromu Ariyoshi. An
algorithm to enumerate all cutsets of a graph in linear time per cutset.
Journal of the ACM, 27(4):619–632, 1980.

William T. Tutte. Graph Theory. Cambridge Mathematical Library. Cam-
bridge University Press, 2001.

Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979.

Dirck V. Vliet. The Frank-Wolfe algorithm for equilibrium traffic assign-
ment viewed as a variational inequality. Transportation Research Part B:
Methodological, 21(1):87–89, 1987.

Hitoshi Watanabe, Minetoshi Kudo, Kazuhiro Kawanishi, and Koji Ya-
masaki. A reliability design method for private networks. In Proc. of the
Annual Reliability and Maintainability Symposium (RAMS 2003), pages
237–243, 2003.

O. Wing and P. Demetriou. Analysis of probabilistic networks. IEEE Trans-
actions on Communication Technology, 12:38–40, 1964.

R. Kevin Wood. Factoring algorithms for computing K-network network
reliability. IEEE Transactions on Reliability, 35(3):269–278, 1986.

Yufeng Xiao, Xin Li, Yuhong Li, and Shanzhi Chen. Evaluate reliability of
wireless sensor networks with OBDD. In Proc. of the 2009 IEEE Interna-
tional Conference on Communications (ICC 2009), pages 1–5, 2009.

169

Liudong Xing. An efficient binary-decision-diagram-based approach for net-
work reliability and sensitivity analysis. IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, 38(1):105–115,
2008.

Hiroki Yano, Sumihiro Yoneyama, and Hiroyoshi Miwa. Reliable network
design problem by improving node reliability. In Proc. of the 10th In-
ternational Conference on Emerging Internet, Data & Web Technologies
(EIDWT 2022), pages 42–51, 2022.

Zesen Zhang, Alexander Marder, Ricky Mok, Bradley Huffaker, Matthew
Luckie, K C Claffy, and Aaron Schulman. Inferring regional access network
topologies: Methods and applications. In Proc. of the 21st ACM Internet
Measurement Conference (IMC 2021), pages 720–738, 2021.

170

