$U\left(\mathfrak{s l}_{2}\right)$ AND THE TERWILLIGER ALGEBRAS

HAU-WEN HUANG

Abstract. The universal enveloping algebra $U\left(\mathfrak{s l}_{2}\right)$ of $\mathfrak{s l}_{2}$ is a unital associative algebra over \mathbb{C} generated by E, F, H subject to the relations

$$
[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H
$$

In 2002, Junie T. Go showed that the Terwilliger algebra of $H(D, 2)$ is a homomorphic image of $U\left(\mathfrak{s l}_{2}\right)$. Firstly, I will present a connection of the even subalgebra of $U\left(\mathfrak{s l}_{2}\right)$ with the Terwilliger algebra of $\frac{1}{2} H(D, 2)$. Secondly, I will show how the Clebsch-Gordan rule of $U\left(\mathfrak{s l}_{2}\right)$ is related to the Terwilliger algebra of $H(D, q)$. Thirdly, I will give an algebraic connection between the Clebsch-Gordan coefficients of $U\left(\mathfrak{s l}_{2}\right)$ and the Terwilliger algebra of $J(D, k)$. The first part is a joint work with Chia-Yi Wen.

1. $U\left(\mathfrak{s l}_{2}\right)$ and the Terwilliger algebra of $H(D, 2)$

Definition 1.1. The universal enveloping algebra $U\left(\mathfrak{s l}_{2}\right)$ of $\mathfrak{s l}_{2}$ is an algebra over \mathbb{C} generated by E, F, H subject to the relations

$$
[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H
$$

The element

$$
\Lambda=E F+F E+\frac{H^{2}}{2}
$$

is called the Casimir element of $U\left(\mathfrak{s l}_{2}\right)$.
Lemma 1.2. For any $n \in \mathbb{N}$ there exists an $(n+1)$-dimensional irreducible $U\left(\mathfrak{s l}_{2}\right)$-module L_{n} satisfying the following conditions:
(i) There exists a basis $v_{0}^{(n)}, v_{1}^{(n)}, \ldots, v_{n}^{(n)}$ for L_{n} such that

$$
\begin{aligned}
& E v_{i}^{(n)}=i v_{i-1}^{(n)} \quad(1 \leq i \leq n), \quad E v_{0}^{(n)}=0, \\
& F v_{i}^{(n)}=(n-i) v_{i+1}^{(n)} \quad(1 \leq i \leq n-1), \quad F v_{n}^{(n)}=0, \\
& H v_{i}^{(n)}=(n-2 i) v_{i}^{(n)} \quad(1 \leq i \leq n) .
\end{aligned}
$$

(ii) The element Λ acts on L_{n} as scalar multiplication by $\frac{n(n+2)}{2}$.

Note that the $U\left(\mathfrak{s l}_{2}\right)$-module L_{n} is the unique ($n+1$)-dimensional irreducible $U\left(\mathfrak{s l}_{2}\right)$-module up to isomorphism.
Definition 1.3. Let $D \geq 1$ denote an integer. The D-dimensional hypercube $H(D, 2)$ has the vertex set $X=\{0,1\}^{D}$ and $x, y \in\{0,1\}^{D}$ are adjacent if and only if x and y differ in exactly one coordinate.

Let \mathbf{A} denote the adjacency operator of $H(D, 2)$. Let $\mathbf{A}^{*}(x)$ denote the dual adjacency operator of $H(D, 2)$ with respect to $x \in X$. Let $\mathbf{T}(x)$ denote the Terwilliger algebra of $H(D, 2)$ with respect to $x \in X[1,7-9]$. Note that $\mathbf{T}(x)$ is generated by \mathbf{A} and $\mathbf{A}^{*}(x)$. In 2002 Junie T. Go gave the following result:

HAU-WEN HUANG

Theorem 1.4 (Theorem 13.2, [2]). For each $x \in X$ there exists a unique algebra homomorphism $\rho(x): U\left(\mathfrak{s l}_{2}\right) \rightarrow \mathbf{T}(x)$ that sends

$$
\begin{aligned}
E & \mapsto \frac{\mathbf{A}}{2}-\frac{\left[\mathbf{A}, \mathbf{A}^{*}(x)\right]}{4} \\
F & \mapsto \frac{\mathbf{A}}{2}+\frac{\left[\mathbf{A}, \mathbf{A}^{*}(x)\right]}{4} \\
H & \mapsto \mathbf{A}^{*}(x)
\end{aligned}
$$

Moreover $\rho(x)$ is onto for each $x \in X$.
Theorem 1.5 (Theorem 10.2, [2]). The $U\left(\mathfrak{s l}_{2}\right)$-module \mathbb{C}^{X} is isomorphic to

$$
\bigoplus_{i=0}^{\left\lfloor\frac{D}{2}\right\rfloor} \frac{D-2 i+1}{D-i+1}\binom{D}{i} \cdot L_{D-2 i}
$$

2. The even subalgebra of $U\left(\mathfrak{s l}_{2}\right)$ and the Terwilliger algebra of $\frac{1}{2} H(D, 2)$

Definition 2.1 (Definition 1.2, [5]). The universal Hahn algebra \mathcal{H} is an algebra over \mathbb{C} generated by A, B, C and the relations assert that $[A, B]=C$ and each of

$$
\begin{aligned}
\alpha & =[C, A]+2 A^{2}+B \\
\beta & =[B, C]+4 B A+2 C
\end{aligned}
$$

is central in \mathcal{H}.
Theorem 2.2 (Theorem 1.3, [5]). There exists a unique algebra homomorphism $\mathfrak{\square}: \mathcal{H} \rightarrow$ $U\left(\mathfrak{s l}_{2}\right)$ that sends

$$
\begin{aligned}
A & \mapsto \frac{H}{4} \\
B & \mapsto \frac{E^{2}+F^{2}+\Lambda-1}{4}-\frac{H^{2}}{8} \\
C & \mapsto \frac{E^{2}-F^{2}}{4} \\
\alpha & \mapsto \frac{\Lambda-1}{4} \\
\beta & \mapsto 0 .
\end{aligned}
$$

The element

$$
\Omega=4 A B A+B^{2}-C^{2}-2 \beta A+2(1-\alpha) B
$$

is central in \mathcal{H} and it is called the Casimir element of \mathcal{H}.
Lemma 2.3 (Lemma 4.5, [5]). The homomorphism \ddagger maps Ω to $\frac{3}{16}(2 \Lambda-3)$.
The algebra $U\left(\mathfrak{s l}_{2}\right)$ has a \mathbb{Z}-grading algebra structure with

$$
\operatorname{deg} E=1, \quad \operatorname{deg} F=-1, \quad \operatorname{deg} H=0
$$

For each $n \in \mathbb{Z}$ let U_{n} denote the $n^{\text {th }}$ homogeneous subspace of $U\left(\mathfrak{s l}_{2}\right)$. Define

$$
U\left(\mathfrak{s l}_{2}\right)_{e}=\bigoplus_{n \in \mathbb{Z}} U_{2 n}
$$

$U\left(\mathfrak{s l}_{2}\right)$ AND THE TERWILLIGER ALGEBRAS

Since $1 \in U_{0}$ and by (G2) the space $U\left(\mathfrak{s l}_{2}\right)_{e}$ is a subalgebra of $U\left(\mathfrak{s l}_{2}\right)$. We call $U\left(\mathfrak{s l}_{2}\right)_{e}$ the even subalgebra of $U\left(\mathfrak{s l}_{2}\right)$.

Theorem 2.4 (Theorem 3.4, [5]). The algebra $U\left(\mathfrak{s l}_{2}\right)_{e}$ has a presentation given by generators E^{2}, F^{2}, Λ, H and relations

$$
\begin{aligned}
{\left[H, E^{2}\right] } & =4 E^{2}, \\
{\left[H, F^{2}\right] } & =-4 F^{2}, \\
16 E^{2} F^{2} & =\left(H^{2}-2 H-2 \Lambda\right)\left(H^{2}-6 H-2 \Lambda+8\right), \\
16 F^{2} E^{2} & =\left(H^{2}+2 H-2 \Lambda\right)\left(H^{2}+6 H-2 \Lambda+8\right), \\
\Lambda E^{2} & =E^{2} \Lambda, \quad \Lambda F^{2}=F^{2} \Lambda, \quad \Lambda H=H \Lambda .
\end{aligned}
$$

Using the presentation for $U\left(\mathfrak{s l}_{2}\right)_{e}$ we found the following result:
Theorem 2.5 (Theorem 1.5, [5]). (i) $\operatorname{Im} \mathfrak{q}=U\left(\mathfrak{s l}_{2}\right)_{e}$.
(ii) Ker \ddagger is the two-sided ideal of \mathcal{H} generated by β and $16 \Omega-24 \alpha+3$.

For any $U\left(\mathfrak{s l}_{2}\right)$-module V and any $\theta \in \mathbb{C}$ let

$$
V(\theta)=\{v \in V \mid H v=\theta v\} .
$$

Proposition 2.6 (Proposition 5.1, [5]). Let V denote a $U\left(\mathfrak{s l}_{2}\right)$-module. Then

$$
\bigoplus_{n \in \mathbb{Z}} V(\theta+4 n)
$$

is a $U\left(\mathfrak{s l}_{2}\right)_{e}$-submodule of V for any $\theta \in \mathbb{C}$.
For each $n \in \mathbb{N}$ let

$$
L_{n}^{(0)}=\bigoplus_{i \in \mathbb{Z}} L_{n}(n-4 i)
$$

For each integer $n \geq 1$ let

$$
L_{n}^{(1)}=\bigoplus_{i \in \mathbb{Z}} L_{n}(n-4 i-2) .
$$

Lemma 2.7 (Lemmas 5.5 and 5.8, [5]). (i) For any $n \in \mathbb{N}$ the $U\left(\mathfrak{s l}_{2}\right)_{e}$-module $L_{n}^{(0)}$ is irreducible.
(ii) For any integer $n \geq 1$ the $U\left(\mathfrak{s l}_{2}\right)_{e}$-module $L_{n}^{(1)}$ is irreducible.

Theorem 2.8 (Theorem 5.10, [5]). The $U\left(\mathfrak{s l}_{2}\right)_{e}$-modules $L_{n}^{(0)}$ for all $n \in \mathbb{N}$ and the $U\left(\mathfrak{s l}_{2}\right)_{e^{-}}$ modules $L_{n}^{(1)}$ for all integers $n \geq 1$ are mutually non-isomorphic.

Theorem 2.9 (Theorem 5.11, [5]). For any $d \in \mathbb{N}$ the $U\left(\mathfrak{s l}_{2}\right)_{e}$-modules $L_{2 d}^{(0)}, L_{2 d+1}^{(0)}, L_{2 d+1}^{(1)}$, $L_{2 d+2}^{(1)}$ are all $(d+1)$-dimensional irreducible $U\left(\mathfrak{s l}_{2}\right)_{e}$-modules up to isomorphism.

Lemma 2.10 (Lemma 6.2, [5]). For each $x \in X$ the algebra homomorphism $\rho(x) \circ$ 占: $\mathcal{H} \rightarrow$ $\mathbf{T}(x)$ maps

$$
\begin{aligned}
A & \mapsto \frac{\mathbf{A}^{*}(x)}{4}, \\
B & \mapsto \frac{\mathbf{A}^{2}-1}{4} .
\end{aligned}
$$

Suppose that $D \geq 2$. Let

$$
X_{e}=\left\{x \in\{0,1\}^{D} \mid \sum_{i=1}^{D} x_{i} \text { is even }\right\}
$$

Definition 2.11. The halved graph $\frac{1}{2} H(D, 2)$ of $H(D, 2)$ is a finite simple connected graph with vertex set X_{e} and $x, y \in X_{e}$ are adjacent if and only if x and y differ in exactly two coordinates.

The adjacency operator of $\frac{1}{2} H(D, 2)$ is equal to

$$
\left.\frac{\mathbf{A}^{2}-D}{2}\right|_{\mathbb{C}^{x_{e}}}
$$

Let $x \in X_{e}$ be given. The dual adjacency operator of $\frac{1}{2} H(D, 2)$ with respect to x is equal to

$$
\begin{cases}\left.\frac{1}{2} \mathbf{A}^{*}(x)\right|_{\mathbb{C}^{x_{e}}} & \text { if } D=2 \\ \left.\mathbf{A}^{*}(x)\right|_{\mathbb{C}^{x_{e}}} & \text { if } D \geq 3\end{cases}
$$

Therefore the Terwilliger algebra $\mathbf{T}_{e}(x)$ of $\frac{1}{2} H(D, 2)$ with respect to x is the subalgebra of $\operatorname{End}\left(\mathbb{C}^{X_{e}}\right)$ generated by $\left.\mathbf{A}^{2}\right|_{\mathbb{C}^{X_{e}}}$ and $\left.\mathbf{A}^{*}(x)\right|_{\mathbb{C}^{X_{e}}}[1,7-9]$.
Theorem 2.12 (Theorem 6.4, [5]). For each $x \in X_{e}$ the following hold:
(i) $\mathbf{T}_{e}(x)=\left\{\left.M\right|_{\mathbb{C}^{x_{e}}} \mid M \in \operatorname{Im}(\rho(x) \circ \emptyset)\right\}$.
(ii) $\mathbf{T}_{e}(x)=\left\{\left.M\right|_{\mathbb{C}^{x_{e}}} \mid M \in \operatorname{Im}\left(\left.\rho(x)\right|_{U\left(\mathfrak{s l}_{2}\right)_{e}}\right)\right\}$.

Theorem 2.13 (Theorem 6.5, [5]). The $U\left(\mathfrak{s l}_{2}\right)_{e}$-module $\mathbb{C}^{X_{e}}$ is isomorphic to

$$
\bigoplus_{\substack{k=0 \\ k \text { is even }}}^{\left\lfloor\frac{D}{2}\right\rfloor} \frac{D-2 k+1}{D-k+1}\binom{D}{k} \cdot L_{D-2 k}^{(0)} \oplus \bigoplus_{\substack{k=1 \\ k \text { is odd }}}^{\left\lfloor\frac{D-1}{2}\right\rfloor} \frac{D-2 k+1}{D-k+1}\binom{D}{k} \cdot L_{D-2 k}^{(1)} .
$$

3. The Clebsch-Gordan rule for $U\left(\mathfrak{s l}_{2}\right)$ and the Terwilliger algebra of $H(D, q)$

Definition 3.1 (Definition 1.6, [4]). Given any scalar $\omega \in \mathbb{C}$ the Krawtchouk algebra \mathfrak{K}_{ω} is an algebra over \mathbb{C} generated by A and B subject to the relations

$$
\begin{aligned}
& A^{2} B-2 A B A+B A^{2}=B+\omega A \\
& B^{2} A-2 B A B+A B^{2}=A+\omega B
\end{aligned}
$$

Theorem $3.2([4,6])$. For any $\omega \in \mathbb{C}$ there exists a unique algebra homomorphism $\zeta: \mathfrak{K}_{\omega} \rightarrow$ $U\left(\mathfrak{S l}_{2}\right)$ that sends

$$
\begin{aligned}
A & \mapsto \frac{1+\omega}{2} E+\frac{1-\omega}{2} F-\frac{\omega}{2} H \\
B & \mapsto \frac{1}{2} H \\
C & \mapsto-\frac{1+\omega}{2} E+\frac{1-\omega}{2} F .
\end{aligned}
$$

Moreover, if $\omega^{2} \neq 1$ then ζ is an isomorphism and its inverse sends

$$
\begin{aligned}
E & \mapsto \frac{1}{1+\omega} A+\frac{\omega}{1+\omega} B-\frac{1}{1+\omega} C \\
F & \mapsto \frac{1}{1-\omega} A+\frac{\omega}{1-\omega} B+\frac{1}{1-\omega} C \\
H & \mapsto 2 B
\end{aligned}
$$

$U\left(\mathfrak{s l}_{2}\right)$ AND THE TERWILLIGER ALGEBRAS

Let $D \geq 1$ denote an integer. Let $q \geq 2$ denote an integer. Set

$$
X=\{\hat{i} \mid i=0,1, \ldots, q-1\} .
$$

Definition 3.3. The D-dimensional Hamming graph $H(D, q)$ over X has the vertex set X^{D} and $x, y \in X^{D}$ are adjacent if and only if x and y differ in exactly one coordinate.

Let \mathbf{A} denote the adjacency operator of $H(D, q)$. Let $\mathbf{A}^{*}(x)$ denote the dual adjacency operator of $H(D, q)$ with respect to $x \in X^{D}$. Let $\mathbf{T}(x)$ denote the Terwilliger algebra of $H(D, q)$ with respect to $x[1,7-9]$. Without loss of generality we fix $x=(\hat{0}, \hat{0}, \ldots, \hat{0}) \in X^{D}$. Set

$$
\omega=1-\frac{2}{q} .
$$

Definition 3.4. Let \mathbb{C}_{0}^{X} denote the subspace of \mathbb{C}^{X} consisting of all vectors $\sum_{i=1}^{q-1} c_{i} \hat{i}$ where $c_{1}, c_{2}, \ldots, c_{q-1} \in \mathbb{C}$ with $\sum_{i=1}^{q-1} c_{i}=0$. Let \mathbb{C}_{1}^{X} denote the subspace of \mathbb{C}^{X} spanned by $\hat{0}$ and $\sum_{i=1}^{q-1} \hat{i}$. Note that $\mathbb{C}^{X}=\mathbb{C}_{0}^{X} \oplus \mathbb{C}_{1}^{X}$.
Definition 3.5. For any $s \in\{0,1\}^{D}$ we define the subspace $\mathbb{C}_{s}^{X^{D}}$ of $\mathbb{C}^{X^{D}}$ by

$$
\mathbb{C}_{s}^{X^{D}}=\mathbb{C}_{s_{1}}^{X} \otimes \mathbb{C}_{s_{2}}^{X} \otimes \cdots \otimes \mathbb{C}_{s_{D}}^{X}
$$

Note that $\mathbb{C}^{X^{D}}=\bigoplus_{s \in\{0,1\}^{D}} \mathbb{C}_{s}^{X^{D}}$.
Proposition 3.6 (Proposition 3.12, [4]). For any $s \in\{0,1\}^{D}$ there exists a \mathfrak{K}_{ω}-module structure on $\mathbb{C}_{s}^{X^{D}}$ given by

$$
\begin{aligned}
& A=\left.\frac{\mathbf{A}}{q}\right|_{\mathbb{C}_{s}^{X D}}+\frac{D}{q}-\frac{1}{2} \sum_{i=1}^{D} s_{i}, \\
& B=\left.\frac{\mathbf{A}^{*}(x)}{q}\right|_{\mathbb{C}_{s}^{X D}}+\frac{D}{q}-\frac{1}{2} \sum_{i=1}^{D} s_{i} .
\end{aligned}
$$

In particular $\mathbb{C}^{X^{D}}$ is a \mathfrak{K}_{ω}-module.
The Clebsch-Gordan rule for $U\left(\mathfrak{s l}_{2}\right)$ is as follows:
Theorem 3.7. For any $m, n \in \mathbb{N}$ the $U\left(\mathfrak{s l}_{2}\right)$-module $L_{m} \otimes L_{n}$ is isomorphic to

$$
\bigoplus_{p=0}^{\min \{m, n\}} L_{m+n-2 p}
$$

The $U\left(\mathfrak{s l}_{2}\right)$-module \mathbb{C}_{0}^{X} is isomorphic to $(q-2) \cdot L_{0}$. The $U\left(\mathfrak{s l}_{2}\right)$-module \mathbb{C}_{1}^{X} is isomorphic to L_{1}. Hence the $U\left(\mathfrak{s l}_{2}\right)$-module $\mathbb{C}_{s}^{X^{D}}\left(s \in\{0,1\}^{D}\right)$ is isomorphic to $(q-2)^{D-p} \cdot L_{1}^{\otimes p}$ where $p=\sum_{i=1}^{D} s_{i}$.
Theorem 3.8 (Theorem 1.10, [4]). The $U\left(\mathfrak{s l}_{2}\right)$-module $\mathbb{C}^{X^{D}}$ is isomorphic to

$$
\bigoplus_{p=0}^{D} \bigoplus_{k=0}^{\left\lfloor\frac{p}{2}\right\rfloor} \frac{p-2 k+1}{p-k+1}\binom{D}{p}\binom{p}{k}(q-2)^{D-p} \cdot L_{p-2 k}
$$

Here 0^{0} is defined as 1 .

HAU-WEN HUANG

4. The Clebsch-Gordan coefficients for $U\left(\mathfrak{s l}_{2}\right)$ and the Terwilliger ALGEBRA OF $J(D, k)$

Inspired by the Clebsch-Gordan coefficients for $U\left(\mathfrak{s l}_{2}\right)$ the following result was discovered in [3]:

Theorem 4.1 (Theorem 1.4, [3]). There exists a unique algebra homomorphism $\natural: \mathcal{H} \rightarrow$ $U\left(\mathfrak{s l}_{2}\right) \otimes U\left(\mathfrak{s l}_{2}\right)$ that sends

$$
\begin{aligned}
A & \mapsto \frac{H \otimes 1-1 \otimes H}{4} \\
B & \mapsto \frac{\Delta(\Lambda)}{2} \\
C & \mapsto E \otimes F-F \otimes E \\
\alpha & \mapsto \frac{\Lambda \otimes 1+1 \otimes \Lambda}{2}+\frac{\Delta(H)^{2}}{8} \\
\beta & \mapsto \frac{(\Lambda \otimes 1-1 \otimes \Lambda) \Delta(H)}{2}
\end{aligned}
$$

By pulling back via \ddagger every $U\left(\mathfrak{s l}_{2}\right) \otimes U\left(\mathfrak{s l}_{2}\right)$-module can be considered as an \mathcal{H}-module. Let V denote a $U\left(\mathfrak{s l}_{2}\right) \otimes U\left(\mathfrak{s l}_{2}\right)$-module. For any $\theta \in \mathbb{C}$ we define

$$
V(\theta)=\{v \in V \mid \Delta(H) v=\theta v\}
$$

It can be shown that $V(\theta)$ is an \mathcal{H}-submodule of V for any $\theta \in \mathbb{C}$.
Theorem 4.2 (Theorem 1.6, [3]). Suppose that $m, n \in \mathbb{N}$ and ℓ is an integer with $0 \leq \ell \leq$ $m+n$. Then the following hold:
(i) The $(\min \{m, \ell\}+\min \{n, \ell\}-\ell+1)$-dimensional \mathcal{H}-module $\left(L_{m} \otimes L_{n}\right)(m+n-2 \ell)$ is irreducible.
(ii) Suppose that $m^{\prime}, n^{\prime} \in \mathbb{N}$ and ℓ^{\prime} is an integer with $0 \leq \ell^{\prime} \leq m^{\prime}+n^{\prime}$. The the \mathcal{H}-module $\left(L_{m^{\prime}} \otimes L_{n^{\prime}}\right)\left(m^{\prime}+n^{\prime}-2 \ell^{\prime}\right)$ is isomorphic to $\left(L_{m} \otimes L_{n}\right)(m+n-2 \ell)$ if and only if

$$
\left(m^{\prime}, n^{\prime}, \ell^{\prime}\right) \in\{(m, n, \ell),(m+n-\ell, \ell, n),(\ell, m+n-\ell, m),(n, m, m+n-\ell)\}
$$

Let Ω denote a finite set with size D and let \subset denote the covering relation in 2^{Ω}.
Theorem 4.3. There exists a $U\left(\mathfrak{s l}_{2}\right)$-module structure on $\mathbb{C}^{2^{\Omega}}$ given by

$$
\begin{aligned}
& E x=\sum_{y \Subset x} y \quad \text { for all } x \in 2^{\Omega} \\
& F x=\sum_{x \subset y} y \quad \text { for all } x \in 2^{\Omega} \\
& H x=(D-2|x|) x \quad \text { for all } x \in 2^{\Omega}
\end{aligned}
$$

For notational convenience we define

$$
m_{i}(n)=\frac{n-2 i+1}{n-i+1}\binom{n}{i}
$$

for all integers i, n with $0 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$.

$U\left(\mathfrak{s l}_{2}\right)$ AND THE TERWILLIGER ALGEBRAS

Theorem 4.4. The $U\left(\mathfrak{s l}_{2}\right)$-module $\mathbb{C}^{2^{\Omega}}$ is isomorphic to

$$
\bigoplus_{i=0}^{\left\lfloor\frac{D}{2}\right\rfloor} m_{i}(D) \cdot L_{D-2 i} .
$$

Fix an element $x_{0} \in 2^{\Omega}$. The spaces $\mathbb{C}^{2 \Omega \backslash x_{0}}$ and $\mathbb{C}^{2^{x_{0}}}$ are $U\left(\mathfrak{s l}_{2}\right)$-modules. Hence $\mathbb{C}^{2 \Omega x_{0}} \otimes$ $\mathbb{C}^{2^{x_{0}}}$ has a $U\left(\mathfrak{s l}_{2}\right) \otimes U\left(\mathfrak{s l}_{2}\right)$-module structure. Consider the linear isomorphism $\iota\left(x_{0}\right): \mathbb{C}^{2^{\Omega}} \rightarrow$ $\mathbb{C}^{2 \Omega \backslash x_{0}} \otimes \mathbb{C}^{2^{x_{0}}}$ given by

$$
x \mapsto\left(x \backslash x_{0}\right) \otimes\left(x \cap x_{0}\right) \quad \text { for all } x \in 2^{\Omega} .
$$

By identifying $\mathbb{C}^{2 \Omega}$ with $\mathbb{C}^{2 久 x_{0}} \otimes \mathbb{C}^{2_{0}}$ via $\iota\left(x_{0}\right)$, this induces a $U\left(\mathfrak{s l}_{2}\right) \otimes U\left(\mathfrak{s l}_{2}\right)$-module structure on $\mathbb{C}^{2^{n}}$.
Lemma 4.5 (Lemma 5.5, [3]). The $U\left(\mathfrak{s l}_{2}\right) \otimes U\left(\mathfrak{s l}_{2}\right)$-module $\mathbb{C}^{2^{n}}$ is isomorphic to

$$
\bigoplus_{i=0}^{\left\lfloor\frac{D-\left|x_{0}\right|}{2}\right\rfloor} \bigoplus_{j=0}^{\left\lfloor\frac{\left|x_{0}\right|}{2}\right\rfloor} m_{i}\left(D-\left|x_{0}\right|\right) m_{j}\left(\left|x_{0}\right|\right) \cdot L_{D-\left|x_{0}\right|-2 i} \otimes L_{\left|x_{0}\right|-2 j} .
$$

Theorem 4.6 (Theorem 5.8, [3]). For any $x_{0} \in 2^{\Omega}$ the actions of A and B on the \mathcal{H}-module $\mathbb{C}^{2^{\Omega}}$ are as follows:

$$
\begin{aligned}
& A x=\left(\frac{D}{4}-\frac{\left|x_{0} \backslash x\right|+\left|x \backslash x_{0}\right|}{2}\right) x \quad \text { for all } x \in 2^{\Omega} \\
& B x=\left(\frac{D}{2}+\frac{(D-2|x|)^{2}}{4}\right) x+\sum_{\substack{|y|=|x| \\
x \cap y \subset x}} y \quad \text { for all } x \in 2^{\Omega}
\end{aligned}
$$

Let k denote an integer with $0 \leq k \leq D$. The notation $\binom{\Omega}{k}$ denotes the set of all k-element subsets of Ω. It follows from the above theorem that $\mathbb{C}\binom{\Omega}{k}$ is an \mathcal{H}-submodule of $\mathbb{C}^{2 \Omega}$. Let

$$
\mathbf{P}(k)=\left\{(i, j) \in \mathbb{Z}^{2} \left\lvert\, 0 \leq i \leq \frac{D-k}{2}\right., 0 \leq j \leq \min \left\{D-k-i, k-i, \frac{k}{2}\right\}\right\}
$$

Theorem 4.7 (Theorem 5.7, [3]). Suppose that k is an integer with $0 \leq k \leq D$. For any $x_{0} \in\binom{\Omega}{k}$ the following statements hold:
(i) Suppose that $k \neq \frac{D}{2}$. Then the \mathcal{H}-module $\mathbb{C}_{\binom{\Omega}{k}}^{(s)}$ isomorphic to

$$
\bigoplus_{(i, j) \in \mathbf{P}(k)} m_{i}(D-k) m_{j}(k) \cdot\left(L_{D-k-2 i} \otimes L_{k-2 j}\right)(D-2 k) .
$$

Moreover the irreducible \mathcal{H}-modules $\left(L_{D-k-2 i} \otimes L_{k-2 j}\right)(D-2 k)$ for all $(i, j) \in \mathbf{P}(k)$ are mutually non-isomorphic.
(ii) Suppose that $k=\frac{D}{2}$. Then the \mathcal{H}-module $\mathbb{C}^{\binom{\Omega}{k}}$ is isomorphic to

$$
\bigoplus_{i=0}^{\left\lfloor\frac{D}{4}\right\rfloor} m_{i}\left(\frac{D}{2}\right)^{2} \cdot\left(L_{\frac{D}{2}-2 i} \otimes L_{\frac{D}{2}-2 i}\right)(0)
$$

HAU-WEN HUANG

$$
\oplus \bigoplus_{i=0}^{\left\lfloor\frac{D}{4}\right\rfloor} \bigoplus_{j=i+1}^{\left\lfloor\frac{D}{4}\right\rfloor} 2 m_{i}\left(\frac{D}{2}\right) m_{j}\left(\frac{D}{2}\right) \cdot\left(L_{\frac{D}{2}-2 i} \otimes L_{\frac{D}{2}-2 j}\right)(0)
$$

Now we assume that $D \geq 2$ and k is an integer with $1 \leq k \leq D-1$.
Definition 4.8. The Johnson graph $J(D, k)$ is a finite simple connected graph whose vertex set is $\binom{\Omega}{k}$ and two vertices x, y are adjacent whenever $x \cap y \subset x$.

The adjacency operator \mathbf{A} of $J(D, k)$ is a linear endomorphism of $\mathbb{C}\binom{\Omega}{k}$ given by

$$
\mathbf{A} x=\sum_{\substack{|x|=|y| \\ x \cap y \subset x}} y \quad \text { for all } x \in\binom{\Omega}{k}
$$

The dual adjacency operator $\mathbf{A}^{*}\left(x_{0}\right)$ of $J(D, k)$ with respect to $x_{0} \in\binom{\Omega}{k}$ is a linear endomorphism of $\mathbb{C}\binom{\Omega}{k}$ given by

$$
\mathbf{A}^{*}\left(x_{0}\right) x=(D-1)\left(1-\frac{D\left(\left|x_{0} \backslash x\right|+\left|x \backslash x_{0}\right|\right)}{2 k(D-k)}\right) x
$$

for all $x \in\binom{\Omega}{k}$. Let $\mathbf{T}\left(x_{0}\right)$ denote the Terwilliger algebra of $J(D, k)$ with respect to x_{0} [1,7-9].
Theorem 4.9 (Theorem 5.9, [3]). For any $x_{0} \in\binom{\Omega}{k}$ the following equation holds:

$$
\left.\mathbf{T}\left(x_{0}\right)=\operatorname{Im}\left(\mathcal{H} \rightarrow \operatorname{End}\left(\mathbb{C}^{(\Omega}\right)\right)\right)
$$

References

1. E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin-Cummings, Menlo Park, 1984.
2. J. T. Go, The Terwilliger algebra of the hypercube, European Journal of Combinatorics 23 (2002), 399-429.
3. H.-W. Huang, The Clebsch-Gordan coefficients of $U\left(\mathfrak{s l}_{2}\right)$ and the Terwilliger algebras of Johnson graphs, arXiv:2212.05385.
4. , The Clebsch-Gordan rule for $U\left(\mathfrak{s l}_{2}\right)$, the Krawtchouk algebras and the Hamming graphs, SIGMA 19 (2023), 017, 19 pages.
5. H.-W. Huang and C.-Y. Wen, A Connection behind the Terwilliger algebras of $H(D, 2)$ and $\frac{1}{2} H(D, 2)$, arXiv:2210.15733.
6. K. Nomura and P. Terwilliger, Krawtchouk polynomials, the Lie algebra $\mathfrak{s l}_{2}$, and Leonard pairs, Linear Algebra and its Applications 437 (2012), 345-375.
7. P. Terwilliger, The subconstituent algebra of an association scheme (part I), Journal of Algebraic Combinatorics 1 (1992), 363-388.
8. , The subconstituent algebra of an association scheme (part II), Journal of Algebraic Combinatorics 2 (1993), 73-103.
9. , The subconstituent algebra of an association scheme (part III), Journal of Algebraic Combinatorics 2 (1993), 177-210.

Hau-Wen Huang, Department of Mathematics, National Central University, Chung-Li 32001 Taiwan

E-mail address: hauwenh@math.ncu.edu.tw

