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Classification of the tight Euclidean 
5-designs in IR2 

1 Introduction 

Etsuko Bannai (i&P-J't#.T) 

n:h.1-H*~ (~II) 

The concept of Euclidean t-design stated below was defined in the paper by Neumaier and Seidel 
in 1988 ([10]) for a weighted finite set (X, w) in then dimensional Euclidean space ]Rn_ 

Definition 1 (Euclidean design, Neumier-Seidel (1988) [10]) Let (X, w) be a weighted fi­
nite set with a positive weight function w defined on X. Assume X is supported by a union 
S = S1 U · · · U Sp of p concentric spheres of lRn centered at the origin. Let Ti be the radius of Si 
for 1 ::; i::; p. Then we call (X, w) a Euclidean t-design if the following condition 

(1.1) 

is satisfied for any polynomial f(x 1 , x2 , ... , Xn) with n variable x1, x2 , •.. , Xn of degree at most t. 
Here we define w(Xi) = LxEX, w(x) and ISil is the surface area of S; for 1 ::; i::; p. 

Delsarte and Seidel ([7]) studied more precise properties of Euclidean design on a union of several 
spheres centered at the origin. For more information please look at the articles [3] ( Ei. Bannai, 
Et. Bannai, M. Hirao and M. Sawa), [4] (Ei. Bannai, Et. Bannai, D. Suprijanto), and [5] (Et. 
Bannai). They developed the arguments farther and gave more interesting examples. 

In this talk we try to give the classification of tight Euclidean 5-design of two dimensional 
Euclidean space JR2 . 

First we consider the general situation, i.e., (X, w) is a weighted finite set of lRn. For a vector 
X = (x1, X2, ... , Xn) E ]Rn, we define norm of X by llxll = ✓xr + x~ + · · · + x~. Let X be a finite 
set in ]Rn supported by p concentric spheres S1, ... , Sp centered at the origin O with positive radius 
r1, r 2 , ... , rp respectively. Let w(x), x EX, be a positive weight function defined on X. Thus we 
consider a positive weighted finite set (X, w) supported by a union of p concentric spheres. Let 
S = S1 U · · · U Sp. Let cs E {O, 1} be defined by cs= 1 if OE Sand cs= 0 otherwise. 

Let P(lRn) = JR[x1, x2 , ... , xn] be the vector space of polynomials inn variables x1, x2 , ... , Xn 
over the field of real numbers. Let Homt(lRn) be the subspace of P(lRn) which consists of homoge­
neous polynomials of degree£. Let Pe(lRn) = ffif=o Homi(JRn). Let Harm(JRn) be the subspace of 
P(lRn) which consists of all the harmonic polynomials. Let Harme(lRn) = Harm(JRn) n Home(lRn). 
Let P;(JRn) = ffi,='(2J, Homi(JRn). Let P(S), Pe(S), Home(S), Harm(S), Harme(S) and P;(S) be 

0$i::;£ 
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the sets of corresponding polynomials restricted to the union S. For example P(S) = {f Is I f E 
P(lRn)}. 

A finite subset X C ]Rn is said to be antipodal if -x EX holds for any x EX. Let X* be a 
subset of X satisfying X = X* U (-X*),X* n (-X*) = 0, where -X* = {-x Ix EX*}. Also 
we define A(X) = { llx - YII I x,y EX, x-=/ y}. 

The following basic facts are well known ([6], [7], see also [1], [2], [5]): 

2(p-es)-1 . . " (n + e - i - 1) (n + e) d1m(Pe(S)) =Es+ ~ e _ i < e for p S [~], 

dim(Pe(S)) = t (n + e = i - 1) = (n + e), for p?: [~] + 1 
i=D e i e 

To study Euclidean designs the following theorem, proved by Neumier and Seidel, is most 
fundamental and important. 

Theorem 2 (Neumier and Seidel ([10],1988)) Let (X,w) be a weighted finite subset in ]Rn 
which may possibly contain the origin, 0 EX. Then the following {1) and {2) are equivalent: 

(1) (X, w) is a Euclidean t-design. 

(2) For any polynomial f E llxll 2j Harmt(lRn) with 1 S £St, 0 S j S [t;f] the following holds: 

L w(u)f(u) = 0. 
uEX 

Before Neumier and Seidel gave the definition of Euclidean design as in above, there were 
works on cubature formulas in analysys. Among them were works by H. M. Moller. He studied 
cubature formulas and gave a lower bound of the number of points contained in a cubature 
formula. The following is a well known theorem proved by Moller written in terms of Euclidean 
designs. 

Theorem 3 (Moller [8, 9] (1976, 1979)) Let (X, w) be a Euclidean t-design in ]Rn supported 
by a union S of p concentric spheres centered at the origin. Then the followings hold. 

{1) If t = 2e, then IXI ?: dim(Pe(S)). 

{2) !ft= 2e + 1 and e is odd, ore is even and O !/. X, then IXI?: 2dim(P;(S)), 

{3) !ft= 2e + 1 and e is even and OE X, then IXI?: 2dim(P;(S)) - 1. 

Definition 4 If an equality holds in the above condition, then we say the weighted pair (X, w) is 
a tight Euclidean t-design on a union of p concentric spheres. 
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Remark For a Euclidean t-design (X, w), if origin 0 (/. X , then. consider {0} as a circle of 
radius O centered at the origin and define the weight with w(0) = a, with a positive real number 
a. Then it is easy to see that (XU {0}, w) is also a Euclidean t-design. Hence in the following we 
consider the case when Euclidean t-design is supported by a union of spheres with positive radii. 

For the case tis an odd integer, 2e + 1, it is known that any tight Euclidean (2e + 1)-design 
(X, w) is antipodal and its weight function is constant on each shell. For more information see 
the papers [3], by Eiichi Bannai, Etsuko Bannai, Hirao and Sawa, and also [8] and [9], by Moller. 

Bannai-Bannai-Suprijanto [4] proved that tight Euclidean designs are not rigid so that they 
are deformable. So there exist infinitely many Euclidean tight designs if the number of the sphere 
supporting them are large. So from the combinatorial point of view it maybe interesting to study 
for the cases p S [~] + 1. That means just up to when p just attains dim(Pe(S)) = (n!e) = 
dim(Pe(lRn) ). 

In this talk we present the classification of Euclidean tight 5-design (X, w) of lR2. If X is 
supported by a unit circle, then Xis a spherical 5-design and IXI 2 6. If IXI = 6, then Xis the 
set of the vertices of regular 6 gon inscribed in a circle, which is a tight spherical 5-design. For 
the case X is supported by a union of two concentric circles, it was shown that X consists of 8 
vertices of a union of two squares. So, if p = 2, IXI attains the maximal cardinality. 

In the following we go back to the general situation and give the classification of tight Euclidean 
5-design (X, w) of JR2 with 0 (/. X. By Theorem 3 we know that IXI = 2 dim(P;(JR2) = 8 and X 
consists of four antipodal pairs. Thus the number of circles supporting X is at most 4. Without 
loss of generality we may assume one of them is the unit circle and (1,0), (-1,0) EX. To 
investigate the structure of tight 5-designs we need to use explicit information of the vector space 
of harmonic polinpmials. dim(Harm;(lR2)) = 2 and it is well known that the basis of Harm;(lR2) 
for i = 1, 2, ... , 5 are given as below. 

Harm1(1R2): x1,x2; Harm2(1R2): X1X2,Xi - x~; 

Harm3(1R2) : xf - 3x1x~, x~ - 3xiX2 : Harm4(1R2) : xf + x~ - 6xix~, xix~ - xfx2; 

Harms(lR2) : xI - lOxfx~ + 5x1xt 5xfx2 - lOxiX~ + x~ : 

For the case p = 1, it is known that X is similar to the set of the six vertices of the regular 
6-gon inscribed in the unit circle. For the case p = 2, it is shown in [5], that X is similar to a set 
of 8 vertices of a union of 2 squares as given below 

X=X1UX2, X1={±(l,0), ±(0,1)}, 

X2 = { ±r2 ( ~' ~) , ±r2 ( ~' - ~)}, r2 > 0, rn~ 1. 

Thus X 1 is on the unit circle and X 2 is on the circle of radius r 2 =I= 1. The weight function is 
defined by w(x) = 1 for x E X 1 and w(x) = ~ for x E X 2 . 

r2 

In the following we give the classification for the case p = 3 and p = 4. 
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2 Euclidean tight 5-design of ffi.2 on 3 circles 

In this subsection we will give the classification of the Euclidean tight 5-design for the case p = 3. 
Assume that a finite weighted set (X, w) is a tight Euclidean 5-design of JR2 supported by 3 circles. 
It is known that Xis an antipodal set and IXI = 2dim(A(JR2)) = 8 (see [5]). We may assume 
X = X1 U X2 U X 3 , where X1 is a 4 points set on the unit circle of lR2 and IX21 = IX3 1 = 2. So 
without loss of generality we may assume 

X1 = {(1,0), (-1,0), (a1,R), (-a1,-R)} 

X2 = {(a2,b2), (-a2,-b2)}, 

X3 = {(a3, b3), (-a3, -b3)}, 

where 1 > a1 2 0, a2, a3 2 0, a;+ bf =f. 1 (i = 2, 3), a~+ b~ >a~+ b~ > 0. By definition, (X, w) 
is a Euclidean 5-design if and only if (X, w) satisfies the following equations 

(2.1) 

for x = (x1, x2), llxll 2 = x? + x~, h(x1, x2) E Harme(lR2), 2j + £ :::; 5, £ 2 1. Then, since X 
is antipodal, (2.1) is automatically satisfied by any harmonic polynomial h(x1 , x2) of odd order. 
Hence we only need to check harmonic polynomials of even order, i.e., harmonic polynomials 
h(x1,x2) = X1X2, x1x2llxll 2, x? - x~, (x? - x~)llxll 2, Xi+ x~ - 6xix~, x1x~ - xfx2. Then we can 
prove the following Lemma 5 and Lemma 6. 

Lemma 5 Notations and definitions are given above, a positive weighted set (X, w) is a tight 
Euclidean 5-design oflR.2 supported by three circles if and only if the following conditions (1), (2), 
{3), (4), (5) and {6) hold. 

(1) w2a2b2 + w3a3b3 + a1 J1 - a?= 0. 

(2) a2b2(a~ + b~)w2 + a3b3(a~ + b~)w3 + a1 J1 - ai = 0. 

(3) (a~ - b~)w2 + (a~ - b~)w3 + 2ai = 0. 

(4) (a~ - b~)w2 + (aj - bj)w3 + 2ai = 0. 

(5) (ai - 6a~b~ + bi)w2 + (aj - 6a~b~ + bj)W3 + 2(4af- 4ai + 1) = 0. 

(6) a2b2(a~ - b~)w2 + a3b3(a~ - bDw3 - a1(l - 2ai)J1 - ai = 0. 

Lemma 6 Definition and notation are as defined above. Let (X, w) be a tight Euclidean 5-design 
of JR2 supported by 3 circles as given above. Then the followings hold. 

{1) 1 > a1 > 0. 

{2) a2 > 0 and b2 =f. 0. 
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{3) a3 > 0 and b3 =I- 0. 

Then we can show the following lemma which describes the property of tight 5-design of JH:.2 

supported by three circles. 

Lemma 7 Notations and definitions are given as above. Let (X, w) be a weighted subset of JH:.2 

supported by three circles. Then the following conditions {1) and {2) hold: 

{1) The weights w2 and w3 are given as below. 

(2.2) 

(2.3) 

According to Lemma 6 (2), any Euclidean tight 5-design of JH:.2 supported by 3 circles must 
satisfy either a2a3 + b2b3 = 0 or a2b3 - a3b2 = 0. In the following Subsection 2.1 and Subsection 
3.1.2 we disscuss the case a2a3 + b2b3 = 0 and the case a2b3 - a3b2 = 0 respectively. 

In this subsection we consider the case when a2a3 + b2b3 = 0 holds. So we have b3 = -~. Since 
?,~ = -1, in this case, the line passing through the point (a2 ,b2 ) and the origin (0,0) and the 
line passing through the point (a3 , b3 ) and the origin (0, 0) are perpendicular to each other. 

Since a 1 , a 2 , a3 > 0, b2b3 < 0 holds and we assumed a§+ b§ > a~+ b~ > 0, (2.2) implies 
b2(a~ + b~ - l) > 0 and (2.3) implies b3(a§ + b§ - l) < 0. So we have the following conditions 
between the parameters. 

If 1 > a§ + b§ > a~ + b~ > 0, then we have b2 < 0 and b3 > 0. 
If a§ + b§ > l > a~ + b~ > 0, then we have b2 < 0 and b3 < 0. 
If a§ + b§ > a~ + b~ > l, then we have b2 > 0 and b3 < 0. 

By assumption b2b3 = -a2a3 < 0 holds, hence we have the following two cases: 
case: 1 > a§ + b§ > a~ + b~ > 0, b2 < 0, b3 > 0 

and 
case: a§+ b§ > a~+ b~ > l, b2 > 0, b3 < 0. 

Hence we have b2 = a2 ~ or -a2~. Note that in this case we assumed that a2a3+b2 b3 = 0 

holds. 
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Case: a2a3 + b2b3 = O, b2 = a2~, (a2, a 3 > O, 1 > a1 > O, b2 > O, b3 < 0) 

In this case we will show that we have the following design: 

Theorem 8 Assume a2 > 0, 1 > a1 > 0, b2 > 0, a2a3 + b2b3 = 0 and b2 = a2jfiii;, then we 

have the fallowing design: 
(X, w), X = X 1 U X 2 U X 3, where 

X1 = { (1, 0), (-1, 0), (a1, J1 - ai), (-a1, -✓1 - ai)}, 

X2 = {(a2, b2), (-a2, -b2)}, 

X3 = {(a3,b3), (-a3,-b3)}, 
~-------

- ( _ ) 2a1 + 1 a2✓(1 - ai)(2a1 + 1) 
a3 - a2 1 a1 2 3 2' b3 = ------;c=====e=======' 

4a1a2 + 1 - 2a1 - 3al ✓4a1a~ - (2a1 + 3)ar + 1 

(a1 + 1)3(1 - 2a1) { (1 - 2a1)(a1 + 1)2 + 4a1an 2 

w2 = 4a~ ' w3 = 4(1 - a1)(2a1 + l)a~ ' 

Hence we must have O < a 1 < ½, a2 > 0, 

First we will show that a1 =/= 0 holds. So we assume a1 = 0. Then Lemma 7 (6) implies 

{Sa~ - (2 + v2)}a~ - (2 - v2)a~ = 0. 

Since a 2 , a3 > 0, we have Sa~ - (2 + v'2) > 0 and 

2- \/'2 
a = a 

3 2 Sa~ - (2 + \/'2)' 

However in this case (2.2) implies 

4 + 3\/'2 
W2 = - 16a~ < 0, 

which is a contradiction. Thus we must have a1 =/= 0 and 

((2a1 - l)(a1 + 1)2 - 4a1a~)a~ + a~(2a1 + l)(a1 -1)2 = 0 

holds. Since 0 < a1 < 1, (2.9) implies (2a1 - l)(a1 + 1)2 - 4a1a~ < 0 and we have 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 
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By assumption b3 = - ~, hence we have 

Then (2.2) and (2.3) imply 

(a1 + 1)3(1 - 2a1) 
W2 = 4 4 

a2 

Since w2 > 0, we must have 0 < a1 < ½- This completes the proof. 

Case: a2a3 + b2b3 = O, b2 = -~a2, (a2, a 3 > O, b2 < O, 1 > a1 > 0) 

In this case we have the following theorem. 

(2.11) 

(2.12) 

Theorem 9 Assume 1 > a1 > 0, a2 > 0, a2a3 + b2b3 = 0, and b2 = -/§,a2, then (X, w) is 

similar to the fallowing design. 

X 1 = { ( 1, 0), ( -1, 0), ( a1, ✓ 1 - ar) , ( -a1, -✓ 1 - ar) } , 

X2 = { a2 ( 1, -✓~ ~ :~) , a2 (-1, ✓~ ~ :J}, a2 > 0 

X3= {a3(1,~), -a3 (1,~) }, 

1 - 2a1 
a3 = a2(l + a1) 

(2a1 + l)(a1 - 1)2 - 4a1a~ ' 

(4a1a~ - (2a1 + l)(a1 - 1)2) 2 
W3=~--,--,----,-,---,-~ 

4aW - 2a1)(l + a1) ' 
~------

1 (2a1 + 1)(1 - a1)2 
0 < a1 < 2, 0 < a2 < (2.13) 

Proof: By assumption we have b3 = -~ and b2 = -a2/§,, hence b3 = a3✓--fji. Then 

Lemma 5 (5) implies 

(2ai - 1) { (2af - 4a1a~ - 3ai + l)a~ + a~(2a1 - l)(a1 + 1)2} = 0. (2.14) 

If a1 = 0, then Lemma 5 (6) implies 

2a~a~ + 2a~b~ - a~ - b~ = 0. (2.15) 

Then we have 

(2.16) 



63

which is a contradiction. Hence we must have a2 =/ 1 · 
Then (2.14) implies 

-{4a1a~ - (2a1 + l)(a1 - 1)2}a~ + a~(2a1 - l)(a1 + 1)2 = 0. 

Hence we have 4a1a~ - (2a1 + l)(a1 - 1) 2 > 0. And then we have the following: 

Therefore we have 0 < a 1 < ½ and a2 < (2a1 +l)(a1 -1)2 

4a1 

(2.17) 

In this subsection we consider the case case when a2b3-a3b2 = 0 holds. So we assume a2b3-a3b2 = 
0. Then we obtain the following theorem. 

Theorem 10 Assume a2b3 - a3b2 = 0 holds. Then we (X, w) is similar to the following design: 

1 1 
X1 = {(1, 0), (-1, 0), 2(1, V3), - 2(1, V3)}, 

X2 = {a2(l, -V3),a2(-l, V3)]}, 

X 3 = {a3 (1, -V3), a3 (-1, V3)}, 
1 1 

a2 > 2 > a3 > 0 or a3 > 2 > a2 > 0, 

1- 4a§ 
W2=-----

l6( a~ - a§)a~' 

4a~ - 1 
W3=-~~--

l6(a~ - a§)aj · 

Proof: By assumption we have a2b3 - a3b2 = 0. Hence b3 = ~- Then Lemma 5 (6) implies 

Hence we must have 

b2 = ± a2~_ 
a1 

If b2 = a2 ~~-a~, then Lemma 5 (3) implies Jl - ai = 0, which is a contradiction. 

(2.18) 

(2.19) 
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If b2 = - a2 ~~-ar, then Lemma 5 (3) implies 

(2.20) 

Hence we must have a1 = ½ and (2.2) and (2.3) implies 

1 - 4a~ 
W2=---~-

l6a§(a§ - aD 
(2.21) 

and 
4a§ - 1 

W3=-----
l6a~(a§ - aD 

(2.22) 

respectively. Since a2, a3, w2, w3 > 0, (2.21) and (2.22) imply (1- 4aD(4a§ - 1) > 0. Hence we 
must have a2 > ½ > a3 > 0 or a3 > ½ > a2 > 0. We also have b2 = --v'3a2, b3 = --v'3a3. This 
completes the proof. 1 

3 Euclidean tight 5-design of ffi.2 on 4 circles 

In this section we will give the classification of tight Euclidean 5-designs (X, w) supported by 4 
circles S;(r;), of radius r; > 0, l S i S 4. Let X; = X n S;(r;), 1 S i S 4. Let w(x) = w; for 
x EX; and i = 1, ... , 4. We may assume r1 = 1 and w1 = 1. Also, we may assume that Xis the 
union of the following four sets X;, i = 1, 2, 3, 4. 

X1 = {(1,0), (-1,0)}, 

X2 = {(a2, b2), (-a2, -b2)}, 

X3 = {(a3, b3), (-a3, -b3)}, 

X4 = {(a4,b4), (-a4,-b4)}, 

where a2, a3, a4 2'. 0, r; =a;+ b; =/= l (2 Si S 4), a§+ b§ >a~+ b~ >a~+ b~ > 0. 
Then similar as before (X,w) is a Euclidean tight 5-design of JR2 if and only if (X,w) satisfies 
the following equations 

(3.1) 

for x = (x1, x2), llxll 2 =Xi+ X§, h(x1, x2) E Harm£(1R2), 2j + £ S 5, £ 2'. 1. Similar as before we 
can show the following Lemma. 

Lemma 11 Definition and notation are given above. Then (X, w) is a tight Euclidean 5-design 
of JR 2 if and only if the fallowing {1), ... , ( 6) hold. 

{1) a2b2w2 + a3b3W3 + a4b4W4 = 0, 

{2) a2b2(a§ + b§)w2 + a3b3(a~ + bDw3 + a4b4(a~ + b~)w4 = 0, 



65

{3) (a~ - b~)w2 + (a~ - b~)w3 + (a~ - bDw4 + 1 = 0, 

(4) (a~ - b~)w2 + M - bi)w3 + (a! - b!)w4 + 1 = 0, 

(5) (ai + bi - 6a~b~)w2 + (ai + bj - 6a~bDw3 +(a!+ b! - 6a~bDw4 + 1 = 0, 

{6) a2b2(a~ - b~)w2 + a3b3(a~ - b~)w3 + a4b4(a~ - bDw4 = 0. 

Then we can show that a; > 0 holds for i = 2, 3, 4, and b; f= 0 holds for i = 2, 3, 4. 

3.1 Explicit formulae for the weight functions w 2 , w 3 , w 4 of the Eu-
clidean tight 5-design on 4 circles in JR2 

In this subsection we give the explicit formulae for the weight functions w2, w3 , w4 . Notation 
and Definition are as given before we have the folowing theorem. Note that by assumption 
a~ + b~ > a§ + b§ > a~ + b~ holds. 

Theorem 12 Let (X, w) be a tight 5-design supported by 4 circles. We assume w(x) = 1 for 
x E X1, w(x) = w;, for x E X;, i = 2, 3, 4. Then b2b3 > 0, b2b4 < 0 hence b3b4 < 0 and the 
following equalities for w2, W3, W4 fold. 

and satisfies 

a3a4b3b4(a§ + b§ - a~ - b~) W2=---,--~-~~--,-~ 
G(a2,a3,a4,b2,b3,b4) ' 

a2a4b2b4(a~ + b~ - a~ - b§) W3=--~~-~~-~ 
G(a2,a3,a4,b2,b3,b4) ' 

a2a3b2b3(a~ + b~ - a§ - b§) 
W4=--------­

Q(a2,a3,a4,b2,b3,b4) 

G(a2, a3, a4, b2, b3, b4) = a4b4(a2a3 + b2b3)(a2b3 - a3b2)(a~ + b~) 

-a2a3b2b3(a~ - bD(a~ + b~ - a~ - bD + a2a4b2b4(a~ - bD(a~ +@ 

(3.2) 

(3.3) 

(3.4) 

-a3a4b3b4(a~ - b~)(a~ + b~), (3.5) 

(3.6) 

3.2 Toward the classification of Euclidean tight 5-designs on 4 circles 
in JR2 

Here we note again that (X, w) is a weighted finite subset in JR2 and Xis supported by a union of 4 
circles and expressed in the following way. X = X 1 UX2 UX3 UX4 where X 1 = {(1,0), (-1,0)}, 
X2 = {(a2,b2), (-a2,-b2)}, X3 = {(a3,b3), (-a3,-b3)}, X4 = {(a4,b4), (-a4,-b4)}, where 
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a2 , a3 , a4 > 0 and a;+ bf = l (2 ::::; i ::::; 4), a~+ b~ > a~+ b~ > a~+ b~ > 0. Also w(x) = l for 
x E X1 and w(x) = w; for any x EX;, (2 :Si :S 4). 

In the previous subsection we gave a very explicit description of Euclidean tight 5-design on 
four circles in JR2 using all the 8 parameters a2 , a3 , a4 , b2 , b3 , b4 • In this section we will show that 
four parameters a2 , a3 , b2 , b3 determine all the Euclidean tight 5-design on four circles in JR 2 . 

Then we can show the following proposition 

Proposition 13 Lemma 11 (4), (5) and (6) are equivalent to the following (1), (2) and (3) 
respectively. 

(3) 

F4(a2,a3,a4,b2,b3,b4) 

= a2a3b2b3{ a~+ b~ - a~ - bDa! + b4{ a2ajb2 - a2a~b2 - b3(a~ + b~ - l)(a~ - b~)a3 

-a2b2b~(b~ - 1) }a!- a2a3b2b3{ a~+ b~ - a~ - bna~ - b4{ a2b2(a~ + b~ - b~)aj 

-b3(a~ + b~ - l)(a~ - @a~ - a2b2(a~ + b~ - bDa~ - b3(b~ - b~)(a~ + b~ - 1) x 
(a~ - @a3 - a2b2b~(b~ - l)(a~ + b~ - bD }a4 - a2a3b2b3b~(b~ - l)(a~ + b~ - a~ - b~)­

(3.7) 

Fs(a2,a3,a4,b2,b3,b4) 

= a2a3b2b3{ a~+ b~ - a~ - b~ }a!+ b4{ a2b2aj- a2b2(6b~ + l)a~ - b3(ai- 6a~b~ + bi 

-a~+ b~)a3 + a2b2b~(b~ + 1) }a! - a2a3b2b3{ (6b~ + l)(a~ + b~ - a~ - bD }a~ 

-b4{ a2b2(a~ + b~ - b~)aj - b3(ai - 6a~b~ + b~ - a~+ bDa~ 

-a2b2(6b~ + l)(a~ + b~ - b~)a~ - b3(b~ - b~)(ai - 6a~b~ + bi - a~ +@a3 

+a2b2b~(b~ + l)(a~ + b~ - b~) }a4 

+a2a3b2b3(b~ + l)(a~ + b~ - a~ - b~)b~. (3.8) 

(3.9) 

In the following, we divide the situation into two cases a3 = a2 , a3 =/ a2 and for each case we 
try to give the expression of the weights w2 , w3 and w4 with parameters a2 , a3 , a4 , b2, b3 and a4 . 
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Theorem 14 If a3 = a2 holds, then we must have a4 = a2, a~(b2 + b3 + b4) + b2b3b4 = 0, 
b~ > b~ > b~ > 0, and b2, b4 > 0 b3 < 0 or b2, b4 < 0, b3 > 0 holds. the following holds: 

(b2 + b3)2bl + (b2 + b3)(b~ - 5b2b3 + b~ + 3)b~ + { 2b2b3(b2 - b3) 2 + 3(b~ + bD }b4 

+b2b3(b2 + b3)(b2b3 + 3) = 0. (3.10) 

The weight functions are given as below: 

W1 = 1 
3(b3 + b4)b3b4 

w2 = (b2 - b4)(b2 - b3){(b3 + b4)b§ + (b4 + b2)b~ + (b2 + b3)ba} 

3(b2 + b4)b2b4 
w3 = (b3 - b2) (b3 - b4){ (b3 + b4)b~ + (b4 + b2)b~ + (b2 + b3)ba} 

3(b2 + b3)b2b3 

Proof: If a3 = a2, then Proposition 13 (3) implies 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

On the other hand by assumption we have a~+ b~ > a~+ b~ > a~+ b~, hence we have b~ > b~. 
Therefore we must have a2 = a4, hence a2 = a3 = a4 holds. This implies b~ > b~ > b~. Then 
Proposition 13 (1) and (2) imply 

F5(a2, a2, a2, b2, b3, b4) - F4(a2, a2, a2, b2, b3, b4) 

= 2a~b2b3b4(b3 - b4)(b2 - b4)(b2 - b3)(3a~ + b2b3 + b2b4 + b3b4), (3.15) 

and Proposition 13 (2) implies 

F5(a2, a2, a2, b2, b3, b4) + F4(a2, a2, a2, b2, b3, b4) 

= 2a~(b3 - b4)(b2 - b4)(b2 - b3){ (ai - aD(b2 + b3 + b4) + (3a~ - l)b2b3b4}. (3.16) 

Hence we have 

(3.17) 

and 

(b2 + b3)2bl + (b2 + b3)(b~ - 5b2b3 + b~ + 3)b~ + { 2b2b3(b2 - b3) 2 + 3(b~ + bD }b4 

+b2b3(b2 + b3)(b2b3 + 3) = 0. (3.19) 
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Here we note that b~ > b~ > b~, b2b4 > 0 and b3b4 < 0 hold. Hence we have b2b3 < 0. That is, we 
must have b2, b4 > 0, b3 < 0 or b2, b4 < 0, b3 > 0. 
Then (3.2), (3.3) and (3.4) imply (3.11), (3.12) and (3.13), respectively. 1 

In this case Proposition 13 (3) implies 

b2 _ (a~ - a~)b~ + (a~ - aDb~ 
4 - 2 2 . 

a2 - a3 
(3.20) 

(a2 a2)b2+(a2 a2)b2 
In the following we use the case b4 = 2 - 4 ~ •- 3 2 > 0 and show that there are in-

a2-a3 

finitely many tight Euclidean 5-design of JR2 with parameters a2, a3, a4, b2, ba- Note that here 
a2, a3 , a4 > 0. Here we asume b4 > 0, we must have b2, b3 < 0 (see Theorem 12). Then 
the condition F4(a2, a3, a4, b2, b3, b4) = F5(a2, a3, a4, b2, b3, b4) = 0 implies P4(a2, a3, a4, b2, b3) = 
P5(a2, a3, a4, b2, b3) = 0 respectively, where 

P4(a2, a3, a4, b2, b3) = [ a~a~b~ + a~a~b~b3 - a~afb2{ a~(b~ + 2b~) + 2(b~ - bD} - a2a~b~b3 x 

{ 3a~ - 2(b~ - l)(b~ - b~)} + a~a~b2{ 3a~b~ + 2a~(b~ - b~) + b~ - b~} + a2ajb3{ (2b~ + b~)a~ 

+2(b~ - b~M- (2b~ - 2b~ + l)(b~ - bDa~ - 2b~(b~ - l)(b~ - b~)} 

-a3b {a8b2 + (2b4 - 2b2 + l)(b2 - b2)a4 - 2b2(b2 - l)(b2 - b2)a2 - b2b2(b2 - 1)2(b2 - b2)} 32 23 3 3 2 3 2 3 3 2 3 2 23 2 2 3 

-a2b3{ agb~ + 2(b~ - bDa~ - (b~ - b~)ai - 2b~(b~ - l)(b~ - bDa~ - b~b~(b~ - l)(b~ - bD x 

(b~ - 2b~ + 1) }a~+ a~b2b~(b~ - l)(b~ - b~)(2a~ - 2a~ - 2b~ + b~b~ +@a3 + a~bM(b~ - 1)2 x 

(b~ - b~)] a!+ (a2b3 + a3b2) [ - a~a~b~ + 2a2b2b3(a~ + b~ - l)(a~ - b~)af + a~{ a~(b~ - bD 

+2a~(b~ + bD + 2bib~- 2b~b~- b~ }a~ - 2a2b2b3(a~ + l)(a~ + b~ - l)(a~ - @a~ 

+{a8b2 - 2(b2 + b2)a6 - (2b2b2 + l)(b2 - b2)a4 - 2b2b2(b2 + b2 - 2)a2 - b2b2(b2 - 1)2 x 23 2 3 2 23 2 3 2 23 2 3 2 23 2 

(2b~ - bD }aj + 2a2b2b3(a~ - bj + bD(a~ + b~ - l)(a~ - b~)a~ - b~a~{ 2ai(bj - bD - 5b~bj 

+5b~b~ - 2a~b~b~ - a~ - 2a~b~(b~ - 2) + 4b~b~ - 4b~ - 3b~b~ + 3bj }a~+ 2a~b2b~(b~ - 1) x 

(a~+ b~ - l)(a~ - @a3 - aib~b~(b~ - 1)2 (b~ - 2b~)] ai 

-b~b~(a2b3 - a3b2)(a2b3 + a3b2)2{ (b~ - l)a~ - (b~ - l)a~} 
2
, (3.21) 
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and 

A(a2, a3, a4, b2, b3) = [ a~aib~ + a~a~b~b3 - a~b2{ (b~ + 2bDa~ + 2(b~ - b~) }aI - a2b~b3{ 3a~ 

-12(b~ - bDa~ + 2(b~ + l)(b~ - bD }a~+ a~b2 { 3a~b~ - 2(6b~ - 1) (b~ - b~)a~ + { 12(3b~ + l)b~ 

+l }(b~ - b~) }a~+ a2b3{ (2b~ + b~M - 2(6b~ - l)(b~ - b~)at- (b~ - b~){36b~b~ - 2b~(b~ - 5) 

+l }a~+ 2b~(6b~ + l)(b~ + l)(b~ - bD }ai 

-b2{ a~b~ - l2b~(b~ - b~)a~ - {2bj - 2(18b~ + 5)b~ - 1 }(b~ - b~)ai 

-2b~(b~ + l)(b~ - b~)(6b~ + l)a~ - b~b~(b~ + 1)2(b~ - bD }a~ 

-a2b3{ a~b~ + 2(b~ - b~M - (36b~b~ + l2b~ + l)(b~ - b~)a~ + 2b~(6b~ + l)(b~ + l)(b~ - b~)a~ 

-b~b~(b~ + l)(b~- @(2b~- b~ + 1) }a~- a~b2b~(b~ + l)(b~ - b~){ 2at- 2(6b~ + l)a~ 

+b~(2b~ - b~ + 1) }a3 + a~b~b~(b~ + 1)2 (b~ - b~)] a! 

+(a2b3 + a3b2) [ - ata~b~ + 2b2b3a2{ ai - (6b~ + l)a~ + b~ + b~ }aI 

+a~{ (b~ - b~M + 2 ( (12b~ + l)b~ + b~) a~ - b~(38bi + l4b~ + 1) }a~ 

-2a2b2b3(a~ + 6b~ + l){ a~- (6b~ + l)a~ + b~ + b~ }a~+ { a~b~ - 2(b~ + l2b~b~ + bDa~ 

+(38b~b~ - l)(b~ - bDa~ + 2b~b~ ( (12b~ + 7)b~ + 7b~ + 2) a~ - b~b~(b~ + 1)2(2b~ - bD }ai 

+2a2b2b3 ( (6b~ + l)a~ + bj + b~) { at - (6b~ + l)a~ +bi+ b~ }a~+ a~b~{ (38bj + l4b~ + l)ai 

-2b~ ( (12b~ + 7)b~ + 7b~ + 2) a~+ b~ ((5b~ + 4)b~ + 4b~ + 3) (b~ - bD }a~ 

-2b2b~(b~ + l)a~{ ai - (6b~ + l)a~ +bi+ b~ }a3 - b~b~(b~ + 1)2 (b~ - 2b~)ai] a~ 

-b~b~(a2b3 - a3b2)(a2b3 + a3b2)2{ a~(b~ + 1) - a~(b~ + 1)} 2 (3.22) 

Both of the polynomials P4(a2, a3, a4, b2, b3) and A(a2, a3, a4, b2, b3) are, as polynomials respect to 
a42 , of order 2. Therefore we can determine the conditions to have tight Euclidean 5-designs on 
4 circles in JR2 . Thus we can show explicitly that there exist continuously many tight Euclidean 
5-designs of JR2 , that was shown in the paper by Bannai-Bannai-Suprijanto ([4], 2007). Though, 
here, we are not trying to give the list of explicit solutions for the formulae given above. 
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