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Classification of the tight Euclidean
5-designs in R2

Etsuko Bannai (3RA1%F)
TTHMAKE (GRE)

1 Introduction

The concept of Euclidean t-design stated below was defined in the paper by Neumaier and Seidel
in 1988 ([10]) for a weighted finite set (X, w) in the n dimensional Euclidean space R™.

Definition 1 (Euclidean design, Neumier-Seidel (1988) [10]) Let (X, w) be a weighted fi-
nite set with a positive weight function w defined on X. Assume X is supported by a union
S=51U---US, of p concentric spheres of R" centered at the origin. Let r; be the radius of S;
for 1 <i<p. Then we call (X,w) a Euclidean t-design if the following condition

p
i=1

is satisfied for any polynomial f(xq,xs,. .., z,) with n variable xq,xs, ..., x, of degree al most t.
Here we define w(X;) = Y cx, w(z) and |S;| is the surface area of S; for 1 <i < p.

w|(5i(‘2) /wesl f(z)doi(x) = Zw(r)f(x) (1.1)

reX

Delsarte and Seidel ([7]) studied more precise properties of Euclidean design on a union of several
spheres centered at the origin. For more information please look at the articles [3] ( Ei. Bannai,
Et. Bannai, M. Hirao and M. Sawa), [4] (Ei. Bannai, Et. Bannai, D. Suprijanto), and [5] (Et.
Bannai). They developed the arguments farther and gave more interesting examples.

In this talk we try to give the classification of tight Euclidean 5-design of two dimensional
Euclidean space R

First we consider the general situation, i.e., (X, w) is a weighted finite set of R”. For a vector
= (21,29,...,%,) € R", we define norm of z by ||z|| = /23 + 22+ - +22. Let X be a finite
set in R™ supported by p concentric spheres S, ..., S, centered at the origin 0 with positive radius
T1,72,...,rp, respectively. Let w(x), € X, be a positive weight function defined on X. Thus we
consider a positive weighted finite set (X, w) supported by a union of p concentric spheres. Let
S=5U---US,. Let e5 € {0,1} be defined by eg =1if 0 € S and 5 = 0 otherwise.

Let P(R™) = R[zy, xa,. .., x,) be the vector space of polynomials in n variables 1, xa,. .., x,
over the field of real numbers. Let Hom,(R™) be the subspace of P(R™) which consists of homoge-
neous polynomials of degree £. Let Py(R") = @._, Hom;(R"). Let Harm(R") be the subspace of
P(R™) which consists of all the harmonic polynomials. Let Harm,(R™) = Harm(R") N Hom,(R").
Let P;(R"™) = @Bii@/ Hom;(R™). Let P(S), Pi(S), Hom,(S), Harm(S), Harm,(S) and P;(S) be



the sets of corresponding polynomials restricted to the union S. For example P(S) ={f|s | f €
PR™}.

A finite subset X C R" is said to be antipodal if —z € X holds for any x € X. Let X* be a
subset of X satisfying X = X* U (=X*), X* N (=X*) = 0, where —X* = {—2 | € X*}. Also
we define A(X) ={ |lz —y| | z,y € X, z # y}.

The following basic facts are well known ([6], [7], see also [1], [2], [5]):

dim(P,(R")) = (n + 6), dim(P; (R") = (n e 1)

e

Ap es)-1 n+e—1—1 n+e
dim(P.(S) =es+ Y ( > < ( ) for p < [¢££5],
i=0

e—1

din1(73€(5))=i(n+e_i_l> _ (”:e) for p > [£25] 4 1

e—1
i=0

To study Euclidean designs the following theorem, proved by Neumier and Seidel, is most
fundamental and important.

Theorem 2 (Neumier and Seidel ([10],1988)) Let (X, w) be a weighted finite subset in R™
which may possibly contain the origin, 0 € X. Then the following (1) and (2) are equivalent:

(1) (X,w) is a Buclidean t-design.

(2) For any polynomial f € ||z||% Harmy(R™) with 1 < ¢ < t, 0 < j < [54] the following holds:

> w(w)f(u) = 0.

Before Neumier and Seidel gave the definition of Euclidean design as in above, there were
works on cubature formulas in analysys. Among them were works by H. M. Moller. He studied
cubature formulas and gave a lower bound of the number of points contained in a cubature
formula. The following is a well known theorem proved by Moller written in terms of Euclidean
designs.

Theorem 3 (Moller [8, 9] (1976, 1979)) Let (X, w) be a Euclidean t-design in R" supported
by a union S of p concentric spheres centered at the origin. Then the followings hold.

(1) If t = 2e, then | X| > dim(P.(S)).
(2) If t =2e+1 and e is odd, or e is even and 0 € X, then | X| > 2dim(P*(9)),
(3) Ift =2¢+1 and e is even and 0 € X, then |X| > 2dim(P:(S)) — 1.

Definition 4 If an equality holds in the above condition, then we say the weighted pair (X, w) is
a tight Fuclidean t-design on a union of p concentric spheres.

o7



98

Remark For a Euclidean t-design (X, w), if origin 0 & X, then. consider {0} as a circle of
radius 0 centered at the origin and define the weight with w(0) = «, with a positive real number
a. Then it is easy to see that (X U{0},w) is also a Euclidean t-design. Hence in the following we
consider the case when FEuclidean t-design is supported by a union of spheres with positive radii.

For the case t is an odd integer, 2e + 1, it is known that any tight Euclidean (2e + 1)-design
(X, w) is antipodal and its weight function is constant on each shell. For more information see
the papers [3], by Eiichi Bannai, Etsuko Bannai, Hirao and Sawa, and also [8] and [9], by Méller.

Bannai-Bannai-Suprijanto [4] proved that tight Euclidean designs are not rigid so that they
are deformable. So there exist infinitely many Euclidean tight designs if the number of the sphere
supporting them are large. So from the combinatorial point of view it maybe interesting to study
for the cases p < [<422] + 1. That means just up to when p just attains dim(P.(S5)) = ("}) =
dim(P.(R™)).

In this talk we present the classification of Euclidean tight 5-design (X,w) of R%. If X is
supported by a unit circle, then X is a spherical 5-design and | X| > 6. If | X| = 6, then X is the
set of the vertices of regular 6 gon inscribed in a circle, which is a tight spherical 5-design. For
the case X is supported by a union of two concentric circles, it was shown that X consists of 8
vertices of a union of two squares. So, if p = 2, | X| attains the maximal cardinality.

In the following we go back to the general situation and give the classification of tight Euclidean
5-design (X, w) of R? with 0 ¢ X. By Theorem 3 we know that | X| = 2dim(P;(R?) = 8 and X
consists of four antipodal pairs. Thus the number of circles supporting X is at most 4. Without
loss of generality we may assume one of them is the unit circle and (1,0), (-=1,0) € X. To
investigate the structure of tight 5-designs we need to use explicit information of the vector space
of harmonic polinpmials. dim(Harm;(IR?)) = 2 and it is well known that the basis of Harm;(R?)
for i =1,2,...,5 are given as below.

Harm, (R?) : 2y, 2 Harmy (R?) @ 229, 27 — 22
Harmg(R?) : 2% — 3xy23, 23 — 322wy Harmy(R?) : 2] + 25 — 62203, x125 — 2iay;

Harms(R?) : 2} — 102323 + 52103, 5rj2e — 100723 + 15 :

For the case p = 1, it is known that X is similar to the set of the six vertices of the regular
6-gon inscribed in the unit circle. For the case p = 2, it is shown in [5], that X is similar to a set
of 8 vertices of a union of 2 squares as given below

X = Xl U)(z7 X1 = {i(l,O), i(O,l)}7

X, = {i@ (%%)  try <%f%>} P >0, 1A L

Thus X is on the unit circle and X5 is on the circle of radius r5 # 1. The weight function is
defined by w(z) =1 for z € Xy and w(x) = = for z € X,.
2

In the following we give the classification for the case p = 3 and p = 4.



2 Euclidean tight 5-design of R? on 3 circles

In this subsection we will give the classification of the Euclidean tight 5-design for the case p = 3.
Assume that a finite weighted set (X, w) is a tight Euclidean 5-design of R? supported by 3 circles.
It is known that X is an antipodal set and | X| = 2dim(P»(R?)) = 8 (see [5]). We may assume
X = X, U X, U X3, where X; is a 4 points set on the unit circle of R? and | X,| = | X3 = 2. So
without loss of generality we may assume

X, = {(1,0), (—1,0), @hﬂ) ., (—%—ﬂ)}

Xy = {(ag, by), (—az, —b2)},
X3 = {(a3,b3), (—as, —b3)},

where 1 > a; >0, ay, a3 >0, a?+b? #1 (i =2, 3), a3+b3 > a2 +b3 > 0. By definition, (X, w)
is a Euclidean 5-design if and only if (X, w) satisfies the following equations

Z h(x1,x9) + wo Z llz||Zh(zy, 22) + ws Z |z (21, 20) = 0, (2.1)
reX) zeXs reX3
for x = (z1,22), ||z||* = 23 + 23, h(x1,29) € Harm,(R?), 2j +¢ < 5, £ > 1. Then, since X
is antipodal, (2.1) is automatically satisfied by any harmonic polynomial h(zy,x2) of odd order.

Hence we only need to check harmonic polynomials of even order, i.e., harmonic polynomials

h(z1,2) = 2122, Taxa||2||?, 22 — 23, (23 — 23)||2||?, =] + x5 — 62}x3, x125 — xz,. Then we can

prove the following Lemma 5 and Lemma 6.
Lemma 5 Notations and definitions are given above, a positive weighled set (X, w) is a tight

Euclidean 5-design of R? supported by three circles if and only if the following conditions (1), (2),
(8), (4), (5) and (6) hold.

(1) w2a2b2 + wgagbg + apy/ 1-— a% =0.

(2) aghy(a3 + b3)wsy + azbs(ai + b3)ws + ayy/1 —a? = 0.

(3) (a3 — b3)wy + (a3 — b3)ws + 247 = 0.

(4) (a3 — ba)wsy + (a3 — b3)ws + 243 = 0.

(5) (a3 — Gasbs + by)wa + (a3 — 6a3b3 + b3)ws + 2(4at — 4a3 + 1) = 0.
(6) (a3 —

b2)ws — ar(1 — 2a2)4/1 — a? = 0.

6 agbg(ag - b%)wz + asbs(a

Lemma 6 Definition and notation are as defined above. Let (X, w) be a tight Euclidean 5-design
of R? supported by 3 circles as given above. Then the followings hold.

(])1>CL1>O,

(2) as > 0 and by # 0.
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(3) az > 0 and by # 0.

Then we can show the following lemma which describes the property of tight 5-design of R?
supported by three circles.

Lemma 7 Notations and definitions are given as above. Let (X,w) be a weighted subset of R
supported by three circles. Then the following conditions (1) and (2) hold:

(1) The weights wy and ws are given as below.
ar(ai + b2 —1)4/1 — a?
Wz = 2, 12 272\ (2.2)
agby(a3 + b5 — aj — b3)

_ai(a3 + b5 — 1)y/1 — a3

agbg(a3 +03 — a2 —03) "

w3 =

(2) (azas + babs)(azbs — azbs) = 0.

According to Lemma 6 (2), any Euclidean tight 5-design of R? supported by 3 circles must
satisfy either asas + bobs = 0 or asbs — azbs = 0. In the following Subsection 2.1 and Subsection
3.1.2 we disscuss the case asas + bobs = 0 and the case asbs — azbe = 0 respectively.

2.1 Case aszaz + bbs =0

In this subsection we consider the case when asas + bobs = 0 holds. So we have by = — ”2;13. Since
3232 = —1, in this case, the line passing through the point (ag,b9) and the origin (0,0) and the
line passing through the point (as, b3) and the origin (0, 0) are perpendicular to each other.

Since ay, az, az > 0, bybs < 0 holds and we assumed a3 + b3 > a2 + b2 > 0, (2.2) implies
ba(aZ + b2 — 1) > 0 and (2.3) implies b3(a3 + b3 — 1) < 0. So we have the following conditions
between the parameters.

If 1 > a2 + b2 > a2 + b2 > 0, then we have by < 0 and bz > 0.

If a3+ b3 > 1 > a3 + b2 > 0, then we have by < 0 and by < 0.

If a3 + b3 > a3 + b3 > 1, then we have by > 0 and b3 < 0.
By assumption bybz = —asaz < 0 holds, hence we have the following two cases:

case: 1 >ad+03>a3+b3>0,b,<0,b3>0
and

case: a3 + b3 > a3 +b3 > 1, by >0, by < 0.

2 2 _ /1—a2 —a2_}p2 /1—a2
We also have wy = alasths DV and ws = alasb)v1-a (see (2.2) and (2.3) respectively).

asb (@F-4¥ a3 13) asbs (@2 B~ %)

Then (2.1) with j = 0 and h(zy, x2) = 27 — 23, implies

(b3 — a2)\/1 — a} + 2a,a5by = 0. (2.4)

Hence we have by = as 1121 or —agy / }fgi . Note that in this case we assumed that asaz+bsbz = 0

holds.



Case: asas + bybs = 0, by = az, /L?Zi’ (a2, a3 >0, 1> a; >0, by >0, bz <0)

In this case we will show that we have the following design:

Theorem 8 Assume ay > 0, 1 > ay > 0, by > 0, asas + bobs = 0 and by = ay then we

have the following design:
(X,w), X =X;UX,U X3, where

X, = {(1,0)7(—1,0)7(@7«/1—a%),(—al,—\/l—a%)},
Xy = {(02752)7 (*(127 *bz)} by = CLQ\/ 1_7_317

Xz = {(as,b3), (—as, —b3)},

a asy/(1 —a?)(2a, + 1)
a3=(1,2(1(1,1)\/ 2a 41 2v/(1—ai)(20; +1)

dara3 +1 — 2a3 — 3a3’ - Vaa — (2a, +3)al + 1

by =
(@ +1*(1—2a) {1 -2a)(a +1)° +daia3}’
4a} ' 41— a1)(2a; + 1)ad '

l—ay
1+ay’

2 = 3=

Hence we must have 0 < a1 < %, as >0,

(247 — D){((2a1 — 1)(a1 + 1)* — 4a1a3) a3 + a3(2a1 + 1)(ay — 1)*} = 0. (2.5)
First we will show that a; # % holds. So we assume a; = % Then Lemma 7 (6) implies
{8a3 — (2+ V2)}ad — (2 — V2)a3 = 0. (2.6)
Since ay, az > 0, we have 8a3 — (2 +v/2) > 0 and
2-V2
as = ag{| ————=. 2.7
iy ey (2.7)
However in this case (2.2) implies
4+3/2
=—— 2.
w2 16@% < 07 ( 8)
which is a contradiction. Thus we must have a; # % and
((2a; — 1)(ay +1)* — daya3)a3 + a3(2a, +1)(a; — 1)* =0 (2.9)

holds. Since 0 < a; < 1, (2.9) implies (2a; — 1)(a; + 1)? — 4a,a3 < 0 and we have

2&1 +1
= 1-— . 2.10
as (l?( (ll)\/4ala% — (2(11 — 1)((11 + 1)2 ( )
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azas
ba

, hence we have

(2a1 +1)(1 — a})
by = — . 2.11
s a2\/4a1a§ —(2a1 +3)a? +1 ( )

By assumption b3 = —

Then (2.2) and (2.3) imply

(a1 + 1)3(1 — 2ay) {(1 = 2a1)(ay + 1)* + 4aya3}

Wy =-~—-"———= and w3= 2.12
’ 4a} ’ 41— ay)(2a; + 1)a3 (2.12)
Since we > 0, we must have 0 < a; < % This completes the proof. 1
Case: asas + b2b3 = 0, b2 = —1/11_31(12, (az, as > O, b2 < 0, 1 > ap > O)
In this case we have the following theorem.
Theorem 9 Assume 1 > a; > 0, as > 0, asaz + bebs = 0, and by = — }fji as, then (X, w) is
similar to the following design.
Xl = {(170) (_170)7 (ah \/ 11— a’%) ) (_ah Y 1- (l%) } )
/1 /1
Xo=<ay 1, - ﬂ ,as [ —1, ﬁ , az>0
1-— ay 1-— ay
1- ay 1- ay
X3 = 1,4/ — 1,4/
3 {a3< ) 1_'_“1)7 a;;( ) 1+a1)}’
1-— 2@1
= 1
as 612( + al)\/(?al + 1)(&1 . 1)2 — 4(11&% )
(1—a)?2a, + 1) (4a1a3 — (2a1 + 1)(ay — 1)2)*
Wy =-——"—""——2 w3 =
: 4al r 1031 =2a)(1 +ay)
1 (2(11 + 1)(1 - (1,1)2
- -_ 2.1
O<a1<2,0<a2<\/ 2, (2.13)
Proof: By assumption we have b3 = —“i—;“ and by = —as }fgi, hence b3 = ag };Zi Then
Lemma 5 (5) implies
(2a] — 1) {(2a} — 4a1a3 — 3a] + 1)aj + a3(2a; — 1)(as + 1)*} = 0. (2.14)
Ifa; = %, then Lemma 5 (6) implies
2a3a% 4 2a2b3 — a% — b3 = 0. (2.15)
Then we have
44 3v2
Wy = _(4+3v2) <0, (2.16)

16a3



which is a contradiction. Hence we must have ag # %
Then (2.14) implies

—{4a1a3 — (2a1 + 1)(ay — 1)*}a2 + a2(2a; — 1) (a7 + 1)? = 0. (2.17)
Hence we have 4a;a3 — (2a; + 1)(a; — 1)> > 0. And then we have the following:
(1 — a1)3(2a1 + 1)
4a} ’
(4a1a3 — (2a1 + 1)(ay — 1)2)2
4a3(1 — 2a1)(1 + ap)

o (1 + ) 11— 2&1
s =2 “ (2a1 + 1)(a; — 1)%2 — daja3’

Wy =

w3 =

—1)2
Therefore we have 0 < a; < % and ay < |/ Zut@-1?

2.2 Case a2b3 — (13b2 =0

In this subsection we consider the case case when asbs—asby, = 0 holds. So we assume asbs —asby =
0. Then we obtain the following theorem.

Theorem 10 Assume asbs — agby = 0 holds. Then we (X, w) is similar to the following design:

1
X, = {(1,0),(—1,0)75 )
X2 = {a2(17 7\/3)70“2(717 ﬁ)]}:
X = {as(1,—V3),a3(—1,V3)},
1 1
a2>§>a3>0 or a3>§>a2>0,
1 74a§
Wy = ——5—o s
> 7 16(a2 — a2)ad’
4a3 —1
W3 = ——5——Fs——.
T 16(a3 — ad)a3
Proof: By assumption we have asbs — azby = 0. Hence b3 = % Then Lemma 5 (6) implies
aZa3 + albi — a3 = 0. (2.18)

Hence we must have

1— 2
by = 4+ B2V T4 (2.19)

ay

a: 7(12 . . . . . .
If by = =V ) , then Lemma 5 (3) implies y/1 — a2 = 0, which is a contradiction.

ai

4a; ° 1
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Tf by = — 2V

, then Lemma 5 (3) implies

(2a; — 1)(2a; + 1)1/1 — a2 = 0. (2.20)

Hence we must have a; = £ and (2.2) and (2.3) implies

1 — 4a3
= 2.21
e 16a3(a3 — a2) (2.21)
and
402 — 1
ws % (2.22)

~ 16a3(a3 — a3)
respectively. Since ay, az, wa, wy > 0, (2.21) and (2.22) imply (1 — 4a2)(4a3 — 1) > 0. Hence we
must have ay > % > ag > 0 or ag > % > ay > 0. We also have by = —/3as, by = —v/3as. This
completes the proof. 1

3 Euclidean tight 5-design of R? on 4 circles

In this section we will give the classification of tight Euclidean 5-designs (X, w) supported by 4
circles S;(r;), of radius 7, > 0, 1 < i < 4. Let X; = X N Si(ry), 1 <i < 4. Let w(z) = w; for

r € X;and i =1,...,4. We may assume r; = 1 and w; = 1. Also, we may assume that X is the
union of the following four sets X;,¢ = 1,2,3,4.

X; ={(1,0), (-1,0)},

Xo = {(az,b), (—az, —b2)},

X3 = {(as,b3), (—as, —b3)}

X4 ={(a4,b4), (—as, —ba)},

where ag,az,as > 0,77 =al + b7 #1 (2<i<4),a3+b3 >al+b3>al+b3>0.
Then similar as before (X,w) is a Euclidean tight 5-design of R? if and only if (X, w) satisfies
the following equations

> by, wa) +wa Y (P Ry, w2) + ws Y (P Ay, x2) +wa Y [2l[Ph(wy, x2) =0,
reX reX>2 reX3 reEXy

(3.1)

for @ = (z1,22), ||2]|* = 23 + 2%, h(x1,22) € Harmy(R?), 2j + ¢ <5, ¢ > 1. Similar as before we
can show the following Lemma.

Lemma 11 Definition and notation are given above. Then (X, w) is a tight Euclidean 5-design
of R? if and only if the following (1), ..., (6) hold.

(1) asboyws + azbsws + asbsws = 0,

(2) agbg(ag + b%)w2 + agbg(ag + bg)w3 + (14()4((1?1 + bZ)w4 =0,



(3) (a% — b%)wz + (a% - bé)uﬁ; + (aj - bZ)w4 +1= 0,
(4) (a3 = by)wa + (a5 — b)ws + (aj — bp)ws +1 =0,
(5) (a3 + by — 6a2b3)wy + (ai + bs — 6a3b3)ws + (ai + b} — 6a3b2)ws +1 =0,

(
(6) agbg(ag — b%)wg + a3b3(a§ — b%)ws + a4b4(a§ - bi)w4 =0.

Then we can show that a; > 0 holds for ¢ = 2,3, 4, and b; # 0 holds for i = 2, 3, 4.

3.1 Explicit formulae for the weight functions wy, wsz, w4 of the Eu-
clidean tight 5-design on 4 circles in R?
In this subsection we give the explicit formulae for the weight functions wsy, ws, wy. Notation

and Definition are as given before we have the folowing theorem. Note that by assumption
a3 + b3 > a + b3 > a3 + b3 holds.

Theorem 12 Let (X,w) be a tight 5-design supported by 4 circles. We assume w(z) = 1 for
x € Xy, w(x) = w;, forx € X;, i = 2,3,4. Then babs > 0, baby < 0 hence bsby < 0 and the
following equalities for wo, ws, wy fold.

a3a4bsba (0 + b3 — ai — b)

Y = 3.2
e G(a27a37a47b27b37b4) ' ( )
ws = (12&41)2()4(0/421 + bz - a% — b%)7 (33)
G((JQ, asz, Gy, 627 b37 b4)
Wy = agagbzbg(ag + b; — (L% — b%) (34)
G(a27 as, 4y, b?? b37 b4)
where G(ag, as, ayg,ba, by, by) is defined as below:
G(ag, az, as,ba,bs, by) = asbs(asaz + bobs)(ashy — azby)(aj + b3)
—agazbaby(al — b3) (a2 + b2 — a2 — b2) + agasbaby(a2 — b3) (a3 + b3)
—azasbsby(a3 — b)(a3 + b3), (3.5)
and satisfies
G(a27a37a47b27b37b4) < 0. (36)

3.2 Toward the classification of Euclidean tight 5-designs on 4 circles
in R?
Here we note again that (X, w) is a weighted finite subset in R? and X is supported by a union of 4

circles and expressed in the following way. X = X; U X, U X3U X, where X; = {(1,0), (-1,0)},
Xy = {(az,by), (—ag,—by)}, X5 = {(as,b3), (—as,—bs)}, Xy = {(as,bs), (—as, —bs)}, where
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as, ag, as > 0and a? +0? =1 (2 <i<4), a3 +b03> a2+ >al+b>0. Alsow(z) =1 for
x € X and w(z) = w; for any x € X, (2 <1i<4).

In the previous subsection we gave a very explicit description of Euclidean tight 5-design on
four circles in R? using all the 8 parameters as, as, ay, by, bs, by. In this section we will show that
four parameters as, as, by, by determine all the Euclidean tight 5-design on four circles in R?.

Then we can show the following proposition

Proposition 13 Lemma 11 (4), (5) and (6) are equivalent to the following (1), (2) and (3)
respectively.

(Z) F4(a2,a3,a4,b2,b3,b4) = O, where

Fy(as, az, as, by, by, by)
= asazbobs{aj + b3 — a3 — b3 pat + bs{asazbs — asazbs — by(aj + b3 — 1) (a3 — b3)as
—asbab3 (b3 — 1) faf — asasbobs{a3 + b3 — a3 — b3 baj — ba{asbs(a3 + b3 — b7)ay
—by(a3 + b2 — 1) (a2 — b3)ad — agba(ad + b3 — b2)a2 — by(b3 — b3) (a3 + b2 — 1) x
(a3 — b3)as — asbab3(b3 — 1) (a3 + b — b]) bas — asasbabsbi(b; — 1) (a3 + b3 — a3 — b3).
(3.7)
(2) Fs(az,as, aq,be, bz, by) =0, where

F5(a27 a3z, ay, b27 b37 b4)

_ agagbgbg{ag Rk bg}ag + b4{a262a§ ~ b (662 + 1)a — by(ad — 6262 + b

a2 4 b2)as + anbob(b2 + 1)}@; - a2a3bzbg{(6bz 1)@ B —ad b§>}a3

_b4{a2b2(ag 82— )t — by (ad — 62+ B — o + B2)a

—agby(6b3 + 1) (a5 + by — bY)a3 — bs(b — b7)(ay — 6ashy + by — a3 + b3)as

+agbob3 (b3 + 1) (a3 + b3 — bi)}a4

+agasbobs (b2 + 1) (a2 + b2 — a2 — b2)b2. (3.8)
(3)

(a3 — a3)b + (a3 — ag)b; + (ai — az)b; = 0. (3.9)

In the following, we divide the situation into two cases az = ao, az # as and for each case we
try to give the expression of the weights ws, w3 and w4 with parameters as, as, ay, ba, by and ay.



Case: az = as:

Theorem 14 If a3 = ay holds, then we must have a; = az, a3(by + bz + by) + babsby = 0,
b3 > b2 > b2 >0, and by, by > 0 by < 0 or by, by < 0, by > 0 holds. the following holds:

(ba + bs)2b3 + (by + bs) (b3 — Bbobs + b2 + 3)b3 + { 2babs(bs — bs)? + 3(b2 + b3) }ba
bobs (s + by) (babs + 3) = 0. (3.10)

The weight functions are given as below:

w; =1
= R ST s O T B T T 1
= T 1 (TR O TR 12
T (s — ba) (b1 — 2){ (s ?jr(z;l_’%bib(zbl;r b2)b3 + (b2 + b3)bi} (3.13)
Proof: If ag = ay, then Proposition 13 (3) implies
(a3 — a3) (0 — b3) = 0. (3.14)

On the other hand by assumption we have a3 + b3 > a2 + b3 > a3 + b%, hence we have b2 > b3.
Therefore we must have ay = aq, hence ay = a3 = a4 holds. This implies b3 > b2 > b3. Then
Proposition 13 (1) and (2) imply

F5(ay, az, az, by, by, by) — Fy(az, az, az, by, bs, by)
— 22babsba(by — ba)(bs — ba)(bs — bs) (303 + babs + babs + baby), (3.15)

and Proposition 13 (2) implies

F{,(ag, az, 4y, bg, bg7 b4) + ]‘74((127 ag, 4y, bQ, bg, b4)
= 2@%(()3 — b4)(b2 — b4)(b2 — bg){(ag - ag)(bz + b3 + b4) + (3(1% - 1)b2b3b4} (316)

Hence we have
@ = — 5 (boby + by + buby), (3.17)
and
(by + by + by)as (a2 — 1) — babsba(babs + baby + bsby 4+ 1) = 0. (3.18)
Hence we have babs + bsby + bybs < 0. Then (3.18) implies

(ba + b3)?b + (ba + b3) (b3 — Bbabs + b3 + 3)b] + {2bab3(by — bs)? + 3(b3 + b3) }ba
+bybs(by + bs) (bobs + 3) = 0. (3.19)
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Here we note that b3 > b2 > b2, baby > 0 and bsby < 0 hold. Hence we have bybs < 0. That is, we
must have by, by > 0,03 < 0 or by, by < 0,b3 > 0.
Then (3.2), (3.3) and (3.4) imply (3.11), (3.12) and (3.13), respectively. 1

Case az # as:

In this case Proposition 13 (3) implies

o (03— i + (0} — a3 520
4= 2 2 : :
a; —ag
In the following we use the case by = % > 0 and show that there are in-

(lg*[l,
finitely many tight Euclidean 5-design of R? with pardameters as,as, ays,ba, b3. Note that here
as,az,aqy > 0. Here we asume by > 0, we must have by, b3 < 0 (see Theorem 12). Then
the condition F4(a27a37a4,b2,b3,b4) =S Fg,(a27a3,a4,b27b37b4) =0 iII]pliGS P4(a27a3,a4,bg7b3) =S
Ps(ag, ag, aq, by, b3) = 0 respectively, where

Py(as, as, ag, by, bs) = {aﬂ%g + ajaibibs — aQagbg{aQ(bZ +2b3) + 2(b3 — bg)} — aya3bibs x
{3a;* — 202 — 1) (b3 — bg)} + a2a5bg{3a2b2 + 2a3(b3 — b2) + b2 — b: } + aQadbg{(ng +b3)a$
+m@f@@f@@f%aux@f@@fma@fn@f@@

aibz{aibé + (205 — 205+ 1)(05 — bg)a — 2b5(b5 — 1)(b5 — bg)as — b3b3 (b5 — 1)*(5 — b%)}

fazbs{aébé +2(03 — b3)ay — (b3 — b3)az — 2b3(b3 — 1) (b3 — 03)aj — b3b3(b3 — 1) (b3 — 0F)
(b3 — 2b2 + 1)}a3 + adbabi (b3 — 1)(b3 — b2)(2a5 — 2a3 — 2b3 + babs + b3)ag + a3b3b3 (b3 — 1) x
(b3 — bz)} + (agbs + agbs) { — a5a5b3 + 2asbobs(as + b3 — 1) (a3 — b3)aj + ag{ag(bg —b2)
+2aj (b + b3) + 26565 — 26363 — b§}a§ — 2azbabs (a3 + 1) (a3 + b3 — 1)(a3 — b)a3

+{a§b§ —2(b3 + b2)al — (2b2b2 + 1) (b2 — b2)ay — 2b2b2(b3 + b2 — 2)a3 — bAA(DE — 1)* x
(203 — bg)}a§ + 2a9bobs(al — by + b2) (a3 + b2 — 1) (a2 — b3)ad b2a2{2ag(b§ — b3) — 5bybs
+5b3b5 — 2a3b3b3 — a3 — 2a3b3(b3 — 2) + 4byb% — 4bS — 3b3ba + 3b§}a§ + 2a3bab3 (b2 — 1) x
(a2 4 b2 — 1)(a2 — b)as — agb2b2 (b3 — 1)%(b2 — 2b§)} a2

2
—b%bg(agby, — (Lgbg)(agbg + a3b2)2{(bg — l)ag — (b§ — l)ag} s (321)



and
Ps(ag,asz, a4, ba,b3) = {aQadbg’ + asa§bibs — azbg{(bz +2b3)a3 + 2(b3 — b2)} — agbs 63{3(12
—12(b2 — b2)az + 2(ba + 1) (b3 — bg)}a3 + a2b2{3a262 2(6b3 — 1) (b3 — b3)a3 + {12(3b3 + 1)b3
FLHO3— 1) o + aataf 203+ )8 = 2060 — 103~ )b — (05 — 09 {30048 — 2003~ 5)
F1Vad + 2068+ 1) (8 + 1) (8 — bg)}ag

bz{a2b2 — 1205(b3 — b3)a3 — {2b5 — 2(18b5 + 5)b3 — 1}(b3 — b3)as

—2b3(b3 + 1) (05 — b3)(603 + 1)aj — b3b3 (b3 + 1)*(b3 — bé)}aé
—azbg{%zﬁ + 2(b2 — b2)a§ — (36b2b2 4 1262 + 1) (b2 — b2)as + 203(6b2 + 1)(b2 + 1) (b2 — b2)a?
CUBRR(ER 4 1)(BR — 2)(20R — 12 + 1)} 3R 4 1) (1R — bg){zag 26+ 1)
+03(20% — b2 + 1)}a3 + asb3b3 (b3 +1)% (b3 — bg)} aj
+(agbs + azbs) [ ayalbs + 2b2b3a2{a3 — (6b3 + 1)a3 + by + bg}ag
+a§{(b§ —b3)a; + 2((121)3 +1)b2 + bg) a3 — b3(38by + 14b2 + 1)}ag
2yboby(a + 612 + 1){ag (OB 1)a2 4+ B bg}ag + {agbg 202 4 12622 + 12)al
| (38EREE — 1)(ER — 12)ad + 26242 <(12bg TR 4 T+ 2) a2 — BB + 1)2(26% — bg)}ag
+2a5b2b3 ((6b§ + 1)a3 + b3 + b§> {ag — (6b2 4+ 1)a2 4+ b3 + b2 }a3 + aQbQ{(38b§ + 1463 + 1)aj
— 202 ((ubg +7)b3 + b3 + 2) a3 + b3 ((5b§ +4)b2 + 4b3 + 3) (b3 — b§)}a§
obB(02 + 1)ag{ag (GR 1)ad 4 b+ bg}a3 B3 + 1)2(0% — 2b§)af§} a2
s )t ash o305+ 1)~ i3 1)} (3.2

Both of the polynomials Py(as, as, ay, ba, bs) and Ps(as, as, ay, by, bg) are, as polynomials respect to
a4, of order 2. Therefore we can determine the conditions to have tight Euclidean 5-designs on
4 circles in R2. Thus we can show explicitly that there exist continuously many tight Euclidean
5-designs of R?, that was shown in the paper by Bannai-Bannai-Suprijanto ([4], 2007). Though,
here, we are not trying to give the list of explicit solutions for the formulae given above.
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