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Characteristic quasi-polynomials of hyperplane 
arrangements and Ehrhart quasi-polynomials 

Masahiko Yoshinaga * 

Abstract 

This is a short summary of the author's talk "Characteristic quasi­
polynomials of hyperplane arrangements and Ehrhart quasi-polynomials" 
in RIMS joint research "Research on finite groups, algebraic combina­
torics, and vertex algebras", 5-8 December 2022. 

1 Quasi-polynomial 

Definition 1. 1. A function F : Z ( or Z20) ------+ <C is called a quasi-polynomial 
if there exist a positive integer p > 0 ( called the period) and polynomials 
f1(t), h(t), ... , fp(t) E <C[t] such that F(q) is expressed as follows. 

[ !i(q), 
if q = 1 mod p 

F(q) = h;q), if q = 2 mod p 

fp(q), if q = p mod p. 

Each polynomial fi(t), ... , fp(t) is called the constituent. 

Example 1.2. q10 (n) = li},J is a quasi-polynomial. Indeed, 

n if n = 0 mod 10 
10' 

n-1 ifn=l mod 10 
10 ' 

q10(n) = 
n-2 if n = 2 mod 10 10' 

n-9 if n = 9 mod 10 10' 

*Osaka University 

(1) 
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The quasi-polynomial is one of the well-known classes of counting func­
tions that appear in enumerative problems. ([4, 11]). The definition of 
a quasi-polynomial is somewhat more complex than that of a polynomial. 
However, recent research has revealed that the very complexity of quasi­
polynomials contain lots of subtle properties of the objects. The purpose 
of this note is to introduce recent research on the constituents of quasi­
polynomials. 

2 Characteristic quasi-polynomials of hyper­
plane arrangements 

A subspace of codimension one in vector space, projective space, affine space, 
etc. is called a hyperplane. A (finite) collection of hyperplanes is called a 
hyperplane arrangement, and it appears in various fields of mathematics 
[10]. One of the most important invariants is called the characteristic poly­
nomial. In this section we introduce the characteristic quasi-polynomial 
which is considered as a refinement of the characteristic polynomial. The 
characteristic quasi-polynomial is defined for hyperplane arrangement de­
fined over integers, namely, defined by linear forms with integer coefficients. 

Let q E Z>o• For an integer vector a = (a1 , ... , ae) E ze, consider the 
linear form 

Ha:= {(xi, ... , xe) I a1x1 + · · · + aeX£ = O}. 

Denote " mod q hyperplane" by 

and " mod q hyperplane" of A= { a 1 , ... , an} C ze by 

n 

M(A, q) := (Z/qZ)t" LJ Ha.· 
i=l 

Then M(A, q) is a finite set and it is known that its cardinality is a quasi­
polynomial in q. 

Theorem 2.1. (Kamiya-Takemura-Terao ti)) Under the above notation, 
#M(A, q) is a quasi-polynomial in q (the characteristic quasi-polynomial). 
Furthermore, let p > 0 be the period and f1(t), h(t), ... , fp(t) E Z[t] be the 
constituents, The it has the following "GCD-property". 
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The above result shows that the constituents fi(t) depends only on the 
gcd ( i, p). It means that the characteristic quasi-polynomials form a very 
special class of quasi-polynomials. Athanasiadis [2, 3] proved that the "prime 
constituent fi(t)" is equal to the characteristic polynomial x(A, t) E Z[t] of 
A. The characteristic polynomial captures lots of information on A. For 
example, for a hyperplane arrangement in cc, the Poincare polynomial of is 
expressed as 

£ 1 (-t) · x(A, --). 
t 

(2) 

Namely, the coefficients of the characteristic polynomial are Betti numbers 
of the complement (Orlik-Solomon). 

Example 2.2. Let A= { (~), G) , G)} C Z 2 • Namely, consider three 

lines defined by y = 0, x + y = 0, 3x + y = 0. The characteristic quasi­
polynomial has a period p = 6 and constituents are. 

{ 

q2 - 3q + 2, 

# M(A ) = q2 - 3q + 3, 
'q q2 - 3q + 4, 

q2 - 3q + 5, 

if q = 1, 5 mod 6 
if q = 2, 4 mod 6 
if q = 3 mod 6 
if q = 0 mod 6. 

As we noticed, for i which is coprime top, the i-th constituent is fi(t) = 
fi(t), which is equal to the characteristic polynomial x(A, t). It is a nat­
ural question to ask what are the other constituents. Recently, in a joint 
work with Y. Liu, T. N. Tran, it has been shown that the constituents of the 
characteristic quasi-polynomial are closely related to the topology of toric ar­
rangements. Here, "considering toric arrangement" means that taking tensor 
product with ig;(Cx. In other words, interpret the integer linear forms through 
®zCx. For example, using Example 2.2, consider subtori of (Cx) 2 3 (t1 , t2), 

defined by t = 1, t1t2 = 1, tft2 = 1. Denote the complement of associated 
toric arrangement by M ( A, (C x). Then on the contrary to the characteristic 
polynomial, the most degenerate constituent fp(t) is shown to be related to 
the Po in care polynomial of M ( A, (C x). 

Theorem 2.3. (/8, 13}) 

1. The Poincare polynomial of M(A, ex) is equal to 

(-tl · fp(- 1 +t). 
t 

(3) 

2. The constituent fk(t) is equal to the characteristic polynomial of the 
poset of layers (connected components of subtori of intersections) which 
contain k-torsion points. 
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Remark 2.4. Observe that only the difference between formulae (2) and 
(3) is the numerator, one isl the other is 1 + t. These are exactly equal to 
the Poincare polynomial of (C and ex. This is not just by chance, but more 
generally, for any abelian Lie group G, one can define the G-characteristic 
polynomial, and when G is non-compact, we have a similar formula. Then 
fi(t), fp(t) are nothing but the G-characterisctic polynomials for G = C, ex 
respectively. See [8] for details. 

3 Ehrhart quasi-polynomials of translated lat­
tice polytopes 

For a rational polytope P C JR_n, let 

It is known that Lp(t) is a quasi-polynomial in t E Z>o (Ehrhart quasi­
polynomial [4]). It is also known that the gcd of denominators of coordinates 
of vertices gives a period (not necessarily the minimum period). In particular, 
when Pis a lattice polytope, Lp(t) is a polynomial int. 

As was shown in the previous section, the characteristic quasi-polynomial 
of a hyperplane arrangement has GCD-property. On the other hand, the 
Ehrhart quasi-polynomials does not have GCD-property. However, there 
are some classes of polytopes which Ehrhart quasi-polylnomials have GCD­
property. 

For example, Suter ([12]) computed Ehrhart quasi-polynomials for the 
fundamental alcoves of root systems, and observed that the Ehrhart quasi­
polylnomials have GCD-property1 . 

To formulate the main result, we need the following. 

Definition 3.1. A quasi-polynomial (1) is symmetric if the constituents 
satisfy fi(t) = fp-i(t) (i = 1, ... , p - l). 

Clearly, quasi-polynomial with GCD-property is symmetric. 

Example 3.2. Let Pi, A, P3 be 

• Pi= ! • [O, 1] 3 (the cube with edge length !)-

1 At the moment of Suter's computation, the reason of GCD-property was not clear. 
However, later it was revealed that it comes from the GCD-property of the characteristic 
quasi-polynomial of arrangements [14]. 
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• P2 = (~, ~' ~l + Conv{±ei Ii= 1, 2, 3} (A rational translation of the 
regular octahedron Conv{ ±ei I i = 1, 2, 3} ). 

• P3 = (!, §, ½l + [O, 1] 3 (Rational translation of the unit cube). 

All Ehrhart quasi-polynomials Lp1 (t), Lp2 (t), and Lp3 (t) have the minimum 
period 9. The constituents are as follows. 

( t = 1, 8 mod 9), 

(t = 2, 7 mod 9), 

(t = 3,6 mod 9), 

(t = 4, 5 mod 9), 

(t = 9 mod 9), 

(t=l,2,4,5,7,8 mod9), 

(t = 3, 6 mod 9), 

(t = 9 mod 9). 

Note that Lp1 (t) has 9 mutually distinct constituents. Lp2 (t) is symmetric, 
and Lp3 (t) has GCD-property. 

The purpose of this section is to formulate a relationship between these 
properties and the shape of polytopes. 

Theorem 3.3. ([6]) Let PC ]Rd bead-dimensional lattice polytopes. Then 
the following are equivalent. 

(la) P is centrally symmetric. 

(lb) For any rational vector v E Qd, Lv+P(t) is symmetric quasi-polynomial. 

Theorem 3.4. ([6]) Let PC ]Rd bead-dimensional lattice polytopes. Then 
the following are equivalent. 

(2a) P is a zonotope. 

(2b) For any rational vector v E Qd, Lv+P(t) has GCD-property. 

Simply speaking, symmetry or GCD-property of the Ehrhart quasi-polynomials 
are closely related to central symmetry and being zonotope. 

Here we give a sketch of the proof. The implication (2a)====;,(2b) is proved 
by using a recent formula Ardila-Beck-McWhirter [1], which is a generaliza­
tion of Stanley's formula of the Ehrhart polynomial of a lattice zonotope. 
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(la)===;,-(lb) needs a description of the constituents of rationally trans­
lated lattice polytope. We consider a variant of Ehrhart quasi-polynomial as 
follows. Let P be a lattice polytope, v be a rational vector. Define L(P,v)(t) 
to be 

L(P,v)(t) := #(v + tP) n zn. 

Then we have the following. 

Lemma 3.5. (/6}) L(P,v)(t) is a polynomial int. 

Using this formula, we can describe constituents. 

Lemma 3.6. (/6}} Let P be a lattice polytope, v be a rational vector. Then, 
the k-th constituent of the Ehrhart quasi-polynomial of P + v is equal to 

L(P,kv)(t). 

Using this lemma, (la)===;,-(lb) is easily obtained. 
The converse implications (b)===;,-(a) for (1), (2) are not easy. It needs 

characterizations of centrally symmetric polytopes and zonotopes by Minkowski 
and McMullen. More explicitly, for non centrally symmetric ( or non zono­
tope) poytope P, we need to find a rational vector v such that L(P,v)(t) =/­
L(P,-v)(t) (L(P,v)(t) =/- L(P,2v)(t) (with the odd denominator v)). See [6] for 
details. 

The results may be summarized as in the table. 

Polytopes Zonotoes C Centrally symmetric C General 

Quasi-polynomial I GCD-property C Symmetry C General 

4 Future problems 

So far, extensive research has been done on the Ehrhart ( quasi-)polynomials 
of rational polytopes. One of the well studied subjects is the so-called the 
period collapse phenomenon. The present research may suggest a different 
direction, namely, "rational polytopes obtained by translating lattice poly­
topes with rational vectors" may be a noteworthy class. 

It is also a natural to ask for what kind of rational polytopes, the Ehrhart 
quasi-polynomials have GCD-property. There are few known examples. 

• The rational polytope P such that 2P is a lattice polytope (period is 
2). 

• The fundamental alcoves of root systems. 
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• A polytope obtained from a lattice polytope by translation with a ra­
tional vector ( see below). 

At this moment, the above are only known classes of rational polytopes whose 
Ehrhart quasi-polynomials have GCD-property. 

Since GCD-property gives a very special type of quasi-polynomials. It 
would be also a natural question to ask the relationship between the Ehrhart 
quasi-polynomials of the translated lattice zonotopes and the characteristic 
quasi-polynomials of hyperplane arrangements. 
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