100

Characteristic quasi-polynomials of hyperplane
arrangements and Ehrhart quasi-polynomials

Masahiko Yoshinaga *

Abstract

This is a short summary of the author’s talk “Characteristic quasi-
polynomials of hyperplane arrangements and Ehrhart quasi-polynomials”
in RIMS joint research ”Research on finite groups, algebraic combina-
torics, and vertex algebras”, 5-8 December 2022.

1 Quasi-polynomial

Definition 1.1. A function I : Z (or Z>;) — C s called a quasi-polynomial
if there exist a positive integer p > 0 (called the period) and polynomials
fi(t), fo(t), ..., f,(t) € C[t] such that F(q) is expressed as follows.

Ailg), ifg=1 modp
Flg) = f2(:Q)v if g= 2: mod p
fp(Q), ifg=p modp.

Each polynomial fi(t),..., f,(t) is called the constituent.

Example 1.2. g10(n) = L%J is a quasi-polynomial. Indeed,

15, ifn=0 mod 10
"1_01, ifn=1 mod 10
qro(n) = "1—_02, ifn=2 mod 10
n9 ifn=9 mod 10
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The quasi-polynomial is one of the well-known classes of counting func-
tions that appear in enumerative problems. ([4, 11]). The definition of
a quasi-polynomial is somewhat more complex than that of a polynomial.
However, recent research has revealed that the very complexity of quasi-
polynomials contain lots of subtle properties of the objects. The purpose
of this note is to introduce recent research on the constituents of quasi-
polynomials.

2 Characteristic quasi-polynomials of hyper-
plane arrangements

A subspace of codimension one in vector space, projective space, affine space,
etc. is called a hyperplane. A (finite) collection of hyperplanes is called a
hyperplane arrangement, and it appears in various fields of mathematics
[10]. One of the most important invariants is called the characteristic poly-
nomial. In this section we introduce the characteristic quasi-polynomial
which is considered as a refinement of the characteristic polynomial. The
characteristic quasi-polynomial is defined for hyperplane arrangement de-
fined over integers, namely, defined by linear forms with integer coefficients.

Let ¢ € Z-o. For an integer vector a = (ay,...,a;) € Z*, consider the
linear form

Hy = A{(x1,...,20) | 121 + -+ - + apzy = 0},

43

Denote “ mod ¢ hyperplane” by

Ho = A{(z1,...,20) € (Z/q2)" | s + - + agwy =0 mod ¢}
and “ mod ¢ hyperplane” of A = {ay,...,a,} C Z' by
M(A,q) = (Z/qZ)" ~ Uﬁai-
i=1

Then M (A, q) is a finite set and it is known that its cardinality is a quasi-
polynomial in q.

Theorem 2.1. (Kamiya-Takemura-Terao [7]) Under the above notation,
#M(A,q) is a quasi-polynomial in q (the characteristic quasi-polynomial).
Furthermore, let p > 0 be the period and fi(t), fa(t), ..., f,(t) € Z[t] be the
constituents, The it has the following “GCD-property”.

(i, p) = (4,p) = filt) = f;(t),
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The above result shows that the constituents f;(¢) depends only on the
gcd (i,p). It means that the characteristic quasi-polynomials form a very
special class of quasi-polynomials. Athanasiadis [2, 3] proved that the “prime
constituent f;(¢)” is equal to the characteristic polynomial x(A,t) € Z[t] of
A. The characteristic polynomial captures lots of information on A. For
example, for a hyperplane arrangement in C*, the Poincaré polynomial of is
expressed as

(1) X(A ). )

Namely, the coefficients of the characteristic polynomial are Betti numbers
of the complement (Orlik-Solomon).

Example 2.2. Let A = {(?) ) G) ; (?)} C Z2. Namely, consider three

lines defined by y = 0,2 +y = 0,32z +y = 0. The characteristic quasi-
polynomial has a period p = 6 and constituents are.

P —3¢g+2, ifg=15 mod6
2 . _
) ¢ —=3¢+3, ifg=2,4 mod6
#M(A ) = ¢ —3¢+4, ifg=3 mod6
¢ —3¢+5, ifg=0 mod 6.

As we noticed, for i which is coprime to p, the i-th constituent is f;(¢) =
fi(t), which is equal to the characteristic polynomial y(A,t). It is a nat-
ural question to ask what are the other constituents. Recently, in a joint
work with Y. Liu, T. N. Tran, it has been shown that the constituents of the
characteristic quasi-polynomial are closely related to the topology of toric ar-
rangements. Here, “considering toric arrangement” means that taking tensor
product with ®@C*. In other words, interpret the integer linear forms through
®7C*. For example, using Example 2.2, consider subtori of (C*)? 3 (¢4, 1),
defined by t = 1,tty, = 1,#3t, = 1. Denote the complement of associated
toric arrangement by M (A, C*). Then on the contrary to the characteristic
polynomial, the most degenerate constituent f,(¢) is shown to be related to
the Poincaré polynomial of M (A, C*).

Theorem 2.3. (/8, 13])

1. The Poincaré polynomial of M(A,C*) is equal to
14+t

(=0) fo(=0), Q
2. The constituent fi.(t) is equal to the characteristic polynomial of the

poset of layers (connected components of subtori of intersections) which
contain k-torsion points.



Remark 2.4. Observe that only the difference between formulae (2) and
(3) is the numerator, one isl the other is 1 + ¢. These are exactly equal to
the Poincare polynomial of C and C*. This is not just by chance, but more
generally, for any abelian Lie group G, one can define the G-characteristic
polynomial, and when G is non-compact, we have a similar formula. Then
fi(t), f,(t) are nothing but the G-characterisctic polynomials for G = C, C*
respectively. See [8] for details.

3 Ehrhart quasi-polynomials of translated lat-
tice polytopes
For a rational polytope P C R™, let
Lp(t) == #£(tP N Z").

It is known that Lp(t) is a quasi-polynomial in ¢ € Zs, (Ehrhart quasi-
polynomial [4]). It is also known that the ged of denominators of coordinates
of vertices gives a period (not necessarily the minimum period). In particular,
when P is a lattice polytope, Lp(t) is a polynomial in t.

As was shown in the previous section, the characteristic quasi-polynomial
of a hyperplane arrangement has GCD-property. On the other hand, the
Ehrhart quasi-polynomials does not have GCD-property. However, there
are some classes of polytopes which Ehrhart quasi-polylnomials have GCD-
property.

For example, Suter ([12]) computed Ehrhart quasi-polynomials for the
fundamental alcoves of root systems, and observed that the Ehrhart quasi-
polylnomials have GCD-property!.

To formulate the main result, we need the following.

Definition 3.1. A quasi-polynomial (1) is symmetric if the constituents
satisfy f;(t) = f,—i(t) (i=1,...,p—1).

Clearly, quasi-polynomial with GCD-property is symmetric.
Example 3.2. Let P, P, P; be

e Py = -[0,1] (the cube with edge length 3).

LAt the moment of Suter’s computation, the reason of GCD-property was not clear.
However, later it was revealed that it comes from the GCD-property of the characteristic
quasi-polynomial of arrangements [14].
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o P,=(2,2,2)" + Conv{+e; | i = 1,2,3} (A rational translation of the
regular octahedron Conv{+te; | i = 1,2,3}).

e Py=(5,2,3)"+[0,1]* (Rational translation of the unit cube).

All Ehrhart quasi-polynomials Lp, (t), Lp,(t), and Lp,(t) have the minimum
period 9. The constituents are as follows.

313 — 3t (t=1,8 mod9),
St + 2t (t=2,7 mod9),
Lp,(t) = ¢ 33+ 12 + 2, (t=3,6 mod9),
St — 4t (t=4,5 mod9),
\§t3+2t2+§t+1, (t=9 mod9),
3 (t=1,2,4,5,7,8 mod9),

Lp,(t)=<¢t3+t (t=3,6 mod9),
(t+1) (t=9 mod9).

Note that Lp, (t) has 9 mutually distinct constituents. Lp,(t) is symmetric,
and Lp,(t) has GCD-property.

The purpose of this section is to formulate a relationship between these
properties and the shape of polytopes.

Theorem 3.3. ([6]) Let P C R? be a d-dimensional lattice polytopes. Then
the following are equivalent.

(la) P is centrally symmetric.
(1b) For any rational vector v € Q% L, p(t) is symmetric quasi-polynomial.

Theorem 3.4. ([6]) Let P C R? be a d-dimensional lattice polytopes. Then
the following are equivalent.

(2a) P is a zonotope.
(2b) For any rational vector v € Q%, L, p(t) has GCD-property.

Simply speaking, symmetry or GCD-property of the Ehrhart quasi-polynomials
are closely related to central symmetry and being zonotope.

Here we give a sketch of the proof. The implication (2a)==-(2b) is proved
by using a recent formula Ardila-Beck-McWhirter [1], which is a generaliza-
tion of Stanley’s formula of the Ehrhart polynomial of a lattice zonotope.
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(1a)==(1b) needs a description of the constituents of rationally trans-
lated lattice polytope. We consider a variant of Ehrhart quasi-polynomial as
follows. Let P be a lattice polytope, v be a rational vector. Define Lpa)(t)
to be

L(pﬂ,)(t) = #(’U -+ tP) NZ".

Then we have the following.
Lemma 3.5. (/6/) Lpw)(t) is a polynomial in t.
Using this formula, we can describe constituents.

Lemma 3.6. ([6]) Let P be a lattice polytope, v be a rational vector. Then,
the k-th constituent of the Ehrhart quasi-polynomial of P + v is equal to

Lp o) (1)

Using this lemma, (1a)==-(1b) is easily obtained.

The converse implications (b)==(a) for (1), (2) are not easy. It needs
characterizations of centrally symmetric polytopes and zonotopes by Minkowski
and McMullen. More explicitly, for non centrally symmetric (or non zono-
tope) poytope P, we need to find a rational vector v such that Lp.)(t) #
Lip—w)(t) (Lipw)(t) # Lipaw(t) (with the odd denominator v)). See [6] for
details.

The results may be summarized as in the table.

Polytopes ‘ Zonotoes C Centrally symmetric C General

Quasi-polynomial | GCD-property C Symmetry C General

4 Future problems

So far, extensive research has been done on the Ehrhart (quasi-)polynomials
of rational polytopes. One of the well studied subjects is the so-called the
period collapse phenomenon. The present research may suggest a different
direction, namely, “rational polytopes obtained by translating lattice poly-
topes with rational vectors” may be a noteworthy class.

It is also a natural to ask for what kind of rational polytopes, the Ehrhart
quasi-polynomials have GCD-property. There are few known examples.

e The rational polytope P such that 2P is a lattice polytope (period is
2).

e The fundamental alcoves of root systems.
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e A polytope obtained from a lattice polytope by translation with a ra-

tional vector (see below).

At this moment, the above are only known classes of rational polytopes whose
Ehrhart quasi-polynomials have GCD-property.

Since GCD-property gives a very special type of quasi-polynomials. It

would be also a natural question to ask the relationship between the Ehrhart
quasi-polynomials of the translated lattice zonotopes and the characteristic
quasi-polynomials of hyperplane arrangements.
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