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In this talk I will give an overview on design theory.

Roughly speaking, the purpose of design theory is, for a given
space M, to find good finite subsets X that approximate M
well. M may be a continuous topological space, say sphere, or a
finite set such as point set of an association scheme, for example,
Johnson association scheme, Hamming association scheme, etc.
etc.
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We start with spherical t-designs as well as combinatorial t-
designs. I will not repeat all these definitions, but a spherical
t-design is a subset of the unit sphere S"~! and a combinatorial
t-design is a subset of (:) (point set of the Johnson association
scheme J (v, k)), where |V| = v.

There are many generalizations of these {-design concepts, say

i) Changing the original base space,

i1) Consider weighted designs,

iii) Consider T-design instead of t-design,

iv) Consider designs on several concentric spheres (Euclidean
desingns), or on the several shells of association schemes (relative
t-designs, allow different block sizes),
etc. etc.

I will not repeat the explanations of all these generalizations.
For the details, please look at the survey article:

1. Bannai-Bannai-Tanaka-Zhu: Design Theory from a viewpoint
of algebraic combinatorics, Graphs and Combinatorics (2017), or

2. RA—IRA—FEE: REMESERAM, RIHMR (2016), or its
English version: Bannai-Bannai-Ito-Rie Tanaka: Algebraic Com-
binatorics, De Gruyter (2021).

The concepts of t-design in more general spaces

e t-designs in polynomial spaces (Godsil, 1993)

e t-designs in DDR graphs (distance degree regular graphs) (Solé
and others, around 2021)

Polynomial spaces (Godsil, 1993)
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) = a set.
p = a function @ x Q2 — R.
< , >= an inner product on the space of functions on (2.

(Usually, < fog >= 53 en f(@)9(x) )
A polynomial space is a triple (2, p, < , >) satisfying the fol-

lowing four axioms (I) to (IV).

(I) For z,y € Q, p(z,y) = p(y, x).

(IT) The dimension of the vector space Pol({2,1) is finite.

Here, for an integer r > 0, Pol(2,r) is defined as follows. For
any polynomial f € R[x] and a € 2, we define p,(x) = p(a, x)
and define

Z(Q,r) =
the space spanned by {f o p, | f € R[z],a € Q,deg(f) < r}.

Then we define Pol(€2,1) = Z(£2, 1) and we define by induction

Pol(Q2,r 4+ 1)
= the space spanned by {fg | f € Pol(2,1),g € Pol(2,7)}.

We define Pol(Q2) = .-, Pol(Q2,T).
(IIT) For f,g € Pol(),

<fag >=< 17f9>'

(IV) If f is a non-negative polynomial on 2 then < 1,f > > 0,
with equality if and only if f is identically 0.

Remark. The polynomial spaces (€2, p) and(, p’) are affinely equivalent, if
p' = ap + 3, for some real constant numbers o # 0 and 3.
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Examples of polynomial spaces

(a) The Johnson scheme J (v, k).

Q= }),p(xy) =lznyl|
(There are many other possible p, say p(z,y) =k — |z Ny|.)

(b) The Hamming scheme H(n,q).

Q=F, X Fyx -+ X F; (n times), where p(x,y) is the Hamming
distance.

(There are many other possible p.)

(c) The unit sphere S"~! in R™.

Q=8"1 p(x,y) =x -y, where = -y is a usual dot product in
R™.

The inner product < , > is defined by

< f.g>= /ﬂ F(@)g(x)du,

where p is the Haar measure with p(2) = 1.
(There are many other possible p.)

(d) The symmetric group Sym(n) = S,,.

Q = Sym(n), p(z,y) = |fix(x"'y)| is the number of points left
fixed by the permutation =~ 'y.

(Or we can define p = n — [fix(z'y)|. Both definitions are affinely
equivalent and basically the same.)

(e) The orthogonal group O(n).

Q = the set of all n X n orthogonal matrices, and p(x,y) =trace
zTy.

(The polynomial space Sym(n) in (e) is embedded in O(n) nat-
urally.)



(f) The g-Johnson scheme J,(n, k).

2 = the set of all k-dim subspaces of a v-dim vector space over
F,, p(xz,y) = the number of 1-dim subspaces in N y. (Or we can
take p(x,y) = dim(x Ny).) (There are many other choices of p.)
For any Q-polynomial association scheme, let 6;, 07, ..., 8} the el-
ements in the first column (starting 0) of the second eigen matrix
Q. Taking p(x,y) = 6}, if (x,y) € R;, is the natural choice of p
(from the viewpoint of association schemes and Delsarte theory).

There are many other good examples of polynomial spaces.

e The perfect matchings in Ka,. p(x,y) = the number of edges
they have in common. This is essentially S, /(W (B,,)).

(The perfect matching in K, , gives essentially the example (d)
again. This is essentially (S,, X S,)/Sx.)

e Real n-space R"?
There are many choices. Say, p(z,y) =z -y (or (x —y) - (x — y))
and define the inner product

<ﬁg>=/f@M@Mu

for any rotationally invariant measure dp on R" with respect to
which all polynomials in n variables are integrable.

There are many many other examples of polynomial spaces. (See
Godsil (1993).)

t-design in polynomial space
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Definition. A subset Y C €2 is called a t-design, if for all f € Pol(2,1),

<LF>=— 3 f@) (=<1,p>y).
|Y| T€eY
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e A polynomial space (€2, p, < , >) is called spherical, if there
is an injection T say, of {2 into a sphere centered at the origin in
some real vector space for any x,y in (2,

p(x,y) = 7(x) - 7(y).
Theorem (Theorem 4.1 and Theorem 4.3 in Godsil’s book,1993).
(i) If (2, p) is a spherical polynomial space, then Z(2,r) = Pol(Q2,r)
for all non-negative integer r.
(ii) Let (€2, p) be a spherical polynomial space with dim(Z(€2,1)) = n.
If we view (2 as a subset of a sphere centered at the origin in R",
then Pol(Q2, ) is the set of all polynomials with degree at most
r in n variables, restricted to (2.

Another approach by Solé. (This is an ambitious approach, but
perhaps not very appropriate.) See, e.g., arXiv:2105.07979.

Let (X,d) be a metric space. It is called a DDR (distance
degree regular) space, if (X, T}),

where T'; = {(z,y) | z,y € X,d(x,y) =i} is a regular graph
for ¢ =0,1,...,d. (Some I'; may be empty.) (There are some
mistakes there. He implicitly assumes d(x,y) are all integers.
Let n be the diameter of the metric space. Then a t-design Y is
defined as: Y is a subset of X, and satisfy

|X|2Z| L5t = |Y|2Z'F N (Y x Y)lj

for2 =0,1,...,t.

Remark. Solé says that his definition is a special case of Godsil’s t-designs in
polynomial space, but that is not correct. If the metric space is a spherical
polynomial space, that definition might work (under the assumption that all
distances are integers), but this definition does not coincide with Godsil’s

definition for non-spherical polynomial spaces.



Now we want to return to the discussion of what are the natu-
ral definitions of {-design on association schemes (and on finite
groups)?

What are the reasonable choices of p = p(x, y), for a Q-polynomial
association scheme, for example for J,(v, k)?

In the case of Q-polynomial association scheme, the most(?) nat-
ural choice is as follows, as we mentioned already.

Let 63,07, ...,05 be the elements in the first column (starting
the Oth column) of the second eigenmatrix Q, i.e., eigenvalues
of the dual intersection matrix Bj. Then define p(x,y) = 6} if

Then use the definition of t-design for the polynomial space (by
Godsil). Then this concept of t-design is equivalent to the usual
definition of t-design of the Q-polynomial association scheme (due
to Delsarte). This polynomial space is spherical. This space is
embedded in R™, and the Gram matrix is FE.

More generally, let X = (X, {R;(¢ =0,1,...,d)}) be a symmet-
ric association scheme (that may not be Q-polynomial). Let
Ag, A1, ..., Ag be the adjacency matrices and Ey, E1, ..., E; be the
primitive idempotents. For a fixed FE;, we define the concept of
t-design (w.r.t. E;) as follows. Here let zJ, 27, ..., 2} be the en-
tries of the 1st column of @ (they are not necessarily distinct),
then a subset Y in X is a t-design (with respect to Ey, if

1 1

S Y F@yy = Y @)

| |(w,y)€X><X | |(w,y)EY><Y

for j (1 < j < t), where z*(z,y) = =, for (z,y) € R..
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As it is mentioned before, for J,(v, k), Godsil takes p(x,y) =
the number of 1-dimensional subspace in N y. Then this concept
of t-design is not exactly the same as the definition using the Q-
polynomial structure, but essentially equivalent to the definition
of t-design of the Q-polynomial association scheme. Namely, they
are affinely equivalent. This polynomial space (defined by Godsil)
is spherical, and is embedded in R"° ™™ and the Gram matrix is
Ey + E;.

On the other hand, for J,(v, k), if we take p(x,y) = the di-
mension of x Ny. Then this polynomial space is not spherical.
In fact, in most cases, say in J5(6,3), Z(Q2,1) = Pol(2). So, we
cannot have good reasonable concept of t-design for this (non-
spherical) polynomial space. Actually, there are no non-trivial
t-design in this polynomial space! (Also the definition of ¢t-design
in the sense of Solé is certainly not meaningful.)

Let us consider the case of a finite group.

Let G be a finite group, and let p be an irreducible represen-
tation of G (just for simplicity). For simplicity, we also assume
that p(G) C O(n). Let x, be the character of p. Then, we say a
subset Y in G is a t-design of G with respect to p, if the following
condition is satisfied.

LY (e )=

2

1
|G|

S @) = —— 3 (o).

2
zeG |Y| z,yey

for 3 =0,1,...,t.

This definition of t-design in G is essentially equivalent to the
previous definition of t-design on the group association scheme
X (@) with respect to E; (corresponding to p.)

Now let us consider the systems of orthogonal polynomials for
a finite group G. We consider the following point-measure on R.



(i) the points are real numbers {x,(z),x € G}, and the weight
=1 for each = € G, or ,

(ii) the points are real numbers {z§, 27, ..., 2} which are the el-
ements of the first column (corresponding to E;) of @ of the
group association scheme X(G), (these z; may not be distinct
each other), and the weight = k; for each z.

Let ¢g, ®1, ®2,... be the set of orthogonal polynomials with
respect to the point measure (i) (up to some degree), and let
Dy 15 @5, ... be the set of orthogonal polynomials with respect
to the point measure (ii)(up to some degree). How are they
related? They are affinely equivalent.

In the case of G = S),, the ¢; are related to Charlier polyno-
mials (up to certain degree, i.e., i < [3]). See Tarnanen (1999).
Hence ¢, will be related to Charlier polynomials as well, with
some affine transformation.

Another possible definition of designs on graphs.

Here is a sample example of one such attempt.

Definition. (A modified version of Steinberger:
Generalized designs on graphs, sampling, spectra, symmetries,
J. Graph Theory, 2020).
Let G be a finite regular graph and let 6y, 60¢,:--,60, be all the
distinct eigenvalues of the adjacency matrix of G suh that
|6o| > |01] > -+ > |0s]. Let V; be the space of eigenvectors for the
eigenvalue 0;. (V; is identified as a subspace of functions on G.)
Then a subset Y of the vertex set V(G) of G is called a k-design
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if
1 1
v 2 7@ = v

zeY

> f(=),

€V (G)
for any f € V; with:=0,1,...,k.

Charlier polynomials and the polynomial space S,

Let S,, be the symmetric group, and let @ = 1 + x be the nat-
ural permutation representation of S,, on n letters. Then Y is the
irreducible representation of degree n — 1 corresponding to the
Young diagram (partition) of type (n — 1,1). Then the character
of x is given by x(z) = w(x) — 1 = |fix(x)| — 1.

An irreducible representation p of S,, is called of depth z if the
number of squares in the Young diagram which are not in the first
row is equal to ¢. (Namely, for (ny, ng,...,n¢), Na + ng + -+ - + ny = i.)

It is known that a subset Y C S,, is a t-transitive set, if and
only if Y is a p-design for all p of depth < ¢, namely

Y pzly) =0

(z,y)EY XY

for all p of depth 1 < < t.

Let w; be the number of element x € S,, with |fix(x)| = 7. Set
V; = Wp—;.

(Note that vo = 1.) For f,g € R[z], we define the inner product
1< N
<f9>s=— > uif(i)g(i) .
n! &~

If we consider the set of orthogonal polynomials w.r.t. this
inner product, then we get Charlier polynomials:



C()(m) = 1,

Cl(m) =T — 17

Co(z) = 2 — 3z + 1,

Csi(x) = 3 — 622 + 8x — 1,

Cy(z) = z* — 1023 4 2922 — 24z + 1,
etc.

More explicitly, we get

Cr(z) = g(—l)"’_i (I:)a:(a: — 1) (z—i+1).

Also, we have:
tk

ef1—1)" =) Ci() -

Then, it is known that
<Cr(n—x),Cs(n —x) >g,= 10,5

for r,s < 3. (See Tarnanen (Europ. J. Comb.,1999).)

The above presentation was originally obtained using the value
of the permutation character w (hence of the irreducible charac-
ter x) of the group S,. If we define the orthogonal polynomials
using zg, 27, .-.s 2, the 1st column of the second eigenmatrix Q
of the group association scheme of S,,, then the orthogonal poly-
nomials are obtained from the point measure: the points are z;
in R and the weight on each z; is k;. Then the set of orthogonal
polynomials ¢g, ¢, -+ - (up to degree n/2) are described by using
Charlier polynomials (with certain modification). Interestingly,
this happens only up to degree n/2. Here are some questions.

Question 1. Instead of using @, let us consider the 1st column
of the eigenmatrix P of the group association scheme X(S,).
(Namely, 1st column corresponds to the irreducible representa-
tion x of degree n — 1 of S,,.) Let z; be the elements of the first
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column of P. Take the point measure: the points are z; in R and
with the weight m; on each z;.

What are the set of orthogonal polynomials v, 11,... (up to
certain degree) for this point measure?

Unfortunately, this set of orthogonal polynomials are not well
described yet. Originally I expected this is something to do
with the duality in Charlier polynomials. (See the duality: if
we write cg(z) = (—=1)*Cg(x), then ci(x) = c.(k) (see T. S. Chi-
hara’s book: Introduction of Orthogonal Polynomials, Chapter
IV, for the details.)

I originally hoped that some duality between {¢¢, ¢1,...} and
{0, ¥1,...} coming from ci(x) = c,(k) may exist, but so far
unsuccessful.

Question 2. How about the orthogonal polynomials coming from
the first column of @Q for the group association scheme W (B,,)
and the symmetric association scheme S,,/W (B,). We expect
this set of orthogonal polynomials should be related to the Char-
lier polynomials.) Also, it would be interesting to consider the
orthogonal polynomials coning from the first column of P for the
group association scheme of W (B,,) and the symmetric associa-
tion scheme Ss,,/W (B,,).

Question 3.

Let X be a symmetric association scheme that are polynomial
and also co-polynomial (in the sense of Tatsuro Ito’s talk). Let
us consider the case of A = A; and F = E; for simplicity. (The
general case is treated similarly.) Then using the 1st column of
Q, we get the system of orthogonal polynomials ¢q, ¢1,: -, @q4,
and the system of orthogonal polynomials g, ¥, -,%4. Note
that zj, 27, ..., z;; are all distinct, and zy, 21, ..., 24 are all distinct.
So, ¢g, P15+, Ppqg and g, Py, -+ ,1q are defined up to degree d.



Is there any case that these polynomials satisfy the condition
bi(27)/mi = i (zi) /k;

for all 7,5 with 0 < 1,5 < d, other than the case of P-and Q-
polynomial association schemes?

Question 4.

If some of z; and z; are equal, or z] and z;.‘ are equal, namely,
here zj,z27,---,2; be the distinct numbers that appear in the
first column of @ and let zy, z{,-:-, 25 be the distinct numbers
that appear in the first column of P. Then we get ¢g, ¢1,-- -, P,
and vy, Y1, -+, ¥ up to degrees for r and s. Then, is there any
interesting examples that ¢g, ¢1,- -+, ¢, and g, Y1, - - -, P4 satisfy

the following local duality condition for appropriate constants K;
and M;.
®i(2;)/M; = ¥;(z:)/ K,

(with 4,7 up to a certain relatively large common upper bound
depending on r and s), where K is the sum of those k; corre-
sponding to those whose entry in thelst column in @ is z;, and
M, is the sum of those m; corresponding to those whose entry in
the first column in Q is z;.k.

Question 5.
Is there any association scheme where Meixner polynomials are
related to the system of orthogonal polynomials ¢q, ¢1,: -, @, or

Yo, Y1y - 'a¢s?

Some special unitary t-designs in U (d).

We consider the inclusions of polynomial spaces.
For the symmetric group Sym(n) = S, the (S, p) with
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p(z,y) = x(z 'y) (= m(z'y)! — 1) = [fix(z7'y)| — 1
is a spherical polynomial space. Since x(S,) is a subgroup of
O(n — 1), S,, is embedded in (O(n — 1), p) with p(z,y) = Ty as
a spherical polynomial space. (S, is also considered as embedded
in the polynomial space S(”_l)z_l.)

We will also consider the space U (d) with p(z,y) = |trace(zTy)|?,
as a kind of polynomial space.

We want to study some special good subsets of these polynomial
spaces, in particular of U (d).

Let (€2, p) be any spherical polynomial space, and let Y be a
subset of (2. We define:

s = the degree of Y = [{p(z,y) | 2,y € Yz # y},

t = the strength of Y = the maximal ¢t such that Y is a t-design.

Then it is known that (Cf. Lemma 5.2. Godsil’s book.)
t < 2s.

Also, we have:
o Y is of strength t —> |Y| > dim(Pol(£, [%])).
e Y is of degree s — |Y| < dim(Pol(£2, s)).

It is an interesting problem classifying such Y with inequality
holds in one of the above inequalities. (Tight designs, and tight
codes.)

On the sphere, or on a P-and Q-polynomial association scheme,
it is known that if Y is of degree s and strength ¢, and ift > 2s — 2,
then Y has the structure of (Q-polynomial) association scheme
of class s.



Does this property holds for other general spherical polynomial
spaces? How much does this property hold? 1 think it is not
known whether this hold or not. On the other hand, this property
holds for subset Y of (U(d),p) if t > 2 and s = 2 by Sho Suda
(personal communication). So, it would be interesting to find
such strongly regular graphs that are embedded in (U(d), p).

The strongly regular graphs that are embedded in (U(d), p)
as degree s = 2 and strength t = 2 are very much limited. We
have strong restrictions on the parameter of such strongly regular
graphs.

For example, m; or m, must be equal to (d?> — 1)2. So, if d is
small and fixed, then all the possible parameters of such (primi-
tive) strongly regular graphs are explicitly listed (there are only
finitely many such possibility). Although we have not yet com-
pletely solved this question, it seems possible to solve this prob-
lem completely for d = 2. One of the most likely case was when
the parameters are those of H(2,4). (So, m; or ms must be 9.)
Actually we have succeeded in showing that H(2,4) as well as the
Shrikhande graph cannot be embedded in U(2) (Bannai-Zhao).

For general d, the parameter of the strongly regular graph
H(2,d?) gives a possibility of such existence. It is still open to
show that H(2,d?) cannot be embedded in U(d) in such a way.
(But we expect the non-existence, as the case d = 2 was so.)

Actually, there are a lot of interesting problems in this direc-
tion of research, as we are very much interested in finding unitary
t-design on U(d), smaller sizes as possible, for given t and d.

Finally, I would like to discuss the possible constructions of
smaller unitary t-designs in U(d). (Tomorrow, Da Zhao will talk
about explicit constructions for general ¢t and d.)

Unitary t-groups in U(d) are completely classified for all ¢t > 2
and d > 2 (Cf. Guralnick-Tiep, 1995; Bannai-Navarro-Noelia-
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Tiep, 2020).

Let t = 2. What are the smallest size of unitary 2-design Y in
U(d)? (It is well known that |Y| > (d?> — 1)2 + 1, but the exis-
tence of one with |Y| = (d? — 1)2 + 1, namely, a tight 2-design,
is still open.)

Let d = q = p%, and let Sp(2a,p) act naturally on the vector
space W of dimension 2a over F,. It is known (cf. Theorem 3
in BNNT(2020)) that if there is a subgroup of Sp(2a,p) that
acts transitively on W — {0}, then a unitary 2-group is obtained.
(SL(2,q) is such a subgroup and of order roughly ¢3. (So, the
obtained unitary 2-group is roughly of order ¢°.) We think we
have just obtained the following result.

a

Theorem (Bannai-Zhao). If there exists a transitive subset of
Sp(2a,p) acting on W — {0}, then we get a unitary 2-design on
U(p?).

We think there is a good possibility of the existence of smaller
sized transitive set of Sp(2a,p) on W — {0}. It is known that
no such sharply transitive subset exists (by Miiller-Nagy, 2011).
While, it seems transitive sets are not much studied in general, we
hope the existence of such good transitive sets, and then unitary
2-designs.

Thank you very much



