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Abstract 

Shrinkage estimation of Poisson means is considered when observations are given in the 
form of a two-way contingency table. Assuming a multiplicative Poisson model, introduce 
the estimators which shrink to the specified values or an order statistic in one dimension 
and in two dimensions, proposed by Chang and Shinozaki (2022), are considered and are 
shown to dominate the maximum likelihood estimator (MLE) under normalized squared 
error loss. Further, Assuming the full model, shrinkage to the multiplicative model is 
devised to improve upon the unbiased estimator by finding out the patterns where the 
observed frequency is not smaller than the estimated frequency for each cell. 

1 Introduction 

We consider two-way multiplicative model where X;j, i = 1, ... , I, j 
independent random Poisson random variables with means 

>.;i = >.a;(3j, i = 1, ... , I, j = 1, ... , J, 

where a; 2'. 0 and /3j 2'. 0 satisfy I:{=1 a; = 1 and I:f=1 /3j = 1, respectively. 

1, ... , J, are 

To review the history of the simultaneous estimation of Poisson means briefly, let x; 

be independently distributed as Po(>.;), i = 1, ... ,p. Clevenson and Zidek (1975) were 
the first to propose a class of estimators of the form 

5..cz(x) = x - cp(W) x 
' ' W + p - 1 " i = 1, ... ,P, 

where W = I:f X; and x = (x1 , ... , xp)- Clevenson and Zidek (1975) have shown that 
,cz 

when p 2'. 2 and if cp( ·) is non-decreasing and satisfies O :=::: cp( ·) :=::: 2(p - 1), then .A ( x) = 
(>..fZ(x), ... )gz(x)) dominates x under the normalized squared error loss 
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Since then considerable efforts have been devoted to the problem by many authors. Broad 
classes of dominating estimators have been given by many authors, including Tsui and 
Press (1982), Hwang (1982), Ghosh et al. (1983) and Chou (1991). Dominance re­
sults have been shown for the other loss functions, including the squared error loss one 
I:f=1 (~i - .\i)2 . See, for example, Peng (1975), Tsui and Press (1982), Ghosh et al. (1983) 
and Ghosh and Yang (1988). Improved estimators over the unbiased one have been given 
for a class of discrete distributions, including those belonging to a one-parameter exponen­
tial family. See, Hwang (1982), Ghosh et al. (1983), Tsui (1984, 1986) and Chou (1991). 
Chang and Shinozaki (2019) have given new types of shrinkage estimators when a covari­
ate is available and also when order restrictions on the means are present. Simultaneous 
prediction of Poisson random variable has been treated by Komaki (2004), who has given 
fundamental admissibility results under the Kullback-Leibler loss. A class of general­
ized Bayes estimators has been introduced in Komaki (2015) and Hamura and Kubokawa 
(2019) have derived the condition under which the generalized Bayes estimators dominate 
the standard estimators when sample sizes are different. 

One important case to which simultaneous estimation of Poisson means is applied is the 
one where Poisson random variables are observed in the form of a multi-way contingency 
table. Hara and Takemura (2006) have studied the simultaneous estimation of the Poisson 
means in multi-way multiplicative models and have given a class of estimators which 
improve upon the maximum likelihood estimators (MLE) under the normalized squared 
error loss by shrinking them toward the origin. Motived by Hara and Takemura, Chang 
and Shinozaki (2022) have studied the simultaneous estimation of the Poisson means in 
multi-way multiplicative models and have proposed the estimators which shrink to the 
specified values or an order statistic in one dimension and in two dimensions are considered 
and are shown to dominate the maximum likelihood estimator (MLE) under normalized 
squared error loss. 

In this paper two problems on improving upon the MLE of the Poisson means is con­
sidered when Poisson random variables are observed in the form of a two-way contingency 
table. In Section 2, we first introduce the some results of Chang and Shinozaki (2022), 
the multiplicative Poisson model is assumed and shrinkage to a specified value or an order 
statistic is considered in one dimension and in two dimensions. In Section 3, assuming 
the full model, shrinkage to the multiplicative model is devised by determining the basic 
cells so that the observed frequency is not smaller than the estimated frequency for each 
of the other cells. The detail proofs of the basic results used in the discussion of Section 
3 are given in Appendix in Chang and Shinozaki (2022), https:/ /doi.org/10.1007 /s42081-
022-00169-9. 

We denote the one-dimensional frequencies and the total frequency by 

J I I J 

Xi+= LXij, i = l, ... ,I, X+j = LXij, j = 1, ... ,J, X++ = LLXij· 
j=l i=l i=l j=l 

As discussed in Hara and Takemura (2006) complete sufficient statistics are x 1 = (xi+, ... , xI+) 
and x 2 = (x+1 , ... , X+J). The MLE of Aij is 

if x++ -=/- 0 

if X++ = 0. 
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They have given a class of improved estimators which shrink the MLE toward the origin 
under the normalized squared error loss. The simple one is 

offr=Xi+X+j{l- d }, i=l, ... ,l,j=l, ... ,J, 
X++ X++ + d 

The following lemma is a special case of Lemma 2.1 of Hara and Takemura (2006) and 
is useful to evaluate the risk of the shrinkage estimators when normalized squared error 
loss is concerned. 

Lemma 1.1. If g(x1, x 2 ) is a real-valued function satisfying Elg(x1 , x 2 ) I < oo and 
g(x 1 , x 2 ) = 0 when xi+= 0 or x+j = 0, then 

{ g(x1, x2)} { (x++ + 1) r J } 
E Aij = E (xi++ l)(x+j + 1/(x1 + ei' X2 + ej) ' 

where e{ (ef) is Ix 1 (J x 1) unit vector with i-th (j-th) component 1. 

2 One-dimensional shrinkage to an order statistic or 
a specified point 

2.1. One-dimensional shrinkage to an order or a specified point 
statistic. 

Let X(c)+ be the €-th smallest observation among Xi+, ... , XJ+, We assume that I?:€+ 2 
and consider the following estimator which shrinks xi+ toward X(c)+ when Xi+ ?: X(c)+: 

0(1) = X+j { . _ (W) (xi+ - X(c)+)+} 
,1 x++ x,+ cp W + d , i = l, ... , I, j = l, ... , J, 

where W = L{=1 (xi+ - X(c)+)+, a+ = max(0, a) and dis a positive constant. Then we 
have the following. 

Theorem 2.1. Suppose that cp(W) is a non-decreasing function satisfying 0 :S cp(W) :S 
2(1 - € - 1) and that d ?: sup cp(W)/2. Then ogl, i = 1, ... , I improves upon the MLE 

>,,ff L, i = 1, ... , I under the loss function L{=1 (>.ij - Aij) 2 / Aij for any j = l, ... , J. 

Remark 2.1. Theorem 2.1 can be generalized directly to the case of Poisson multiplica­
tive model for a multi-way contingency tables by using a lemma (Lemma 3.1 of Hara and 
Takemura (2006)) which is a generalization of Lemma 2.1. For example, consider the case 
of a 3-way contingency table Xijk, i = l, ... , I, j = l, ... , J, k = l, ... , K where Xijk are 
independent Poisson random variables with means Aijk· Let xi++, x+i+, x++k and x+++ 

denote the one-dimensional marginal frequencies and the total frequency. Let j and k be 
arbitrarily fixed and consider the simultaneous estimation of Aijk, ... , AJjk under the loss 
function L{=1 (>.ijk - Aijk)2 / Aijk· Then, by adopting similar notations and conditions on 
cp(W) and d, we see that the estimator 

X+j+X++k { . - (W) (x;++ - X(c)++)+} . = 1 I 
2 Xi++ cp w d ' z ' ... ' 

X+++ + 
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improves upon the MLE xi++X+j+X++k/xt++' i = 1, ... , I. 

2.2. One-dimensional shrinkage to a specified point 

Let b; ;:::: 0, i = 1, ... , I be given numbers and we propose the following shrinkage estimator 
which shrinks x;+ to b; when xi+ ;:::: b;: 

0c2i = X+j { . _ (N W) (xi+ - b;)+} 
'J X++ x,+ 'P ' W + d(N) ' i = l, ... 'I, j = 1, ... 'J, 

where W = I:{=1(xi+ - b;)+ and N = #{ilxi+;:::: b;}. Then we have the following. 

Theorem 2.2, Suppose that rp(N, W) is a non-decreasing function of W and satisfies 
0 :S rp(N, W) :S 2(N - 1)+ for any O :SN :SI. Suppose that d(N) ;:::: supw rp(N, W)/2. 
Then o[fl, i = 1, ... , I improves upon the MLE 5-.tJL, i = 1, ... , I under the loss function 

I:{=1(>.ij - A;j)2/A;j for any j = 1, ... , J. 
It may be noticed that the shrinkage is made only when N ;:::: 2. 

2.3. Two-dimensional shrinkage to order statistics. 

Let X(£)+ and X+(m) be the £-th and m-th smallest observation among Xi+, ... , XJ+ and 
x+l, ... , X+J, respectively. We assume that I ;:::: £ + 2 and J ;:::: m + 2 and consider the 
estimator which shrinks xi+ toward X(e)+ when xi+ ;:::: X(e)+ in the first dimension and 
shrinks X+j toward X+(m) when X+j ;:::: X+(m) in the second dimension simultaneously. To 
improve upon the MLE >.tf L, we propose the following estimator : 

,(3) = _1_{ . _ (W) (xi+ - X(£)+)+ }{ . _ (W) (x+j - X+(m))+} 
u,1 x,+ '{)1 1 W + d X+1 '{)2 2 W + d , 

X++ 1 1 2 2 

i = 1, . .. , I, j = 1, ... , J, (2.4) 

where W1 = I:{=1 (xi+ -X(£)+)+ and W2 = I:f=1 (x+j -X+(m))+ and d1 and d2 are positive 
constants. Then we have the following. 
Theorem 2.3. Suppose that rp1(W1) and rp2(W2) are non-decreasing functions satisfying 
0 ::; rp1 (W1) ::; I-£- l and O ::; rp2(W2 ) ::; J - m-1, respectively. If d1 ;:::: (I -£-1)/(I -
£)suprp1(W1) and d2 ;:::: (J- m -1)/(J- m)suprp2(W2). Then o;Jl,i = l, ... ,I,j = 
1, ... , J improves upon the MLE >.tJL under the loss function I:{=1 I:f=1(>.ij -A;j)2/>..ij· 

We also consider two-dimensional shrinkage to the order statistics and to the specified 
two positive values. 
Remark 2.3. Theorem 2.3 is directly generalized to the case of multi-way contingency 
tables. Since the notations and conditions are essentially the same, we only give a sketch 
of the result for the case of 3-way contingency table. We shrink xi++ toward X(£)++ when 
xi++ ;:::: X(£)++ in the first dimension and shrink x+i+ toward X+(m)+ when x+i+ ;:::: X+(m)+ 

in the second dimension. Under the loss function 

I J 

L ~)5-.ijk - Aijk)2 I Aijk, 
i=l j=l 
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where k = l, · · ·, K is arbitrarily fixed, the improved estimator is given by 

2.4. Two-dimensional shrinkage to a specified point. 

Let bi ~ 0, i = 1, ... , I and Cj ~ 0, j = 1, ... , J be given numbers. Assuming that 
I, J ~ 2, we shrink xi+ to bi when xi+ ~ bi and X+j to Cj when X+j ~ Cj- To improve 
upon the MLE >.ffL, we propose the following estimator 

(4) 1 { (xi+-bi)+ }{ (x+j-cj)+} 
r5ij = x++ xi+ - cp1(N1, W1)W1 + d1(N1) x+i - cp2(N2, W2)W2 + d2(N2) ' 

i = 1, ... , I, j = 1, ... , J, (2.5) 

where W1 = I:{=1(xi+ - bi)+, W2 = I:f=1(x+i - cj)+, N1 = #{ilxi+ ~ bi,i = 1, ... ,I} 
and N2 = #{Jlx+i ~ ci,j = 1, ... , J}. Although it may be natural to put the condition 
I:{=1 bi = I:f =l Cj, we do not need it in the following. 

Theorem 2.4. Suppose that cpi(Ni, Wi) is a non-decreasing function of Wi and satisfies 
0 :'S 'Pi(Ni, Wi) :'S (Ni-1)+ for any Ni~ 0, and that di(Ni) ~ (Ni-1)+ /Ni supw; 'Pi(Ni, Wi), 

for any Ni ~ 0, i = 1, 2. Then rSIJl improves upon the MLE >.ff L under the loss function 

I:[=1 I:f =l ( >.ij - >..ij )2 / >..ij. 
It may be noticed that the shrinkage in the i-th dimension is made only when Ni~ 2. 

2.5. A discussion. 

Here we mention the possibility of the two-dimensional shrinkage estimators other than 
r5i~) and rSt) given in subsections 2.3 and 2.4, respectively. We only give two alternative 

estimators for r5i~). The following estimator is the simple average of the one-dimensional 

shrinkage estimator r5zl and its counterpart which makes shrinkage in the second dimen­
sion: 

xi+x+i _ cp1(N1, W1) x+i (xi+ - bi)+ cp2(N2, W2) xi+ (x+i - cj)+ 

X++ 2 X++ W1 +d1(N1) 2 x++ W2 + d2(N2)' 

where Wiand Ni, i = 1, 2, are defined in 2.4. It is easily shown that this estimator improves 
upon the MLE when cp(Ni, Wi) and di(Ni), i = 1, 2, satisfy the similar conditions as given 
in Theorem 2.2. 

We may pool W1 and W2 and consider the following estimator 

xi+X+j _ cp(N, W) X+j(xi+ - bi)++ xi+(x+i - cj)+ 

x++ 2 x++{W + d(N)} 

where W = (W1 + W2)/2 and N = N1 + N2. Although this estimator will dominate the 
MLE under suitable conditions on cp(N, W) and d(N), we do not pursue it here further. 



74

Unfortunately, these two estimators do not give the estimates which belong to the 
parameter space of the multiplicative Poisson models, whereas the estimators o3l and oit;l 
do. 

3 Shrinkage to the multiplicative Poisson model 

Here we consider saturated (full) model and propose a shrinkage method to the multi­
plicative model to improve upon the unbiased estimator. In 3.1 we deal with the 2 x 3 
table case to explain the idea of the method. In 3.2 general two-way contingency table is 
treated. A numerical example is given in 3.3 and a discussion is given in 3.4. Although 
the numbers of rows and columns are denoted by I and J in Section 2, here we denote 
them by m and n for simplicity. 

Now we state a useful result due to Chang and Shinozaki (2019). Let xi be distributed 
as Po(>.i), i = 1, ... ,P, and suppose that x1, ... , Xp are statistically independent. Let 
bi,i = 1, ... ,p, be specified non-negative values and let C = {(x1, ... ,xp)lxi :;:> bi,i = 
1, ... , p }. We consider a class of estimators which shrink only when x = (x1, ... , xP) E C. 
Letting Ic be the indicator function of C, estimators of the following form are considered: 

(xi - bi) 
oi(x)=xi-rp(W) W+d le, i=l, ... ,p, (3.1) 

where W = I:f=1 (xi - bi) and dis a positive constant. For p :;:> 2, Chang and Shinozaki 
(2019) have shown the following. 
Lemma 3.1. Let rp(·) be a non-decreasing function which satisfies 0::; rp(·)::; 2(p-1) and 
suppose that d :;:> suprp(·)/2. Then (<51(x), ... , oP(x)) dominates x under the normalized 

squared error loss I:f=1(~i - >.i)2/>.i. 

Remark 3.1. Since the two estimators are the same outside C, the averaged loss of 
( <51 ( x), ... , Op ( x)) over C is smaller than or equal to that of X. Further, as stated in 
Chang and Shinozaki (2019), Lemma 3.1 is true even when the inequality xi :;:> bi is 
replaced by xi > bi for some of p coordinates in the definition of C. We use this Remark 
3.1 in the subsection 3.2.4. 

3.1 2 x 3 table 

Consider a 2 x 3 table whose components xij, i = 1, 2, j = 1, 2, 3 are independent Poisson 
random variables with respective means Aij· The multiplicative (independent) model is 
described as 

>.ij = >.piqj, i = 1, 2, j = 1, 2, 3, 

where >. = I:;=1 I:;=1 >.ij and Pi :;:, 0 and qj :;:, 0 satisfy P1 + P2 = 1 and q1 + q2 + q3 = 1, 
respectively. When the model is true, the row ratio Xi 1 j/Xi2 j (j = 1, 2, 3) is an estimator 
of Pii/Pi2 , (i1, i2 = 1, 2) and the column ratio xiii/xih (i = 1, 2) is an estimator of 
%/qh, (j1,j2 = 1,2,3). If we choose four xi/s pertinently so that a row ratio and two 
column ratios are determined, we obtain the estimated frequencies of the remaining two 
cells under independence. In case when the observed frequency is larger than or equal to 
the estimated frequency for the two cells, we shrink the two observed frequencies to their 
respective estimated frequencies. For any 2 x 3 table there are three ways to choose four 
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xi/s if we take notice of the numbers of four xi/s which belong to respective columns: 
col(2, 1, 1), col(l, 2, 1) and col(l, 1, 2). By col(y1, y2, y3 )(Yi 2 1, j = 1, 2, 3, y1 +y2 +y3 = 4) 
we mean the case where Yi elements are chosen from the j-th column so that a row ratio 
and two column ratios are determined. 
Col(2, 1, 1). We first give a partition of the total set S = {Xlxij 2 0, i = 1, 2,j = 1, 2, 3}, 
where X = {xij,i = 1,2,j = 1,2,3}. For that purpose we first choose the two variables 
x11 and x21 in the first column and the row ratio x11 /x21 is determinated. Next we choose 
one variable each from the second and third columns. There are four cases depending on 
whether x11/x21 2 x12/x22 or not and whether x11/x21 2 x13/x23 or not. Let the four sets 
Sc,£ = 1, 2, 3, 4 be defined as follows: 

S1 {Xlx11/x21 2 X12/x22, x11/x21 2 x13/X23}, 

S2 {Xlx11/x21 2 X12/x22, x11/x21 < x13/X23}, 

S3 {Xlx11/x21 < x12/x22, x11/x21 2 x13/x23}, 

S4 {Xlx11/x21 < X12/x22, x11/x21 < X13/x23}. 

Then Sc,£ = 1, 2, 3, 4 are disjoint and Ui=i Sc is the total set S. Thus Sc,£ = 1, 2, 3, 4 
give a partition of S. 

Consider the case where an observation X E S4 . We choose the variables x22 and x23 
from the second and third columns, respectively whenever X E S4 . Then the estimated 
frequencies of the (1, 2) and (1, 3) cells based on x11 , x21 , x22 and x23 are given as 

respectively and we have x12 > x12 and x 13 > x 13 . Suppose that 

is observed. Then X E S4 and, fixing x11 = 4, x21 = 8, x22 = 6, and x23 = 4, we have 
x12 = 3 and x13 = 2. Thus we have an observation in the two dimensional set x12 > 3 
and x13 > 2. We apply the estimator (3.1) with p = 2, x1 = x12 , x2 = x13 , b1 = 3 and 
b2 = 2 and have the following estimator: When X E S4 

{ 
Xij, (i,j) = (1,1),(2,1),(2,2) and (2,3), 

7,1;i1\x) = a(xii - xii) 
1 Xij - ( A ) ( A ) , (i,j) = (1,2) and (1,3), 

X12 - X12 + X13 - X13 + d 

where O < a :S 2 and d 2 a/2. When X E Sc,£ = 1, 2, 3, 7,1;il (X) is similarly defined and 
the estimator for the case col(2, 1, 1) is given as 

We will show that the estimator improves upon the unbiased estimator generally in 3.2. 
In our numerical example, putting a = 2 - 1 = 1 and d = a/2 = 1/2, we have 
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Case (1,2,1). We choose x12 = 6 and x 22 = 6 in the second column and the row ratio 
x12/x22 = 6/6 = 1 is determined. Choosing x11 = 4 and x 23 = 4 further, we have 
x21 = 8 > 4 = i:21 and x13 = 8 > 4 = i:13 . Thus we shrink (x21 , x13 ) to (i:21 , i:13 ) in our 
example. Generally we obtain the estimator in this way and denote it by 'l/Jg\x), as 

'l/J(2l(X) = [ 4 6 7.529 ] 
7.529 6 4 . 

Case (1,1,2). We fix x 13 = 8 and x 23 = 4 in the third column and x11 = 4 and x12 = 6 
further. Then we have x21 = 8 > 2 = i:21 and x 22 = 6 > 3 = i:22 . We shrink (x21 , x22 ) to 
(i:21 , i:22 ) in our example. Generally we denote the estimator by 'l/Jt\x), as 

'l/Jc3l (X) = [ 4 6 8 ] 
7.368 5.684 4 . 

By averaging the three estimators we have 

which is expected to show more stable performance than 'l/J&) (X) (k = 1, 2, 3) alone. It 
is easily seen that W(X) = { 'l/Ji1(X), i = 1, 2, j = 1, 2, 3} gives an improvement upon X 
since each i:r,(kl(X) = i'l/J&)(X),i = 1,2,j = 1,2,3} (k = 1,2,3) improves upon X and 
the randomized estimator 

1 
with probability 3, k = l, 2, 3, i = 1, 2, j = 1, 2, 3, 

is improved upon by W(X) because the loss function is convex. In our numerical example, 
by putting a = 2 - 1 = 1 and d = a/2 = 1/2, we have 

W(X) = [ 4 5.895 7.633 ] 
7.633 5.895 4 . 

3.2 m x n table 

Consider an m x n table whose (i, j)-th element is Xij, i = 1, ... , m, j = 1, ... , n , where 
xi/s are independent Poisson random variables with respective means AiJ· We denote the 
table by X = { Xij, i = 1, ... , m, j = 1, ... , n }. In the independent (multiplicative) model 

where >-.. = I::1 I:J=1 AiJ and p1 ~ 0 and q1 ~ 0 satisfy I::1 Pi = l and I:J=1 q1 = l, 
respectively. We consider shrinking the observed frequencies to the estimated frequencies 
under independence. 
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3.2.1 Connectedness 

The row ratio X;ij/X; 2 j (j = 1, ... , n) is an estimator of Pii/P;2 and the column ratio 
X;j,jx;h (i = 1, ... , m) is the one of%/%- If (m + n - 1) x;/s are fixed pertinently so 
that row ratios and column ratios are determined, we obtain the estimated frequencies of 
the remaining (m - l)(n - 1) cells which are suited to the pattern under independence. 
We will obtain several sets of (m + n -1) x;/s for which the observed frequency is larger 
than or equal to the estimated frequency for the remaining (m - l)(n - 1) cells. 

Let Z be a subset of X satisfying IZI = m + n - 1 and let v; (yj) denote the number 
of elements of Z which belong to the i-th row (j-th column) of X. Thus we have 

m n 

L v; = L Yi = m + n - 1. 
i=l j=l 

To define all row ratios based on Z, we first define the row ratio of the i1-th and irth 
rows by 8;1; 2 = x;,j/X;2 j if X;ij, X;2 j E Z. Then we extend the definition based on the 
defined row ratios. For example, if m = n = 3 and Z = { xn, X13, x21, X22, X32}, 812 and 
823 are defined first. Then we set 813 = 812823 . Column ratios are similarly defined. We 
notice that it is necessary that 

v; > 0, i = 1, ... , m and Yi > 0, j = 1, ... , n (3.2) 

for all row ratios and column ratios to be defined. However, even if the condition (3.2) is 
satisfied, all row and column ratios are not necessarily well defined. Consider, for example, 
the case where m = n = 3 and Z = {x11 , x12 , x21 , x22 , x33}. Third row (column) is isolated 
and row (column) ratios including it are not defined. We need a further condition on Z. 

Remark 3.2. Some x;/8 E Z may be O in some cases. We set 0/0 = 1 so that 8;j8ji = 
8;; = 1 always holds. Thus for any O <a< b we assume that 0/b < Oja and a/0 < b/0. 

We first introduce the following definitions of connectedness to define row and column 
ratios definitely. 
Definition 3.1. (Connectedness of two elements of Z). Let Z be a subset of X. 
1. Xab E Z and Xcd E Z are connected if a = c or b = d. 
Further, 
2. Xab E Z and Xef E Z are connected if Xab and Xcd are connected and Xcd and Xef are 
connected for some Xcd E Z . 

Thus two elements of Z are connected if one is reachable from the other by way of 
two elements of Z which are on the same row or column. 
Definition 3.2. (Connectedness of Z). Let Z be a subset of X. Z is connected if 
any two elements of Z are connected. 

Let 
M={l,2, ... ,m}, and N={l,2, ... ,n}. 

Then we have the following. 

Proposition 3.1. Z is not connected if and only if there exist 0 =/= Z1 C Z, 0 =/= M1 C 

M and 0 =/= N1 c N such that 

Z1 C {x;j,i E M1,J E N1} and Zf C {x;j,i E Mf,j E Nf}, 
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where Z1 = Z \ Z1 -=/- 0, Mf_ = M \ M 1 -=/- 0, and N1 = N \ N 1 -=/- 0. 

3.2.2 Basis and protrusive basis 

Now we introduce the following. 

Definition 3.3. (Basis). Z C X is a basis of X if IZI = m + n - 1, vi > 0, i = 
1, ... , m, yj > 0,J = 1, ... , n and Z is connected. 

As we show in Proposition 3.2 below, if Z is a basis of X, all row and column ratios are 
determined. The following lemma is useful to show Proposition 3.2 as well. 

Lemma 3.2. Let Z be a basis of an m x n table X. 

1) If X;0 ,j0 is the only element of the io-th row which belongs to Z, then Z \ {x;0 ,j0 } is 
a basis of the (m - 1) x n table which we obtain by deleting the i0-th row from X. 

2) If x;0 ,j0 is the only element of the J0-th column which belongs to Z, then Z \ { x;0 ,j0 } 

is a basis of the m x (n - 1) table which we obtain by deleting the J0-th column 
fromX. 

Proposition 3.2. If Z is a basis of X, all row and column ratios are uniquely determined 
by Z. 

Note. From the argument where m = 2 in the following proof, we see that for the cases 
where m = 2 or n = 2 if Z satisfies the condition 

IZI = m + n - 1, v; > 0, i = 1, ... , m, yj > 0,J = 1, ... , n, (3.3) 

then Z is connected and thus is a basis of X. 
Now we give a canonical form for a basis Z of an m x n table X when we focus on 

a specific row (or column) and apply only interchanges of rows and columns. We obtain 
an expression of a row (columum) ratio by using the canonical form. The canonical form 
is shown in Table 3.1, where "O" means that the corresponding X;j belongs to Z. The 
columns J1 , ... , Ja have at least two elements of Z, including the one in the first (originally 
i 1-th) row. Rt3, 1 :::; (3 :::; a, denotes the set of numbers of rows which have at least one 
element of Z which is reachable from x;d13 without passing through x;1 j~, T/-=/- (3. A detailed 
proof is given in Appendix 1. By applying this expression to the transposed X and taking 
the transpose again, we also obtain a canonical form for a basis Z of X when we focus on 
a specific column. 

Based on the canonical form, we obtain an expression of the row ratio sikii in terms 
of Z. We first see that sikii has the factor 1/xid, if ik belongs to Ry, 1 :S 1 :S a. See 
Table 3.2 which essentially shows the canonical form for a basis Z when we focus on the 
J,-th column. We set i1 = i(l) and J, = J(l). We also notice that there exists unique 
Xi(2)j(l) E Z, i(2) E R, from which each element of Zin the ik-th row is reachable without 
passing through the other Xij(I) E Z, i -=/- i(2) (Table 3.3). Thus we see that S;(2)i(l) = 
Xi(2)j(l)/Xi(l)j(l) and our problem_ has reduced to the one of obtaining an expression ~ 
siki(2) based on a smaller table X i1.:._ Table 3.3. We note that the set of elements of X 

which belong to Z form a basis of X as is shown in Appendix 1 for the canonical form 
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Table 3.1 A canonical form for a basis Z based on the i1-th row 

J1 J2 . . . j13 ... Ja 
i1 0 0 0 0 0 ... 0 

0 0 0 
R1 0 0 

0 
0 

R2 0 0 
0 0 

0 0 
R13 0 0 

0 

0 0 0 
Ra 0 

0 

when we focus on a row. We repeat the similar procedure and have the expression 

(3.4) 

where TJ denotes the step number. We may notice that s;k;1 is expressed in terms of all 
different x;/s since j(TJ),TJ = 1,2,--·, are all different. For the columun ratio tjdi, a 
similar expression is obtained. When a basis Z of an m x n table X is given, row ratios 

Table 3.2 A canonical form for a basis Z based on the j 1 -th column 

J,=j(l) 
i1 = i(l) 0 

0 0 
0 

0 0 
R, ik 0 0 

0 
0 0 

0 0 
0 

Saf3, a, fJ = 1, ... , m and column ratios t,6 , ry, 8 = 1, ... , n are uniquely determined. We 
may notice that sa13s13a = 1 for any a, fJ = 1, ... , m and t 15t51 = 1 for any ry, 8 = 1, ... , n. 
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Table 3.3 A canonical form for a basis Z based on the j(l)-th column 

j(l) 
i(l) 0 

0 0 
0 

i(2) 0 0 -
ik 0 0 +--X 

0 
0 0 

0 0 
0 

Then we define the following. 

Definition 3.4. (Estimated frequency). Using any Xab E Z, the estimated frequency 
of the ( i, j)-th cell of X based on a basis Z is defined as 

We note that Xij = Xij if Xij E Z. Further, we see that the estimated frequency is 
independent of the choice of Xab E Z since SafJSfJ, = sa, for any o:, /3, 'Y = 1, ... , m and 
tlictcq, = tliq, for any 8, E, ¢ = 1, ... , n. Now we give the following. 
Definition 3.5. (Protrusive basis). Let Z be a basis of an m x n table X = {xij,i = 
1, ... , m, j = 1, ... , n} and let Xij be the estimated frequency of the (i, j)-th cell of X 
based on Z. If Xij 2: Xij, i = 1, ... , m, j = 1, ... , n, then we say that Z gives a protrusive 
pattern of X. We also say that Z is a p-basis of X for simplicity. 

We may notice here that a p-basis depends on the observed value of X, but a basis 
does not. 

3.2.3 Total number of protrusive bases 

We begin by the following remark whose proof is clear and is omitted. 

Remark 3.3. It can be easily verified that Lemma 3.2 is true even if the word "basis" 
is replaced by "basis which gives a protrusive pattern of X". Conversely, to look for a 
basis Z which gives a protrusive pattern of X and has only one element in a row (k-th 
row, say) (a column (£-th column, say)) of X, we need to find a p-basis Z' of X' which 
we obtain by deleting the k-th row (£-th column) from X. Once a p-basis Z' of X' is 
obtained, we choose an element in the k-th row (£-th column) as a member of Z if the 
resulting ski, i =I= k (ttj, j =I=£) is minimized. The element is uniquely determined except 
for a tie. We give a method to treat a tie and will show that it enables us to resolve a tie. 

To resolve a tie, we need to make a rule to include the case A = B in A 2: B or A ::; B, 
where A and B are functions of X = { Xij, i = 1, ... , m, j = 1, ... , n} such that A/ B is a 
product of ratios of two Xij 's . We propose the following two methods. 



81

Method l(based on row-first ordering) 
x;/s are lined up as Xu, X12, ... , X1n, X21, X22, ... , X2n, ... , Xm1, Xm2, ... , Xmn· Let Su(X;010 ) 

be the set of x;1 which succeeds x;010 . If the inequality A > B is rewritten as x;010 > 
J(Su(x;010 )) for some X;010 , then the case A= Bis included in A:::::: B, where J(Su(x;010 )) 

is a function of X;1 E Su(x;010 ). 

Method 2(based on column-first ordering) 
This is the same as Method 1 except that x;/s are line up as xu, x21 , ... , Xmi, 

X12, X22, · · ·, Xm2, · · ·, X1n, X2n, · · ·, Xmn· 
Suppose that a basis Z of X is given and row ratios are determined. As an example 

let us consider the inequality Xad/ Xcd > Sac· Since Sac is expressed as 

- II Xi(1J+l)j(1J) 
Sac- 1)----, 

Xi(1J)j(1J) 

as shown in (3.4), we can easily see that Xad/xcd > Sac is rewritten as X;010 > f(Su(x;010 )) or 
X;010 < J(Su(x;010 )) for some Xiojo· Thus the case Xad/xcd = Sac is included in Xad/xcd:::::: Sac 

or Xad/ Xcd ::; Sac· 

It will not seem that these methods are able to resolve all the ties, especially when the 
tie occurs among three or more quantities. However, we will show specifically that these 
methods work well in our case. In this paper we use Method 1 or 2 to determine whether 
the equality A = B is included in A :::::: B or A ::; B. We use the notation A >- B when 
A:::::: B with the equality in the sense of Method 1 or 2. Now we show the following. 

Proposition 3.3 

(i) Let X be an m x (a+ 1) table and let X be them x a table obtained by deleting the 
Jo-th (j0 ~ 1, ... , a+ 1) column from X, where a:::::: 1. Suppose that a p-basis Z is 
given for X. Then an element xiaio of the Jo-th column of Xis uniquely determined 

by Method 1 ( or 2) so that Z U { xiaJo} is a p-basis of X. 

(ii) Let X be an (a+ 1) x n table and let X be the ax n table obtained by deleting the 
i0-th (io = 1, ... , a+ 1) row from X. Suppose that a p-basis Z is given for X. Then 
an element XioJa of the i0-th row of Xis uniquely determined by Method 1 (or 2) so 

that Z U { X;01"} is a p-basis of X. 

A proof is given in Appendix 2. 

Remark 3.4 As for ( i) of ~roposition 3.3, if there exist columns of X each of which has 
only element belonging to Z, the columns do not contribute to deter~ine the row ratios. 
Therefore, deleting the columns, we may assume that all columns of X have two or more 
elements which belong to Z. A similar remark also applies to (ii) of Proposition 3.3. 

Let Tmxn be the total number of bases which give protrusive patterns of an observed 
m x n table X. To discuss Tmxn, we first need the following. 

Definition 3.6. Let Z be a p-basis of an m x n table X. 

(i) If the i-th row of X has V; elements belonging to Z, we say Z is a row(v1 , v2 , ... , vm) 
p-basis, where V;:::::: 1, i = 1, ... , m and I::1 v; = m + n - l. 
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( ii) If the j-th column of X has yj elements belonging to Z, we say Z is a col(yi, y2, ... , Yn) 
p-basis, where yj ~ 1, j = 1, .. . , n and L7=i Yj = m + n - 1. 

The existence of a row(vi, v2, ... , vm) (col(yi, y2, ... , Yn)) p-basis is established by the 
following proposition whose proof is given in Appendix 3. 

Proposition 3.4. Let an m x n table X be observed. 

(i) For any (vi, V2, ... , vm) which satisfies vi ~ 1, i = 1, ... , m and L:i vi= m + n - 1, 
there exists a row(vi, v2, ... , vm) p-basis of X. 

(ii) For any (Yi, y2, ... , Yn) which satisfies Yj ~ 1,j = 1, ... , n and L7=i Yj = m + n -1, 
there exists a col(yi, Y2, ... , Yn) p-basis of X. 

Now we have the following proposition whose proof is given in Appendix 4. 

Proposition 3.5. Tmxn = m+n-2Cm-i for any m, n ~ 2. 

To show the uniqueness of a row(vi, V2, ... , vm) (col(yi, Y2, ... , Yn)) p-basis, we need the 
following lemma whose proof is given in Appendix 5. 

Lemma 3.3. For any m, n ~ 1, let 

n 

Tm,n = {(yi, ... , Yn)IYj ~ 1,j = 1, ... , n, LYj = m + n - 1}. 
j=i 

From Proposition 3.5 and Lemma 3.3, we see that Tmxn = ITm,nl- Thus using Propo­
sition 3.4 we have the following. 

Corollary 3.1 Let an m x n table X be observed. 

(i) For any (vi, v2, ... , vm) which satisfy vi ~ 1, i = 1, ... , m and L:i vi = m + n - 1, 
there exists a unique row(vi, v2, ... , vm) p-basis of X. 

(ii) For any (Yi, Y2, ... , Yn) which satisfy Yj ~ 1,j = 1, ... , n and L7=i Yj = m + n - 1, 
there exists a unique col(yi, Y2, ... , Yn) p-basis of X. 

3.2.4 A numerical algorithm and a shrinkage estimator 

Here we describe a numerical algorithm for all protrusive bases and propose a shrinkage 
estimator which dominates the unbiased estimator. It may be noticed that Method 1 or 
Method 2 is applied to resolve a tie. 

Numerical algorithm. For a protrusive basis Z of an mxn table X, let Y ={Yi, ... , Yn} 
be the set of numbers of elements of Zin each column of X. Thus 

n 

yj > 0, j = l, ... , n and L Yj = m + n - 1. 
j=i 
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We assume that m :S n without loss of generality. For the detail explanation of QqxR =q-2 

Ce-1, q > C 2'. 2, see Appendix 4. 
In case where m = 2 it is easy to obtain T2 xn = nC1 = n p-bases since Y = 

{2, 1, ... , 1}. Once the column which gives the row ratio is determined, we need to 
examine which element should belong to Z for each of the remaining columns. 

In case where m = 3, we only have Y = {3,1, ... ,1} and {2,2,1, ... ,1}. For Y = 
{3, 1, ... , 1}, n p-bases are easily obtained as in the case m = 2. For the case where 
Y = {2, 2, 1, ... , 1 }, we first determine a set of two columns which should have two 
elements of Z each. Then we consider the problem of a 3 x 2 table, which we can treat 
easily as discussed in the proof of Proposition 3.5. Since Q3 x 2 = 1, we have n(n - 1)/2 
p-bases for the case where Y = {2, 2, 1, ... , 1}. 

In case where m = 4, we have Y = {4, 1, ... , 1}, {3, 2, 1, ... , 1} and {2, 2, 2, 1, ... , 1}. 
We can treat the first and second cases similarly as in the case m = 3 and have n+n(n-1) 
p-bases. For the case where Y = {2, 2, 2, 1, ... , 1}, we first determine a set of three 
columns which should have two elements of Z each. Since Q4 x 3 = 1, a p-basis exists 
uniquely for each set of three columns. However, in order to find the unique p-basis, we 
may have to examine all T4 x 3 = 10 p-bases of the 4 x 3 (or 3 x 4) table. An algorithm 
described in Appendix 3 (especially Lemma A.2 and Appendix 3.1) will be helpful to get 
the col(2, 2, 2) p-basis of a 4 x 3 table. The col(2, 2, 2) p-basis will be easily obtained if, 
for example, the col(3, 2, 1) p-basis is available. 

We stop the discussion with brief comments on the case of 5 x n table. In this case 
we have to treat the cases Y = {3, 2, 2, 1, ... , 1} and {2, 2, 2, 2, 1, ... , 1 }. For the case 
where Y = {3, 2, 2, 1, ... , 1}, we may have to examine all T5 x 3 = 15 p-bases in order 
to find Q5 x 3 = 3 p-bases. For the case where Y = {2, 2, 2, 2, 1, ... , 1}, we may have to 
examine all T5x 4 = 35 p-bases in order to find Q5 x4 = 1 p-basis. An algorithm described 
in Appendix 3 will be helpful to get these p-bases 

Shrinkage estimator 

We first define our shrinkage estimator based on a fixed col(y1, ... , Yn) p-basis, where 
(Y1, ... , Yn) satifies Yj 2'. 1,j = 1, ... , n and L7=l Yj = m+n-1. To clarify the argument, 
we distinguish between variables and their observations till the end of the proof of Propo­
sition 3.6. We denote the observation by x'tj and the variable simply by its subscripts 
(i,j). We denote the variable sets by X, Zand Wand their observations by X 0 , Z 0 

and W 0 , respectively. We have shown in Corollary 3.1 that for an observed m x n table 
X 0 = {x'tj,i = 1, ... ,m, j = 1, ... ,n} ES= {X0 lx'tj 2'. O,i = 1, ... ,m, j = 1, ... ,n}, 
there exists a unique col(y1 , ... , Yn) p-basis Z when Method 1 or Method 2 is applied. 
Thus, based on an observation X 0 , we divide the set of mn variables X = { ( i, j), i = 
1, ... , m, j = 1, ... , n} into the col(y1, ... , Yn) p-basis Z and its complement W = X \ Z. 
Since Zand W depend on the observation X 0 , we may write them as Z(X 0 ) and W(X 0 ). 

Let L be the number of elements of the set 

{Z(X 0 )IX0 ES}. 

As a matter of fact, Lis the total number of col(y1, ... , Yn) bases of an m x n table since 
any col(Y1, ... , Yn) basis is a col(Y1, ... , Yn) p-basis for X 0 belonging to some non-empty 
subset of S. Although a simple expression of L in terms of m, n and (y1, ... , Yn) is not 
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available, the value of L may be obtained numerically. However, neither an expression 
nor the value of L is necessary for our discussion. 

Now we give a partition of the total space S based on col(y1 , ... , Yn) p-bases. Since 
there exists L different choices of a basis Z, numbering them by some method, we denote 
them by Ze, C = l, . .. , L. We may number L Z's by ordering them in terms of the 
variables ( i, j) 's belonging to Z which themselves may be ordered as in Method 1 or 2. 
For a given col(y1 , ... , Yn) basis Ze let 

Se= {X0 E SIZ(X0 ) = Ze}, C = l, ... , L. 

Then we see that LJ}=1 Se = S and Si, ... , SL are disjoint since Z(X 0 ) is uniquely deter­
mined for any observation X 0 E S from Corollary 3.1. Thus S1, ... , SL gives a partition 
of S. 

To explain our shrinkage estimator, we first consider the case where the observation 
X 0 E Se ( C = l, ... , L) since the shrinkage pattern is completely different among the 
regions Se, C = l, ... , L. We note that Z(X0 ) = Ze and W(X 0 ) = X \ Ze = We for 
any X 0 E S,. Let ZJ and We" be the observed values of z, and We, respectively, which 
are both parts of the observation X 0 • For the variable (i,j) E We, let X;j(ZJ) be the 
estimated frequency based on Ze. Collecting all X;j(ZJ), (i, j) E W, together, we put 

them as W,(ZJ). Then we see from the definition of the p-basis that 

where it is determined by Method 1 or 2 whether the equality of each componment of 
We" 2'. We(ZJ) is included or not if it happens. Therefore when the value of ZJ = z'i 
is fixed, the set of We" for which X 0 E Se is given by the (m - l)(n - 1) dimensional 

rectangular region We" 2'. We(z'i)- Thus Remark 3.1 to Lemma 3.1 will be applicable when 
we consider the shrinkage estimator. 

Now we discuss the general case and propose our shrinkage estimator. Let X 0 E S 
be observed and let Z(X0 ) be the unique col(y1 , ... , Yn) p-basis determined by X 0 • Let 
Z 0 be the observed value of Z(X0 ) which is a part of the observation X 0 • Similarly, for 
W(X 0 ) = X \ Z(X0 ), let W 0 be the observed value of W(X 0 ) which is also a part of 
the observation X 0 • Although it is not explicitly indicated, Z 0 and W 0 depend on the 
total observation X 0 since the variable sets Z(X0 ) and W(X 0 ) themselves depend on X 0 • 

For the variable (i,j) E W(X 0 ), let X;j(Z0 ) be the estimated frequency based on Z(X0 ). 

Then the following shrinkage estimator is proposed. 

(i, j) E Z(X 0 ), 

(i,j) E W(X 0 ), 

where T = E(i,j)EW(Xo){xij - X;j(Zo)}, a> 0 and d > 0. Let \J.!(X0 ) = {7Pij(X0 ),i = 
1, ... , m, j = 1, ... , n} and we have following. 

Proposition 3.6. Suppose that (m - l)(n - 1) 2: 2. Then \J.!(X0 ) improves upon the 
unbiased estimator X 0 if O <a~ 2(mn - m - n) and d 2'. a/2. 
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3.3 A numerical example 

We take the 3 x 4 contingency table given by Table 3.4 as an example and illustrate the 
shrinkage estimator. 

Table 3.4. A 3 x 4 table : observed frequencies and expected frequencies under indepen­
dence. 

B1 B2 B3 B4 Total 
A1 5 (3. 750) 2 (3.214) 3 (3.482) 5 (4.554) 15 
A2 3 (4.000) 7 (3.429) 2 (3.714) 4 (4.857) 16 
A3 6 (6.250) 3 (5.357) 8 (5.804) 8 (7.589) 25 

Total 14 12 13 17 56 

The number of protrusive bases is T3 x 4 = 5C2 = 10. The set of numbers of elements 
of a protrusive basis Zin each column of a 3 x 4 table Xis {3, 1, 1, 1} or {2, 2, 1, 1 }. When 
we denote the numbers of elements of Zin four columns of X by (c1 , c2 , c3 , c4 ), we only 
treat the two cases (3, 1, 1, 1) and (2, 2, 1, 1). The other cases are treated in the same way. 
Since (4 - 1)(3 - 1) = 6, we choose a= 6 - 1 = 5 and d = a/2 = 2.5 in the shrinkage 
estimator. 
Case (3,1,1,1). The protrusive basis consists of x11 = 5, x21 = 3, x31 = 6, x12 = 2, x 13 = 3 
and x14 = 5 and the estimated frequencies of the other cells are given as i:22 = 3 x 2/5 = 
1.2, X32 = 6 X 2/5 = 2.4, X23 = 3 X 3/5 = 1.8, X33 = 6 X 3/5 = 3.6, X24 = 3 X 5/5 = 3.0 
and i:34 = 6 x 5/5 = 6.0 (Table 3.5). 

Table 3.5. The table of the protrusive basis and estimated frequencies. 

B3 
2 3 5 

7 --t 1.2 2 --t 1.8 4 --t 3 
3 --t 2.4 8 --t 3.6 8 --t 6 

Since I:x dz(X;J - X;J) + d = 16.5, shrinkage factor= 1- 5/16.5 = 0.697 and we have 
•J 'F 

'l/Jg\x), i = 1, 2, 3, j = l, 2, 3, 4 as given in Table 3.6. 

Table 3.6. Shrinkage estimates 'l/Jg\x), i = 1, 2, 3, j = l, 2, 3, 4 for the case (3, 1, 1, 1). 

5 
3 
6 

B3 
2 3 

5.242 1.939 
2.818 6.667 

5 
3.697 
7.394 

Case (2,2,1,1). Since i < ~ < f, X21 = 3, x31 = 6, X12 = 2 and x32 = 3 are included 
in the basis and thus x 23 = 2 and x14 = 5 are included further. Then we have i:11 = 
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2 x 6/3 = 4.0, X22 = 3 x 3/6 = 1.5, Xi3 = 2 x 6/3 x 2/3 = 2.33, X33 = 6 x 3/2 = 4.0, 
X24 = 3 x 3/6 x 5/2 = 3.75 and X34 = 3 x 5/2 = 7.5. Since Lx,j<;t'z(Xij-Xij) +d = 14.083, 

shrinkage factor = 1 - 5/14.083 = 0.645 and we have 1/Ji\x), i = 1, 2, 3, j = 1, 2, 3, 4 as 
given in Table 3. 7. 

Table 3.7. Shrinkage estimates 1/Ji\x), i = 1, 2, 3, j = 1, 2, 3, 4 for the case (2, 2, 1, 1). 

4.645 
3 
6 

2 
5.047 

3 

2.882 
2 

6.580 

5 
3.911 
7.822 

Finally by averaging 10 estimates we have 1Pij(X) = Li:i 1/!t\x)/10 as given in 
Table 3.8. 

Table 3.8. Shrinkage estimates 1Pij(X), i = 1, 2, 3, j = 1, 2, 3, 4. 

Bi B2 B3 B4 
Ai 4.598 1.963 2.898 4.882 
A2 2.928 5.306 1.994 3.835 
A3 5.911 2.971 6.806 7.741 

For comparison we have applied the shrinkage estimator (3.1) which shrink Xij to its 
expected frequency Xij when Xij 2: X;j, although it is not shown to improve upon X;j. 

Since 5 x;/s are larger than their respective expected frequencies in our case, we set 
p = 5, a = p - l = 4, d = a/2 = 2. Thus we have Li Lj(xij - X;j)+ + d = 9.875 and 
shrinkage factor = 1 - 4/9.875 = 0.595. The resulting estimates are given in Table 3.9. 
We note that they are quite close to those given in Table 3.8. 

Table 3.9. Shrinkage estimates when we shrink 5 observed frequencies 
which are larger than their respective expected frequencies. 
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3 
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3 
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