
95

On Cardinalization of Consumer Utility 
Discrete Choice Models 

Yuichiro Kanazawa*, Ph.D. in statistics 

. 
In 

Professor by Special Appointment, International Christian University, 
Visiting Professor, Nara Institute of Science and Technology, 

1 Random utility models: A brief history 

We first review how econometricians have modeled the behavioral process that leads to the 
person's, the firm's, or more generally the decision maker's choice since Luce (1959) [4], 
Marschak (1960) [6], Lancaster (1971) [3], and McFadden (1974) [8]. 1l 

The set of alternatives, named the choice set, needs to have three characteristics: 
1. The alternatives must be mutually exclusive from the agent's perspective; 
2. The choice set must be exhaustive, in that all possible alternatives are included; 
3. The number of alternatives must be finite. 

For the sake of brevity, we henceforth use the term 'agent' for these decision makers, 
be it a person, a firm, or a student, or a respondent to a survey. The agents themselves 
exactly know all the factors that collectively determine their choices. 2l Some of these 
factors are observed by the researcher, but the others are not. This dichotomy between 
the agents on the theater and the researcher as audience is the most striking feature of 
this model. 

We label the agent's demografic and alternative speficic characteristics observed by all 
the agents as well as the researcher respectively as d; and Xj vector, and those observed by 
the agents but unobserved by the researcher as E;j, where i indexes the agent i = 1, ... , I 
and j indexes the alternative j = 1, ... , J. These factors jointly lead the agent i to choose 

'This work was supported by the Japan Society for the Promotion of Science under the Grant-in­
Aid for Scientific Research (C) 20K01595 and by the Research Institute for Mathematical Sciences, an 
International Joint Usage/Research Center located in Kyoto University. 

1lOriginally, the logit formula to be derived was derived by Luce (1959) [4] from assumptions about 
the characteristics of choice probabilities, namely the independence from irrelevant alternatives (IIA) 
property. Marschak (1960) [6] showed that these axioms implied that the model is consistent with utility 
maximization. The relation of the logit formula to the distribution of unobserved utility ( as opposed to the 
characteristics of choice probabilities) was developed by Marley, as cited by Luce and Suppes (1965) [5], 
who showed that the Gumbel (extreme value) distribution leads to the logit formula. Lancaster (1971) [3] 
and McFadden (1974) [8] completed the analysis by showing the converse: that the logit formula for the 
choice probabilities necessarily implies that unobserved utility is distributed Gumbel (extreme value). 

2)If otherwise, it is claimed that they should not be able to make such choices. 
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one and only one alternative j. Therefore his/her behavioral process is expressed by a 
function 

h (d;, Xj, E;j) = choosing alternative j. 

In this sense, this choice situation needs to be understood from a causal perspective. 
There are factors that collectively determine, or cause, the agent's choice. In other 

words, it is deterministic in the sense that given his/her demographics d;, Xj and E;j, the 
choice of agent i is fully determined. 3) perhaps out of convenience.4l The unobserved terms 
are assumed to have density j(E;j)- The researcher therefore must express the possible 
choices j = 1, ... , J of agent i = 1, ... , I as events with the corresponding probabilities. 

Concretely, the probability that the agent i chooses a particular alternative j from the 
set of all possible outcomes indexed by j is the probability that the unobserved factors 
are such that the behavioral process results in that outcome: 

Pr { E; s.t. h (d;, Xj, E;) = choosing alternative j}. 

It is researcher's responsibility to choose an appropriate distribution for E;. 

I now introduce the standard derivation of choice probabilities following Train (2009) [9]. 
The agent i would assign a certain level of utility U;i to each alternative j. The agent 
then chooses the alternative that provides the highest utility. The behavioral model is 
therefore: choose alternative k if and only if 

uik > U;j for 'vj =I- k. 

The reseacher does not observe the agent i's utility, however. Instead, the researcher 
only observes: demographics of the agents observable by the researcher, labeled d;; 
and attributes of the alternatives presumed to be in the mind of the agent when 
he/she makes decision among alternatives observable by the reseacher, labeled Xj-

We assume that the researcher can specify a function that relates these observed factors 
to the agent i's utility towards alternative j. This function V;j of d; and Xj expressed as 

(1) 

is called representative utility. Usually, V;i depends on parameters a on d; and /3 on Xj 

that are unknown to the researcher, for instance, in the linear form below: 

(2) 

These parameters must be estimated statistically. 
There are some part of utility that the researcher does not or cannot observe, and this 

fact makes 

3lHere we assume that the choice agent i makes is independent of choices other agents make. 
However the researcher does not observe Eij, and thus cannot predict the agent's behavior precisely. 

As a result, the researcher is forced to assume the unobserved terms Eij to be random 
4lWe will give one most standard interpretation as to what is meant by the distribution of E;j below. 
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Under such circumstances, the researcher assumes that the utility Uij can be decomposed 
as 

(3) 

where Ei/l captures all the factors that jointly affect utility as perceived by agent i for 
alternative j, but are not included in ¼j-

1. 1 Logit choice probabiity 

This additive construction in (3) is fairly general because Eij is defined as simply the dif­
ference between true utility Uij and the part of utility that the researcher captures in Vij. 
However, it also means that the random Eij and its characteristics such as its distribution 
depend critically on the researcher's specification of ¼j rather than a particular choice 
situation. In other words, it is determined by how a researcher expresses that choice 
situation. 

The joint density of the random vector Ei. = ( Eit, ... , EiJ) is denoted by f E;. ( ·). With 
this density, the researcher can make probabilistic statements about the agent's choice. 
Specifically, the probability agent i chooses alternative j is 

pij Pr {Uij > uik \:/k =I- j} 
Pr {¼j + Eij > ¼k + Eik \:/k =I- j} 
Pr { Eik - Eij < ¼j - ¼k \:/k =I- j} , (4) 

where we use the notation {statement} as the indicator function taking 1 if the statement 
is true and O otherwise as Bruno de Finetti introduced. 

This probability Pij is cumulative in the sense that the probability that each random 
term Eik - Eij, k =f j, is below the observed quantity ¼j - ¼k, k =f j. With the density 
feJ), this cumulative probability in (4) can be rewritten with multiple integral as 

P;j = Pr{E;k - E;j < ¼j - ¼k \:/k =f j} 

J ... lei { E;k - E;j < ¼j - ¼k \:/k =I- j} 

xfeJE;1, ... E;J)dE1 · · · dej_1 dei+1 · · -dEJdEj 

1
00 [l<;;+¼;-¼1 .. ·lEij+V;j-¼j-11EiJ+¼J-¼J+1 .. · 1EiJ+¼;-¼J 

-oo -(X) -oo -oo CX) 

xf eJE;1, ... EiJ )dE1 · · · dej_1 dei+1 · · · dEJ] dei. (5) 

Completing integration surrounded by the brackets [and] in (5) obtains a conditional 
choice probabiity Fe;(E;j+ ¼j- ¼1, · · ·, E;j + ¼j - ¼j-1, E;j+ ¼j- ¼Ht,···, E;j+ ¼j- ¼J) 

given random variables Ej. If E;j is given, this expression is also the conditional cumulative 

5lThis quantity Eij is sometimes referred to as idiosyncratic preference or idiosyncratic utility in mar­
keting and economics literature. 
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distribution for each Eij evaluated at Eij + V;j - Vnk· Then we integrate this distribution 
function of Ej from negative infinity to positive infinity to obtain the choice probability. 

To derive the logit model, the researcher uses the general notation in (5), and assume 
that each E;j is independently, identically distributed Gumbel (extreme value), or whose 
cumulative distribution function is 

J 

F(E;1, ... , E;J) = IJ exp {- exp(-E;k)}. 
k=l 

with the corresponding density for each E;j is 

( ) dF ( Eij) ( ) { ( ) } f E = --- = exp -E·· exp -exp -E·· 
Eij '] dEij '] '] . 

Substituting (2), (6) and (7) into (5) obtains 

100 F (E · + l/,; - ½1 · · · E · + l/,; - v; 1 fj 1,J 1,J 1, ' ' 1,J 1,J 1,J- ' 
-oo 

Eij + V;j - ¼j+1, · · ·, Eij + V;j - ¼J )f,; (Ej)dEij 

100 IT exp [- exp (-E;j + V;j - ¼k)] 
-oo k=l,k#j 

x exp( -E;j) exp { - exp( -E;j)} dE;j 

exp(V;j) exp ( ad; + ,Bxj) 
J )- J ( )" Lk=l exp(V;k Lk=l exp ad; + ,Bxj 

(6) 

(7) 

(8) 

the so-called "logit choice probability." Notice that the index i disappears in (8) because 
it is integrated out. 6) 

We note that, in expression (8), this probability no longer depends on the agent's taste 
term Eij· With (8), the market share of the alternative j aggregated over the agents or 
over i = 1, ... , I is expressed as 

(9) 

where we assume that P(d;) is the underlying joint density of demographics d;. 

1.2 Interpreting idiosyncratic taste Eij under logit choice prob­
ability 

How to interpret the distribution of Eij? The most widely-held interpretation of this dis­
tribution is as follows: Consider a population of agents who face the same observed repre-

6)If choice data for alternative j = 1, ... , J are available for agents i = 1, ... , I with each making choices 
independently, then estimation methods such as maximum likelihood can be employed to estimate the 
parameters associated with product characteristics Xj and with di in principle. 
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sentative utility ¼j for each alternative j = 1, ... , J as agent i. Among these agents 7), the 
researcher assumes the values of the unobserved factors Eij differ. That is, the researcher 
assumes heterogeneity of agents is manifested only8l in the heterogeneity of E;j. 9l The 
unconditional density fE;; (·) is the distribution of the unobserved portion of utility within 
the population of agents who face the same observed representative portion of utility as 
agent i for i = 1, ... , I. Under this interpretation, the probability P;j is the share of peo­
ple who choose alternative j within the population of people who face the same observed 
representative utility for each alternative as agent i. 

Different discrete choice models are obtained from different specifications of this den­
sity. For instance, logit model and nested logit model are known to have closed-form 
choice probabilities. These models are derived under the assumption that the unobserved 
portion E;. = ( E;1 , ... , EiJ) of utility is distributed i.i.d Gumbel 10) ( extreme value) and a 
type of generalized Gumbel (generalized extreme value), respectively. 

On the other hand, pro bit model is derived under the assumption that f E;. ( ·) is a 
multivariate normal, and mixed logit model is based on the assumption that the unobserved 
portion of utility consists of a part that follows any distribution specified by the researcher 
plus a part that is i.i.d. Gumbel (extreme value). With probit and mixed logit, the 
resulting integral does not have a closed form and is thus evaluated numerically through 
simulation. 

1.3 "Only differences in utility matter" and "the scale of utility 
is arbitrary" 

Train (2009) [9] wrote and I quote that "[s]everal aspects of the behavioral decision process 
affect the specification and estimation of any discrete choice model. The issues can be 
summarized easily in two statements: "[o]nly differences in utility matter"and "[t]he 
scale of utility is arbitrary."ln essence, what Train (2009) [9] stated is the utility as 
defined as in (3) is ordinal and not cardinal: (1) The absolute level of utility is irrelevant 
to both the decision maker's behavior and the researcher's model. If a constant is added 
to the utility of all alternatives, the alternative with the highest utility doesn't change; 
The decision maker chooses the same alternative with U;j for \/j as with U;j + k for \/j for 
any constant k. 11l (2) Just as adding a constant to the utility of all alternatives does not 

7lit is likely that such agents share the same demographics di with i, but not necessarily. This is 
because the difference in di can be compensated with the (perceived) difference in Xj, resulting in the 
same v;i 

8lrt appears as if heterogeneity also exists because demographics di of agents. However, please note 
that demographic heterogeneity presides in the data to be analyzed and is not assumed by nor under 
control of the researcher. 

9lThis assumption is considerably extended later in Berry (1994) [1] and Berry, Levinsohn, Pakes (1995, 
henceforth BLP(1995)) [2] when they introduced the random coefficient in the utility. We will discuss 
this extension later. 

lO) One could argue that the choice of this distributional assumption is purely out of convenience because 
of its well known property: If X ~ Gumbel( ax, /3) and Y ~ Gumbel( ay, /3) are independent, then their 
difference X - Y is distributed as X - Y ~ Logistic( ax - ay, /3)}. 

ll) A colloquial way to express this fact is, "A rising tide raises all boats." 
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change the decision maker's choice, neither does multiplying each alternative's utility by 
a constant. The alternative with the highest utility is the same no matter how utility is 
scaled. The model U;~ = ¼j + E;j for Vj is equivalent to U;~ = >.V;j + AE;j for Vj for any 
>. > 0. To take account of this fact, the researcher must normalize the scale of utility. 

1.4 Logit choice probability with unobserved demand charac-
teristic ,j 

Berry (1994) [1] introduced to the discrete choice model of product differentiation unobserved­
by the researcher who is not a agent by definition-demand characteristics ~j, while as­
suming all other characteristics and all decisions are observable and observed by all agents. 
Berry (1994) [1] claimed that the proposed estimation methods do not require the statis­
tician and econometrician to observe all relevant product characteristics. 

Now the expression of the utility in (2) can be rewritten, for instance, linearly as 

(10) 

where a and /3 are parameters to be estimated. 
From (3) and (10), the utility of agent i for alternative j is written as 

uij = ¼j + Eij =ad;+ /3Xj + ~j + Eij, (11) 

with two terms ~j and Eij are random. 
If we can further assume that the conditional distribution of E;j given ~j is 

Gumbel, the logit-type choice probability is derived as 

1.5 Interpreting idiosyncratic taste Eij in the presence of unob-
served demand characteristic ,j 

Berry (1994) [1] claimed that "[t]he term ej might be thought of as the mean of 
consumers' valuations of an unobserved product characteristic such as product 
quality, while the Eij represents the distribution of consumer preferences about 
this mean." 

We now try to extend the previous interpretation of E;j forwarded by Train (2009) [9] 
in subsection 1.2 in the presence of fr Consider a population of agents who face the same 
representative (observed) utility plus unobserved demand characteristic ¼j = ad;+/3xj+ 
~j for alternative j as agent i. Note that ~j represents the average or common utility that 
agents obtain from the unobserved attributes of alternative j. Among these agents, we 
assume the values of the unobserved idiosyncratic factors E;j distribute about its mean fr 
Berry (1994) [1] assumes that the value of unobserved demand characteristic ~j also varies 
with j = 1, ... , J, and as a result, econometricians and statisticians treat ~j as stochastic. 

Let f Ei l .. ( ·) of Ei. and ( be the joint distribution of the unobserved portion of utility 
within the population of agents who face the same observed portion ¼j = adi + /3xj of 
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utility.As a result, while the integral is taken with Gambel fe,;(E;j) in deriving (8), it is 
now replaced by its conditional Gumbel counterpart fe,;l(;(Eijl<;j) whose conditional mean 
is Ee,;l(;(E;jl<;j) = <;j in deriving (12). 

1.6 Random coefficient logit choice probability 

Berry (1994) and BLP (1995) further extended (12) so that the model now includes 
the random coefficients model to allow for interaction between agent and alternatives. 
A familiar starting point is to allow each agent to have a different preference for each 
different observable alternative characteristic: 

K 

uij = ad;+ f3xj + <;j + L <YkXjkVik + E;j, 
k=l 

(13) 

where ((;, E;) = (v;1, ... , V;K, E;1, ... , E;J) is a mean zero vector of random variables about 
<;j with (a known) distribution function. Now the contribution of Xk units of the k­
th alternative characteristic to the utility of individual i is (f3k + <Ykvik)xk, which varies 
over agents. Under this formulation, it is common to scale V;k such that E(v;k) = 0 
and E(v;k) = 1, so that the mean and variance of the marginal utilities associated with 
characteristic k are f3k and <Yl respectively. BLP (1995) claim that "[t]his specification 
is particularly tractable if E; consists of i.i.d. extreme value deviates." 

For this model, the market share function P;j is obtained in two stages: First, condi­
tional on the (<;j, d;, v;), probability P;j that agent i chooses alternative j is given by the 
logit-type formula: 

(14) 

For this operation to be valid, or E;j can be integrated out conditionally on <;j and V;j as 
in (14), this conditional distribution must be Gumbel. 12) 

Second, we assume the demographic variable d; has a joint distribution dependent 
on the demographic, and it is safely assume its distribution is independent of v;k. 13) 
Integrating out P;j in expression in (14) over the joint distribution of ( d;, vik) gives the 
market share Pf 

where P(d;, v;) is the underlying joint density of (d;, v;1 , ... , V;K1 ). 

12llf these two random taste terms E;j and v;k, both varying with respect to i, i = 1, ... ,I and j, 
j = 1, ... , J, are independent, the logistic choice probabilities in (14) can be justified. However, this 
assumption is almost impossible to verify. 

13lDemographic distribution can be obtained from the database and thus is independent of vik· 
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1. 7 Interpreting unobserved idiosyncratic taste Eij in the pres­
ence of unobserved demand characteristic ,j and the random 
coefficient (f3k + (J'kVik)xk under logit choice probability 

Let us try to come up with interpretation of the meaning of E; in the presence of ~j and 
the random coefficient (f3k + O"kVik)xk as previously done in subsection 1.5 after Train 
(2009) [9]. 

Consider a population of agents who face the same observed utility V;j = ad; + 
f3xj for each alternative as agent i. Among these agents, we assume the values of the 
unobserved taste term E; whose mean is ~/4l differ, but its random behavior is unaffected 
by (independent of) another taste term v;k that evaluates interaction between agent and 
his/her alternatives. 

1.8 Problem with unobserved idiosyncratic taste term Eij 

We have seen that the assumptions of Gumbel unobserved idiosyncratic terms E;j uncon­
ditionally, conditionally given ~j, or conditionally given ~j and v;k enable us to derive the 
logit-type choice probabiities such as the (8), (12), and (14) possible. 

exp ( ad; + f3xj) 

L{=1 exp ( ad; + /3xj)' 

exp(ad; + f3xj + ~j) 
L..{=1 exp(ad; + f3xk + ~k)' 

exp(ad; + /3xj + ~j + L O"kXjkvik) 

(8) 

(12) 

(14) 

Since the terms E;j and v;k with the same value of i index the same agent, they are 
unlikely to be independent in general, especially when j = k. In such cases, E;j and v;k 
may even be indistinguishable. Therefore we need to critically examine the validity of 
assumptions that conditional distribution of E;j given ~j is Gumbel when we derive (12), 
or that conditional distribution of E;j given ~j and v;k is Gumbel when we derive (14), even 
when we can safely assume unconditional distribution of E;j is Gumbel when we derive (8). 
This is because deriving logit-type choice probabilities listed above in (8), (12), and (14) 
all critically dependent on the assumption that difference between two indepedent 
Gumbel random variables E;k and E;j as in (5) has logistic distribution. 

We need to ask ourselves if we can remove the idiosyncratic taste random term E;j 

altogether and still able to model the choice situation? 

14lThe term ~j represents the average utility that consumers obtain from the unobserved attributes of 
product j. 
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2 A statistical formulation of logit choice probability 
without the unobserved idiosyncratic taste term Eij 

Suppose we have a baseline alternative, 15l and we represent such an alternative indexed 
by j = 0 as Xj = 0, di = 0, ~j = 0 with the choice probability of the baseline alternative 
as PiO, As in page 1, we retain the following assumptions: 

Assumption 1. The agent himself/herself knows exactly all the factors that collectively 
determine his or her choice. 16) 

Assumption 2. Some of these factors are observed by the researcher, but the others are 
not. 

This means that the reseacher cannot predict the agent 1s behavior precisely, but the 
agents know exactly what his/her demographics and the alternative characterisitcs made 
him/her choose a particular alternative. 

As in page 1, we assume the choice set needs to have three characteristics: 

Assumption 3. The alternatives must be mutually exclusive from the agent's perspec­
tive; 

Assumption 4. The choice set must be exhaustive, in that all possible alternatives are 
included; 

Assumption 5. The number of alternatives must be finite. 

In addition, we assume the following for alternative j = 0, ... , J: 

Assumption 6. There is no innate underlying ordering of these alternatives, and nu­
merical labels of from 0 to J are attached to alternatives for convenience in describing 
the distribution. 

Under Assumptions 1 to 6, agent i trying to choose an alternative j from the 
choice set indexed by j = 1, ... , J is ex ante characterized by a version of categorical 
distribution with one trial, where a sample space is 1 in the chosen alternative with the 
highest probability and 0 otherwise. The distribution describes the possible results of a 
random variable that can take on one of J + 1 possible categories, with the probability of 
each category indexed by PiO, ... , PiJ, 17) 

Concretely, for agent i, i = 1, ... , I with his/her demographic as di, the characteristics 
of alternative j as Xj, j = 0, ... , J, unobserved demand characteristic of alternative j as 
~j, interaction between agent i and alternative j as vij, and with his/her choice probability 

15lFor instance, in marketing and empirical industrial organization, the alternative of not purchasing 
anything or purchasing outside good is often used as the most natural baseline alternative. 

16llf otherwise, she/he should not be able to make such choices. 
17lI extended the category from 1, ... , J to 0, ... , J to include a baseline-category. For instance, in 

purchasing decisions, it is natural to include an alternative of not purchasing anything, or purchasing 
outside good. 
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P;j of alternative j written as a function of those variables as P;j(d;, Xj, ~j, V;j), his or her 
ex ante categorical distribution with one opportunity to choose one alternative from the 
choice set as perceived by the researcher is 

Pr{ N;o = n;o, .. . , N;J = n;J; P;o, .. . , P;J} 

_ 1! pnw(d c ) pniJ(d C ) - I I iO ;,Xo,<,,o,V;o X···X iJ ;,XJ,<,,J,ViJ, (16) 
n;o-···niJ. 

where j-th element of ( n;o, ... , n;J) is 1 and 0 otherwise. 
After the agent chooses one alternative from the choice set and the researcher observed 

that choice, the random variables N;o = n;0 , ••• , NiJ = n;J is fully specified. For instance, 
if agent i chooses k-th alternative, then N;o = 0, ... , Ni(k-l) = 0, N;k = l, Ni(k+l) = 
0, ... , N;J = 0. Post ante categorical distribution with one opportunity to choose an 
alternative k from the choice set as observed by the researcher obtained from (16) is 

Pr{N;o = n;o, ... , N;J = n;J; P;o, ... , P;J} 
11 

I . IP;o(d;,Xo,fo,v;ot'0=0 X ... X pi(k-1)(d;,Xk-l,~k1,V;(k-l)ri(k-l)=0 
n;o.···niJ. 

xP;k(d;, Xk, ~k, l/;krik=l 

xPi(k+1)(d;,Xk+1,~k+l,Vi(k+l)ri(k+l)=0 X ... X P;J(d;,XJ,~J,ViJriJ=O 

P;k(d;, Xk, ~k, l/;kr,F1 = P;k(d;, Xk, ~k, l/;k)- (17) 

Suppose that I agents with each agent having one opportunity to choose one alterna­
tive independently from the choice set, and that the researcher observe that alternatives 
j = 0, ... , J are chosen n0 , ... , nJ times respectively, or N;0 = n;o, ... , N;J = n;J. Then 
the Post ante categorical distribution as observed by the researcher likelihood of such 
an event obtained from (17) is 

IT{ Pr{N;0 = n;0 , .•• , NiJ = n;J; P;o, ... , PiJ} 
11 

II{ I . IP;o(d;,Xo,~o,Vwt' 0 X ... X P;J(d;,XJ,~J,ViJriJ 
n;o- · · ·n;J-

II{ [ 1 l! 1] P;o(d;,Xo,fo,v;o)L:n,o X ••• X P;J(d;,XJ,~J,V;J)L:niJ, (18) 
n;o.···n;J. 

where L{ N;o = L{ nw, ... , L{ N;J = L{ n;J are respectively the numbers of observed 
choices from alternative j = 0, ... , J for this set of agent i = 1, ... , I. 

The choice probabilities or parameters P;0 (d;, x 0 , fo, v;0 ), ... , P;J(d;, XJ, ~J, V;J) spec­
ifying the probabilities of each possible outcome in (18) are constrained by the fact that 
each must be in the range (0, 1) or P;j ( d;, Xj, ~j, V;j) E (0, 1) for j = 0, ... , 1 for all i, and 
all must sum to 1, or Lf=o P;j(d;, Xj, ~j, v;j) = 1 for all i. 

Under this setting, it is obvious that there is redundancy in parametrization 
among the P;j(d;, Xj, ~j, V;j) because Lf=o P;j(d;, Xj, ~j, V;j) = 1 for all i. We basically 
have only two choices, that is we discard one of the choice probabilities, or we focus on 
the contrast between the choice probability associated with alternative j to a baseline 
alternative, for instance, j = 0. Since the choice behavior of agent i is dictated by the 
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probability of choosing alternative j P;j ( d;, Xj, C,j, V;j) relative to his/her choice probability 
of alternative other than j or to "outside alternative"or "baseline alternative"with j = 0, 
we can assume the following without the loss of generality: 

Assumption 7. We standardize observed demographics d;, observed alternative charac­
teristic Xj, unobserved alternative characteristics C,j, and interaction between agent 
and alternative v;k against a baseline alternative indexed by j = 0 as d; = 0, Xj = 0, 
C,j = 0, and v;k = 0. 

Remark 1 In other words, Assumption 7 impllies the representative utility ¼o for 
"outside alternative" or "baseline alternative" is zero ¼o = 0. 

2.1 What standard statistics says about the issue 

As seen in such standard textbooks as McCullagh and Nelder (1989) [7], each of the 
distributions such as the normal, Poisson, binomial, multinomial, gamma, and inverse 
Gaussian has a special canonical link function for which there exists a sufficient statistic 
equal in dimension to the parameter in the linear predictor. 

For brevity, we suppress the arguments d;, Xj, C,j, and V;j of P;j for the moment. With 
this abbreviated notation, we let the probability of agent i choosing alternative j be P;j 
in a trial with J + 1 possible outcomes. If each N;j, i = 1, ... , I and j = 0, ... , J taking 
values either O or 1 and the quantity I:,f=o N;j = 1 for i = 1, ... , I denotes the number of 
trials for agent i resulting in choosing alternative j, j = 0, ... , J, the distribution (18) is 
canonically rewritten as 

II{ Pr{ N;0 = n;0 , .. . , N;J = n;J; P;0 , .. . , P;J} 

[~ (P;1) ~ (P;J) ] r ( 1 ) exp ~ n;1 log -p. + · · · + ~ niJ log -p. + IlogP;0 II; . 1 •••. 1 
i=l ,o i=l ,o n,o- n,J · 

exp [t n;1 log (P,1) + · · · + t niJ log (P;_J) + I log Pw] , 
i=l P,o i=l P,o 

(19) 

because I= I:,{ I:,f=o N;j = I:,{ 1 and 1!/(n;0! · · · niJ!) = 1. 
When the number of trials fixed, this is a J · I-parameter exponential family with the 

canonicall (natural) parameter T/ij = log ( P;j / P;0 ), i = 1, ... , I and j = 1, ... , J, or 

( P;1 PiJ) 
'fl; = (TJ;1,--·,T/iJ) = log-, ... ,log- . 

P;o Pw 
(20) 

with corresponding sufficient statistics N;0 = n;o, ... , NiJ = n;J for i 1, ... , I where 
I:,f =D n;j = 1 and n;j is 1 when alternative j is chosen and the rest are 0 for any agent 
i = 1, ... ,I. 

Since 0 < P;j < 1, the natural parameter space is all ( T/il, ... , T/iJ) with -oo < T/ij < 
oo in ~J for i = 1, ... , I and j = 0, ... , J. The ratio of agent i choosing alternative 
j relative to him/her choosing the baseline or outside alternative j = 0 is referred as 
his/her odds ratio of alternative j relative to alternative 0. Thus the canonical parameters 
'fl; = ( TJ;i, ... , T/iJ) are also log odds ratio of agent i choosing alternative j relative to the 
baseline or outside alternative. 
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2.2 Added insight from compositional data analysis 

Alternative to log odds ratio characterization in (20), we could characterize the choice 
probabilities Pij for agent i for j = 0, ... , J as a compositional data point ( or composition 
for short) in a simplex: 

5J+i, ={pi= (Pw, ?;1, ... , PiJ) E ~J+llP;j > O,j = 0, 1, ... , J; t P;j = 1} (21) 
;=0 

If we can consider the only information is given by the ratios Pio, Pi1 , ... , PiJ between 
components, the information of a composition is preserved under multiplication by any 
positive constant. Therefore, the sample space of compositional data P;0 , Pi1, ... , PiJ 
can always be assumed to be a standard simplex in (21) 

Since the choice probabilities Pij for agent i for j = 0, ... , J resides in this simplex, 
one of the three well-characterized isomorphisms18l that transform from the Aitchison 
simplex to real space is additive logratio transform 

[ (pil) (Pi2) (piJ)] alr(P;_) = log Pw , log Pw , ... , log Pw , (22) 

In other words, the utilities on the right hand side of (8), (12), and (14) are isomorphic 
transform of the probabilities of choosing alternative j relative to alternative 0 on the left 
hand side of (8), (12), and (14) from the Aithison simplex to real space respectively as 
follows for i = 1, ... ,I and for j = 0, ... , J: 

3 Conclusion and Discussion 

Although the logit-type probabilities are historically derived as the difference Eik-Eij in the 
idyosyncratic unobserved preference as shown in (5) by econometricians on the ground 
that this method of derivation gives a precise meaning to the probabilities, statisticians 
in generalized linear models and in compositional data analysis or Aitcheson geometry 
are able to show in section 2 that it is just as possible to characterize the choice situation 
without a single operation involving them and relate that back to the utilities in (8), (12), 
and (14) using the additive logratio transform of the utility of agent i choosing alternative 

18lin mathematics, an isomorphism is a structure-preserving mapping between two structures of the 
same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if 
an isomorphism exists between them. 
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j to the baseline or outside alternative j = 0. With the latter derivation, statisticians 
additionally gain sufficiency information as well. 

Therefore statisticians are right in asking if the idyosyncratic unobserved preferences 
E are really needed in order to derive the logit-type choice probabilities, and hence if the 
argument surrounding the unobserved idiosyncratic taste E;j being Gumbel is needed as 
well.By doing so, increasingly tenuous and harder-to-justify interpretations of idiosyn­
cratic taste E;j in the presence of ~jin subsection 1.5, and then in the presence of 6 and 
the random coefficient (f3k + ukvik)xk in subsection 1.7 can be avoided. For instance, the 
argument "[t]he term ej might be thought of as the mean of consumers' valuations of 
an unobserved product characteristic such as product quality, while the Eij represents 
the distribution of consumer preferences about this mean"by Berry (1994) [1] are not 
necessary. 

Finally, with the latter derivation, we are able to see that the statements like " [o]nly 
differences in utility matter" and " [t]he scale of utility is arbitrary," are corresponding 
to the redundancy in parametrization inherent in categorical distribution of (16) and (18) 
in the choice probability domain. This issue is taken care of by canonical representation 
as in (19) using canonical parameter in (20), and by the fact that the choice probabilities 
for any agent must sum to unity over j = 0, ... , J. 
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