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Embedding Bifurcations into Pneumatic Artificial Muscle

Nozomi Akashi,* Yasuo Kuniyoshi, Taketomo Jo, Mitsuhiro Nishida, Ryo Sakurai,
Yasumichi Wakao, and Kohei Nakajima

Harnessing complex body dynamics has long been a challenge in robotics,
particularly when dealing with soft dynamics, which exhibit high complexity
in interacting with the environment. Recent studies indicate that these
dynamics can be used as a computational resource, exemplified by the
McKibben pneumatic artificial muscle, a common soft actuator. This study
demonstrates that bifurcations, including periodic and chaotic dynamics, can
be embedded into the pneumatic artificial muscle, with the entire bifurcation
structure using the framework of physical reservoir computing. These results
suggest that dynamics not present in training data can be embedded through
bifurcation embedment, implying the capability to incorporate various
qualitatively different patterns into pneumatic artificial muscle without the
need to design and learn all required patterns explicitly. Thus, this study
introduces a novel approach to simplify robotic devices and control training
by reducing reliance on external pattern generators and the amount and types
of training data needed for control.

1. Introduction

Recent studies have revealed that mechanical devices can be
designed to use their body dynamics for desired informa-
tion processing, for example, in devices like passive dynamic
walkers,[1] mechanical random number generators,[2] and me-
chanical networks.[3,4] Furthermore, the natural dynamics of
mechanical bodies not designed for computation can be used
as an information processing resource. The complex dynam-
ics observed in soft robotic arms, inspired by the octopus, can
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be used for real-time time series pro-
cessing, including embedding a timer,
and controlling the arm through physical
reservoir computing (PRC).[5–9] Reservoir
computing[10–12] is a recurrent neural net-
work framework characterized by the use
of a high-dimensional neural network with
nonlinearity and memory. In PRC,[13] the
neural network is replaced with physical
dynamics. It has been reported that vari-
ous types of robotic bodies, such as me-
chanical spring-mass dampers,[14] tenseg-
rity structures,[15,16] quadruped robots,[17]

and fish robots,[18] can be exploited as a
reservoir. This suggests that body dynam-
ics can be directly exploited for information
processing and control without the need for
external memory and nonlinearity.

Pneumatic artificial muscles (PAMs),
representing soft actuators, have been stud-
ied as physical reservoirs. PAMs have been

investigated since the inception of soft robotics[19–22] and are cen-
tral components of various soft machines and devices, including
wearable devices[23] and robotic arms.[24] They offer several ad-
vantages such as durability against impact and vibration, a high
force-to-weight ratio, and low manufacturing costs. Studies ex-
ploring PAMs as physical reservoirs have demonstrated their po-
tential. For instance, PAM length sensors can be emulated by
other sensory values in the PAM using the PRC framework.[25]

The air pressure within a rubber tube connected to a PAM, inte-
grated into an assistive walking device, can estimate the posture
of the wearer through the use of PRC.[26] Moreover, the estimated
information can be exploited for the control of assistant timing
in the walking device.[26] Periodic patterns have been successfully
embedded into robotic arms and wearable devices composed of
PAMs with PRC closed-loop control.[27,28] Despite the pioneering
efforts mentioned above, the computational capabilities of PAMs
and the controls they can perform by using these capabilities have
not been comprehensively analyzed to date.

The present study provides systematic analyses of the nonlin-
ear and memory capabilities in a PAM as a physical reservoir.
It demonstrates the ability to control PAMs in various patterns
using these capabilities in real-world settings. Specifically, the
present study demonstrates the embedding of bifurcation struc-
tures into the PAM. Bifurcation structures in dynamical systems
signify qualitative changes in dynamics, such as periodic and
chaotic dynamics, resulting from parameter variations. In cen-
tral pattern generators, bifurcation structures have been demon-
strated to offer capabilities for exploration and self-organized
adaptation in robot control.[29–31] Recently, it has been reported
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that artificial neural networks with rich information process-
ing capabilities can reconstruct the entire bifurcation structure
by learning a subset of dynamics included in the bifurcation
structure.[32–36] The present study is the first attempt to realize
bifurcation embedment into physical dynamics. Embedding dy-
namics implies internalizing the central pattern generator into
the body, as opposed to external attachment to the robot. In addi-
tion, embedding bifurcation structures suggests that it is possible
to control various qualitatively different patterns by learning sev-
eral patterns, without the need to learn all patterns required for
robot control. This generalization surpasses traditional machine
learning generalizations such as interpolation or extrapolation,
as the properties of unseen dynamics in the bifurcation structure
are qualitatively distinct from those trained. In concrete terms,
the study successfully demonstrates the embedding of chaotic dy-
namics into a PAM by training solely on periodic dynamics, and
vice versa. The present study provides insight into the inherent
reduction in the amount and types of data required for learning
in robot control.

2. Results

2.1. Pneumatic Artificial Muscle

The current study used the McKibben PAM (Figure 1A), which
consists of a cylindrical rubber tube covered by a braided cord.
This PAM is under a nearly constant external load. If the PAM is
pressurized, it expands in the radial direction and shrinks length-
wise. We used the PAM as a physical reservoir by injecting an in-
put value as a control pressure and measuring its physical quan-
tities. The measurement system is illustrated in Figure 1B. The
inner pressure, length, load, and electric resistance of the rubber
were measured. Although the traditional natural rubber has low
conductivity and electric resistance value is difficult to measure,
the present study increased its conductivity from 1.0 × 10−3 to
20 S m-1 by incorporating carbons into the rubber.[37] The length
of the PAM was 108 mm, with an outer diameter of 11 mm, an
inner diameter of 9 mm, and a braid angle of 𝜋/6 rad in the equi-
librium state.[37]

2.2. Dynamics

Figure 1C shows the typical behaviors of each sensor value used
in PRC. The input value u(t) represents the following piecewise
constant periodic signal:

u(t) = un (n = ⌊t∕𝜏⌋) (1)

un = Aûn + B (2)

ûn = sin 2𝜋𝜏
T

n (3)

where A and B are the input magnitude and bias, respectively,
which tune the input to a suitable range for the device. 𝜏 is the in-
put interval, and T is the period of input. The present study used
the following input parameters: A = 0.2 MPa, B = 0.3 MPa, 𝜏 =
0.1 s, and T = 1.2 s. Sensor responses are presented in Figure 1C.
Here, sensor values plotted in Figure 1C were measured at the

timing of updating the next input signal. The measured pres-
sure showed nearly the same behavior as the control pressure.
Furthermore, length and resistance exhibited different curves be-
tween the compression and extension phases and possessed the
nonlinearity and hysteresis for the input. The load value barely
responded to the control pressure and was likely a noise signal.

2.3. Bifurcations of Electrical Resistance Through External Load

The behavior of the electrical resistance of the rubber changed
drastically through the external load and explained the mechanics
of these bifurcations. This analysis focused on alterations in the
rubber’s thickness induced by varying external loads applied to
the PAM Specifically, the external load added to the PAM changed
by 5 from 100 to 250 N under the periodic input signal, as de-
picted in Figure 1C and represented by Equation (1). The rela-
tionship between length and resistance is presented in Figure 2A.
Notably, the resistance response exhibited an oppositional trend
beyond the 106 mm mark, approximately corresponding to the
PAM’s equilibrium length (d0 = 108 mm). Thus, these regions
can be considered to correspond to the contraction and expan-
sion phases. The length gap between 106 and 108 mm is con-
sidered to be the result of offset measurements. The electrical
resistance of a rubber tube has the same tendency as the rubber
thickness.[38] Rubber thickness was derived from measurements
of diameter and the conservation of volume. The thickness model
is provided in the experimental section. The thickness of the rub-
ber peaks at the equilibrium length, as depicted in Figure 2A. In
the expansion phase, the thickness de thinned out from the equi-
librium thickness d0 because the inner diameter did not change,
as shown in Figure 2B. In the contraction phase, the thickness dc
thinned out from d0 because of expansion in the radial direction.
Therefore, the resistance peaked at the equilibrium length.

Figure 2C illustrates the response of length to the applied load
and pressure in the experiment. Using this method, three load
regions were identified: compression phase alone, compression
and extension mixing phase, and extension phase alone. The typi-
cal resistance time series of each phase is presented in Figure 2D.
Resistance in the compression phase responded to the anti-phase
pressure value. Resistance in the mixing phase changed to a two-
peak behavior. In contrast to the compression phase, resistance
in the extension phase responded to the pressure value in-phase.
Figure 2E depicts the bifurcation diagram, where local minimum
values of resistance are plotted for the applied load values. Bifur-
cations were confirmed, revealing that the local minimum value
changed from 1 to 2 at 160 N and became 1 again at 220 N. It is
generally acknowledged in the literature that other continuous-
time dynamical systems, such as the Lorenz system, exhibit the
discontinuous changes of a period of stable periodic solution, and
they are seen as a bifurcation.[39] These bifurcation points cor-
respond to the change points of the compressing, mixing, and
extension phases.

2.4. Computing Scheme

Figure 3 illustrates the computing scheme of PAM PRC. The in-
put signal was injected as a control pressure, which is a 1D value.
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Figure 1. Pneumatic artificial muscles, measurement systems, and pneumatic artificial muscle dynamics. A) No pressurized and pressurized pneumatic
artificial muscles. B) Pneumatic artificial muscle measurement systems. C) Sensor responses to a sinusoidal wave input.
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Figure 2. Intrinsic bifurcations of pneumatic artificial muscle. A) The graph plot of length versus resistance. B) The schematic illustration of the thickness
change. C) Color map of the length for control load and pressure. The blue and red regions correspond to the contraction and extension phases in PAM,
respectively. D) Resistance and pressure time series in four load conditions. The background colors (red and blue) respectively represent whether the
PAM is in the contraction or extension phases in C. The load condition 100 N in the top time series is always in the contraction phase, the load conditions
175 and 210 N in the middle time series in the contraction and extension-mixing phase, and the load condition 250 N in the bottom time series is always
in the extension phase. E) The bifurcation diagram of control load versus local minimum resistance.

The PAM acted as a physical reservoir by providing a nonlinear
historical response to the input. We obtained reservoir variables
by sensing these responses and constructing the output values
from a weighted sum of reservoir variables and a bias term.

The input signal is a piecewise constant 1D signal, which is
represented in Equation (1). The nonlinearity and memory of the
physical reservoir can be adjusted by tuning the input magnitude
A and input interval 𝜏 in Equation (1) (as discussed in the Sup-
porting Information). Sensor values at time t are represented in
the form s(t) = (s1(t), ⋅⋅⋅, sM(t)), where M is the number of sensor
values used as the reservoir variables. We obtained the reservoir
variable xn, which corresponds to input un and is based on sens-
ing L times from input injected time t to input updated time t +
𝜏. The following equation presents xn ∈ ℝML+1:

xn = [s(t); s(t + 𝜏
1
L

);⋯ ; s(t + 𝜏
L − 1

L
); 1] (4)

where the number of samples is represented by L. This multi-
plexing method,[40] which is known as time-multiplexing, boosts

the computational power of the reservoir from a small number of
variables This method has been widely used in PRC.[8,41,42] In the
present study, unless specified otherwise, we will use L = 5. The
output values ŷn = (ŷn,1,… , ŷn,K ) ∈ ℝK were generated as follows:

ŷn = W𝖳
outxn (5)

where Wout ∈ ℝ(ML+1)×K is the output weight (+1 in the index
means a bias term). The output weight is obtained by ridge re-
gression:

Wout = (X𝖳X + 𝜆I)−1X𝖳Y (6)

where X = (xNwash+1 ⋯ xNwash+Ntrain
) ∈ ℝ(ML+1)×Ntrain is the training

data matrix, Y = (yNwash+1 ⋯ yNwash+Ntrain
) ∈ ℝK×Ntrain is the target

data matrix, and 𝜆 is the ridge parameter. The numbers of the
washout and training data are represented as Nwash and Ntrain, re-
spectively.

The open- and closed-loop settings are depicted in Figure 3A.
Open-loop represents a case in which the input signal un is
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Figure 3. A) Schematics of physical reservoir computing. The left-hand side depicts the schematics of reservoir computing using a neural network.
The right-hand side depicts the schematics of PRC for a pneumatic artificial muscle. B) Schematics showing the time-multiplexing scheme to prepare
reservoir states.

external to the reservoir. Closed-loop represents the case in
which the input signal un is the output value of the reservoir
one time step prior. In the closed-loop setting, the input values,
which are control pressures, are restricted to a certain range
[umin, umax] to prevent the breakdown of the system.

ûn = Ayn−1 + B (7)

un =
⎧⎪⎨⎪⎩

umin (ûn < umin)

ûn (umin ≤ ûn ≤ umax)

umax (ûn > umax)

(8)

The present study used the value (umin, umax) = (0 MPa, 0.5 MPa).
We also show the computing schematics as a pseudo-code in the
experimental section.

2.5. Information Processing Capacity

We investigated the information processing capabilities of each
sensor value in the PAM, specifically focusing on their nonlinear-
ity and memory To assess these capabilities, we employed the in-
formation processing capacity (IPC)[43] criteria, which describes
the function that the dynamical system, serves for an input sig-
nal from independent and identically distributed (i.i.d.) random
variables.[44] Memory and the linear/nonlinear transformation
capability of the reservoir can be obtained by checking the bases
of this function. IPC-limited linear components are called mem-
ory capacity.[45] Detailed definitions and formulations of the IPC
are provided in the experimental section. IPC restricted the delay

to ⩽D and the degree of polynomial functions to ⩽K, as IPC[D, K].
IPC[D, K] can be decomposed by function reconstruction capaci-
ties C[ ], where is an orthogonal basis function in the focusing
functional space. The IPC[1, K] is referred to as memory capacity.
Here, a linear component implies that total capacities integrate
all the linear capacities. A higher-order component implies that
total capacities integrate all the capacities with the same degree.
For a number N of the linear independent states of the reservoir
variable, the following theoretical equation holds:[43]

lim
D,K→∞

IPC[D, K] ≤ N (9)

where equality is established if the reservoir has the echo state
property (ESP). Here, ESP, which is an important property for
reservoir computing, guarantees the reproducibility of the com-
puting results.[46]

First, we showed the IPCs of each single sensor value and
multiplexing sensor values in the PAM, which included pres-
sure, length, resistance, load, and all sensors combined and
time-multiplexed. The IPCs are presented in Table 1. The IPC of
the pressure was nearly 1, and the pressure could be completely
described by the input sequence. Therefore, the pressure could
be a computational node that has the ESP for the input. The IPCs
of length and resistance were slightly lower than 1, and these
sensor values could nearly be described by the input sequence;
however, they had few irreproducible components. The IPC of
the load was 0.0037 and nearly 0, and the load moved nearly
independently of the input. The IPC could be improved to ≈10
by combining all types of sensors and using time-multiplexing.
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Table 1. Major capacities of sensors.

Target function Capacity [-] All sensors

Pressure Length Resistance Load

IPC 0.993 0.975 0.943 0.004 9.861

1(un) 0.873 0.369 0.509 0.004 0.957

1(un−1) 0.089 0.527 0.223 0.000 0.996

1(un−2) 0.000 0.026 0.013 0.000 0.769

2(un) 0.007 0.002 0.054 0.000 0.555

1(un)1(un−1) 0.006 0.012 0.095 0.000 0.340

2(un)1(un−1) 0.036 0.009 0.018 0.000 0.373

The total number of reservoir variables was 20 = 4 × 5. An IPC
lower than the number of variables implied the existence of
input-independent or linearly dependent components.

Further details, such as the nonlinear and memory capacities
of the IPCs in the PAM, were examined. Figure 4 depicts the
dependency of the IPCs on the external load. The capacities of
the pressure did not change through external load. The capaci-
ties with a delay 0 in the length monotonically increased as the
external load increased from 50 to 250 N. Therefore, a PAM with
a smaller external load could produce information processing
that requires more memory. However, the degree components in
the resistance non-monotonically changed through the external
load. In addition, the linear components exhibited a monotoni-
cally increasing trend as the external load rose up to 150 N. At
175 and 200 N of external load, the degree two components be-
came predominant, while the linear components regained dom-
inance when the external load exceeded 225 N. The transitions
between increasing and decreasing trends aligned with the bifur-

cation points of resistance, indicating that these critical behaviors
stemmed from intrinsic resistance bifurcations.

2.6. Length Sensor Emulation

We evaluated the performance of PAM PRC in an open-loop
setting. First, we investigated PAM length sensor emulation,[37]

which is a practical task that emulates the PAM length sensor
value from the input pressure value. A laser displacement
sensor, which is a standard length sensor for the PAM, is made
of a rigid component that reduces the softness of the PAM.
Therefore, emulating the length sensor using other sensory
values constitutes an important method to ensure softness.
Although the length dynamics of the PAM respond nonlin-
early to hysteresis for the input pressure, PAM length time
series can be predicted by a recurrent neural network.[37,47–51]

Here, the input sequence arose from uniformly random
values and was transformed to fit within the interval [0,
0.5] MPa for control pressure values, as (A, B) = (0.5, 0) in
Equation (2).

Furthermore, we evaluated the performance of the task using
the normalized mean squared error (NMSE), as follows:

NMSE =
1

Neval

∑Neval

i=1 (ŷi − yi)
2

𝜎2(yi)
(10)

where Neval is the number of evaluation data. In addition, we
assessed PRC from the perspective of computational cost,
which includes both training time and prediction time. Train-
ing time refers to the computation time required for network
optimization. Prediction time pertains to the computational
time necessary for generating a single data point prediction. In
PRC, we only evaluated the time spent on linear summation

Figure 4. Information processing capacities of pneumatic artificial muscle sensory values. The bars indicate the decompositions of the IPCs through the
degree components and memory components (The method for the decomposition is provided in the Experimental Section). The length and resistance
graphs share a common vertical axis coordinate with the pressure graph.
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Figure 5. Time series of the input, reservoir variables, output, and pre-
diction in the length sensor emulation task. The red line is the prediction
signal of the PAM PRC with loads.

calculations executed on an external computer, without account-
ing for the time required for physical actuation or sensing. The
computation time evaluation employed a computer equipped
with a 12th Gen Intel(R) Core(TM) i9-12900KF CPU running at
3.20 GHz.

In the following experiments, the number for the washout data
was Nwash = 1, 000, the number for the training data was Ntrain =
40, 000, and the number for the evaluation data was Neval = 9, 000.
We compared the performances between PAM PRC, the physical
model, long short-term memory (LSTM),[52] and the echo state
network (ESN),[11] which is a typical recurrent neural network
in reservoir computing. The formulations and parameter selec-
tions of comparison models are presented in the experimental
section. We multiplexed sensor values in the PAM using time-
multiplexing L = 5. In one instance, we used 15 reservoir vari-
ables (which included time-multiplexed pressure, resistance, and
load). The LSTM and ESN had the same number of computa-
tional nodes as the number of reservoir variables in PAM PRC
(15).

Figure 5 illustrates the time series of the input, reservoir vari-
able, target, and output signals. The results of length sensor emu-
lation tasks are shown in Table 2. When the training data consist
of a sufficient 40,000 samples, LSTM achieves the lowest NMSE,
but when the training data are very small, only 100 samples, PRC
exhibits the lowest NMSE, demonstrating its high generalization
performance even with limited data. This aspect is an important
advantage in the information processing of soft materials, as they
generally have lower durability than rigid materials, and their ma-
terial properties can easily change over a long time period. Re-

Table 2. Results of length sensor emulation.

Performances System

PAM physical model LSTM ESN PAM PRC

(N = 15) (N = 15) (N = 15)

NMSE [-] (Ntrain = 40000) 0.0893 0.0147 0.0311 0.0294

NMSE [-] (Ntrain = 100) – 0.0307 0.0353 0.0301

Training time [ms] – 144,892 5.31 4.70

Prediction time [ms] 0.443 0.220 3.76 × 10−3 2.00 × 10−5

garding computational cost, PRC excels in outsourcing compu-
tations to the PAM itself. In training, LSTM incurs a substan-
tial computational cost due to backpropagation through time. In
contrast, the reservoir calculations of ESN and PRC enable batch
learning in linear regression, resulting in ≈1/30th of the com-
putational time required for execution. In the prediction phase,
PRC particularly succeeds in reducing computational overhead.
While LSTM and ESN require network time evolution, PRC only
needs to perform linear summation. As a result, PRC achieves
a computational speed roughly 104 times faster than LSTM and
100 times faster than ESN.

2.7. Attractor Embedding

The present study analyzed closed-loop control by PRC in PAMs.
First, we analyzed the potential to embed attractors in a PAM.
We focused on the limit cycle and the strange attractors of the
logistic and Hénon map. The limit cycle defined by Equation (3)
was a 1D periodic dynamic. These rhythm dynamics are impor-
tant as a central pattern generator in robot control.[53] In addition,
chaotic oscillators, in addition to periodic ones, hold significance
in robot control. As a central pattern generator, a chaotic oscilla-
tor can derive adaptive and exploratory behaviors by its complex
dynamics.[30,31] The logistic map, which is a 1D dynamical system
with discrete time, was defined by the following equation:

yn+1 = ayn(1 − yn) (11)

where a is a model parameter and is set as the chaotic param-
eter a = 3.7. The embedding of logistic dynamics does not re-
quire memory because the next step of the logistic map can be
determined only by the current step. In addition, we conducted
a closed-loop task for a more complicated chaotic attractor in the
Hénon map using two parallel PAMs as the physical reservoir.
The Hénon map is a two-dimensional discrete-time dynamical
system, which is defined as follows:

y1
n+1 = 1 − a(y1

n)2 + y2
n (12)

y2
n+1 = by1

n (13)

where a and b are the model parameters and are set as (a, b)= (1.4,
0.3), which show chaos. Here, we used y1

n as the closed-loop feed-
back signal (so ûn+1 = y1

n) for both of the PAMs. To prepare reser-
voir variable xn, we used sensory variables s1(t) and s2(t), which

Adv. Sci. 2024, 11, 2304402 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2304402 (7 of 14)
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Figure 6. Results of the closed-loop at the attractor embedding. A) Time series of the target and PRC output signals. B) Attractors of the target and PRC
output. C) Fourier spectra of the target and PRC output. D) Time series and attractor in the limit cycle, embedding from 0 inputs. E) Time series and
attractor in the limit cycle, embedding from a random input.

correspond to each PAM as follows:

xn =
[
s1(t);⋯ ; s1

(
t + 𝜏

L − 1
L

)
; s2(t);⋯ ; s2

(
t + 𝜏

L − 1
L

)
; 1
]

(14)

The two PAMs had the same physical configuration but with
different external loads, 100 and 200 N, so the sensory re-
sponses s1(t) and s2(t) to the same input pressure were different.
This type of reservoir computing setup is referred to as spatial
multiplexing.[54] The spatial multiplexing setup provides a fur-
ther number of nodes and repertory of computational capabilities
for the physical reservoir. We used this method to demonstrate
the potential of our framework to embed more complicated at-
tractors, namely the Hènon attractor in this section and the Van
der Pol oscillator and Rössler attractor[55] in the Supporting In-
formation.

In the training phase, we injected yn into the reservoir using an
open-loop and trained the output weight using yn + 1 as a teacher
signal (this training scheme is known as teacher forcing[56]). The
input range of all experiments was set to [0.1,0.5] MPa by tun-
ing A and B in Equation (1). Furthermore, the input interval of

the PAM control pressure was set as 𝜏 = 0.1, 0.2, and 0.3 s, and
the number for time-multiplexing were L = 5, 20, and 30 in the
experiments for the limit cycle, the logistic map, and the Hénon
map, respectively. In all of the experiments, we fixed the number
of washout data at Nwash = 1, 000 and the number of training data
at Ntrain = 4, 000. In the prediction phase, we switched the open-
loop and closed-loop after 1,000 time steps. In addition, we have
evaluated the embedding results using the output time series, the
attractor in the delayed coordinate system, and power spectra.

Figure 6 illustrates the outcomes of the attractor embed-
ding. We analyzed the embedding performance for aspects of
short-term traceability, attractor similarity, and Fourier spectrum
similarity, visually presented in Figure 6A–C, respectively. In
limit cycle embedding, the prediction signal traces the target
signal and attractor, and the Fourier spectrum of the prediction
has the same peak as the target Fourier spectrum. In logistic
map embedding, the output time series deviated from the target
signal as 6-time steps passed after switching from an open- to a
closed-loop because of the initial state sensitivity of chaos. Never-
theless, the output signal traces the target attractor and Fourier
spectra with a broad band induced by chaotic dynamics. We
quantitatively evaluated these three embedding performances

Adv. Sci. 2024, 11, 2304402 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2304402 (8 of 14)
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using criteria in the Supporting Information and compared
them with artificial neural networks. As a result, the PAM PRC
has comparable performance with an ESN with 20 in the task of
attractor embedding for the logistic map. In Hénon attractor em-
bedding, even though there was only one variable feedback input
for the reservoir, it was possible to embed a two-dimensional
dynamical system by using the reservoir’s memory.

Next, we evaluated the robustness of attractor embedding. For
this, we injected a random signal from the target signal and con-
firmed that the output signal could quickly return to the target
attractor after switching to a closed loop. We focused on the limit
cycle as a target attractor, and the input signals in the open-
loop were 0 and random signals. The results are depicted in
Figure 6D,E. The output signals quickly returned to the target
attractor after switching.

2.8. Bifurcation Embedding

We previously confirmed that the IPC of the resistance in the
PAM could undergo significant changes by adjusting the exter-
nal load in an open-loop setting. Moreover, we found the change
in the output signal of PAM PRC through the external load in a
closed-loop setting. The following training data were used:

a) A limit cycle with a period of 1.2 s with an external load of 100
N (same as the limit cycle in Figure 6);

b) A limit cycle with a period of 1.2 s with external loads of 100
N and 250 N;

c) Limit cycles with periods of 1.2 and 2.4 s with external loads
of 100 and 250 N, respectively;

d) The chaotic trajectory of the logistic map, where a = 3.7, with
an external load of 100 N (same as in the case of the logistic
map in Figure 6)

e) The period 4 trajectory of the logistic map, where a = 3.55
with an external load of 100 N.

We confirmed the change in the output signal in the closed-loop
control when the external load changed by 5 from 100 to 250 N
at every 2,000 time steps.

Figure 7 depicts the results. In experiment A, the amplitude
and frequency of the limit cycle continuously changed in the
range from a load of 100 to 200 N. However, the limit cycle struc-
ture of the output signal suddenly collapsed at an external load of
200 N, and the output signal changed to nearly static dynamics.
This switching point was around the second bifurcation point of
the resistance, as shown in Figure 2D. Thus, the dynamics may
switch because the bifurcation of the resistance propagated to the
entire dynamics of the PAM via closed-loop control. Conversely,
the results of experiment B indicated that it is possible to sup-
press the closed-loop bifurcations. In experiment B, we trained
the limit cycle when external loads were 100 and 250 N. The bi-
furcation structure that appeared in experiment A did not occur,
and PAM with all external load conditions from 100 to 250 N
generated the same limit cycles as the output. When compar-
ing elements of output weights Wout of experiment B and ex-
periment A, it was observed that the elements of weights corre-
sponding to resistance values in experiment B were more than
10−7 times smaller than in experiment A (see Supporting Infor-
mation). Therefore, in experiment B, the learning automatically

avoided utilizing the resistance values as reservoir variables that
dramatically change information processing capabilities through
the external load shown in Figure 4, and the closed-loop bifurca-
tion could be suppressed. In experiment C, we trained limit cy-
cles with different frequencies when external loads were 100 and
250 N. The results revealed that the frequency of the closed-loop
dynamics with intermediate external loads was linearly interpo-
lated.

The results of experiments D and E revealed that periodic and
chaotic dynamics could be embedded simultaneously and that
one of the dynamics could be generated from learning another
dynamics. In experiment D, we trained chaotic dynamics in the
logistic map when the external load was 100 N. The dynamics
switched from chaotic dynamics to period 2 dynamics when the
external load was 170 N, which corresponded to the first step
of the bifurcation of resistance. As the bifurcation diagram indi-
cates, period 2 dynamics appeared intermittently, acting as a win-
dow for period-doubling bifurcation. In experiment E, we trained
period 4 dynamics in the logistic map when the external load was
100 N. The dynamics switched to chaotic dynamics with a one-
dimensional attractor in the delay coordinate and broad spectra
when there was an external load of 200 N, which corresponded to
the second bifurcation of the resistance. The chaotic attractor in
the delay coordinate had an alternative shape, similar to a cubic
function. In addition, the dynamics had an unstable fixed point
near yt + 1 = yt, as there was a hole at the intersection of yt + 1 = yt
and the attractor.

These bifurcation embedding results could be useful for
robotics applications. For instance, the automatic switching con-
ducted in experiment A could be used for an emergency stop
when the external load exceeds the threshold and an idling stop
that transitions to a stationary state while the main power is on.
This presents the possibility of internalizing adaptive behavioral
control that depends on changes in the environment. In addition,
the results of experiments B and C revealed that this switching
can be turned off by explicit training on both sides of the bifur-
cation of the inherent dynamics. Furthermore, the results of ex-
periments D and E have demonstrated that multiple qualitatively
different dynamics, including chaos, could be switched accord-
ing to changes in the environment. The results of experiments
D and E did not indicate the desired bifurcation structure but in-
stead showed a bifurcation structure based on training data and
reservoir dynamics. We present the embedding of the bifurcation
structure, which includes the desired qualitatively different sig-
nals, by training dynamics on both sides of bifurcation explicitly
in the Supporting Information.

3. Conclusion

We have demonstrated that PRC’s architecture, with nonlinearity
and memory in PAM as a physical reservoir, allows it to perform
various tasks, including self-motion estimation, closed-loop con-
trol, and bifurcation embedding. These findings shed light on
the potential, constraints, and avenues for future exploration in
computational capabilities integrated within a robotic body.

In the PAM length sensor emulation, we have confirmed that
PAM PRC exhibits excellent predictive performance even with
a limited amount of training data. Additionally, we have verified
that PRC can execute with very low computational cost by

Adv. Sci. 2024, 11, 2304402 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2304402 (9 of 14)
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Figure 7. Bifurcation embedding using closed-loop control. A) Training the sinusoidal wave when the external load is 100 N. B) Training the sinusoidal
wave when the external loads are 100 and 250 N. C) Training sinusoidal waves with different periods when external loads are 100 and 250 N. D) Training
the strange attractor of the logistic map when the external load is 100 N. E) Training period 4 trajectory when the external load is 100 N.

outsourcing computations to the physical dynamics. In the con-
text of PAM, where flexibility is crucial, the ability to learn before
material properties change and the minimization of external
computing devices that may compromise softness are both
highly important. Therefore, PRC, with these advantages, can
be considered a valuable approach for information processing
in PAM.

We demonstrated that a PAM can be embedded in qualitatively
different attractors from the training attractor in the closed-loop
experiments. These results suggest that bifurcations in the mor-
phology may have the potential to be exploited to embed the bifur-
cation structure of the targeted dynamical system. However, the
mechanism to embed the bifurcation structure into the reservoir
has not been fully understood to date.[35] Moreover, the necessity
of the intrinsic bifurcations of the reservoir for bifurcation em-
bedding remains unknown.

This bifurcation embedding into the body suggests the strong
potential of robot control. For instance, if we can embed the

period-doubling bifurcation in the morphology of the robot, it
may be possible for the robot to generate all the arbitrary periodic
dynamics and chaos underlying Li–Yorke chaos[57] from learning
only finite period patterns.

There are some important notes and limitations to consider in
the present study. Nonlinearity and memory take various forms
beyond the physical reservoir. For instance, during actuation,
variations in input delay and input intervals may function as
memory. In sensing, physical quantities are treated as values
with finite precision and incorporate nonlinear cutoffs. In feed-
back control, similar cutoffs, as in Equation (8), are applied to
match the input’s specifications. PRC implicitly leverages these
information processing capabilities in its computations. How-
ever, from an engineering viewpoint, actively utilizing the in-
formation processing capabilities of devices accompanying the
physical reservoir is considered beneficial.

Artificial recurrent neural networks with sufficient size
and training data outperform PAM PRC in the length sensor

Adv. Sci. 2024, 11, 2304402 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2304402 (10 of 14)
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Table 3. Experimental hardware and software.

System Product

Laser displacement meter OPTEX FA Corp. CD22-100V2

Resistance meter Agilent Technologies Corp. A34411A / Applying a
constant voltage source system

Air pressure control (PAM
and load)

CKD Corp. Electropneumatic regulator EVR2500

Pneumatic cylinder SNC MQQTB40

Control system LabVIEW

emulation task and closed-loop chaotic attractor embedding
of the logistic map (the quantitative analyses for attractor em-
bedding of the logistic map are provided in the Supporting
Information). Although morphological computation does not
aim to achieve a universal computer with extensive computa-
tional capabilities, it seeks to leverage existing computational
capabilities in the body. In this context, while a PRC may have
fewer computational capabilities than an external computer,
it can substantially reduce computational and communication
costs associated with externally attached devices.

The present study has indicated that the body dynamics of
PAM have high computational capability. We believe that these
results can be expanded to practical situations. Based on the
results of Hénon attractor embedding using spatial multiplex-
ing, the structures consisting of multiple PAMs, such as a
robot arm and wearable assistance suit, may have the poten-
tial to embed higher-dimensional and more complex dynam-
ics than single PAMs. For example, if we can embed chaotic
itineracy into the robot’s body, the robot can switch between
numerous primitive patterns autonomously and randomly.[58]

Moreover, the embedded bifurcation structure could serve as
an adaptive pattern switch for the environment, such as for
anomaly detection and robot failure prevention, because the
bifurcation points correspond to the change points of the dy-
namic phase of the body dynamics, such as the contraction
and extension phases in the PAM. These potentials of dynami-
cal systems can provide valuable insights into various forms of
PRC, including neuromorphic,[41,42,59,60] natural,[61] and biologi-
cal computing.[62,63] By harnessing these dynamics, it may be pos-
sible to extract even more advanced functionalities from such sys-
tems.

4. Experimental Section
Experimental Hardware and Software: The PAMs used in this study are

the same as in ref. [25]. The rubber tube consists mainly of isoprene poly-
mer, carbon black as a reinforcing filler, sulfur as a curing agent, and oil
to improve processability. The detailed material properties, including the
stress-strain curve, are provided in ref. [25]. The information on the ex-
perimental hardware and software was also provided, which are shown in
Figure 2A,B, in Table 3.

In the experiments on attractor embedding for the logistic and Hénon
maps shown in Figure 6, the constant voltage source-based measurement
system was applied for the resistance measurement to improve the repro-
ducibility and frequency of measurement. In this system, 5 V was applied
to the rubber tube using a constant voltage source, the reference resistor
and PAM were placed in a series, and the resistance of the PAM was cal-

Algorithm 1 Calculation of the output ŷ from sensory time series s(t) in
PRC

for i in [1, L] do

for j in [1, M] do

x append sj(t + 𝜏(j − 1)/L)

end for

end for

x append 1

ŷ = Wout ⋅ x

culated from the respective voltages. The multimeter of Agilent was used
in all other experiments in the main text.

Pneumatic Artificial Muscle Thickness Model: The thickness model of
the PAM is presented in Figure 2A. Thickness was calculated using the
following equation:

d = R − r (15)

where it was assumed that the rubber tube in the PAM is a uniform cylin-
der and that R and r are the outer and inner radius of the cylinder, re-
spectively. Furthermore, the below linear relationship between the length
and outer radius was assumed because the coefficient of determination
between them was 0.9934, which was obtained from the nine values of
length and thickness of the rubber tube with an external load of 50 N.

R = −0.3382l + 47.525 (16)

where the length of the rubber tube is represented by l. The inner radius
r was obtained using the following equation because of the constraint of
the constant volume of rubber and restriction of both ends of the tube:

r =
⎧⎪⎨⎪⎩

r0 (l ≥ l0)√
R2 − V

l𝜋
(l < l0)

(17)

where V is the volume of rubber and r0 and l0 are the inner radius and
length in the equilibrium length, respectively. Figure 2A presents the length
and thickness that were calculated using the above equations.

Pseudo-Code of PRC: Here, the pseudo-code was provided, which cor-
responds to Equations (4) and (5) Algorithm 1.

Echo State Network: The architectures of the ESN were compared with
PAM PRC. The ith computational node at time t is represented as xi

t, the
jth input node is represented as uj, and the lth output node at time t is
represented as ŷl

t. The computational nodes and outputs of the ESN are
given by the following:

xi
t = f

(
Acp

N∑
j=1

wijx
j
t−1 + Ain

N∑
j=1

win
ij uj

t + b

)
(18)

ŷl
t =

N∑
i=0

wout
i,j xi

t (19)

where the activation function is given by f, which is the hyperbolic tangent.
Each node of the input weight Win = (win

ij ) comprises a uniform distribu-

tion with [− 1, 1]. Each node of the internal weight W = (wij) comprises a
uniform distribution with [− 1, 1] and is normalized to make the spectral
radius 1. Each node of the bias b = (b1⋅⋅⋅bN)⊤ comprises a uniform distri-
bution with [− 1, 1]. The coupling magnitude Acp coincides with the spec-
tral radius of AcpW. The bias term x0

t is set as x0
t = 1. The output weight

Wout = (wout
ij ) is tuned by training. We fix Ain = 1 and optimize Acp by grid

search for the interval [0, 1.2] in each task.

Adv. Sci. 2024, 11, 2304402 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2304402 (11 of 14)
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Table 4. Hyperparameters in LSTM.

Hyperparameter Value

Number of computational nodes 15

Optimizer ADAM[64]

Learning rate 0.001

Batch size 500

Number of epochs 500

Input time window 4

Long Short-Term Memory: LSTM was implemented using the PyTorch
library. While basing the parameters on a study[51] that also used LSTM
for PAM length sensor emulation, experiments were conducted using the
parameter set outlined in Table 4.

Dynamical Model of the PAM: The length dynamics of the PAM was
estimated from the injected pressure and load for the control. The models
of PAM dynamics were widely investigated in previous studies.[65,66] Based
on these studies, the following length model of the PAM was used:

Mẍ = −Felas(x) − Ffric(ẋ) − Fpre(x, p(t)) + Fex(t) (20)

where the displacement of the PAM length is represented as x and the
mass of the PAM is represented as M; the elastic force of the rubber,
friction of the rubber, and tension of volume change by pressure are rep-
resented as Felas(x), Ffric(ẋ), and Fpre(x, p(t)), respectively; and the input
pressure and input load are represented as p(t) and Fex. Here, tension by
pressure is derived from the following Schulze equation:

Fpre(x, p(t)) =
𝜋D2

0p(t)

4
1

sin2
𝜃0

[3(1 − 𝜀)2 cos2
𝜃0 − 1] (21)

where the strain of the PAM is represented as 𝜖 = (l0 − x)/l0 and the equilib-
rium length, inner radius, and angle of the braided cord are represented
as l0, D0, and 𝜃0, respectively. Note that the Schulze equation assumes
that the PAM is a uniform cylinder with 0 thickness. However, when the
real PAM is compressed, it is not a cylinder but instead becomes a bent
shape because both ends of the PAM are fixed. A model that considers the
non uniform and bent shape of the PAM was previously proposed in the
literature.[66] It was ensured that the linear elasticity Felas(x)∝x is the elas-
ticity of the PAM. The length of the PAM was could be accurately estimated
by solving the equation of the equilibrium of Fpre(x), Felas(x), and Fex in the
static state. However, in the dynamic state, in which the PAM continues to
move, it was difficult to estimate the PAM dynamics because the Schulze
equation cannot consider the hysteresis depicted in Figure 2 in the main
text. The causes of the hysteresis may be the effects of the Coulomb and
viscous frictions.[67–69] Therefore, Equation (20) could be rewritten using
the following equation:

ẍ = −Ax − Bẋ − Csgn(ẋ) + D(−Fpre(x, p(t)) + Fex(t)) (22)

Here, A, B, C, and D are the parameters of the model. These parameters
were optimized using grid search in the range of A ∈ [1, 000, 10, 000], B ∈

[10, 100], C ∈ [10, 100], and D ∈ [0.1, 1.0], and the parameters used in this
experiments were (A, B, C, D) = (6353, 80.05, 10, 0.635). The measured
length values were offset because of a measurement error; thus, a bias was
added to the length-predicting value from the physical model to coincide
with the average values of the measured and predicted lengths.

Calculation Method of Information Processing Capacity: Here, the de-
tailed definition of IPC[43] and the setup of IPC experiments were de-
scribed. It was assumed that the space of the input, reservoir, and output is
ℝ1, ℝN, and ℝ1, respectively. The input, reservoir, output, and target time
series were represented as  = (… , ut−1, ut,…),  = (… , xt−1, xt,…),
̂ = (… , ŷt−1, ŷt,…), and  = (… , yt−1, yt,…), respectively.

The capacity of the reservoir time series  for a target time series  is
defined by the following equation:

C[ , ] = 1 −
minWout

⟨(yt − ŷt)
2⟩⟨u2

t ⟩
=

⟨ytxt⟩⊤⟨xtx
⊤

t ⟩−1⟨ytxt⟩⟨y2
t ⟩ (23)

where ⟨y2
t ⟩ denotes the average of y2

t through time t. 0 ≤ C[ , ] ≤ 1 al-
ways holds. When C[ , ] = 0, the reservoir never reconstructs target  ,
but when C[ , ] = 1, the reservoir can completely reconstruct target  .

If the input series comprises i.i.d. uniformly random values with range
[− 1, 1], an arbitrary input echo function y( ) ∈ ℝℕ → ℝ can be de-
composed into the following orthogonal polynomials: gl

t( ) (l = 1, 2,…),
which is

gl
t( ) =

∞∏
d=0

kl,d
(ut−d) (24)

where k(u) is the Legendre polynomial with degree k as follows:

k(u) =
√

2k + 1
2

(−1)k

2k!
dk

duk
(1 − u2)k (n = 0, 1,…) (25)

and {kl,d} ∈ ℤ≥0 (d = 0, 1,…) is a series of degrees for gl
t. The set of or-

thogonal basis polynomials (D, K) restricted by the delay of the input
series was defined as ⩽D as ut, ⋅⋅⋅, ut − D, and the degree of polynomials
to be less than and equal as ⩽K. Then, (D, K) was defined in the form of
the following equation:

(D, K) =

{
gl( ) =

D∏
d=0

kl,d
(ut−d) ∈ ℝℕ → ℝ

||||
D∑

d=0

kl,d ≤ K

}
(26)

When the target time series of the function gl
t( ) was defined as l =

{… , gl
t−1( ), gl

t( ),…}, the IPC was defined as the sum of capacities of
these target time series. IPC[X, D, K], which restricts the delay to ⩽D and
degree to ⩽K, is presented in the following equation:

IPC[ , D, K] =
∑

gl∈(D,K)

C[ ,l] (27)

When Equation (23) was calculated from a finite amount of data T =
(u1,… , uT ) and T = (x1,… , xT ), the capacity could be overestimated be-
cause of the finite-size effects.[43] To avoid this problem, the threshold and
capacities that were less than the threshold were replaced by 0.[44] In other
words, the restricted capacity C𝜀[ , ] was used instead of C[ , ]:

C𝜀[T ,T ] =

{
C[T ,T ] (C[T ,T ] ≥ 𝜀)

0 (C[T ,T ] < 𝜀)
(28)

𝜖 = 4.0 × 10−3 was used in the IPC analyses for all sensors, as shown
in Figure 4, and 𝜖 = 1.0−3 in the remaining IPC analyses, including those
presented in the Supporting Information. These thresholds were the same
level or larger values than thresholds determined by the surrogate data
method.[44]

Here, the decomposition method of IPC used in Figure 4 in the main
text was explained. It was defined IPCdegree=k[T , D, K], which was the
IPC[ , D, K] restricted by degree k, in the following manner:

IPCdegree=k[ , D, K] =
∑

gl∈(D,k)∖S(D,k−1)

C[ ,l] (29)

Adv. Sci. 2024, 11, 2304402 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2304402 (12 of 14)
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From the definition, IPCdegree=k[ , D, K] was a decomposition of
IPC[ , D, K] that could be expressed in the following manner:

K∑
k=1

IPCdegree=k[ , D, K] = IPC[ , D, K] (30)

Next, it was defined IPCdelay=d[ , D, K], which was the IPC[ , D, K] re-
stricted by delay d, in the following manner:

IPCdelay=d[ , D, K] =
∑

gl∈(D,K)

C[ ,l]

#((gl))
min{kl,d, 1} (31)

where (yl) is a set of delay components (gl) =
{

d ∈ ℤ≥0
|||kl,d ≥ 1

}
and

#(⋅) is the number of elements in the set. By definition, IPCdelay=d[ , D, K]
is also a decomposition of IPC[ , D, K], which is expressed in the following
manner:

D∑
d=0

IPCdelay=d[ , D, K] = IPC[ , D, K] (32)

In the experiments presented in Table 1 in the main text, T = 50, 000
sensory time series data of the PAM was used, which were injected random
values from a uniform distribution with the range [0, 0.5] MPa, for the
calculations of the capacities. In the experiments depicted in Figure 4 in
the main text, T = 10, 000 sensor time series data of the PAM was used for
the calculations of the IPCs. The initial 1,000 data in the time series were
washout data. The max delay D and max degree K in the IPC calculation
were (D, K) = (4, 5) in the single-sensor cases and (D, K) = (5, 6) when all
sensors were combined.
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