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Multipole and fracton topological order via gauging foliated symmetry protected topological phases
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Spurred by the recent development of fracton topological phases, unusual topological phases possessing frac-
tionalized quasiparticles with mobility constraints, the concept of symmetries has been renewed. In particular,
in accordance with the progress of multipole symmetries, associated with conservation of multipoles, such as
dipole or quadruple moments as well as global charges, there have been proposed topological phases with such
symmetries. These topological phases are unconventional because excitations are subject to mobility constraints
corresponding to the multipole symmetries. We demonstrate a way to construct such phases by preparing
layers of symmetry protected topological (SPT) phases and implementing gauging a global symmetry. After
gauging, the statistics of a fractional excitation is altered when crossing the SPT phases, resulting in topological
phases with the multipole symmetries. The way we construct the phases allows us to have a comprehensive
understanding of field theories of topological phases with the multipole symmetries and other fracton models.
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I. INTRODUCTION

Topologically ordered phases have been one of the cen-
tral subjects in condensed-matter physics and provide us
a paradigm shift in understating phases of matter [1–4].
The most prominent feature of these phases is that they
support fractionalized quasiparticle excitations, the so-called
anyons [5,6]. Such exotic excitations are not only theoretically
and experimentally intriguing but also are of practically im-
portance for utilizing quantum computers [7–10].

Recently, there have been proposed new topological
phases, referred to as the fracton topological phases [11–13].
The distinct property compared with the conventional topo-
logically ordered phases is that the fractional excitations are
subject to mobility constraints. Due to this feature, ground-
state degeneracy (GSD) becomes subextensive. Compared
with the conventional topologically ordered phases, where the
GSD depends on topology of a manifold, the subextensive
GSD found in the fracton topological phases implies that one
cannot separate the ultraviolet (UV) and infrared (IR) physics,
which necessitates a new theoretical framework.

To aim for establishing a consistent continuum field theo-
retical description of the fracton topological phases, recently
the concept of symmetries has been reconsidered. One of such
update is multipole symmetry, which is a generalization of or-
dinary global symmetry in the sense that multipole moments,
such as dipole or quadrupole moments in addition to global
charges are conserved [14–19]. More explicitly, multipole
symmetries correspond to a case when a theory is invariant
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under a global phase rotation which has a polynomial form
of the spatial coordinate. For instance, in the case of a scalar
theory with a field �, we say the theory respects dipole
symmetry when the theory is invariant under global phase
shift in the form � → ei(α+x·β )�, where α, β, and x represent
a constant number, a constant spatial vector, and the linear
spatial coordinate vector, respectively. Other cases of higher-
order multipole symmetries, such as quadrupole symmetry,
can be analogously defined by considering the phase shift
which depends on higher-order spatial coordinates. Motivated
by this progress, several topological phases with such a sym-
metry were studied [18,20–23]. These phases have fractional
excitations which are subject to a mobility constraint, corre-
sponding to the multipole symmetry. Due to this feature, the
phases exhibit unusual GSD dependence on the system size;
the GSD depends on the greatest common divisor between
integer N characterizing the fractional charge and the system
size. Although several gauge theories and topological models
with such symmetries have been recently studied, it is still
largely unknown that what physical implication or what kind
of physical properties one can learn when a theory respects
such symmetries.

In this paper, we demonstrate a way to establish topo-
logical phases with the multipole symmetries. In doing so,
we prepare stack of symmetry protected topological (SPT)
phases [24–26] with global ZN symmetry, which are invert-
ible gapped phases respecting the global symmetry ZN , and
implement gauging. Generically, it is known that via gauging,
a (d + 1)-dimensional SPT phase with global symmetry G,
characterized by a (d + 1)-cohomology class is mapped to
the so-called Dijkgraaf-Witten theory [27] with a twist term,
corresponding to the nontrivial cohomology class [28–31].
Such a twist term, that we dub the Dijkgraaf-Witten twist (DW
twist) term throughout this paper, modifies braiding statistics
of anyons in the theory. One example of the DW twist terms
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defined in (2 + 1)d1 has the form ≈a1 ∧ a2 ∧ a3 where a j

( j = 1, 2, 3) denotes a 1-form gauge field associated with a
global symmetry [28–31]. Key insight of our construction is
that via gauging the global symmetry, the stack of the SPT
phases become arrays of the DW twist terms to change statis-
tics of quasiparticles, which results in a topological phase
with the multipole symmetries. By this approach, one can
make intuitive understanding of the BF theories with multi-
pole symmetries that was previously discussed [32]. To our
knowledge, the present paper is the first work to address how
the DW twist term plays a pivotal role in the context of the
fracton topological phases, especially, topological phases with
multipole symmetries.

Note that our original model does not have global multipole
symmetries (i.e., the restricted mobility is at the level of dy-
namics due to conservation of global multipole symmetries).
However, after gauging the stack of SPT phases, they have
gauged multipole symmetries in which the restricted mobility
is at the level of kinematics, stemming from local multi-
pole conservation laws. This work demonstrates realization of
topological models with gauged multipole symmetries, that
we dub multipole topological order, or topological phases
with multipole symmetries, via gauging SPT phases. We
also make a clear distinction between fracton topological
phases and topological phases with multipole symmetries.
While in both phases fractional excitations are subject to the
mobility constraints, the former has an additional symmetry—
subsystem symmetry, where a symmetry operator is acted on
submanifold. At the level of BF theories, the former phases
can be obtained from the latter by imposing an additional
constraints [see discussion around (71)].

Our proposal may share the same spirit as an attempt
to construct fracton topological models, such as the X-cube
model via defect condensations [33]. Compared with this
attempt, our construction is simpler because we do not im-
pose energetic projection on the models to implement the
condensation. Our approach allows us to make comprehen-
sive understanding of foliated BF theories [32,34–38], which
are special topological field theories describing fracton and
multipole topological order by interpreting coupling terms
AI ∧ b ∧ eI (to be defined in the next section) as the foliated
DW twist terms. Moreover, our result would comply with
growing interests in unified construction of topological defect
lines obtained by stacking SPT phases and gauging [39],
implying a possibility to explore the multipole topological
phases in a broader context. As a byproduct, our construction
of the stacking SPT phases and gauging leads us to the other
fracton model, such as the exotic ZN gauge theory [40] and
X-cube model [13]. In this regard, the way we construct
phases may provide us a unified insight on topological phases
with multipole symmetries and other fracton models.

The rest of this work is organized as follows: In Sec. II,
to extract an intuition behind our construction, we introduce
a BF theory description of topological phases with multipole
symmetries, following the procedure discussed in Ref. [32].

1Throughout this paper, we use two letters “d” and “D” to abbrevi-
ate the dimensions. The small “d” stands for space-time dimensions
whereas the capital “D” stands for spatial dimensions.

In Sec. III, we study a UV lattice model to construct the
topological phase with the multipole symmetry, especially
dipole symmetry in the x direction, which is the simplest case
of the multipole symmetry. We explicitly demonstrate how
the DW twist term affects the statistics of fractional excita-
tions, giving the desired topological phase with the dipole
symmetry. We also generalize the discussion to the other case
of the multipole symmetry in Sec. IV. In Sec. V, we apply
our approach to other fracton models, the so-called exotic ZN

gauge theory [40] and the X -cube model [13]. Finally, we
conclude our work in Sec. VI with a few remarks and future
research directions.

II. BF THEORY WITH DIPOLE SYMMETRY

To gain intuition behind our idea to construct topological
phases with multipole symmetry via gauging SPT phases, we
begin by reviewing how topological BF theories with mul-
tipole symmetries are introduced, starting with an argument
of these symmetries and gauge fields associated with them.
Throughout this section, we focus on (2 + 1)d system and for
the sake of the notational brevity, we employ the differential
forms.

Suppose we have a theory with conserved charges associ-
ated with global U (1) and dipole symmetry in the x direction,
described by Q and Qx, respectively. These charges are subject
to the following relation [18,32,41]:

[iPI , Q] = 0, [iPx, Qx] = Q, [iPy, Qx] = 0 (I = x, y).

(1)

Here, PI denotes the translation operator along the Ith direc-
tion. While the first relation is obvious because Q represents
the global charge, the intuition behind the second and third
relations is that one associates the charge Qx with the dipole
moment in the x direction, xρ. Indeed, by writing the charge
and dipole moment as ρ and xρ, where ρ denotes the density
of the U (1) charge, we think of shifting them by a constant in
x or y direction. For instance, if one shifts the dipole moment
xρ by a constant in the x direction, the change of dipole
moment under the shift is given by (x + �x)ρ − xρ = �xρ,
where �x is constant, corresponding to the nontrivial commu-
tation relation as described in the second relation in (1). The
third relation is analogously discussed.

Introducing 1-form currents j and Kx, we write the charges
Q and Qx, via the integral expression using the conserved
current as

Q =
∫

V
∗ j, Qx =

∫
V

∗Kx.

Here, ∗ represents the Hodge dual and V represents spatial
volume. To reproduce the relation (1), we demand that

∗Kx = ∗kx − x ∗ j, (2)

with kx being a local (nonconserved) current. A simple calcu-
lation verifies the relation (1). We also introduce U (1) 1-form
gauge fields a, A with the coupling term defined by

Sdipole =
∫

V
(a ∧ ∗ j + A ∧ ∗kx ). (3)
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We need to have an appropriate gauge transformation such
that the condition of the coupling term being gauge invariant
yields the conservation law of the currents. The following
gauge transformation does the job:

a → a + d� + �dx, A → A + d�. (4)

Here, � and � denote the gauge transformation parameters.
One can check that the gauge invariance of the coupling term
Sdipole under the gauge transformation (4) gives rise to

d ∗ j = 0, d (∗kx − x ∗ j) = d ∗ Kx = 0.

Now we introduce a BF theory using the gauge fields of the
multipole symmetry. We define the following gauge-invariant
fluxes as

f := da − A ∧ dx, F := dA, (5)

and put these fluxes in the BF theory format:

Ldipole = N

2π
b ∧ f + N

2π
c ∧ F, (6)

with b and c representing U (1) 1-form gauge fields. We also
define the foliation field, which is introduced in the con-
text of field theory of fracton topological phases, following
Refs. [34,35]. In the field theory description of the fracton
topological phases, a key insight is that the theory is made of
layers of toric codes. To specify in which direction the layers
of the toric codes are stacked, a one form field, called foliation
field is introduced. For instance, if we set the foliation field as
eI = dxI , the layers are stacked along the Ith spatial direction.
In the present case, we set the foliation field by ex := dx.
Rewriting (6), we arrive at the following BF theory:

Ldipole = N

2π
a ∧ db + N

2π
A ∧ dc + N

2π
A ∧ b ∧ ex. (7)

The BF theory consists of two layers of the toric codes and
the couplings between the two. Generally, the BF theory of a
topological phase with multipole symmetries has the similar
form as (7); the BF theory consists of the layers of the toric
codes with couplings between the layers, where the number
of layers corresponds to the number of degrees of freedom of
the multipoles (meaning, the number of global charge, dipole,
quadrupole, etc.) [32]. In addition to the gauge symmetry (4),
the BF theory (7) also admits the following gauge symmetry
with respect to b and c:

b → b + dλ, c → c + dγ − λex, (8)

with λ and γ being gauge parameters.
To extract physical intuitions behind this BF theory, let

us rewrite the theory in terms of tensor gauge fields. One of
the approaches for that is to integrate out the coupling term,
corresponding to the last term in (7), which put a several
constraints on the gauge fields. Integrating out b0 gives the
following condition:

∂xay − ∂yax = −Ay. (9)

We also integrate out the A0 and obtain the following
condition:

∂xcy − ∂ycx = by. (10)

One can eliminate the gauge fields by and Ay by substituting
the relations (9) and (10) into (7). Furthermore, we introduce
gauge fields by

A(xx) := ∂xax − Ax, c(xx) := ∂xcx + bx, (11)

whose gauge transformation reads [referring to (4) and (8)]

A(xx) → A(xx) + ∂2
x �, c(xx) → c(xx) + ∂2

x γ . (12)

After the substitution, the Lagrangian (7) has the following
form:

Ldipole = N

2π

[
a0

(
∂2

x cy − ∂yc(xx)
) + A(xx)(∂t cy − ∂yc0)

+ ay
(
∂t c(xx) − ∂2

x c0
)]

. (13)

The BF theory (13) is reminiscent of the one of the toric
code [7] with a crucial difference being that the spatial
derivative operator in the x direction is replaced with the
second-order one.

One of the challenges to study the BF theory such as the
one in (13) and those of other fracton models is the presence
of the higher-order spatial derivatives, yielding the UV and IR
mixing. To circumvent this problem, we follow an approach
alluded in Refs. [18,42]. Instead of directly investigating the
theory (13), we consider the following BF theory defined on a
discrete Euclidean lattice where each gauge field takes integer
value (see Refs. [18,32,42] for a more detailed discussion on
this point):

L̂dipole = 2π

N

[
â0

(
�2

x ĉy − �yĉ(xx)
) + Â(xx)(�τ ĉy − �yĉ0)

+ ây
(
�τ ĉ(xx) − �2

x ĉ0
)]

. (14)

Here, the gauge fields take values in ZN and �τ , �x, and �y

denote the discretized differential operator. This BF theory
admits the following gauge symmetry:

â0 → â0 + �τλa, Â(xx) → Â(xx) + �2
xλa,

ây → ây + �yλa,

ĉ0 → ĉ0 + �τλc, ĉ(xx) → ĉ(xx) + �2
xλc,

ĉy → ĉy + �yλc, (15)

where λa and λc are integer gauge parameters. Equation of
motions of the theory (14) implies that the following gauge-
invariant field strength vanish:

Eax = �τ Â(xx) − �2
x â0, Eay = �τ ây − �yâ0,

Ba = �2
x ây − �yÂ(xx),

Ecx = �τ ĉ(xx) − �2
x ĉ0, Ecy = �τ ĉy − �yĉ0,

Bc = �2
x ĉy − �yĉ(xx). (16)

The equation of motions ensures that there is no nontrivial
local gauge-invariant operators. Yet, the theory (14) does have
nonlocal gauge-invariant operators, which can be constructed
from the gauge fields either (â0, Â(xx), ây) or (ĉ0, ĉ(xx), ĉy).
Especially, when the theory (14) is placed on a torus, it ad-
mits noncontractible Wilson loops, contributing to the GSD.
To evaluate this number, we set the theory (14) on a torus
geometry by imposing the periodic boundary condition via
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x̂ ∼ x̂ + Lx ŷ ∼ ŷ + Ly,2 i.e., the torus with the length in the x
(y) direction being Lx (Ly). Focusing on the Wilson loops of
the gauge fields (Â(xx), ây), the distinct number of such loops
which amounts to be the GSD. In the x direction, we have the
following two types of the Wilson loops [22,32]:

W0(ŷ) = exp

[
2π i

N

Lx∑
x̂=1

Â(xx)(x̂, ŷ)

]
,

Wdipole(ŷ) = exp

[
2π i

N
αx

Lx∑
x̂=1

x̂Â(xx)(x̂, ŷ)

]
, (17)

where αx = N/gcd(N, Lx ) and gcd stands for the greatest
common divisor. While the first term in (17) corresponds to
the standard Wilson loop which is also found in other con-
ventional topologically ordered phases, the second term has
the unconventional form. It is interpreted as the “dipole of the
Wilson loop” in the sense that the argument of the exponential
is a linear function of the coordinate x̂, reminiscent of the inte-
gration of the dipole moment, xρ. This mirrors the fact that the
BF theory respects the dipole symmetry in the x direction (1).
From equation of motions (16), it follows that the two types
of loops are deformable in the y direction, implying that W0(ŷ)
and Wdipole(ŷ) do not depend on ŷ. Hence, the noncontractible
Wilson loops of the gauge field Â(xx) in the x direction are
labeled ZN × Zgcd(N,Lx ).

One can evaluate the noncontractible Wilson loops in the
y direction, which are also labeled by the same quantum
number, ZN × Zgcd(N,Lx ) [22]. Overall, the GSD, which is
equivalent to the number of distinct noncontractible Wilson
loops, is given by

GSD = [N × gcd (N, Lx )]2. (18)

Compared with the other fracton models, such as the X -cube
model [13], which exhibit the subextensive GSD, the theory
shows unusual GSD dependence on the system size due to the
dipole symmetry.

III. GAUGING SYMMETRY-PROTECTED TOPOLOGICAL
PHASES

Now we come to the main part of this paper. In the previous
section, based on the argument on the global and dipole sym-
metry, we introduced the topological field theory (7), which
respects such symmetries. To further study the properties of
the theory, we integrate out the coupling term A ∧ b ∧ ex

corresponding to the third term in (7) to simplify the theory
to the one with higher-rank derivative terms (13). Instead of
integrating out the coupling term, in this section, we give more
physical comprehension to this term and, based on this under-
standing, we construct a UV lattice model corresponding to
the topological field theory with the dipole symmetry.

The form A ∧ b that enters (7) reminds us of the so-called
DW twist term [27–31]. Recalling that the ex is the foliated
field, along which (1 + 1)d submanifolds labeled by (t, y) are

2The coordinate (x̂, ŷ) takes integer number in the unit of the lattice
spacing.

stacked, it is tempting to interpret the BF theory (7) as the one
described by the two copies of the standard BF theories with
“foliated DW twists,” namely, DW twist terms A ∧ b stacked
in the x direction. In the following, we demonstrate a concrete
lattice model to realize such twist terms.

A. Dipole symmetry in x direction

To this end, we introduce two copies of two-dimensional
(2D) square lattices. We define integer coordinate of a node
of one lattice [black dot in Fig. 1(a)] and the one of the other
lattice [blue square in Fig. 1(a)] by (x̂, ŷ) in the unit of the
lattice spacing. For illustration purposes, we intentionally shift
a bit the one of the lattice with respect to the other one, as
depicted in Fig. 1(a). Also, we accommodate ZN qubit at each
site of the two square lattices, as portrayed in Fig. 1(a). We
label the Hilbert space and the ZN Pauli operator at each
site as |a〉i (a ∈ ZN ) and τ

X/Z
i , where the subscript i = 1, 2

distinguishes which square lattice the site belongs to. The
Pauli operators act on the Hilbert spaces as

τX
i |a〉i = |a + 1〉i , τ Z

i |a〉i = ωa |a〉i (ω := e2π i/N ). (19)

In this setting, we define the following Hamiltonian of a
paramagnet:

H0 = −
∑

r

[
τX

1,r + τX
2,r

] + H.c. (20)

Here, we have defined vectors to abbreviate the coordinates by
r := (x̂, ŷ). We introduce nontrivial SPT phases in this model.
For this purpose, we start with introducing one (1 + 1)d
SPT along a y direction at x̂ = x̂0. We define the generalized
controlled-Z gate CZ and CZ† acting on two ZN qubit states.
Its action on the states is given by

CZ |a〉 |b〉 = ωab |a〉 |b〉 ,

CZ† |a〉 |b〉 = ω−ab |a〉 |b〉 (a, b ∈ ZN ). (21)

At x̂ = x̂0, we act the CZ gate on two adjacent ZN qubit states,
composed of one state from a site on a square lattice and
the one on the other lattice. More explicitly, we consider the
following operator:

UCZ :=
∏

r
x̂=x̂0

[CZ†
(1,r),(2,r)CZ(1,r),(2,r−jy )], (22)

with jy being a unit vector in the y direction, jy := (0, 1) [for
latter use, we also define jx := (1, 0)], and act it on the Hamil-
tonian (20). Pictorially, the CZ gates act on the states along
the zigzag path portrayed in Fig. 1(b). After the operation,
Hamiltonian (20) is transformed as

H ′
0 := U †

CZH0UCZ = −
∑

rx̂ 
=x̂0

[
τX

1,r + τX
2,r

]
−

∑
ŷ

x̂=x̂0

[
τ Z

2,rτ
X
1,r(τ Z )†

2,r−jy
+ (τ Z )†

1,r+jy
τX

2,rτ
Z
1,r

] + H.c.

(23)

Examples of the last two terms, which are generalized cluster
states [24–26], are depicted in Fig. 1(b).
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FIG. 1. (a) Two square lattices (solid black and dashed blue lines). The links are oriented according to the arrows. For illustrative purposes,
we intentionally shift a bit one of the lattice with respect to the other. (b) Along a line at x̂ = x̂0, we implement the CZ gates (21) on the ZN

qubit states according to (23). Examples of the terms in (23) are shown by red and blue. (c) After gauging, the resulting Hamiltonian becomes
two copies of the ZN toric codes. Away from the line at x̂ = x̂0, the Hamiltonian composes of the vertex and the plaquette terms, shown in
the four panels at the bottom, whereas at x̂ = x̂0, the additional Pauli operator is attached to the term depicted by the two panels on the right.
(d) Trajectory of the magnetic charge m1 when crossing the line at x̂ = x̂0 in the model (30).

The Hamiltonian (23) respects a (ZN )2 global symmetry
generated by the operator∏

r

τX
i,r (i = 1, 2), (24)

which allows us to gauge it. Below, we follow the procedure
given in Ref. [29] to implement gauging the global sym-
metry.3Via gauging, one promotes the global symmetry (24)
to a local symmetry. To do so, we first introduce gauge
degree of freedom on each link, described by the Hilbert
space |ϕ〉i,r±jx/2, |ϕ〉i,r±jy/2, (i = 1, 2, ϕ ∈ ZN ), where i dis-
tinguishes the link of the two lattices, with ZN Pauli operators
Xi,r±jx/2, Zi,r±jx/2, Xi,r±jy/2, Zi,r±jy/2 that act on the links, satis-
fying the similar relation as (19). The original ZN spin degree
of freedom (d.o.f.) on each node can be thought of as a matter

3See also Ref. [13] for the similar discussion in the context of the
fracton topological phases.

field while the newly introduced one located on each link can
be regarded as ZN gauge field.4 We impose the condition that
the physical Hilbert space has to have the trivial eigenstate of
the following Gauss law operators:5

Gi,r = τX
i,r × X †

i,r+ jx
2

X †

i,r+ jy
2

Xi,r− jx
2

X
i,r− jy

2
(i = 1, 2), (25)

that is, physical states |phys〉 are subject to Gi,r |phys〉 =
|phys〉. The operator (25) corresponds to the local ZN spin-
flip symmetry. We also minimally couple the quadratic spin
coupling terms in the original Hamiltonian (23) to the ZN

4In the terminology of lattice gauge theory, Z corresponds to link
variable and X does to its conjugate, which is a discrete analog of an
exponentiation of electric field.

5Whether we put the dagger † on the last four terms in (25) depends
on the orientation of the links in accordance with Fig. 1(a), namely,
we put (do not put) the dagger on a operator on a link which emanates
from (terminates at) node r.
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gauge field as

τ Z
2,r(τ Z )†

2,r−jy
→ τ Z

2,rZ†

2,r− jy
2

(τ Z )†
2,r−jy

,

(τ Z )†
1,r+jy

τ Z
1,r → (τ Z )†

1,r+jy
Z

1,r+ jy
2
τ Z

1,r (26)

so that these terms commute with Gauss’s law (25).
In the restricted physical state, satisfying Gi,r = 1, the orig-

inal Hamiltonian (23) now becomes

H̃0− =
∑

r
x̂ 
=x̂0

[V1,r + V2,r] −
∑

ŷ
x̂=x̂0

[
V1,rτ

Z
2,rZ†

2,r− jy
2

(τ Z )†
2,r−jy

+ V2,r(τ Z )†
1,r+jy

Z
1,r+ jy

2
τX

2,rτ
Z
1,r

] + H.c., (27)

where

Vi,r := Xi,r+ jx
2

X
i,r+ jy

2
X †

i,r− jx
2

X †

i,r− jy
2

. (28)

Since τ Z
i,r commutes with (27), we set τ Z

i,r = 1, which gives
rise to Hamiltonian described by only the gauge fields. We
further add the following term to the Hamiltonian

−
∑
i,p

Pi,p, Pi,p := Z
i,p− jy

2
Zi,p+ jx

2
Z†

i,p+ jy
2

Z†
i,p− jx

2

, (29)

which ensures the fluxless condition to make the gauge the-
ory dynamically trivial. Also, we have defined the coordinate
of a plaquette by p := (x̂ + 1

2 , ŷ + 1
2 ). Overall, the gauged

Hamiltonian reads

Hgauged = −
∑

r
x̂ 
=x̂0

[V1,r + V2,r] −
∑

p

[P1,p + P2,p]

−
∑

r
x̂=x̂0

[Ṽ1,r + Ṽ2,r] + H.c., (30)

where Vi,r and Pi,p are given in (28) and (29) and

Ṽ1,r := Z†

2,r− jy
2

X1,r+ jx
2

X
1,r+ jy

2
X †

1,r− jx
2

X †

1,r− jy
2

,

Ṽ2,r := Z
1,r+ jy

2
X2,r+ jx

2
X

2,r+ jy
2

X †
2,r− jx

2

X †

2,r− jy
2

. (31)

These terms are shown in Fig. 1(c). It is straightfor-
ward to check that individual terms that constitute the
Hamiltonian (30) commute with one another. The gauged
Hamiltonian (30) describes two copies of the ZN toric
code [7], composed of the familiar form of the vertex and
plaquette terms, Vi,r, Pi,p (i = 1, 2) except along the one-
dimensional (1D) line at x̂ = x̂0, where a single Z1 or Z2

operator is attached to the vertex term (31).
To see the difference between the standard ZN toric code

and our gauged Hamiltonian, let us investigate the behavior
of the excitations of the model (30). Since the individual
term entering the Hamiltonian commutes with each other, the
ground state |�〉 satisfies

Vi,r |�〉 = Ṽi,r |�〉 = |�〉 ∀ r, i,

Pi,p |�〉 = |�〉 = |�〉 ∀ p, i. (32)

To discuss the behavior of quasiparticle excitations in the
model, we denote a fractional excitation carrying an electric
charge which violates the first condition in (32) with eigen-
value ω as ei,r. Likewise, we label a fractional excitation

FIG. 2. (a) The same two lattices as Fig. 1(a) with the CZ

gates (21) being acted along the 1D zigzag gray dashed lines.
(b) Trajectory of the magnetic excitation m1 dressed with the electric
charges e2 in the model described by the Hamiltonian (34).

carrying a magnetic charge, violating the second condition
in (32) with eigenvalue being ω by mi,p. Furthermore, for
latter convenience, we put the symbol (· · · ) on the top of a
charge to denote its conjugate. For instance, we write an elec-
tric charge violating the first condition in (32) with eigenvalue
ω−1 as e1,r.

Away from x̂ = x̂0, we think of applying a single operator
at a vertical link X

1,r+ jy
2

(x̂ � x̂0) on the ground state, giving

a pair of magnetic charges. Let us write the magnetic charge
schematically as m1, omitting the coordinate dependence for
simplicity. One can stretch the magnetic charge by successive
action of the X1 operators on the ground state in the horizontal
direction. However, when crossing at x̂ = x̂0 the magnetic
charge m1 is dressed by a electric charge e2 as X1,(x̂0,ŷ) does
not commute with Ṽ2,r|x̂=x̂0 , see also Fig. 1(d). Analogous line
of thought indicates that the magnetic charge m2 induced by
the operator P2,p is dressed with the electric charge e1 when
traveling across the line at x̂ = x̂0. Also, it is straightforward
to see that electric charges are intact by the terms at x̂ = x̂0.
Therefore, we find that

m1 ⇒ m1e2, m2 ⇒ m2e1, e1 ⇒ e1, e2 ⇒ e2. (33)

Here, ⇒ represents the fractional excitations crossing the line
at x̂ = x̂0. This implies that the terms at x̂ = x̂0 (31) modify
the statistics of the magnetic charges (see also Ref. [43] for
the relevant discussion in a different context). More concise
discussion of this point based on fusion rules of fractional
charges will be presented in the next section.

After having seen the effect of the SPT phase, now we
prepare arrays of such (1 + 1)d SPT phases, which form
stacked layers. We place the SPT phases so that each SPT goes
along the y direction and is located adjacent with one another
in the x direction. To this end, starting with the paramagnet
Hamiltonian (20), we think of implementing the CZ gates de-
fined in (21) on the states along the zigzag path demonstrated
in Fig. 2(a),6 and gauge the global ZN symmetry. A simple
modification of the previous argument shows that the gauged

6Similar to Fig. 1(a), in the actual configuration of Fig. 2(a), nodes
of the two lattices are located at the same position. However, we
intentionally shift a bit one of the lattice with respect to the other for
the sake of visual illustration.

023166-6



MULTIPOLE AND FRACTON TOPOLOGICAL ORDER VIA … PHYSICAL REVIEW RESEARCH 6, 023166 (2024)

Hamiltonian becomes

Hdipole = −
∑

r

[Ṽ1,r + Ṽ2,r] −
∑

p

[P1,p + P2,p] + H.c.,

(34)

where each term is given in (29) and (31).
Based on the discussion around (33), one can see that every

time the magnetic charge m1 and m2 go in the x direction by
one unit lattice spacing, they are dressed by an electric charge,
giving

m1
x�⇒ m1e2

x�⇒ m1e2
2

x�⇒ m1e3
2

x�⇒ · · ·
x�⇒ m1eN

2 = m1
x�⇒ m1e2

x�⇒ · · · ,

m2
x�⇒ m2e1

x�⇒ m2e2
1

x�⇒ m2e3
1

x�⇒ · · ·
x�⇒ m2eN

1 = m2
x�⇒ m2e1

x�⇒ · · · , (35)

where equality in the middle comes from the fact that the
electric charge is ZN and the arrow

x�⇒ represents the fractional
excitation moving in the x direction by a unit of the lattice
spacing. The trajectory of the magnetic charge is the reminis-
cent of the form of the dipole of the Wilson loop discussed
in the previous section (17) as the intensity of the electric
charges attached with the magnetic charge increases one by
one when propagating in the horizontal direction [see also the
configuration in the bottom of Fig. 2(b)].

To see this point more explicitly and how the lattice
model (34) corresponds to the BF theory with the dipole
symmetry (7), we consider the model (34) on a torus ge-
ometry with length being Lx and Ly in the x and y direction
to evaluate the GSD. The model (34) admits the following
noncontractible Wilson loops in the x direction [recall that
αx = N/gcd(N, Lx )]:

Wm1e2 (ŷ) =
[

Lx∏
x̂=1

X
1,r+ jy

2
Zx̂

2,r+ jx
2

]αx

,

Wm2e1 (ŷ) =
[

Lx∏
x̂=1

X
2,r+ jy

2

(
Zx̂

1,r+ jx
2

)†

]αx

. (36)

These represent the trajectory of the magnetic charges,
dressed with electric charges whose intensity depends on x̂.
The physical interpretation on these loops (36) is that in order
for the trajectory of the magnetic charge, which is dressed
with electric charges, to form a noncontractible loop, it has
to be compatible with the periodic boundary condition in the
x direction; the configuration of the charge at x̂ and the one
at x̂ + Lx has to be identical ( mod ZN ). Thus, to meet this
condition, the magnetic charge has to wind around the torus
multiple times (more explicitly, αx times) in the x direction.

Since the fractional statistics of the electric charges is not
altered by the arrays of the DW twist terms, we have the
following Wilson loops of the electric charges:

We1 (ŷ) =
Lx∏

x̂=1

X1,r+ jx
2
, We2 (ŷ) =

Lx∏
x̂=1

X
2,r+ jy

2
. (37)

It is straightforward to check these loops (36) and (37) are
deformable in the y direction, hence ŷ independent. Since the

loops (36) are labeled by the quantum number (Zgcd(N,Lx ) )2

and those (37) by (ZN )2, the GSD, which amounts to be the
number of distinct noncontractible loops of the electric and
magnetic charges in the x direction, is given by

GSD = [N × gcd (N, Lx )]2, (38)

which is the identical to (18) of the BF theory (7) with dipole
symmetry.

To summarize the discussion, motivated by the form of the
BF theory of a topological phase with dipole symmetry (7),
we have constructed the corresponding UV lattice model by
deciphering the coupling term A ∧ b ∧ ex as the foliated DW
twist terms. In the next section, we see how such DW twist
terms affect the statistics of quasiparticles by thoroughly in-
vestigating the fusion rules.

B. Alternative derivation of the ground-state
degeneracy—fusion rules

One can derive the same GSD of the model (38) in a
different approach by counting the superselection sectors of
the fractional excitations (i.e., the number of distinct fractional
excitations) and making use of the property of (35), which will
be useful for evaluation of GSD in the other topological phase
with multipole symmetries.

When we act a single Z1 operator on the ground state at a
horizontal link or vertical link, i.e., Z1,r+ jx

2
|�〉, or Z

1,r+ jy
2

|�〉,
it induces a pair of ZN electric charges, described by the
following fusion rule:

I → e1,r ⊗ e1,r+jx , I → e1,r ⊗ e1,r+jy . (39)

Here, I denotes the trivial sector. From this fusion rule, one
can identify the electric charges which are adjacent with one
another, namely,

e1,r � e1,r+jx � e1,r+jy , (40)

with � representing the identification of the fractional excita-
tions. Also, due to the periodic boundary condition, we have

e1,r+Lxjx � e1,r+Lyjy � e1,r. (41)

The two conditions (40) and (41) imply that the electric charge
e1,r does not depend on the x, y coordinate, allowing us to set,
e.g., r = (1, 1) := r0,

e1,r � e1,r0 (:= E1). (42)

Likewise, it can be shown that the electric charge e2,r does not
depend on the x, y coordinate, and one can set r = r0,

e2,r � e2,r0 (:= E2). (43)

Therefore, the theory (34) admits (ZN )2 electric charges, la-
beled by Eu

1E
v
2 (u, v ∈ ZN ).

When it comes to the magnetic charges, we think of apply-
ing a single X1 operator on the ground state at a horizontal or
vertical link; that is, X1,r+ jx

2
|�〉, or X

1,r+ jy
2

|�〉. In the former

case, we have the following fusion rule:

I → m1,p ⊗ m1,p−jy , (44)
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whereas in the latter case, we find

I → m1,p−jx ⊗ m1,p ⊗ e2,r. (45)

The fusion rule (45) is the concise description of what we have
seen in the previous section; that is, when a magnetic charge
goes in the x direction by a unit of the lattice spacing, an
electric charge is attached to it (35). From the fusion rule (44),
we have

m1,p � m1,p−jy . (46)

From this relation and the periodic boundary condition in the y
direction, m1,p+Lyjy � m1,p, it follows that the magnetic charge
m1,p does not depend on the y coordinate, allowing us to set
ŷ = 1, that is, p = (x̂ + 1

2 , 3
2 ) := q0. Also, from the fusion

rule (45), jointly with (43), one finds

m1,q0 � m1,q0−jx ⊗ E2. (47)

The adjacent magnetic charges in the x direction are identified
up to an electric charge. Similar to the argument in the y
direction, one naively wonders the magnetic charge also does
not depend on the x coordinate. However, we have to carefully
take into account the periodic boundary condition in the x
direction and the effect of the electric charge which is attached
to the magnetic charge. Indeed, by iterative use of (47), we
have

m1,q0+Kxjx � m1,q0 ⊗ (
E2

)Kx (Kx ∈ Z). (48)

The condition (48) needs to be compatible with the periodic
boundary condition in the x direction. Hence, depending on
N and Lx, the admissible magnetic excitation is the multiple
magnetic charges rather than a single magnetic charge. We
think of the multipole magnetic charges, denoted by mαx

1,q0
,

with αx = N/gcd(N, Lx ), which satisfies

mαx
1,q0

� mαx
1,q0−jx

⊗ E
αx

2 (49)

and the periodic boundary condition

mαx
1,q0+Lxjx

� mαx
1,q0

. (50)

Hence, from these two conditions (49) and (50), it follows that
the magnetic charge mαx

1,q0
at any x coordinate is generated by

an electric charge E2 and [p0 := ( 3
2 , 3

2 )]

mαx
1,p0

(:= M1), (51)

indicating that the magnetic charge induced by the Pauli oper-
ators X1, is labeled by the M1. Analogous analysis leads us to
that the magnetic charge induced by the Pauli operators X2, is
labeled by

mαx
2,p0

(:= M2). (52)

Therefore, the theory supports (Zgcd(N,Lx ) )2 magnetic charges,
which are characterized by (M1)w(M2)s with w, s ∈
Zgcd(N,Lx ).

In summary, via a close investigation of the fusion rules,
we have evaluated the number of superselection sectors of the
model (34). There are N2 electric charges and gcd(N, Lx )2

magnetic charges. Hence, the GSD on the torus, which
amounts to be the number of the superselection sectors,
is given by GSD = [N × gcd(N, Lx )]2, which is the same
as (38).

IV. DIPOLE SYMMETRIES IN x AND y DIRECTIONs

One can generalize the previous argument given in
Sec. III A to the case where we prepare stacking of the SPT
phases in the y direction as well as the x direction. Consider
three layers of 2D square lattices, The orientation of the links
is the same as the previous case [Fig. 1(a)]. We portray the
lattices in Fig. 3(a) with intentionally shifting two of them
with respect to the other for visual illustration. We define the
Hilbert space of the ZN qubit on each node of the lattices as
|a〉i (a ∈ ZN ) with index i distinguishing the three lattices.
Pictorially i = 1, 2, and 3 in Fig. 3(a) correspond to the
lattice with black, red, and green colors, respectively. Then
we introduce the Hamiltonian of the paramagnet as

H̃0 = −
∑

r

(
τX

1,r + τX
2,r + τX

3,r

) + H.c. (53)

Here, τX
i,r is the spin-flip operator at a node of the three lattices.

We implement the CZ gates on the lattices along the x (green)
and y (red) direction in accordance with the zigzag path in
Fig. 3(b). More explicitly, we act the following operator con-
sisting of the CZ gates:

ŨCZ :=
∏

r

CZ†
(1,r),(2,r)CZ(1,r),(2,−jy )

×CZ†
(1,r),(3,r)CZ(1,r),(3,r−jx ), (54)

on the Hamiltonian (53), which yields

Ũ †
CZH̃0ŨCZ = −

∑
r

[
(τ Z )†

3,r−jx
(τ Z )†

2,r−jy
τX

1,rτ
Z
2,rτ

Z
3,r

+ (τ Z )†
1,r+jy

τX
2,rτ

Z
1,r + Z†

1,r+jx
τX

3,rτ
Z
1,r

] + H.c.

(55)

The Hamiltonian (55) respects (ZN )3 global symmetry, corre-
sponding to global spin flip on the three layers of the lattices,∏

r

τX
i,r (i = 1, 2, 3),

which we can gauge. Following the same procedure explained
in the previous section (Sec. III A), the gauged Hamiltonian is
given by

H̃dipole = −
⎡⎣∑

r

V1,r +
∑

p

P1,p

⎤⎦ −
⎡⎣∑

r

V2,r +
∑

p

P2,p

⎤⎦
−

⎡⎣∑
r

V3,r +
∑

p

P3,p

⎤⎦ + H.c., (56)

with

V1,r := Z†
3,r− jx

2

Z†

2,r− jy
2

X1,r+ jx
2

X
1,r+ jy

2
X †

1,r− jx
2

X †

1,r− jy
2

,

V2,r := Z
1,r+ jy

2
X †

2,r− jy
2

X †
2,r− jx

2

X2,r+ jx
2

X
2,r+ jy

2
,

V3,r := Z1,r+ jx
2

X †

3,r− jy
2

X †
3,r− jx

2

X3,r+ jx
2

X
3,r+ jy

2
, (57)

and

Pi,p := Z
i,p− jy

2
Zi,p+ jx

2
Z†

i,p+ jy
2

Z†
i,p− jx

2

, (58)
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FIG. 3. (a) Three 2D square lattices. Two of them are introduced so that their nodes (red squares and green triangles) are located at the
center of the plaquette of the other lattice (black nodes and links). (b) CZ gates (54) are implemented along the red and green zigzag path.
(c) After gauging the global ZN symmetry, gauge fields are located on each link (black dot, red square, and green triangle). (d) The terms
defined on the lattice (c) that constitutes the Hamiltonian (57) and (58). (e) Schematic illustration how the magnetic charge m1 is dressed with
electric charges when it goes in the x or y direction.

where Xi and Zi represent the Pauli operator of the gauge field
which reside on the links [Fig. 3(c)]. These terms are depicted
in Fig. 3(d). The Hamiltonian (56) with (57) and (58) resem-
bles three copies of the ZN toric codes with the difference
being that a few Pauli operators are multiplied with the vertex
terms (57), which comes from the foliated DW twist terms.
The ground state of the model (56) is the projected state |�〉,
satisfying

Vi,r |�〉 = |�〉 , Pi,p |�〉 = |�〉 ∀ i, r, p. (59)

By the similar argument in Sec. III B, one can discuss how
behavior of the fractional excitations is affected by the fo-
liated DW twist terms. To this end, we denote a fractional
electric charge which violates the first condition in (59) with
eigenvalue ω by ei,r. Similarly, we label a fractional magnetic
charge which violates the second condition given in (59) with
eigenvalue ω by mi,p.

It can be shown that no additional charge is attached to
electric charges when they move. Regarding the magnetic

charges, depending on the direction they go, electric charges
are attached to them. For instance, by the same logic given
in around (35), one can see that the magnetic charge m1 (we
omit the coordinate for simplicity) is dressed with an electric
charge e2 (e3) every time it travels in the x (y) direction,
schematically described by [see also Fig. 3(e)]

m1
x�⇒ m1e2

x�⇒ m1e2
2

x�⇒ m1e3
2

x�⇒ · · ·
x�⇒ m1eN

2 = m1
x�⇒ m1e2

x�⇒ · · · ,

m1
y�⇒ m1e3

y�⇒ m1e2
3

y�⇒ m1e3
3

y�⇒ · · ·
y�⇒ m1eN

3 = m1
y�⇒ m1e3

y�⇒ · · · . (60)

Here
x/y�⇒ indicates the fractional excitation goes in the x or y

direction by a unit of the lattice spacing. By the same token,
one finds that whenever the magnetic charge m2 (m3) goes
in the x (y) direction, an electric charge is attached to it,
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described by

m2
x�⇒ m2e1

x�⇒ m2e2
1

x�⇒ m2e3
1

x�⇒ · · ·
x�⇒ m2eN

1 = m2
x�⇒ m2e1

x�⇒ · · · ,

m3
y�⇒ m3e1

y�⇒ m3e2
1

y�⇒ m3e3
1

y�⇒ · · ·
y�⇒ m3eN

1 = m3
y�⇒ m3e1

y�⇒ · · · . (61)

Also, one can verify that no additional charge is attached to the
magnetic charge m2 (m3) when it travels in the y (x) direction.

We can evaluate the GSD of this model on the torus geome-
try by investigating the superselection sectors of the fractional
excitations, analogously to Sec. III B. By considering the fu-
sion rules of the electric charges, obtained by acting the Pauli
operator Z1, Z2, and Z3 on the ground state, jointly with the
periodic boundary condition in the x and y directions, one
finds that the electric charges, ei,r at any coordinate of x̂ and
ŷ, are labeled by

e1,r � ei,r0 (:= Ei ), (62)

where i = 1, 2, 3 and r0 = (1, 1). Thus, there are N3 electric
charges. As for the magnetic charges, by acting the Pauli
operator X1 on the ground state at the vertical link or the
horizontal link, we have the following fusion rules:

I → m1,p−jx ⊗ m1,p ⊗ e2,r, I → m1,p−jy ⊗ m1,p ⊗ e3,r,

(63)

which is the concise statement of (60). From these fusion
rules, jointly with (62), we have

m1,p � m1,p−jx ⊗ E2, m1,p � m1,p−jy ⊗ E3. (64)

The iterative use of (64) gives

m1,p+Kxjx+Kyjy � m1,p ⊗ E
Kx

2 ⊗ E
Ky

3 (Kx, Ky ∈ Z). (65)

In order for (65) to be consistent with the periodic boundary
condition, the multiple of magnetic charges m

αxy

1,p rather than
a single one are allowed. Here, αxy := N/gcd(N, Lx, Ly). One
can verify that the charge m

αxy

1,p at any coordinate of x̂ and ŷ is

generated by E2, E3, and

m
αxy

1,p0
(:= M1) with p0 = (

3
2 , 3

2

)
, (66)

which indicates that the magnetic charge induced by applying
the Pauli operator X1 on the ground state is characterized
by (M1)s1 with s1 ∈ Zgcd(N,Lx,Ly ). A similar discussion leads
to that the magnetic charge induced by applying the Pauli
operator X2 and X3 on the ground state is labeled by

mαx
2,p0

(:= M2) and m
αy

3,p0
(:= M3), (67)

respectively, with αx = N/gcd(N, Lx ) and αy =
N/gcd(N, Ly ). Overall, there are in total gcd(N, Lx, Ly) ×
gcd(N, Lx ) × gcd(N, Ly ) magnetic charges.

To recap the argument, by investigating the fusion rules
of the fractional excitations, we identify the number of the
superselection sectors of the model on the torus geometry. The
excitation is labeled by

(E1)w1 (E2)w2 (E3)w3 (M1)s1 (M2)s2 (M3)s3 , (68)

with wi ∈ ZN (i = 1, 2, 3), s1 ∈ Zgcd(N,Lx,Ly ), s2 ∈ Zgcd(N,Lx ),
and s3 ∈ Zgcd(N,Ly ). Thus, the number of the superselection

sectors, which is equivalent to the GSD on the torus, is
given by

GSD = N3 × gcd(N, Lx, Ly) × gcd(N, Lx ) × gcd(N, Ly ).

(69)

The model that we have considered in this section corresponds
to the following BF theory [32]:

Ldipole-x,y = N

2π
a ∧ db +

∑
I=x,y

N

2π
AI ∧ dcI + N

2π
AI ∧ b ∧ eI .

(70)

Here, the field a, b, cI , AI denotes a U (1) 1-form gauge field.
Also, eI describes the foliation field, i.e., ex = dx, ey = dy.
The gauge field a, Ax, and Ay is associated with global and
dipole symmetry in the x and y directions, respectively. The
BF theory (70) shows the same GSD as (69) [32]. It is in-
teresting to note that a stabilizer model in a different form
obtained by Higgsing the tensor gauge theory [44], which is
a generalized Maxwell theory preserving dipole charges, ex-
hibits the same GSD as (69) [20,21]. Also, recent works such
as Refs. [45,46] studied two copies of the toric codes with
couplings which lead to the same GSD as (69). The crucial
difference from our model is that while our construction is
associated with foliated BF theories consisting of layers of
the toric codes with implementing finite depth local unitary
circuits, in their case, the coupling induces anyon condensa-
tion that requires O(L) circuits (i.e., order of the system size).

V. CONSTRUCTION OF OTHER FRACTON MODELS

So far we have demonstrated a concrete lattice realization
of the topological phases with multipole symmetries. One
can apply the approach discussed in the previous sections to
other fracton model, such as the ZN exotic theory and X -cube
model.

A. Exotic ZN theory

To start, let us first introduce BF theory description of the
fracton model, which can be obtained by the BF theory of
topological phases with multipole symmetries with a slight
modification. If we replace the gauge field cI with φI eI (I is
not summed over) in (70), where φI is a 0-form field, we have

LEX = N

2π
a ∧ db+

∑
I=x,y

N

2π
AI ∧ dφI ∧ eI + N

2π
AI ∧ b ∧ eI ,

(71)

which describes the exotic ZN gauge theory [40]. Compared
with (70), which has the dipole symmetries, theory (71) pos-
sesses an additional symmetry: the theory is invariant under
AI → AI + eI g with g being an arbitrary function. This sym-
metry is known as subsystem symmetry [13,47,48], which is
of importance in the context of the fracton topological phases.
A theory with such a symmetry admits a symmetry operation
on a submanifold rather than entire space. Manifestation of
the subsystem symmetry in the theory (71) is that a gauge-
invariant operator constructed by the gauge field AI is mobile
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FIG. 4. (a) 2D square lattice and arrays of 1D chains stacked along the x direction (red squares and dashed lines) and those along the
y direction (green triangles and dashed lines). We set the orientation of the links in the same way as the previous cases. (b) (top) The lattice
configuration after gauging the global ZN symmetry where gauge fields reside on links. (bottom) Terms that constitute the Hamiltonian (75).
(c) Examples of the logical operators given in (78).

only along a submanifold, which forbids moving in the direc-
tion parallel to eI .

The last term in (71) has the exactly the same form as
the one we have encountered in the previous sections, the
foliated DW twist term. Also, the second term that enters (71)
describes foliated topological field theories each of which cor-
responds to a spontaneously symmetry-breaking phase [49].
Based on this observation, it would be tantalizing to imple-
ment the similar procedure as we did in the previous argument
to construct the exotic ZN gauge theory via gauging SPT
phases.

To this end, we think of a 2D square lattice jointly with
arrays of 1D chains stacked along both the x and y directions,
as demonstrated in Fig. 4(a) [note the distinction between
the configurations in Fig. 4(a) and in Fig. 3(a)] with pe-
riodic boundary condition being imposed (i.e., x̂ ∼ x̂ + Lx,
ŷ ∼ ŷ + Ly). We define the Hilbert space of ZN qubit on a
node of the lattice by |a〉i with i distinguishing the 2D lattice
[i = 1 black dot in Fig. 4(a)] and that of the 1D chain stacked
along x [i = 2 red square in Fig. 4(a)] and y direction [i = 3
green triangle in Fig. 4(a)]. We also introduce Hamiltonian of
this lattice as

H̃0 = −
∑

r

(
τX

1,r + τX
2,r + τX

3,r

) + H.c. (72)

Even though the Hamiltonian has the same form as (53),
there is a crucial difference between the two; in the present
case there is no link connecting between the states |a〉2,r
and |a〉2,r±jx

in the horizontal direction. Likewise, there is no
link that connects the states |a〉3,r and |a〉3,r±jy

in the vertical
direction.

We implement the same CZ gates (54) on the Hamilto-
nian (72), yielding

Ũ †
CZH̃0ŨCZ = −

∑
r

[
(τ Z )†

3,r−jx
(τ Z )†

2,r−jy
τX

1,rτ
Z
2,rτ

Z
3,r

+ (τ Z )†
1,r+jy

τX
2,rτ

Z
1,r + Z†

1,r+jx
τX

3,rτ
Z
1,r

] + H.c.

(73)

The model has the one ZN global and two ZN subsystem
symmetries generated by

∏
r

τX
1,r,

Ly∏
ŷ=1

τX
2,r (1 � x̂ � Lx ),

Lx∏
x̂=1

τX
3,r (1 � ŷ � Ly).

(74)

Following the same procedure outlined around (30), one can
gauge these symmetries. The gauged Hamiltonian reads [see
also Fig. 4(b)]

HEX = −
⎡⎣∑

r

V1,r +
∑

p

P1,p

⎤⎦
−

∑
x̂

Hf r,x (x̂) −
∑

ŷ

HFr,y(ŷ) + H.c. (75)

The first line describes the ZN toric code consisting of
the terms given in (57) and (58) whereas the second line
corresponds to ferromagnetic chains stacked along x and y
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direction:

H (x̂)Fr,x =
∑

ŷ

Z1,r+jy X2,rX †
2,r−jy

,

H (ŷ)Fr,y =
∑

x̂

Z1,r+jx X3,rX †
3,r−jx

. (76)

Note that, due to the DW twist terms obtained by gauging
the foliated SPT phases, an additional Pauli operator Zi is
attached to the terms [see also Fig. 4(c)]. The ground state
of the model (75) is the projected state, satisfying

V1,r |�〉 = P1,p |�〉 = |�〉 ∀ r, p,

Z1,r+jy X2,rX †
2,r−jy

|�〉 = |�〉 ,

Z1,r+jx X3,rX †
3,r−jx

|�〉 = |�〉 ∀ r. (77)

One can evaluate the GSD of the model on the torus geometry.
The model (75) admits the following logical operators i.e.,
operators that commute with the Hamiltonian (75):

ζr := X3,r+ jx
2

X †

2,r+ jy
2

,

ηx(ŷ) :=
Lx∏

x̂=1

Z
2,r− jy

2
X †

1,r− jy
2

X
1,r+ jy

2
(1 � ŷ � Ly),

ηy(x̂) :=
Ly∏

ŷ=1

Z3,r− jx
2

X †
1,r− jx

2

X1,r+ jx
2

(1 � x̂ � Lx ). (78)

Examples of these operators are shown in Fig. 4(c). The form
of the last two operators resemble the Wilson loop introduced
in the exotic ZN theory constructed by a noncontractible loop
of a symmetric tensor gauge field [40]. There are a few con-
strains on the operators (78). To see this, we multiply the term
V †

1,r on entire vertex gives

1 =
∏

r

V †
1,r =

∏
ŷ

ηx(ŷ) ×
∏

x̂

ηy(x̂), (79)

where we have used (77). Also, by combination of the terms
that enter the Hamiltonian (75), together with (77) gives

1 = ζrζ
†
r+ jx

2

ζ
†

r+ jy
2

ζr+ jx
2 + jy

2
. (80)

These constraints (79) and (80) indicate that there are Lx +
Ly − 1 distinct number of the logical operators ζr, and the
same number of distinct logical operators ηx(ŷ) and ηy(x̂).
One can show that pairs of such logical operators, each of
which generates ZN Heisenberg algebra gives the GSD as

GSD = NLx+Ly−1. (81)

This is in agreement with Ref. [40].

B. X-cube model

One can analogously establish the X-cube model in our
approach. To this end, we recall the BF theory description
of the X-cube model [34]. Consider the following BF theory
defined in (3 + 1)d

Ldipole-xyz = N

2π
a ∧ db+

∑
I=x,y,z

N

2π
AI ∧ dcI + N

2π
AI ∧ b ∧ eI ,

(82)

where the fields a, AI (b, cI ) represent U (1) 1-form (2-form)
gauge fields and ex = dx, ey = dy, ez = dz. This BF theory
is the (3 + 1)d analog of (70), where the gauge field a, AI is
associated with global and dipole in the Ith direction, respec-
tively. We replace the 2-form gauge field cI with dBI ∧ eI (I
is not summed over) where BI denotes a U (1) 1-form gauge
field. With this replacement, the BF theory (82) becomes

L = N

2π
a ∧ db +

∑
I=x,y,z

N

2π
AI ∧ dBI ∧ eI + N

2π
AI ∧ b ∧ eI ,

(83)

which is known as the effective-field theory of the X-cube
model [34]. Similar to (71), the theory has the subsystem
symmetry; the theory is invariant under AI → AI + geI .

Note that the second term in (83) describes the 2D toric
codes, forming stacked layers and also that the last term
in (83) has the same form as the one we have discussed so
far, allowing us to carry out our approach to build up the
UV model which corresponds to the field theory (83). We
emphasize that, although realization of the X-cube model
via gauging the subsystem symmetry was discussed previ-
ously [13], we believe that it is still useful to present our
way to construct the X-cube model via gauging the foliated
SPT phases. This is because the way we construct the model
has a broad perspective in the sense that it is applicable to
both of topological phases with multipole symmetries and
other fracton models, and allows us to make a transparent
understanding of the topological field theory of these phases
by interpreting the coupling term AI ∧ b ∧ eI as the foliated
DW twist term. Furthermore, we believe that our approach
may find an application to realization of the fracton topolog-
ical phases with more generic group symmetries including
non-Abelian, as our approach complies well with the group
cohomology that describes SPT phases. We leave more details
of these issues for future studies.

With these regards in mind, now we turn to constructing
the X-cube model via gauging foliated SPT phases in the case
of N = 2 with system size Lx × Ly × Lz for simplicity. To do
this, we envisage a cubic lattice and layers of the 2D lattices
stacked in the x, y, and z directions, which corresponds to
blue, red, and green layers in Fig. 5(a), respectively. Each
stacked layers are separated by a unit lattice spacing and each
node of the 2D lattice is located at the center of the cube. We
introduce qubits on each link of the cubic lattice and those on
each node of the layers of the 2D lattices. The Hilbert space
of the qubit is denoted by |a〉i with i = 0, 1, 2, 3 and a = 0, 1,
where the index i distinguishes the qubits on the cube (i = 0)
and those on the 2D lattices stacked in the x (i = 1), y (i = 2),
and z (i = 3) directions. We define the following paramagnet
Hamiltonian:

H = −
∑

r

(
τX

0,r+ jx
2

+ τX
0,r+ jy

2

+ τX
0,r+ jz

2

)
−

∑
r

3∑
i=1

τX
i,r+ jx

2 + jy
2 + jz

2

, (84)

where jz := (0, 0, 1), τX
0,r+jx/2 is the Pauli operator acting on

the qubit at the link of the cubic lattice with the coordinate
r + jx/2 and the other Pauli operators are similarly defined.
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FIG. 5. (a) 3D cubic lattice and layers of 2D lattices. Each node of the 2D lattice is located at the center of the cube. (b) Side view of
the lattice from the x axis is shown in the large middle panel. The face of the cubic lattice and the layer of 2D lattice indicated by the yellow
arrow in panel (a) constitute a 2D lattice. The CZ gates are implemented between states on the layer of the 2D lattices and those on the face
of the cube. Example of the CZ gates are depicted in the small panels on the left and right. The node with alphabet corresponds to the one
in panel (a).

We think of implementing the CZ gates (21) on qubits
which are located at a face of the cubic lattice and those
on the adjacent layer of the 2D lattice. Instead of writing
explicitly the terms, we make use of visual illustrations given
in Figs. 5(a) and 5(b). The CZ gates act on qubits on a
2D lattice, say the one stacked along the x direction, and
the closest face of the cube in the +x direction, parallel to
the yz plane. In Fig. 5(a), they correspond to the layer and
face marked by the yellow arrow. Viewing from the x axis, the
layer and face form a 2D lattice where qubits are placed on
each node and link, as shown in Fig. 5(b). The CZ gates act
on a qubit defined on a node and four qubits that surround it,
as well as on a qubit located on a link and two qubits that are
connected with it. The former corresponds to a ∼ e in the left
of Fig. 5(b) and the latter to a, d , g, and a, e, f in the right
of Fig. 5(b). Such manipulation reminds us of the realization
of cluster states of the SPT phase preserving the 0-form and
1-form global symmetries. The CZ gates are implemented on
qubits defined on a different layers stacked along the y and z
directions and those on the closest faces in the similar manner.

The model has the symmetries generated by the following
operators:∏

e⊥S

τX
0,e,

∏
ŷ,ẑ

τX
1,r+ jx

2 + jy
2 + jz

2

(1 � x̂ � Lx ),

∏
ẑ,x̂

τX
2,r+ jx

2 + jy
2 + jz

2

(
1 � ŷ � Ly

)
,

∏
x̂,ŷ

τX
3,r+ jx

2 + jy
2 + jz

2

(1 � ẑ � Lz ). (85)

Here the first product represents the multiplication of the τX
0

operators on links that cross a closed surface S in the dual
sites, which corresponds to a global 1-form symmetry [50,51]

whereas the last three products correspond to the subsystem
symmetries. One can gauge these symmetries. Following the
same procedure outlined in Sec. III A, we gauge the last three
symmetries in (85) on each layer of the 2D lattice.

Regarding gauging the 1-form Z2 global symmetry, we fol-
low the analogous steps for gauging ordinary ZN symmetries.
Since the procedure closely parallels the one in the previous
cases [52], we outline how to carry out gauging succinctly.
We introduce 2-form gauge fields which reside on each face f
of the cube with the Pauli operator X0, f , Z0, f and impose the
Gauss law constraint on each link e, Ge |phys〉 = |phys〉 with

Ge = τX
0,e

∏
f |e⊂∂ f

X0, f ,

where the product corresponds to multiplication of four Pauli
operators that belong to the link. We further minimally couple
the quadratic term on links that belong to a face,

∏
e⊂∂ f τ Z

0,e

to the 2-form gauge field via Z0, f
∏

e⊂∂ f τ Z
0,e and impose the

flux-less condition of the 2-form gauge fields.
After gauging the symmetries (85), we also redefine the

lattice grid to make the figure more visually friendly. We do
so in such a way that gauge fields are located on each link
of the newly defined cubic lattice; the gauge fields introduced
by implementing gauging the first symmetry in (85) is located
on links of the cubic lattice [black dots in Fig. 6(a)] whereas
those introduced by the second, third, and fourth symmetry
in (85) distinguished by the index i = 1, i = 2, and i = 3, is
placed on links belonging to the face of the cubic lattice, in the
yz, zx, and xy planes, respectively [blue, red, and green dots
in Fig. 6(a)].

We finally arrive at the following gauged Hamiltonian:

Hgauged,Xc = −
⎡⎣∑

r

V0,r +
∑

ẑ

∑
pxy (ẑ)

B0,pxy (ẑ) +
∑

x̂

∑
pyz (x̂)

B0,pyz (x̂) +
∑

ŷ

∑
pzx (ŷ)

B0,pzx (ŷ)

⎤⎦ −
∑

x̂

⎡⎣∑
ŷ,ẑ

V1,r +
∑
pyz (x̂)

B1,pyz (x̂)

⎤⎦
−

∑
ŷ

⎡⎣∑
x̂,ẑ

V2,r +
∑
pzx (ŷ)

B2,pzx (ŷ)

⎤⎦ −
∑

ẑ

⎡⎣∑
x̂,ŷ

V3,r +
∑
pxy (ẑ)

B3,pzx (ẑ)

⎤⎦. (86)
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FIG. 6. (a) Configurations of the qubits after gauging and redefining the lattice grid. (b) The terms defined in (87) and (88) that constitute
the Hamiltonian (86). (c) Configurations of loops given in (92).

The individual term of the first line in (86) is defined by

V0,r :=
∏

t=±1

Z0,r+t jx
2

Z
0,r+t

jy
2

Z0,r+t jz
2
,

B0,pxy (ẑ) := Z1,pxy (ẑ)− jx
2

Z
2,pxy (ẑ)− jy

2

∏
t=±1

X0,pxy (ẑ)+t jx
2

X
0,pxy (ẑ)+t

jy
2
,

B0,pyz (x̂) := Z2,pyz (x̂)− jz
2

Z
3,pyz (x̂)− jy

2

∏
t=±1

X
0,pyz (x̂)+t

jy
2

X0,pyz (x̂)+t jz
2
,

B0,pzx (ŷ) := Z3,pzx (ŷ)− jx
2

Z1,pzx (ŷ)− jz
2

∏
t=±1

X0,pzx (ŷ)+t jx
2

X0,pzx (ŷ)+t jz
2
, (87)

which are depicted in the first four terms in Fig. 6(b). Here, we have defined the coordinate of a plaquette in the xy, yz, and zx
planes by pxy(ẑ) = (x̂ + 1

2 , ŷ + 1
2 , ẑ), pyz(x̂) = (x̂, ŷ + 1

2 , ẑ + 1
2 ), and pzx(ŷ) = (x̂ + 1

2 , ŷ, ẑ + 1
2 ). Also, the individual term of the
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second line in (86) reads

V1,r := Z0,r+ jx
2

∏
t=±1

X
1,r+t

jy
2

X1,r+t jz
2
, B1,pyz (x̂) :=

∏
s=±1

Z
1,pyz (x̂)+s

jy
2

Z1,pyz (x̂)+s jz
2
,

V2,r := Z
0,r+ jy

2

∏
t=±1

X2,r+t jx
2

X2,r+t jz
2
, B2,pzx (ŷ) :=

∏
s=±1

Z2,pzx (ŷ)+s jx
2

Z2,pzx (ŷ)+s jz
2
,

V3,r := Z0,r jz
2

∏
t=±1

X3,r+t jx
2

X3,r+t jz
2
, B3,pxy (ẑ) :=

∏
s=±1

Z3,pxy (ẑ)+s jx
2

Z
3,pxy (ẑ)+s

jy
2
. (88)

These terms are portrayed in the last four terms in Fig. 6(b).
The ground state of the Hamiltonian (86) is the projected state, satisfying that all of the eigenvalues of the terms in (87)

and (88) are trivial, e.g., V0,r = 1. Essentially, the first line in (86) describes the three-dimensional (3D) toric code whereas the
terms in the second line in (86) describe the layers of the 2D toric codes stacked along the x, y, and z directions. The crucial
difference between the toric codes and the model (86) is that a few Pauli operators are multiplied with the plaquette and vertex
terms of the toric codes, which alter the statistics of the fractional excitations, mirroring the fact that we accommodate the
foliated DW twist terms.

We investigate the GSD of the model (86) on a 3D torus with system size Lx × Ly × Lz by counting the number of the distinct
noncontractible loops of the electric charges. Practically, we evaluate the number of the distinct operators of the Pauli Zi operators
that form the noncontractible loops. The model admits a number of noncontractible loops constructed by the product of the Pauli
Zi operators:

W1e,y(x̂) =
Ly∏

ŷ=1

Z
1,r+ jy

2
, W1e,z(x̂) =

Lz∏
ẑ=1

Z1,r+ jz
2

(1 � x̂ � Lx ),

W2e,z(ŷ) =
Lz∏

ẑ=1

Z2,r+ jz
2
, W2e,x(ŷ) =

Lx∏
x̂=1

Z2,r+ jx
2

(
1 � ŷ � Ly

)
,

W3e,x(ẑ) =
Lx∏

x̂=1

Z3,r+ jx
2
, W3e,y(ẑ) =

Ly∏
ŷ=1

Z
1,r+ jy

2
(1 � ẑ � Lz ). (89)

Examples are shown in the left of Fig. 6(c). Naively there are
2Lx + 2Ly + 2Lz distinct loops, however, there are a few con-
straints on them, reducing the number.7 Indeed, multiplication
of the operators in (87) gives

1 =
∏
x̂,ŷ

B0,pxy (ẑ) =
∏

ŷ

W2e,x(ŷ) ×
∏

x̂

W1e,y(x̂),

1 =
∏
ŷ,ẑ

B0,pyz (x̂) =
∏

ẑ

W3e,y(ẑ) ×
∏

ŷ

W2e,z(ŷ),

1 =
∏
ẑ,x̂

B0,pzx (ŷ) =
∏

ẑ

W3e,x(ẑ) ×
∏

x̂

W1e,z(x̂), (90)

where we have used the fact that the ground states satisfies
that the eigenvalues of the operators (87) are trivial. Such
constraints come from the fact that a few Pauli operators are
attached to the terms in the 2D toric codes, due to the foliated
DW twist terms that we introduced. Hence, the distinct num-
ber of noncontractible loops of the Z2 electric charges is given

7One might wonder that the model admits noncontractible mem-
brane operators which are found in the 3D toric code, such as
W0e,xy = ∏Lx

x̂=1

∏Ly
ŷ=1 Z0,r+ jz

2
. However, such membranes become triv-

ial as multiplication of the terms in (88) gives identity. Indeed, we
have 1 = ∏Ly

ŷ=1

∏Lz
ẑ=1 V1,r = W0e,xy.

by 2Lx + 2Ly + 2Lz − 3, leading to

GSD = 22Lx+2Ly+2Lz−3, (91)

which agrees with the GSD found in Ref. [13].
One can analogously count the number of distinct loops

of the magnetic charges, i.e., the number of noncontractible
loops constructed by Xi. Examples of such loops are

W2m,x(ŷ) =
∏

x̂

X2,r+jy+ jz
2

X2,r+ jz
2

Z0,r+jy+ jz
2
,

W2m,3m,x (ŷ) =
∏

x̂

X2,r+ jz
2

X
3,r+ jy

2
, (92)

which are depicted in Fig. 6(c). We can find other loops in the
similar form. By the similar argument around (90), it can be
verified that there are 2Lx + 2Ly + 2Lz − 3 distinct loops. By
using these loops as well as those we have considered (89),
one can make 2Lx + 2Ly + 2Lz − 3 pairs of loops each of
which generates the Z2 Heisenberg algebra, arriving at the
GSD (91).

VI. DISCUSSION AND CONCLUSION

Originally proposed in the context of quantum informa-
tion [11,12], the fracton topological phases have now diverse
research interests, involving various branches of physics,
such as condensed-matter physics, and high-energy physics.
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Motivated by the ultimate goal to construct a complete the-
oretical framework to describe such phases, the concept of
symmetries has been developed. Focusing on one of new sym-
metries, multipole symmetry, we have demonstrated a way to
build up topological phases which respect such a symmetry.
Take-home message in this work is that via gauging SPT
phases with global ZN symmetries, they become the foliated
DW twist terms which yield unconventional fractional excita-
tions found in the multipole topological phases. Furthermore,
this construction gives a clear physical understanding of the
term AI ∧ b ∧ eI in a field theory description of the multipole
topological orders. The way we construct phases can also be
implemented in other fracton models. Before closing this sec-
tion, we make a few remarks and future research directions,
regarding the present work.

A. Comments on entanglement entropy

Recently, several works studied entanglement entropy of
topological phases with multipole symmetries. It is widely
known that the entanglement entropy of a contractible disk
geometry A in a conventional (2 + 1)d topologically ordered
phase reads SA = Aarea − γ [53,54]. While the first term is
the so-called area law term, proportional to the perimeter of
the disk, the second sub-leading-order term is particularly im-
portant. It is known as the topological entanglement entropy
which relates to a topological order via γ = loge (

∑
a d2

a )1/2,
where da denotes a quantum dimension of an anyon labeled
by a. It was shown that the topological entanglement entropy
of a contractible disk geometry in a ZN topological phase with
multipole symmetries gives γ = m loge N (m ∈ Z), which is
in contrast with the fact that the number of superselection
sectors; that is, the number of distinct fractional excitations
depends on the greatest common divisor between N and the
system size [55,56].

Such a result can be understood by the form of the BF
theory of topological phases with multipole symmetries (7)
and (70) together with the interpretation of the coupling term
that we make throughout this paper, i.e., interpretation of the
term AI ∧ b ∧ eI as the foliated DW twist terms. Generally, it
was shown that the DW twist terms alter the fractional statis-
tics of anyons but do not change the total quantum dimension.
Indeed, it was proven that in a concrete lattice model of a
quantum double with DW twist terms the topological entan-
glement entropy of a disk geometry takes the same values
as the one in the case without the DW twist [57]. By this
result, together with our observation that the BF theory of
the topological phases with multipole symmetries consists of
layers of the toric codes with the foliated DW twist terms,
leads to that the topological entanglement entropy of such
phases has the form γ = k loge N , where k is the number
of layers of the toric codes (more explicitly, the number of
degrees of freedom of the multipoles such as global charge,
dipole, quadrupole, etc.).

As an example, the topological entanglement entropy of a
disk in the UV stabilizer models respecting the dipole sym-
metry in the x direction was found to be γ = 2 loge N [55],
which is consistent with the form of the BF theory (7) as
the theory consists of the two copies of the toric codes with
the DW twist; regardless of the presence of the DW twist, the
total quantum dimension of the excitations amounts to be the

one of the two copies of the toric codes, hence γ = 2 loge N .
Also, in Ref. [56], a UV stabilizer model obtained by Hig-
gsing the tensor gauge theory with dipole symmetry in x and
y direction gives γ = 3 loge N , which is consistent with what
we discussed here, by noticing that model can be described
by three copies of the toric codes plus the DW twist, as (70)
suggests. It would be interesting to see if one can extract
the topological entanglement entropy from the BF theories
with higher-order spatial derivatives, such as the one in
Refs. [32,56], which we leave for future studies.

B. Future directions

There are several future directions regarding the present
work. Studying topological phases with multipole symmetries
in view of quantum information, such as quantum error cor-
rection [8], is a wide open problem. Especially, it could be
theoretically and practically important to address how stable
the model considered in this work is against errors, e.g.,
bit or phase flips and how the multipole symmetry plays a
role compared with the conventional topological stabilizer
codes. Investigating observable in the context of quantum in-
formation other than entanglement entropy, such as quantum
negativity [58], could be an another interesting direction.

It would be interesting to extend our analysis to the case
of arrays of SPT phases with general group symmetry G to
realize more general foliated DW twist terms, as our approach
nicely fits into the group cohomology. Especially, in the case
of G being non-Abelian, the investigation on the compatibil-
ity condition with the periodic boundary condition becomes
complicated, which could yield richer multipole or fracton
topological phases.

It would also be intriguing to incorporate other types of
symmetries into our construction. The gauge transformation
of the multipole symmetries (4) resembles the one found
in 2-group symmetry [59] in that different gauge fields are
related with one another via gauge transformation. Studying
whether one can construct topological phases with higher
group symmetry, or even richer topological phases where both
of higher-group and multipole symmetries are incorporated by
our approach would contribute to making better understanding
of new topological phases with various symmetries.

Recently it was found that several field theories related
to fractons have ’t Hooft anomalies and their anomaly in-
flows [38,60–64]. It would be illuminating to study relations
among them and foliated BF theories. Last but not least,
some foliated BF theories themselves may also have ’t Hooft
anomalies. It would be also interesting to study this aspect in
future.
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