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Long-read sequencing for 29 immune cell
subsets reveals disease-linked isoforms

Jun Inamo 1,2, Akari Suzuki3, Mahoko Takahashi Ueda 1,
Kensuke Yamaguchi1,3,4, Hiroshi Nishida 5, Katsuya Suzuki2, Yuko Kaneko2,
Tsutomu Takeuchi 2,6, Hiroaki Hatano7, Kazuyoshi Ishigaki 7,
Yasushi Ishihama 5,8, Kazuhiko Yamamoto3 & Yuta Kochi 1,3

Alternative splicing events are a major causal mechanism for complex traits,
but they have been understudied due to the limitation of short-read sequen-
cing. Here, we generate a full-length isoform annotation of human immune
cells from an individual by long-read sequencing for 29 cell subsets. This
contains a number of unannotated transcripts and isoforms such as a read-
through transcript of TOMM40-APOE in the Alzheimer’s disease locus. We
profile characteristics of isoforms and show that repetitive elements sig-
nificantly explain the diversity of unannotated isoforms, providing insight into
the human genome evolution. In addition, some of the isoforms are expressed
in a cell-type specific manner, whose alternative 3’-UTRs usage contributes to
their specificity. Further, we identify disease-associated isoforms by isoform
switch analysis and by integration of several quantitative trait loci analyses
with genome-wide association study data. Our findings will promote the elu-
cidation of the mechanism of complex diseases via alternative splicing.

Over 90% of human genes undergo alternative splicing, resulting in
hundreds of thousands of transcript isoforms1–3. Alternative splicing
can generate isoforms that differ in coding sequences through
mechanisms that include exon skipping, a choice between mutually
exclusive exons, the use of alternative splice sites, and intron reten-
tion, causing diversity in the open reading frame (ORF) and function of
proteins4. In addition, different 5′- and 3′-untranslated regions (UTRs)
can quantitatively affect cellular functions5,6. These splicing events can
trigger human diseases, as genetic variants that affect alternative
splicing, defined as splicing quantitative trait loci (sQTL), are enriched
in the loci discovered by genome-wide association studies (GWAS) for
complex diseases including immune-mediated diseases (IMDs)7–9.

Indeed, in the GTEx project, 23% of the GWAS loci were co-localized
with sQTL.

Generally, sQTL can be identified by testing the association of a
variant’s genotype with the junction read counts of isoforms10, or
alternatively, with the transcript-ratio of isoform expressions8. The
latter method, also known as trQTL analysis, enables a direct under-
standing of which isoform expression is altered, that is, what kind of
changes in the coding sequences or UTRs occur. However, the accu-
racy of quantification of junction reads and isoform expressions is
susceptible to the credibility of isoform annotation. Therefore, accu-
rate isoform annotation containing full-length sequences, even for
thosewith lowexpression levels, can revealnovel diseasepathogenetic
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mechanisms via alternative splicing. In fact, we have recently demon-
strated that some low-expression isoforms that are disease-causing
have coding sequences that were incomplete in the GENCODE
annotation11.

The emergence of long-read sequencing that can generate reads
of 10,000 bases or more has revolutionized genomic studies; it has
improved the mapping accuracy of reads, de novo assembly of
genomes, and the detection of structural variations including repe-
titive elements12. It has also advanced the precise evaluation of
transcript structures as well as the discovery of novel transcripts that
had been missed by short-read sequencing13–15. Motivated by these
features of long-read sequencing, large-scale projects aiming to
reconstruct full-length transcripts using multi-tissue samples are
ongoing16,17. However, to our knowledge, there have been no studies
focusing on immune cell subsets other than whole blood cells or
lymphoblastoid cell-lines (LCL). Each of the diverse immune cell
subsets has critical and specific functions in response to external
stimuli18,19, the metabolic system20, and the nervous system21. In
addition, the importance of cell-type-specific alternative splicing in
the immune system is known for a variety of genes, and cell-type-
specific profiling of isoformswill help elucidate complicated immune
system networks21–23.

Here, we generated a full-length isoform annotation, which we
named the Transcriptomic Resource of Immune Cells using Long-read
Sequencing (TRAILS), by sequencing 29 immune cell subsets using
long-read sequencing. Through profiling the characteristics of iso-
forms including inserted transposable elements (TEs) and cell-type
specificity, we sought the evolutionary origins of human genome
function as well as the human immune system. Furthermore, we
showed that TRAILS would bridge the gap between genomic and
functional analysis and help elucidate the pathogenesis of IMDs.

Results
Overview of the TRAILS
To clarify the transcriptome profiles of immune cells at full-length
levels, we isolated 29 immune cell subsets from the peripheral blood
cells of a 42-year-old healthy female. cDNA libraries were made from
the poly(A) mRNA, PCR amplified, and subjected to long-read
sequencing using the MinION Oxford Nanopore Technologies plat-
form (Methods; Fig. 1A; Supplementary Data 1, 2). We identified a total
of 159,369 isoforms transcribed from 17,496 genomic loci (Supple-
mentary Fig. 1A−C). As a validation, we additionally sequenced the
transcripts of PBMC from a 40-year-old healthy male using the latest
PromethION platform (Methods). We validated 85.0% (n = 6399) of
isoforms expressed in PBMC used in the TRAILS. We also validated
30.6% (n = 48,757) of total isoforms in all cell types; of the isoforms
validated by this independent data set, 29.6% were full splice match
(FSM), 33.4% had a novel combination of known splice sites (NIC), and
28.2% had novel splicing site (NNC) in comparison with GENCODE
version 38 (hereafter GENCODE). We made them publicly available,
considering both cases where users want more exploratory data
(TRAILS) and where they want validated data. From here, downstream
analysis was performed using TRAILS to focus on cell type diversity in
the landscape of transcriptome. We compared TRAILS with those of
GM12878 cell linesobtainedby long-read sequencing24, and7.8%of our
isoforms were matched. The median length of isoforms in our data-
base was 1752 nucleotides (maximum 9,933 nucleotides), which was
significantly longer than the isoforms registered in the comprehensive
gene annotation of GENCODE (median 929 nucleotides, maximum
347,561 nucleotides) (Wilcoxon test, p < 0.001, Fig. 1B). To assess the
capability of our dataset in discovering isoforms, we conducted a
sensitivity analysis by downsampling reads. Our results revealed that
our dataset exhibited sufficient power in detecting transcripts with
high expression (Supplementary Fig. 2). However, we observed that
increasing the number of reads would enable the identification of

additional transcripts with low expression. At the gene loci level, we
found 3006 genomic loci in the TRAILS where transcripts are not
annotated in GENCODE (Fig. 1C). Further, we predicted coding
potential of all isoforms in both TRAILS and GENCODE using
GeneMark-ST25 and compared the number of them. As a result, we
found 129,708 isoforms with sequences not registered in GENCODE
(Fig. 1C). The number of isoforms per genomic locus was higher in the
TRAILS than in GENCODE, with 44% of the total genomic loci tran-
scribingmore than 10 different isoforms (Fig. 1D). A comparison of the
percentage of transcriptional support level categories for isoforms
common toGENCODEandTRAILS showed that thehighest percentage
was in themost reliable category (all splice junctions are supported by
at least one non-suspectmRNA) defined byGENCODE (Supplementary
Fig. 1D). This supports the reliability of isoforms identifiedby long-read
sequencing in our database.

We then examinedwhat classes of alternative splicing occurred in
our isoforms compared to those registered in GENCODE (Fig. 1E). In
viewof splicing junctions, we found that 78%of the isoformshad either
(NNC) or (NIC). Regarding the type of splicing events, intron retention,
alternative 5′ splice sites, and alternative 3′ splice sites were more
common in the TRAILS26 (Fig. 1F). Since genes with higher expression
levels had a greater number of alternatively spliced isoforms (Sup-
plementary Fig. 1E), we corrected the number of alternative isoforms
by the expression level of each gene. We then examined the char-
acteristics of genes having the highest and lowest numbers of isoforms
(top 5% and bottom 5%, respectively) (Methods). As a result, we found
that genes involved in IFN signaling and mitotic spindles were enri-
ched, respectively, suggesting that humans have acquired diverse
isoforms related to immunological activity through alternative spli-
cing, while cellular homeostasis was maintained by genes with a lim-
ited diversity of isoforms (Fig. 1G).

Predicted-coding transcripts in the TRAILS
Next, we predicted the coding potential of isoforms and identified
145,523 coding isoforms. To determine whether proteins are actually
translated from thepredictedORFs,we referred to the data of ongoing
proteome analysis using the LCL and a monocytic leukemia cell line
(THP-1) (Nishida et al., manuscript in preparation). To reduce false
positives and maximize the identification of novel proteins, we selec-
ted 16,190 isoforms expressed in LCL or THP-1 and did not exactly
match the amino acid sequences registered in GENCODE. As a result,
we confirmed peptides for 276 isoforms (Supplementary Data 3, 4), of
which 139 peptides were not also registered in Swiss-Prot27.

Then, of predicted-coding isoforms that differ from coding
sequences (CDS) in GENCODE (Fig. 1C), we focused on 1365 (40%) loci
encoded so-called read-through isoforms, in which the mRNA exten-
ded through the conventional polyadenylation signal (PAS) but stop-
ped at the PAS of adjacent genes or genomic loci (Fig. 2A). Although
read-through isoforms are known to be transcribed in particular
situations in cells, such as in malignancy and infection28,29, many read-
through isoforms, such as TOMM40_APOE (Fig. 2B), were also tran-
scribed in cells under normal physiological conditions. Interestingly,
the read-through isoform transcribed from the TOMM40_APOE locus
was predicted to harbor conserved domains and conformational
structure characteristics to both TOMM40 and APOE (Fig. 2B, C). Using
an independent PBMC sample from a male individual (Methods), we
verified the expression of 74.2% (291 out of a total of 392) read-through
transcripts expressed in female PBMCused for our database, including
the transcript of TOMM40_APOE. To rule out the possibility of artifacts
in the sequencing, we further investigated their expressions using
direct RNA sequencing data obtained from the LCL (GM12878)24.
Among the read-through loci identified in 29 cell types (n = 1365) in our
TRAILS, we validated that 437 loci were truly expressed in LCL,
including those from TOMM40_APOE and IFNAR2_IL10RB (Supple-
mentary Fig. 3).
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In addition, 1022 loci annotated as long non-coding RNAs
(lncRNAs) in GENCODE were predicted as potentially coding genes by
GeneMark-ST. Although lncRNAs are defined as over 200 nucleotides
in length and do not code for a peptide or protein30, previous studies
have shown that a fraction of putative small ORFs within lncRNAs are

translated31. Notably, the genomic regions of predicted ORFs of these
lncRNAs were more conserved compared to those of the UTRs and
introns (Fig. 2D), supporting their coding potential.

Next, we examined 529 loci encoding potentially predicted-
coding genes, which have no overlap, even partial, with a gene locus

Fig. 1 | Overview of the TRAILS. A Summary of the cell subsets included in long-
read sequencing in this study. A full description of the subset names and gating
strategy is provided in Supplementary Data 1. Created with BioRender.com. B The
distribution of transcript length. COverlap of gene loci (left) and predicted-coding
isoforms (right) between the TRAILS and GENCODE. D The proportion of the
number of alternatively spliced isoforms per genomic locus. E The proportion of
structural categories of isoforms in the TRAILS. FSM (full splice match), meaning
the reference and query isoformhave the same number of exons, and each internal
junction agrees; ISM (incomplete splice match), meaning the query isoform has
fewer 5′ exons than the reference, but each internal junction agrees; NIC (novel in

catalog), meaning the query isoform does not have an FSM or ISM match, but is
using a combination of known donor/acceptor sites; NNC (novel not in catalog),
meaning thequery isoformdoes not have anFSMor ISMmatch, andhasat least one
donor or acceptor site that is not annotated. F The proportion of splicing events of
isoforms in the TRAILS. SE, skipping exon; MX, mutually exclusive exon; A5,
alternative 5′ splice site; A3, alternative 3′ splice site; RI, retained intron; AF, alter-
native first exon; AL, alternative last exon.G Pathway analysis using genes that have
the top 5% (purple, alternative splicing (AS) susceptible genes) and bottom 5%
(gold, AS constrained genes) of the number of alternatively spliced isoforms per
gene after correction by the expression level.
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registered in GENCODE (Fig. 2A). Notably, their predicted ORFs were
highly conserved (Fig. 2D). Of these transcripts, 92% (1891 transcripts)
were expressed in multiple cell types and all of them had multi-exons.
We examined whether these transcripts were registered in the Com-
prehensive Human Expressed SequenceS (CHESS) database32. Most of
the transcripts were found in CHESS, but the remaining 47 transcripts
from mutually exclusive loci did not overlap any annotated genes in
CHESS. For example, one transcript from chromosome 11 had a pre-
dicted 448 nucleotide ORF (Fig. 2E), and notably, we found an open
chromatin region from the TSS to intronic regions in subsets of
monocytes and dendritic cells using datasets of the assay for
transposase-accessible chromatin sequencing (ATAC-seq)32. This

corresponded to our expression profile, inwhich it is only expressed in
these subsets in the TRAILS (Fig. 2F). Because the ORF and 3′-UTR of
this isoform contained sequences derived from short interspersed
elements (SINE)/MIR, the insertion of these TEs may have made it
difficult to map the reads by short-read sequencing. Further experi-
mental verification is needed to confirm whether these potentially
novel genes are truly encoding genes or just noise, such as pervasive
transcription from open chromatin regions33.

Transposable elements inserted in isoforms
Motivated by the finding of the potentially novel transcript above, we
investigated the contribution of TEs in constituting novel genes (i.e.,

Fig. 2 | Novel predicted-coding genes identified in TRAILS. A The number of
predicted-coding read-through transcripts and transcripts which have no overlap
with a gene locus in GENCODE. B Example of a read-through isoform (top) tran-
scribed from the TOMM40 and APOE locus. The arrow indicates the direction of
transcription in the genome. The collapsed gene structure registered in GENCODE
is shown at the bottom. C Protein 3D structures of TOMM40 (left), APOE (center),
and the read-though isoform (right) predicted using AlphaFold2. pLDDT is a per-
residue estimate of its confidence on a scale from 0 to 100. Regions with
pLDDT> 90, between 70 and 90, between 50 and 70, and <50 are expected to be
high accuracy, well (a generally good backbone prediction), low confidence, and a

reasonably strong predictor of disorder, respectively. D Conservation score of
predicted-coding transcripts registered as lncRNAs in GENCODE (top) and
predicted-coding transcripts which have no overlap with a genomic locus in GEN-
CODE (bottom) according to their region. Shading indicates mean ±1.96 standard
error. E Example of an isoform from a novel gene locus. Peaks of ATAC-seq derived
from relevant non-stimulated immune cell subsets around this locus are shown.
The arrow indicates the direction of transcription in the genome. F The expression
of the novel isoform in each cell subset is shown. The expression value was nor-
malized by reads per million (RPM).
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those not registered in GENCODE). TEs are major repetitive elements
and make up approximately half of the human genome34. TEs can be
subdivided into four major categories: (i) DNA transposons; (ii) long
terminal repeat (LTR) retrotransposons; (iii) long interspersed ele-
ments (LINEs); and (iv) SINEs. We comprehensively searched for
repetitive elements including TEs from curated libraries of Dfam35 and
Repbase36 that are inserted in the transcripts in our database. Inter-
estingly, repetitive elements were inserted more in those from the
novel genomic loci (83.9% vs. 47.6%, chi-square test, p <0.001), indi-
cating that the TRAILS included transcripts missed by short-read
sequencing due to the insertion of repetitive elements.

We also examined the contribution of TEs in the splicing diversity
of knowngenes in theTRAILS. Themedian lengthof inserted repetitive
elements including TEs was 188 nucleotides (Fig. 3A). The maximum
length was 3675 nucleotides, which was a LINE/L1 inserted in the 3′-
UTRof aCCDC7 isoform (Supplementary Fig. 4). TheTEs in all isoforms
were summed for each class, and the most common were SINEs
(Fig. 3B). Comparing the isoforms identified only in our dataset with
those common to GENCODE, the former had more TEs inserted (70%
vs. 52%, chi-square test, p <0.001, Fig. 3C). The distribution of TEs
around gene bodies was non-random, with the highest number of
insertions in the 3′-UTR and the lowest numbers in the TSS (Fig. 3D).
We then examined the enrichment of each TE class at each position of
the isoforms by comparing their proportions with those of the entire
genome. Interestingly, the proportion of TEs was non-uniform; LTRs,
which are autonomous and coding TEs, were enriched in TSSs and
ORFs, while SINEs were enriched in 5′-UTRs and 3′-UTRs (Fig. 3D).
Among the isoforms with TEs, that of LGALS3, which has numerous
functions in the immune system37, was transcribed from an alternative
TSS. Because LTR/ERVL-derived sequences were inserted around the
TSS (Fig. 3E), this LTRhasbrought analternative promoter aswell as an
additional CDS into this gene. A region-by-region comparison of the
conservation (phastCons score >0.8)38 of genomic loci with and with-
out repetitive element insertions showed that the inserted regions
were significantly less conserved (TSS, odds ratio (OR) = 0.42 [95%
confidence interval (95%CI): 0.32−0.53]; ORFstart, OR =0.58 [95%CI:
0.50−0.66]; ORFend, OR =0.60 [95%CI: 0.56−0.65]; TTS, OR =0.49
[95%CI: 0.46−0.52]; splicing junction, OR =0.71 [95%CI: 0.70−0.73]),
suggesting that repetitive elements were inserted into these regions
after humans diverged fromothermammals, and these contributed to
the diversity of isoforms. To test this hypothesis, we compared the
Kimura divergences between the TEs that overlapped with exons of
GENCODE transcripts and those unique to the TRAILS (Methods), and
found that the latter had significantly lower divergences in all TE
categories (DNA, peaks are 25.3 and 21.7, p < 0.001, two-sample Kol-
mogorov−Smirnov test; LINE, peaks are 32.8 and 30.5, p < 0.001; LTR,
peaks are 23.6 and 21.1, p < 0.001; SINE, peaks are 11.6 and 8.9,
p <0.001) (Fig. 3F). These results indicate that the transcripts in the
TRAILS contain recently inserted TEs with fewer base substitutions.

Isoforms expressed in a cell-type-specific manner
Each immune cell subset expresses cell-type-specific genes, such as
those encoding cytokines and transcriptional factors, involved in their
respective cellular functions19,39. Because some of these are regulated
at the isoform level (e.g., a spliced isoform of RORG is essential in Th17
cells23), cluster analysis based on the isoform ratio, that is the ratio of
isoform abundance over the total gene abundance, should connect
subsets with identical lineages. To test this hypothesis, we first per-
formed an unsupervised hierarchical clustering analysis based on the
similarity of the isoform ratio in each related gene. As expected, we
found that subsets of an identical lineage (e.g., B cell subsets) were in
close proximity to each other, suggesting that the abundance of iso-
forms may reflect the functional characteristics of each cell type
(Fig. 4A). Then, we examined the isoforms expressed in a cell-type-
specific manner utilizing Shannon entropy as an index of cell

specificity and identified 2575 isoforms for 29 cell subsets (Fig. 4B;
Supplementary Data 5)40. This cell-type specificity was recapitulated in
the expression data of the relevant immune cell subsets obtained from
short-read RNA-seq19(Supplementary Fig. 5A, B).

As cell-type-specific expression of isoforms may occur at the
transcriptional level (e.g., alternative TSS usage) and at the post-
transcriptional level (e.g., alternative usage of splicing sites or PAS)41,
we examined which mechanism is prominent in the cell-type-specific
isoforms. We found that while the proportion of unique TSSs was
lower in the cell-type-specific isoforms compared with others (4.8% vs.
5.9%, chi-square test, p =0.019, Fig. 4C), these isoforms have longer 3′-
UTRs (729 nucleotides vs. 579 nucleotides, Wilcoxon test, p < 0.001)
and a higher proportion of unique sequences of the last exon (23.4% vs.
13.0%, chi-square test, p < 0.001), suggesting that the cell-type-specific
isoformsprefer the usage of alternative splicing sites at the 3′-UTR and
PAS. Interestingly, the insertion rates of repetitive elements into
junction sites (24.9% vs. 21.1%, chi-square test, p <0.001, Fig. 4C) and
TTSs (13.9% vs. 10.5%, chi-square test, p < 0.001) was higher in cell-
type-specific isoforms.

As RBP binding is a major mechanism of alternative splicing42, we
hypothesized that RBP contributes to post-transcriptional regulation
of cell-type-specific expression.We comprehensively searched for RBP
binding motifs and compared them between cell-type-specific iso-
forms and remaining non-specific isoforms. As a result, many kinds of
RBP binding motifs were enriched in 3′-UTRs (false discovery rate
(FDR) < 0.05, Fig. 4D).

We show examples of cell-type-specific isoforms in Fig. 4E. The
isoform ratio of NLRP1−4 was the highest in neutrophils, while the
isoform ratio of NLRP1−19, which lacks the FIIND domain essential for
NLRP1 inflammasome activity43, was dominant in other cell types. In
addition, the isoform ratio of IL23R, which is essential for the differ-
entiation of Th17 cells44, was distinct in Th17 subset in comparisonwith
other cell types (Supplementary Fig. 5C, D). Notably, while a cell-type
specific isoform (IL23R-5) was identified in Th17 cells, another isoform
(IL23R-2) specific for activated-Treg cells was also identified. Because
the CDSs of these isoformswere different, their differential expression
may contribute to Th17 and Treg functions and their plasticity45.

The previous study demonstrated that the alternative splicing
diversity between cell types was greater than that between
individuals2. We investigated this point by remapping short-read RNA-
seq data from 15 immune cell types19 using our database; we observed
that the variance of alternative splicing between individuals was less
than a quarter of that observed between cell types (Supplemen-
tary Fig. 5E).

Regulation of translation efficiency by isoform sequences
The efficiency of protein synthesis is governed by the regulatory ele-
ments in the 5′-UTR, ORF, and 3′-UTR5,46,47. As a classic example, a
strong Kozak sequence immediately before the first codon improves
start codon recognition as a feature of highly translated mRNAs46. In
addition, the secondary structure of mRNA may block or recruit
ribosomes and other regulatory factors to enable a rapid, dynamic
response to diverse cellular conditions5. The drawback of these studies
is that their analysis is based on gene annotation inferred from short-
read RNA-sequencing, which introduces the uncertainty of complex
gene regions such as 3’-UTR where abundant repetitive elements are
inserted (Fig. 3D). Therefore, we speculated that examining the
translational efficiency of each transcript in the TRAILS would provide
additional insights into the regulation of translation and bridge the
knowledge gap between transcripts and proteins. For this purpose, we
remapped the Ribo-seq and RNA-seq data obtained from LCL to the
TRAILS, respectively, and calculated the scores of translational effi-
ciencies at the isoform level (Methods; Fig. 5A).

We found a trend that agreed with the previously reported asso-
ciation between Kozak context scores and translation efficiency

Article https://doi.org/10.1038/s41467-024-48615-4

Nature Communications |         (2024) 15:4285 5



Fig. 3 | Repetitive elements inserted in isoforms. A The length of inserted
repetitive elements in isoforms according to their class. The color of boxplot
indicates their classes. Boxplots, with the center of the box as themedian value, the
edges of the box denote the first (Q1) and third (Q3) quartiles, minimum/maximum
whisker values are calculated as Q1/Q3 -/ + 1.5 × the interquartile range (IQR), are
derived from the following counts of inserterd elements: DNA/Crypton (n = 15),
DNA/hAT (n = 458), DNA/hAT-Ac (n = 149), DNA/hAT-Blackjack (n = 2458), DNA/
hAT-Charlie (n = 45,368), DNA/hAT-Tag1 (n = 273), DNA/hAT-Tip100 (n = 9117),
DNA/Kolobok (n = 86), DNA/Merlin (n = 5), DNA/MULE-MuDR (n = 464), DNA/PIF-
Harbinger (n = 19), DNA/PiggyBac (n = 297), DNA/TcMar-Mariner (n = 2102), DNA/
TcMar-Tc1 (n = 106), DNA/TcMar-Tc2 (n = 991), DNA/TcMar-Tigger (n = 19,222),
LINE/CR1 (n = 5389), LINE/Dong-R4 (n = 145), LINE/I-Jockey (n = 33), LINE/L1
(n = 92,415), LINE/L1-Tx1 (n = 10), LINE/L2 (n = 84,476), LINE/RTE-BovB (n = 427),
LINE/RTE-X (n = 2014), LTR/ERV1 (n = 28,183), LTR/ERVK (n = 2331), LTR/ERVL
(n = 16,613), LTR/ERVL-MaLR (n = 31,419), LTR/Gypsy (n = 2467), RC/Helitron

(n = 300), Retroposon/SVA (n = 27,076), Satellite/centr (n = 92), Satellite/subtelo
(n = 28), SINE/5S-Deu-L2 (n = 193), SINE/Alu (n = 272,992), SINE/MIR (n = 95,582),
SINE/tRNA (n = 191), SINE/tRNA-Deu (n = 4), SINE/tRNA-RTE (n = 915). B The pro-
portion of class families in the total repetitive elements inserted in the isoforms.
C Comparison of the proportion of class families of the total repetitive elements
inserted in isoforms between novel isoforms and those that are also registered in
GENCODE. D The distribution of inserted repetitive elements in gene bodies
±1000bp. The x-axis is a scaled position relative to the TSS. The y-axis is the counts
(top), proportion (center), and the enrichment of each TE class family at the scaled
position (bottom). The color represents the class of repetitive elements corre-
spondingwith Fig. 3A.E Example of isoformswith an inserted LTR at the alternative
TSS highlighted in yellow. The collapsed gene structure registered in GENCODE is
shown at the bottom. F The distribution of Kimura divergences to the reference
sequences for four classes of TEs that were overlapped with exons unique to the
TRAILS (blue) and GENCODE (red).
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Fig. 4 | Cell-type-specific isoforms and their characteristics. A Unsupervised
hierarchical clustering based on isoform ratios that were the top 5000 large
expression variances among cell types. The colored bars indicate the cell lineages.
B Cell-type-specific expressed isoforms. Column-wise Z scores of normalized
counts are plotted. Representative gene symbols related to specific isoforms are
annotated at the top. Full lists of cell-type-specific isoforms are provided in Sup-
plementary Data 5. C The length of the 5′-UTR, ORF, and 3′-UTR (top) and the
proportion of unique TSS, last exon, insertion of repetitive elements in splicing
junctions, and TTS (bottom) compared between cell-type-specific isoforms
(n = 2575) andothers (n = 156,794). The significanceof comparison is as follows: ****,

nominal p <0.0001; ***, nominal p <0.001; **, nominal p <0.01; *, nominal p <0.05
by two-sided Wilcoxon test. The center of each box plot is the median value, the
edges of the box represent the first (Q1) and third (Q3) quartiles, and theminimum/
maximum whisker values are calculated as Q1/Q3 -/ + 1.5 × the interquartile range
(IQR). D Enrichment of each RBP motif according to gene regions compared
between cell-type-specific isoforms and others. Representative significant RBPs
(FDR<0.01) are annotated at the top. E Example of a specifically expressed isoform
transcribed from the NLRP1 locus. The collapsed gene structure registered in
GENCODE is shown at the bottom. Arrows indicate the direction of transcription in
the genome. F Isoform ratio in NLRP1.
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Fig. 5 | Translational efficiency at the isoform level. A Scatter plot of isoforms
with normalized read counts of RNA-seq and Ribo-seq. Each dot represents a par-
ticular isoform. B Correlation plots of translational efficiency scores with Kozak
context scores (left, R =0.10 and p = 3.0 × 10−11), length of 5′-UTR (left center,
R = −0.22 and p < 2.2 × 10−16), ORF (right center, R =0.06 and p = 9.6 × 10−5), and 3′-
UTR (right, R =0.09 and p = 1.1 × 10−9). Each ‘R’ represents the Spearman’s rank
correlation coefficient. P-values were obtained by two-sided test. C Correlation
between translational efficiency and local folding strength of isoforms. The x-axis is
a scaled position relative to the TSS. The solid line and colored points represent
−log10 (Bonferroni adjusted p-value) and Pearson correlation coefficient, respec-
tively. The test conducted is two-sided. The areas with colored rectangles were
significantly (Bonferroni adjusted p <0.05) correlated at the scaled position in the
gene body. D Association between 3’-UTR length and AU-element fraction. 3’-UTR

lengths are binned into three groups—short, moderate, and long—based on the
logarithm (base 10) of their nucleotide lengths. The binning was performed using
equal-interval discretization of the log-transformed lengths, creating three bins of
equal log-scale range. Consequently, boxplots are derived from the following
counts of isoforms: short (n = 13,580), moderate (n = 126,471), and long
(n = 14,469). The center of the box plot is the median value, the edges of the box
represent the first (Q1) and third (Q3) quartiles, and the minimum/maximum
whisker values are calculated as Q1/Q3 -/ + 1.5 × the interquartile range (IQR).
E Example of the effectively translated isoform transcribed from the OAS2 locus.
The collapsed gene structure registered in GENCODE is shown at the bottom. The
effectively translated isoform (top 10%) is highlighted in bold. F Isoform ratio
in OAS2.
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scores46 (Fig. 5B, Supplementary Fig. 6A). We also observed a slight
association between translational efficiency and the lengths of the 5ʹ-
and 3ʹ-UTRs was reversed; i.e., shorter 5′-UTRs, as well as longer 3′-
UTRs, were associated with higher translation efficiency (Fig. 5B). To
explore the underlying mechanism of association between the length
of 3’-UTR length and translational efficiency, we investigated the
sequence characteristic and found that transcripts with high transla-
tional efficiency had more AU-rich elements (Supplementary
Fig. 6A, B). Further, transcripts with longer 3’-UTR lengths had a higher
occupancy of AU-rich elements in the 3’-UTR (Fig. 5D). It is known that
binding of HuR (ELAVL1) to AU-rich elements in 3’-UTR prevents
degradation of mRNA48. Thus, HuR could promote translation effi-
ciency via enhancing mRNA stability by binding to transcripts that
contain AU-rich elements in the 3’-UTR. Such a regulatory mechanism
of translation efficiency may be characteristic of immune cells, since
ELAVL1 is expressed ubiquitously in 29 immune cell types in TRAILS
(Supplementary Fig. 6C) andmost abundantly expressed in LCL across
human tissues (Supplementary Fig. 6D)7.

To further investigate cell-type specificity of the effect of 3’-UTR
features, we remapped Transcript Isoforms in Polysomes sequencing
(TrIP-seq) data49 from HEK293T to our TRAILS (Methods). We
observed a concordant distribution of polysomes in HEK293T com-
pared to the translational efficiency based on Ribo-seq data from LCL
(Supplementary Fig. 6E). However, when comparing isoform clusters
with high and low polysomes (Supplementary Fig. 6F), we found
opposite effects of 3’-UTR features (length and AU-rich elements)
between HEK293T and LCL (Supplementary Fig. 6A, G).

Then, we calculated the correlation between the local folding
strength of RNA and the scores of translation efficiency (Methods). We
confirmed that the local folding strengths calculated for the sequences
of each isoform were correlated with the Parallel Analysis of RNA
Structure (PARS) score, which was calculated from two high-
throughput sequencing libraries per sample and provided profiling
of the secondary structure at a single nucleotide resolution50,51

(R =0.67, p <0.001, Spearman’s correlation test, Methods; Supple-
mentary Fig. 6H), indicating the credibility of local folding strengths. In
addition, we found a negative correlation between the local folding
strength of the 5′ leader (5′ end of an isoform) and higher translation
efficiency (Fig. 5C). In contrast, the local folding strength immediately
after the first codon was positively correlated with the translational
efficiency. These results are consistent with previous findings: stable
RNA secondary structures at the 5′ leader, such as cap-proximal hair-
pins, block the assembly of the 43S pre-initiation complex onto the 5ʹ-
UTR, while a hairpin positioned downstream of a first codon enhances
translational initiation52,53, warranting our analysis of translation effi-
ciency at the isoform level. As for the 3′-UTR, there was one scaled
position with a negative correlation, which may reflect the complex
association of RBP binding, miRNAs, and secondary structure54.

Furthermore, we investigated whether other features unique to
the isoforms were associated with translational efficiency. For that
purpose, we compared the characteristics of isoforms having the
highest and lowest scores of translational efficiencies (top 10% and
bottom 10%, respectively). As a result, we found that having a unique
TSS was associated with higher translation efficiency (7.0% vs. 2.3%,
chi-square test, p <0.001). In addition, those encoding a non-canonical
ORF, whichwas defined as the first codon other thanmethionine using
GeneMarkS-T25, were associated with higher translation efficiency
(26.1% vs. 17.6%, chi-square test, p <0.001). Non-normal ORFs can be
translated into proteins and have receivedmuchattention in immunity
and cancers55,56. In the TRAILS, 28,837 isoforms were predicted to
encode non-canonical ORFs. Of these, we examined 4780 isoforms for
peptides by proteome analysis, and found that 22 isoforms translated
peptides from the non-canonical ORFs (Supplementary Data 3). A
specific example of isoforms encoding non-canonical ORF in our
database is the LGALS3-isoform, already noted above (Fig. 3E). This

isoformhas a unique TSS and non-canonical ORFwith serine predicted
as the first codon, and its translation efficiency was in the top 10%.
Another example of effectively translated isoforms was OAS2-1
(Fig. 5E). This isoform has the shortest 5′-UTR and longest 3′-UTR
among the isoforms transcribed from theOAS2 locus. The translational
efficiency of OAS2-1 was in the top 10% and expressed abundantly in
double negative (DNB) B cells (Fig. 5F).

TRAILS usage for disease transcriptomics and genomics
To investigate whether the isoforms identified in our dataset are
involved in disease pathogenesis, we compared the abundance of
isoforms between case and control subjects, taking systemic lupus
erythematosus (SLE) as an example. SLE is anautoimmunediseasewith
activation of interferon signature genes known to be involved, though
details of themechanismat the isoform level are notwell understood57.
To investigate pathogenic isoforms in SLE, we remapped short-read
RNA-seq datasets obtained from whole blood cells of SLE and healthy
subjects to the TRAILS (SLE = 99, healthy subjects = 18)58 (Methods). As
a result, we identified 84 genes whose isoform fractions were sig-
nificantly switched between SLE and healthy individuals (FDR <0.05).
Among them, IRAK1 transduces signals from TLR7 and TLR9 by
phosphorylating IRF7 to promote IFNα transcription59. One known
isoform of IRAK1 (ENST 00000393687.6) contains a protein kinase
domain, but the novel IRAK1-1 lacks this domain (Fig. 6A; Supple-
mentary Fig. 7). Although there was no difference in gene-level
expression between case and control samples (Fig. 6B), the isoform
fraction significantly switched, resulting in higher expression of a
functional isoform (ENST 00000393687.6) in SLE (Fig. 6C). This
implied thatTLR7/9-IRAK1-IRF7 pathway activation due toupregulated
expression of the functional IRAK1 isoform (ENST 00000393687.6) in
SLE may contribute to type 1 IFN dysregulation.

Rheumatoid arthritis (RA) is another example of autoimmune
diseases characterized by chronic inflammation of the synovial60. We
applied our database to a single immune subset, CD45RA-positive
effectormemory (Temra) CD8 +T cells (active RA = 8, healthy subjects
= 9)61,62. We found that three novel isoforms in SIGLEC10 gene, which
suppresses inflammatory responses to danger (damage)-associated
molecular patterns by interacting with CD2463, were differentially
expressed in Temra CD8 +T cells from active RA and healthy controls
subjects (Fig. 6D). Two of them (novel isoforms 2 and 3) were pre-
dicted to be sensitive to nonsense-mediated mRNA decay (NMD),
which is a surveillance pathway to degrade RNA and prevent the pro-
duction of abnormal64. At the gene level, SIGLEC10 was more highly
expressed in RA compared to healthy individuals (Fig. 6E). However, at
the isoform level, NMD-sensitive isoforms were dominant in RA
(Fig. 6F). This suggests that even though the expression was increased
at the gene level, the relative expression of aberrant isoforms sus-
ceptible to NMD was increased, resulting in a relatively low inflam-
matory suppressive function of SIGLEC10 in RA.

Analysis of differentially expressed isoforms as presented above
identified disease-relevant isoforms, but they may simply reflect the
disease course (i.e., they result from the disease). If alternative splicing
is regulated by genetic variants that are defined as sQTL, and mean-
while the variants present susceptibility to disease, the variants and the
splicing events has the potential to be causal for the disease. Thus,
integration of sQTL analysis and GWAS data can comprehensively
reveal isoforms involved in disease pathogenesis. To address this, we
first examined the impact of different reference annotations on
junction-based sQTL. We remapped RNA-seq data of LCL samples
derived from European subjects in the GEUVADIS cohort8 with each of
two annotations, GENCODE and the TRAILS, independently, and
compared the number of junctions with significant sQTL (FDR <0.05).
Of the total, 14.8% were identified only in the TRAILS as a reference
(Fig. 7A). To further ensure that sQTLs identified only in our database
were not simply false positives, we verified that sQTL variants were
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significantly enriched in the GWAS variants compared with genome-
wide variants (Fig. 7B).

Next, we remapped RNA-seq datasets from various cell
conditions8,18,19,65 to refine the mapping of sQTL so that we could
identify pathogenic isoforms using the TRAILS. In addition to junction-
based sQTL, we performed eQTL for genetic variants that affect gene
expression, and 3′aQTL66, which associates cis-acting genetic variants
with alternative polyadenylation (APA). The numbers of genes or
isoform-related genes having effects on eQTL, sQTL, and 3′aQTL in one
or more cell conditions were 9775, 10189, and 4087, respectively
(nominally significant p < 1 × 10−5). Genes involved in the IFN signaling
pathway were enriched in 3′aQTL-eGenes, as previously reported
(Supplementary Fig. 8A). As expected from a previous study7, the
number of QTL variants increased with the sample size for each cell
type (Supplementary Fig. 8B). eQTLs and 3′aQTL variants were abun-
dant around TSS and TTS, respectively, while sQTLs were distributed
throughout the gene body (Supplementary Fig. 8C). We then exam-
ined the proportion of heritability of IMDs and neurological diseases
by each QTL using stratified linkage disequilibrium score regression

analyses (S-LDSCs)67, and found that many QTLs significantly con-
tributed to the heritability of both disease types (Fig. 7C).

Finally, we evaluated the colocalization between GWAS loci for
IMDs and neurological diseases (16 GWASdata in total, Supplementary
Data 6) and QTL signals using coloc (PP4 > 0.8). To take advantage of
the TRAILS, which contains full-length information on isoforms, and to
detect more potential pathogenic isoforms, we also performed trQTL
analysis. As a result, we found that 20–60% of GWAS loci colocalized
with eQTL, sQTL (junction-based sQTL and trQTL), and up to 20% of
GWAS loci with 3′aQTL (Fig. 7D). Notably, we identified several eQTL
signals for genes identified only in TRAILS, but not in GENCODE, that
colocalized with GWAS signals (Supplementary Data 7). Among the
sQTL colocalizedwithGWAS loci, an SNP inMALT1 (rs11873030),which
was associated with multiple sclerosis68, had an sQTL effect for a
junction read (chr18:58739121-58741865) unique to MALT1−1; this iso-
form decreased with the risk allele for the disease (Fig. 7E−G). MALT1
transduces NF-kappaB (NFκB) signaling by antigen receptor stimula-
tion, and importantly, the isoform with the sQTL effect lacks the
MALT1 C-terminal immunoglobulin-like domain (Fig. 7E).

Fig. 6 | Switched isoforms in IMDs. A Structures of switched isoforms that are
transcribed from the IRAK1 locus between SLE and healthy controls. The x-axis
shows the distance from the TSS.B Expression of IRAK1 at the gene level. Boxplots,
with the center of the box as themedian value, the edges of the box denote the first
(Q1) and third (Q3) quartiles, minimum/maximum whisker values are calculated as
Q1/Q3 -/ + 1.5 × the interquartile range (IQR), are derived from the following counts
of individuals: SLE (n = 99) and healthy controls (n = 18). C Isoform fractions (IF) in
IRAK1 (ENST00000393687.6, FDR = 3.6 × 10−7; IRAK1−1, FDR = 1.1 × 10−6). D The
structure of switched isoforms that are transcribed from SIGLEC10 locus between
active RA and healthy controls. E The expression of SIGLEC10 at the gene level.
Boxplots, with the center of the box as the median value, the edges of the box

denote the first (Q1) and third (Q3) quartiles, minimum/maximum whisker values
are calculated as Q1/Q3 -/ + 1.5 × the interquartile range (IQR), are derived from the
following counts of individuals: active RA (n = 8) and healthy controls (n = 9). F IF in
SIGLEC10 (SIGLEC10−2, FDR = 1.1 × 10−2; SIGLEC10−3, FDR = 1.1 × 10−2). The gene
expression values in (B, E) were normalized by log-transformed Transcripts Per
Kilobase Million (TPM). Statistical tests for isoform switch analysis in (C, F) were
performed using the isoformSwitchTestDEXSeq function from the Iso-
formSwitchAnalyzeR package with default options. The test conducted is two-
sided, assessing both increases and decreases in IF. The significance of the com-
parison is as follows: ***FDR <0.001; **FDR <0.01; *FDR <0.05.
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Discussion
Our datasets, obtained by long-read RNA sequencing of 29 immune
cell subsets, provide a comprehensive full-length isoform profiling of
the human immune system. We found an enormous complexity of
splicing events that are substantially shaped by insertions of TEs into
the human genome. This complexity brought by TEs may have been
underestimated, owing to the difficulty in read-mapping of TEs
obtained by short-read sequencing. Our database comprehensively

demonstrated using long-read sequencing that TEs confer isoform
diversity to immunological genes by introducing alternative TSS,
splicing sites, and polyadenylation signals, as suggested by previous
studies69–71. Considering their non-uniform distribution in the gene
body, each class of TE would have a unique role in adding functions to
the immunological genes. These additional functions obtained by TEs
could have been naturally selected by the environment, because
immune cells play a critical role in protecting the host from external

Fig. 7 | QTL and colocalization analysis with GWAS data. A Venn diagram for
junctions with significant sQTL signals (FDR <0.05) in comparison with the TRAILS
and GENCODE as a reference. B The enrichment of junction-based sQTL variants
(GENCODE only, 83,766 variants; TRAILS only, 86,496 variants; shared, 858,862
variants) in GWAS variants compared to randomly selected 10,000 genome-wide
variants (autosomes, minor allele frequency > 0.01 in European subjects of 1000
Genomes Phase 3107). The list of GWAS data is available in Supplementary Data 6.
Error bar indicates odds ratio ±1.96 standard error. C The proportion of the her-
itability of genomic region, considering a 500bp upstream and downstream of
each QTL variant (eQTL, 214,254 regions; sQTL, 166,676 regions; 3’aQTL, 46,040
regions), in IMDs (left) and neurological diseases (right). Error bar indicates point
estimate ±1.96 standard error. CrD, Crohn’s Disease; UC, ulcerative colitis; RA,
rheumatoid arthritis; PBC, primary biliary cirrhosis; MS, multiple sclerosis; ADHD,
attention-deficit hyperactivity disorder; MDD, major depressive disorder. D The

proportion of colocalized loci with each kind of QTL variants among all GWAS loci.
SSc, Systemic Sclerosis. E Structures of isoforms transcribed from MALT1 with a
percent spliced in (PSI) value of a unique junction (chr18:58739121-58741865,
highlighted in yellow) that is strongly associated with the GWAS signal of multiple
sclerosis in naïve B cells. The related isoform to the unique junction (top) is framed
by the red line. The collapsed gene structure registered inGENCODE is shownat the
bottom. F QTL plot of normalized PSI of the unique junction in naïve B cells
according to each genotype (n = 91). The center, edges, and minimum/maximum
whisker values of the box are the median value, the first (Q1) and third (Q3) quar-
tiles, and Q1/Q3 -/ + 1.5 × the interquartile range (IQR), respectively.
G Colocalization plot of sQTL and GWAS of multiple sclerosis. Statistical test was
performed using the coloc package in R to estimate the posterior probabilities of
shared causal variant.
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pathogens such as viruses or bacteria by triggering local and systemic
inflammation. Indeed, a recent study demonstrated that the short
isoform of theACE2 gene, which encodes a receptor for SARS-CoV-2, is
upregulated by an interferon-inducible alternative promoter intro-
duced by MIRb and LTR16A1 elements72.

Our database containedmany read-through transcripts, which are
one of the most understudied categories of transcript isoforms,
especially with regards to disease genetics. The TOMM40_APOE locus,
where a novel read-through isoform was identified, is the most sig-
nificant locus for Alzheimer’s disease73. Notably, trQTL signals of the
read-through isoform in non-stimulated monocytes were marginally
colocalized with GWAS signals (PP4 =0.74, Supplementary Fig. 8D, E).
The disease risk allele of rs204468 increased the isoform ratio of the
read-through isoform among the isoforms transcribed from the
TOMM40 locus (trQTL beta = 0.64, p = 7.1 × 10−6). Because multiple
independent association signals have been detected in this locus73, in
addition to the well-established variant of APOE4, additional variants
regulating the ratio of read-through isoformmayalso contribute to the
pathogenesis of Alzheimer’s disease.

We also demonstrated cell-type-specific alternative splicing in the
immune cell subsets. This may elucidate the role of genes in each
immune cell subset that regulates inflammatory signals, as exemplified
by the isoform of NLRP1. As a major mechanism for cell-type-specific
expression, we found that alternative usage of the 3′-UTR was impor-
tant. The length of the 3ʹ-UTR has immensely increased during eukar-
yotic evolution in comparison with the 5′-UTR74, indicating that they
may have acquired different contributions to cellular functions.
Although a significant portion of the diversity of alternative splicing is
attributable to cell- or tissue-specific splicing2,75–77, it is important to
consider the diversity based on biological characteristics such as age,
sex, and health status. In the future, advancements in long-read
sequencing technology are expected to enable better exploration and
understanding of these factors. Regarding the observed cell type
specificity, we primarily utilized isoform ratios rather than raw read
counts to minimize biases associated with overall gene expression
levels. However, it is important to acknowledge that the reliability of
the isoform ratio may decrease for genes with very low read counts. In
fact, for IL23R, which showed cell type-specific isoform expression in
Th17 andTreg cells,we observed that certainT cell subsets, such asTfh
cells, did not have detectable expression of the gene in our dataset.
Considering our previous research identifying associations between
low-expressed isoforms and diseases11, there is potential to uncover
new insights by sequencing more reads and/or increasing the sample
size, which could lead to the identification of additional cell type-
specific isoforms and their relevance to disease mechanisms.

We found associations between the features of transcripts and
translational efficiency. Our analysis captured the whole structure of
transcripts using long-read sequencing, while previous reports have
predominantly relied on annotations derived from short-read RNA-seq
or transcript structures inferred from mapped short-reads using
computational algorithms41. These traditional methods might make it
difficult to infer whole transcript structures, especially in 3’-UTRs that
contain many repetitive structures as we showed. We addressed this
point by utilizing long-read sequencing and observed significant fea-
tures relating to translational efficiency. Corresponding with the pre-
vious study49, we observed differences in cell types as to the effect of
3’-UTR features on translational efficiency, whereas those of 5’-UTR
were consistent. This suggests that different cell types have different
mechanisms for controlling translation, such as binding of RNA-
binding proteins like HuR to 3’-UTR. Our analysis reveals a slight
transcriptome-wide trend regarding the role of each transcript feature,
intriguing the necessity of experimental validation for individual
transcripts in the future.

Finally, we identifiednovel pathogenicmechanisms via alternative
splicing by performing isoform switch analysis and integrated analysis

of QTLs and GWAS data. Gene-level analyses, such as differentially
expressed gene analysis and eQTL analysis, alone cannot capture
changes in the coding sequences and functional regions of alter-
natively spliced isoforms, as was the case in the IRAK1 gene for SLE. In
addition, our sQTL analysis showed that the TRAILS, used as a refer-
ence annotation, can identify functional junction-based sQTL variants
that were missed when using GENCODE. Since existing alignment
tools78 preferred to align junction reads to known junctions, the use of
annotations having more complete and accurate information on the
splicing junctions is critical for sQTL analysis. Furthermore, our data-
base directly provides full-length sequences for isoforms identified in
trQTL analysis as well as those in sQTL analysis that have unique
junction sequences. When we mapped simulated short-read RNA-seq
data to our annotation, the number of transcripts from a given gene
region did not strongly impact the accuracy of quantification (Sup-
plementary Fig. 9). However, the large variability, measured by var-
iance of transcript abundance, suggests caution is advisable when
mapping short-read RNA-seq data to TRAILS, and junction-based sQTL
analysis would yield more reliable results.

In summary, we made the database for isoforms expressed in 29
immune cell types using long-read sequencing technology. Analysis of
existing and future short-read RNA-seq datasets combined with the
TRAILS will facilitate the discovery of unknown pathogeneses of dis-
eases and new therapeutic targets.

Methods
Sample collections
We sorted PBMCs into 29 immune cell subsets from a healthy volun-
teer (42-year-old female) using a 14-color cell sorter, BD FACSAria
Fusion (BD Biosciences), with purity >99% using a MoFlo XDP instru-
ment (Beckman Coulter) (Supplementary Data 1, 2). Erythrocytes were
lysed with potassium ammonium chloride buffer, and non-specific
binding was blocked with Fc-gamma receptor antibodies. Sorted cells
were lysed and stored at −80 °C. Total RNA was extracted using the
MagMAX total RNA kit (Ambion, Life Technologies). Total RNA pre-
paration (100μg) was added to 100μL nuclease-free water and poly-A
selected using NEXTflex Poly(A) Beads (BIOO Scientific) according to
the manufacturer’s instructions and stored at −80 °C. We intended to
collect 5000 cells with at least 1000 cells per subset (5000 cells were
collected for >80% of samples). We followed previously reported
immune cell definitions provided by the Human Immunology Project79

for the flow cytometry staining panel with slight modification due to
the availability of labeled antibodies. In addition, CXCR3lowCCR6-

(X3lowR6neg) T cells and LAG3+ Treg cells were sorted following previous
studies, respectively80,81. Neutrophils were collected with EasySep
Direct Human Neutrophil Isolation Kits (STEMCELL Technologies) or
MACSxpress Neutrophil Isolation Kits human (Miltenyi Biotec) with an
aim of 2 × 106 cells, lysed, and stored at −80 °C, followed by RNA iso-
lation with a RNeasy Mini Kit (QIAGEN). We additionally collected
PBMC from a 40-year-old male to validate the presence of isoforms in
TRAILS. This study was approved by the Ethics Committees of the
Medical Research Institute, Tokyo Medical and Dental University and
RIKEN Center for Integrative Medical Sciences. Written informed
consent was obtained from each volunteer. The design and conduct of
this study fully compliedwith all relevant regulations regarding the use
of human study participants and adhered to the ethical principles
outlined in the Declaration of Helsinki.

Long-read RNA sequencing and processing
Weprepared cDNA libraries with a SMART-seq v4 Ultra Low Input RNA
Kit (TakaraBio) andSQK-LSK109 (OxfordNanoporeTechnologies).We
used SMARTScribe Reverse Transcriptase for cDNA synthesis and
SeqAmpDNA Polymerase for PCR amplification (20 cycles) of cDNA. A
hundred fmol of cDNAs were sequenced by MinION Flow Cell (R9.4.1,
FLO-MIN116; OxfordNanopore Technologies) for 48 h. Basecallingwas
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performed using Guppywith the SUP (super high accuracy)model.We
aligned reads to the GRCh38 genome reference usingminimap282 with
default parameters and reference to the splice junctions in the GEN-
CODE annotation. The median number of raw reads in 29 subsets was
5,721,968 (Supplementary Fig. 1A). We mapped raw reads with quality
>Q7 and used SAMtools83 to filter out reads with a mapping quality
(MAPQ) less than 10, resulting in 4,566,622 reads as the median of
29 subsets (Supplementary Fig. 1B). Then, we used the flair pipeline84

to identify the full-length of isoforms and filtered them using the fol-
lowing criteria: (1) transcripts whose 5′ end was located within 100 bp
from the TSS annotated by refTSS85 and/or TSSclassifier (“relaxed” or
“strict”), which are based on the FANTOMCAGE (Cap Analysis of Gene
Expression) peak86, were extracted, (2) transcripts that have at least
three full-length supporting reads (80% coverage and spanning 25 bp
of the first and last exons) in total with the “--stringent“ option (Sup-
plementary Fig. 1C). For splicing junction correction in the process of
the flair pipeline, we used realigned reads with the GENCODE anno-
tation obtained from 30 short-read RNA-seq datasets of immune
cells8,18,19,65,87.

Then, we used SQANTI3 with default parameters to filter out
transcripts that are considered artifacts by intra-priming and reverse-
transcription switching88 and to classify structural categories.

For validation of TRAILS, we sequenced independent PBMC
sample from a 40-years-old male using PromethION P2 Solo (R10.4.1,
V14 chemistry). The reasonwe selected PBMC is that PBMCcontains all
cell types in our TRAILS. We mapped raw reads with quality score >15
and used SAMtools to filter out reads with MAPQ> 10, resulting in
26,551,929 reads (average read length is 1760base).We then generated
the isoform annotation containing 100,607 isoforms (male PBMC
annotation) using the same FLAIR pipeline as our original TRAILS.

Transcripts were compared to Workman et al. flair-called
transcripts24 using gffcompare89 with the “--strict-match” option,
which only allows a limited variation of the outer coordinates of the
terminal exons by at most 100 bases.

Genes susceptible to alternative splicing
To investigate the characteristics of genes that are susceptible to
alternative splicing, we performed linear regression with the objective
variable as the number of alternatively spliced isoforms and the
explanatory variable as the read counts of genes in long-read
sequencing. Then, we extracted genes with the top 5% highest and
lowest 5% residuals by the resid function in the stats R package and
performed pathway analysis using Enrichr89,90 independently.

ATAC-seq
ATAC-seq data of immune cells32 were obtained from GEO under
accession GSE118189. As in the original paper, we processed raw reads
as follows: we trimmed transposase adapters with Trim_Galore with a
minimum length of 20 in paired-endmode. We aligned trimmed reads
using Bowtie291 with default parameters. The Bowtie2 index was con-
structed with the default parameters for the GRCh38 reference gen-
ome. We filtered out reads that mapped to chrM and used SAMtools83

to filter out reads with MAPQ< 10. Additionally, duplicate reads were
discarded using Picard Chromatin accessibility peaks were identified
with MACS392 under default parameters and ‘--nomodel --nolambda
--keep-dup all --call-summits’. The count of absolute peaks per cell type
refers to the number of peak regions reported in the ‘narrowPeak’ file
(peaks with multiple summits are only counted once). The peak count
estimates were adjusted by sample read depth.

In silico annotation for isoforms
For each isoform, we annotated whether it encodes a protein25, causes
nonsense-mediated decay (NMD)88, contains repetitive elements93, is a
transmembrane protein94, contains a domain motif95, contains a signal
peptide96, or has intrinsically disordered regions (IDRs)97 in silicobased

on the nucleotide sequence obtained by long-read sequencing. To
annotate inserted repetitive elements, we used the isoform sequence
through the gene body and the reference genome (GRCh38) sequence
for upstream and downstream (±1 kb) of the gene body. Protein 3D
structures are predicted using AlphaFold298.

Kimura divergences
The Kimura two-parameter (K2P) model is the measure of nucleotide
substitutions that have occurred during the evolutionary process99. To
calculate the genetic distance between the TRAILS and GENCODE
transcripts, we extracted the TEs that overlapped with exons of GEN-
CODE transcripts (645,325TEs) and thoseunique to theTRAILS (34,150
TEs). Kimura divergences were then calculated using RepeatMasker93,
and differences were tested using the two-sample Kolmogorov-
Smirnov test.

Proteome analysis by nanoLC/MS/MS
We referred to ongoing proteome analysis data by liquid chromato-
graphy (LC)/mass spectrometry (MS)/MS-based global proteomics and
protein terminomics (Nishida and Ishihama et al., manuscript in pre-
paration) to validate whether predicted ORFs encoded in isoforms in
the TRAILS were translated. For sample preparation, 1 × 107 of THP-1
cells (ATCC; American Type Culture Collection) with/without 10 ng/ml
of Phorbol 12-myristate 13-acetate (PMA) treatment for 72 h and LCL
cells (NA12878, Coriell Institute) with/without 50ng/ml IFN-α2 for 6 h
were lysed with phase transfer surfactant buffer100,101 followed by
digestion with Lys-C/trypsin. These four samples were divided into
four fractions each (16 samples in total) and labeled with 16-plexed
TMTpro reagents to prepare a single TMT set. For protein termi-
nomics, the TMT set was used to isolate protein terminal peptides
using a strong cation exchange (SCX) chromatography system con-
sisting of an Agilent 1260 Infinity II Bio-Inert LC with a BioIEX SCX
column (250mm×4.6mm, 5μm, nonporous) (Santa Clara, CA), as
described previously101. The isolated peptides were fractionated into
24 vials by reversed-phase HPLC at high pH conditions using a Nexera
X2 system (Shimadzu, Japan, Kyoto) with a L-column 3 (2.1mm× 150
mm, 3μm, 110Å). We also conducted protein C-terminomics using the
CHAMP protocol102. In brief, the cell lysates were digested by V8 pro-
tease. After dividing each sample into four fractions, the protein
C-terminal peptides were isolated using CeO2 chromatography. The 16
multiplexed samples were mixed to prepare a single TMT set and
fractionated into 24 vials by reversed-phase HPLC as described above.
For global proteomics, the tryptic digests of four different samples
were divided into four fractions each (16 samples in total) and labeled
with 16-plexed TMTpro reagents to prepare a single TMT set and
fractionated into 24 vials by reversed-phase HPLC as described above.
All samples were desalted by SDB-StageTips102,103.

NanoLC/MS/MS measurement was performed on an Orbitrap
Exploris 480mass spectrometer (Thermo Fisher Scientific, Waltham,
MA) and an Ultimate 3000 LC system with a self-pulled needle col-
umn (250mm, 100 μm ID) packed with Reprosil-Pur 120 C18-AQ
1.9μm (Dr. Maisch, Ammerbuch, Germany). The flow rate was
400nL/min. The LC mobile phases consisted of solvent A (0.5%
acetic acid) and solvent B (0.5% acetic acid and 80% acetonitrile). The
gradient was set as follows: 5–10% B in 2.5min, 10–19% B in 57.8min,
19–29% B in 21min, 29–40% B in 8.7min, and 40–99% B in 0.1min,
followed by 99% B for 5min. The electrospray voltage was set to
2.4 kV in the positive mode. For the survey scan, the mass range was
from 375 to 1600m/z with a resolution of 60,000, 100% normalized
AGC target, and auto maximum injection time. For the MS/MS scan,
the first mass was set to 110m/z with a resolution of 45,000, 0.7m/z
of isolation window, 100% normalized AGC target, and auto max-
imum injection time. Fragmentation was performed by higher-
energy collisional dissociation with a normalized collision energy
of 30. The dynamic exclusion time was set to 60 s.

Article https://doi.org/10.1038/s41467-024-48615-4

Nature Communications |         (2024) 15:4285 13



Proteome data analysis
The MS raw files were searched to identify peptides by MaxQuant. To
identify the novel isoforms, we customized the database. For LCL, we
quantified isoforms by remapping the RNA-seq dataset of the GEU-
VADIS (Genetic EuropeanVariation inDisease) project8 (n = 463, EMBL-
EBI, E-GEUV-1). For THP-1, we quantified isoforms by remapping the
RNA-seq dataset derived fromnaïve THP-1 cells (n = 3, deposited in the
GEO under the GSE157052). Considering sample size, we filtered out
isoforms with minimum TPM for all samples = 0 and <2 for LCL and
THP-1, respectively. In addition, to predict novel proteins, we deleted
isoforms whose entire predicted ORFs were included in GENCODE. As
a result, predicted ORFs encoded by 16,190 isoforms were retrieved as
novel isoform candidates. Then, we constructed a non-redundant
protein database by combining them with the Swiss-Prot database of
human proteins including isoforms (42,360 entries, 2022_06) for the
database search in this study.

For tryptic peptides, methionine oxidation and protein
N-terminal acetylation were selected as variable modifications, and
cysteine carbamidomethylation and peptide N-terminal and lysine
TMTpro labels as fixed modifications. For V8 protease-digested
peptides, methionine oxidation was selected as a variable modifica-
tion and cysteine carbamidomethylation and peptide N-terminal and
lysine TMTpro labels as fixed modifications. A maximum of two
missed cleavages were allowed. False Discovery Rate (FDR) filtering
by target-decoy method was set to 1% for both peptide-spectral
match (PSM) and protein levels. Manual inspection was performed
on the remaining MS/MS spectra and an Andromeda score >80 was
set as an additional acceptance criterion. This corresponds to an
FDR < 0.075% at the PSM level. Furthermore, the identified peptide
sequences were checked against known protein sequences in Swiss-
Prot and matches were excluded.

Short-read RNA sequencing and processing
We utilized the datasets (single nucleotide polymorphism (SNP) array
and RNA-seq data) of previous expression quantitative trait locus
(eQTL) studies obtained from four Europeans cohorts: the EvoImmu-
noPop project18 (European Genome-phenome Archive [EGA],
EGAS00001001895), the DICE (database of immune cell expression,
expression quantitative trait loci, and epigenomics) project19 (the
database of Genotypes and Phenotypes (dbGaP), phs001703.v1.p1),
the Immune Variation (ImmVar) study65, (dbGaP, phs000815.v1.p1),
and the GEUVADIS project8 (EMBL-EBI, E-GEUV-1).

We additionally performed genotype imputation using SNP array
data. Pre-imputation quality control (QC) of the genotyping data was
performed using PLINK104 with the following parameters (--mind 0.02
--king-cutoff 0.0884 --geno 0.01 --maf 0.01 --hwe 1e-5). Post-QC variants
were prephased using SHAPEIT105, and imputation was performed
using MiniMac3106 and 1000 Genomes Phase 3 (release 5) as the
reference panel107. Post-imputation QC was performed using PLINK
with the following parameters (--minimac3-r2-filter 0.3). Genotyped
and imputed SNPs or indels with minor allele frequency (MAF) ≥0.01
were used for subsequent QTL analysis with related expression
datasets.

For RNA-seq, 3′ ends with low-quality bases (Phred quality score
<20), and adaptor sequences were trimmed using Trim_Galore from
sequenced reads. We realigned the trimmed reads on the GRCh38
genome using STAR78 in two-pass mode with the de novo transcript
annotations derived from long-read RNA-seq of 29 immune cell types.

Expression was quantified using StringTie2108 and kallisto109

independently using generated bam files from STAR and trimmed
reads, respectively. For gene-level quantification, we combined all
isoforms of a gene into a single transcript as described elsewhere110.
Raw read counts were normalized with the Transcripts Per Kilobase
Million (TPM) method111.

Cell-type-specific isoforms
After filtering out isoforms with low expression levels (reads per mil-
lion, RPM> 2) and isoform ratios in each related gene (isoform ratio
>0.2), cell-type-specific isoforms were identified based on their Shan-
non entropies using the ROKU112 function in the TCC package113.

RBP binding analysis
To investigate the associationbetweenRBPs and specifically expressed
isoforms, we searched RBP binding motifs in the sequence of the 3′-
UTR of each isoformusing RBPmap114. Then, the numbers of predicted
binding sites for each RBP by region (5′-UTR, ORF, and 3′-UTR) were
aggregated and compared between specifically expressed isoforms
and others.

Translational efficiency
We utilized RNA-seq and Ribo-seq datasets obtained from 52 common
Yoruba individuals among the RNA-seq dataset derived from the
GEUVADIS project8 (EMBL-EBI, E-GEUV-1) and the Ribo-seq dataset
deposited in GEO under GSE61742115, respectively. To calculate trans-
lational efficiency at the isoform level, trimmed reads were aligned to
the de novo transcriptome sequences generated from long-read
sequencing for 29 immune cell subsets using STAR78 as with tools
developed for the same purpose116,117, designed for transcript-level
quantification with short-read data. We used the same STAR para-
meters as these tools to optimize for transcript quantification. As
reported in the original paper116,117, the method was tested using syn-
thetic Ribo-seq reads with known profiles, demonstrating strong per-
formance across various sequencing error rates and a strong Pearson
correlation between footprint assignments and actual ribosome pro-
files. Then, we applied generated bam files to the coverageDepth and
translationalEfficiency functions with corrections using the maximum
translational efficiency value in the 90most highly ribosome-occupied
nucleotides window within the feature in ribosomeProfilingQC R
package118,119. We calculated the translational efficiency only of iso-
forms that satisfied coverage depth >1 of both Ribo-seq and RNA-seq
(86,967 isoforms) to avoid the potential over-estimating of transla-
tional efficiency due to low coverage.

To investigate the differences in cell types for translational effi-
ciency, we remapped TrIP-seq data obtained from HEK293T (depos-
ited inGEOunder GSE6935249) on theGRCh38genomeusing STAR78 in
two-pass mode with the de novo transcript annotations derived from
long-read sequencing for 29 immune cell types. Transcript level
abundances were calculated using StringTie2108 and normalized by
TPM method. Given the differences in cell types sequenced for our
database and TrIP-seq data, we selected isoforms expressed in
HEK293T asmRNA (TPM> 1 in all three samples of short-read RNA-seq
data [SRR9019712, SRR9019713, and SRR9019714] deposited in GEO
under GSE130781120). We then clustered isoforms and categorized as
high polysomes and low polysomes by hierarchical clustering using
polysome profiling as done in the previous study49.

Secondary structure
To estimate the presence of local RNA secondary structures, a window
length of 25 nucleotides wasmoved at the step size of one nucleotide,
starting from TSS to TTS, and the Gibbs free energy (ΔG) was calcu-
lated as the predicted local folding strength for eachwindowusing the
RNAfold program121. Then, we tested the correlation translational
efficiency of a particular isoform and ΔG values at each scaled position
relative to the TSS (0 = TSS, 1, 2, …, 100 = first nucleotide of the ORF,
101, …, 200 = last nucleotide of the ORF, 201, …, 300 = TTS), and
correlation coefficients were averaged over isoforms at each position.

To validate predicted local folding strength, we tested correla-
tions with the Parallel Analysis of RNA structure (PARS) score50,51. To
calculate PARS scores,wedownloaded RNA fragments generated from
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LCLs of a family trio with treatment by RNase V1 or S1 nuclease
deposited in GEO under GSE5067650 and mapped on the GRCh38
genome using STAR78 in two-pass mode with the de novo transcript
annotations derived from long-read sequencing for 29 immune cell
types. Then, we quantified the number of double-stranded reads (V1)
and single-stranded reads (S1) that were initiated on each base on the
RNA. The read counts of double and single stranded reads for each
sequencing sample were normalized by sequencing depth. For a par-
ticular isoform with N bases in total, the PARS score of its ith base was
defined by the following formula where V1 and S1 are normalized V1
and S1 scores, respectively. A small number (5) was added to reduce
the potential over-estimating of structural signals of bases with low
coverage:

PARSi= 1...N = log2 V1i + 5
� �� log2 S1i + 5

� � ð1Þ

After removing the scaledpositionwith all PARS scores being zero
among three samples, we tested the correlation between the averaged
PARS score and predicted local folding strength at each scaled posi-
tion. We capped the PARS score to ± 7. We calculated PARS scores of
only isoforms whose median TPM were the highest in each gene to
minimize noise from multi-mapping. We quantified isoform expres-
sion values using LCL samples in the GEUVADIS cohort8. In total, PARS
scores of 5800 isoforms were calculated.

Isoform-switch analysis
We downloaded short-read RNA-seq datasets obtained from clinical
patients and healthy controls from the GEO through accession num-
bersGSE72509 for SLE andGSE89408 andGSE118829 for RA. From raw
sequenced reads, 3′ ends with low-quality bases (Phred quality score
<20) and adaptor sequences were trimmed using Trim_Galore. An
expression matrix was generated using kallisto109 with default para-
meters and the de novo transcript annotations derived from long-read
sequencing for 29 immune cell types. Then, we used Iso-
formSwitchAnalyzeR in the R package to detect genes that have
changed splicing patterns122. Briefly, in IsoformSwitchAnalyzeR, iso-
form usage is assessed using isoform fraction (IF) values, which
represent the proportion of a gene’s total expression attributed to a
particular isoform. The IF is computed by dividing the expression of an
individual isoformby the sum of the expression of all isoforms for that
gene (isoform_exp / gene_exp). To quantify the change in isoform
usage between conditions, the difference in isoform fraction (dIF) is
calculated by subtracting the IF of one condition from the other (IF2 -
IF1). These dIF values serve as a measure of effect size, analogous to
fold changes in gene or isoform expression analysis. To identify iso-
forms with statistically significant changes in usage, a dIF threshold of
0.1 and a FDR cutoff of 0.05 were applied. Statistical test was per-
formed using the isoformSwitchTestDEXSeq function123,124.

QTL analysis
Independent QTL analysis was performed for each condition. In
common with all QTL analyses, the following process was performed:
(1) normalization of the expression matrix was performed with quan-
tile normalization, rank-transformed normalization, and PEER nor-
malization using 15 hidden factors for all QTL analyses125, and (2) the
variants with MAF ≥0.01 within a 1-megabase (Mb) window around
each transcript using MatrixEQTL of the R package126 with the top 10
genetic principal components as covariates.

The pipeline for sQTL analysis was the same as in gene-level eQTL
analysis, except for the preparation of the expression matrix. A com-
parison of two representative quantification methods, (1) alignment-
based transcript quantification and (2) alignment-free transcript
quantification, showed a high correlation in expression values at the
gene level, but amoderate correlation at the isoform level between the
two methods (Supplementary Fig. 10). Therefore, we utilized the

independent isoform ratio in related genes derived from StringTie2108

and kallisto109, which are alignment-based transcript quantifications
and alignment-free transcript quantifications for trQTL analysis,
respectively. In addition, to capture differences in coding-sequence
more sensitively, we used the isoform ratio quantified by kallisto after
clustering the isoformswith completely identical coding-sequences by
VSEARCH127. We also conducted junction-based sQTL analysis using
LeafCutter10.

With regard to 3′aQTL, we used dynamic analyses of APA from the
RNA-seq (DaPars) algorithm128,129 to identify APA events. The multi-
sample DaPars v.2 regression framework calculates the percentage of
the distal poly(A) site usage index (PDUI) value for each gene in each
condition. Subsequently,we analyzed the associationbetween variants
within 1-Mb from the 3′-UTR region and quantile- and rank-normalized
PDUI values with covariates, the same aswith eQTL and sQTL analyses.
To investigate the enriched function of genes with 3′aQTL effect,
pathway analysis was performed using Enrichr90.

Stratified linkage disequilibrium score regression analysis
(S-LDSC)
We extracted eQTL, sQTL, and 3′aQTL variants (SNPs or indels with
nominal p < 1×10−5) and performed S-LDSC67 adjusting for functional
annotation (baselinemodel v1.2 providedby thedevelopers). Formatted
GWAS summary statistics for S-LDSC by developers were downloaded
from https://alkesgroup.broadinstitute.org/sumstats_formatted/.

Colocalization analysis of QTL and GWAS
To evaluate the colocalization of QTL and GWAS signals, we applied a
Bayesian framework using coloc of the R package130. We tested for a
500,000 bp window centered on the GWAS lead variant and con-
sidered PP-H4 (posterior probability of shared causal variant) >0.8 as a
significant colocalization. Formatted GWAS summary statistics for
S-LDSC by developers were downloaded from https://alkesgroup.
broadinstitute.org/sumstats_formatted/ and severeCOVID-19 from the
COVID-19 HGI release5 (https://storage.googleapis.com/covid19-hg-
public/20201215/results/20210107/COVID19_HGI_A2_ALL_eur_leave_
23andme_20210107.b37.txt.gz). We used LocusZoom to visualize the
colocalization131.

Mapping a simulated short-read RNA-seq to TRAILS
To examine the performance of mapping short-read RNA-seq to
TRAILS,we generated a simulatedpair-end short-readRNA sequencing
dataset with assumption that all isoforms in our dataset have equal
expression level ( × 5 coverage per transcript) using polyester R pack-
age (https://github.com/alyssafrazee/polyester). We tested isoforms
which are 13 or less related isoforms transcribed from the same loci
because isoforms with more related isoforms are rare and reduce the
reliability of the analysis. We then grouped the isoforms according to
the number of isoforms expressed from the same gene region and
compared the expression values. We mapped to GRCh38 reference
genome with TRAILS as reference annotation and other default
options of STAR two-pass mode.

Statistical test
The statistical tests performed are indicated in the figure legends or
Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Isoform expression data have been deposited in the DNAData Bank of
Japan (DDBJ) via the National Bioscience Database Center (NBDC)
Human Database under accession code DRA016285. The MS raw data
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and analysis files have been deposited in the ProteomeXchange Con-
sortium via the jPOST partner repository with the data set identifier
PXD040962.

Code availability
We used publicly available software for the analyses. The source code
and generated annotations are available at https://github.com/
juninamo/TRAILS. Results in this study can also be browsed at our
website at http://gfdweb.tmd.ac.jp:3838/.
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