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MATRIX WEIGHTS, SINGULAR INTEGRALS, 

JONES FACTORIZATION AND 

RUBIO DE FRANCIA EXTRAPOLATION 

DAVID CRUZ-URIBE, OFS 

ABSTRACT. In this article we give an overview of the problem of finding sharp constants in matrix weighted norm 
ineqnalities for singular integrals, the so-called matrix A2 conjecture. We begin by reviewing the history of the 
problem in the scalar case, including a sketch of the proof of the scalar A2 conjecture. We then discuss the original, 
qnalitative resnlts for singular integrals with matrix weights and the best known quantitative estimates. We give 
an overview of new results by the author and Bownik, who developed a theory of hannonic analysis on convex 
set-valned functions. This led to the proof the Jones factorization theorem and the Rnbio de Francia extrapolation 
theorem for matrix weights, two longstanding problems. Rubio de Francia extrapolation is expected to be a major 
tool in the proof of the matrix A2 conjecture, and we discuss some ideas which may lead to a complete solution. 

1. INTRODUCTION 

One weight norm inequalities have been extensively studied since the work of Muckenhoupt and others in 
the 1970s. (See [23,26,28] for details and references.) Central to their study is the Muckenhoupt Ap condition. 
It gives a necessary and sufficient condition for many of the operators of classical harmonic analysis (maximal 
operators, singular integral operators, square functions) to satisfy weighted norm inequalities. There are two 
very important results in the study of of AP weights. The first is the Jones factorization theorem [35], which 
gives a complete characterization of the class AP in terms of the simpler class A1. The second is the Rubio 
de Francia extrapolation theorem [53], which, in its simplest form, shows that if an operator is bounded on 
weighted L2, then it is bounded on weightedび forall p, 1 < p < oo. Rubio de Francia's colleague Antonio 
Cordoba [25] summarized this result by remarking that it showed that there are no LP spaces, only weighted 

L竺

Since the 1990s, there has been a great deal of interest in extending the theory of scalar weights to the setting 
of matrix weights: that is, d x d measurable matrix functions W that are self-adjoint, positive semi-definite, and 

act on vector-valued functions f. These problems were first studied by Nazarov, Treil and Volberg [45,55-57], 
who asked if the weighted norm inequalities for singular integrals could be extended to the matrix setting. They 
defined a class of matrix weights, Ap, and showed that the Hilbert transform is bounded with respect to this 
class. This result was later extended to general singular integral operators by Christ and Goldberg [ 11, 27]. 

More recently, attention has been focused on determining the sharp constant in matrix norm inequalities. In 
the scalar case, Hyti:inen [31] proved that the sharp constant in the weighted LP norm inequality is proportional 

[ lm訟 {1,p'-1}to lwJ·~·:-1·,,, ・1, and it is an open question as to whether the s皿 ebound is true for matrix weights. The best 
Ap 

known result is that it is bounded above by [W] 
1＋声—上~: = -", which, when p = 2 gives an exponent of ~ rather 

than the conjectured value of 1. In the scalar case, most proofs of this result proceed in two steps: first, it is 
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proved in the case p = 2, and then it is extended to all p by using a sharp version of the Rubio de Francia 
extrapolation theorem. (See [22,32,41].) For this reason, the problem is referred to as the "A2 conjecture." 

In the 1990s Nazarov and Treil [45] posed two fundamental problems: extend the Jones factorization the-
orem and the Rubio de Francia extrapolation theorem to matrix weights. These problems were only solved 
last year by the author and Bownik [7]. These results are a significant advance in the study of the matrix A2 
conjecture, since they allow the problem to be reduced to the case p = 2. 

The goal of this article is to provide an overview of the theory of matrix weights and of the proofs of fac-
torization and extrapolation for matrix weights. It is organized as follows. In Section 2 we provide some 
background about scalar weights. We focus on those results which are essential for understanding the subse-
quent development of the matrix theory. In Section 3 we review some of the history of matrix weights. We will 
concentrate on the results of Christ and Goldberg [ 11, 27] and the more recent work of N azarov, Petermichl, 
Treil, and Volberg [ 43]. In Section 4 we will discuss the work of the author and Bownik. Our approach, which 
considerably extends the work of Nazarov, et al., builds a theory of harmonic analysis on convex set-valued 
functions. This in turn provides the necessary tools to prove factorization and extrapolation for matrix weights. 
Finally, in Section 5 we make some final remarks and conjectures about the matrix A2 conjecture. 

Throughout this paper we will use the following notation. In Euclidean space the constant n will denote the 
dimension of配， whichwill be the domain of our functions. The value d will denote the dimension of vector 
and set-valued functions. For 1 :::; p :::; oo, L叫股”)willdenote the Lebesgue space of scalar functions, and 
IJ'(間配） willdenote the Lebesgue space of vector-valued functions. 

By a cube we will always mean a cube in股nwith sides parallel to the coordinate axes. The Lebesgue 
measure of a cube, or of any arbitrary set E, will be denoted by IEI, By a weight we mean a non-negative, 
locally integrable function that is positive except on a set of measure 0. Wc dcfinc w(E) = JE w(x) dx, 
and we let fq w(x) dx = IQl-1w(Q). By IJ'(w) we mean the scalar weighted space with measure w dx, 

び（町，wdぉ）．

Given v = (v1,..., vd)t E JR.d, the Euclidean norm of v will be denoted by lvl; from context there should 
be no confusion with the notation for Lebesgue measure of a set. The closed unit ball in { v E JR.d : lvl :::; 1} 
will be denoted by B. Matrices will bed x d matrices with real-valued entries. The set of all d x d, symmetric, 

positive semidefinite matrices will be denoted by S小

Given two quantities A and B, we will write A乏B,orBぇAif there is a constant c > 0 such that 
A::; cB. If A乏BandB乏A,we will write A ~ B. 

2. BACKGROUND: THE SCALAR THEORY OF WEIGHTS 

In harmonic analysis, a fundamental class of weights are those that satisfy the Muckenhoupt Ap condition, 
introduced in [42]. Given 1 < p < oo, w EA戸f

[w]Ap = s~p (l w(x) dx) (l w(x)1-p'dx) p-l < 00, 
Q ¥JQ J ¥JQ 

where the supremum is taken over all cubes. A weight w is in A1 if 

[w]A, = supesssupw(x) -lla w(y) dy < oo. 
Q Q知 Q 
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The quantity [w]Ap is referred to as the AP characteristic of a weight. These weights arise naturally in the 
study of Hardy-Littlewood maximal operator, 

Mf(x) = s~p f lJ(y)I dy ・ XQ(x), 
Q JQ 

where the supremum is taken over all cubes. For 1 ~ pく oo,the AP condition is necessary and sufficient for 
the maximal operator to satisfy the weak (p, p) inequality 

C 
w({x E町： Mf(x)>入}） <石inlf(x)IPw(x) dx, 

andforl <pく ooit is necessary and sufficient for the strong(p,p) inequality 

J恥nMf(x)知 (x)dx ~ C Ln lf(x)『w(x)dx. 

Recall that a Calder6n-Zygmund singular i皿 gralT is a bounded operator onび（町） forwhich there exists 

a kernel K(x, y), defined on即 X町＼ △， where△=  ｛（x,x):xE町｝， suchthat if f E L戸（町） and

x ft supp(!), then 

加）＝ inK(x,y)f(y)dy. 
匝n

The kernel satisfies the size and regularity conditions 

IK(x,y)|こ
C 

Ix-yin' 

IK(x + h,y) -K(x,y)I + IK(x,y + h) -K(x,y)I :S: C 
1h18 

lx-yln+8' 

where Ix -YI > 2lhl. The Ap condition is also sufficient for a singular integral operator to satisfy the weak 
and strong (p, p) inequalities; moreover, it is necessary for non-degenerate singular integrals such as the Riesz 

transforms. See [23,26,28,54]. 

The weak (p, p) inequality for singular integrals can be proved using kernel estimates and the good/bad 

decomposition of Calderon and Zygmund (see, for instance [26]). The strong-type inequality was originally 
proved by comparing the norm of the singular integral operator to that of the maximal operator. Coifman and 

Pefferman [13] proved that given p, 0 < p < oo, and w E Aq for any q, 1 :S: q < oo, there exists a constant 

depending on [w]Aq such that 

(2.1) Ln T* J(x)知 (x)dx :S: C Ln Mf(x)知 (x)dx.

Here, T* is the maximal singular integral, defined by 

T*f(x)＝ Sup |T』(x)|＝ Sup/ k(x,y)f(y) dy, 
€>O c>0 |x-y| >€ 

which dominates the singular integral pointwise. They proved this by proving a so-called good-入inequality:

there exists,5 > 0 such that for every 1,入＞ 0and for every cube Q, 

w({x E Q: T*f(x) > 2入，Mf(x):S: 1入}):S:C,8w(Q). 

An alternative proof of (2.1) using the sharp maximal operator was given by Journe [36]; see also Alvarez and 
Perez [1]. 

For the past three decades there has been a great deal of interest in determining the best constant in the 

strong (p, p) inequality for singular integrals in terms of the Ap characteristic of w. This question was first 
considered by Buckley in the 1990s [8]; it became the subject of concerted effort when Astala, Iwaniec and 

Saksman [2] proved that sharp regularity results for solutions of the Beltrami equation hold provided that the 
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Beurling-Ahlfors operator satisfies IIT f lbcw) :S C[w]Ap IIJIILP(w) for p ~ 2. This problem was extended to 
all Calder6n-Zygmund operators and all p > 1: it was conjectured that 

(2.2) IITJIILP(w) :S C(n,T,p)[w]閃:x(l,p'-l)llf IILP(w)・

By the Rubio de Francia extrapolation theorem, which we will discuss below, it suffices to prove this when 
p = 2; for this reason this problem was referred to as the A2 conjecture. It was studied by a nUillber of authors, 
including Lacey, Petem血hl,and Volberg [37, 48—50], and was finally solved in 2010 by Hytonen [31,33]. His 
proof was quite difficult and we will not consider it. 

Lerner and Nazarov [38-4OJ and Conde-Alonso and Rey [14] gave a new and simpler proof of the A2 
conjecture. As part of their proof they introduced the technique of sparse domination. Let D be any translation 
of the standard dyadic grid. A collection S c D is said to be sparse if there exists a collection of pairwise 
disjoint sets {E(Q) : Q ES} such that for each Q, E(Q) c Q and IQI :S 2IE(Q)I-A . A sparse operator 1s an 
averaging operator of the form 

Tsf(x)＝羞(£f(y) dy) ・ XQ(x) 

They showed that given a bounded function of compact support, there exist a finite collection of dyadic grids 

図｝!;=1and sparse families { Sn}贔 suchthat 

N 

ITJ(x)I :SC区互(IJl)(x).
n=l 

Given this, the A2 conjecture reduces to proving the corresponding estimates for sparse operators. This is done 
in two steps. First, weightedび boundsare proved using an argument in [17]. Let w E A2 and let u = w―1. 

By duality, there exists h Eび(w),llh||い(w)= 1, such that 

IITsfllL2(w) = ln Tsf(x)h(x)w(x) dx 
応

:S 2五l f(x) dxl h(x)w(x) dxlE(Q)I 

心 w(Q)6(Q) 1 / 1  

QES 

|Q| |Q| (J（Q) Qf(x)W(x)IJ(x)dxw(Q) IQh(x)w(x)dx|E(Q) 

'.S 2[w]A2 ~1 記(fw)(x)u(x)況h(x)w(x) dx 
QESJE(Q) 

'.S 2[w]A21 記（fw)(x)u(x)M~h(x)w(x) dx 
]ii.n 

:S 2[w]叫図(fw)IIL罰）1|M¢h||E(W)

:S 8[w]A2 II!叫I口(<Y)llhだ (w)

= 8[w]A,llf||£2(w)・ 

Here, Mi is the "universal" dyadic maximal operator defined with respect to the grid D and the measure w dx: 

叩(x) ＝謬~ l lf(y)lw(y) dy ・ XQ(x), 

where the supremum is taken over all dyadic cubes in the grid D. This operator is bounded onび(w)with a 

constant independent of w (see [261). Similarly,氾 isbounded on L如）．

The proof that sparse operators satisfy weighted LP bounds with the desired constant follows at once from 
the Rubio de Francia extrapolation theorem. Here we state it in a "sharp constant" version first proved by Drag-
icevic, et al. [22]. (See also [18].) 
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Theorem 2.1. Given Po, 1 S Po < oo, suppose that for some operator T and for all wo E Ap0, the inequality 

!応 |Tf(x)IP0wo(x)dx S Np0([wo]心。） /~n lf(x)IP0wo(x) dx 

holds. Then for all p, 1 < p < oo, and all w EAか

！良”|Tf(x)IPw(x)dx Sふ（［三）／恥n lf(x)『w(x)dx

The proof of extrapolation ultimately depends on three things: 

(I) The duality of Av weights: for 1 < p < oo, w E Av if and only ifび＝ w1-v'EAv,, and [o-]Ae, = 
[ ］P'-1 w ]'.4_:--'. This is an immediate consequence of the definition of Av weights. Ae 

(2) Aquantitativeboundforthemaximaloperator: forl <p < oo, IIMJIILe(w) S C[w]久'-1||f||い (w)・

This was first explicitly proved by Buckley [8] but was iIIlplicit in Christ-:mdFeffe~a~'{10i. 
(3) The Jones factorization theorem: for 1 < p < oo, w E Av if and only if there exist wo, W1 E A1 such y 

thatw = wo吋―P.This was first proved by Jones [35], but a much more elementary proof was given 
by Coifman, Jones, and Rubio de Francia [12]. (See also [15].) 

With the first two facts we can define the Rubio de Francia iteration operator, which is also fundamental to 
the proof of the Jones factorization theorem. Let M be the Hardy-Littlewood maximal operator and w E Aか

1 < p < oo. Given a non-negative function h, define 

闊 (x)＝ど~ Mkh(x) 

k=O 
2kllMII~ ・LP(w) 

It then follows from the definition and the properties of Av weights that 

(I) h(x) s Rh(x); 
(2) IIRh||い(w)S 2llhllLe(w); 

(3) Rh E A1 and [Rh]ふ S2IIMIILP(w) S C[w]久，;1.

We briefly sketch the proof of extrapolation. For simplicity, we will only consider the case when Po = 2, 
and we will not give the proof that yields the best possible constant. (For complete details, plus references to 
other proofs, see [15, 18].) Fix p, p=I=2, and w E Av. Let和 bethe Rubio de Francia iteration operator 

defined above, and let応 bethe operator corresponding too-= w1-v'E Av'・ Then by duality there exists 

h E LP'(w), llhllLe'(w) = 1, such that 

IIT/lbcw) = in ITJ(x)lh(x)w(x) dx 

s ]n |Tf(x)図 (x)厄 f(x)因 (hw)(x)dx 
即

S (Ln ITJ(x)国 f(x)―1応 (hw)(x)dx 幻 (x)応 (hw)(x)dx f 
Rn 

) 1 (I応

= I’I百1 2. 

We estimate each term separately. The estimate of h uses the properties of the iteration operators: 

I2 =／叩(x)w(x)i応 (hw)(x)w(x)―J;dx 
囮n

SL肉 fllLP(w)II応 (hw)IILe'（u)

s 411/lbcw)llhwllLP'（u) 
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：：：：：： 411/IILP(w)・

To estimate Ii, we use our hypothesis, the fact that by the Jones factorization theorem, Rfi (f)-1Rh E A2, 

and the estimate for h: 

Il = ／ |Tf(x)国 f(x)-1応 (hw)(x)dx 
即

：：：：：： ej |f|2叩 (x)-1応 (hw)(x)dx 
Rn 

：：：：：： C in lf(x)I応 (hw)(x)dx 
Rn 

：：：：：： CI2・ 

If we combine these inequalities, we get the desired result. 

Remark 2.2. Note that in this proof of extrapolation, we only use the easier half of the Jones factorization 

theorem: that if w0, w1 E A1, then w0w戸 E Av. This property, referred to as "reverse factorization" 

(see [18]) follows at once from the definition of the Av and A1 conditions. We will return to this fact below. 

3. MATRIX WEIGHTS AND MATRIX-WEIGHTED NORM INEQUALITIES 

In the 1990s, Nazarov, Treil and Volberg in a series of papers [45,55-57] considered the question of whether 

the theory of Muckenhoupt weights could be extended to matrix weights applied to vector-valued functions. 

Beyond the intrinsic interest of this problem, their original motivation came from problems in the study of 
multivariate random stationary processes, and from the study of Toeplitz operators acting on vector-valued 

Hardy spaces. 

To describe the problem, we define some notation. Let f = (!1,..., /d). Given a singular integral T, define 
it acting on a vector-valued function by 

Tf = (Tfi,..., Tf,心・

It is immediate that if 1 < p < oo and f E LP（町，配）， thenIIT月ILP（即，即）こ C||flい（即記）・

To define weights, recall that Sd is the set of d x d, self-adjoint, positive semi-definite matrices. A matrix 
weight is a measurable function W :釘→ Sd.We define an associated scalar weight using the operator norm 

onW: 

IW(x)lap = sup IW(x)~I
~E酎
l~l=l 

We define the matrix weighted space LP(W) = LP(W，町記） withthe norm 

||flILP(W) ＝ （J 
知

IW(x)ザ(x)『dxf.

Note that when d = 1, this reduces to the scalar space LP(w). Also note that w; is well-defined since W 

is positive semi-definite. (We note in passing that in [7] we defined this space with w,; replaced by W. We 

believe that this is the correct way to define matrix weighted spaces, but here, for consistency with the earlier 
literature, we use the historical definition.) 

With this notation, the problem posed by Nazarov, Treil and Volberg is the following: given 1 < p < oo, 
prove there is a Muckenhoupt-type condition on matrix weights so that the inequality 

!知 |W叫）町(x)IPdx::;C Ln IW軍）f（x)|pdx
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holds for singular integrals. Treil and Volberg [56] first solved this problem on the real line for the Hilbert 

transform when p = 2. They showed that this inequality holds if W satisfies an analog of the A2 condition: 

(3.1) 
½ / r ¥ ½ 

[W囚＝ S心pI (£ W(x) dx r (£ w-1(x) dx r lop< 00  

This condition, however, does not extend to the case p=I=2. An equivalent, but more technical definition of 
matrix心 interms of norm functions was conjectured by Treil and used by Nazarov and Treil [45] and by 

Volberg [57] to prove matrix-weighted norm inequalities for the Hilbert transform. Their idea was to replace 
matrices with norms on記 Herewe sketch their definition; for complete details see the above references 

or [7]. 

Letp：町 x配 → [O,oo) be a measurable function such that for a.e. x E町

is, given v, w E艮dand a E政，

(1) p(x, v) = 0 if and only if v = 0; 

(2) p(x,v + w):::; p(x,v) + p(x,w); 
(3) p(x,av) = lalp(x,v). 

, p(x, ・) is a norm on股： that

For instance, given a matrix weight W, we can define a norm by pw(x, v) = IW(x)vl. Define the dual of a 
norm function p* by 

が(x,v)= sup|〈v,w〉|．
WE配，p(x,w):,;I

Finally, given a cube Q, and 1 :::; p < oo, define the average of a norm function on Q by 

〈p〉p,Q(v)= (£ p(x, v)P dx f. 
With this notation, they defined a norm p to be in Ap if for every v E記

〈p*)p,,Q(v):::;C〈p〉p,Q(v)*

When d = 1 this immediately reduces to the Muckenhoupt AP condition. 

Later, Roudenko [52] gave an equivalent definition of Ap that more closely resembled the scalar definition: 
for 1 < p < oo, W E A戸f

(3.2) [W]A" = s悶P Q Q 町 (x)W―½(y)I犀dy){fr dx < oo. f (fl l 
Frazier and Roudenko [24] also introduced the concept of matrix A1 weights: W Eふ if

(3.3) [W]A, = s~p es::gp l IW―1(x)W(y)lop dy < oo. 
Q xEQ JQ 

Norm inequalities for Calder6n-Zygmund singular integrals in町 wereproved by Christ and Goldberg [ 11, 

27]. Treil and Volberg had earlier noted that a key obstacle to proving matrix-weighted inequalities was the 

lack of a max血aloperator that did not lose the geometric information embedded in a vector-valued function. 
A key component of the proofs in [11, 27] is a scalar-valued, matrix weighted maximal operator (now referred 

to as the Christ-Goldberg maximal operator): 

Mw  [(x) = s~p l 1w(x)w-1(yげ(y)Idy ・ XQ(x). 
Q JQ 

The motivation for this definition comes from the following observation: if Tis a singular integral operator (or 

indeed any linear operator), then T satisfies 11 T fl I LP (W) ≪: C 11 fl I LP (W) if and only if the operator T w, defined 
by 

Tw和）＝ W(x)点T(W―点f)(x)
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satisfies IITfllLP（応，配)~ Cll!llLP（即，配）・

The first step was to prove that if W E Ap, 1 < pく oo,then Mw  is bounded fromび（即，配） into

び（町）． Thisrequired the introduction of an auxiliary maximal operator M和， definedby 

Mw恥＝ sup／喝W―l(y)『（y)Idy ・ xQ(x). 
Q JQ 

Here, W); i 
Q 
is a constant matrix defined as follows: given the norm〈PW〉p,Q,let Kw be the closed unit ball in 

配 withrespect to this norm: 

碍＝｛VE酎：〈PW〉p,Q(v)~ 1}. 

Then Kw is a convex set in配， sothere exists a unique ellipsoid of maximal volume, called the John ellipsoid 

and that we denote by E~, such that E~ c K~ Q, Q w e、lEi.Finally, there exists a matrix wi such that 
Q 

叱＝％ B, and the norm induced by this matrix is equivalent to〈PW〉p,Q・ The matrix Wむisreferred to as 

the reducing matrix associated to Won Q. Note that when d = I, Wもisjust the p-average of the weight. 

They showed that the auxiliary maximal operator maps LP（町，配） into£P（町）； thiscan be done using 

Calder6n-Zygmund cubes and an argument analogous to that for the maximal operator. Then, via a stopping 

time argument, they showed that IIMw fib（知訳） ~CIIMwflb（応砂

Given this maximal operator, to prove weighted norm inequalities for singular integrals they adapted the 

ideas of Coifman and Fefferman to prove a good-入inequality.Define 

Twf(x) = sup IWi(x)T,(W―凡f)（x)|．
€>O 

Then for every smooth function f with compact support, they proved that there exist constants O < b < 1 and 

c > 0 such that for all入＞ 0,

l{x E即： Tげ(x)>入，max{Mげ(x)，Mw如）｝ ＜ c入｝I:::;紐別{xE町： Tげ(x)＞ b入｝1．

As in the scalar case, this approach to proving matrix weighted norm inequalities does not yield quantitative 

estimates on the constant in terms of the [W].Ap characteristic. After the proof of the scalar A2 conjecture by 

Hyti:inen, it was conjectured that the corresponding result holds for matrix weights: for 1 < p < oo, 

max{l,p'-1} → 
||Tf|LP(W)::;C[W].Ap | f||LP(W)・

This problem was first considered by Bickel, Petermichl and Wick [6] and by Pott and Stoica [51] when p = 2. 
More recently, Nazarov, Petermichl, Treil and Volberg [43] showed that when p = 2, they can get a constant 

of the form C(n, d, T)[W]は (Alsosee [20].) Their proof is based on a deep generalization of the sparse 

domination estimates described above in the scalar case; they then estimate their sparse operator using square 

function estimates. 

The sparse operator introduced in [43] replaces vector-valued functions by averages that are convex sets. 

They show that given f E L';'（町，配），thereexists a finite collection of sparse sets {Sn}：：＝1 such that 

(3.4) 叫 ECf.区〈〈か如(x),
n=l QESn 

where〈〈f〉〉Qis the convex set 

〈〈加＝｛fQk(yげ(y)dy: k E £00(Q), llklloo <::'. 1 }, 
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and the sum is the (infinite) Minkowski sum of convex sets (see below for a definition). They referred to this 

estimate as a convex body sparse domination. To complete their proof, however, they did not work directly 

with these convex set-valued functions, but rather replaced them by vector-valued sparse operators of the form 

T汀(x)＝こf匹 (x,y)蜘）dy,
QESJQ 

where for each Q,'PQ is a real-valued function supported on Q x Q such that, for each x, II匹 (x,・)lloo <:'. L 

These they est血atedusing square function estimates. 

In the case p =J 2, quantitative results were proved by the author, Isralowitz and Moen [16], who got a 

constant of the form 

C(n, d, p, T) [W] 
1十 l _l 

p-1 p 

Ap 

They used the sparse domination result of Nazarov, et al. and reduced to the vector-valued sparse operators, 

but instead of using square function estimates, they adapted techniques from the theory of AP bump conditions 

in the study of scalar, two-weight norm inequalities. In both proofs there is a loss of information: even in the 

scalar case these techniques do not yield the A2 conjecture. So the problem becomes to work directly with the 

convex set-valued sparse operator. 

4. CONVEX SET-VALUED FUNCTIONS AND MATRIX WEIGHTS 

The convex body sparse operator of Nazarov et al. introduced a powerful new tool into the study of matrix 

weights. Building upon these ideas, we further developed the theory of convex set-valued functions to prove 

Jones factorization and Rubo de Francia extrapolation for matrix weights. This problem was first raised by 

Nazarov and Treil [45]: 

Actually, the whole theory of scalar (AP)-weights can be transferred to the matrix case except 

two results…the Peter Jones factorization and the Rubio-de-Francia extrapolation theory. But 

today (May 1, 1996) we do not know what the analogues of these two things are in high 
dimensions. 

Their assessment at that time was somewhat optimistic: for instance, there is still not a complete theory of 

reverse Holder inequalities for matrix weights (though see [21]). Nevertheless, they did identify two funda-

mental problems in the study of matrix weights. W皿efactorization and extrapolation are interesting in and 

of themselves, they gained greater importance with the study of the matrix A2 conjecture. As we described 

above, extrapolation played an important role in proving the scalar A2 conjecture. Moreover, for a number of 

technical reasons matrix A2 weights are easier to work with than matrix Ap weights, p =J 2. (E.g., the simpler 

definition (3.1) can be used.) Therefore, it seems natural to try to prove a sharp version of extrapolation in the 

matrix case. 

Both results have been fully proved for matrix weights. Here we state the two main theorems from [7]. 

Theorem 4.1. Given 1 < p < oo, then W E Ap if and only if there exist commuting matrices vVi。,W1E A1 

such that 

W=WoW戸．

Remark 4.2. For simplicity and ease of comparison to the scalar case, we state Theorem 4.1 assuming that 

the matrices Wo and W1 commute. We can remove this hypothesis, but to do so we must replace the product 

W。iW { with a more complicated expression, the geometric mean of the two matrices: see [ 5]. 
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Theorem 4.3. Given Po, 1 <::: Po < oo, suppose that for some operator T and every Wi。EAp0, 

(JRn |W。命TflPodx))此<:'.Np0([Wi。恥）（！Rn|W。町1Podx)命
Then for all p, 1 < p < oo, a叫 WEAp,

(/ I 1 → i 即町Tf『dx)）くふ([W]p)(Ln 1wi庁dx)

Remark 4.4. We actually prove a more general version of Theorem 4.3, replacing the operator T by a family 

of pairs of functions (f,g). This more abstract approach to extrapolation was first suggested in [19] and 
systematically developed in [18]. As an immediate corollary to this approach we get via extrapolation vector-

valued inequalities of the form 

(Ln（言IW(x)Tfk(xwfdx f く（！Rれ（言|W(x)f以x)|q)§ dx) i, 

1 < q < oo. Such inequalities appear to be new in the matrix weight setting. 

Remark 4.5. In Theorem 4.3 the function芯 dependingon NP。hasexactly the same form as the functions 

gotten in the sharp constant extrapolation theorem of Dragicevic, et al. [22]. This is precisely what is needed 

to reduce the matrix A2 conjecture to the case p = 2. 

The proofs of Theorems 4.3 and 4.1 are both long and extremely technical, and it is beyond the scope of 
this article to give many details. Instead we will provide a conceptual overview of the proofs and of the tools 

we developed for them. As part of the proof we have begun to lay the groundwork for studying harmonic 

analysis on convex set-valued functions. These results are of interest in their own right. Moreover, beyond 
their application to proving these two theorems, we believe that it will be useful for exploring more deeply the 

convex body sparse bounds of Nazarov, et al., and so will be an important tool for proving the A2 conjecture. 
We will return to this point in the next section. 

Underlying our proofs of Theorems 4.3 and 4.1 was the systematic philosophy of trying to replicate the 

proofs of extrapolation and factorization in the scalar case, particularly the elementary proofs of these results 
in [15, 18]. As we noted above, the proofs of extrapolation and factorization depended on the duality of scalar 

Ap and sharp bounds for weighted norm inequalities for the maximal operator; these in tum were used to build 

the Rubio de Francia iteration operator. Extrapolation further required the Jones factorization theorem, though 

as we saw in the proof sketched above, we only used the easier direction of this result. 

The fundamental technical obstacle to the proof was lack of an appropriate definition of the maximal op-

erator. W血ethe Christ-Goldberg maximal operator Mw  was sufficient to prove strong (p,p) bounds for 

singular integrals, it has the drawback that it maps a vector-valued function f to scalar-valued function Mw  f. 
Therefore, it cannot be iterated, and so cannot be used to construct a Rubio de Francia iteration operator. To 

overcome this problem, we passed from vector-valued functions to the larger category of convex set-valued 

functions, and defined a convex-set valued maximal operator. 

We begin with some definitions related to convex sets. For complete details, see [7] and the references it 

contains. Let K, denote the family of all convex sets K C JRd that are closed, bounded, and symmetric: i.e., 

if x E K, then -x E K. Sometimes it is necessary also to assume K is absorbing: that is, that O E int(K). 

However, we will not worry about this technical hypothesis. Given a set K c配， letIKI = {lvl : v E K}; 

given a matrix W, define W K =  {Wv: v EK}; note that WK  is also a convex set. Given two convex sets 

K and L, their Minkowski sum is the set K + L = { u + v : u E K, v E L}. 

As we noted above, every norm has associated to it the convex set which is its unit ball. The converse is also 

true: to every convex set K these is associated to it a unique norm, p K on配． Moreover,arguing as we did 
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before, there exists a matrix W such that p K ~ pw. While we generally want to work with matrices W E Aか

at key points in the argument it is necessary to pass to working with more general norms and the underlying 
convex sets. 

We now define convex-set valued functions F; there is actually a well-developed theory of such objects, but 
it does not appear to be well-known among harmonic analysts: see [3, 9]. Let F :町→ Kbe such a map. 
There are several equivalent ways to define measurability of such functions F; for our purposes a useful and 

intuitive definition is that there exists a countable family of functions Ji :町→配 suchthat for almost every 
X, 

F(x) =｛五(x): k EN}. 

Such functions are referred to as selection functions. 

Given such a convex set-valued function F, we can define for each x the associated John Ellipsoid E(x). 
This ellipsoid-valued function is measurable. This fact has been used in the literature (see, for instance, Gold-
berg [27]) but we could not find a proof in the literature; a proof is given in [7]. 

The integral of a convex set-valued function can be defined using selection functions-this object is referred 
to as the Aumann integral [4] (see also [3]). Given !1 c JRn and a function F : !1→K, define 

s1(n,F) = {l EL叩配） ：和） EF(x)}. 

Then the Aumann integral of F is defined to be the set 

l F(x)dx= {fol1）dx:{ES叩，F)}

It can be shown that since F(x) is closed, bounded and convex, the Aumann integral is also a closed, convex 
set in配．

There is a close connection between the Aumann integral and the convex averages〈〈f〉〉Qused by Nazarov, 

et al. to define their convex body sparse operator. Given a vector-valued function f, define F,(x) to be the 

closed convexhull ofthe set {f(m)，-fけ）｝． Then『 isameasurable, convex set-valuedfunction, and 

〈〈恥＝f加）dx.
Q 

Thus, the convex body sparse operator Ts is a convex set-valued function as defined above. 

We use the Aumann integral to define a convex set-valued maximal operator. Given F :町→ K,let 

MF(x) =conv囚£F(y)dy・xQ(x)} 

that is, MF  is the closed, convex hull of the union of the Aumann integral averages of F over all cubes 
containing x. Then MF(x) is a measurable, convex set-valued function. The intuition behind this definition is 
that the Hardy-Littlewood maximal operator finds the largest average in magnitude, and so uses the supremum. 
The convex set-valued maximal operator finds the largest average in magnitude in each direction; to preserve 
the information about direction we take the union of all averages. 

It should be noted that this maximal operator does not preserve some natural subsets of K. For instance, 

given a vector-valued function f, then M F→can be an absorbing convex set that properly contains the convex 

set that is the closure of { M f~ -M f}. If F is ellipsoid-valued-that is, F = WB, where W is a matrix valued 
function-then MF  need not be ellipsoid valued. 

The convex set-valued maximal operator has a number of properties that correspond to those of the Hardy-
Littlewood maximal operator: for convex set-valued functions F and G, almost every x E町， anda E [O,oo), 
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(1) F(x) c MF(x); 
(2) M(F + G)(x) c MF(x) + MG(x), where the sum is the Minkowski sum; 
(3) M(aF)(x) = aMF(x). 

The maximal operator M also satisfiesび norminequalities. For 1 :S: pく oo,define Lt（即， I・ I) to be the 
collection of all convex set-valued functions F such that 

|F||Lt （知， 1•| ） = （J|F(x)|pdm)} ＜ oo. 
応

Then for 1 < p < oo we have that IIM FIILk:(団|·|） :S:CIIFIIL[ （即， 1•| ）・

Weighted norm inequalities for the convex maximal operator are governed by the matrix Ap weights. Define 
Lk（町，W)= Lt(W) to be all convex set-valued functions F such that 

||F||Lt（応，W）= (J 叫 (x)F(x)IPdx)；； ＜00. 
ll!.” 

Theorem 4.6. Given p, 1 < p < oo, and W E A炉 forevery FE  Lt(W), 

IIMFIILk:(W) :S: C(n,d,p)[WJ~;1IIFIILk:(W)· 

The proof of Theorem 4.6 uses the LP norm inequalities for the Christ-Goldberg maximal operator Mw; 

the sharp constant in terms of [W]A" was proved by Isralowitz and Moen [34]. It would be of in匹 estto have 

a direct proof that did not require using the Christ-Goldberg maximal operator. 

We now define the analog of the A1 condition for convex set-valued functions. Given F :即→ K,we say 

that F E Af if MF(x) c CF(x). Denote the infimum of all such con血 ntsC by [F]A/C．There is a very 

close relationship between convex set-valued Af and matrixふ．

Theorem 4.7. Given a matrix weight W, WE  A1 if and only if F = WB  E Af, and [W]ふ～ ［FlA/C． 

The proof of this result required a careful development of the properties of norm functions and their duals 

on the one hand, and the properties of convex sets and their polar bodies on the other. 

With the machinery we have developed, we define the convex set-valued analog of the Rubio de Francia 

iteration operator. Given F :町→ /CandWEふ 1< p < oo, define 

OO Mり (x)
紅（m)＝こ

k=O 
2kllMII~ ・牧 (W)

Then RF has the following properties which are the exact analogs of the properties of the scalar iteration 

operators: 

(1) F(x) c RF(x); 

(2) IIRFIILk;(W) :S 2IIFIILk;(W); 

(3) RF E Af and [RF]A~ :S 2IIMIILk(W)・ 

We now give an overview of the proofs of Theorems 4. l and 4.3. The proof of factorization in the Jones 

factorization theorem follows the scalar proof in [15] closely. There is one major technical obstacle: the 

scalar proofuses a variant of the Hardy-Littlewood maximal operator, Ms f (x) = M (If Isけ，s> l, which is a 

sublinear operator. To define MsF(x), requires replacing F by an appropriate ellipsoid (so that the power『 is
defined) and then proving that the resulting operator is sublinear. The converse, proving reverse factorization, is 

very delicate and much more difficult than in the scalar case. We were not able to prove it using the definitions 

of matrix Ap and A1 given by Roudenko and Frazier. For this proof we were required to work with the 
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definition of matrix Ap in terms of norms as originally given by Treil and Volberg. Intuitively, the proof can be 
thought of as an interpolation argument between finite dimensional Banach spaces. 

The proof of extrapolation follows the proof of sharp constant extrapolation in the scalar case given in [18]. 

Because of the way in which we define the matrix Ap condition, we are also able to include naturally in the 
proof a result for extrapolation from the endpoint p = oo; this gives a quantitative version of an extrapolation 

result first proved by Harboure, Macias and Segovia [29]. Recently we learned that this quantitative version 
was proved earlier by Nieraeth [ 46, 47]. The proof uses reverse factorization and also requires passing between 

convex set-valued functions and closely associated ellipsoid valued ones. 

5. FINAL REMARKS ON THE MATRIX A2 CONJECTURE 

In this final section we return to the matrix A2 conjecture. As noted above, given Theorem 4.3, it is enough to 

prove the A2 conjecture in the case p = 2, as our version of matrix extrapolation yields the sharp constants for 
the other values of p. Moreover, the machinery of harmonic analysis on convex set-valued functions provides 

a way to work with the convex body sparse operator directly, avoiding the loss of information in the proofs 

in [16, 43] that yielded the best known estimates. We believe that this approach will yield the proof of the 

conjecture. 

We illustrate this approach by sketching a proof of weighted norm inequalities for the convex set-valued 

sparse operator that is quite elementary, but yields a suboptimal constant. By inequality (3.4) this yields an 

elementary proof of a matrix weighted norm inequality for singular integrals. Given FE  Li(W), by a duality 

argument we can show that there exists G E  Li(w-1), IIGIILt(w-1) :::; v'd, such that 

TsFIILk(w) S 1〈TsF(x),G(x)〉dx.
知

If we apply the definition of Ts, linearity, and Cauchy's inequality, we get 

s2~<l F(y) dy, l G(y) dy〉|E(Q)I

＝五f 〈f 吐x)w-½(y)W州）F(y)dy,
E(Q) ¥JQ 

£ w-½(x)W叫）w-ら (y)G(y) dy〉dx
s b.l~ Mw(w½ Mw(W1 F)Mw-1 (W―1G)dx 

QES 底

S IIMw(Wザ） L2IIMw-1 (w-½ G) 11£2, 

where Mw  is the Christ-Goldberg maximal operator. By the sharp constant estimate for Mw, 

sC[W]〗』|FIILい (W)||G||Lい (W-1)

sC[W]〗2||F||Lい (W)·

In order to prove the sharp constant result using this approach, we would like to follow the scalar proof 

sketched above, which used the universal dyadic maximal operator Mi. We have shown that the above argu-

ment can be modified to replace the Christ-Goldberg maximal operators with an operator Mi'{, that is a matrix 
weighted version of the universal dyadic maximal operator. If this operator were bounded onび(W)with a 

constant independent of the A2 characteristic of W, then we could prove the matrix A2 conjecture. However, 
~ d 

Nazarov, Petermichl, Skreb, and Treil [44] recently showed that there exist matrices W such that M{i, is not 
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bounded onび(W).It remains an open question whether the above approach can be further adapted to over-

come this obstacle, if a new approach to this problem is required, or if the matrix A2 conjecture is false and an 

exponent larger than 1 is required. 

As in the scalar case, the currently best known exponent ~ seems unnatural. However, it is worth noting that 
this exponent has recently appeared as a lower bound in the search for the sharp constant for rough singular 

s(d) 
integrals [30]. If one could prove a bound of the form [WJ1;1, where s(d) was some exponent depending in 

the dimension d, 1 :S: s(d) :S: ~ and s(l) = 1, then a bound larger than 1 might be seen more reasonable. 
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