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Bergman, Szego and Sobolev kernels

Akira Yamada

Abstract
Two topics are outlined below:

Part I: Results concerning Hejhal’s theorem about the relation be-
tween the Bergman kernel and the Szego kernel on planar regular
regions.

Part II: Determination of the explicit formula for the reproducing
kernel of the Sobolev space on a bounded interval.

Part I. The Bergman and the Szego kernel

1 Introduction

Let © be an n-ply connected planar regular region (¢ = n—1), where a planar
regular region is a domain in the complex plane which is bounded by a finite
number of disjoint analytic Jordan curves. In 1950 Schiffer [18] obtained the
identity between the Bergman and the Szego kernels:

9
Kp(z,w) = 47 K2(z,w) + Z hijvi(2)v;(w),
ij=1

where H = (h;;) is a Hermitian matrix, and {v;}7_; is a canonical homology
basis of the Abelian differentials of the first kind on the Schottky double €2
of Q. In 1972 Hejhal [10] succeeded to prove the positive-definiteness of the
matrix H (i.e. H > 0). Hejhal’s theorem implied 47 K% < Kp, one of the
most important facts in the theory of kernel functions and complex analysis
in the complex plane. His theorem was obtained by using Riemann’s theta
function, and, indeed, considered to be a very deep result. So, the next

question naturally arises: Is there an elementary proof of H > 07
Unfortunately, we could not obtain another proof, though we obtained [21]



e Some results concerning Schiffer’s identity and Hejhal’s theorem by
introducing integral operator whose kernel is the product of Szego ker-
nels.

e H >0 <= contractivity of the integral operator + equality condition
for the norms.

This article is an expository report of our recent results, and the details
and proofs will be given elsewhere.

Notation. We adopt the following notations:

e B = {f: regular functions in Q with [, |f|*dzdy < co}: the Bergman
space on €2, Kg: the Bergman kernel on ).

e Bp = {f € B in Q) with single-valued indefinite integral}: the exact
Bergman space, Kg: the exact Bergman kernel on (2.

o S ={f: regular functions in Q with [, | f|?|dz| < oo}: the Szegd space
on (2, Kg: the Szego kernel on €.

e 5%2: the tensor product RKHS S ® S on 02, Kgfﬂ = Kqg® Kg: its
reproducing kernel.

e S*2: the operator range of the pullback f € S®2 — fo ¢ € C* with
¢: x € Qs (x,2) € O, whose reproducing kernel is KZ.

1.1 The operator range and the reproducing kernel

A Hilbert space H is called a reproducing kernel Hilbert space (RKHS) if H
is a functional Hilbert space ‘H on a set F such that the evaluation map is
bounded for every point z € E: Vf € H, Vo € E, 3C, > 0 s.t. |f(z)] <
Ce|If|l. For the general theory of RKHSs the reader is referred to e.g. [3,4,15].
By the Riesz representation theorem, for any x € FE there exists a unique
function k, € H such that f(x) = (f, k), Vf € H. The function k, € H is
called the reproducing kernel for the point x € E. k(z,y) = ky(z) = (ky, kz)
is the reproducing kernel for H. If k(x,y) is the reproducing kernel of a RKHS
on F, then it is easy to see that k > 0 on F, i.e. Vn € N, Vay,..., 2, € E,
Yey, ..., ¢, € C, ZZ]:l ¢;Cik(x;, ;) > 0. Most important is the fact that the
converse holds [3], i.e. if £ > 0 on E, then there exists a unique RKHS on F
whose reproducing kernel is k.
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Definition 1.1. Let H be a Hilbert space. For a continuous linear operator
A: H — CF, we have a linear isomorphism:

(ker A)= = ran A.

The operator range M(A) is the space ran A = A(H) equipped with the
inner product induced by the above isomorphism. M(A) is a Hilbert space,
and its norm || - || r¢(a) is called the range norm, which is given by

[yl rmay = inf{[|z]|: Az =y, z € H}.

Consider a complex topological vector space V' contained in the product
space CF such that the inclusion operator V — C¥ is continuous. The space
C¥ itself and RKHSs on E are examples of such spaces.

Theorem 1.1. Let V' be as above and let H be a Hilbert space. Then, the
operator range M(T) of a continuous linear operator T: H — V is a RKHS
on E, and the reproducing kernel k, of M(T) for the point y € E is given by

k, = TT*5, = Tg,,

where §,, € V* is the point evaluation map of V aty € E, and g, € H s the
Riesz representation of the continuous linear functional f € H — (T f)(y) €

C ue (Tf)(y) = ([ gy)u, Vf € H.
In particular, iof V is a RKHS on E with the reproducing kernel K, for
y € E, then,
ky=TT"K,, k(z,y)=(T"K,,T"K;)n,

where k(x,y) is the reproducing kernel of M(T).

1.2 Sum and product of reproducing kernels

We summarize here basic facts about the sum and the product of reproducing
kernels.

e If k; is the reproducing kernel of the RKHS H;, on E (j = 1,2),

]{1, k2>>0 — k1+k2 > 0, klkz > 0.

e The RKHSs Hg, 1, and Hy,k, are, respectively, the operator range of
the following maps:



(a) fog € Hp, ®Hp, — f+g € CE. The identity (f + g)(y) =
(f ©g,k1y ® ko) shows that k, = k1, + ko by Theorem 1.1.

(b) f®& g€ Hi, @Hy, — fg € CE which is given by the pullback of
the map 62 7 € E — (,2) € E2, 50 (fg)(y) = (f © 9, kvy ® hny)
implies k, = ki ko, by Theorem 1.1.

Proposition 1.1. Let Hg, and Hg, be RKHSs on E. Then, as vector
spaces, Hi,+x, = Hig, + Hr,, and for f1 € Hi, and fo € Hg, we have the
Pythagorean inequality

11+ Fll o, < I, + el
Equality holds in the above inequality if and only if
(frs M), = (fos My,  forallh € Hy, NHE,.

Proof. See [3, p. 352] and [16, p. 44]. O

2 Useful identities

The conjugate kernels of Kz, Kr and Kg are denoted, respectively, by Lp,
Lg and Lg. Since the conjugate kernels are important for calculations in-
volving kernel functions, we summarize known identities among them without
proof (cf. Bergman [4, p. 50, 60, 80]).

Proposition 2.1. The following identities hold for z,w € 2.

2 ?°G(z,w) 2 0%G(z,w)

K __20xaw) L __2fxaw)
B 0) = =5 o B3 0) = = o

2 0°N(z,w 20°N(z,w

Kp(z,w) = T 8259@ )’ Lp(z;w) = T 82(810 )

(2, ) = %[N(z, w) — Gz, w)).

Let {v;}{_; be the canonical basis of the holomorphic differentials on the
double .
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Theorem 2.1 (Sghlffer (18], 1950). There exist Hermitian g X g matrices

H = (h;r), H = (hjr), C = (¢;i) such that the following identities hold.
g —_—
Kp(z,w) = 47 Kg(z,w)* + Y hj;(z)v(w), (1)
k=1

drKg(z,w)?* = Kp(z,w) + Z hpvi(2)ve(w),

jk:l

Kp(z,w) = Kg(z,w) Z cipvi(z

7,k=1

C=H-+H.

Hejhal has made a great breakthrough step forward by refining the result
of Schiffer. If (27il,, 7) is the period matrix of the compact Riemann surface
Q, then, from the symmetry of Q‘/ 7 < 0. The Riemann’s theta function 6(z)
is given by

0(z) = Z exp{imr'm +m'z}, ze€C.

meZ9

Theorem 2.2 (Hejhal [10], 1972).

9?1log6(0
Kp(z,w) = 4t K3(z, w) Z &z%z vi(2)vj(w).
i0Zj

Note that Hejhal’s identity is a special case of Fay’s trisecant formula [9]:
foree CY9, z,y,a,b € R,

flx—a—e)f(y—b—e) Olx—b—e)fly—a—e)
E(x,a)E(y,b) E(x,b)E(y, a)
_ _Oe)f(zt+y—a—b—e)E(zx,y)E(b a)

E(z,a)E(z,0)E(y,a)E(y,b)

where F(z,y) is the prime form.

92 log 6(0)

Corollary 2.1. H = 77_1< D202,

) >0 and 47 K3 < Kop.
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Proof. Since 6(z) is an even function,
M( - 0(0)6:;(0) — 0:(0)6;(0) _ 0
02,07, 62(0) 0
Clearly, 0(0) > 0, and we have
0,;(0) = Z mym; exp{smr'm}.

meZ9

<
—
o
S~—

—~
(==}
SN—

Thus, it is easy to see that (6;;(0)) > 0, which implies (gi}gng(())) > 0. From

Schiffer’s identity and the fact H > 0 it follows easily that 47 K2 < Kz. O

In what follows, we shall call the fact H > 0 as “Hejhal’s theorem”.

2.1 Schiffer’s identity

The following Schiffer’s identity [18, p. 346] led us to begin the study of our
paper.

Proposition 2.2 (Schiffer, 1950). If f is a reqular function on Q with finite
Dirichlet integral, then, for z,w € 2,

J [ Kl OBs(w,0)£1(€) deity = 57) ~ F)s(zrw),

where Lg is the conjugate kernel of the Szego kernel K.
Letting w — z, for f € Bg,

4 / / Ks(z, Q2 F(C) dedn = f(2).

Exploring the meaning of this formula was the motivation that led us to
the research of this paper.

3 Integral operator and Hejhal’s theorem

Let H be a RKHS on E and let ¢: F — E be a map. Then, the RKHS
¢*(H) on F', the pullback of H by ¢, is defined as the operator range of H
by the linear map given by

feHm ¢'f=fogpeCl,

which induces a coisometry Tj,: H — ¢*(H).
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Lemma 3.1. Let H and IKC be RKHSs on a set E and F', respectively. Suppose
¢*(H) C K and let v: ¢*(H) — K be the inclusion operator. Then,

i) The operators v and T’ = /Ty,: H — K are bounded.
¢

(ii) For f € K, z € E and w € F, the adjoint T* is given by

(T"f)(2) = (f k= © D)k,
T"K, = k‘¢(w),

where k, and K,, are the reproducing kernels for z € E of H and for
w € F of K, respectively.

Proof. Ry is bounded because by definition Ry is a coisometry. Since ¢*(H)
and IC are both RKHSs on F', usual application of the closed graph theorem
implies the boundedness of the inclusion ¢, so that R is bounded. By the
reproducing property, for z € E and f € K,

(R*f)(z) - <R*f7 kz>’H - <f7 sz>’C - <f7 kz o ¢>’C
Putting f = K, in the above we have the second identity. O
Lemma 3.2. S*% = B as vector spaces.

Proof. From the identity (1) we easily conclude that there exists a constant
M > 0 such that

drKs(z,w)? < Kp(z,w) + MZvj(z)vj(w).

Jj=1

Since K2 is the reproducing kernel of the RKHS S*2, by the general theory of
the reproducing kernel we have S*?2 C B+T. Since I' is the space of the first
kind of Abelian differentials on €2, it is clear that I’ ¢ B. Thus, $*2 C B. On
the other hand, by a similar reasoning we see that B € S*2+TI". FromI' C S
and 1 € S, we conclude that I' ¢ S*2. Thus, B C $*?, and so B = 5*? as
vector spaces. O

Let Q be a planar regular region, and let §: z € Q — (z,2) € Q x Q be
the diagonal map. Since S*? = §*(5%?), Lemma 3.1 and Lemma 3.2 imply
that the inclusion operator ¢: S*? < B and the operator T = tRs: S*? — B
are bounded.



Theorem 3.1. The following hold.
(i) If f € B, g€ S*? and (z,w) € Q?, then

T*f(z0) = (. Ks.Ksu)s = / Ks(z, O Ks(w,0) £(C) dm(Q),

TT () = (1)) = [ [ Ksle.07 70 dm(0),
R;Q(sz) <gaKSZKSw Sx2.
(ii) If f € Bg, then

T*f(zow) = 27 Ly (2, w) / F(0)d¢ € 52,

ArTT*f =4mn . f = f.
(i) The operator T is surjective, and its adjoint T* is an injective left semi-
Fredholm operator with ranT* = (ker T)* closed in S®2. Also, 1 is a
linear topological isomorphism.

(iv) If f = fe®v € B @& T is the orthogonal decomposition of f € B, then

g
ArTT* f = fp+ Z hjk (v, v;)vg.
Jrk=1

The operator TT* is invertible with TT*(Bg) = Bg and TT*(I') =T..

Proposition 3.1. For planar regular regions, the matrices H and C are
positive definite, and we have

(T*v;, T ) go2 = 772/ (/ Ki(z,w) %) dz.
B, M B;

We next prepare a lemma concerning the relation between a Hermitian
matrix and a finitely generated reproducing kernel.

Lemma 3.3. Let K(z,w) be the function

K(Z7w) = Z ajkfj(’z)fk(w)v
jk=1
where A = (aji) is an n X n Hermitian matriz, and {f;}7_, is a linearly
independent set of functions on E. If f = '(f1,..., fa), then the following
hold.
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(i) A>0 if and only if K(z,w) >0 on E X E.

(ii) If A > 0, then the RKHS Hy on E with the reproducing kernel K is
given by span{f(z)*Af: z € E} with the inner product satisfying

(FE)AS f(w) Af ) = (Af(w), f(2)cr = (f(w), Af (2))cn
Also, we have dim H = rank A.

Proof. (i) If A > 0, then by setting 5; = > 7" o fi(z), 7 = 1,...,n, for
any meN, o; € Cand z; € E, j =1,...,m, we have

Z ax K (2x, 21) = Z ai;fif3; > 0. (2)

k=1 ij=1

Thus, K > 0.
Conversely, suppose that K > 0. Let V' be the subspace

{(B) €T an,. .0 €C; 21, 2m € B (m=1,2,...)}

of C™. In view of (2), to prove A > 0 it suffices to show that the orthogonal
complement V+ = C" & V of V is {0}. So let us suppose that (¢;) € V*.

Then,
0= 8= ary &fi(z)
j=1 k=1  j=1

Since o, € C and z;, € F are arbitrary, we have Y 7 | ¢; f; = 0. Since {f;} is
linearly independent, (¢;) = 0, as desired.

(ii): First, define the inner product for elements of the form f(z)*Af,
z € F, by

(Fw) AL, [(2) Af) = (Af(2), f(w))en = (F(2), Af (w))en-

Next, expand the definition of the inner product to all the elements of Hx by
linearity. This inner product for H is well-defined. Indeed, 3, a; f(w;)*Af =
0 on E if and only if (f(2), A, @;f(w;))cn = 0 for all z € E. Thus, the
inner product is well-defined for the first variable of the inner product. Sim-
ilarly, it is also well-defined for the second variable. The extended Schwarz
inequality gives its positive definiteness.
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By definition of the inner product, we have

(f(w) Af, f(2)"Af) = f(w)" Af(2).
Thus, H is a finite dimensional RKHS on E with the reproducing kernel K,
since K, = f(2)*Af = K(-,z). Now by diagonalizing the Hermitian matrix
A, there exists a unitary matrix P and the eigenvalues {\j}i-; of A such
that \; >0(j=1,...,0),\;=0(j=0+1,...,n), and
P*AP = diag(A1, ..., A\n)-
Ifg="%q,...,9,) = P*f, then f = Pg and
K(z,w) = (Af(2), f(w))en = (PTAPg(2), g(w))en

= Z Aig;(2)g;(w)

Since {g; } is linearly independent, the form of K as above shows that {)\1/ ? 9iYi-1
is a CONS for Hy. Thus, dim Hx = 0 = rank A. O

Theorem 3.2. The orthogonal decomposition S*? = Br & I's holds, where
Iy is the set I considered as a subspace of the RKHS S*2. More precisely,

for f=fi& faand g= g1 © g2 in B ® g,
(f,9)sx> =4n(f1,91)B + (f2, g2) 52

In particular, 2+/7 || f||z = || f||sx2 for all f € Bg.

We next state Douglas’s formula for the Dirichlet integral of harmonic
functions on a planar regular region.

Theorem 3.3 ([6,7,11]). The Dirichlet norm | f|lp of a complez-valued
harmonic function f with finite Dirichlet integral on a planar reqular region
Q is given by:

0?G(z
== [ [ 106 = s . as,,

where 0/0n denotes the outer normal derivative and the value f(z) is the
nontangential boundary value of f at a.e. z € 0.
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Along 0f2 we have

M ds = 2G,(z,w) dn, = 2iG, dz,
on,
so by Proposition 2.1, for z,w € 99, (z # w),
0*G(z,w) O*G(z,w)
77 = —47’ = 2 L .
R ds, ds,, 5200 dzdw mLp(z,w) dzdw

Hence, by using the conjugate Bergman kernel L g, Douglas’s formula is given
by:

IfII5 = %/dﬂ /asz If(2) — f(w)|*Lp(z,w) dzdw.

In 1981 Saitoh [14] obtained a similar formula which was an analog of the
Douglas’s formula for analytic functions. We give another proof of Saitoh’s
result by using Theorem 3.1.

Corollary 3.1 (Saitoh, 1981). If f is a Dirichlet-finite analytic function on

a planar regular region 2, the Dirichlet norm of f is given by

1F1ID = 77/8Q ., |(f(2) = f(w))Ls (2, w)[*|dz|dwl,

where Lg is the conjugate Szego kernel of ).

Proof. Since df € Bpg, by Theorem 3.1 (2) we have 47 T'T*df = df and
T*df =2 'Lg(z,w)(f(z) — f(w)). Thus,

1516 = N, = 4, TTdf) 5 = 47
= [ [ 17 - f@)Lslz 0Pl dul.
J O J o

3.1 Conditions equivalent to H > 0

Finally, we give several conditions equivalent to Hejhal’s theorem as equality
conditions for some contraction operators. To this end we need a lemma.

Lemma 3.4. If an operator W: Hy — Hs is a contraction between Hilbert
spaces Hy and H,, then for f € Hy the following are equivalent.



@) Wl = 11111
(ii) W*W f = f.
(iif) W WA = L]l
Also, if this is the case, then |[W*W f|| = ||W f]|.
Proof. Tt [W £ = |, then by [[W*W] < 1,
W Wf = fIF = W W =2 WFII* + || I
= [WWfI* = fII* < 0.
Thus, W*W f = f, and so (iii) holds. That (iii) implies (i) is clear from
LA =W W < WAL < IIA1-

If (iii) holds, then [[W*W f|| < [W f|| < [[f[| = [W*W f]|. Thus, [W*W f|| =
WA U

Theorem 3.4. Let K = Kp — 4w KZ%. Then, the following are equivalent.
(i) H > 0 (Hejhal’s Theorem,).

(ii) H > 0 and dimHg = g, where Hy is the RKHS on Q2 with the repro-
ducing kernel K.

(iii) 2¢/7e: S*% — B is a contraction, and f € S** is isometric with
2\/muf if and only if f € Bp.

(iv) 24/7T: S¥? — B is a contraction, and f € S®* is isometric with
27 T/ if and only if f € T*(Bg).

(v) 2¢/7T*: B — S%% is a contraction, and [ € B is isometric with
27 T*f if and only if f € Bg.

(vi) 4nTT*: B — B is a contraction, and f € B is isometric with 4w TT* f
if and only if f € Bg.

(vil) 4mw*: B — B is a contraction, and f € B is isometric with 4mu* if
and only if f € Bp.

(viil) 2/7¢*: B — S*? is a contraction, and f € B is isometric with 2,/ 1* f
if and only if | € Bg.



64

Part II. Reproducing kernel of Sobolev space
on an interval

4 The Sobolev space on a bounded interval

Let I = (a,b) be a bounded open interval on R and let n € N.

Definition 4.1. The Sobolev space H"(I) is the space of complex-valued
functions f on I such that fU) € CJ(I) (j = 0,...,n — 1) and "V is
absolutely continuous on I with finite norm [1], [5]:

112 = (. F)s Z/|f<k> )2 da (3)

e H"(I)is a RKHS on I = [a,b].

e In 2003 Watanabe [20] obtained an explicit form of the reproducing
kernel for n =1, 2, 3.

e Our result: explicit forms of the reproducing kernel K (z,y) of H"(1)
for general n [22].

4.1 Conditions for the reproducing kernel
Proposition 4.1. Suppose that a function K(x,y) € C>(R?) satisfies the
following conditions (i)—(v): for all z, y € [a,],

n n

(i) Z(_l)kgmg—’:(%y) = Z(—l) a@y%( ,y) = 0,  (Euler-Lagrange

k=0 k=0
equation)

e oI .
(i) Y (—1)kw(a,y) =0,(j=0,....n—1),

R D .
(iii) Z (—1)km(y,b) =0,(=0,....,n—1),

k=j+1
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n

] 82k 1—]K 82k 1—jK )
(iv) Z (—1)k{m(y,y) - W(?Jay)} =djo, (1 =0,...,n—

.
(v) %[f(yy) %[j(y y), (1=0,...,n—1).

Then, the function
K(z,y), (z=<y),
k(z,y) = @9), @=y)
K(y.z), (y<u=),
is the reproducing kernel of H"(a,b).

This proposition is obtained by integration by parts. An outline of the
proof is as follows. If f € H"(a,b) and g € C*(R), k = 0,...,n, then by
integration by parts we obtain

b k—1
/ £ 50) gy — / £ da — (—1)F ST (1[0 g@-1-]p
a =0
Summing these identities on k, we have
b _n b n
/ > 0" dw = / £ (=g da
¢ k=0 ¢ k=0
n—1 n
=D (17 Y =DV
=0 k=j+1
Thus, from (i)—(iv), for y € [a b,
82kK
s—/ f(z D2k ($ y) dz

82’“K
o

/f
_Z [ —1) f(j)%(.,y)}y
nZ
=0

y) dx

a
k=j+1

Zn: [ %(w)r = f(y).

Y
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Condition (v) assures that k(-,y) € H"(a,b), and k(-,y) satisfies the repro-
ducing property. Hence, k(-,y) is the reproducing kernel for the point 3.
The characteristic equation of the Euler-Lagrange equation 3™ —y(2n=2) 4
-+ (=1)"y = 0 for the Sobolev norm (3) is given by

W — W (1) = 0. (4)
The set of solutions of (4) is denoted by
Q= {tw, wo,...,tw,}
and the subset of 2 whose real part is positive is denoted by Q:
Qp ={weQ: Rew>0} ={wi,...,wn},
b (= s — icx). (5)

— 7COoS

Wy, = sin
n+1

4.2 Orthogonality of trigonometric vectors

Using complex numbers we obtain the probably well-known trigonometric
identities.

Proposition 4.2 (cf. [12]). The following identities hold for j,1 € 7.

(1)

~ Jjkm Ik« " (=127#0 (mod 2n+2)),

Zsmnﬂsmnﬂz 5, (j=-12j#0 (mod 2n +2)),

= 0, (otherwise).
(ii)

n sin -2 ’
. ]kﬂ' lkm = = (j—|—l Odd),
ZSlnn+1COSn+1: COSH—H_COSn—H

. 0, (otherwise).

Next Lemma and Proposition are used to show the identities in the con-
ditions in Proposition 4.1.



Lemma 4.1. If z,w,z,y € C and j,k =0,1,..., then
Re (z cosh) ) Re (w cosh™® y) + Im (zsinh? z) Im (w sinh® 5)
= %cos(lm (z — y)){Re (20) coshV*™ (Re (z + y))
+ (=1)* Re (2w) coshV ™ (Re (z — y)) }
- % sin(Im (z — y)){Im (2) sinhY ™ (Re (z + y))
+ (=1)*Im (2w) sinh" ™ (Re (v — y)) }.

Proposition 4.3. If f(x) is either Re [w cosh(w(x —a))] or Im [w sinh(w(z —
a))] with w € Q, then f(x) satisfies the following:

(1) Sor_o(=DFfE(2) =0 for all v € R,
(i) Yopeja (DR (a) = 0 for j=0,...,n—1.

5 Main result: Sobolev kernel for general n

By Propositions and Lemmas stated above we are able to establish the main
result of Part II, the concrete form of the reproducing kernel of H"(a,b) for
n=12,....

Theorem 5.1. The reproducing kernel k(x,y) of the one-dimensional Sobolev
space H™"(a,b) on a bounded interval (a,b) belongs to C*"~%(a,b), and is given
by
2 Re w
k = - k
(z.9) n+1 Z sinh(Re w(b — a)) oY)

welly

n

= 41— 1 kz:; sinh(s:(kb —a) [Cos(ck(x —y)) cosh(sg(x +y —a —b))

— ¢ cos(cg|z — y|) cosh(sk(b—a — |z —yl|))

+ Sop sin(cg |z — y|) sinh(sg(b— a — |z — y|))} ,
where s and ¢ are the numbers defined in (5), ky(z,y) is the function
Re{wcosh(w(x Ay —a))} Re{wcosh(w(z Vy —a) — Re w(b—a))}

+ Im {wsinh(w(z Ay — a))} Im {wsinh(w(z Vy — a) — Re w(b — a))},
and x Ay = min{z,y} and x V y = max{z,y}.

67
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Corollary 5.1 (cf. [13,19]). If y € [a,b], then, for j =0,...,n — 1,

0%k 1 Re w

h 2y —a —

02 Oy (v,9) = n+1 EZQ sinh(Re w(b — a)) [COS (Re w(2y —a—1))
weiit

— Re (iw)?9+Y cosh(Re w(b — a))] :

In particular, if y € [a,b], then the maximum of %k(y,y) is taken when
y=a and y = b, and the following identity holds.

9%

k(ya y) - Z Sks?j—i—l)k COth(Sk(b — a))
1

yets) DI Dy w12

Remark 5.1. By differentiation under the integral sign, k’(J) = g;’f( ,Y) €

H"™(a,b) reproduces the derivative f9)(y) of f € H"(a,b) for j =0,...,n—1:

fO(y) = <ﬁaw( v),

By Schwarz’s inequality,

82
FOWP < BRI = 171 g5 0
Thus,
k
R Pl

Hence, Corollary 5.1 gives the best constant of Sobolev inequality for fU)
(cf. [19]).

5.1 Sobolev kernel on infinite intervals

The reproducing kernel of the Sobolev space on infinite intervals is obtained
from those kernels on bounded intervals by limiting procedure. The theorem
we need is

Theorem 5.2 (Aronszajn [3, p. 362]). Let {E,} be a monotone increasing
sequence of sets with E = |, E,, and let H,, be a RKHS on E, with its
reproducing kernel k,. If, for all m < n, the restriction operator ph : f €
H, — fle, € Hm is a well-defined contraction, then the following hold:
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(i) For all z,y € E, there exists a limit koo: lm ky,(2,y) = kso(x,y).
n—oo

(i) koo is a positive definite kernel on E. If Ho is a RKHS on E with the
reproducing kernel ko, then Ho, consists of the functions f on E such

that the restriction f|g, € H, forn =1,2,... with sup, ||f|g.| < co.
The inner product of f and g € Hoo 1S given by

(90 = 10 (flp,, 9B, )2-

Corollary 5.2. Fora € R, the reproducing kernel k(x,y) of the one-dimensional
Sobolev space H™(a,00) belongs to C*"2(a,00) and the following hold:

(1)

k(z,y) = ——] Z Re w [Re {wcosh(w(z Ay —a))} Re{wexp(w(a — 2z Vy))}

w€Q+

— Im{wsinh(w(z Ay — a))} Im {wexp(w(a — z V y))}}

n

1

= ] Sk [cos(ck(x —y)) exp(sp(2a —x —y))

— cos(eylz =yl + 2%) exp(—sele — ) .

(ii) Fory € [a,00), j=0,...,n—1,
0%k (1) 1
drioy Y T

Z Re w [exp{Z Re w(a —y)} — Re (iw)2(j+1)].

we

In particular, if y € |a,00), the mazimum of ax]ay]k(y,y) is taken at
y = a, and the following identity holds.

0%
——k(y,y) Zsk ]+1)k)

erI[lc?z(o) OxIOyI Con+1

o 1 sin ﬂ_H sin ﬂ_H
" n+1\1—cos-"- + T _ 2+r |-
1 cos 1 008 T
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Corollary 5.3. The reproducing kernel k(z,y) of the one-dimensional Sobolev
space H™(R) belongs to C*"2(R) and is given by

k(z,y) = Z sy cos(cp|r — y| + 5{“&) exp(—sklz — y|).

n+1

In particular, for 7 =10,...,n—1,

2 " sin
—J( = T : .
8x]8y] l‘, n +1 Z SkC2(j+1)k = (TL 4 1)( (]+1)7T)

COS? — COS |

6 Examples and norm inequalities

Example 6.1. The reproducing kernel of the Sobolev space H"(a,b) for
small n is given as follows:

(i) H(a,b) (cf. [8, p. 105], [2, p. 344]):
k(xz,y) = %CSCh(b —a){cosh(z +y —a —b)+ cosh(b —a — |z —y|)}
= csch(b — a) cosh(x Ay — a) cosh(z V y — b),

(ii) H?(a,b) (cf. [20, p. 813]):
k(z,y) = g5 esch (L (b — a)) [@ sin(z|z — y|) sinh (353 (b — a — |2 — y))
+cos(L(z — y)) {cosh(L(z +y — a — b))

+ §cosh(§(b —a—|v— y|))}],

(iii) H?(a,b) (cf. [20, p. 813)):

k(xz,y) = ﬁ CSCh(%(b —a)) [cos( (2 —y)) cosh(I5(x +y —a—b))

Sl

+sm(f| y|)Slnh(f(b_a_ ]x—yl))}

+ icsch(b —a)(cosh(x +y —a—b) 4+ cosh(b—a — |z — yl)).



Let Hi(a,b) be the subspace of H'(a,b) consisting of functions f with
f(a) = f(b) = 0. H}(a,b) is a RKHS with the reproducing kernel k0 given
by (cf. [20, p. 811]):

kO(z,y) = csch(b — a) sinh(x Ay — a) sinh(b — = V y).

Note that the function sinh(zAy—a) (resp. sinh(b—xVy)) is the reproducing
kernel of the RKHS H! (resp. H}), where H} (resp. H}) is the Hilbert space
of functions f € H'(a,b) with f(a) = 0 (resp. f(b) = 0) equipped with the
inner product given respectively by

e R i
cosh(z — a) d cosh(b — ) d

a

Let H; be a RKHS on a set E with the reproducing kernel k; (j = 1,2, 3).
It is well-known (e.g. [17]) that, if k; = koks, then, for f € Hy and g € H3,
fg € Hy, and the following norm inequality holds:

a

1 gllmn < [ fllallgll -

Equality holds in the above inequality if f = Ciki(-,y) and g = Coko(-,y)
for any constants Cy,Cy € C and y € E. Thus, we have

Proposition 6.1. If f,g € H'(a,b) with f(a) = g(b) =0, then

b b 12 b /(2
[ sl + gy de < snvip— o) [P ae [T

cosh(z —a

Equality holds if f(x) = Cysinh(z Ay —a) and g(x) = Cysinh(b—x Vy) for
any Cy, Cy € C and y € (a,b).

Remark 6.1. In fact, the above condition for equality is necessary, which will
be shown in our subsequent paper.
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