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Bergman, Szego and Sobolev kernels 

Akira Yamada 

Abstract 
Two topics are outlined below: 

Part I: Results concerning Hejhal's theorem about the relation be-
tween the Bergman kernel and the Szego kernel on planar regular 
regions. 

Part II: Determination of the explicit formula for the reproducing 
kernel of the Sobolev space on a bounded interval. 

Part I. The Bergman and the Szego kernel 

1 Introduction 

Let O be an n-ply connected planar regular region (g = n-1), where a planar 

regular region is a domain in the complex plane which is bounded by a finite 

number of disjoint analytic Jordan curves. In 1950 Schiffer [18] obtained the 

identity between the Bergman and the Szego kernels: 

g 

応 (z,w)=41rK含(z,w）＋〉加叫z)叫叫，
i,j=l 

where H = (h』isa Hermitian matrix, and｛防｝7=lis a canonical homology 

basis of the Abelian differentials of the first kind on the Schottky double 0 
of D. In 1972 Hejhal [10] succeeded to prove the positive-definiteness of the 
matrix H (i.e. H > 0). Hejhal's theorem implied 41r碍≪ KB, one of the 

most important facts in the theory of kernel functions and complex analysis 

in the complex plane. His theorem was obtained by using Riemann's theta 

function, and, indeed, considered to be a very deep result. So, the next 

question naturally arises: Is there an elementary proof of H > O? 
Unfortunately, we could not obtain another proof, though we obtained [21] 
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• Some results concerning Schiffer's identity and Hejhal's theorem by 
introducing integral operator whose kernel is the product of Szego ker-

nels. 

• H>O-¢=.⇒contractivity of the integral operator + equality condition 
for the norms. 

This article is an expository report of our recent results, and the details 

and proofs will be given elsewhere. 

Notation. We adopt the following notations: 

• B = {f: regular functions inn with f fo IJl2dxdy < oo }: the Bergman 
space on n, Ks: the Bergman kernel on n. 

• BE = {f E B in n with single-valued indefinite integral}: the exact 
Bergman space, KE: the exact Bergman kernel on n. 

• S = {f: regular functions inn with fan IJl2ldzl < oo}: the Szego space 
on n, Ks: the Szego kernel on n. 

• S02: the tensor product RKHS S⑧ Son炉， K翌＝ Ks⑭ Ks:its 
reproducing kernel. 

• sx2: the operator range of the pullback f E S02→f o cf> E C0 with 

cp: XE !1→(x, x) E炉， whosereproducing kernel is K姜．

1.1 The operator range and the reproducing kernel 

A Hilbert space 1{ is called a reproducing kernel Hilbert space (RKHS) if 1{ 
is a functional Hilbert space 1{ on a set E such that the evaluation map is 

bounded for every point x E E: V f E 1-i, Vx E E,ヨCx> 0 s.t. IJ(x)I S 
C』|f11-For the general theory of RKHSs the reader is referred to e.g. [3,4, 15]. 
By the Riesz representation theorem, for any x E E there exists a unique 

function kx E 1{ such that f (x) =〈f,kx〉,Vf E 1{. The function kx E 1{ is 
called the reproducing kernel for the point x E E. k(x, y) = ky(x) =〈ky,kx〉
is the reproducing kernel for 1{. If k (x, y) is the reproducing kernel of a RKHS 

on E, then it is easy to see that k ≫ 0 on E, i.e. Vn E N, Vx1,..., Xn E E, 

如，．．． ,enEC, 区~j=l ばjk(xi巧）?: 0. Most important is the fact that the 
converse holds [3], i.e. if k ≫ 0 on E, then there exists a unique RKHS on E 
whose reproducing kernel is k. 
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Definition 1. 1. Let社 bea Hilbert space. For a continuous linear operator 

A: 1i→ C互wehave a linear isomorphism: 

(ker Al竺 ranA.

The operator range M (A) is the space ran A = A（初 equippedwith the 
inner product induced by the above isomorphism. M(A) is a Hilbert space, 

and its norm II ・ IIM(A) is called the range norm, which is given by 

IIYIIM(A) = inf{||叫|：Ax= y, x EH}. 

Consider a complex topological vector space V contained in the product 
space (CE such that the inclusion operator V Y び iscontinuous. The space 

び itselfand RKHSs on E are examples of such spaces. 

Theorem 1.1. Let V be as above and let H be a Hilbert space. Then, the 

operator range M(T) of a continuous linear operator T: H→Vis a RKHS 

on E, and the reproducing kernel ky of M(T) for the pointy EE  is given by 

似＝ TT*c5y= Tgy, 

where心EV* is the point evaluation map of V at y E E, and gy E H is the 

Riesz representation of the continuous linear functional f E H f-----+ (T J) (y) E 

C, i.e. (TJ)(y) =〈f,g加， VfEH. 
In particular, if V is a RKHS on E with the reproducing kernel Ky for 

y EE, then, 

ky =TT＊釣， k(x,y) =〈T*Ky,T*K韮，

where k(x, y) is the reproducing kernel of M(T). 

1.2 Sum and product of reproducing kernels 

We summarize here basic facts about the sum and the product of reproducing 

kernels. 

• If朽isthe reproducing kernel of the RKHS凰 onE (j = l, 2), 

柘，朽≫ 0⇒ 柘＋朽≫ 0, k1灼 ≫ 0. 

• The RKHSs 1-lk1 +k2 and厖 k2are, respectively, the operator range of 
the following maps: 
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(a) f EB g E珀 1④ 1-{k2→f + g E (CE_ The identity (J + g)(y) = 
〈f① g, k1,y EB k2,y〉showsthat知＝ k1,y+ k2,y by Theorem 1. 1. 

(b) f R g E 1-lk1 0 1-lk2→ fg E C互whichis given by the pullback of 

the map cp: x E E→(x,x) EE汽so(Jg)(y) =〈f0 g, k1,y 0 k2,y〉
implies島＝ k1,y加 byTheorem 1.1. 

Proposition 1.1. Let 1-lK1 and 1-l応 beRKHSs on E. Then, as vector 

spaces, 1-l的＋K2= 1-lK1 + 1-lK2, and for Ji E叫 land f2 €叫2 we have the 
Pythagorean inequality 

||f1 + f2||1K1+K2さ:||f111羞K1+ llh||負kぶ

Equality holds in the above inequality if and only if 

〈f1,h〉11,Kl=〈f2,h〉11,K2, for all h E 1{K1 n 1{応・

Proof. See [3, p. 352] and [16, p. 44]. 

2 Useful identities 

口

The conjugate kernels of KB, KE and Ks are denoted, respectively, by L圧

LE and Ls. Since the conjugate kernels are important for calculations in-
volving kernel functions, we summarize known identities among them without 

proof (cf. Bergman [4, p. 50, 60, 80]). 

p roposition 2.1. The following identities hold for z, w E n. 

28叩 (z,w) 
応 (z,w)= --=-

T 8z姉'

2 82N(z,w) 
応 (z,w)=-=-

1r 8z8面 '

1 
知(z,w) = f-[N(z, w) -G(z, w)]. 

21r 

28叩 (z,w) 
伍 (z,w) = --=-

T 8z8w' 
2 82N(z, w) 

伍 (z,w) = --=-
7r azaw' 

Let {vj犀 bethe canonical basis of the holomorphic differentials on the 

double n. 
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Theorem 2,:,1 (S~hiffer [18], 1950). There exist Hermitian g x g matrices 
H=  (h叫， H= (h叫， C= (c叫 suchthat the following identities hold. 

応 (z,W)＝4Tks(z,W)2 +］tい（叫(W)，（1)

印（z,w戸＝応(z,w)＋立い(z)叫w)，
紐＝1

g 

知 (z,w)＝応(z,w) + 1苫lCい (z)叫w)，

C=H+H. 

Hejhal has made a great breakthrough step forward by refining the result 
of Schiff er. If (2訂19,T) is the period matrix of the compact Riemann surface 

n, then, from the symmetry of n, T < 0. The Riemann's theta function 0(z) 
is given by 

0(z) = Lex叫 mTtm+mtz}, zE<C9. 
mEZ9 

Theorem 2.2 (Hejhal [10], 1972). 

1 ~ 82 log 0(0) 
応 (z,w)＝ 位K各(z,w)＋ー区 叫z)巧(W)．

刀― 釦心Zj
i,j=l 

Note that Hejhal's identity is a special case of Fay's trisecant formula [9]: 
for e E C9, x, y, a, b E R, 

0(x -a -e)0(y -b-e) 0(x -b -e)0(y -a -e) 

E(x, a)E(y, b) E(x, b)E(y, a) 

0(e)0(x + y -a -b -e)E(x, y)E(b, a) 

E(x, a)E(x, b)E(y, a)E(y, b) 

where E(x, y) is the prime form. 

Corollary 2.1. H 
-1 (82 log 0(0) 

= 1r-1(~) > O and 4国 ≪KB・
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Proof. Since 0(z) is an even function, 

82 log 0 In¥ 0(0)0ij(O) -0i(O)化（0) 0ij(O) 
(0) = 

釦心Zj 伊(O) ＝ 0(O). 

Clearly, 0(0) > 0, and we have 

0ij(O)＝L mimjexp且m廿m}.
mE四

Thus, it is easy to see that（佐（0))> 0, which implies（勾ご(0))> 0. From 

Schiffer's identity and the fact H > 0 it follows easily that 41r K各≪KB. ロ

In what follows, we shall call the fact H > 0 as "Hejhal's theorem". 

2.1 Schiffer's identity 

The following Schiffer's identity [18, p. 346] led us to begin the study of our 
paper. 

Proposition 2.2 (Schiffer, 1950). If f is a regular function on n with finite 
Dirichlet integral, then, for z, w E n, 

j i, Ks(z,()Ks(w,（）『（()d紐＝ t(J(z)-f(w))Ls(z, w), 
Q 2 

where Ls is the conjugate kernel of the Szego kernel Ks. 

Letting w→z, for f EBE, 

41r j i Ks(z,(）勺(()d紐＝ f(z).
Q 

Exploring the meaning of this formula was the motivation that led us to 
the research of this paper. 

3 Integral operator and Hejhal's theorem 

Let 1{ be a RKHS on E and let cp: F→E be a map. Then, the RKHS 
が（初 onF, the pullback of社 bycp, is defined as the operator range of 1{ 
by the linear map given by 

f E 1{→がf= f O cp E CF, 

which induces a coisometry T,_炉 1{→が(1i).
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Lemma 3.1. Let 1{ and K, be RKHSs on a set E and F, respectively. Suppose 

が(1i)C K, and letいが（H)Y K, be the inclusion operator. Then, 

(i) The operators l and T =心： H→K, are bounded. 

(ii) For f EK, z EE  and w E F, the adjoint T* is given by 

(T了）（z)=〈f,kz O cf>〉K,

T＊応＝ k¢(w),

where kz and Kw are the reproducing kernels for z E E of 1{ and for 
w E F of K, respectively. 

Proof. Rep is bounded because by definition晶 isa coisometry. Sinceが(H)
andK紅 eboth RKHSs on F, usual application of the closed graph theorem 

implies the boundedness of the inclusion l, so that R is bounded. By the 

reproducing property, for z EE  and f EK, 

(R* f)(z) =〈R*f, kz〉1-l=〈f,Rkz〉/C=〈f,kz o </>〉/C．

Putting f =応 inthe above we have the second identity. 

Lemma 3.2. sx2 = B as vector spaces. 

ロ

Proof. From the identity (1) we easily conclude that there exists a constant 

M > 0 such that 

g 

41rKs(z, w)2 ≪知(z,w)+ML叫叫(W)．
j=l 

Since K~ is the reproducing kernel of the RKHS S竺 bythe general theory of 
the reproducing kernel we have sx2 C B + r. Since r is the space of the first 
kind of Abelian differentials on D, it is clear that r c B. Thus, sx2 c B. On 

the other hand, by a similar reasoning we see that B c sx2+「 Fromr CS 
and 1 ES, we conclude that r C sx2. Thus, BC  sx2, and so B = sx2 as 
vector spaces. ロ

Let D be a planar regular region, and let 5: z E D→(z, z) E D x D be 
the diagonal map. Since sx2 = 5*(S1212), Lemma 3.1 and Lemma 3.2 imply 
that the inclusion operator l: sx2 c......+ B and the operator T＝⑮： SR2 → B 

are bounded. 
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Theorem 3.1. The following hold. 

(i) If f EB, g E 3x2 and (z, w) E訊 then

T* f(z, w) =〈f,Ks,zKs,w厄＝JIn Ks(z, ()Ks(w, ()!(() dm((), 

TT了(z)= (l* J)(z) = J 1. Ks(z,＜）汀(()dm((), 
Q 

閏g(z,w) =〈g,Ks,zKs,w〉sx2.

(ii) If f E恥， then

T*f(z,w) = 2―1 Ls(z, w) 1,z f(() d(E S竺
w 

41r TT* f = 41r八f= f. 

(iii) The operator T is surjective, and its adjoint T* is an injective left semi-
Fredholm operator with ran T* = (ker T).1_ closed in S1212. Also, l is a 

linear topological isomorphism. 

(iv) If f = !E①VE BE① r is the orthogonal decomposition off E B, then 

g 

41rTT*f = !E + L h州v,v]〉Vk.
j,k=l 

The operator TT* is invertible with TT* (B叫＝ BEand TT*(r) = r. 

p roposition 3.1. For planar regul planar regular regions, the matrices H and C are 
positive definite, and we have 

〈T*vj,T万砂sR2= 7r2 1 (J碍(z,w)而 dz.
Bk'J Bj 

） 
We next prepare a lemma concerning the relation between a Hermitian 

matrix and a finitely generated reproducing kernel. 

Lemma 3.3. Let K(z, w) be the function 

n 

K(z, w) = L ajkfi(z)T,Jw), 
j,k=l 

where A = (ajk) is an n x n Hermitian matrix, and {fi}J=l is a linearly 
independent set of functions on E. If f = t (f 1,..., f n), then the following 
hold. 
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(i) A 2: 0 if and only if K(z, w) ≫ 0 on Ex E. 

(ii) If A 2: 0, then the RKHS 1ix on E with the reproducing kernel K is 
given by span{f(z)* Af: z E E} with the inner product satisfying 

〈f(z)*Af, f(w)* Af〉1-l=〈Af(w),f(z)〉cn=〈f(w),Af(z)〉cn

Also, we have dim 1{K = rank A. 

Proof. (i) If A ~ 0, then by setting 均＝ ~:=1 位fパzk),j = l,...,n, for 
any m EN, aj E (C and Zj EE, j = 1,..., m, we have 

m 

La西 K(zk沼） ＝ 
k,l=l ゜

＞＿ .
J
 

＿QP.
 

比祈リa
 

n

こ
〗

(2) 

Thus, K ≫ 0. 
Conversely, suppose that K ≫ 0. Let V be the subspace 

｛（的） Een : 0'.1,..., O'.m E C;釘，．．．,Zm EE (m = 1, 2,...)} 

of C匹 Inview of (2), to prove A 2:: 0 it suffices to show that the orthogonal 
complement V..l =en 8 V of V is {O}. So let us suppose that (Cj) E V..l. 
Then, 

n m n 

0＝こち均＝こ偉こ閏（叫
j=l k=l j=l 

Since ak E (C and Zk E E are arbitrary, we have区7=1で』＝ 0.Since {i}} is 
linearly independent, (cj) = 0, as desired. 

(ii): First, define the inner product for elements of the form J(z)* Af, 
z EE, by 

〈J(w)*Af, J(z)* Af〉=〈Af(z),J(w)〉cn=〈J(z),Af(w)〉cn.

Next, expand the definition of the inner product to all the elements of 1-{K by 
linearity. This inner product for 1-{K is well-defined. Indeed，区jajf (Wj)* Af = 
0 on E if and only if〈J(z),A I:戸jf(wj-）〉en= 0 for all z E E. Thus, the 
inner product is well-defined for the first variable of the inner product. Sim-
ilarly, it is also well-defined for the second variable. The extended Schwarz 
inequality gives its positive definiteness. 
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By definition of the inner product, we have 

〈J(w)*Af, J(z)* Af〉=J(w)*Af(z).

Thus, Hx is a finite dimensional RKHS on E with the reproducing kernel K, 
since Kz = f(z)* Af = K(・, z). Now by diago叫 izingthe Hermitian matrix 
A, there exists a unitary matrix P and the eigenvalues｛ふ｝］ョ ofA such 
thatふ＞ 0(j = 1,..., a)，ふ＝ 0(j = a + 1,..., n), and 

P*AP = diag（ふ，．．．，入砂．

If g = t (g1,..., g叫＝ P*f, then f = Pg and 

K(z,w) =〈Af(z),J(w)〉cn=〈P*APg(z), g(w)〉cn
〇―

= z:属（鳴(W)．
j=l 

Since｛叫 islinearly independent, the form of K as above shows that｛入］⑭｝j=l
is a CONS for 1-lK. Thus, dim叫 ＝ fJ= rankA. ロ

Theorem 3.2. The orthogonal decomposition sx2 =BEEB rs holds, where 
応 isthe set r considered as a subspace of the RKHS sx2. More precisely, 

for f = Ji E9 h and g = g1 〶 g2 in BE 〶 rs,

〈f,g〉sx2= 41r〈f1,g贔＋〈f2,g砂sx2.

In particular, 2./ir IIJIIB = llfllsx2 for all f E BE・

We next state Douglas's formula for the Dirichlet integral of harmonic 
functions on a planar regular region. 

Theorem 3.3 ([6, 7, 11]). The Dirichlet norm IIJIID of a complex-valued 
harmonic function f with finite Dirichlet integral on a planar regular region 
0 is given by: 

II!||ら=l f f 阿G(z,W)
41r 
-;-/ / lf(z) -f(w)l,l~ dsz dsw, 

ぬぬ anz枷 w

where 8 / on denotes the outer normal derivative and the value f (z) is the 
nontangential boundary value off at a.e. z E an. 
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Along 80 we have 

叩 (z,w) 

枷 z
ds = 2ら(z,w) d凡＝ 2iGzdz, 

so by Proposition 2.1, for z, w E叩，（z=J w), 

82G(z, w) J _ _1. A 82G(z, w) 

枷直叩
dsz dsw = -4~ dzdw = 2叶屯(z,w) dzdw. 

8z8w 

Hence, by using the conjugate Bergman kernel LB, Douglas's formula is given 
by: 

1 
||f||t = i /j|f(z) -f(W)|2伍 (z,w) dzdw. 

ぬ叩

In 1981 Saitoh [14] obtained a similar formula which was an analog of the 
Douglas's formula for analytic functions. We give another proof of Saitoh's 
result by using Theorem 3.1. 

Corollary 3.1 (Saitoh, 1981). If f is a Dirichlet-finite analytic function on 
a planar regular region O, the Dirichlet norm of f is given by 

||f||ら=1r1010 l(f(z) -J(w))Ls(z, w)l21dzlldwl, 
ぬ叩

where Ls is the conjugate Szego kernel of n. 

Proof. Since df E BE, by Theorem 3.1 (2) we have 41rTT*df = df and 
T*df = 2-1 Ls(z, w)(f(z) -f(w)). Thus, 

||f||ら=||dfll沿＝ 41r〈df,TT*df狂＝ 41rllT*df||喜R2

= 1r 1010 l(f(z)-f(w))Ls(z,w)l2ldzlldwl. 
8Q 80 

ロ

3.1 Conditions equivalent to H > 0 

Fin~~l~, we pgive several cond~tions equivalen:., to.~ejha~'s theore~ ~ equality 
conditions for some contraction operators. To this end we need a lemma. 

Lemma 3.4. If an operator W: H1→H2 is a contraction between Hilbert 
spaces H1 and H2, then for f E H1 the following are equivalent. 
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(i) IIW !II = 11111-

(ii) W*Wf = f. 

(iii) IIW*W !II = 11111-

Also, if this is the case, then IIW*W !II = IIW !II-

Proof. If IIW !II = 11111, then by IIW*WII :'S 1, 

IIW*Wl-1112 = IIW*Wlll2 -211w1112 + 111112 
= IIW*Wlll2 -111112さ0.

Thus, W*W l = l, and so (iii) holds. That (iii) implies (i) is clear from 

||f|| ＝ ||W*Wf|| < ||Wf||< ||f||． 

If (iii) holds, then IIW*Wlll :'S IIWlll :'S 11111 = IIW*Wlll-Thus, IIW*Wlll = 
||Wf||．ロ

Theorem 3.4. Let K = 応 ー 位K姜． Then,the lollowing are equivalent. 

(i) H > 0 (Hejhal's Theorem). 

(ii) H ~ 0 and dim加＝ g,where加 isthe RKHS on O with the repro-
ducing kernel K. 

(iii) 2占 l:Sx2→B is a contraction, and l E sx2 is isometric with 

2-fi ll il and only ill E BE・

(iv) 2JテT:SR2→B is a contraction, and l E SR2 is isometric with 

2-fiTl il and only ill E T*(B砂

(v) 2-fiT*: B →SR2 is a contraction, and l E B is isometric with 

2-fiT* l il and only ill EBE・

(vi) 41rTT*: B→B is a contraction, and l E B is isometric with 41rTT* l 

il and only ill E BE・

(vii) 41rll*: B→B is a contraction, and l E B is isometric with 41rll* il 

and only ill E BE. 

(viii) 2J印＊： B →sx2 is a contraction, and l E B is isometric with 2-fiり
il and only ill E BE. 



64

Part IL Reproducing kernel of Sobolev space 

on an interval 

4 The Sobolev space on a bounded interval 

Let I = (a, b) be a bounded open interval on股 andlet n EN. 

Definition 4.1. The Sobolev space Hn(I) is the space of complex-valued 
functions f on I such that f (j) E CパI)(j = 0,..., n -l) and j(n-l) is 

absolutely continuous on I with finite norm [1], [5]: 

n 

||f||怠=〈f,f〉s= t, 1 IJCkl(x)l2 dx. (3) 

•H吋I) is a RKHS on J = [a, b]. 

• In 2003 Watanabe [20] obtained an explicit form of the reproducing 
kernel for n = 1, 2, 3. 

• Our result: explicit forms of the reproducing kernel K(x, y) of Hn(I) 
for general n [22]. 

4.1 Conditions for the reproducing kernel 

Proposition 4.1. Suppose that a function K(x, y) E C(X)国） satisfiesthe 

following conditions (i)-(v): for all x, y E [a, bl, 

n 

(i)区(-1)K
f)2kK 

f)x2k 
(x, y) 

k=O 
equation) 

n 

(ii) 区（一1)K
f)2k-1-j K 

f)x2k-1-j 
k=j+1 

n 

(iii) 区（一1)K
f)2k-1-j K 

f)y2k-1-j 
k=j+1 

n 

ど(-l)k
32kK 

8y2k 
k=O 

(x, y) = 0, (Euler-Lagrange 

(a, y) = 0, (j = 0,..., n -1), 

(y, b) = 0, (j = 0,..., n -1), 
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~(y, y) -~(y, y)} (iv) 文 (-1t{~証ー:;§(y,y) -~(y,y) ＝もO,(j = 0,..., n -
k=j+1 
1). 

8JK かK
(v) 枷 y-(Y,y) = a:;j(Y, y), (j = 0,..., n -1). 

叩
Then, the function 

k(x,y)＝｛K(x,y)，（xこy)，
K(y, x), (y:::; x), 

is the reproducing kernel of Hn(a, b). 

This proposition is obtained by integration by parts. An outline of the 
proof is as follows. If f E印 (a,b) and g E C2n（賊）， k= 0,..., n, then by 
integration by parts we obtain 

lb jCk)g(k) dx = (-lt lb f g(2k) dx -(-l)k t(-l)j[J(jlg(2k-1-j)悶
a j=O 

Summing these identities on k, we have 

［戸f(K)，（K)心 ＝［f n-11)kg(2k) d: 

ーこ（一l)jL［（ー1)勺(j)g(2k-l-j)悶．
j=O k=j+l 

Thus, from (i)-(iv), for y E [a, bl, 

〈f,k(-,y)〉s= 1y f(x) t(-l)k 
虎 k
枷 2k(x, y) dx 

a k=O 

+ lf(x) 竺—l)'~(x,y) dx 

n-1 n 

＿ど（一l)jL［（一l)kf(j) 
. 82k-1→K Y 

j=O k=j+l 
枷 2k-1-j(・,y)] a 

n-1 n 

＿区（一l)jL［（一l)kf(j) 
. 82k-1-jk b 

~(y,·)J: = f(y). 
j=O k=j+l 
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Condition (v) assures that k(・, y) E Hn(a, b), and k(・, y) satisfies the repro-
ducing property. Hence, k(・, y) is the reproducing kernel for the point y. 

The characteristic equation of the Euler-Lagrange equation y(2n) _y(2n-2) + 

• • • + (-l)ny = 0 for the Sobolev norm (3) is given by 

w2n -w2n-2十 ・・・+(-lt=O.

The set of solutions of (4) is denoted by 

Q =｛土W1,士吟，．．．，士凸｝

and the subset of O whose real part is positive is denoted by叫

n+ = { w E n: Re w > 0} = { W1'...，凸｝，

. k1r. k1r 
咄 ＝ sm-----:-:--i cos 

n+l n+l 
(= Sk - ic砂．

4.2 Orthogonality of trigonometric vectors 

(4) 

(5) 

Using complex numbers we obtain the probably well-known trigonometric 

identities. 

Proposition 4.2 (cf. [12]). The following identities hold for j, l E Z. 

(i) 

(ii) 

名sin~sin-/!£-i={ —丁i\
0, 

(j三 l,2j季0 (mod 2n + 2)), 

(j三―l,2j羊0 (mod 2n + 2)), 

(otherwise). 

sin ユ
翌lnn]［]cosn lkT 1={cos ;：l―n+c;s ;：1 9 

0, 

(j + l: odd), 

(otherwise). 

Next Lemma and Proposition are used to show the identities in the con-

ditions in Proposition 4.1. 
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Lemma 4.1. If z, w, x, y E CC and j, k = 0, l,..., then 

Re (z cosh(j) x) Re (w cosh(k) y) + Im (z sinh(j) x) Im (w sinh(k) y) 
1 

= ~ cos(Im (x -y)) {Re (zw) cosh(Hkl(Re (x + y)) 
2 

+ (-ll Re (zw) cosh(Hk)(Re (x -y))} 

1 
-~ sin(Im (x -y)){Im（加）sinh(j+kl(Re(x + y)) 

2 

+ (-ll Im (zw) sinh(j+k)(Re (x -y)) }. 

Proposition 4.3. If f(x) is eitherRe[wcosh(w(x-a))] orim[wsinh(w(x-

a))] with w ED, then f(x) satisfies the following: 

(i)区に。（ーl)kJC2kl(x) = 0 for all x E艮．

(ii)とにHl(-l)k J(2k-l-j)(a) = 0 for j = 0,..., n -l. 

5 Main result: Sobolev kernel for general n 

By Propositions and Lemmas stated above we are able to establish the main 
result of Part II, the concrete form of the reproducing kernel of Hn(a, b) for 
n = 1,2,.... 

Theorem 5.1. The reproducing kernel k(x, y) of the one-dimensional Sobolev 
space Hn(a, b) on a bounded interval (a, b) belongs to c2n-2(a, b), and is given 

by 

2 
k(x,y)＝こ Rew 

n + l.~ sinh(Re w(b-a) 
wEO+ 

） 
似(x,y)

= l t 媒 cos（叫— y)) cosh（叫＋y-a -b)) 
n + 1 k=1 sinh(sk(b -a)） [ 

-c2k cos(c叶x-YI) cosh(sk(b -a -Ix -YI)) 

+ s2k sin(cklx -YI) sinh(sk(b -a -Ix -YI))], 

where sk and ck are the numbers defined in (5), kw(x, y) is the function 

Re {w cosh(w(x /¥ y -a))} Re {w cosh(w(x Vy -a) -Re w(b -a))} 

+ Im { w sinh(w(x八y-a))} Im { w sinh (w (x V y -a) -Re w (b -a))}, 

and x I¥ y = min{x, y} and x Vy= max{x, y}. 
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Corollary 5.1 (cf. [13, 19]). If y E [a, bl, then, for j = 0,..., n -1, 

肥K 1
(y, y) =区~[ cosh(Re w(2y -a -b 

枷沿yj n + 1. ~ sinh(Re w(b -a)) 
W砥

）） 

-Re (iw)2(Hl) cosh(Re w(b -a))]. 

In pa廿icular,if y E [a, bl, then the maximum of ~k(y, y) is taken when 珈 8yj

y = a and y = b, and the following identity holds. 

肥 2 n 

max 
yE[a,bl釦 沿yj

k(y, y) = 
n+l 
区 SkS『~+l)k coth(sk(b -a)). 
k=l 

(j) 
Remark 5.1. By differentiation under the integral sign, k'i/'= ¥i-5(・, y) E 印k戸•,y)

Hn(a, b) reproduces the derivative f叫y)off E庄 (a,b)for j = 0,...,n-1: 

f叫y)=〈f
がK
'8y] (•, y)〉§

By Schwarz's inequality, 

lf(jl(y)l2:::: llf||喜||ktj)||度=||f||2 
82J•K 

s枷沿yj
(y, y). 

Thus, 

llf(j) II~ :S 11!11~11 
炉 K

s 0x沿~(y, リ)||00.
Hence, Corollary 5.1 gives the best constant of Sobolev inequality for JU) 

(cf. [19]). 

5.1 Sobolev kernel on infinite intervals 

The reproducing kernel of the Sobolev space on infinite intervals is obtained 

from those kernels on bounded intervals by limiting procedure. The theorem 

we need is 

Theorem 5.2 (Aronszajn [3, p. 362]). Let｛尾｝ bea monotone increasing 

sequence of sets with E = Un恥， andlet糾 bea RKHS on En with its 
reproducing kernel kn. If, for all m ~ n, the restriction operator p仇： fE 

1-{n→fに E1-im is a well-defined contraction, then the following hold: 
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(i) For all x , y E E, there exists a limit k(X) ・・ lim 似(x , y) = k(X) （x , y) . 
n→(X) 

(ii) k00 is a positive definite kernel on E. Jf 1{00 is a RKHS on E with the 

reproducing kernel k00, then 1{00 consists of the functions f on E such 

that the restriction fl En E 1-in for n = l, 2,... with SUPn IIJIEn II < 00. 
The inner product off and g E 1{00 is given by 

〈f,g〉脳＝l偲〈flEn,9IEn〉叫・

Corollary 5.2. Fora E賊， thereproducing kernel k(x, y) of the one-dimensional 
Sobolev space Hn(a, oo) belongs to c2n-2(a, oo) and the following hold: 

(i) 

2 
k(x, y) = ~ ~ Rew [ Re {w cosh(w(x I¥ y -a))} Re {w exp(w(a -x Vy))} 

wEO+ 

-Im { w sinh (w (x八y-a))} Im { w exp (w (a -x V y))}] 

1 
n 

= ~ ~ Sk [ COS（保（x-y)) exp(sk(2a -x -y)) 
k=l 

-cos(c叶x-yl＋昂）exp(-s叶x-yl)],

(ii) Fory E [a,oo), j = 0,...,n-l, 

肥k 1
(y,y) = ¾i 区 Rew[ exp{2 Re w(a -y)} -Re (iw)2CH1iJ. 

枷沿yj
wE叫

In particular, if y E [a, oo), the maximum of 砂 k(y,y) is taken at 珈 8yj

y = a, and the following identity holds. 

肥 1 n 

max 
yE[a,00) 8x沿yj

k(y, y) = どパ1-C2(j+l)k) 
n+l 

k=l 

= 1 (sin土十 sin土
n + 1 1 -COS ふ cos 土— cos 2(：++])7r) • 
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Corollary 5.3. The reproducing kernel k(x, y) of the one-dimensional Sobolev 
space H順） belongsto c2n-2（罠） andis given by 

-1 
k(x,y)＝立cos（叫x-YI+~) exp(-sklx -YI). 

n+l 
k=l 

In pa廿icular,for j = 0,..., n -1, 

EJ2j -1 ~ sinユ
k(x,x) = ~ Z:sk位(j+1)K= n+1 

珈 8yJ n+ 1k=1 (n + 1) （cos ふ— cos~)·

6 Examples and norm inequalities 

Example 6.1. The reproducing kernel of the Sobolev space Hn(a, b) for 
small n is given as follows: 

(i)が (a,b) (cf. [8, p. 105], [2, p. 344]): 

k(x, y) = ~ csch(b -a){ cosh(x + y -a -b) + cosh(b -a -Ix -yl)} 

= csch(b -a) cosh(x /¥ y -a) cosh(x Vy -b), 

(ii)炉 (a,b) (cf. [20, p. 813]): 

k(x, y) =占csch（浮（b-a)）［浮sin(½ Ix -y I) sinh（浮（b-a―|X -YI)) 

+cos（加（x-y)){cosh（亨（x+y-a-b))

+ ½ cosh（亨（b―a-lx-yl))}],

(iii)か (a,b) (cf. [20, p. 813]): 

k(x, y) = 272 csch（占（b-a)) [ cos（占（x-y)) cash（古（x+y-a-b))

+ sin(占|x-YI) sinh（古（b―a-lx-yl))]

+ ¼ csch(b -a)(cosh(x + y -a -b) + cosh(b -a -Ix -YI)). 
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Let HJ (a, b) be the subspace of H1 (a, b) consisting of functions f with 

f(a) = f(b) = 0. HJ(a, b) is a RKHS with the reproducing kernel kO given 
by (cf. [20, p. 811]): 

kO(x, y) = csch(b -a) sinh(x/¥y -a) sinh (b -x V y). 

Note that the function sinh(x八y-a)(resp. sinh(b-xVy)) is the reproducing 

kernel of the RKHS H~ (resp. Hl), where~』 (resp. Hl) is the Hilbert space 
of functions f E H1(a, b) with f(a) = 0 (resp. f(b) = 0) equipped with the 
inner product given respectively by 

Jb『(x)g'（m)dx, 
a cosh(x -a) 

Jb『(x)g'（x)dx. 
a cosh(b-x) 

Let Hj be a RKHS on a set E with the reproducing kernel kj (j = 1, 2, 3). 
It is well-known (e.g. [17]) that, if k1 = k心， then,for f E H2 and g E Ifふ
f g E H1, and the following norm inequality holds: 

llf gllH1 :::; Iii|加||gllHか

Equality holds in the above inequality if f = C山(・,y) and g = C山(・,y) 
for any constants C1, C2 E (C and y EE. Thus, we have 

Proposition 6.1. If f, g Eが (a,b) with f(a) = g(b) = 0, then 

1b (lfgl2 + l(f g)'l2) dx:::; sinh(b -a) 1b ~[>2- a) dx[ cosご[;|2-m)dx 

Equality holds if f(x) = C1 sinh(x八y-a) and g(x) = C2 sinh(b-x Vy) for 

any C1, C2 EC and y E (a, b). 

Remark 6.1. In fact, the above condition for equality is necessary, which will 
be shown in our subsequent paper. 
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