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Extremal eigenvalue statistics and spectrum of 
cl-dimensional random Schrodinger operator 

Fumihiko Nakano 
Mathematical Institute, Tohoku University 

Abstract 

This is a review of joint works [5, 6] with K. Kawaai and Y. Maruyama(Tohoku 
University). We consider Schri.idinger operator with random decaying potential on 
£2 (Zd) and (i) we showed that IDS coincides with that of free Laplacian in general 
cases, (ii) we show some examples, with heavy-tailed single-site distribution, such 
that the set of rescaled extremal eigenvalues converges to a inhomogeneous Poisson 
process, and positive real axis belongs to the essential spectrum, (iii) we show the 
other examples with light-tailed single-site distribution such that the Hamiltonian 
is bounded almost surely, and the essential spectrum coincides with that of the free 
Laplacian. 
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In this paper, we consider the d-dimensional Schrodinger operator with random decaying 
potential : 

H := H0 + V, 

(H0u)(n) = L u(m), 
lm-nl=l 

(Vu)(n) := (~)"'u(n), (n) := (1 + lnl), a 2 0, u E £2(zd). 

where {wn}nEZd : is i.i.d. with common distributionµ. When a= 0, His usually called 
"Anderson model" and many properties have been known: e.g., (J"(H) = [-2d, 2d]+supp µ, 
a.s., and there typically exists an interval I1 0 c(C (J"(H)) in which the spectrum is composed 
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of densely distributed eigenvalues with exponentially decaying eigenfunctions(Anderson 
localization). On the other hand, when a > 0, in many cases the spectrum a(H) of H has 
a form of a(H) = [-2d, 2d] US (disjoint sum) and ae(H) C [-2d, 2d]. Moreover, if supp 
µ is unbounded, it is likely that limlnl->oo V(n) = 0 for fixed w, while supw V(n) = oo for 
fixed n, so that something unusual can happen. 
We remark that for the one-dimensional case (d = 1), a = 1/2 is critical : (i) a > 
1/2 ===;,- a(H) n [-2, 2] is ac, (ii) a < 1/2 ===;,- a(H) n [-2, 2] is pp, (iii) a = 1/2 ===;,­

a(H) n [-2 + Ee, 2 - Ee] is sc and the compliment is pp, for some Ee. 

2 IDS 

Let L EN and we set the box AL of size 2L + 1 and the finite-box Hamiltonian HL which 
is the restriction of H on AL : 

AL:= {n = (n1,··· ,nd) E zd I lnil::; L, i = 1,2,··· ,d} 
HL := lLHh, (lL)(n) := l(n EAL)-

To set up the problem, let Ei(L), j = 1, 2, · · · , IALI be the eigenvalues of HL and let µL 
be the empirical measure for the eigenvalues of HL : a random probability measure on R 
defined by 

1 
µL := IALI L 8E;(L)· 

J 

(2.1) 

Among many known results, we recall (i) if a = 0, there exists a deterministic measure 
µDs, s.t. µL ~ µDs, a.s. (ii) in particular, let µi be the empirical measure for the free 
Laplacian (that is, the Hamiltonian H0 ). Then we have an ac probability measure lbs 
with supp µ~8 = [-2d, 2d] such that µi ~ µ~8 . In fact, µ~ 8 is equal to the spectral 
measure of H0 associated to 80 . (iii) if a > 0 and if E[w5] < oo, we have µL ~ µ~8 ([4]). 
We first remark that the second moment condition in [4] is not necessary : 

Theorem 1 Let a> 0. For any i.i.d. {wn}, we have 

Remark 
(1) It is well known that, if a = 0, a(H) = supp µDs, a.s. However, Theorem 1 says 
it is not the case for a > 0. In fact for a > 0, Theorem 1 implies that µ~8 is not 
supported on a(H0 )e = [-2d, 2(W, while, as we shall see later, there are examples in which 
[-2d, 2df n a(H) =/- 0 and furthermore we have Anderson localization on that set. But the 
eigenvalue distribution are much thinner there than the usual cases. 
(2) Although there are many cases in which ±2d lies in the boundary of the spectrum, IDS 
does not have Lifschitz tail behavior near ±2d so that usual tool to show the Anderson 
localization does not work there. 

2 



66

3 Extreme value statistics 

We first discuss the eigenvalue statistics in the bulk. In order to do that, we usually pick 
up Ea E CJ(H) and consider 

fa := L OIALl(Ej(L)-Eo) 
j 

to study the local eigenvalue statistics near Ea. For a = 0, if Ea lies in the localized region 

and n(Ea) := d~;s (Ea) > 0, then (L .:!:+ Poisson(n(Ea)dE) [11]. However, for a > 0, it 

may not be the case, because n(Ea) = 0 if Ea(/. [-2d, 2d]. 

Instead, ifµ has heavy tail at infinity, the first few eigenvalues of HL presumably go to 
infinity as L goes to infinity, so that it may be reasonable to consider the scaling limit of 
those. In fact, Dolai [4] obtained the limit distribution of the maximal eigenvalue of HL in 
a special case ofµ. We begin by setting up some notations. We denote the tail of common 
distribution µ by 

1 
µ[x, oo) = f(x), x > 0, 

for a function f. Let {E.f (L)h;::1 : Efl(L) 2: E!j(L) 2: · · · be positive eigenvalues of HL 
in decreasing order, and let 

be the scaling of those, where r L will be chosen depending on f such that limL_,00 r L = oo. 
We set the point process with atoms being composed of the rescaled eigenvalues : 

We set the following two assumptions on f and rL. 

Assumption 1 
f : (0, oo) -+ (0, oo) and rL satisfy the following conditions : 
( 1) f is strictly increasing on [ R, oo) for some R > 0, limx_,00 f ( x) = oo, f E C1 , and 
limL---,00 fL = oo, 
(2) f'(x) = o (f(x)), x-+ oo, 
(3) suplx-yl~2d lf(y)I :::; Clf(x)I for a positive constant C and sufficiently large x. 

The condition (1) is natural, since 1/ f gives the tail of a measure. Conditions (2), (3) are 
satisfied if f is of regular variation. On the other hand, the following one is essential for 
our problem and non-trivial : 

Assumption 2 

lim '°' P (f(V(n)) 2: x) = ~, x > 0. 
L->oo L..,, f L X 

nEAL 
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We note that, if a = 0 and if Assumption 1 is satisfied, Assumption 2 is always valid with 
rL = IALI- Let v be a measure on (0,oo) defined by 

1 
dv := x2 l(o,oo)(x)dx. 

Under the two assumptions above, the rescaled extremal eigenvalues converge to a Poisson 
process: 

Theorem 2 Suppose f, rL satisfy Assumption 1, 2. Then ~L ..'!:.+ Poisson(v). 

Here we consider the vague topology on the space of point processes on R. As for the 
related results, the eigenvalue/eigenfunction statistics on the bulk ford= 1 is well studied 
[10, 8, 12, 9, 13, 15, 14] and the various limits such as clock, Sine13 and Poisson appear. 
However, extremal eigenvalue statistics have not been studied even for a= 0. 

4 Examples 

We show below two classes of functions satisfying Assumption 1, 2, and discuss a relation 
to spectral properties. For simplicity, we assume suppµ C (0, oo ). 

4.1 Power functions 

The first one is a family of power functions with some logarighmic corrections. 

for some R > 0. We remark that Dolai [4] obtained the limiting distribution of Ef (L) 
when p > 0, k = 0. 

Theorem 3 
fp,q, rL satisfy Assumption 1, 2 in (1), (2) below. 

(1) ap ~ d : ~L ..'!:.+ Poisson(v) with 

(ap < d) 
._ cd-1 k ( d) "/k .- k+l . p ap = 

where Cd-l := ISd-l I is the surface area of the d-dimentional unit ball. Moreover, a(H) = 

aess(H) = [-2d, oo), we have Anderson localization on (2d, oo), and limsuplnl---->oo V(n) = 
oo, a.s. 
(2) ap > d : there exist positive constants C1 , C2 such that the following estimate is valid 
for sufficiently large x. 

Moreover, aess(H) = [-2d, 2d], a.s. and limlnl---->oo V(n) = 0, a.s., 
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Remark 
(i) We believe that for ap < d the result is true for any k E R. 
(ii) Theorem 3(1) includes the case for the usual Anderson model where a= 0. 
(iii) It is natural to expect that the statement in Theorem 3 would be valid for general 
function f which is of regular variation of order p : 

lim J(>.x) = )..P 
X---+00 f(x) ' 

(4.2) 

In fact, a formal computation indicates that f would satisfy Assumption 2 with rL = 
Ld-ap /(d - ap) (say, for the case of ap < d). However, the constant ip,k in Theorem 3 (1) 
implies that these observation is false in general and the quantity which vanishes in the 
limit in ( 4.2) has a non-zero contribution in the limiting behavior of C.L· 
(iv) The leftmost inequality in (4.1) and Borel-Cantelli argument show that 
P(limsupL---+oo E 1 < oo) = 1, while the rightmost one implies that there is no constant 
M such that Ef (L) =S M, a.s., having completely different behavior from that in Theo­
rem 3(1). Moreover, since O"ess(H) = [-2d, 2d] a.s., to consider the limit of t,L would be 
meaningless in this case. 

4.2 Exponential functions 

We next consider a family of exponential functions : 

In this case, the tail of Wn is smaller than the previous one, so that we expect that the 
behavior of eigenvalues become more gentle. 
Theorem 4 
(1) 0 < O < 1, a= 0 : t,L _'!:_,, Poisson(v) with rL = IALI• Moreover, rJ(H) = O"ess(H) = 
[-2d, oo), we have Anderson localization on (2d, oo), and limsuplnl---+oo V(n) = oo, a.s. 
(2) 0 < o =S 1, a> 0 : we can find positive constants Cj, j = 1, 2 such that for sufficiently 
large x, we have 

1- C1e-x8 :Sp (n {Ef(L) :S x}) :S exp [-c2x-dfae-2Da,oX0 ] 

L2".1 

where Da,6 = max{l, 2ao-l }. Moreover O"ess(H) = [-2d, 2d], a.s. and limlnl---+oo V(n) = 0, 
a.s. 

Theorems 3,4 imply that we have a phase transition : there exists ac such that 

(1) a =Sac: t,L _'!:_,, Poisson(v), O"(H) = O"ess(H) = [-2d, oo), we have Anderson localization 
on (2d, oo), and limsuplnl---+oo V(n) = oo, a.s. 
(2) a> ac: limsup£_,00 E1 < oo, a.s., SUPwLEl = oo, O"ess(H) = [-2d,2d], a.s. and 
limlnl---+oo V(n) = 0, a.s. 
It would be interesting if we could prove above statements for more general cases. 

This work is partially supported by JSPS KAKENHI Grant Number 20K03659(F.N.), and 
by the Research Institute for Mathematical Sciences, an International Joint Usage/Research 
Center Located in Kyoto University. 
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