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COLORED LATTICE MODELS FOR DEMAZURE CHARACTERS IN 
TYPES ABC 

TRAVIS SCRIMSHAW 

ABSTRACT. Characters of irreducible representations of g(n, the Schur functions are well
known to be described as partition functions of solvable lattice models. One method to 
prove this uses the Gelfand-Tsetlin interpretation of semistandard tableaux, which are 
naturally in bijection with states of the lattice model. This approach has been extended 
to type C in 2012 by Ivanov using Proctor patterns. A recent trend in solvable lattice 
models has been to use "colored" lattice models that are based on the R-matrices of 
finite dimensional quantum affine general linear group Uq(g(n) representations instead 
of Uq(g12 ). In this note, we obtain Demazure characters, which are representations of 
the corresponding Borel subalgebra and can be thought of as "partial" versions of the 
irreducible simple Lie algebra representations, and their Demazure atoms analogs by 
using a colored lattice model built from that of Bump-Brubaker-Buciumas-Gustafsson 
for type A Demazure atoms. A key component of these lattice models is a natural 
relationship with the wiring diagram of the defining element of the corresponding Wey! 
group. We then will discuss the colored version of Ivanov's lattice model to obtain 
Demazure characters in type B and C and the related tableaux. 

1. INTRODUCTION 

Solvable ( or integrable) lattice models are those formed on a square grid such that 
there exists an R-matrix that satisfies the Yang-Baxter equation, also known as the star
triangle equation from its description in electrical networks [Ken99]. This was used by 
Baxter in his solution of the eight-vertex model [Bax71 , Bax72] using what is now known 
as the standard train argument. For additional history, we refer the reader to [McClO, 
Ch. 13]. Some notable examples of applications of solvable lattice models include 
Kuperberg's proof [Kup96] counting the number of alternating sign matrices [Zei96]; 
Hall-Littlewood polynomials for the BCn root system [WZJ16]; and characters of the 
symplectic group Sp2n(q and the corresponding Tokuyama formula [Gral 7, Iva12]. Some 
other examples are [CdGW15, MS13, WZJ16, WZJ19], but this list is far from exhaustive. 

A recent trend has been to replace the underlying Uq(g(2 ) underlying the R-matrix with 
other (Drinfel'd-Jimbo) quantum groups for other Lie (super)algebras. In particular, we 
can produce colored lattice models by using Uq(g(n), where a pioneering example was 
given by Borodin and Wheeler in [BW18]. For some additional recent applications, some 
recent examples (but also far from exhaustive) include [AGS19, BBBG21, Borl 7, BP18, 
BSW20, BS22, BW20, MS20]. One feature of the colored lattice model is that it allows 
us to see further connections with a symmetric group by considering its wiring diagram, 
which underlies the construction in [BBBG21] and was explicitly noted in [BSW20]. 

The goal in this note is to combine the colored lattice model techniques with the 
character computations in [Gral 7, lva12] to produce new colored lattice models on a 
U-turn grid whose partition function is a Demazure character and atom for Sp2n(IC). 
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Our lattice model encodes the wiring diagrams of the correspond Weyl group of signed 
permutations with the U-turn corresponding to the simple transposition Sn action that 
negates the last letter (in the window notation). Our general idea of proof follows the 
usual colored lattice model proofs (e.g., in [BBBG21]): We apply an R-matrix and the 
train argument to give functional equations on the partition function that exactly matches 
the application of Demazure (atom) operators that define the Demazure characters and 
atoms. However, our lattice model has one wrinkle: it only has three R-matrices instead 
of the four needed for it to be solvable (as we have two different types of rows connected 
to each U-turn "vertex"). Despite this, there is enough to be able to produce the desired 
functional relations for Jr; and "'if;, the Demazure (atom) operators corresponding to s;, 
with i < n, and so we call our lattice model quasi-solvable . For Kn and "'ifn, we follow [Iva12] 
to construct the fish equation, but we have to directly analyze each case. 

Through our analysis, we are also able to construct a model for Demazure characters 
and atoms for SO2n+I (C) by a simple tweak of the K-matrix, the collection of Boltzmann 
weights for the U-turns. There are natural tableaux called King tableaux [Kin75, Kin76] 
and Sundaram tableaux [Sun90] to compute characters of Sp2n(q and SO2n+1(q, 
respectively. From [Gra17, lval2], it is know the (uncolored) lattice model for Sp2n(q 
is naturally in bijection with the Proctor pattern [Pro94] version of the reverse King 
tableaux, which comes from our ordering of the parameters in parallel to [BBBG21, 
BSW20]. This also holds in the colored setting and gives an algorithm to compute the 
(left) key of the King tableaux and can be described in terms of Kashiwara crystals [Kas93] 
(which we implicitly have through the Sheats bijection [She99] with the corresponding 
Kashiwara-Nakashima tableaux [KN94]). We also extend all of these results for SO2n+1(q 
using the same "marking" idea, such as in [BSW20]. 

This note is organized as follows. In Section 2, we give the necessary background 
on Demazure characters and atoms. In Section 3, we construct our lattice model for 
Demazure atoms and prove its quasi-solvability to give functional equations. In Section 4, 
we give a slightly modified quasi-solvable lattice model for Demazure characters. In 
Section 5, we relate the admissible states in our lattice models to Proctor patterns and 
the correspond (reverse) King and Sundaram tableaux. 

This work is primarily an abridged version joint work [BS22] with Valentin Buciumas. 
Independent work by Zhong [Zho22] on stochastic type C vertex models was also posted 
shortly after [BS22] appeared on the arXiv, which uses a colored model with a different 
quantization than the R-matrix for Uq(g((2nll)) we utilize and is possibly a gauge 
transformation of the atom model when taking q = 0. 

Acknowledgments. I thank Ben Brubaker, Nathan Gray, and Huafeng Zhang for 
useful discussions. I thank the organizers of "Recent Developments in Combinatorial 
Representation Theory" for a great workshop and giving me the opportunity to present 
this work. This work benefited from computations using SAGEMATH [Sag21]. The author 
was partially supported by Grant-in-Aid for JSPS Fellows 21F51028. This work was partly 
supported by Osaka City University Advanced Mathematical Institute (MEXT Joint 
Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849). 

2. BACKGROUND 

We will start with a review of the theory of Demazure operators. Let <I> be the root 
system and A be the weight lattice of a complex reductive Lie group G with maximal torus 
T. Let n be the rank of <I>. We identify A with the group X*(T) of rational characters 
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of T. For z E T and >. E A, we denote by z,>.. the application of >. to z. Let O(T) be 
the set of polynomial functions on T, that is, finite linear combinations of the functions 
z,>.. for >. E A. Let cp+ (resp. <I>-) be the set of positive (resp. negative) roots, and let 
ai ( i E I = { 1, 2, ... , n}) be the simple positive roots. Let a'; E X. (T) denote the 
corresponding simple coroots and si the corresponding simple reflections generating the 
Weyl group W. The Weyl group acts on the weight lattice and therefore on the space 
O(T). We shall denote this action by w · f(z) := f(wz). For w E W, let C(w) denote 
the length of w, the smallest number of simple reflections such that w = si1 •••sit, which 
is called a reduced word for w. Let w0 be the long element of the Weyl group and :::; 
denote the (strong) Bruhat order on W. For more information about properties of the 
Weyl group, we the refer the reader to [Hum90]. 

2.1. Demazure characters and atoms. Given si a simple reflection, we can define the 
associated isobaric Demazure operator acting on f E O(T) as 

(2.1) 

The numerator is divisible by the denominator, so the result is again in O(T). 
One can check that 1r; =Ki= si1ri. Given anyµ EA, set k = (µ, a';) so si(µ) = µ-kai. 

Then the action on the monomial zµ is given explicitly by 

(2.2) 

Define 'ifi := 1ri - 1. Explicitly, we have 

(2.3) 'if;f(z) := f(z) - J(siz). 
z<>, - 1 

if k ~ 0, 

if k = -1, 

ifk<-1. 

Both 'lri and 'ifi satisfy the braid relations. Thus, for any w E W, we can choose any 
reduced word w = Si1 • • • sik to define 'lrw = 7ri1 • • • 'lrik and 'ifw = 'ifi1 • • • 'ifik by Matsumoto's 
theorem [Mat64]. For w = 1, we set 1r1 = 'if1 = 1. 

For >. a dominant weight, let X,>.. denote the character of the irreducible representation 
Vi with highest weight >.. The Demazure character formula is the identity, for z E T: 

X,>..(z) = 'lrwoZ,\. 

For a proof, see [Bum13, Thm. 25.3]. More generally for any Weyl group element w, we 
may consider 1rwz,>.. and 'ifwz,>... These polynomials are called Demazure characters and 
Demazure atoms , respectively. The following relation between the two is well-known. 

Theorem 2.1 ([1890]; see also [Pun16, Lemma 2.5]). Let f E O(T). Then 

ch V,>.. = 1rw0 Z,>.. = L'ifyz,>... 
y 

2.2. Signed permutations and the Weyl group action. For the remainder of the 
paper, we will only consider Cartan types BC. We identify the maximal torus T with 
the space (C*t, where n is the rank of the group. The Weyl group W of type En is 
isomorphic to the Weyl of type Cn, and it is known as the hyperoctohedral group. It is 
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generated by the simple reflections si for i E {1, ... , n} subject to the relations: 

(2.4) 
SiSj = SjSi, 

sf= 1. 

ifi<n-1 

ifli-Jl:::::2 

The Weyl group acts on elements z E (C*t as follows: 

(2.5a) 

(2.5b) 

Si(- .. , Zi, Zi+I, .. . ) = ( ... , Zi+l, Zi, .. . ), 

Sn( ... ,Zn-I,Zn) = ( ... ,Zn-1,z;:;-1), 

if i < n, 

if i = n. 

The elements of W can be explicitly described using signed permutations of n, which 
are permutations of 

1<2<-··<n<n<···<l 

such that w(i) = w(z). Here we use the convention that¥= i. Thus we can determine 
a signed permutation by the image of 1 ::; i ::; n. The simple transposition for i < n is 
given by si = (ii+ 1), and Sn sends n +-+ n. An inversion is a pair 1 ::; i < j ::; n such 
that w(i) > w(j). The longest element w0 is the signed permutation [I, 2, ... , n]. 

The subgroup of W generated by si for i < n is a subgroup isomorphic to the Weyl 
group of type A. We shall denote the subgroup by WA. 

2.3. Functional equations. We now discuss the explicit functional equations for the 
Demazure characters and atoms that will be used in this paper. 

We first consider Demazure characters. Equation (2.1) can be written explicitly as 

(2.6a) ·f( ) ·= f(z) - z;1zi+lf(siz) 
7r, z . -1 ' 

1 - Zi Zi+l 
if i < n, 

(2.6b) f( ) ·- J(z) - z;:;-Lx J(snz) 
'lrn Z .- L ' 1- z;;,- X 

in type X, 

where X E { B, C} and LB := 1 and Le := 2. Let us denote Dw(z, >.) := 7rwZ>.. Let Si be 
a simple reflection and w E W such that £(siw) > £(w). From Equations (2.6), we deduce 

(2. 7a) 

(2.7b) 

(zi - Zi+1)Dsiw(z, >.) = ziDw(z, >.) - Zi+lDw(siz, >.), 

(z;;x - l)Dsnw(z, >.) = z;;x Dw(z, >.) - Dw(SnZ, >.), 

Next, for the Demazure atoms, Equation (2.3) can be rewritten as 

(2.8a) if i < n, 

(2.8b) in type X. 

if i < n, 

in type X. 

Let us denote Aw(z, >.) := 'ifwz).._ Let Si be a simple reflection and w E W such that 
£(siw) > £(w). We rewrite the equation above as 

(2.9a) 

(2.9b) 

(zi - Zi+1)Asiw(z, >.) = Zi+l (Aw(z, >.) - Aw( SiZ, >.)), 
(z;;x - l)Asnw(z, >.) = Aw(z, >.) - Aw(SnZ, >.), 

if i < n, 

in type X. 
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1 z z z z 1 z 

FIGURE 1. The colored Boltzmann f-weights with c > c' and d being any color. 

3. COLORED LATTICE MODELS AND DEMAZURE ATOMS 

We will construct colored lattice models that represent Demazure atoms in Cartan 
type Band C. These models generalize the work in [BBBG21], where type A Demazure 
atoms have been represented as partition functions of lattice models. The current paper 
and [BBBG21] produce colored models that are a refinement of the q = 0 uncolored 
models in [BBFll] (Schur polynomials) and [Iva12] (Sp2n(q characters), respectively. 
Our odd orthogonal model does not refine any pre-existing model. 

Remark 3.1. Our model is in fact a refinement of a semidual version of the model in [Iva12] 
obtained by interchanging O +-+ 1 on each of the horizontal components. This choice 
allows us to have a more natural description of our colored lattice model and helps with 
visualizing admissible states in the model by using colored paths. 

We work with fixed set c = { c1 < c2 < · · · < Cn < Cn < · · · < ci} of ordered 
colors. We use the conventions c\ := ci and c, := ci. For w E W we define wc = 
(cw(l), Cw(2), ... , Cw(n), Cw(n), ... , cw(I)) to be the set of colors permuted by w. Explicitly, Si 

permutes the colors Ci +-+ ci+l and ci +-+ ci+l and Sn permutes the colors Cn +-+ Cn- The set 
{ wc I w E W} will index the left boundary conditions of our model. 

3.1. Rectangular lattice model. Let us now briefly explain the model for type A given 
by Bump-Brubaker-Buciumas-Gustafsson [BBBG21]. For this subsection only, we will 
assume W = Sn = (s1 , ... , Sn-i), the symmetric group on n letters. We consider a grid 
of n horizontal lines numbered from top to bottom with a parameter zi E (C*, which 
we call r. One can think of z := (z1, z11, ... , Zn, z;;:- 1) as living in the torus of GLn((C). 
We also consider m vertical lines, and the intersection of a vertical and horizontal line 
is called a vertex . An interior edge connects two vertices in the model, while an outer 
edge (or a boundary edge) is attached to one vertex alone. The Boltzmann weight of a 
vertex is a function that assigns a complex number to each assignment of spins to the 
edges of a vertex that depends on the assigned parameter. The collection of vertices and 
their Boltzmann weights is called an L-matrix . The Boltzmann weights for r are given 
in Figure 1, and each weight that is not portrayed in the L-matrix is considered to be 0. 

An assignment of spins to the inner edges is called a state of the system. The weight 
of a state is the product over all vertices of the weights of each vertex. A state is called 
admissible if its weight is non-zero. The partition function is the sum of the weights of 
the states over all states of the system with boundary conditions determined by w, ..\, and 
the parameters z. Our system has fixed spins on the boundary that depend on w E W 
and dominant ,\ E A. The bottom and right edges are labeled by 0. The left edges are 
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FIGURE 2. The unique "ground" state for the colored system form= 5, 
n = 3, and.\= (2, 2, 1). We use colors c1 > c2 > c3 . The Boltzmann weight 
of this state is z? z~z3 • 

@\;® ~/1) @\ /1) @\;@ 
Zi, Zj Zi, Zj Zi, Zj Zi, Zj 

@f\ID @f\ID Q/ \ID QYYJ) 
Zj Zj Zi - Zj Zi 

~;© ~~ ~ ;© ~/1) 
Zi, Zj Zi, Zj Zi, Zj Zi, Zj 

el~ @I"© @I ~ QYYJ) 
Zi Zj Zi - Zj Zi 

FIGURE 3. The colored R~-matrix with c > d and d being any color. 

labeled by ww0c from top to bottom, and the top edges are labeled by Cn, ... , c1 (from 
right to left) in places.\+ p, where p = (n - l, n - 2, ... , 0). 

There is an R-matrix for this model given in Figure 3 that satisfies the Yang-Baxter 
equation; see Proposition 3.3 below for the precise details. In particular, this means 
we can apply the standard train argument depicted in Figure 4 to produce functional 
equations for the partition function. These functional equations are precisely those for 
the Demazure atoms in type A, which means the partition function is equal to a Demazure 
atom as they satisfy the same initial term given by the ground state in Figure 2. This 
was the proof given in [BBBG21]. 

3.2. U-turn lattice model. Now we describe the lattice model for types BC. Consider 
a rectangular grid with 2n horizontal lines which we number from top to bottom and m 
vertical lines numbered from right to left as in Figure 7. We call the odd numbered lines 
rand the even numbered ones ,0.. The L-matrix for ,0. is given by Figure 6. On the right, 
we connect the r line 2i - 1 to the ,0. line 2i by a U-turn . 



7

COLORED LATTICE MODELS FOR DEMAZURES 

I I I 

I Q---z,+1-
1 @- z,- ... 
I 

I 
-Z;+1\;(D 

I Zi,Zi+l -z,_/\D 
I 

I 
- Z; ---0 

I -Z;+1-@ 
I 

I 

FIGURE 4. Left: The model 6,\,w with an R-matrix attached on the right. 
Right: The model after using the Yang-Baxter equation in the same model. 

z 1 1 1 1 1 z 

FIGURE 5. The colored Boltzmann .6.-weights with c > d and d being any color. 

k1 k2 k3 k1 

~ ®" ®" ~ 
z z z z 

~ CV CV ~ 
z-2 1 1 z-2 + z-1 1 1 

FIGURE 6. On the left (resp. right) we have the colored S,. (resp. f) K
matrix weights for type C (resp. B) with u > u. 

Each r line 2i - 1 is assigned the parameter Zi E (C* and .6. line 2i is assigned the 
parameter z;1 E (C*. The Boltzmann weights for the .6. vertices are given by Figure 5. 
We also assign the U-turn from line 2i - 1 to 2i the parameter zi, which we also assign 
Boltzmann weights to by Figure 6. The collection of such Boltzmann weights for a U-turn 
is called a K-matrix . One can think of z := (z1, z11, ... , Zn, z;;-1) as living in the torus of 
Sp2n(C) or SO2n+1(C). These models only differ in the U-turn weights. 

Our system has fixed spins on the boundary that depend on w E W and dominant 
>. E A. The bottom edges are labeled by 0, the left r edges are labeled by 0. The left .6. 
edges are labeled by the first n colors of ww0 c (the others are determined from these) from 
top to bottom, and the top edges are labeled by en, ... , c1 (from right to left) in places 
>. + p, where p = (n - 1, n - 2, ... , 0). The rest of the boundary edges are assigned spin 
0. See Figure 7 for an example, where w = 1, >. = (3, 1) and>.+ p = (4, 1). We denote 

this model by 6~w, for XE {B,C}. The partition function is denoted by Z(6~w;z). 
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4 3 2 1 0 

r 

r 

FIGURE 7. The unique admissible state in 6.\,w for>-.= (3, 1) and w = 1. 
We use the convention z = z-1 . The top boundary condition will consist of 
colors on columns (4, 1) = >-. + p. 

~!ID Q\/1) Q\ !ID ~!ID 
Z;, Zj Z;, Zj Z;, Zj Z;, Zj 

@!\ID @!\ID @I ~ @I~ 
Zj Z; Z; - Zj Zj 

~;© ~/?) ~ ;© Q\/1) 
Z;, Zj Z;, Zj Z;, Zj Z;, Zj 

Gi~ el"@ el~ @I~ 
Zj Z; Z; - Zj Z; 

FIGURE 8. The colored R~-matrix with c > d and d being any color. 

We often simply write 6.\,w = 6~w since the states of the two models are the same and 
the Boltzmann weights only differ in k 1 (see Figure 6). See Figure 7 for an example. 

Remark 3.2. The z + 1 ratio between the k 1 K-matrix entry in types Band C is exactly 
the ratio between the type Cn and Bn characters in rank n = 1. 

A lattice model is called solvable or integrable if it there exists a full set of solutions 
of the Yang-Baxter equation and its generalizations that enable one to derive functional 
equations for the partition function that can be used to characterize it. For example, the 
model in [Ival2] is integrable because of the existence of four R-matrices Rf, R~, RS,, 
and R~ that satisfy the appropriate Yang-Baxter and reflection equations. 

Our model is not integrable in this sense, but it is close. We produce three R-matrices 
Rf, Rt and R~ that are given in Figures 3, 8, and 9, respectively. These R-matrices 
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@\;® @\ fa) @\ fa) ~ ;® 
Zi, Zj Zi, Zj Zi, Zj Zi, Zj 

@I~ @I ~ ~~ @I ~ 
Zi - Zj Zi Zj Zj 

~ ;® ~ ;© ~ ;0 ~fa) 
Zi, Zj Zi, Zj Zi, Zj Zi, Zj 

~~ ~ "@ ~ "@ ~~ 
Zj Zj Zj Zj 

FIGURE 9. The colored R~-matrix with c > r! and d being any color. 

@\;@ @\ fa) @\ fa) ~ ;® 
Zi, Zj Zi, Zj Zi, Zj Zi, Zj 

@I~ @I ~ ~~ @I ~ 
-Zi Zj Zi Zi 

~ ;® ~ ;© ~ ;0 ~fa) 
Zi, Zj Zi, Zj Zi, Zj Zi, Zj 

~~ ~ "@ ~ "@ ~~ 
Zi zi( *) Zi - Zj(*) Zi - Zj 

FIGURE 10. The colored RS,-matrix with c > r! and d being any color. 

satisfy the Yang-Baxter equation with the corresponding L-matrices as explained in 
Proposition 3.3. However, it can be shown, computationally, that there is no solution for 
the Yang-Baxter equation corresponding to S,. The problem, compared to the uncolored 
setting discussed in [Iva12] where such a solution exists, is that certain colored loops can 
be formed inside one side of Equation (3.1). This then ends up multiplying that side's 
partition function by the total number of colors, which is 2n, whereas the other side does 
not depend on n. Hence, the two partition functions cannot be equal. 

We do however produce a fourth R-matrix called RS, in Figure 10 that is partly 
determined. This means that the weights marked with ( *) in Figure 10 are free, so 
they can be changed and this does not affect our results. Yet, we do stress that no matter 
how you change them, the corresponding Yang-Baxter equation will still not be satisfied, 
including changing the allowed colorings (such that the colors are preserved). Given these 
four R-matrices satisfying a total of three Yang-Baxter equations, we prove in Section 3.3 
a functional equation for the partition function for each of the simple reflections si, for 
i < n. The method of proof is by a modified version of the train argument applied to 
U-turn lattice model; the modification is technical and needed as the fourth Yang-Baxter 
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equation does not have a solution. In Section 3.4, we then prove certain modified fish 
equations which are used to show a functional equation for the last remaining simple 
reflection. Our model therefore lacks a solution for the Yang-Baxter equations, but can 
still be studied via modified versions of the original tools used to study solvable lattice 
models. We shall call such a model quasi-solvable . 

Proposition 3.3. The Rf-matrix, R'J,.-matrix, or R~-matrix satisfy the corresponding 
Yang-Baxter equation: The partition function of the following two models are equal for 
any boundary conditions a, b, c, d, e, f E c LJ {O}: 

(3.1) 

where the z;, Zj weights are Rt-weights, the z;-weights are <!?-weights and the zrweights 
are 8-weights for <1?8 E {rr, ,6.f, ,6.r}. 

This model generally satisfies the reflection equation . 

Proposition 3.4. For any fixed boundary condition a, b, c, d E c LJ {O}, the partition 
function of the model on left 

r ~ r ~~ 
Zi Zj, Zi Zj 

,6. ~~ ,6. CE!~~ 
-1 -1 

Zi ,Zj Zj , Zi 

r ~~~ r ~~ 
-1 -1 

zi ,zj Zj Z; 

,6. @l'w----@/ ,6. @-----@-----@/ 

equals to the partition function on the right times a = z;2 . 

We will use the so-called unitary equation to describe what happens when we uncross 
two strands. More precisely, we show that the partition function of the model on the left 

@----@ 
(3.2) 

@---@ 
is simply a fixed scalar value fJ independent of the boundary condition a, b E {O, c1, ... , ck} 
times the partition function on the right, which we set to be 1 by definition. 

Proposition 3.5. The partition function of the model on the left in (3.2) with both of 
the R-matrices being either Rf or R'J,. is equal to (3 = Z;Zj. 
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-1 z. ---
' 

--=-- - -- -

Zj --• Zj --• 

. . - - :- - - --:- -

-- :- - - -- :- -
-1 z. ---
' 

-1 
Z- --• 
' 

z~ )0(: ::,:: : :: :_)) 
Z;-1 -----• ••••••• 

Z; •• 

-1 Z- •• 

' 

FIGURE 11. Pictorial description of the sequence of steps to compute the 
action of the i-th atom operator with the r (resp. ~) rows colored in blue 
(resp. red). The R-matrices are determined by the color on the row; e.g., 
the left most R-matrix in the first step is the R1 R-matrix. 

Proposition 3.6. For a state in <5.x,w, the vertices at and k2 correspond to inversions in 
w0w, the number of which equals £(w0w). 

For examples of Proposition 3.6, see Example 3.10 below. 

3.3. Billiards. Our first goal is to prove the following "type A" functional equation for 
the partition function. 

Lemma 3.7. Choose i < n, j = i + 1 and w E W such that £(s;w) = £(w) + I. Then 

(3.3) 

The functional equation in Lemma 3. 7 is shown by following the sequence of steps 
pictured in Figure 11. 

3.4. Ichthyology. We now study a version of the fish equation that we use to show a 
functional equation corresponding to the last simple reflection Sn- We do not actually 
prove the usual fish equation, but instead dissect it to its component pieces to obtain the 
desired functional equation. 
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Lemma 3.8. Choose w E W such that f(snw) = f(w) + 1. Then we have 

(z~ - l)Z(6>.,snw; z) = Z(6>.,w; z) - Z(6>.,w; SnZ) 

(zn - l)Z(6>.,snw; z) = Z(6>.,w; z) - Z(6>.,w; SnZ) 

(type C), 

(type B). 

Proof sketch. We first change the last ~ row into a r row and apply the standard train 
argument. This leads us to require analyzing all of the following possible fish , or local 
configurations of an Rf-matrix and Kf-matrix: 

~~ 
@YZ¼Jn 

~~ WZ¼in 
Then by some algebraic manipulations, we obtain the functional equations. □ 

3.5. The first main theorem. Using the functional equations we have shown above, 
we obtain our first main result. 

Theorem 3.9. For Cartan type XE {B, C}, we have 

Example 3.10. Let n = 2 and>.= (2, 1). Then we have the following states in 6w: 

1 : 
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Wo: 

Next, we compute the partition functions for each model in type C for Zw := Z(6~w;z): 

Zs2 = zrz;-1, 
Zs2s1 = Zi + Zi z;-2, Zs,s2 = Zi + z~ + Z1Z2, 

Zs,s2s 1 = 1 + Z1Z2 + Z1Z21 + Z:11 Z2, Zs2s1s2 = 1 + Z22 + Z1Z21 , 

We can see that these differ by zP = z1 from the atoms Aw := Aw(z, >.): 

A1 = ZiZ2, As,= Z1Z~, As2 = z?z;-1, 
As,s2 = Z1 + z11z~ + Z2, As2s 1 = Z1 + Z1Z2 2 , 

As,s2s1 = z;-1 + Z2 + z;-1 + z;-2z2, As2s1s2 = z;-1 + z;-1z;-2 + z;-1, 
Awa = z12 z21 

4. COLORED LATTICE MODELS AND DEMAZURE CHARACTERS 

In this section we construct a colored lattice model for a Demazure character by 
modifying our previous lattice model. Consider our previous model, but replace the a2 

vertices in both the r L-matrix (Figure 1) and the~ L-matrix (Figure 5) and replacing 
k3 in K-matrix with 

a~ for r a~ for~ k3 

cp ~ ®" 0- z-© 0- z-© z 

0 © @Y 
z 1 1 

Let 6{ w denote the new model using these new L-matrices and K-matrix. Analogous 

to 6~w, ~e will often write this simply as 6>.,w· This causes the lower left two values 
in the R~-matrix and R1-matrix to swap values. We use the same R~-matrix and R~
matrix as before. Therefore, the R-matrices that satisfy the Yang-Baxter equation in the 
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new model will be 

R~-matrix 

~;o 
J'~ 

Zi 

R~-matrix 

Zi 

with all weights that are not listed above remaining the same as in Figures 3, 8, 9 
and 10. A direct check shows that these modified R-matrices and K-matrix still satisfy 
the corresponding reflection and unitary equations. 

By the same argument as in Lemma 3.7, we can prove the following functional equation 
for the Demazure character model. 

Lemma 4.1. Choose i < n, j = i + 1 and w E W such that £(siw) = £(w) + 1. Then 

(4.1) 

Now we look at the corresponding version of the fish equation. 

Lemma 4.2. Choose w E W such that £(snw) = £(w) + 1. Then we have 

(z~ - l)Z(<5>.,snw; z) = z~Z(<5>.,w; z) - Z(<5>.,w; SnZ) (type C), 
(zn - l)Z(<5>.,snw; z) = ZnZ(<5>.,w; z) - Z(<5>.,w; SnZ) ( type B). 

Proof sketch. We need to consider only three possible fish: 

~~ 
(§/~n 

~A ~ A ®'z¼fn ciJz¼ln 
where u is an unbarred color. Then by some algebraic manipulations, we obtain the 
desired functional equations for types C and B. □ 

Theorem 4.3. For Cartan type XE {B, C}, we have 

Z(<S~w; z) = zP Dw(z, >-.). 

Example 4.4. Let>-.= (2, 1). The following are all possible states for 6>.,s28182 : 
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Compare against the atoms for 

6;.,1 LJ 6;.,s1 LJ 6;.,s2 LJ 6>-,s1s2 LJ 6>-,s2s1 LJ 6>-,s2s1s2 

given in Example 3.10. Note that each inversion that was present in the atom is now 
either an inversion for w0w, an L-matrix a;, or a K-matrix k~. 

Theorem 4.5. We have 
Z(6;.,w; z) = L Z(6;.,y; z). 

y~w 

An immediate corollary of Theorem 4.5 is Dw(z, >.) = Ey,c:;w Ay(z, >.) (see Theorem 2.1). 

Example 4.6. Let,\= (2, 1). We compute all admissible states in 6;.,8182 : 

5. PROCTOR PATTERNS AND TABLEAUX 

In this section, we will use our model to construct a key algorithm on reverse King 
tableaux [Kin75, Kin76] for G = Sp2n or Sundaram tableaux [Sun90] for G = SO2n+l· We 
begin by recalling the weight preserving bijection between states of the uncolored type 
C model and symplectic Proctor patterns [Pro94, Thm. 4.2] given in [Iva12, Ch. 1]. We 
then give the analogous bijection between the states of the uncolored type B model and 
odd orthogonal Proctor patterns [Pro94, Thm. 7.1]. Similar to [BSW20], the order of our 
variables is different by i +-+ n + 1 - i, which is the reason we naturally work with reverse 
King tableaux. As a consequence, these bijections with our model provides a new proof 
of [Pro94, Thm. 4.2, Thm. 7.1]. 



16

TRAVIS SCRJMSHAW 

5.1. Symplectic patterns and King tableaux. We consider the case for G = Sp2n, 

which is the Lie group of Cartan type Cn. We note that these patterns were first given 
by Zelobenko [Zel62]. A symplectic Proctor pattern is a pattern of non-negative integers 
of the form 

a1,1 a1,2 a1,3 a1,n 
b1,1 b1,2 b1,3 b1 ,n 

a2,2 a2,3 a2,n 
b2,2 b2,3 b2,n 

an-1,n-1 an-1 1n 

bn-l,n-l bn-l,n 
an,n 

that satisfies the interlacing conditions 

min{ ai,j, ai+l,i} 2". bi,j 2". max{ ai,i+I, ai+l,HI}, 

min{bi-l,j-1, bi,j-1} 2". ai,j 2". max{bi-1,j, bi,j}-

The weight of a symplectic Proctor pattern P is given by 
n n n 

wt(P) := IT zf;-2B,+A;+1' where Ai = L ai,j, An+l = 0, and Bi = L bi,j· 
i=l j=i j=i 

Let Pf denote the set of symplectic Proctor patterns with top row A. 
A King tableau [Kin75, Kin76] is a semistandard tableaux in 1 < I < 2 < 2 < • • • < 

n < n such that the smallest entry in row i is i, and its weight is 
n 

wt(T) = IT xr;';-m,, 
i=l 

where mk is the number of times k appears in T. Let JC>, denote the set of King tableaux 
of shape A. A reverse King tableau is a King tableau with respect to the alphabet in 
the reverse order or alternatively the entries in rows (resp. columns) are weakly (resp. 
strictly) decreasing and the largest entry in row i is n + l - i. 

As discussed in [Pro94], there is a natural bijection 8°: Pf -+ JC>. by extending 
the usual bijection between Gelfand-Tsetlin (GT) patterns and semistandard tableaux. 
Indeed, the partition _\(k) of the k-th row indicates the subtableau consisting of all of the 
letters greater than the k-th letter in the alphabet. For instance, if k = 3, then we restrict 
to the letters n - l < n < n. 

Proposition 5.1 ([Iva12, Ch. 1]). Let <5f denote the uncolored model for G = Sp2n. 

There exists a weight-preserving bijection 

WC : <5f -+ Pf. 

Ivanov constructed the bijection w0 in Proposition 5.1 explicitly by extending the usual 
bijection between the five-vertex model and GT patterns (see, e.g., [BSW20, Sec. 2.1]) 
and using the 1 edges between the~ (resp. SJ rows to define the {aijh,j (resp. {bijh,j) 
values by the GT pattern bijection. More precisely, the i-th row of vertical edges in 
the model is the 01-sequence of the partition in the i-th row of the symplectic Proctor 
pattern read from right-to-left. We can make the analogous injection on the colored model 
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6.x,w or 6.x,w by considering the positions of the colored vertical edges or equivalently by 
forgetting about the colors in our model as an intermediate step. Note that this does not 
see the difference with [Iva12] (see Remark 3.1). 

Example 5.2. Consider the states given in Example 3.10 for 6.x,w• Then under the bijection 
w0 , the states correspond to the following symplectic Proctor patterns: 

1: 

Wo: 

2 1 
1 0 

1 
0 

2 1 
1 0 

0 
0 

2 1 
2 0 

2 
1 

2 1 
2 0 

0 
0 

2 1 

2 

2 1 

2 

2 

1 

1 

1 

1 

1 

2 1 
2 0 

2 

2 1 
2 1 

2 
0 

2 1 
2 0 

2 
2 

2 1 
2 0 

1 
0 

2 1 
2 1 

2 
2 

0 

2 1 
1 1 

1 
0 

2 1 
2 0 

1 
1 

2 1 
1 1 

1 
1 

2 1 
1 0 

1 
1 

2 1 
2 1 

1 
0 

5.2. Odd orthogonal patterns and Sundaram tableaux. Here we instead assume 
G = SO2n+l, which is the Lie group of Cartan type Bn. An odd orthogonal Proctor 
pattern is a symplectic Proctor pattern such that the values b;,n, for all 1 ::::; i ::::; n, at the 
right ends are also allowed to be half integers. We remark that these patterns were first 
announced by Gelfand and Tsetlin without proof in [GT50]. Let Pf denote the set of 
odd orthogonal Proctor patterns with top row >.. 

A Sundaram tableau [Sun90] is a King tableau with an additional letter oo > 'ii that 
is allowed to repeat down columns but can only appear once in a row. The weight of a 
Sundaram tableau is the same as for a King tableau; in particular, we ignore oo in the 
weight computation. We denote the set of Sundaram tableau of shape>. by S_x. A reverse 
Sundaram tableau is defined analogously to a reverse King tableau. Likewise, we have 
a natural bijection 8B: Pf -+ S.x, as noted in [Pro94], by the same description as 8° 
except if the rightmost entry in the odd orthogonal Proctor pattern is a half integer, we 
replace the leftmost entry in the corresponding row with an oo. 

Recall that the model for both type B and C Demazure atoms ( as well as for Demazure 
characters) have the same states, but the k1 entry of the K-matrix has a binomial 
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weight z-2 + z-1 in type B as opposed to the monomial weight z-2 for type C. Thus, 
following [BSW20], we can introduce a marking to the states for this K-matrix entry, 
where if the bend is marked, then it has a Boltzmann weight of z-1 and otherwise the 
Boltzmann weight is z-2 . This yields a bijection between the marked states and the 
monomials of the partition function as opposed to a product of binomials. 

Proposition 5.3. Let 6>. denote the set of marked states for the uncolored type B model. 
There exists a weight-preserving bijection 

B ~ B 
\)f :6,>.---+'P>.-

Similar to the case when X = C, we can extend \J!B to an injection with the domain 
-B B 

the colored model 6>.,w or 6>.,w· 

Example 5.4. Let us take w = s2 . Then we have the one state in the model 6~ w with one 
k1 U-turn that we can mark, which corresponds to the following pair of odd 'orthogonal 
Proctor patterns and reverse Sundaram tableaux: 

2 1 
1 0 

+------+ 1 
1 

2 1 
1 0 

1 
1 
2 

+------+ ITill 
ITJ' 

0TI 
ITJ' 

where the box in the unique state of 6!,>. denotes the possible marking. 
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