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A SURVEY ON CATEGORIFIED CRYSTAL STRUCTURE ON LOCALIZED 
QUANTUM COORDINATE RINGS 

't' ~ {tffl TOSIDKI NAKASHIMA 

J:~.:k'3" SOPHIA UNNERSITY 

1. INTRODUCTION 

Let R be a quiver Hecke algebra associated with a simple Lie algebra g and "R-gmod" the category 
of finite-dimensional graded R-modules. We set X(R-gmod) to be the Grothendieck ring of R-gmod. 
It is well-known that the (unipotent) quantum coordinate r~g .'.l{q(n) is categorified by X(R-gmod). 
The basic theory of localization for the monoidal category R-gmod of R-gmod is initiated by [5] and 
its Grothendieck ring X(R-gmod) defines the localized (unipotent) quantum coordinate ring fti;(n). 
In [11], Lauda-Vazirani defined certain crystal structure on the family of simple modules of R-gmod 
and they have shown that this crystal is isomorphic to the crystal B( oo) of the nilpotent half of 
Uq(g). In this survey, considering the family of self-dual simple module JB(R-gmod) of the localized 

category R-gmod, we define a crystal structure of fti;cn) and show that it is isomorphic to the cellular 
crystal JBi := Bii © · · · © B;N, which is defined for a reduced word i = i 1 · · · iN of the longest Weyl 
group element w0 • This result can be seen as a localized version of the result by Lauda-Vazirani. 
The article is a survey of [13]. But, the subsection 2.1 and Example 3.16 are not described in [13], 
which are new parts added here. 

2. PRELIMINARIES 

2.1. Setting. Let g = n EEl t EEl n_ = (e;, h;, f;);EI:=(1,2,. .. ,nl be a simple Lie algebra associated with a 
Cartan matrix A= (llij)i,jEI where {e;, f;, h;};EI are the standard Chevalley generators and n = (e;);EI 
(resp. t = (h;);EJ, n_ = (f;);E1) is the positive nilpotent subalgebra (resp. the Cartan subalgebra, the 
negative nilpotent subalgebra). 

Let {cr;};EJ be the set of simple roots of g and ( , ) a pairing on t x t* satisfying aij = 
((h;,crj));,jEI· We also define a symmetric bilinear form(,) on t* such that (cr;,cr;) E 2Z>o and 

<h · ,l) = 2(a;,A) for ,l E i*. 
1' (ai,ai) 
Let P := {,l E t* I (h;, ,l) E Z for any i E /} be the weight lattice and P + := {,l E P I (h;, ,l) ~ 

0 for any i E /} the set of dominant weights. Set Q := EEl;E/lcr; (resp. Q+ := .EiEI Z;,ocr;), which 
is called the root lattice (resp. positive root lattice). For an element fJ = _E; m;cr; E Q+ define 
I.Bl = _E; m;, which is called the height of /J. Let W = (s; I s;);EJ be the Weyl group associated with P, 
wheres; is the simple reflection defined by s;(,l) = ,l - (h;, ,l)cr; (,l E P). 

We denote the dual weight lattice of P by P* := {h Et I (h, P) c Z}. Let Uq(g) := (e;, f;, qh)iEI,hEP' 

be the quantum algebra associated with g with the defining relations (see e.g.,[l, 2]) and U;;(g) := 
(f;)iE/ (resp. u;(g) := (e;)iE/) the negative (resp. positive) nilpotent subalgebras of Uq(g). We also 

define the Z-form UZ[q,q-i](g) of u;(g) as in [5]. Set q; := qCa;,a;)/2, [n]; = (q'/ - q-;1 )J(q; - q-;I ), 

[n]; ! := TTo<;k<;n[k]; and x}n) := X'? J[n]; ! for X; = f;, e; for i E /, n E Z;,o. 
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2.2. Quantum shuffle algebra and quantum coordinate ring. See [12] for this subsection. Let 
'F := (F; I i E /) be a free associative Q(q)-algeba. For a multi-index v = (v1, · · · , vm) E I' let us 
define a monomial Fv := Fv1 • • • Fvm E 'F and its weight wt(F) := av1 + · · · + avm• For monomials 
x, x',y,y' E 'F, define 

(x © y )(x' © y') : = q<wt(y),wt(x')) xx' © yy', 

it induces an associative multiplication on 'F ©Q(q) 'F and then 'F ©Q(q) 'F becomes an associative 
Q(q)-algebra. We can also define an comultiplication ~ : 'F - 'F ©Q(q) 'F by setting ~(F;) = 
1 © F; + F; © 1. The quantum shu.ffie algebra 'F* is defined as a dual of 'F. For f3 E Q+, set 
'Jp := fBvE[Mf3),wt(y)=/3Q(q)Fv- Define 

r· := EB r;, r; := HomQ(q)('Jp, Q(q)) 

The comultiplication ~ induces a multiplication on 'F* by 

(y-y',x) = (y©y',~(x)), (y,y' E 'F*, XE 'F), 

where (, ) is a natural paring on 'F* x 'F. Now, by this multiplication 'F* becomes an associative 
Q(q)-algebra, which is called the quamtum shuffle algebra. The following lemma is known as the 
shuffle lemma: 

Lemma 2.1 (shuffle lemma). For v = (vi,··· , Vm+l) E 1m+l, v' = (vi,··· , Vm) E Im and v" = 
(vm+I, · · · , Vm+!) E JI, we obtain 

(2.1) F;. F> = L ( n q-(a,w(a)'a'w(b)))F:(v)' 
WESm,1 a<b,w(a)>w(b) 

where S m,l is a subset of the symmetric group S m+l defined by 

S m,l := {w ES m+l I w(l) < w(2) < · · · < w(m), w(m + 1) < w(m + 2) < · · · w(m + l)}, 

and note that the action of w E S m+l on a multi-index v = ( v1, · · · , v m+l) E r+I is defined by 

(1 ::5. k ::5. m + l). 

Now, let us define the (unipotent) quantum coordinate ring 3!q(n) a restricted dual of u;(g) as 

3lq(n) = EB 3lq(n)13 3!q(n)p := HomQ(q)(U;(g)_13, Q(q)) 
f3EQ_ 

As is well-known that there exists a natural projection 1r : 'F - u;(g) and then considering the 
dual of this map, we obtain the embedding of algebra 3lq(n) ~ 'F*. Note that U~(g) ~ 3lq(n) as a 
Q(q)-algebra. The Z-form 3!(n)z[q,q-1J is defined as in [5]. 

Example 2.2. A2-case. Seti= {1, 2}, (a1, a1) = (a2, a2) = 2 and (a1, a2) = (a2, a1) = -1. By the 
formula (2.1) we get easily Fj · Fj = (1 + q-2)Fjp Fj · F2 = Fj2 + qF21' F2 · Fj = F21 + qFj2. Here 
note that 

S 1,2 = { (i;~), Gi;), (~i~)} and their inverses -1 {(123) (123) (123)} Si,2 = 123 '231 '213 · 

Then, we get 

Fj · Fj · Fi, = Fj · (Fj2 + qF21 ) = (1 + q-2)Fj12 + (q-1 + q)Fj21 + (1 + q2)F211 , 

Fj. Fi,. Fj = Fj. (Fz1 + qFj2) = (q + q-l)Fj12 + 2Fi21 + (q + q-l)Fz11, 

Fi,· Fj · Fj =Fi,· ((1 + q-2)Fj1) = (1 + q-2)(q2Fj12 + qFj21 + F 211 ). 

Finally, we obtain the "q-Serre relation": 

Fj · Fj · Fi, - (q + q-1)Fj ·Fi,· Fj +Fi,· Fj · Fj = 0. 
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3. CRYSTAL BASES AND CRYSTALS 

3.1. Crystal Base of Uq(g) ~ 3lq(n). Let us define the crystal base (L( oo ), B( oo)) of Uq(g)([l]). For 
i E / the operator e; E End(Uq(g)) is defined by the formula 

e;(PQ) = e;(P)Q + q;h,,13) Pe;(Q), e;(Jj) = oi,j, e;(l) = 0, 

for any P E Uq(B)p, Q E Uq(g), i, j E /. By the fact that for P E Uq(B)p, there exists the following 
unique decomposition 

(3.1) p = IJ?) p n, 

k;,O 

where Pn E Ker(e;) n Uq(B)p+ka,• And define the operators e;,fi E End(Uq(g)) on PE Uq(B)p by 
using the decomposition (3.1) 

-.p _ ""f,(k-l)p 
ez - L...J i n, fiP = I J/k+l) Pn, 

k>O k;,O 

which are called Kashiwara operators. Now, set 

L(oo) ·. = "" A 1. 1. u L... Ji, ... Ji, oo, B(oo) = {fi, · · -fi,uoomodqL(oo) lk ~ O,i1, · · · ,h E /} \ {0}, 

s;(b) = max{k: e7b -:f:. 0}, cp;(b) = s;(b) + (h;, wt(b)), 

where Uoo = 1 E Uq(g) and Ac Q(q) is the local subring at q = 0. 

Theorem 3.1 ([1]). A pair (L( oo ), B( oo )) is a crystal base of Uq(g). Indeed, we obtain 

e;L(oo) c L(oo), fiL(oo) c L(oo), 

eiB(oo) c B(oo) LJ {0}, fiB(oo) c B(oo) LJ {0}, 

wt(eib) = wt(b) + a; for b,e;b E B(oo), wt(fib) = wt(b)- ai for b,f;b E B(oo), 

S;(e;b) = S;(b) - 1 cp;(e;b) = S;(b) + 1, for b, e;b E B(oo), 

si(f;b) = cp(b) + l 'Pi(f;b) = cp;(b)-1, for b,f;b E B(oo), 

fib= b' ¢:::::::} e;b' = b, for b, b' E B(oo) 

3.2. Crystals. We shall introduce the notion crystal following [2], which is a combinatorial object 
obtained by abstracting the properties of crystal bases in Theorem 3.1. 

Definition 3.2 ([2]). A 6-tuple (B, wt, {si}, {cp;}, {e;}, {fi})iEI is a crystal if Bis a set and there exists a 
certain special element 0 outside of B and maps: 

(3.2) 

(3.3) 

satisfying : 

wt: B --t P, Si: B --t Z LJ {-oo}, 'Pi: B --t Z LJ {-oo) (i E /), 

e; : Bu {0} --t Bu {0}, f; : Bu {0} --t Bu {0} (i E /), 

(1) cp;(b) = s;(b) + (h;, wt(b)). 
(2) If b, e;b EB, then wt(e;b) = wt(b) + ai, s;(e;b) = s;(b) - 1, 'Pi(e;b) = 'Pi(b) + I. 
(3) If b,f;b EB, then wt(f;b) = wt(b)- a;, s;(fib) = s;(b) + 1, 'Pi(f;b) = cp;(b)-1. 
(4) For b, b' E Band i E /, one has fib = b' iff b = eib'. 
(5) If cp;(b) = -(X) for b EB, then e;b =fib= 0 and e;(0) = f;(0) = 0. 

i -
Here, a ccrystal graph of crystal Bis a /-colored oriented graph defined by b-b' tj f;(b) = b' for 
b,b' EB. 
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Definition 3.3 ([2]). For crystals B1 and B2, 'Pis a strict embedding (resp. isomorphism) from B1 
to B2 if 'P : B1 LJ {0} ➔ B2 LJ {0} is an injective (resp. bijective) map satisfying that 'P(0) = 0, 
~~('P(b)) _~ wt(b), s;('P(b)) = s;(b) and <p;('P(b)) = <p;(b) for any b E B1 and 'P commutes with all 
e; s and f; s,. 

We obtain the tensor structure of crystals as follows([l, 2]): 

Proposition 3.4. For crystals B1 and B2, set 

Then, B1 ® B2 becomes a crystal by defining: 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

wt(b1 ® b2) = wt(b1) + wt(b2), 

s;(b1 ® b2) = max(s;(b1), s;(b2) - (h;, wt(b1))), 

<p;(b1 ® b2) = max(<p;(b2), <p;(b1) + (h;, wt(b2))), 

if <p;(b1) ;::,: S;(b2) 
if <p;(b1) < s;(b2), 

if <p;(b1) > s;(b2) 
if <p;(b1) :=:; s;(b2). 

Example 3.5. For i E /, set B; := {(n); In E Z} and 

wt((n);) = na;, s;((n);) = -n, <p;((n);) = n, 

sj((n);) = (J)j((n);) = -oo (i -::f:. j), 

e;((n);) = (n + l);, /;((n);) = (n - l);, 

ej((n);) = /j((n);) = 0 (i -::f:. f). 

Then B; (i E /) possesses a crystal structure. Note that as a set the crystal B; can be identified 
with the set of integers Z. 

3.3. Explicit structure of the crystal B;, ® · · · ® B;m. Here we shall describe an explicit structure 
of tensor product of B;'s. Fix a sequence of indices i = (i1, • • · , im) E 1m and write 

( XI · • • X ) := 'fx, (O)· ® · · · ® 'fxm(0)· = (-xi)· ® · · · ® (-x )· , , m Ji1 i1 Jim lm l1 m lm' 

where if n < 0, then J:'(0); means e"1n(0);. Note that here we do not necessarily assume that i is a 
reduced word though later we will take i to be a reduced longest word. By the tensor structure of 
crystals in Proposition 3.4, for the sequence i as above, we can describe the explicit crystal structure 
on Jai := B;, ® · · · ® B;m as follows: For x = (x1, · · · , Xm) E Jai, define 

and for i E / define 

crk(x) := Xk + °I.(h;,,a;)xj 
j<k 

a'(i)(x) := max{crk(x) 11 :,; k:,; m and ik = i}, 

iJ(i) = iJUl(x) := {k 11 :,; k:,; m, ik = i, crk(x) = u<il(x)}, 

mJ) = mJ)(x) := maxiJ<il(x), m~) = m~)(x) := min jJ(i)(x). 
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Now, the actions of the Kashiwara operators e;, f; and the functions s;, 'Pi and wt are written explic­
itly: 

(3.9) 

m 

(3.10) wt(x) := - L xka;,, s;(x) := a=Ul(x), (f);(x) := (h;, wt(x)) + s;(x). 
k=I 

Define the function /JZ) on IBi by : 

(3.11) /Jl)(x) := lTk+(x) - lTk(x) = Xk + L (h;, a;)Xj + Xk+, 
k<j<k+ 

for x = (x1, • • • ,Xm) E IBi, where fork E [l,N], e (resp. k-) is the minimum (resp. maximum) 
number j E [1, N] such that k < j (resp. l < k) and ik = ij if it exists, otherwise N + 1 (resp. 0). Here 

one knows that mJ\x) and m~)(x) are determined by {/3Z)(x) 11 :-::; k :-=; N, ik = i}. 

3.4. Braid-type isomorphism. We shall introduce some isomorphism of crystals, called "braid­
type isomorphism". 
Set Cij := (h;, aj)(hj, a;), c1 := -(h;, aj) and c2 := -(hj, a;). In the sequel, for x E Z, put 

if X ~ 0, 

if X < 0. 

Proposition 3.6 ([14]). There exist the following isomorphisms of crystals¢;~) (k = 0, 1, 2, 3) 

(1) If Cij = 0, 

(3.12) 

(0) -where </Jij ((x); © (y)j) - (y)j © (x);. 

(2) If Cij = 1, 

(3.13) 

where 

</J;?((x); © (y)j © (z);) = (z + (-x + y- z)+)j © (x + z); © (y- z - (-x + y-z)+)j­

(3) If C;j = 2, 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(2). ~ 
</Jij . B;©Bj©B;©Bj-Bj©B;©Bj©B;, 

where¢;~) is given by the following: for (x);©(y) j©(z);©(w) j we set (X) j©(Y);©(Z)j©(W); := 

</J;?((x); © (y)j © (z); © (w)j), 

X = w + (-czx + y - w + c2(x - c1y + z)+)+, 

Y = x + c1w + (-x+ z-c1w + (x- c1y +z)+)+, 

Z = y-(-c2x+y-w+c2(x-c1y+z)+)+, 

W z-c1w-(-x+z-c1w+(x-c1y+z)+)+-

(4) If C;j = 3, the map 

(3.19) 
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is defined by the following: for (x); 181 (y)j 181 (z); 181 (u)j 181 (v); 181 (w)j we set A := -x + c1y - z, 
B := -y+c2z-u, C := -z+c,u-vandD := -u+c2v-w. Then(X)j181(Y);181(Z)j181(U);181 

(V)j 181 (W); := ¢\~l((x); 181 (y)j 181 (z); 181 (u)j 181 (v); 181 (w)j) is given by 

X = w + (D + (c2C + (2B + A+)+)+)+, 
y x + c,w + (c1D + (3C + (2c,B + 2A+)+)+)+, 

z = y+u+w-X-V, 

u = x+z+v-Y-W, 

V = u - w - (2D + (2c2C + (3B + c2A+)+)+)+, 

w = v - c1 w - (c1D + (2C + (c1B + A+)+)+)+. 

They also satisfy¢;~) o ¢)7) = id. 
We call such isomorphisms of crystals braid-type isomorphisms. 

We also define a braid-move on the set of reduced words of w E W to be a composition of the 
following transformations induced from braid relations: 

· · · i} · · · ➔ ···Ji··· (cij = 0), · · · iji · · · ➔ ···Ji}··· (cij = 1), 

· · · iji} · · · ➔ · · · jiji · · · (Cij = 2), · · · ijiji} · · · ➔ · · · jijiji · · · (Cij = 3), 

which are called by 2-move, 3-move, 4-move, 6-move respectively. 

3.5. Cellular Crystal ]Bi = lB;1;2 ... ;k = B;, 181 · • • 181 B;,. For a reduced word i = i1i2 • • • ik of some Weyl 
group element, we call the crystal ]Bi := B;1 181 · · · 181 B;k a cellular crystal associated with a reduced 
word i. Indeed, it is obtained by applying the tropicalization functor to the geometric crystal on the 
Langlands-dual Schubert cell Lxw, where w = s;1 • • • s;, is an element of the Well group W ([15]). 
It is immediate from the braid-type isomorphisms that for any w E Wand its reduced words i1 · · · i1 
and Ji••• }1, we get the following isomorphism of crystals: 

(3.20) 

3.6. Half potential and the crystal B( oo ). For a Laurent polynomial ¢(x1, · · · , Xn) with positive 
coefficients, the tropicalization of¢ is denoted by¢:= Trop(¢), which is given by the rule: Trop(ax+ 
by) = min(x, y) with a, b > 0, Trop(xy) = x + y and Trop(x/y) = x - y and Trop(c) = 0 for c > 0. In 
[10], the crystal B( oo) has been realized as a certain subset of ]Bi defined as follows: 

Theorem 3.7 ([10, Theorem 5.11]). Define the subset oflBi: 

(IBw- )<I><+J 0- = {x = (x1, · · · , XN) E lBi I <Ii<+l(x) ;::-: 0}, 
0 , ' 

where JB;;;0 is a certain geometric crystal, iD<+l is a tropicalization of the half potential <IJ(+) which is 
a Laurent polynomial with positive c~eflicients in N variables and 0i is a certain positive structure 
on the geometric crystal JB;;;0 • Then, (JB;;;0 )<I><+J,e, ~ B( oo ). 

Remark 3.8. To define the crystal structure on (JB;;;0 )<I><+J,e., it is supposed that if e;x <I- (JB;;;0 )<I><+l,e., 

then e;x = 0. Thus, in this sense, the embedding B( oo) ~ (IB;;;0 )<I><+J,e, ~ ]Bi is not a strict embedding. 
In [16, 15], it has been given the strict embedding of B(oo) ~ JBi, which is called "Kashiwara 
embedding" and the method to describe the image of this embedding, called "polyhedral realization". 
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3.7. Subspace<]{... The object 1f.. will play a significant role for this article. 
Fix a reduced longest word i = i1 · · · iN and take the function f3Z)(x) = Xk + Lik<j<k+(h;,a;)Xj + 
Xk+ (1 :::; k :::; N) as in (3.11). In what follows, let us identify the Z-lattice zN with Bi and then we 
define the summation of elements x = (xi,· · · , XN) and y = (yi, · · · , YN) by x+ y = (xi+ Yi,·· · , XN + 
YN) as a standard one in zN_ Here, we define the subspace <Hi c zN by 

(3.21) 

The following result was presented in [10]: 

Proposition 3.9 ([10]). Fori = i1i2 • • • iN, k = 1, 2, • • • ,Nanda fundamental weight A;, set 

(3.22) 

Then, we obtain that {h 1, • • • , hN} is a Z-basis of <H;, namely, 

(3.23) 

Proof Let {a;};, {h;}; and {s;}; be the simple roots, the simple co-roots and the simple reflections 

of the Langlands dual Lie algebra gv respectively. Define m\k) E Z2co (k E [l,N], i EI) by 

,(k) . , , , ( , ) "7 (k) , 
a .= S;NSiN-1 ••. sk+l <Y;k = L.J mi <Y;-

iEI 

By [10, Lemma 9.1], one has that {m; := (m;1l,m?l, • • • ,m\N)) Ii E /} is a Z-basis of<H;. Thus, it 

suffices to show that ht) = mt) for any k E [l, N] and i E /. 

Let us define the set of paths from a to b ( a, b E Z, a ~ b) by 

'P(a, b) := {(a, h, h, ... , jz, b) I a> h > h > · · · > jz > b, l ~ O}, 

where set 'P(a, a) = 0 and l = -1. By the following lemma, we can complete the proof of the 
proposition. 

Lemma 3.10. We obtain the following explicit formulas: 

(3.24) 

(3.25) 

(h;k, s;k+1 .•• s;p-1 (a;p)) 

I (-1)1(h;,, a;;, )(h;;,, a;;,_1 ) • • • (h;h, a;h )(h;h, a;) (p > k), 
(p,j1 ,-·· ,j,,k)E'P(p,k) 

s;Ns;N-1 · · · s;,+1 (a;,) 
N 

=I 
where note that in (3.25) if k = L, namely 'P(L, k) = 0, then the corresponding term is a;,. 
Example 3.11. Ing = G2-case. Set a12 = -1 and a21 = -3. Taking a reduced longest word 
i = 121212, one has 

(i) (i) (i) (i) /31 (x) = X[ - X2 + X3, /32 (x) = X2 - 3x3 + X4, /33 (x) = X3 - X4 + X5, /34 (x) = X4 - 3xs + X6-

By the formula (3.22), one gets 

h1 = (1, 3, 2, 3, 1, 0), h2 = (0, 1, 1, 2, 1, 1). 

Then the solution space 1f.. of /3ii)(x) = f3~)(x) = f3~)(x) = f3~)(x) = 0 is given by 

<H; = {c1h1 + c2h2 = (c1,c2 + 3c1,c2 + 2c1,2c2 + 3c1,c2 + c1,c2) I c1,c2 E Z}. 
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Lemma 3.12. The braid-type isomorphisms are well-defined on<]{,,, that is,¢;~)(<]{,,) = <]{,,,, where 
i' is the reduced word obtained by applying the corresponding braid-moves. We also obtain the 
following formula: 

(1) Foranyh = (··· ,x,y,••·) = ···®(-x);®(-y)j®··· E 'l·t assumethataij = aji = 0. 

Applying the braid-type isomorphism ¢;Jl on (x,y) in h, we have 

(3.26) ¢:Jl(h) = (··· ,y,x,···) = ···®(-y)j®(-x);®··· E<J{,,, 

(2) For any h = (· · · ,x,y,z, · · ·) = · · ·®(-x);®(-y)j®(-z);®· · · E 1-(i, assume thataij = aji = 

-1. Applying the braid-type isomorphism¢;? on (x, y, z) in h, we have 

(3.27) </Jg)(h) = (· · · , z,y, X, · · ·) = · · · ® (-Z)j ® (-y); ® (-x)j ® · · · E 1-(i, 

(3) Forh = (··· ,x,y,z,w,••·) = •··®(-x);®(-y)j®(-z);®(-w)j··· E 1-(i, assume that 

aij • aji = 2. Applying the braid-type isomorphism ¢\Jl on (x,y,z, w) in h, we have 

(3.28) ¢;Jl(h) = (··· ,w,z,y,x,···) = ···®(-w)j®(-z);®(-y)j®(-x);®··· E'}-{i, 

(4) For h = (· · · , x,y,z, u, v, w, · · ·) = · · · ®(-x);®(-y)j®(-z);®(-u)j®(-v);®(-w)r- · E 1-(i, 

assume that aij • aji = 3. Applying the braid-type isomorphism¢;~) on (x,y, z, u, v, w) in h, 
we have 

(3.29) ¢;~)(h) = (· · · , w, v, u,z,y, x, · · ·) = · · · ® (-w)j ® (-z); ® (-y)j ® (-x); ® · · · E 1-(i, 

In [10, Sect.8], we have shown the following statements under the condition "Hi", where we omit 
the explicit form of Hi since we do not need it here. But, we succeed in showing the following 
proposition without the condition Hi since in [10] we have shown that there exists a specific reduced 
longest word io satisfying the condition Bio for each simple Lie algebra g and we got Lemma 3.12. 

Proposition 3.13. Let i = i1i2 • • • iN be an arbitrary reduced longest word. Here if the crystal B( oo) 
is realized in Bi as in 3.6, we shall denote it by B( oo )i to emphasize the word i. For h E 1-(i, define 

Bh(oo)i := {x + h E 'ZF(= Bi) Ix E B(oo)d c Bi. 

(1) For any x + h E B\oo)i and i E /, we obtain 

(3.30) e;(x + h) = e;(x) + h, f;(x + h) = f;(x) + h. 

(2) For any h E 1-(i, we have B( oo )i n Bh( oo )i -:f- 0. 
(3) 

Bi= LJ B\oo)i 
hE'H; 

Remark 3.14. In the setting of the half-potential method in [10], as mentioned in Remark 3.8, the 
crystal B( oo) is realized as a subset of Bi and it is supposed that e;x = 0 if e;x i (JB;;;0 )vc+i.e, ~ B( oo ). 
At the statement (2), since x E B( oo )i is considered as an element of Bi, e;x is also considered as an 
element in Bi. That is, even if e;x i B( oo ), we consider that e;x E Bi and then it never vanishes. 

It is immediate from this proposition that one has the following theorem: 

Theorem 3.15 ([10]). For any simple Lie algebra g and any reduced word i1i2 • • • ik, the cellular 
crystal B;1;2 ... ;, = Bii ® B;, ® · · · ® B;, is connected as a crystal graph. 

Example 3.16. For G2-case, by the polyhedral realization method, we obtain 

X4 X3 Xz 
B(oo) = {(x1,X2,X3,X4,X5,X6) I X6 :2: 0, X5 :2: 3 :2: 2 :2: 3 :2: X1 :2: O}, 
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where (x1,x2,x3,X4,X5,x6) stands for (-x1)1 © (-x2h © (-x3)1 © (-x4h © (-x5)1 © (-x6h- As has 
seen in Example 3.11, we get 

h1 = (1, 3, 2, 3, 1, 0), h2 = (0, 1, 1, 2, 1, 1). 

Thus, let us see that for any v = (a, b, c,d, e,f) E 18121212, the conditions on c1, c2 such that v+c1h1 + 
c2h2 E B(oo). Indeed, they are given by 

c1 ~ max(3a - b, 2b - 3c, 3c - 2d, d - 3e, - f), 

4. QUIVER HECKE ALGEBRA AND ITS MODULES 

In this section, we shall introduce the quiver Hecke algebra and its basic properties (see [4, 5, 7, 
17]). 

4.1. Definition of Quiver Hecke Algebra. For a finite index set I and a field k, let (Ili,j(u, v))i,jEI E 

k[u, v] be polynomials satisfying: 

(1) Ili,j(u, v) = Ilj,i(v, u) for any i, j E /. 

(2) Ili,j(u, v) is in the form: 

if i * j, 

ifi = j, 

where ti,j;-au,O E kx. 

For /3 = L micri E Q+ with V31 := L mi = m, set /fl := {v = (v1, · · · , Vm) E F I l:f=1 crvk = /3}. 

Definition 4.1. For f3 E Q+, the quiver Hecke algebra R(/3) associated with a Cartan matrix A and 
polynomials Ii;,j(u, v) is the k-algebra generated by 

{e(v)lv E /fl}, {xkll :<,; k :<,; n}, {rill :<,; i :<,; n - 1} 

with the following relations: 

e(v)e(v') = Ov,ve(v), I e(v) = 1, e(v)xk = xke(v), XkX/ = XzXk, 
vE[fi 

T1e(v) = e(sz(v))Tz, TkTz = TzTk if lk - ti> 1, 

T~e(v) = Ilvk,Yk+i (xk, Xk+1)e(v), 

{
-e(v) if l = k, vk = Vk+I, 

(TkX/ - Xsk(l)Tk)e(v) = oe(v) if l = k + I, Vk = Vk+l, 

otherwise, 

( ) ( ) {
Ilvk,Yk+i (xk, Xk+l, Xk+2)e(v) 

Tk+ITkTk+l -TkTk+ITk e V = 
0 

where Ii· ·(u v w) = g,_j(u,v)-.@;,j(w,v) E k[u v w]. 
l,J ' ' U-W ' ' 

(1) The relations above are homogeneous if we define 

if Vk = Vk+2, 

otherwise, 

deg(e(v)) = 0, deg(xke(v)) = (crvk, crvk), deg(rze(v)) = -(crv1, crv1+J-

Thus, R(/3) becomes a :?:-graded algebra. Here we define the weight of R(/3)-module M as 
wt(M) = -/3. 
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(2) Let M = ffika Mk be a Z-graded R(,8)-module. Define a grading shift functor q on the 
category of graded R(,8)-modules R(,8)-Mod by 

qM := EB(qM)k, where (qM)k = Mk-1· 
kEZ 

(3) For M, N E R(,8)-Mod, let HomR(B)(M, N) be the space of degree preserving morphisms 
and define HoMRrpJ(M, N) := ffikEZ HomRrpJ(l M, N), which is a space of morphisms up to 
grading shift. We define deg(!) = k for f E HomRrp)(qk M, N). 

(4) Let 1/1 be the anti-automorphism of R(,8) preserving all generators. For M E R(,8)-Mod, 
define M* := HoMk(M, k) with the R(,8)- module structure by (r · f)(u) := f(l/l(r)u) for 
r E R(,8), u E M and f E M*, which is called a dual module of M. In particular, if M ee M* 
we call M is self-dual. 

(5) For /3, y E Q+, set e(,8, y) = LvEIP,v'Efr e(v, v'). We define an injective homomorphism l;p,y : 
R(,8) © R(y) -----) e(,8, y)R(,8 + y)e(,8, y) by l;(,8, y)(e(v) © e(v')) = e(v, v'), l;(,8, y)(xke(,8) © 

1) = Xke(,8, y), l;(,8, y)(l © Xke(y)) = Xk+lfile(,8, y), l;(,8, y)(Tke(,8) © 1) = Tke(,8, y), l;(,8, y)(l © 

Tke(y)) = Tk+lfJle(,8, y). 
(6) For ME R(,8)-Mod and NE R(y)-Mod, define the convolution product o by 

Mo N := R(,8 + y)e(,8, y) ©R(p)®R(y) (M © N) 

For simple ME R(,8)-Mod and simple NE R(y)-Mod, we say Mand N strongly commutes 
if M o N is simple and M is real if M o M is simple. 

(7) For ME R(,8)-Mod and NE R(y)-Mod, denote by MVN := hd(M o N) the head of Mo N 
and M 11N := soc(M o N) the socle of M o N, where the head of module Mis the quotient 
by its radical and the socle of module M is the summation of all simple submodules. 

4.2. Categorification of quantum coordinate ring 3lq(n). Let R(,8)-gmod be the full subcate­
gory of R(,8)-Mod whose objects are finite-dimensional graded R(,8)-modules and set R-gmod= 
EB/3EQ+ R(,8)-gmod. Define the functors 

E; : R(,8)-gmod -----) R(,8 - a;)-gmod, F; : R(,8)-gmod -----) R(,8 + a;)-gmod , 

by E;(M) := e(a;,/3 - a;)M, F;(M) = L(i) o M, where e(a;,/3 - a;) := LvEIP,v,=i e(v) and L(i) := 
R(a;)/R(a;)x1 is a I-dimensional simple R(a;)-module. Let 'K(R-gmod) be the Grothendieck ring 
of R-gmod and then 'K(R-gmod) becomes a Z[q, q-1 ]-algebra with the multiplication induced by the 
convolution product and Z[q, q-1 ]-action induced by the grading shift functor q. Here, one obtain 
the following: 

Theorem 4.2 ([4, 17]). As a Z[q, q-1]-algebra there exists an isomorphism 

'K(R-gmod) ee 3lq(n)z[q,q-'J· 

4.3. Categorification of the crystal B( oo) by Landa and Vazirani [ 11]. The following lemma is 
given in [4]: 

Lemma 4.3 ([4]). For any simple R(,8)-module M, soc(E;M), hd(E;M) and hd(F;M) are all simple 
modules. Here we also have that soc(E;M) ee hd(E;M) up to grading shift. 

For M E R(,8)-gmod, define 

(4.1) wt(M) = -/3, s;(M) = max{n E Z I E7 M -=f:. 0}, cp;(M) = s;(M) + (h;, wt(M)), 

(4.2) E;M := i-e,CMJsoc(E;M) ee q~,CMJ-lhd(E;M), F;M := q~,CMJhd(F;M). 

Set JaJR-gm~d) := {S IS is a self-dual simple module in R-gmod}. Then, it follows from Lemma 4.3 
that E; and F; are well-defined on Ja(R-gmod). 
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Theorem 4.4 ([11]). The 6-tuple (Ja(R-gmod), {£;}, {F;}, wt, {s;}, {cp;});EI holds a crystal structure and 
there exists the following isomorphism of crystals: 

'¥ : Ja(R-gmod) ~ B( oo ). 

Remark 4.5. Note that Lauda and Vasirani showed this theorem under more general setting that g 
is arbitrary symmetrizable Kac-Moody Lie algebra. Here we assume that g is a simple Lie algebra. 
The definition of E; and F; in (4.2) differs from the one in [11], which follows the one in [7]. 

5. LoCALIZATION OF MONOIDAL CATEGORY 

Here we shall review the theory of localization for monoidal category following [5]. 

5.1. Braiders and Real Commuting Family. Let A be Z-lattice and r = €fJ;iEAT:1. beak-linear A­
graded monoidal category with a data consisting of a bifunctor ® : T;i xTµ ➔ T;i+µ, an isomorphism 
a(X, Y, Z) : (X ® Y) ® Z~ X ® (Y ® Z) satisfying a(X, Y, Z ® W) o a(X ® Y, Z, W) = idx ® a(Y, Z, W) o 

a(X, Y ® Z, W) o a(X, Y, Z) ® idw and an object 1 E To endowed with an isomorphism E : 1 ® 1 ~ 1 
such that the functor X H X ® 1 and X H 1 ® X are fully-faithful. 

Definition 5.1 ([5]). Let q be the grading shift functor on T. A graded braider is a triple (C, Re,¢), 
where C E T, Z-linear map¢ : A ➔ Zand a morphism: 

Re : C ® X ➔ qef'(;iJ X ® C (X E T;i), 

satisfying the following commutative diagram: 

C®X®~®j:~:y 
qP(Mµl(X ® Y) ® C 

and being functorial, that is, for any X, Y E T and f E Homr(X, Y) it satisfies the following com­
mutative diagram: 

id©f 
C ® X --------► C ® Y 

Rc(X) l l Rc(Y) 

f@id 
X ® C --------► Y ® C 

Definition 5.2 ([5]). Let I be an index set and (C;,Re,, <p;)iEI a family of graded braiders in T. We 
say that (C;,Re,, ¢;);EI is a real commuting family of graded braiders in T if 

(1) C; E T;i, for some ,l; EA, and ¢;(,l;) = 0, ¢;(,lj) + <{Jj(,l;) = 0 for any i, j E /. 

(2) Rc,(C;) E kxide,0e, for any i E /. 

(3) Re,(Cj) ® Re/C;) E kxide,®ej for any i, j E /. 

Note thatRe,'s satisfy so-called "Yang-Baxter equation", such as, 

Re,(Cj) o Re,(Ck) o Re/Ck) = Re/Ck) o Re,(Ck) o Re,(Cj) on C; o Cj o Ck. 

For a finite index set/, set r := €f!;E1Ze; and r + := €f!;E1Z;,,0e;. 

Lemma 5.3 ([5]). Suppose that we have a real commuting family of graded braiders (C;,Re,,<p;)iEf. 
We can choose a bilinear map H: r x r ➔ Z such that ¢;(,lj) = H(e;, ej) - H(ej, e;) and there exist 

(1) an object ca for any a E r +· 

(2) an isomorphism /;a/3 : ca® cfl~qH(a,f3)ca+f3 for any a,/3 Er+ 

such that C0 = 1 and ce, = C;. 
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5.2. Localization. Let 'T and (C;,Rc;,</J;);EI be as above and {Ca}aEf+ objects as in the previous 
lemma. We define a partial order s on r by 

a;:5/3¢::::::::;/3-aEf+ 

For a1, a2, ···Er, define 

Va,,a2 ,--- := {c5 E flaj +c5 E f+ for any j = 1,2,·· · }. 

For X E 'T;i_, Y E 'Tµ and c5 E Va,13, set 

Ho((X, a), (Y,/3)) := Homr(C6+a 181 X, qP(a,f3,o,µ)y 181 c/3+6 ), 

where a Z-valued function P(a,/3, c5,µ) := H(c5,f3 - a)+ ¢(c5 + /3,µ) and the map¢ : r x A ➔ Z is 
defined by <{J(a, L(/3)) = H(a,/3) - H(f3, a) and L : r ➔ A is defined by L(e;) = A.; ([5]). 

Lemma 5.4 ([5]). For c5 s c5' there exists the map 

?o,o' : Ho((X, a), (Y,/3)) ➔ H6,((X, a), (Y,/3)) 

satisfying 

? 6,6' 0 ? 6' ,6" = ? 6,6" for c5 s c5' s c5" . 

Therefore, we find that {Ho((X, a), (Y,f3))}6E.Va.e becomes an inductive system. 

Definition 5.5 (Localization [5]). We define the category 'T by 

Ob('T) := Ob('T) x r, 
Holllj'((X, a), (Y,/3)) := lim -6E.V(a,f3), 

,!+L(a)=µ+L(/3) 

H 6((X, a), (Y,/3)), 

where X E 'T,1, Y E 'Tµ and the function L : r ➔ A (e; H A.;) is as above. We call this 'Ta 
localization of 'T by (C;,Rc,, </J;);EJ and denote it by 'T[cr-1 Ii E /] when we emphasize {C; Ii E /}. 

Theorem ~.6 ([5]). 'T becomes a monoidal category. Moreover, there exists a monoidal functor 
Y : 'T ➔ 'T such that 

(1) Y(C;) is invertible in 'T for any i E /, namely, the functors X H X181Y(C;) and X H Y(C;)181X 
are equivalence of categories. 

(2) For any i E / and XE 'T, Y(Rc,(X)) : Y(C; 181 X) ➔ Y(X 181 C;) is an isomorphism. 
(3) The functor Y holds the following universality: If there exists another monoidal category 

'T' and a monoidal fucntor Y' : 'T-::; 'T' satisfying the above statements (1) and (2), then 
there exists a monoidal functor F: 'T ➔ 'T' (unique up to iso.) such that Y' = F o Y. 

Proposition 5.7 ([5]). Under the setting above, we obtain 

(1) (X,a+/3) =c: q-H(J3,al(Ca181X,f3), (l,/3)~(1,-/3) =c: q-H(/3/3)(1,0) fora E f+,/3 E f andX ET. 

(2) If 'T is an abelian category, then so is 'T. 
(3) The functors Y : 'T ➔ 'Tis exact. 
(4) If the functor -181Y and Y181- are exact for ~y Yin 'T, then the functors 'T ➔ 'T (X H X181Y 

(resp. X ➔ Y 181 X)) are exact for any Y in 'T. 

6. LOCALIZATION OF THE CATEGORY R-gmod 

In this section, we shall apply the method of localization to the category R-gmod. 
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6.1. Determinantial Modules. Here we just go back to the setting as in Sect.4. Let L(in) := 
n(n-1) ,f -k (a· a·) 

qi--,:-L(ir be a simple R(nai)-module satisfying qdim(L(in)) = [n]i! := IT~=t q:=:~1 (qi:= q"""'T'-). 

Definition 6.1 ([5, 7]). For M E R-gmod, define 

Ff(M) := L(inyv M. 

For a Weyl group element w, let si1 • • • sii be its reduced expression. For a dominant weight A E P +, 

set 

(k = 1, · · · , l). 

We define the determinantial module associated with w and A by 

M(wA, A) := Fm1 • • • Fm'l, 
ll l[ 

where 1 is a trivial R(0)-module. 

Note that in general, one can define determinantial modules M(wA, uA) (w, u E W) which corre­
sponds to the generalized minor L1wA,uA• 

Now, let us see some similarity between the family of determinantial modules {M(w0A, A)}AEP+ 
and the subspace 'Hi. As has seen above that for a reduced longest word i = i1 · · · iN, the subspace 
'Hi c Jai is presented by 

'Hi= ffizhi, hi= ((h;k> := (hi,,si,+1 •··s;NAi))k=l,··,N· 
iEl 

Furthermore, we also get 

Proposition 6.2. For any reduced longest word i = i1i2 • • • iN and A E P +, set 

Then we obtain 

hA = J::1 J;;2 • • • J;'"";,N ((0)i1 © (0)i2 © · · · © (0)iN) = J::1 (0)i1 © J;;2 (0)i2 © · · · © J;'"";,N (0)iN E 'Hi, 

where note that for A = Li aiAi, one has hA = Li aihA,. 

By this proposition, one observes that there would exist a certain correspondence 

(6.1) M(woA,A) = P;~1 • • • F;11 - hA = l:1 • • • J;'"";,N((0);1 © (0);2 © · · · © (0)iN). 

Definition 6.3 ([5]). For f3 E Q+, define a central element in R(/3) by 

Pi := LvEifi ( ITaE(t,2,. .. ,ht(J3)),va=i Xa) e(v) E R(f3). For a simple M E R(/3)-gmod, define an affinization 

ii of M with degree d: 

(1) There is an endomorphism z : ii ---t ii of degreed > 0 such that ii is finitely generated 
free module ofk[z] and ii;zii ~ M. 

(2) Piii -:f:. 0 for any i E /. 

Theorem 6.4 ([5, Theorem 3.26]). For any A E P + !11-d w E W, the determinantial module M(wA, A) 
is a real simple module and admits an affinization M(wA, A). 

Note that indeed, if g is simply-laced, then the affinization ii always exists for any simple M E 

R(/3)-gmod as ([3]), 
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6.2. Localization. 

Definition 6.5 ([5]). Let M be a simple R-module. A graded braider (M,RM, ¢) is non-degenerate 
if RM(L(i)) : Mo L(i) ➔ L(i) o Mis a non-zero homomorphism. 

For R-gmod, there exists a non-degenerate real commuting family of graded braiders (Ci, Re,, ¢JiEI([5]). 
Set CA := M(w0A, A) and denote CA, by Ci. 

Proposition 6.6 ([8]). For A = L m;A; E P +, we obtain the following isomorphism up to grading 
shift: 

(6.2) 

Theorem 6.7 ([5, Proposition 5.1]). Define the function¢; : Q ➔ Z by 

</Ji(/J) := -(/J, woA; + A;). 

Then there exists {(C;, Re,, ¢J};EI a non-degenerate real commuting family of graded braiders of the 
monoidal category R-gmod. 

Now, we taker= P = ffi.ZA; and f+ = P+ = EB-Z>oA;. Here, we obtain the localization 
l l -

R-gmod[c;-1 Ii E /] by {(C,Re,, </J;)}iEI, which will be denoted by R-gmod. 
By the above Proposition, it holds the following properties: 

Proposition 6.8 ([5]). Let <I> : R-gmod ➔ R-gmod be the canonical functor. Then, 

(1) R-gmod is an abelian category and the functor <I> is ex~t. 
(2) ~or any simple object S E R-gmod, <l>(S) is simple in R-/Lmod. 
(3) Ci := <l>(Ci) (i E /) is invertible central graded braider in R-gmod. 

Forµ E P, define Cµ such that Cµ := <l>(Cµ) forµ E p +, c_A, = cr1 and C,t+µ = C,1, 0 Cµ for 
A.,µ E P up to grading shift. 

(4) Any simple object in R-gmod is isomorphic to CA o <I>(S) for some simple module S E 

R-gmod and A E P. 

Note that in (4) A E P and S E R-gmod are not necessarily unique. 

Remark 6.9. In [5], the localization is applied to more general category 'Cw, which is the full sub­
category of R-gmod associated with a Weyl group element w. The category R-gmod here coincides 
with 'Cw0 associated with the longest element wo in W. 

Definition 6.10. The category R-gmod is abelian and monoidal. Therefore, its Grothendieck ring 
1<(R-gmod) holds a natural Z[q, q-1 ]-algebra structure, which defines a localized quantum coordi­
nate ring §Qn) := Q(q) ©z[q,q-lJ 1<(R-gmod). 

Indeed, the Grothendieck ring 1<(R-gmod) is described as follows: 

Proposition 6.11 ([5, Corollary 5.4]). The Grothendieck ring 1<(R-gmod) is isomorphic to the left 
ring of quotients of the ring 1((R-gmod) with respect to the multiplicative set 

s := {q' n [Cit' I k E z, (a;);E/ E Z;.o}, 
iEI 

that is, 1<(R-gmod) ~ s-11<(R-gmod). 
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7. CRYSTAL STRUCTURE ON LOCALIZED QUANTUM COORDINATE RINGS 

We shall mention the main theorem, crystal structure on localized quantum coordinate ring §Qn). 
More precisely, we shall define a crystal structure on a family of self-dual simple objects in the 
category R-gmod (Theorem 7.4) and mention that it is isomorphic to the cellular crystal ]Bi (Theorem 
7.5), where i is a reduced word for the longest Weyl group element w0 • 

Lemma 7.1 ([4, Proposition 2.18]). For any i E /, /3, y E Q+, any modules M E R(/3)-gmod and 
NE R(r)-gmod, one has the following exact sequence in R(/3 + y- a;)-gmod: 

(7.1) 0 - E;M o N - E;(M o N) - q-<a,J3) Mo E;N - 0. 

For i E /, let i* E / be a unique index satisfying A;, = -w0A;. 

Lemma7.2. (1) For S E R-gmod and i E /, if E;S = 0, then the module E;CA,. o S is a simple 
module. 

(2) If E;S = 0 for S E R-gmod, then we get for A E P + with (h;,, A) > 0, 

(7.2) 

up to grading shift. 

We set 

JB(R-gmod) := {LI Lis a self-dual simple module in R-gmod}. 

Lemma 7.3 ([5]). For any simple L E R-gmod, there exists a unique n E Z such that q' Lis self-dual 
simple. For a simple module L E R-gmod we define c5(L) to be this integer n. 

Then by this lemma, we find thatlB(R-gmod) includes all simple modules inR-gmod up to grading 

shift. For a simple object CA o <D(S) E R-gmo'!_ we w12!e simply CA o__S if there is no confusion. 
Now let us define the Kashiwara operators F; and E; (i E /) on JB(R-gmod) by 

(7.3) 

(7.4) 

where CA o S is a self-dual simple module in R-gmod, the actions E;S and F;S are given in (4.2), 
~hich is defined on the family of all self-dual simple modul~ in R-gmod and~ (7.4) the module 

E;CA,, 0 s is simple by Lemma 7.2. Note that for any m > 0, Er(cA OS)* 0, F'('(CA OS)* 0. 

Let 'I' : JB(R-gmod)~B( oo) be as in Theorem 4.4. For CA o S E JB(R-gmod), we also define 

e;(CA o S) = e;('P(S)) - (h;, woA), wt(CA o S) = wt('P(S)) + woA - A, 
i.p;(CA o S) = e;('P(CA o S)) + (h;, wt(CA o S)). 

(7.5) 

Theorem 7.4. The 6-tuple (JB(R-gmod), wt, {e;}, {\O;}, {E;}, {F;});EJ is a crystal. 

Here, by Proposition 6.2 we observe that there seems to exist a certain correspondence: 

Together with the result of Proposition 3.13, we obtain the following: 
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Theorem 7.5. For any reduced longest word i = i1i2 • • • iN, there exists an isomorphism of crystals: 

'P : B(R-gmod) - Bi = LJ Ii'-( oo) 

CA o S 1-----7 hA + 'P(S) E lf'A(oo), 

where'¥ : lBl(R-gmod)~B( oo) is the isomorphism of crystals given in Theorem 4.4, S is simple in 
B(R-gmod) and for A = L a;A; set hA = L a;h;. 

8. APPLICXI'ION AND FURTHER PROBLEMS 

8.1. Operator 1i. Define the Q(q)-linear anti-automorphism* of Uq(g) by 

(l)* = q-h, et = e;, J;* = f;. 

Theorem 8.1 ([2]). Set L*(oo) := {u* I u E L(oo)}, B*(oo) := {b* I b E B(oo)}. Then we have 

L*(oo) = L(oo), B*(oo) = B(oo). 

From the proof of Theorem 5 .13 in [ 5] we get 

Proposition 8.2 ([5]). For v = (vi, v2, · · · , Vm-1, Vm) E J/3 (m := lBD set v = (vm, Vm-1, · · · , v2, v1). 

Define the automorphism a on R(/3) by 

a(e(v)) = e(v), a(x;e(v)) = Xm-i+1e(v), a(Tje(v)) = -Tm-je(v). 

Then, there exists the functor a : R-gmod ➔ R-gmod such that a(C;) = C;, (Vi E /), a:_, ee id and 
~X o Y) ee a(Y) o a(X) for X, YE R-gmod. Furthermore, it is extended to the functor 1i: R-gmod ➔ 
R-gmod which satisfies 

(8.1) 1i2 ee id, and 1i(X o Y) ee a(Y) o 1i(X) for X, Y E R-gmod. 

Note that a(resp. 1i) induces the operation* on ..'1lq(n) (resp . ..'1lq(n)) since a(L(i)) = L(i) and then 

one has a(f;) = f; (resp. 1i(f;) = f;) on ..'1lq(n) (resp . ..'1lq(n)). Now, we obtain the following: 

Proposition 8.3. Let 1i : R-gmod ➔ R-gmod be the functor as above. It yields 

(8.2) 1i(B(R-gmod)) = R(R-gmod). 

Here note that Proposition 8.3 can be seen as a generalization of Theorem 8.1. 

Since as crystals R(R-gmod) ee Bi for any reduced longest word i, the proposition above gives 
rise to the following problem. 
Problem 1. Can we describe ii-operation on Bi = B;1 © · · · © B;N explicitly? 

Of course, this problem is non-trivial since even for the case B( oo) the explicit description has not 
yet been done before in Bi. 

8.2. Category 't&'w, In [5], it has been shown that for an arbitrary symmetrizable Kac-Moody Lie 
algebra and any Weyl group element w E W, there exists a subcategory 't&'w cR-gmod and it admits a 
localization 

~ = 't&'w[q-1 Ii EI], (C; = M(wA;,A;)) 

Indeed, note that for finite type Lie algebra setti~, 't&'w0 = R-gmod. 

Problem 2. We conjecture that the localization 't&'w possess a crystal lBl('t&'w). If so, we also conjecture 
that there is an isomorphism of crystals 

B('t&'w)~B;, ©···©B;m, 

where i1 · · · im is a reduced word of w. 
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8.3. Rigidity. 

Definition 8.4. Let X, Y be objects in a monoidal category 'T, ands : X © Y - I and 7J : 1 - Y © X 
morphisms in 'T. We say that a pair (X, Y) is dual pair or X is a left dual to Y or Y is a right dual to 
X if the following compositions are identities: 

id®17 s®id 17®id id®s 
X "'X © 1 - X © Y © X - I© X"' X, Y"' I © Y - Y © X © Y - Y © I "' Y 

We denote a right dual to X by 'D(X) and a left dual to X by v-1(X). 

Theorem 8.5 ([5]). For any finite type R, R-gmod is rigid, i.e., every object in R-gmod has left and 
right duals. 

Note that in [6], it is shown that for any symmetrizable Kac-Moody setting the localized category 
'ifw is rigid. 
Problem 3. For a simple object CA o S E Ja(R-gmod), describe the right and left duals explicitly: 

'P('D(CA OS)), 'P('D-1(CA OS)) E Jai. 
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