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A SURVEY ON CATEGORIFIED CRYSTAL STRUCTURE ON LOCALIZED
QUANTUM COORDINATE RINGS

& 1£# TOSHIKI NAKASHIMA

|- K% SOPHIA UNIVERSITY

1. INTRODUCTION

Let R be a quiver Hecke algebra associated with a simple Lie algebra g and “R-gmod” the category
of finite-dimensional graded R-modules. We set K'(R-gmod) to be the Grothendieck ring of R-gmod.
It is well-known that the (unipotent) quantum coordinate ring A, (1) is categorified by K(R-gmod).
The basic theory of localization for the monoidal category E—gmod of R-gmod is initiated by [5] and
its Grothendieck ring K (ﬁ—gmod) defines the localized (unipotent) quantum coordinate ring ?rlq\(ﬁ).
In [11], Lauda-Vazirani defined certain crystal structure on the family of simple modules of R-gmod
and they have shown that this crystal is isomorphic to the crystal B(co) of the nilpotent half of
U,(9). In this survey, considering the family of self-dual simple module B(R- gmod) of the localized
category R- gmod we define a crystal structure of A (n) and show that it is 1s0morphlc to the cellular
crystal By := B;, ® --- ® B;,, which is defined for a reduced word i = i; - - - iy of the longest Weyl
group element Wo. This result can be seen as a localized version of the result by Lauda-Vazirani.
The article is a survey of [13]. But, the subsection 2.1 and Example 3.16 are not described in [13],
which are new parts added here.

2. PRELIMINARIES

2.1. Setting. Letg = n@t®n_ = (e;, hy, fi)icr=(12.. ny be a simple Lie algebra associated with a
Cartan matrix A = (a;;); je; where {e;, f;, h;};c; are the standard Chevalley generators and 1 = {e;)¢;
(resp. t = (hy)ier, no = {fi)ier) is the positive nilpotent subalgebra (resp. the Cartan subalgebra, the
negative nilpotent subalgebra).

Let {a;}ic; be the set of simple roots of g and ( , ) a pairing on t X t* satisfying a;; =
(Chi,aj))ijer- We also define a symmetric bilinear form (, ) on t* such that (e;, @;) € 2Z.o and
(hi, ) = 254 for A € t".

Let P = {1 € t*|{(h;,A) € Z forany i € I} be the weight lattice and P, := {1 € P | (h;, ) >
0 for any i € I} the set of dominant weights. Set Q := ®;c;Za; (resp. Qy = D Zsoa;), which
is called the root lattice (resp. positive root lattice). For an element 8 = };m;a; € Q. defline
|8l = X; m;, which is called the height of 8. Let W = (s;| s;);c; be the Weyl group associated with P,
where s; is the simple reflection defined by s;(1) = A — (h;, D; (A € P).

We denote the dual weight lattice of P by P* := {h € t|(h, P) C Z}. Let Uy(g) := {e;, fi, qh)ielqhep
be the quantum algebra associated with g with the defining relations (see e.g.,[1, 2]) and U, (9) =
(fidier (resp. U, +(q) := {e;)ier) the negative (resp. positive) nilpotent subalgebras of U,(g). We also
define the Z-form U /(@) of U, (g) as in [S]. Set g; := g2 n); = (¢ - g7 /(g — 47",

(]! := [Tosxenlkli and X(”) = X"/[n];! for X; = fi,e; fori € I, n € Zs.
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2.2. Quantum shuffle algebra and quantum coordinate ring. See [12] for this subsection. Let
F :=(F; | i € I) be a free associative Q(g)-algeba. For a multi-index v = (vi,--- ,v,) € I'" let us
define a monomial F, := F, ---F, € ¥ and its weight wt(F) := a,, + - - + «,,,. For monomials
x,X',y,y € F,define
(x@ N ®y) = "My @y,

it induces an associative multiplication on ¥ ®q(,) ¥ and then F ®q(, ¥ becomes an associative
Q(g)-algebra. We can also define an comultiplication A : F — F ®q( ¥ by setting A(F;) =
1® F; + F; ® 1. The quantum shuffle algebra ¥* is defined as a dual of . For B € Q., set
Fp 1= Byerno yu)=pQ(@)Fy. Define

Fri= @’fﬁ Fp := Homgy)(Fp, Q(q))
B0,
The comultiplication A induces a multiplication on ¥ * by
-y, =Gey,AW), 0,y €F*, xeF),

where (, ) is a natural paring on ¥* X ¥. Now, by this multiplication ¥* becomes an associative
Q(g)-algebra, which is called the quamtum shuffle algebra. The following lemma is known as the
shuffle lemma:

Lemma 2.1 (shuffle lemma). For v = (vi, -+ , V) € "™V = (vi,-- ,vy) € I" and v’ =
(Vm+17 Y Vm+l) € Il, we obtain
.1 F:, . F:,, = Z I—[ q_(a"wm)‘a'w(b)) F:/(v)’

WeS i \a<h,w(@)>w(b)
where S, is a subset of the symmetric group S ,,+; defined by
Smri=weSpulwld)<w?2)<---<wim), wm+1)<wm+2)<---wim+l)},
and note that the action of w € S ,,4; on a multi-index v = (vy, - - - , vyuss) € I"*! is defined by
W)k 1= V1 (g A<k<m+].
Now, let us define the (unipotent) quantum coordinate ring A, (n) a restricted dual of U;(g) as
Ay = @A) Ay = Homogy (U7 ()5, Qq)
BeO_
As is well-known that there exists a natural projection 7 : F —» U;“(g) and then considering the

dual of this map, we obtain the embedding of algebra A, (1) < F . Note that U;(g) = Ay(n) as a
Q(g)-algebra. The Z-form A(n)z;, .11 is defined as in [5].

Example 2.2. A,-case. Set I = {1,2}, (a1, @) = (@2,@2) = 2 and (@), @) = (a2, ;) = —1. By the
formula (2.1) we get easily F - F} = (1 +q‘2)FT1, Fy-F, =F\,+qF}, F;-F| = F}, +qFy,. Here
note that

o [[123) (123) (123 A ther i g1 [[123) (123) (123
12=1123)°(312)°\213 and et nverses 915 = 11123)°\231/{213) -

Then, we get
Fy-Fy-Fy=F{-(F+qF3) = (1 + ¢ )F, + (@ + @F ) +(1+ ¢)F3,
Fi-Fy-Fy = F - (Fy +qFy) = (@ + ¢ DFj 5+ 2F 1, + (@ + ¢ DF)),
F3-F}-F{=F3 (1+q)F}) = (1 + g (G Fj 5+ qF iy, + F3)).

Finally, we obtain the “g-Serre relation”:

F;-F:-Fy—(q+q )F -F;-F,+F;-F;-F, =0.
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3. CRyYSTAL BASES AND CRYSTALS

3.1. Crystal Base of U(;(g) = A,(m). Let us define the crystal base (L(c0), B(c0)) of U;(g)([l]). For
i € I the operator ¢; € End( U, (9) is defined by the formula

¢/(PQ) = €{(P)Q + " Pel(Q),  €(f)) =61, (1) =0,
forany P € Uy(9)p, Q € Uy(9), i, j € 1. By the fact that for P € U,(g)p, there exists the following
unique decomposition
3.1 P= Zfi(k)Pn,
k=0

where P, € Ker(e;) N U, (8)p+ke;- And define the operators &;, fi e End(U; (9)) on P € U (g)p by
using the decomposition (3.1)

ap=> f“Vp,  fp=> 5P,
k>0 k=0
which are called Kashiwara operators. Now, set
Le) = Y Afi-fitte,  B() = {f; - fyutw mod gL(e0) [k > 0,1, -+ ik € I} \ {0},
k=0,iy, i€l
&i(b) = max{k : &b # 0},  @i(b) = &i(b) + (hi, wi(b)),
where 1., = 1 € Uy(g) and A C Q(g) is the local subring at g = 0.
Theorem 3.1 ([1]). A pair (L(c0), B(c0)) is a crystal base of U;(g). Indeed, we obtain
&:L(c0) C L(c0),  fil(c0) C L(c0),
&iB(c0) C B(c0) LI{0},  fiB(c0) C B(c0) L1{0},
wt(2;b) = wt(b) + o; for b,&;b € B(co), wit(fib) = wt(b) — a; for b, fib € B(co),
Si(éib) = E,‘(b) -1 (,0,(5117) = Si(b) + 1, for b, élb € B(OO),
&i(fib) = ¢(b) + 1 ¢i(fib) = ¢i(b) = 1, for b, fib € B(c0),
fb=b = eb =b, forb, b € B(w)
3.2. Crystals. We shall introduce the notion crystal following [2], which is a combinatorial object

obtained by abstracting the properties of crystal bases in Theorem 3.1.

Definition 3.2 ([2]). A 6-tuple (B, wt, {g;}, {¢;}, {&;}, {f,v}),g is a crystal if B is a set and there exists a
certain special element 0 outside of B and maps:

3.2) wt:B— P, g:B—->ZU{-o}, ¢ :B—->ZU{-0} (icl),
(3.3) ¢ :BU{0)— BU{0), fi:BU{0}— BLI{0)(Gel),
satisfying :

(1) @i(b) = &i(b) + (hi, wi(D)).

(2) If b,e;b € B, then wt(¢;b) = wt(b) + ;, €i(€;D) = &i(b) — 1, ¢i(¢;D) = ¢;(b) + 1.

(3) If b, fib € B, then wt(fib) = wt(b) — ;, &:(fib) = &i(b) + 1, ¢i(fib) = ¢i(b) — 1.

(4) Forb,b’ € Band i € I, one has fib =biff b=2¢pb.

(5) If @;(b) = —co for b € B, then &;b = f;b = 0 and &(0) = £,(0) = 0.
Here, a ccrystal graph of crystal B is a I-colored oriented graph defined by b—5b o fi(b) = b’ for
b,b’ € B.
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Definition 3.3 ([2]). For crystals By and B,, W is a strict embedding (resp. isomorphism) from B,
to By if ¥ : B; U {0} — B, U {0} is an injective (resp. bijective) map satisfying that ¥ (0) = 0,
wt(\W(D)) = wt(b), i(¥(b)) = &;(b) and ¢;(\W(b)) = ¢;(b) for any b € B} and ¥ commutes with all
¢;’s and ﬁ’s,.

We obtain the tensor structure of crystals as follows([1, 2]):
Proposition 3.4. For crystals B; and B, set
By ® By = {b1 ® by := (b1,b2) | b1 € By, by € By}(= By X By).

Then, B; ® B, becomes a crystal by defining:

(3.4) wit(by ® by) = wt(by) + wt(by),

(3.5) £i(b1 ® by) = max(gi(h), &i(b2) — (hi, wi(b1))),

(3.6) wi(b1 ® by) = max(g;i(ba), i(b1) + (hi, wt(b2))),
_ _ ) ébi®by if pi(by) = &i(b)

S élbr ®02) = { bi®eb, i giby) < &b,
z _ fibi®by ifgiby) > &iba)

(38) ft(bl ®b2) - { bl ®ﬁb2 lf Sai(bl) < 8,‘(1?2).

Example 3.5. Fori € I, set B; := {(n);|n € Z} and

wit((n);) = na;, &((n);) = —n, ¢i((n);) = n,
ej((n)i) = ¢j((n);) = —co (i # j),
g =+ 1) fillw) =@ -1y,
&i((my) = fim) =0 (i # j).
Then B; (i € I) possesses a crystal structure. Note that as a set the crystal B; can be identified
with the set of integers Z.

3.3. Explicit structure of the crystal B;, ® --- ® B;,. Here we shall describe an explicit structure
of tensor product of B;’s. Fix a sequence of indices i = (iy, - - - ,i,,) € I"" and write

@ ) = F0), ® - ® F(0), = (=) ® - ® (~xn),

where if n < 0, then f;.”(O)i means &;"(0);. Note that here we do not necessarily assume that i is a
reduced word though later we will take i to be a reduced longest word. By the tensor structure of
crystals in Proposition 3.4, for the sequence i as above, we can describe the explicit crystal structure
on B; := B;, ® --- ® B;, as follows: For x = (x,--- ,x,) € B;, define

or(x) == xp + Z(hikaai,>xj
Jj<k
and for i € I define
E(i)(x) = max{oy(x)|1 <k <mandi; =i},
MO = MO(x) = (k|1 <k <m, iy = i, o4(x) = TP (),

my) = m(x) = max MO(x), ) = ml(x) := min MO().
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Now, the actions of the Kashiwara operators &;, f; and the functions &;, ¢; and wt are written explic-
itly:

(3.9) FiCor = xi + Oy it &0k = Xk = 6y 0,
(3.10) wi(x) = — Z Xy, &(x) =00, @ix) = (b, Wi(x) + &().
k=1

Define the function ﬁf) on B; by :

3.1 B = 0 (0 = ou) = 3+ ) (i )+ e
k<j<k*
for x = (x,-++ ,x,) € Bj, where for k € [1,N], k* (resp. k~) is the minimum (resp. maximum)

number j € [1, N] such that k < j (resp. [ < k) and iy = i if it exists, otherwise N + 1 (resp. 0). Here

one knows that %(f') (x) and " (x) are determined by {ﬁg)(x) [1<k<N, i =1i}.

3.4. Braid-type isomorphism. We shall introduce some isomorphism of crystals, called “braid-
type isomorphism”.
Set ¢jj := (hi, aj){hj, a;), c1 = =(h;, a;) and ¢p 1= —(hj, @;). In the sequel, for x € Z, put

x ifx>0,
X4 1=
0 ifx<O.

Proposition 3.6 ([14]). There exist the following isomorphisms of crystals ¢; (k = 0,1,2,3)
(1) If¢;; =0,

(3.12) ¢§j?> . B;® B—B;® B,
where ¢7((x); ® ();) = () ® (x);.
Q) Ifc;=1,
(3.13) ¢ : B:®B;® B—B;® B;®B;,
where

$((0i® (1), 820 = @+ (~x+y=2).);® (X +2i ®(y =2 = (~X +y = 2),),.
(3) IfC‘l'j = 2,

(3.14) ¢ : Bi®B;®B;® B;—B;®B;®B,;® B,

where q)f?) is given by the following: for (x);®(y);®(2):®(w); we set (X) ;®(Y);®(Z);®(W); :=
¢§?((x),< ®(y);®(2);i ®(W))).

(3.15) X = wH+(—cx+y—w+cr(x—c1y+2)+)+,
(3.16) Y = x+cpw+(—x+z—cow+(x—c1y+24)+,
(3.17) Z = y—(-ax+y-witc(x—cy+2+)s
(3.18) W = z—ciw—(—x+z—ciw+x—c1y+2)+)+-

(4) If ¢;j = 3, the map

(3.19) ¢.) :Bi®B;®B,®B;®B;®B;—B;®B ®B;®B;®B,;® B,



& 84 TOSHIKI NAKASHIMA [ %/ X% SOPHIA UNIVERSITY

is defined by the following: for (x); ® (y); ® (2); ® (); ® (v); ® (W) ; we set A := —x+c1y — 2,
B:=—y+cz—u,C:=—z+ciu—vand D := —u+cv—w. Then (X);®(Y);®(Z);® (U); ®
M);® W) = ¢$~)((X)i ®(y);® ()i ®(u);®(v); ® (w);) is given by

w+ D+ (2C+2B+A))+)+

= x+cw+ (@ D+BC+Q2ciB+2A,)1)4)4,
= y+tu+w-X-YV,

xX+z+v=-Y-—-W,

= u-w—-—02D+ 2c:C+ BB+ c2A1)1)4)+,
= v—ciw—(1D+Q2C+(1B+A1)y):)qs.

T < QN K~ X
Il

They also satisfy ¢ff.) o ¢§f) =id.
We call such isomorphisms of crystals braid-type isomorphisms.

We also define a braid-move on the set of reduced words of w € W to be a composition of the
following transformations induced from braid relations:

cifeee e fiee (e =0),  ceificee o e jijee (e = 1),
e dfifeee = e ifiee e (cij = 2),  edfijijeee = ee jijijiee - (cij = 3),

which are called by 2-move, 3-move, 4-move, 6-move respectively.

3.5. Cellular Crystal B; = B;,;,..;, = B;, ®---® B;,. Forareduced word i = iji, - - -i; of some Weyl
group element, we call the crystal B; := B;, ® --- ® B;, a cellular crystal associated with a reduced
word i. Indeed, it is obtained by applying the tropicalization functor to the geometric crystal on the
Langlands-dual Schubert cell LX,,, where w = si, -+ - 8;, 1s an element of the Well group W ([15]).
It is immediate from the braid-type isomorphisms that for any w € W and its reduced words i - - - i;
and j; - - - j;, we get the following isomorphism of crystals:

(3.20) B,® --®B,=B;,® --®B,,

3.6. Half potential and the crystal B(co). For a Laurent polynomial ¢(xy,--- , x,) with positive
coefficients, the tropicalization of ¢ is denoted by ¢ := Trop(¢), which is given by the rule: Trop(ax+
by) = min(x, y) with a,b > 0, Trop(xy) = x + y and Trop(x/y) = x — y and Trop(c) = 0 for ¢ > 0. In
[10], the crystal B(co) has been realized as a certain subset of B; defined as follows:

Theorem 3.7 ([10, Theorem 5.11]). Define the subset of B;:
(B, oo = 1x = (x1,- -, xy) € B | 0 (x) > 0},

where By, is a certain geometric crystal, ®*) is a tropicalization of the half potential ®*) which is
a Laurent polynomial with positive coefficients in N variables and ©j; is a certain positive structure
on the geometric crystal B, . Then, (B}, )om @; = B(c0).

Remark 3.8. To define the crystal structure on (@V‘m)@m,@i, it is supposed that if &;x ¢ (M.Bg;o)(pm,@i,
then &;x = 0. Thus, in this sense, the embedding B(co) = (ﬁ;o)cpwgi < B; is not a strict embedding.
In [16, 15], it has been given the strict embedding of B(c0) < B;, which is called ”Kashiwara
embedding” and the method to describe the image of this embedding, called polyhedral realization”.

25
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3.7. Subspace ;. The object H; will play a significant role for this article.
Fix a reduced longest word i = i;---iy and take the function ﬂ;{')(x) = X+ Dk i @i )X +
X+ (1 <k < N)asin (3.11). In what follows, let us identify the Z-lattice Z" with B; and then we
define the summation of clements x = (x1,--- ,xy)andy = (y,--- ,yn) by x+y = (X1 +y1,- - , Xy +
y) as a standard one in ZV. Here, we define the subspace H; ¢ ZN by
(3.21) H; = {x € ZV(= By) | B (x) = 0 for any k such that k* < N} c B;.
The following result was presented in [10]:
Proposition 3.9 ([10]). Fori =iy - iy, k=1,2,---,N and a fundamental weight A;, set
(3.22) WO = By, sipy sy and by o= (B0, 0P, RY) € By
Then, we obtain that {hy, - -- ,hy} is a Z-basis of H;, namely,
(3.23) H;=7h, ®Zh, & --- ® Zh,,.

Proof. Let {a}};, {h}; and {s7}; be the simple roots, the simple co-roots and the simple reflections
of the Langlands dual Lie algebra g" respectively. Define m(,k) €Zso (ke[l,N],iel)by

/(k / k ’
)= SiySiy=1 Sk (@) = Zm( )
iel
By [10, Lemma 9.1], one has that {m; := (m(l) m(z) .- ,mEN)) | i € I} is a Z-basis of H;. Thus, it
suffices to show that hgk) = mgk) forany k e [1,N]and i€ I.
Let us define the set of paths from a to b (a,b € Z, a > b) by

P(a,b) :={(a, j1, ja,---» j.0)la>j1 > jo>--->j>b, 1 >0},

where set P(a,a) = 0 and [ = —1. By the following lemma, we can complete the proof of the
proposition.
Lemma 3.10. We obtain the following explicit formulas:
(3.24) (Rigs Sigey + i (@)
= > D Xy ),
(P-jrsr- s Jik)EP(p.k)
(3.25) S Si st (@)

IN TIN-1 Tk+1

N
= DU o W Ll Y-l W d )
=D D, CDNHel el e i a)a,
L=k (L.j1. . jik)eP(L.k)

sap Xhi L ai,)  (p>h),

where note that in (3.25) if kK = L, namely $(L, k) = 0, then the corresponding term is “;k'

Example 3.11. In g = Gy-case. Set a;; = —1 and a;; = —3. Taking a reduced longest word
i=121212, one has

B(li)(x) =X — X2 + X3, ﬁ(zi)(x) = X2 — 3x3 + X4, ﬂ(;)(x) = X3 — X4 + X5, B(')(x) = x4 — 3x5 + X¢.
By the formula (3.22), one gets

h; =(1,3,2,3,1,0), h, =(0,1,1,2,1,1).
Then the solution space H; of [j’(li)(x) = ﬁg)(x) = ,b’(;)(x) = [ﬁﬁf)(x) = 01is given by

7‘(1 = {Clh1 + Czhz = (C],Cz +3C],C2 +2€1,2Cz + 3C1,Cg + Cl,Cz) | C1,C2 € Z].
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Lemma 3.12. The braid-type isomorphisms are well-defined on 7;, that is, ¢§§) (H) = H,;, where
i’ is the reduced word obtained by applying the corresponding braid-moves. We also obtain the
following formula:
(1) Forany h = (--- ,x,y,--+) = - ® (=x); ® (-)); ® - - - € H;, assume that a;; = a;; = 0.
Applying the braid-type isomorphism ¢g.)) on (x,y) in h, we have

(3.26) $ (M) = (o yx) = ® (<)), @ (=x); ® - € Hy
(2) Foranyh=(--+ ,x,y.2,-+-) = ®(=x); ®(=)); ®(=2); ® - - - € H;, assume that a;; = aj; =
—1. Applying the braid-type isomorphism ¢f.Jl.) on (x,y,z)in h, we have
(3.27) G = zyx) = @(-2), 0 (=) ® (—0); ®--- € Hy
(3) Forh = (--- ,x,y,z,w,--+) = - ® (=x); ® (=¥); ® (=2); ® (—w); - -+ € H;, assume that

a;j - aj; = 2. Applying the braid-type isomorphism ¢§]2.) on (x,y,z,w) in h, we have
(3.28) G = (W, y, X ) =@ (W) @ (=2 @ (), B (—x); @ - € Hy

@) Forh=(-,xy,zu,v,w,) = @(=x);®(=);®(-2); ®(—u); ® (—v); & (-w); - - - € H;,
assume that a;; - a;; = 3. Applying the braid-type isomorphism ¢S) on (x,y,z,u,v,w)in h,
we have

(B29) PN =Wy X ) = B (W) @ (=2 B (<)) @ (—X) @ - €

In [10, Sect.8], we have shown the following statements under the condition “H;”’, where we omit
the explicit form of Hj since we do not need it here. But, we succeed in showing the following
proposition without the condition H; since in [10] we have shown that there exists a specific reduced
longest word iy satisfying the condition Hj, for each simple Lie algebra g and we got Lemma 3.12.

Proposition 3.13. Leti = iji, - - -iy be an arbitrary reduced longest word. Here if the crystal B(oo)
is realized in B; as in 3.6, we shall denote it by B(co); to emphasize the word i. For i € H;, define

B'(c0); := {x + h € ZV(= B;)| x € B(0);} C B;.

(1) Forany x+ h € B''(c0); and i € I, we obtain

(3.30) ei(x+h)=2¢;,(x)+h, ﬁ-(x +h) = ﬁ(x) + h.
(2) For any h € H;, we have B(co); N B'(c0); # 0.
(3)
B; = |_J B"(co
heH;

Remark 3.14. In the setting of the half-potential method in [10], as mentioned in Remark 3.8, the
crystal B(co) is realized as a subset of B; and it is supposed that &;x = 0 if &;x ¢ (ﬁfvo)mw@i = B(c0).
At the statement (2), since x € B(c0); is considered as an element of B;, &;x is also considered as an
element in B;. That is, even if &;x ¢ B(c0), we consider that &;x € B; and then it never vanishes.

It is immediate from this proposition that one has the following theorem:

Theorem 3.15 ([10]). For any simple Lie algebra g and any reduced word ii; - - - i, the cellular
crystal B; j,..;, = Bi, ® B;, ® -- - ® B, is connected as a crystal graph.

Example 3.16. For G,-case, by the polyhedral realization method, we obtain

X4 X3 X2
B(co) = {(x1, X2, X3, X4, X5, X6) | X6 = 0, x5 > 3 252 3 > x; > 0},
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where (x1, X2, X3, X4, X5, X¢) stands for (—=x;); ® (=x2)2 ® (=x3)1 ® (=X4)2 ® (—=X5)1 ® (—X6)2. As has
seen in Example 3.11, we get

h; =(1,3,2,3,1,0), h, =(0,1,1,2,1,1).
Thus, let us see that for any v = (a, b, ¢, d, e, f) € B121212, the conditions on ¢y, ¢; such that v+c hy +
chy € B(o). Indeed, they are given by
¢y > max(3a — b,2b — 3¢,3c¢ —2d,d — 3e,—f), cr > —a.

4. QuiveR HECKE ALGEBRA AND ITS MODULES

In this section, we shall introduce the quiver Hecke algebra and its basic properties (see [4, 5, 7,
171).

4.1. Definition of Quiver Hecke Algebra. For a finite index set / and a field k, let (2; j(u,v)); jer €
k[u, v] be polynomials satisfying:
(1) 2;j(u,v)=2;(v,u)foranyi,jel.
(2) 2 j(u,v)is in the form:
tijaptt™’ if i #
Qi.j(u’ V) = 9 ale;.a)+b(aj,a)==2(a;,a;)
0 ifi = j,
where 1 4,0 € K*.
FOI'ﬁ = Zi m;; € Q+ with |ﬂ| = Zi m; = m, set IB = {V = (Vlv Tt st) el | Z;gnzl @y :lB}

Definition 4.1. For 8 € Q,, the quiver Hecke algebra R(f3) associated with a Cartan matrix A and
polynomials 2; j(u,v) is the k-algebra generated by

feve ), {ull<k<n), {rll<i<n-1}

with the following relations:

eM)e(v) = b,em), D e =1, e =xe(v), xx = X%,
velp

Tie(v) = e(siv)t, T =17 iflk—1 > 1,

Toe(v) = 2y, (5 Xes1e(v),
—e(v) ifl=k, vi = Vi1,

(tex1 — xgyTR)E(V) = {e(v) ifl=k+1, vi = viy1,
0 otherwise,

Dyvins Xy Xir1, Xir2)e(v) i v = Vi,

(Tha 1 Tk Tt 1 — TkTrs1 Ti)E(V) = .
0 otherwise,

2ij(u)=2;;(w,)

u—-w

where @i,j(u, v, W) = € klu,v,w].

(1) The relations above are homogeneous if we define
deg(e(v)) =0, deg(xke(v)) = (ay,,@,,), deg(rie(v)) = —(a,,, ay,,).

Thus, R(B) becomes a Z-graded algebra. Here we define the weight of R(8)-module M as
wt(M) = —f.
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(2 Let M = P ez, Mi be a Z-graded R(B)-module. Define a grading shift functor q on the
category of graded R(B)-modules R(3)-Mod by

gM := (DM, where (gM)y = My
keZ

(3) For M, N € R(5)-Mod, let Homg) (M, N) be the space of degree preserving morphisms
and define Homgg) (M, N) = @ ‘ez, HomR(ﬁ)(qu, N), which is a space of morphisms up to
grading shift. We define deg(f) = k for f € HomR(ﬁ)(qu, N).

(4) Let y be the anti-automorphism of R(fB) preserving all generators. For M € R(B)-Mod,
define M* := Homg(M, k) with the R(B)- module structure by (r - f)(u) = f(y(r)u) for
re€ R(B),u € M and f € M*, which is called a dual module of M. In particular, if M = M*
we call M is self-dual.

(5) For B,y € Oy, sete(B,y) = X epver (v, V). We define an injective homomorphism &z, :
R(B) ® R(y) — e(B,7)RPB + y)e(B,y) by £B,y)(e(v) ® e(v')) = e(v.V), £PB,y)(xre(B) ®
D = xie(B.y), EB.y)(1 ® xie(y)) = Xiripe(B, ), EB, y)(Tre(B) ® 1) = 1e(B,y), EB,y)(1 ©
Tre(y)) = Tirpe(B, y).

(6) For M € R(5)-Mod and N € R(y)-Mod, define the convolution product o by

MoN = R(ﬁ + 7)(3(,3, )/) ®R(ﬁ)®R(y) (M ® N)

For simple M € R(5)-Mod and simple N € R(y)-Mod, we say M and N strongly commutes
if M o N is simple and M is real it M o M is simple.

(7) For M € R(8)-Mod and N € R(y)-Mod, denote by MVN := hd(M o N) the head of M o N
and MAN := soc(M o N) the socle of M o N, where the head of module M is the quotient
by its radical and the socle of module M is the summation of all simple submodules.

4.2. Categorification of quantum coordinate ring A,(1). Let R(3)-gmod be the full subcate-
gory of R(8)-Mod whose objects are finite-dimensional graded R(B)-modules and set R-gmod=
b 5c0, R(B)-gmod. Define the functors

E; : R(B)-gmod — R(S — «@;)-gmod, F; : R(B)-gmod — R(B + a;)-gmod ,

by E(M) := e(a;.p — ap)M, Fi(M) = L(i) o M, where e(a;, 8 — @;) := Yyep,,=i e(v) and L(i) :=
R(a;)/R(a;)x is a 1-dimensional simple R(a;)-module. Let K(R-gmod) be the Grothendieck ring
of R-gmod and then K (R-gmod) becomes a Z[q, ¢~ ']-algebra with the multiplication induced by the
convolution product and Z[g, g~']-action induced by the grading shift functor g. Here, one obtain
the following:

Theorem 4.2 ([4, 17]). As a Z[q, ¢~']-algebra there exists an isomorphism
W(R-gmod) = ﬂq(n)z[qu—l].

4.3. Categorification of the crystal B(co) by Lauda and Vazirani [11]. The following lemma is
given in [4]:

Lemma 4.3 ([4]). For any simple R(8)-module M, soc(E; M), hd(E;M) and hd(F;M) are all simple
modules. Here we also have that soc(E;M) = hd(E; M) up to grading shift.

For M € R(B)-gmod, define
4.1) wt(M) = =B, &(M)=max{n € Z|E}M # 0}, ¢i(M) = &(M) + (h;, wt(M)),
(4.2) EM = q " Msoc(E:M) = 7 'hd(E:M),  F:M = g7 hd(F;M).

Set B(R-gmod) := {S | S is a self-dual simple module in R-gmod}. Then, it follows from Lemma 4.3
that E; and F; are well-defined on B(R-gmod).
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Theorem 4.4 ([11]). The 6-tuple (B(R-gmod), {E,-}, {17,}, wt, {€;}, {¢i})ic; holds a crystal structure and
there exists the following isomorphism of crystals:
¥ : B(R-gmod) —> B(co).

Remark 4.5. Note that Lauda and Vasirani showed this theorem under more general setting that g
is arbitrary symmetrizable Kac-Moody Lie algebra. Here we assume that g is a simple Lie algebra.
The definition of E; and F; in (4.2) differs from the one in [11], which follows the one in [7].

5. LOCALIZATION OF MONOIDAL CATEGORY
Here we shall review the theory of localization for monoidal category following [5].

5.1. Braiders and Real Commuting Family. Let A be Z-lattice and 7 = ®,c2 7 be a k-linear A-
graded monoidal category with a data consisting of a bifunctor ® : 7, X7, — 7 44, an isomorphism
aX,Y,Z): (X®Y) ®Z—X® (Y®Z) satistying a(X, Y, Z@W)oa(X®Y,Z, W) =idy ®a(Y.Z, W) o
aX,Y®Z W)oa(X,Y,Z)®idy and an object 1 € 7, endowed with an isomorphism € : 1 ® 1-51
such that the functor X — X ® 1 and X — 1 ® X are fully-faithful.

Definition 5.1 ([5]). Let g be the grading shift functor on 7. A graded braider is a triple (C, Rc, ¢),
where C € 7, Z-linear map ¢ : A — Z and a morphism:

Re:C®X - ¢"WX®C (XeT)),
satisfying the following commutative diagram:

Coxey —LphexeCey  (XeTy YeT,)

\ lXQ’RC(Y)
Re(X®Y)

PEIXRY)® C

and being functorial, that is, for any X,Y € 7 and f € Hom4(X, Y) it satisfies the following com-
mutative diagram:

id
cox-2 cay

Rg(X)l ch(Y)

xec 2 yec

Definition 5.2 ([5]). Let I be an index set and (C;. Rc,. ¢;)ie; a family of graded braiders in 7. We
say that (C;, Rc,, ¢)icr is a real commuting family of graded braiders in T if

(1) C; € Ty, for some A; € A, and ¢;(4;) = 0, ¢;(1;) + ¢;(4;)) =0forany i, j € I.

(2) R¢,(C) € K¥id¢gc, forany i € 1.

(3) RC,(Cj) ®ch(c,‘) € kxidc,®cj fOI' any l,] el.

Note that R¢,’s satisfy so-called ”Yang-Baxter equation”, such as,
Rc,(Cj) o Rc,(Cy) © Re,(Cr) = Re;,(Cy) © Re,(Cy) 0 R, (Cj) on CioCjoCy.

For a finite index set [, set I' := ®;c;Ze; and Iy := ®,;Z5e€;.
Lemma 5.3 ([5]). Suppose that we have a real commuting family of graded braiders (C;, Rc,, ¢;)ier-
We can choose a bilinear map H : I' X I' — Z such that ¢;(4;) = H(e;, e;) — H(e,, ¢;) and there exist

(1) anobject C* foranya e I'y.
(2) an isomorphism &, 5 : C* ® CPF— ¢ P C*# for any a,f € T,
such that C° = 1 and C¢% = C,.
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5.2. Localization. Let 7 and (C;,Rc,, ¢;)ic; be as above and {C”},cr, objects as in the previous
lemma. We define a partial order < on I" by

a<pe=p-acly
For ay, a»,--- €T, define
Doy =10 €T aj+0 €Ty forany j=1,2,---}.
ForX € 7,,Y € 7,and 6 € Dy, set
Hy((X, @), (Y.)) := Homy(C*"" ® X, ¢" "9y © CP*),
where a Z-valued function P(a, 3,0, 1) = HO,f—a) + ¢(0 + B,1) and the map ¢ : T X A — Z is
defined by ¢(a, L(B)) = H(a,8) — H({B,a) and L : T — A is defined by L(e;) = A; ([5]).
Lemma 5.4 ([5]). For § < ¢’ there exists the map

Loy Ho(X, @), (Y, B)) = Hy (X, @). (Y. ))
satisfying
Lss © Ly = Lsorfor o < & <6

Therefore, we find that {Hs((X, @), (¥, B))}sen,,, becomes an inductive system.

Definition 5.5 (Localization [5]). We define the category T by

Ob(7) := Ob(T) X T,
Homz((X, ), (Y.B)) := l_lgl Hs(X, ), (Y, ),

o€D(a p),
A+L(@)=p+L(B)

where X € 7, Y € 7, and the function L : I' — A (e; = 4;) is as above. We call this T a
localization of T~ by (Ci, Rc,, ¢i)ier and denote it by T[C?" |i € I1 when we emphasize {C; | i € I}.

Theorem 5.6 ([5]). 7 becomes a monoidal category. Moreover, there exists a monoidal functor
T:97 — T such that
(1) Y(Cy)isinvertible in T for any i € I, namely, the functors X — X®Y(C;) and X — T(C;)®X
are equivalence of categories.
(2) Foranyieland X € 7, T(Rc,(X)) : T(C; ® X) — YT(X ® C;) is an isomorphism.
(3) The functor T holds the following universality: If there exists another monoidal category
7 and a monoidal fucntor Y’ : 7~ — 7 satisfying the above statements (1) and (2), then
there exists a monoidal functor F : 7~ — 7~ (unique up to iso.) such that 1" = F o Y.

Proposition 5.7 ([5]). Under the setting above, we obtain

(1) X,a+p) =g HBoCcoreX,p),(1,5)®(1,-B) = g HPA(1,0)fora € T,,feTand X € T.

(2) If 7 is an abelian category, then so is T.

(3) The functors Y : 7 — 7 is exact.

(4) If the functor —®Y and Y ®— are exact for any Y in 7, then the functors T >T X - X®Y
(resp. X = Y ® X)) are exact for any Y in T.

6. LOCALIZATION OF THE CATEGORY R-gmod

In this section, we shall apply the method of localization to the category R-gmod.
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6.1. Determinantial Modules. Here we just go back to the setting as in Sect.4. Let L(i") :=
n(n=1) qf— (@)

q; > L()°" be a simple R(n;)-module satisfying qdim(L(i")) = [n];! := [}, q'_Zf;_.k (gi==q 7).

Definition 6.1 ([5, 7]). For M € R-gmod, define
F'(M) := L(i")VM.
For a Weyl group element w, let s;, - - - s;, be its reduced expression. For a dominant weight A € P,
set
my = (R, Si, sy Ay k=1, D).
We define the determinantial module associated with w and A by
M(WA, A) := FI" - F'"1,
where 1 is a trivial R(0)-module.

Note that in general, one can define determinantial modules M(wA, uA) (w, u € W) which corre-
sponds to the generalized minor A y-

Now, let us see some similarity between the family of determinantial modules {M(woA, A)}aep,
and the subspace H;. As has seen above that for a reduced longest word i = i - - - iy, the subspace
H; C B is presented by

H; = @Zhi, h; = ((hﬁ") =<y, Sy, 0 SiyNi)k=1,- N-
iel
Furthermore, we also get
Proposition 6.2. For any reduced longest word i = iji---iy and A € P, set
my = (hi, i Sig, - SN (k=1,2,--- ,N) and hp = (my,--- ,my).
Then we obtain
ha = " (0, @ (), ® @ (0),) = F"0), ® (0, ® - ® [ (0);, € Hi,
where note that for A = }; a;A;, one has hy = }; a;hy,.

By this proposition, one observes that there would exist a certain correspondence

(6.1) MwoA,A) = F" -+ F"1 e hy = f" - f((0);, ® (0);, ®- - ® (0);,).
Definition 6.3 ([5]). For 8 € Q., define a central element in R(B) by
Pi = Dep (]—Iaeuqz‘.,,,ht(ﬁ)m:i xa) e(v) € R(B). For a simple M € R(S)-gmod, define an affinization
M of M with degree d:
(1) There is an endomorphism z : M — M of degree d > 0 such that M is finitely generated
freE module of k[z] and M /zM = M.
(2) piM #0foranyiel.

Theorem 6.4 ([S, Theorem 3.26]). For any A € P, and w € W, the determinantial module M(wA, A)
is a real simple module and admits an affinization M(wA, A).

Note that indeed, if g is simply-laced, then the affinization M always exists for any simple M €
R(B)-gmod as ([3)),
M = K[z] & M.
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6.2. Localization.

Definition 6.5 ([S]). Let M be a simple R-module. A graded braider (M, Ry, ¢) is non-degenerate
if Ry (L(7)) : M o L(i) — L(i) o M is a non-zero homomorphism.

For R-gmod, there exists a non-degenerate real commuting family of graded braiders (C;, Rc,, ¢:)ici([5]).
Set Cp := M(wpA, A) and denote Cy, by C;.

Proposition 6.6 ([8]). For A = 3;m;A; € P,, we obtain the following isomorphism up to grading
shift:

(6.2) Ca := M(woA,A) = C{™ o --- 0 C"™.
Theorem 6.7 ([5, Proposition 5.1]). Define the function ¢; : Q — Z by

¢i(B) := —(B, wol\; + A)).

Then there exists {(C;, Rc,, ¢i)}icr @ non-degenerate real commuting family of graded braiders of the
monoidal category R-gmod.

Now, we take I' = P = 5, ZA; and I’y = P, = P, Z>oA;. Here, we obtain the localization
R-gmod[C;7" |i € I1 by {(Ci, Re,, ¢1)}ier, which will be denoted by R-gmod.
By the above Proposition, it holds the following properties:

Proposition 6.8 ([5]). Let ® : R-gmod — E-gmod be the canonical functor. Then,

(1) E—gmod is an abelian category and the functor @ is exact.
(2) For any simple object S € R-gmod, ®(S) is simple in R-gmod.
(3) C; := ®(C;) (i € 1) is invertible central graded braider in R-gmod.

For i € P, define 5# such that 5# = O(C,) foru € Py, E_Ai = C;"l and 5“# = 5/1 05# for
A, € P up to grading shift.

(4) Any simple object in E—gmod is isomorphic to Ch o ©(S) for some simple module S €
R-gmod and A € P.

Note thatin (4) A € Pand S € R-gmod are not necessarily unique.
Remark 6.9. In [5], the localization is applied to more general category %,,, which is the full sub-

category of R-gmod associated with a Weyl group element w. The category R-gmod here coincides
with €, associated with the longest element wq in W.

Definition 6.10. The category R-gmod is abelian and monoidal. Therefore, its Grothendieck ring
K (R-gmod) holds a natural Z[q, g~']-algebra structure, which defines a localized quantum coordi-

nate ring %) = Q(q) ®zjg.q11 K(R-gmod).
Indeed, the Grothendieck ring 'K(E—gmod) is described as follows:

Proposition 6.11 ([5, Corollary 5.4]). The Grothendieck ring W(ﬁ—gmod) is isomorphic to the left
ring of quotients of the ring K'(R-gmod) with respect to the multiplicative set

S:=1g"[ [lca" 1k e Z, (@yier € ZLy),

i€l

that is, K(R-gmod) = S™'%(R-gmod).



34

CRYSTAL STRUCTURE ON LOCALIZED QUANTUM COORDINATE RINGS

7. CRYSTAL STRUCTURE ON LOCALIZED QUANTUM COORDINATE RINGS

‘We shall mention the main theorem, crystal structure on localized quantum coordinate ring é{;(?f).
More precisely, we shall define a crystal structure on a family of self-dual simple objects in the
category R-gmod (Theorem 7.4) and mention that it is isomorphic to the cellular crystal B; (Theorem
7.5), where i is a reduced word for the longest Weyl group element wy.

Lemma 7.1 ([4, Proposition 2.18]). For any i € I, 5,y € Q,, any modules M € R(B)-gmod and
N € R(y)-gmod, one has the following exact sequence in R(8 + y — a;)-gmod:

(7.1) 0— EMoN— E{MoN)— g “PPMoEN—O.
Fori € I,leti* € I be a unique index satisfying A; = —wpA,.

Lemma 7.2. (1) For § € R-gmod and i € I, if E;S = 0, then the module E;Cy,. o S is a simple
module.
(2) If E;S =0 for S € R-gmod, then we get for A € P, with (h;,A) >0,

(72) SOC(Ei(CA o S)) = CA—A,* o (E,-C,u o S),

up to grading shift.

We set
B(ﬁ—gmod) :={L| Lis a self-dual simple module in E—gmod},

Lemma 7.3 ([5]). For any simple L € ﬁ—gmod, there exists a unique n € Z such that ¢"L is self-dual
simple. For a simple module L € R-gmod we define 6(L) to be this integer n.

Then by this lemma, we find that B(IE— gmod) includes all simple modules in R- gmod up to grading
shift. For a simple object Cx o ®(S) € R-gmod we write simply Cx o § if there is no confusion.
Now let us define the Kashiwara operators F; and E; (i € I) on B(R-gmod) by

(13) FACp 08) = ¢CFSCy o Fis,
(7.4) EAChoS) g CFIC, 0 E;S if ;S #0,
R i o) = . — ~ .
A qn(CAJ\P o(EiCp,. OS))CA—A; o (EiCA’x oS) if ES =0,

where Cy o § is a self-dual simple module in E—gmod, the actions E,-S and IFI-S are given in (4.2),

which is defined on the family of all self-dual simple modules in R-gmod and in (7.4) the module

ECAIX o § is simple by Lemma 7.2. Note that for any m > 0, E;"(CA 0S)#0, E"(CA 0S)#0.
LetV: B(R-gmod)%B(OO) be as in Theorem 4.4. For Cp o S € B(E—gmod), we also define

gi(Cp 0 8) = &(V(S)) = (hi, woA), wt(Cp 08) = wt(‘P(S)) + woA — A,
@i(Cpr08) = &(W(Cp08)) +(h, wit(Cp 0 5)).

(7.5)
Theorem 7.4. The 6-tuple (B(E—gmod), wt, {&}, {¢i}, [E}, {fi}),-e] is a crystal.
Here, by Proposition 6.2 we observe that there seems to exist a certain correspondence:
{CAlA € P} CR-gmod «— H;
Ca=F"- F'™1 «— hy=f"f" . f7(0);, @ (0), ®-- & (0);,)

Together with the result of Proposition 3.13, we obtain the following:
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Theorem 7.5. For any reduced longest word i = iy, - - - iy, there exists an isomorphism of crystals:
¥:BRgmod) — Bi=|JB'(x)
hetH;
CroS + hp+¥(S)e BM™(),
where ¥ : B(R-gmod)— B(o) is the isomorphism of crystals given in Theorem 4.4, S is simple in
B(R-gmod) and for A = }; a;A; sethy = 3; a;h;.
8. APPLICATION AND FURTHER PROBLEMS
8.1. Operator d. Define the Q(g)-linear anti-automorphism * of U,(g) by
@ =g, e =e fr=f.
Theorem 8.1 ([2]). Set L*(c0) := {u* |u € L(c0)}, B*(c0) := {b* | b € B(0)}. Then we have
L*(c0) = I(e0), B*(e0) = B(0).
From the proof of Theorem 5.13 in [5] we get
Proposition 8.2 ([5]). For v = (vi,va, s Vie1, Vi) € 1P (m 1= |B]) S€t ¥ = (Vi Vin1s -+ + » V2, V1)
Define the automorphism a on R(83) by
ale(v)) = e(v), a(xe(v)) = xm_ir1e(v), a(rje(v)) = —Tp_je(v).
Then, there exists the functor a : R-gmod — R-gmod such that a(C;) = C;- (Vi € I), a> = id and

a~(X oY) =a(Y)oa(X) for X, Y € R-gmod. Furthermore, it is extended to the functor @ : ﬁ—gmod -
R-gmod which satisfies

8.1 #=id, and dXoY)=aY)odaX) forX,Y eR-gmod.

Note that a(resp. @) induces the operation x on A, (1) (resp. ﬁ;(n)) since a(L(i)) = L(i) and then
one has a(f;) = f; (resp. a(f;) = fi) on A, (1) (resp. A,(n)). Now, we obtain the following:

Proposition 8.3. Leta : E—gmod - I?—gmod be the functor as above. It yields
(8.2) d(B(R-gmod)) = B(R-gmod).
Here note that Proposition 8.3 can be seen as a generalization of Theorem 8.1.

Since as crystals B(R-gmod) = B; for any reduced longest word i, the proposition above gives
rise to the following problem.
Problem 1. Can we describe d-operation on B; = B;, ® - -- ® B;,, explicitly?

Of course, this problem is non-trivial since even for the case B(co) the explicit description has not
yet been done before in B;.

8.2. Category %,. In [5], it has been shown that for an arbitrary symmetrizable Kac-Moody Lie
algebra and any Weyl group element w € W, there exists a subcategory %,, CR-gmod and it admits a
localization _

Gw=CulC i€, (Ci= M(wA;, A)
Indeed, note that for finite type Lie algebra setting, €,,, = R-gmod.
Problem 2. We conjecture that the localization %, possess a crystal B(%,,). If so, we also conjecture
that there is an isomorphism of crystals

B(Cgv);)Bil ®---®B;,

where i - - - i, is a reduced word of w.
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8.3. Rigidity.

Definition 8.4. Let X, Y be objects in a monoidal category 7,and ¢ : X®Y — landnp: 1 - Y®X
morphisms in 7. We say that a pair (X, Y) is dual pair or X is a left dual to Y or Y is a right dual to
X if the following compositions are identities:

id®r; id neid id
X~X0l S XeYeX 2 1eX~X, Y~10Y LS YoXeY N yel~Y

We denote a right dual to X by D(X) and a left dual to X by D~'(X).
Theorem 8.5 ([5]). For any finite type R, ﬁ—gmod is rigid, i.e., every object in ﬁ—gmod has left and
right duals.

Note that in [6], it is shown that for any symmetrizable Kac-Moody setting the localized category
%, is rigid.
Problem 3. For a simple object Cp o S € B(ﬁ—gmod), describe the right and left duals explicitly:
F(D(Cro8), D (Cxos) eBi
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