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On flagged K-theoretic symmetric polynomials 

By 

Shinsuke lwAo* 

Abstract 

We present a fermionic description of flagged skew Grothendieck polynomials, which can 
be seen as a K-theoretic version of flagged skew Schur polynomial. Our proof depends on the 
Jacobi-Trudi type formula proved by Matsumura. This result generalizes the author's previous 
result of a fermionic description for skew Grothendieck polynomials. 

§ 1. Introduction 

§ 1. 1. Overview 

Grothendieck polynomials [6] are a family of polynomials which represent the struc­

ture sheaf of a Schubert variety in the K-theory of the flag variety. As each Schu­

bert variety is naturally associated with a permutation, Grothendieck polynomials are 

parametrized by permutations. 

A flagged Grothendieck polynomial is a Grothendieck polynomial that associates 

with a vexillary permutation. As a K-theoretic analog of the flagged Schur polynomi­

als, the flagged Grothendieck polynomials have various interesting combinatorial and 

algebraic properties. Knuston-Miler-Yong [5] showed that the flagged Grothendieck 

polynomial can be seen as a generating function of flagged set-valued tableaux. Hudson­

Matsumura [2] proved a Jacobi-Trudi type formula for them. 

For a permutation w E Sn, the inversion set (see [7, 10]) of w is defined as Ii(w) = 
{j Ii< j and w(i) > w(j)} C {1, 2, ... , n }. The permutation w is called vexillary if the 
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family {Ii(w)}i=l,2, ... ,n forms a chain by inclusion. For a vexillary permutation w, we 

associate a partition >..( w) by arranging the cardinalities of the inversion sets. A flagging 

of w is the increasing sequence obtained by arranging min Ii ( w) - 1 in increasing order. 

The flagged Grothendieck polynomial Gw(x) is also written as G>.,1(x), where A= >..(w) 
and f is the flagging of w. 

In the work [8], Matsumura introduced a generalization of these functions associ­

ated to a skew shape>../µ with a flagging f / 9, where f = (!1, ... , fr) and 9 = (91, ... , 9r) 

are sequences of natural numbers. He proved that the flagged skew Grothendieck poly­

nomials, which are defined as a generating function of flagged skew set-valued tableaux, 

admits a Jacobi-Trudi type formula. For n, p, q E Z, define GW1 q] ( x) by the generating 

function 

(1.1) 

Matsumura's determinant formula [8, §4] is given as 

(1.2) 

(p 2'. q) 

(p < q) 

In this paper, however, we adopt the slightly different definition 

(1.3) 

and consider the polynomial 

(1.4) 

(p 2'. q) 

(p = q - 1) 

(p < q - 1) 

These polynomials are different in general but coincide with each other if Ji + Ai - i 2'. 
9j + µj - j whenever Ji < 9j - 1. In particular, if 91 = 92 = · · · = 9r = 1, we have 

G>./µ,,f/g(x) = G>./µ,,[[f/g]](x) for any skew shape>../µ. 

Our aim is to construct a new algebraic description of G>./µ, ,[[f/g]](x) by using the 

vertex operators acting on the fermion Fock space. In the previous work [3, §4], the 

author of the paper presented a fermionic description of skew Grothendieck polynomials. 

Generalizing this method, we show the main theorem (Theorem 3.2) that presents a 

fermionic description for the flagged Grothendieck polynomial. 
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§ 2. Preliminaries 

§ 2.1. Fermion Fock space 

Let A be the C-algebra generated by the free fermions 'l/Jn, 'ljJ~ (n E Z) with anti­

commutation relations 

where [A, BJ+= AB+ BA is the anti-commutator. 

Let F = A· I0) be the Fack space, the left A-module generated by the vacuum 

vector 

'l/Jml0) = 'l/J~I0) = 0, m < 0, n:::: 0. 

We also use the dual Fack space F* := (0I • A, the right A-module generated by the dual 

vacuum vector 

(0l'l/Jn = (0l'l/J;;, = 0, m < 0, n :::: 0. 

There uniquely exists an anti-algebra involution on A 

* : A --t A; 'l/Jn ++ 'l/J~, 

satisfying (ab)* = b*a* and (a*)* = a for a, b EA, which induces the C-linear involution 

w; F --t F*, XI0) f--t (0IX*. 

The vacuum expectation value [9, §4.5] is the unique C-bilinear map 

(2.1) F* ®k F --t k, (wl ® Iv) c-+ (wlv), 

satisfying (0I0) = 1, ((wl'l/Jn)lv) = (wl('l/Jnlv)), and ((wl'l/J~)lv) = (wl('l/J~lv)). For any 
expression X, we write (wlXlv) := ((wlX)lv) = (wl(IXlv)). The expectation value 

(0IXI0) is often abbreviated as (X). 

Theorem 2.1 (Wick's theorem (see [1, §2], [9, Exercise 4.2]) ). Let {m1 , ... , mr} 
and { n1, ... , nr} be sets of integers. Then we have 

For an integer m, we define the shifted vacuum vectors Im) E F and (ml E F* by 

m::::o, 
m<0, 

(ml = { (Ol'l/Jo'l/Ji .. · 'l/J;,_1, m:::: 0, 

(0l'l/J-1 'l/J-2 ... 'l/Jm, m < 0. 
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§ 2.2. Vertex operators and commutation relations 

For any monomial expression M in "Pn and 'lj;~, the normal ordering 

:M: EA 

is defined by moving the annihilation operators 

m < 0, n 2'. 0 

to the right, and multiplying -1 for each move (See [1, §2], [9, §5.2]). For example, we 

have : "Pl 'lj;i := "Pl 'lj;i and : "Pi"P1 := -'lj;1 'lj;i. The normal ordering can extend naturally 

to the IC-linear map 

{polynomial expressions in "Pn and 'lj;~ with coefficients in IC} -+ A; X t-+ : X : 

Let am (m E Z) be the current operator am= I:kEZ : "Pk"Pk+m :, which satisfies 

(2.2) 

where [A, B] = AB - BA. (see [9, §5.3].) If Iv))= (v*I, we have w(ailv)) = (v*la-i for 

any n E Z. 

Let X = (X1 ,X2 , ... ) be a set of (commutative) variables. We define the Hamil­

tonian operator 

and its dual 

We define the vertex operators by 

H(X) - ~ H(X)n 
e -L..., I ' n. 

n=O 

Let 'lj;(z) = I:nEZ "PnZn and 'lj;*(z) = I:nEZ 'lj;~zn be the fermion fields. Here, we 

enumerate some important commutation relations: 

(2.3) 

(2.4) 

(2.5) 

(2.6) 
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where z-rw-r = "-'00 zPwP. 
1-zw L..p=-r 

§ 3. Flagged Skew Grothendieck polynomial 

We can relate the commutation relations of the vertex operators defined in the 

previous section with the generating function of ailf /gl](x) (Eq. (1.3)). For brevity, we 

adopt the convention 

for a sequence X 1 , X 2 , .•. of (commutative) functions. 

Let x[fl = (x1,x2, ... ,xJ) and 

(p ?: q) 

(p = q - 1) 

(p<q-1) 

If f?: g, H(x[f/g]) coincides with H(xg,Xg+l, ... ,xJ)- From (2.3-2.5), we have 

where the rational function on the right hand side expands in the ring1 

Comparing this equation to (1.3), we obtain 

(3.1) eH(xlf/gJ)'ljJ(z)e-H*(-(3) = (L ailf /gll(x)zn) e-H*(-f3)'ljJ(z)eH(xlf/gJ). 

nEZ 

A similar calculation leads 

(3.2) eH*(-f3)'ljJ*(w)e-H(xlf/gJ) = (L ailf /gll(x)w-n)-1 e-H(xlflgJ)'ljJ*(w)eH*(-/3)_ 

nEZ 

1 Note that the two rings IC((z))[[,B]] and IC[[,B]]((z)) are different. In fact, IC((z))[[,B]] contains 

,B ,32 
1 + --; + z2 + ... ' 

while IC[[,B]]((z)) does not. 
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Lemma 3.1. cUJfg]](x) admits the fermionic description 

cWJg]](x) = (OleH(xlf/g])~n-le-H*(-,8)1-1). 

Proof. Let Fn = (OleH(xlflgJ)~n-1e-H*(-,B)I - 1). Since (OleH*(-,8) 

eH(xlffgJ)I -1) = I -1), we have 

L Fnzn-l = (OleH(xlf /gJ)~(z)e-H*(-,8) I - 1) 

nEZ 

= (L c~/gl(x)zm) (Ole-H*(-,B)~(z)eH(xlflg])I -1) 

mEZ 

= (L c~/gl(x)zm) (Ol~(z)I - 1). 
mEZ 

§ 3.2. Fermionic description 

(OI and 

□ 

We introduce a fermionic presentation of skew Flagged Grothendieck polynomial 

in this section. For a sequence of noncommutative elements P 1 , P 2 , ... , denote 

IT pi:= AP2 · · · PN, 
i:1----tN 

IT pi := PN · · · P2A­
i:N---tl 

For any X, Y, we use the notation 

Let f = (Ji, h, ... , fr) and g = (g1, g2, ... , gr) be sequences of positive integers. 

Let G,x;µ,[[f!g]](x) be the polynomial defined by the determinantal formula (1.4). The 

following is the main theorem of the paper: 

Theorem 3.2. Let>.../µ be a skew partition. 

polynomial G,x;µ,[[f/g]](x) is expressed as 

Then, the flagged skew Grothendieck 

(3.3) 

(-rl (. IT ~:;-jeH*(-,B)e-H(xlg;-1/g;-11)) 

1:r----tl 
( IT H(xlf,lf,-1+11),/, . -H*(-,8)) I- ) e 'l'>-,-,e r . 

i:1----tr 

Proof. By using the equations 

erX IT pi= IT (e(r-i+l)X Pie-(r-i)X) = IT Ade(r-i)x(ex Pi), 
i:l➔r i:l➔r i:l➔r 

( IT pj) e-rX = IT (e(r-j)X Pje-(r-j+l)X) = IT Ade(r-j)x (Pje-x), 
j:r➔ l j:r➔ l j:r➔l 
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the expectation value (3.3) is rewritten as 

(3.4) 

(- I -H(xl9r-ll) ( II Ad . ( H(xl9;- 11J.i,* H*(-/3) -H(xl9;- 11) -H*(-/3))) Te e(r-1-l)H*(-/3) e o/µj-Je e e 
j:r-+1 

. ( II Ad . ( H*(-/3) H(xlfil)nl, . -H*(-/3) -H(xlfil))) I - ) 
e(r-,)H*(-/3) e e o/Ai-ie e T . 

i:1-+r 

Let 

Then, by Wick's theorem (Theorem 2.1), the expectation value (3.4) equals to the 

coefficient of zt1 -l · · · z;r-T · wt1 -l · · · wfr-T of the determinant 

From (3.1), Ai(zi) satisfies 

Ai(zi) = (L GU°i] (x)zr) . Ade(r-i)H*(-/3) ('l/J(zi)) 
nEZ 

= (L GU°il(x)zr) . (1 + /3z;l)-(r-i). 'l/J(zi)-
nEZ 

We also have 

Bj(wj) = (L G~i-ll(x)w;n)-l · (1 + /3wj)-l Ade-(r-j)H*(-/3) ('l/J*(wj)) 
nEZ 

= (L G~i-ll(x)w;n)-l · (1 + /3wjr-j-l · 'ljJ*(wj) 
nEZ 
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To take the coefficient of z;i-iwfi-j on the both side, we use the complex line integral. 

Note that the expansion of the rational function F(zi, w1) in the field 

coincides with the Laurent expansion on the domain {l,BI < lzil < lw;-11 < lx,;1 1}­
Then, we have 

IJ{~1 (1 + ,Bxk) (t + ,3y-1 I]f'.:ct~+l (1 - XkZi) z;r . tµi dt 

I1%~--;,1(1 + ,Bxk) (1 + ,Bz;1)r-i+l I1%'.:c~~(l - Xkt) t - Zi ' 

the contour integral (3.5) should equal to the residue of the differential form at t = Zi­
Finally, we obtain 
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Since the coefficient of z;i -i is 

we conclude the theorem. □ 

§ 3.3. Remarks 

If g1 = g2 = · · · = gr = 1, G>./µ,[[f /g]] (x) reduces to the (usual) flagged Grothendieck 

polynomial G>./µ,t(x). In this case, our main Theorem 3.2 reduces to 

By taking Ji = h = · · · = fr = n, we recover the fermionic presentation of the 

symmetric Grothendieck polynomial given in [3, §4.2]. This expression is not included 

in the fermionic presentation of the multi-Schur function [4]. 
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