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On flagged K-theoretic symmetric polynomials

By

Shinsuke IwAO*

Abstract

We present a fermionic description of flagged skew Grothendieck polynomials, which can
be seen as a K-theoretic version of flagged skew Schur polynomial. Our proof depends on the
Jacobi-Trudi type formula proved by Matsumura. This result generalizes the author’s previous
result of a fermionic description for skew Grothendieck polynomials.

§1. Introduction

§1.1. Overview

Grothendieck polynomials [6] are a family of polynomials which represent the struc-
ture sheaf of a Schubert variety in the K-theory of the flag variety. As each Schu-
bert variety is naturally associated with a permutation, Grothendieck polynomials are
parametrized by permutations.

A flagged Grothendieck polynomial is a Grothendieck polynomial that associates
with a vexillary permutation. As a K-theoretic analog of the flagged Schur polynomi-
als, the flagged Grothendieck polynomials have various interesting combinatorial and
algebraic properties. Knuston-Miler-Yong [5] showed that the flagged Grothendieck
polynomial can be seen as a generating function of flagged set-valued tableaux. Hudson-
Matsumura [2] proved a Jacobi-Trudi type formula for them.

For a permutation w € S, the inversion set (see [7, 10]) of w is defined as I;(w) =
{jli<jand w(i) >w(j)} C {1,2,...,n}. The permutation w is called vezillary if the
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family {I;(w)}i=12,.. » forms a chain by inclusion. For a vexillary permutation w, we
associate a partition A\(w) by arranging the cardinalities of the inversion sets. A flagging
of w is the increasing sequence obtained by arranging min I;(w) — 1 in increasing order.
The flagged Grothendieck polynomial G, () is also written as Gy (), where A = A\(w)
and f is the flagging of w.

In the work [8], Matsumura introduced a generalization of these functions associ-
ated to a skew shape \/u with a flagging f/g, where f = (f1,..., fr)and g = (g1,...,9r)
are sequences of natural numbers. He proved that the flagged skew Grothendieck poly-
nomials, which are defined as a generating function of flagged skew set-valued tableaux,
admits a Jacobi-Trudi type formula. For n,p,q € Z, define G[P/ Q]( ') by the generating
function

148z .
(1.1) ZG[,]L”/Q](I)Z” _ 1+,8u e s (P=0) .
<q)
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Matsumura’s determinant formula [8, §4] is given as
= Z S fl

(1.2) Gk/u,f/g(x) = det <Z ( )B [1 /iaj_“r]_‘_s(:p)) .
s=0

In this paper, however, we adopt the slightly different definition

1+Blufl =g ifffz (r>q)
(1.3) Z Ggp/q”(az)z" - HB# (p=q—1)

neZ

1
1+[3u T+Bu—T Hk p+1 1+§’;Z (p<qg-1)

and consider the polynomial

- i— s i/9j
(1.4) G/ liy /) () = det (Z( )5 f/ij]wﬁs(w))'

s=0

These polynomials are different in general but coincide with each other if f; + \; —i >
g;j + pj — j whenever f; < g; — 1. In particular, if gy = g2 = --- = g, = 1, we have
Gr/u,r/9(x) = G/ if/g) () for any skew shape A/ .

Our aim is to construct a new algebraic description of G, ((f/4)(*) by using the
vertex operators acting on the fermion Fock space. In the previous work [3, §4], the
author of the paper presented a fermionic description of skew Grothendieck polynomials.
Generalizing this method, we show the main theorem (Theorem 3.2) that presents a
fermionic description for the flagged Grothendieck polynomial.
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§2. Preliminaries

§2.1. Fermion Fock space

Let A be the C-algebra generated by the free fermions 1,1} (n € Z) with anti-
commutation relations

[wn”m wnbr = [l/):mw;]Jr =0, [d)m,?/f;;h = §m,n»

where [A, Bl = AB + BA is the anti-commutator.
Let F = A-|0) be the Fock space, the left A-module generated by the wvacuum
vector

Um|0) =110) =0, m <0, n>0.

We also use the dual Fock space F* := (0]- A, the right A-module generated by the dual
vacuum vector
Oy, = 0], =0, m <0, n>0.

There uniquely exists an anti-algebra involution on A
A A Y oy,
satisfying (ab)* = b*a* and (a*)* = a for a,b € A, which induces the C-linear involution
w:F —=F*, X|0)— (0] X"
The vacuum expectation value [9, §4.5] is the unique C-bilinear map
(2.1) F @ F =k, (w®v)— (wv),

satistying (00) = 1, ((wln)lo) = (wl(alv)), and ((wlpp)|o) = (w|(Wzlv)). For any
expression X, we write (w|X|v) := ((w|X)[v) = (w|(|X|v)). The expectation value
(0]X|0) is often abbreviated as (X).

Theorem 2.1 (Wick’s theorem (see [1, §2], [9, Exercise 4.2]) ).  Let{mq,...,m,}
and {n1,...,n.} be sets of integers. Then we have

(thmy = hm, by, by ) = det((Pm ¥y, Di<ij<r

For an integer m, we define the shifted vacuum vectors |m) € F and (m| € F* by

1/)m—17/}'m—2 T 1/)0|0>a m > 07 <OW)81/)T s 1/);2717 m > Oa
jmy = 4 ez (] =
i T 0 ]0), m < 0, O 19 —2...%m, m<O.



§2.2. Vertex operators and commutation relations

*
n’

For any monomial expression M in 1,, and 9

TM: €A

the normal ordering

is defined by moving the annihilation operators
wma 1/):;7 m < Oa n = 0

to the right, and multiplying —1 for each move (See [1, §2], [9, §5.2]). For example, we
have : 19} = Y19} and : YT = —1¢]. The normal ordering can extend naturally
to the C-linear map

{polynomial expressions in v, and v} with coefficients in C} — A; X —: X :

Let an, (m € Z) be the current operator am =),y @ Vr¥i .y, i Which satisfies

(2.2) [@m ;s an] = Mbm1n0, [@ms Pn] = Yn—m, [am, ¥p] = 71[):—&-7717
where [A, B] = AB — BA. (see [9, §5.3].) If |v)) = (v*|, we have w(a;|v)) = (v*|a_; for
any n € Z.

Let X = (X1, Xa,...) be a set of (commutative) variables. We define the Hamil-
tonian operator

n (X
HX) =Y :p—(  an, Pu(X) = X2+ X+ ..
n
n>0
and its dual

. pn(X)
H = -
=y 2,
n>0
We define the vertex operators by
= H(X)" . > HH (X))
H(X) _ H*(X) _
¢ - Z al ¢ - Z ol
n=0 n=0
Let ¥(2) = >, cp¥n2™ and ¥*(2) = 3, o, ¥52" be the fermion fields. Here, we

enumerate some important commutation relations:

(2.3) eH<X>w<z>eH<X><H . )wm

l—XiZ

i

(2.4) " Xy (z)eH"(X) = (H ;> (2),

p 1-— )(1'2_1
« 1 «
H(X) H™(Y) _ T | H () HX)
. P T
(2.6) (=rlg"(w)y(2)| =) = ,

1—zw

o1
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z TwT o DypyP
where 5—2— =3 " zPuwP.

§ 3. Flagged Skew Grothendieck polynomial

§3.1. Gi/9()

We can relate the commutation relations of the Vertex operators defined in the
previous section with the generating function of Gy [[£/al] () (Eq. (1.3)). For brevity, we
adopt the convention

X, Xq+1 - Xp (r>q)

H (p=q-1)

1 —1
Xp+1Xp+2 X (p<q—1)
for a sequence X1, Xo,... of (commutative) functions.

Let 2/l = (21, 29,...,2f) and
H(x[f/g]) - H(x[f]) _ H(x[gfl]).

If f > g, H(2!//9)) coincides with H (24, 441,...,2). From (2.3-2.5), we have

L1/l (- 14 Bx; \ e LLF /]
oH( 9)¢(z)€ H*(=B) — 1+52 - H el H*( B)¢(z)eH( D

where the rational function on the right hand side expands in the ring’

Claa, wa, . J(()IB]]-

Comparing this equation to (1.3), we obtain

(3.1) HE D () eH (=B) (Zg[f/g ) H (=) () H /)

neZ

A similar calculation leads

—1
(32) eH*(_ﬁ)w*(w)e zlF /9]y (ZG[f/g] > e_H($[f/g])’l/J*(w)eH*(_5)_
nez
INote that the two rings C((2))[[8]] and C[[8]]((z)) are different. In fact, C((2))[[8]] contains
2

while C[[8]]((z)) does not.



Lemma 3.1. Gﬁf/g]](x) admits the fermionic description

G (@) = (0l gD 1),

Proof. Let F, = (0]e#@" "y 1e=H (=A)| — 1), Since (0]e? - = (0| and

eH@D| _ 1y = | — 1), we have
. Ll /s _
3 B = (0 D) D) -1y
nez

— (Z G%/g](x)zm) <0‘67H*(*ﬂ)w(z)el—](m[f/g])| - 1>

mEZL
= (Z G/ (:v)z’”) (Ol (2)] - 1).
meZ
As (0[(2)] — 1) = (0]r(2)1*,]0) = 21, we conclude F, = G//9 (). O

§3.2. Fermionic description

We introduce a fermionic presentation of skew Flagged Grothendieck polynomial

in this section. For a sequence of noncommutative elements P, Ps,..., denote
I[ P=rPs P, I[ Pn=Pv- PP
i 1—-N wN—1

For any X,Y, we use the notation
Ad.x(Y) =eXve ¥,

Let f = (f1, f2,..., [r) and g = (g1,92,...,9,) be sequences of positive integers.
Let G/ iif/g) () be the polynomial defined by the determinantal formula (1.4). The
following is the main theorem of the paper:

Theorem 3.2.  Let A/ be a skew partition. Then, the flagged skew Grothendieck
polynomial G, 11f/q))(x) is expressed as
(3.3)

zl9 95—1/95-1] $[.f—;/.f1‘7 +1] _
(= H Yy, —i€ -HE " <H el C gy e ﬁ)) |—T).

Jir—1 i:l—r

Proof. By using the equations

erX H P, = H (6(r7i+1)XPe (r— z)X H Ade(r 1)x(€ P)

il—r i:l—r il—r

H Pjle ™™ = H (er=NX pie=(r=a+DXy — H Ad,o—px (Pje™ ™),

Jir—1 Jir—1 Jir—1
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the expectation value (3.3) is rewritten as

(3.4)

gr— lg;—1] * loj =1y _p*(—
(e DT Adymsonme o (M gy TR BT i)

Jir—1

) ( H Ad iy (eH*(ﬁ)eH(z[fi])w)\iieH*(ﬁ)eH(r[m))> | — 7).

il—r

Let

Ai(z) == Adeir—nn=-p) (eH*(’5)6}1(9”“”)1/1(2'1‘)671{*(*B)e’H(“’W))

Bj(wj) = Ader—s-nm=(-s (eH(I[gj71])1#*(wj)eH*(_B)e_H(””[gj71])e‘H*(‘B))

Then, by Wick’s theorem (Theorem 2.1), the expectation value (3.4) equals to the
coefficient of 2171 2A =Lt T =T of the determinant

i,J

det ((=rle” 7D B (w;) Ai ()| - 7))

From (3.1), A;(z;) satisfies

Ai(zi) = (Z Ggi](z)z?> “Ade-nnr -0 (Y(2))

neE”L

B (Z GLfi](w)z?> (L4 B2 ().

neE”L

We also have

1
Bj(w;) = (Z G%}j”(l’)w]‘n) (14 Bwy) T Ay o (7 (w5)

neEZ

= (Z Gf-fl](x)wj”) (14 Buy) I (wy)

neZ



by (3.2). Therefore, we have
— lgr—1]
(—rleHE ) Bj(w;)Ai(z:)] — 1)

Ggl] 1 ) ! gr—1 gr—1
- ZZG gj—l](z))w n ((1:_/;11:)1)Ti (—rleH ])¢*(wj)¢(zi)eH(w[ D=

(@)w;
[fi] )2 W r—j—1 gr—1 — Trz
G (@at (Lt o) L Ty U208 e ) - )

Z G.‘]J*l](gj)wjn (1_*_62;1)771 i;zl(l ’I‘k’tﬂ 1)
3, G @)zp (14 Buy)r 1 z“fu Tpz) % Wi

_ )
3, G @y (L4 B2 )= T (1 — apwy ) 1= 2w

- ii:l(l + Bzry) (14 Puw;)" . f +1(1 — ThZ) % Wi F(z;,w;)
P (L Bag) (L Bz )it g (1 —apw; ) 1 = zw; T

T

Wi

To take the coefficient of zz’\ﬂwy 777 on the both side, we use the complex line integral.

Note that the expansion of the rational function F'(z;,w,) in the field

Clary, w2, ]((w; )((z0)[[A]

coincides with the Laurent expansion on the domain {|3| < |z;]| < |wj_1\ < |zt

Then, we have

i~/ _H(gler 1 glor—1]
[w?a 9 <e H( ) B; (w;) Ay (z;)e )>

F(zi,w) - (w™ )

=i
2/ =1 Jigl<|zi)<|w-1 <z
1

2V =1 Jig1< |zl <t <25 |

Since F(z;,t~1) - t# =~ 1dt expands as

(3.5) F(zt™ b -t 797 1qe.

| o B
I 48m) (87 Iipa(—oz)
9T Bag) (L4 B2, )0 T N1 —agt) £

the contour integral (3.5) should equal to the residue of the differential form at ¢ = z;.

Finally, we obtain

= (Z G%fi/gj”u)z?) (L4 Bz )t

nez
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i—1

Since the coefficient of zf‘ is

S L_J s i/ 95
Z( s )5 GE\[ff/jjui-‘rj—i-s(m)?

s=0

we conclude the theorem. O

§3.3. Remarks

Ifgr =92 = =g, =1,Gxu15/47 (%) reduces to the (usual) flagged Grothendieck

polynomial G5/, s(). In this case, our main Theorem 3.2 reduces to

G (@) =(=rls T O L pr MRy HTER)

(D, e O (M Dy ) ),

By taking f1 = fo = -+ = f, = n, we recover the fermionic presentation of the

symmetric Grothendieck polynomial given in [3, §4.2]. This expression is not included

in the fermionic presentation of the multi-Schur function [4].

[

References

Alexander Alexandrov and Anton Zabrodin, Free fermions and tau-functions, Journal of
Geometry and Physics 67 (2013), 37-80.

Thomas Hudson and Tomoo Matsumura, Vezillary degeneracy loci classes in k-theory and
algebraic cobordism, European Journal of Combinatorics 70 (2018), 190-201.

Shinsuke Iwao, Free-fermions and skew stable Grothendieck polynomials, Journal of Alge-
braic Combinatorics 56 (2022), no. 2, 493-526.

, Frree fermions and schur expansions of multi-schur functions, Journal of Combi-
natorial Theory, Series A 198 (2023), 105767.

Allen Knutson, Ezra Miller, and Alexander Yong, Grébner geometry of vertex decomposi-
tions and of flagged tableauz, (2009).

Alain Lascoux and Marcel-Paul Schiitzenberger, Structure de Hopf de ’anneau de coho-
mologie et de l’anneau de Grothendieck d’une variétié de drapeauz, C. R. Acad. Sci. Paris
Sér. I Math. 295 (1982), no. 11, 629-633.

, Schubert polynomials and the littlewood-richardson rule, Letters in Mathematical
Physics 10 (1985), 111-124.

Tomoo Matsumura, Flagged grothendieck polynomials, Journal of Algebraic Combinatorics
49 (2019), no. 3, 209-228.

Tetsuji Miwa, Michio Jimbo, Etsuro Date, and Miles Reid, Solitons: Differential equa-
tions, symmetries and infinite dimensional algebras, Cambridge Tracts in Mathematics,
Cambridge University Press, 2012.

Michelle L. Wachs, Flagged schur functions, schubert polynomials, and symmetrizing oper-
ators, Journal of Combinatorial Theory, Series A 40 (1985), no. 2, 276-289.




