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Irreducible modules of the cyclotomic KLR algebras 

1 Introduction 

Louise Sutton 
Okinawa Institute of Science and Technology 

Okinawa, Japan 904-0495 

The representation theory of the cyclotomic quiver Hecke algebras or cyclotomic KLR algebras 
&l~ of type A is governed by Specht modules that are indexed by multipartitions, from which 
the irreducible &l~-modules arise as certain quotients. One of the main open problems is to 
determine the dimensions of the irreducible &l~-modules. A natural question is to ask when 
do Specht modules coincide with irreducible &l~-modules. A classification of irreducible Specht 
modules is known for the Iwahori-Hecke algebras of type A when q i= -1. In joint work 
with Matthew Fayers, we use this classification to study irreducible Specht modules for the 
Iwahori-Hecke algebras of type B. Our work also depends on joint work with Robert Muth, 
Thomas Nicewicz and Liron Speyer that studies core combinatorics, skew Specht modules, and 
analogous skew cyclotomic quiver Hecke algebras. 

2 Background 

We give an overview of KLR algebras, Specht modules and the associated combinatorics. 

2.1 Lie theoretic notation 

Throughout, lF will denote an arbitrary field of characteristic p ), 0. We denote the multiplicative 
order of q E JFX bye E { oo} U {2, 3, ... }, called the quantum characteristic. We set I:= '11.,/e'll.,, 
which we identify with the set {0, 1, ... , e - 1} if e is finite, otherwise we identify I with '11.,. We 

let r be the (type Ac,o or Ai~1) quiver with vertex set I and an arrow i--+ i - 1 for each i E /. 
We recall standard notation for the Kac-Moody algebra associated to the generalised Cartan 

matrix (aij)i,jEI following [15]. We have simple roots { ai I i EI}, fundamental dominant weights 
{Ai I i E I}, and the invariant symmetric bilinear form (, ) such that (ai,aj) = ai,j and 
(Ai, aj) = ,5ij, for all i, j E J. Let <f>+ be the set of positive roots, and let Q+ := EBiEI '11.,)00:i be 
the positive cone of the root lattice. If a = I:iEI c;cxi E Q+, then we define the height of ex to 
be ht(a) = I:iEI c;. 

An e-multicharge is an ordered pair 1,, = (1,,1 , ... , 1,,£) E J£_ We define its associated dominant 
weight A of level £ to be A = AK := AK, + • • • + A1<r 

2.2 The symmetric group and Hecke algebras 

Let 6n be the symmetric group on n letters. Associated to each complex reflection group 
(Z/£'11.,) 16n of type G(£,1,n) is an associated Ariki-Koike algebra, or alternatively called a 
cyclotomic Hecke algebra. For our purposes, we are interested in the Hecke algebras associated 
to the symmetric group 6n and to the signed symmetric group (Z/£'11.,) 16n, namely the Iwahori­
Hecke algebras of type A and B, respectively. 
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Definition 2.1. Let q E JFX. The Hecke algebra of the symmetric group or Iwahori-Hecke 
algebra of type A, denoted ~,q(6n), is the unital, associative lF-algebra with generating set 
{T1, ... , Tn-1} subject to the relations 

(Ti - q)(Ti + 1) = 0 

TiTj = TjTi 

TiTi+lTi = Ti+lTiTi+l 

for 1,:;; i < n; 

for Ii - jl > 1; 

for 1 ,:;; i ,:;; n - 2. 

Note that we recover the group algebra of the symmetric group when q = I. 

Definition 2.2. Let q, Qi, Q2 E JFX. Then the Hecke algebra of the signed symmetric group or 
the Iwahori-Hecke algebra of type B, denoted ~,q,Q1 ,Q2 ((Z/2Z) 16n), is the unital associative 
lF-algebra with generating set {To, T1, ... , Tn-d subject to the relations 

(To - Q1)(To - Q2) = 0 

ToT1ToT1 = T1ToT1To 

(Ti - q)(T; + 1) = 0 

TiTj = TjT; 

TiTi+lTi = T;+1T;Ti+1 

2.3 Young diagrams and tableaux 

for 1,:;; i < n; 

for Ii - jl > 1; 

for 1 ,:;; i ,:;; n - 2. 

A composition A of n is a sequence of non-negative integers A = (A1, A2, ... ) such that IAI := 

L~i Ai = n. We say that a partition of n is a sequence A= (A1, A2, ... ) of non-negative integers 
such that Ai ? Ai+1 for all i ? 1. We write 0 for the empty partition (0, 0, ... ). We denote by 
!Yn the set of all partitions of n, and let /Y := LJ !Yn. 

An £-multipartition A of n is an £-tuple A = (A(l), ... , A(£)) of partitions such that IAI = 
Lf = 1 I A (i) I = n. We refer to A ( i) as the i th component of A. We abuse notation and also write 
0 for the empty £-multipartition (0, ... , 0). We denote by /Y;. the set of all £-multipartitions 
of n, and let g,£ := U /Y;.. 

For A,µ E /Y;., we say that A dominates µ, and write A ~ µ, if for all 1 ,:;; m ,:;; £ and k ? l, 

m-1 k m-1 k 

L IA(i)I + LAJm)? L lµ(i)I + LµJm)_ 
i=l j=l i=l j=l 

The Young diagram of an £-multipartition A= (A(l), ... , A(£)) E g,£ is defined to be 

We refer to elements of [A] as nodes of A. We say that a node A E [A] is removable if [A]\ {A} is 
a Young diagram of an £-multipartition, while a node Ar/. [A] is addable if [A] U {A} is a Young 
diagram of an £-multipartition. 

If A= (A1, A2, ... ) E /Y is a partition, the conjugate partition, denoted X = (A~, A;, ... ), is 
defined by 

A; := I {j ? 1 I Aj ? i} I-

For A E g,£, we define the conjugate £-multipartition, also denoted A1, to be A1 := (A(£)', ... , A(l)'). 
Fix an e-multicharge "' = ( "'1, ... , "'c) E JR. The e-residue of a node A = ( i, j, m) E N x N x 

{1, ... , £} is defined to be 
res A:= "'m + j - i (mode). 
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We call a node of residue r an r-node. We define the residue content of>. E &f to be 

cont(>.) := L O'.resA E Q+. 
AE[>-] 

We write 
&; := {>. E &f I cont(>.)= o:}, o: E Q+. 

Let >. E &;. Then a >.-tableau is a bijection T : [>.] -+ {1, ... , n }. We say that T is standard 
if its entries increase down each column (i.e. column-strict) and along each row (i.e. row-strict), 
within each component. We denote the set of all standard >.-tableaux by Std(>.). 

For >. E &;, let T be a standard >.-tableau. Now define T(a to be the µ-tableau obtained 
from T by removing all of the nodes occupied with entries greater than a, where a E {1, ... , n} 
andµ E &!. It follows that T(a has the shape ofµ E &!, and we write sh(T(a) = µ. 

There is a natural Sn-action on Std(>.). We refer the reader to [16] for further details. 

2.4 KLR algebras and their cyclotomic quotients 

Suppose o: E Q+ has height n, and set 

Definition 2.3. We define the Khovanov-Lauda-Rouquier (KLR) algebra or quiver Hecke al­
gebra &la to be the unital associative Jii'-algebra with generating set 

and relations 

e(i)e(j) = Ji,je(i); 

L e(i) = 1; 
iEJ"' 

Yre(i) = e(i)yr; 

1/Jre(i) = e(sri)1/Jr; 

YrYs = YsYr; 

1PrYs = Ys1Pr 

1Pr1!1s = 1!1s1Pr 

Yr1fre(i) = (1/JrYr+l - J;r,ir+1)e(i); 

Yr+l 1/Jre(i) = ( 1PrYr + Jir,ir+l )e(i); 

0 

e(i) 

1/J;e(i) = (Yr+l - Yr )e(i) 

(Yr - Yr+1)e(i) 

ifs =/= r, r + 1; 

if Ir - sl > 1; 

if ir = ir+l, 

if ir+l =/= ir, ir ± 1, 

if ir = ir+l + 1, 

if ir = ir+l - 1, 

if ir+2 = ir = ir+l - 1, 

if ir+2 = ir = ir+l + 1 = ir+l - 1, 

otherwise; 
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for all admissible r, s, i,j. 
The KLR algebra or quiver Hecke algebra !?ln is defined to be the direct sum EBa !?la, where 

the sum is taken over all a E Q+ of height n. 

Definition 2.4. We define the cyclotomic KLR algebra or cyclotomic quiver Hecke algebra fl~ 
to be the quotient of !?la by the relation: 

for all i E Ia. 

The cyclotomic KLR algebra or cyclotomic quiver Hecke algebra fl~ is defined to be the 
direct sum EB a fl~, where the sum is taken over all a E Q+ of height n. 

Lemma 2.5 [3 , Corollary 1]. There is a unique Z-grading on fl~ such that, for all admissible 
r and i, 

deg(e(i)) = 0, deg(yr) = 2, deg1Pr(e(i)) = -a;,,rr+i· 

These 71.,-graded algebras are connected to the Hecke algebras of complex reflection groups 
via Brundan and Kleshchev's Isomorphism Theorem. 

Theorem 2.6 [2 , Main Theorem]. If e = p or p f e, then fl~ of type Ax, or A~~1 is 
isomorphic to a cyclotomic Hecke algebra associated to a complex reflection group (Z/£71.,) I 6n 
of type G(£,l,n). 

In particular, fl~ is isomorphic to: 

◊ an Iwahori-Hecke algebra ~,q(6n) of type A when A= A" for some KE I; 

◊ an lwahori-Hecke algebra ~,q,Q,,Q2 ((Z/271.,) 16n) of type B when A= A",+ A"2 for some 
K1, K2 E I such that Q1 = q"' and Q2 = q"2 • 

2.5 Affine induction and restriction 

Given a, (3 E Q+, we set 

We denote by M l8J N the outer tensor product of an !?la-module M and an fl,a-module N. 
There is an injective algebra homomorphism !?la,(3 ~ fla+f3, mapping e(i) 0 e(j) to e(ij), where 
ij denotes the concatenation of the two sequences. The image of the identity element of !?la,/3 
under this map is 

ea,(3 := L e(ij). 
iEJ", jEJ/3 

Let Inda,/3 and Resa,/3 denote the induction and restriction functors, respectively, between 
the module categories 

lnda,(3 := fla+f3ea,(30~a,f3? : fla,(3-mod--+ fla+/3-mod, 

Resa,(3 := ea,(3fla+f30~a+f3? : fla+/3-mod --+ fla,(3-mod. 

Both Inda,(3 and Resa,(3 are exact functors, and send finite dimensional modules to finite dimen­
sional modules. Moreover, Inda,/3 is left adjoint to Resa,/3· 
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2.6 Specht modules and irreducible modules 

The representation theory of cyclotomic KLR algebras &?!t is governed by a special family of 
modules called Specht modules. There is an explicit presentation of Specht modules - we refer the 
reader to [16, Definition 7.11] for further details. For each>. E 9"';., we denote the corresponding 
Specht module by S(>.). Specht modules are Z-graded, inherited from the non-trivial Z-grading 
on the cyclotomic KLR algebras. 

Theorem 2.7. [4 , Corollary 4.6], [16, Proposition 7.14 and Corollary 7.20] For>. E 9"';',, 
there is a set of vectors { vr I TE Std(>.)} that forms a homogeneous F-basis of S(>.). 

For each>. E 9"';., the head of the Specht module S(>.) is an irreducible &?!~-module, denoted 
D (µ) for some µ E 9"';.. 

Theorem 2.8 [3, Theorem 5.10]. The modules {D(µ) I µ E 9"';., µ is regular} give a 
complete set of graded irreducible &?!~-modules up to isomorphism and grading shift. Moreover, 
each D(µ) is self-dual as a graded module. 

The indexing set of the irreducible &?!t-modules is given by regular multipartitions. In gen­
eral, there is a recursive description of regular multipartitions - see [1] for a description of the 
combinatorics of regular multipartitions. However, for irreducible modules D(µ) for the lwahori­
Hecke algebra of type A, which are indexed by partitions, there is an explicit description of the 
indexing set given by e-regular partitions. 

Definition 2.9. Let >. E 9"'. 

◊ We say that >. is e-singular if Ai+l = Ai+2 = · · · = Ai+e > 0 for some i ), 1. Otherwise we 
say that >. is e-regular. 

◊ We say that >. is e-restricted if and only if its conjugate >.' is e-regular. 

Definition 2.10. Let>. E 9"'a.. We say that>. is an e-core if and only if>. is the unique partition 
of residue content a. (Note that e-cores are both e-regular and e-restricted.) 

Specht modules arise as the cell modules of cyclotomic KLR algebras - see [12] for details. 

Theorem 2.11 [12, Theorem 5.8 and Corollary 5.10]. The cyclotomic KLR algebra &?!t is 
a graded cellular algebra, and its graded cell modules are the graded Specht modules as introduced 

in [4/. 

3 Skew Specht modules and skew cyclotomic KLR algebras 

We give a brief overview of skew Specht modules and the associated combinatorics of skew 
shapes, together with their connection with restrictions of Specht modules. Furthermore, we 
introduce joint work with Robert Muth, Thomas Nicewicz and Liron Speyer on skew cyclotomic 
quiver Hecke algebras. 

3.1 Skew diagrams and tableaux 

Let >., µ E g,£, with [µ] <;;; [>.]. Then the skew diagram of >. by µ is >./ µ := >. \µ. Note that 
>./ 0 = >. for >. E 9"';., so skew diagrams generalise Young diagrams. 

Example. Let>.= (52, 4, 22), µ = (42, 12). Then[µ]=~ C [>.] = p and[>./µ]= r· 



111

For a fixedµ E &;,, we denote by Y;_,d the set of all skew diagrams >../µwith I>../ µI = d. For 

">,./ µ E Y;_,d, a>../ µ-tableau is a bijection T: [>../ µ] ➔ {1, ... , d}. We denote by Std(">,./µ) the set 
of all standard ">,./ µ-tableaux, that is, all >../ µ-tableaux that are both column- and row-strict. 

3.2 Skew Specht modules 

Over the affine KLR algebra !!ltn, Muth [19] constructed Specht modules for skew shapes -
see [19] §4 for an explicit presentation of these Specht modules. For each skew shape >../ µ, we 
denote the associated skew Specht module by S(>..jµ). There is an analogous standard basis 
theorem for skew Specht modules. 

Theorem 3.1 (Proposition 4.7, [19]). For">,./µ E Y;_,d, there is a set of vectors {vT IT E Std(>../µ)} 
that forms a homogeneous lF -basis of S ( ">,./ µ). 

Skew Specht modules appear in the filtrations of restrictions of Specht modules. 

Theorem 3.2 (Theorem 5.13, [19]). Let A E &;+/3 and 

and assume that µi I> µj implies i < j. Write 

V; := lF-span{ VT ES(">,.) IT E Std(">,.), sh(T,;;a) = µj for some j < i} 

for all i. Then 

0 = Vo ~ Vi ~ · · · ~ Vk = Resa,/3 S(">,.) 

is a graded filtration of Resa,/3 S(">,.) by !!lta,/3-submodules V;, with subquotients 

as !!lta,/3-modules. 

We now consider a special case of this theorem in level £ = 1. Let A E -9 a+/3 · Assume that 
µ E &a is a core partition, in which caseµ is the unique partition of content a. Hence 

Res,,,13 S(">,.) ~ S(µ) r8J S(">,./µ). 

3.3 Skew cyclotomic KLR algebras 

We saw before that cyclotomic KLR algebras are cellular, whose cell modules are Specht modules. 
It is therefore a natural question to ask if we can construct an analogous cellular algebra whose 
cell modules are skew Specht modules. 

Let a, (3 E Q+. We now fix£= 1, a fundamental dominant weight A, and a core partition 
µ E &a. (Note that the following generalises to arbitrary levels, the details of which we have 
omitted here. The combinatorics of cores is more complicated in higher levels, and the results 
in level£= 1 are sufficient for our study of irreducible Specht modules.) The following is joint 
work with Robert Muth, Thomas Nicewicz and Liron Speyer. 

We denote by r.p the composition of algebra homomorphisms 

The kernel ker(r.p) of this composition of maps is a two-sided ideal of !!lt13. 
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Definition 3.3. The a-skew cyclotomic KLR algebra, or a-skew cyclotomic quiver Hecke alge­
bra, is defined to be 

&l!?" := &l!13/ker(rp). 

We obtain the analogous result to Theorem 2.11. 

Theorem 3.4 (Muth, Nicewicz, Speyer, S., 2023+ ). The a-skew cyclotomic KLR algebra &l!;/a 
is a graded cellular algebra, and its graded cell modules are skew Specht modules. 

Moreover, there is an exact functor of '£,-graded categories &l!~+/3-mod ➔ &l!;/a -mod that 
sends cell modules to cell modules. 

This result connects irreducible Specht modules and irreducible skew Specht modules in the 
following way. 

Corollary 3.5 (Muth, Nicewicz, Speyer, S., 2023+). Suppose thatµ E !Yla and>. E !Yla+/3 such 
thatµ is a core partition. If S(>.) is an irreducible &l!a+13-module, then S(>./µ) is an irreducible 
&l!13-module. 

The &l!13-module S(>./ µ) will factor through some cyclotomic KLR algebra quotient &l!f 

Therefore, it is a natural question to ask for which partition v E !YI§ is the irreducible &l!:­
module D(v), up to inflation, isomorphic to S(>.jµ)? We tackle this problem in level£= 2 for 
irreducible modules D(v) that are precisely, up to a grading shift, irreducible Specht modules. 

4 Irreducible Specht modules 

In this section, we review known results on (ir)reducible Specht modules for the Iwahori-Hecke 
algebras of types A and B. Moreover, we introduce joint work with Matthew Fayers on work 
towards a classification of irreducible Specht modules for the Iwahori-Hecke algebras of type B. 

4.1 Irreducible Specht modules for the Iwahori-Hecke algebras of type A 

There is an almost complete classification of irreducible Specht modules for the Iwahori-Hecke 
algebra of type A: 

◊ when q =f. -1, the classification is complete [13, 17, 18, 5, 6, 11]; 

◊ when q = -1 the classification is complete for the symmetric group [14], and almost 
complete for the Iwahori-Hecke algebra of type A [9, 7, 10]. 

For h EN, let vp(h) denote the usual p--adic valuation of h. That is, vp(h) denotes the largest 
power of p dividing h if pis finite, while v00 (h) = 0 for all h. 

Definition 4.1. The (e,p)-adic valuation of his defined to be 

v (h) := {vp(~) + 1 if elh; 
e,p 0 otherwise. 

Definition 4.2. Let >. be a partition. The hook length of a node (a, b) E [>.], denoted h~b' is 
defined to be 

h~b := Aa - b + >.~ - a + l. 
The classification of irreducible Specht modules S(>.) is almost complete thanks to a multi­

tude of papers [13, 14, 17, 18, 5, 6, 11]. This (almost) classification depends on the (e,p)-adic 
valuations of hooks lengths as follows. 
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Theorem 4.3. Suppose that e E {3, 4, ... } and char lF is arbitrary or e = char lF = 2. Then 
S(>.) is irreducible if and only if there exist integers k), 0 and£), 0 with (k + 1,£ + 1) (/. [>.], 
satisfying 

i) Ve,p(h~b) = Ve,p(h~c) whenever (a, b), (a, c) E [>.] and a> k; 

ii) Ve,p(h~c) = Ve,p(htc) whenever (a, c), (b, c) E [>.] and c > £; 

iii) Ve,p(h~c) = 0 for l ,,,; a ,,,; k, 1 ,,,; b ,,,; £. 

Definition 4.4. We define a JM-partition (named after James and Mathas) to be a partition 
>. that indexes an irreducible Specht module S(>.), satisfying the irreducibility condition in the 
above theorem. 

Remarks. When e = 2 and charlF #- 2, (ir)reducible Specht modules for the Hecke algebra of 
the symmetric group have been studied in several papers [9, 7, 10]. 

There are cyclotomic i-restriction functors, denoted e;, and cyclotomic divided powers, de­
noted et) that act on &t'~-modules, in particular on Specht modules. These functors were 
introduced in [3]. 

Definition 4.5. We say that (>., µ) E ~; is i-restrictable if there exists a residue i E 71.,/e"ll., for 
which (>., 11,) has removable i-nodes but no addable i-nodes. If there exists no such i, we call 
( >., µ) unrestrictable. 

By the exactness of these functors, we have the following crucial result. 

Lemma 4.6. Suppose that (>., µ) E ~; is i-restrictable and has r removable i-nodes. Further 

suppose e~r) S(>., µ) ~ S(v, 77) for some (v, 77) E ~;. Then S(>., µ) is irreducible if and only if 
S(v,77) is. 

To classify irreducible Specht modules for &t'~ it thus suffices to classify unrestrictable irre­
ducible Specht modules. 

4.2 Irreducible Specht modules for the lwahori-Hecke algebras of type B 

Fayers began the study of irreducible Specht modules for the lwahori-Hecke algebras of type B 
in [8]. Throughout, we will identify the lwahori-Hecke algebras of type B with the corresponding 
cyclotomic KLR algebra gpA_ When e = oo, Fayers gave a complete classification of irreducible 
Specht modules in this case [8l[Corollary 3.6], using one-runner abacus displays for partitions. 
We refer the interested reader to [8] for details. 

Fayers also began the study of irreducible Specht modules for &t'~ in finite quantum charac­
teristic e E {2, 3, ... }. 

Proposition 4.7 (Proposition 2.4, [8]). Let >. E ~n- S(>., 0) or 8(0, >.) zs an irreducible 
&t'~-module if and only if S(>.) is an irreducible Yt%,q(6n)-module. 

When e = 2, Fayers reduced the classification of irreducible Specht modules for &t'~ to those 
of the Hecke algebra of the symmetric group. 

Theorem 4.8 (Theorem 4.1, [8]). Let (>., µ) E ~;, e = 2 and suppose that S(>., µ) is unre­
strictable. Then S(>., µ) is an irreducible &t'~-module if and only if(>.,µ) = (v, 0) or (0, v) and 
S(v) is an irreducible Yt%,-1(6n)-module for some partition v E ~n-
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Thus, when e = 2, there is no unrestrictable Specht module S(>., µ) with>.=/= 0 =/=µthat is 
irreducible. We thus suppose from now on that e E {3, 4, ... }. 

The author previously studied the family of Specht modules indexed by hook bipartitions for 
the lwahori-Hecke algebra with e E {3, 4, ... }. A hook bipartition of n is a bipartition of the 
form ((n-m), (lm)) for some m E {0, ... , n}. In [22 , 23], the complete graded module structure 
of Specht modules indexed by hook bipartitions was determined. Of course, the one-dimensional 
Specht modules S((n), 0) and 8(0, (ln)) are irreducible. Besides these one-dimensional Specht 
modules indexed by hook bipartitions, one can obtain from their module structure a classification 
of irreducible Specht modules for hook bipartitions. 

Theorem 4.9 (Theorems 5.1-5.4, [23]). Let lF be arbitrary, e E {3,4, ... } and K = (K1,K2). 

Suppose that n - m), 1 and m), 1. Then the Specht module S((n - m), (1 m)) is an irreducible 
~~-module if and only if n =/= K2 - K1 + 1 (mode) and K2 =/= K1 - 1 (mode). 

For arbitrary e, Speyer and the author [21] studied the decomposability of Specht modules 
indexed by bihooks, pairs of hook partitions, for the lwahori-Hecke algebra of type B. Moreover, 
Muth, Speyer and the author [20] classified semisimple Specht modules indexed by bihooks, 
giving an explicit decomposition of these modules into irreducible summands. One can observe 
from the decompositions of these semisimple Specht modules, that the presentations of the 
irreducible summands coincide with the presentations of certain skew Specht modules. In fact, 
the irreducible summands are isomorphic, up to inflation, to the corresponding skew Specht 
modules. This observation inspired the study of irreducible Specht modules in higher levels. 

In current joint work with Fayers, the author is working towards a classification of irreducible 
Specht modules for the lwahori-Hecke algebra of type B with e E {3, 4, ... } and over a field 
of arbitrary characteristic. Observe that a hook bipartition, many of which index irreducible 
Specht modules, is a pair of partitions whose first component is an e-regular partition and 
whose second component is an e-restricted partition. We generalise pairs of partitions with this 
property that index irreducible Specht modules. 

Proposition 4.10 (Fayers-S. 2023+ ). Let>. andµ be JM-partitions. Suppose S(>., µ) is irre­
ducible. Then 

◊ at least one of >. and µ is e-regular, 

◊ and at least one of >. and µ is e-restricted. 

Recall that JM-partitions index irreducible Specht modules for the Iwahori-Hecke algebra 
of type A with e E {3, 4, ... }. JM-partitions satisfy an "e-restricted condition" given in The­
orem 4.3(i) and an "e-regular condition" given in Theorem 4.3(ii). Notice that the previous 
result mimics these conditions, allowing us to understand more precisely which skew diagrams 
correspond to bipartitions (>., µ) that index irreducible Specht modules. 

Definition 4.11. We say that a bipartition (>., µ) is skewable if there are partitions T/ and v 
such that T/ is a JM-partition, vis a core, T/v(+l :( v1 , and either 

1. ).. = cv1 T/, µ = Rv;T/ and V1 + vi + eZ = K1 - K2, or 

2. >. = Rv;T/, µ = cviT/ and V1 +vi+ eZ = K2 - K1, 

recalling R and C are row- and column-removal operators on partitions. 

Fayers and the author conjecture that the only irreducible Specht modules for the lwahori­
Hecke algebra of type B are, up to taking cyclotomic divided powers, precisely those that are 
isomorphic, up to inflation, to irreducible skew Specht modules as determined in Corollary 3.5. 

Conjecture 4.12 (Fayers-S.). Suppose that (>., µ) E £7);_ is unrestrictable. Then S(>., µ) is 
irreducible if and only if(>.,µ) is skewable. 
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