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On the module category of the triplet
W-algebra W,, ,
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We study the structure of the category of modules over the triplet W-
algebra W, ,, defined by Feigin, Gainutdinov, Semikhatov and Tipunin [1].
Since W, ,_ satisfies the Cs-cofinite condition, by Huang, Lepowsky and
Zhang [2], every simple module has the projective cover and the module cat-
egories have the structure of a braided tensor category. We determine the
structure of the projective covers of all simple W, ,, -modules, and deter-
mine certain non-semisimple fusion rules conjectured by Rasmussen [3] and
Gaberdiel, Runkel and Wood [4]. This paper is based on the thesis [5].

1 Main results on the triplet W-algebra WV, ,_

Fix two coprime integers p,,p_ such that p_ > p, > 2 and let

be a minimal central charge of Virasoro algebra. Let us briefly rewiew the
definitions of the triplet W-algebra W,  , and the simple W, , -modules
in accordance with [6, 7, 8].

For a € C, let F,, be the bosonic Fock module generated from the bosonic
field

a—n

Y(|()4> ,Z) — 8adzaao€a2n21 Tzne_a2n21 an

—n

7

where

[y G| = MOy 0id, [a, a,] = d,01d.



Let

2p_ 2

T:==(a’, — (a4 +a_)as)[0), a;:= L, a_ = — | 2x

P+ p-
be a confomal vector. By T', each Fock module F,, becomes a Virasoro module
whose central charge ¢, , .

For r,s,n € Z we introduce the following symbols
1—7 1—s5 V2pip_
n.

an&n:::_zf_a+7+ 9 o + 9

DO | =

Let F gy = I,

Qo sin*

As detailed in [9], we can define the complex screening operators
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Q[l] = % dZ/[ | Q+(2)Q4(2y1) - Q4 (2yr—1)dyy - - - dy, 1 € Home (F) g, For i),
2=0 A,,«,l

Q= ;{ d /[ Q(IQ(en) Qe gy € Home(Fr, B
z=0 A5,1

where Q4+ (2) = Y(|ax), 2) and [A,] is a regularized cycle constructed from
the simplex A, = {(y1,...,4n) ER* |1 >y, > -y, >0 }. Let Q[J:] and
Q[,S] be the zero modes of Q[J:] (2) and Q[f](z) These zero modes commute
with every Virasoro mode of Y (T, z) and are called screening operators.

Definition 1.1.
The lattice vertex operator algebra V,, , | is the tuple

Vi, 10), T, Y),
where underlying vector space of Vi, p_1 1s given by

Vi = EBFl,mn = @ F opps

nez neZ
and Y (|or1:20) 5 2) = Vay 10, (2) forn € Z.

It is a known fact that simple V), ;,_j-modules are given by the following
2p,p_ direct sum of Fock modules

+ -
)@5 _’GEB'FkSQn’ laﬁ _'G}B-F%sﬂn+la
neZ neZ

where 1 <r <p,, 1<s<p_.
Note that the two screening operators () and ) act on fo 1. We define
the following vector subspace of Vlf 1t

Kl,l = kerQ+ N kerQ, C Vl—i:l
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Definition 1.2 ([1]). The triplet W-algebra
Wer,p, = (Kl,la ‘0> 7T7 Y)

is a sub vertex operator algebra of Vi, ,, |, where the vacuum vector, confor-
mal vector and vertex operator map are those of Vi, , 1.

Let

\A Vo
=py—T, s'=p_—

Foreach 1 <r <p,, 1 <s<p_, let er; be the following vector subspace
of V£

1L.For1<r<p, —1, 1<s<p_—1,
XT::: [1:]( rvs) Q[s ( rs\/) rs_QJr ( rvs)ﬂQ ( rsV)

2. For1<r<p, -1, s=p_,
_Q+ ( rV.p_ ) X'r:pf (Vrv,p )

3. Forr=p,, 1<s<p_—1,
p+s Q[S ( p+sv> p+s Q[S (V+Sv)

4. r=py, s=p_,
Xptp - V;;,p ) Yo = Vorp:

We define the interior Kac table 7 as the following quotient set
T={(rs))1<r<pp,1<s<p_}/~

where (r,s) ~ (r/,s') if and only if v = p, —r,s’ = p_ — s. Note that
#T = wf’:l). For (r,s) € T, let L(h,s) be the Virasoro minimal
simple module defined by

L(hy.s) = Kerg, , QY /tmp, Q1.
Theorem 1.3 ([6, 7, 8]). The w + 2p,p_ vector spaces

L(h,s), (r,s) €T, X+

7,87

I<r<py 1<s<p_

become simple W, ,_-modules and gie all simple W, ,_-modules.
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We use the following symbols for the projective covers of the simple mod-
ules.
Definition 1.4. Let 1 <r<p,, 1 <s<p_.
1. Let Pf, and P, be the projective covers of the simple modules X7, and
X, ,, respectively.
2. Let P(h,s) be the projective cover of the minimal simple module L(h,. ).
3. Let Q(Xffpf)rvp_ be the projective covers of the simple modules Xﬁpf
and X, respectively.

rp—7

4. Let Q(X+ )p..sv be the projective covers of the simple modules Xf

P+,5 . P+,S
and X, ., respectively.

Theorem 1.5 ([5]). The projective modules P, Q(X5, )rv - and Q(X )y, v
have the following socle series:

1. For Pt we have

S =A%,

Sy/S =X WO X v ®Llho) ©XS, S XL,
Si/Se=X XL yOXL L OXL L OX,, 0 XL,
Sy/S3 =X, @ XL, L(hes) ©X v X v,
Pr/Sa= X1,

where S; = Soc;.

S

s

2. For P,
S1= X5,
Sof/S1 =X XL, 0 X e XY,
S3/8y = X5 ,OXL DX v © Lhys) ® L(hys) DX v © &
Si/Ss=XLexLoxl  oXxl .,

,8 \8 r,s
,])'r\/,s/‘s’4c = er,s'

we have

VDXL,

3. Let (a,b,c,d, €) be an element in

{([’napfv 7'\/7 +)7 (T’V’p77 7.5 p*? _)a (era 57p+7 Sv)v (p+7 5v7p+7 ‘5)} Then; fOT’
the socle series of Q(X;,)c.a, we have

Soc; = X,
Socy/Soc) = X ;& X,
QA )e.a/Socs = Xy
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Definition 1.6. By taking quotients of P,t,, P ., P, and P, we obtain
eight indecomposable modules Q(Xy ). where
{(67 a? b? C? d)} :{(+7 T? 87 Tv? '8)7 (+7 T’ !97 T? Sv)? (—"_7 Tv? Sv? Tv? ’S>7 (+7 rv’ Sv7 /r7 (SV)J

(—7 Tvv S, T, 5); (_7 ,',,\/’ S, 7,\/7 Sv)a <_7 T, va r, S)v <_7 r, Sv, Tvv Sv)}?
and each socle series is given by:

1. For Q(X;fb)c,d,

_ oyt
Socy = X,

Socy/Socy = X, © L(hap) © X,
Q(Xafb)cyd/SOCQ = chb.

2. For Q(X(;,b)c,d’

Soc; = X,
Socy/Soc; = X, B XL,

Q(X;b)(;,d/SOCQ =X,

Using the structure of the center of the Zhu algebra A(W,, ,, ) [6, 7, 8],
we can determine the structure of the projective modules P(h,.s).

Theorem 1.7 ([5]). Each projective module P(h,s) has the following length
five socle series:

(P(hrs)

(P(hr,s) (P(hr,s)) = XL
Socs(P(hys))/Soca(P(hys)) = 22X, @ L(h,s) & 2X v,

(P(hrs) (P(hes)) = XL & XL o,
P(hy,s)/Soca(P(hrs)) = L(hys).

- X+ S5 XTJ\F/VS\/,

In the following, we introduce the structure of certain fusion rules of
Wy, »_- Let us define the following indecomposable modules.

Definition 1.8.
1. For1<r<p,—1,1<s<p —1,

Krs =W p_-|ous)



2. For1<r<p,, 1<s<p_,
Krp = XT Kp, s = X*

rp_) P+,8°

Let C,, ,_ be the category of W, ,_-modules and let (Cprp_ X,y 1) be
the braided tensor category on C,, ,,_, where Ky is the unit object.

Similar to the arguments in [10, 11, 12], we can show the following theo-
rem.

Theorem 1.9. The indecomposable modules KCy o and Ky 1 are rigid and self-
dual.

Using the self-duality of Ky 2 and K5 ;, we obtain the following theorems.

Theorem 1.10 ([5]). All indecomposable modules of types K., Q(X)ee
and Px, are rigid and self-dual in (Cy, ,_, X, Ky 7).
Theorem 1.11 ([5]). 1. For1<r<p,, 1<s<p_,

il X ]Cr,s = IC:;S,

where I is the contragredient of I, .
2. For any simple modules X%, and Xis,, we have

st X st, = (K s X o) KKT ;.

Let us introduce the free abelian group P°(C,, , ) of rank 8p,p_ —4p, —
dp_ +2

P+ P- p+—1lp_—1
PG ) = DD DZIXIr o D D DZP:r

r=1 s=1 e==+ r=1 s=1 e==%
p+—1lp-—1 p+—1lp-—1

7] @ @ @Z[Q(XZS)TV,S]P S¥) @ @ @Z[Q(‘XZS)T,SV}P
r=1 s=1 e=*+ r=1 s=1 e=*+
p+—1 p——1

e D DX, )y lr e D DZAX,, Dy, ol
r=1 e=+ s=1 e=+

For any M € C,, ,_ which have minimal simple modules in the Socle, let
7o(M) be the quotient module of M quotiented by all the minimal simple
modules in the Socle. We define a 7 € Hom(C,, , ) such that for any M in

Cp+,p_

T(M) = {WO(M) M contains minimal simple modules in Soc(M)

M otherwise
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Theorem 1.12 ([5]). P%(C,, ,_) has the structure of a commutative ring
where the product as a ring is given by

[o]p - [o]p = [T(e K o)]p.
The three operators
X = w(Xfo X —), Y = W(‘X;,l X —), 7 =m(X; X-)

define Z-linear endomorphism of P°(C,, , ). Thus P°(C,, , ) is a module
over Z[X,Y, Z]. We define the following Z[X,Y, Z]-module map

V:ZIX,Y, Z] = P°(Cp, ),

Theorem 1.13 ([5]). The Z|X,Y, Z]-module map 1) is surjective, and, through
1, we have the isomorphism of rings

Z[X,Y] 0 ZIX,Y)Z

0 ~
P o) ™ T Ty 2 (X)) = 220y, 1(X), Vs (V) — 2205, (7))

where U, (A) is the Chebyshev polynomials defined recursively

Up(A) = 1, U (A) = A,
Ui (A) = AU, (A) — U,_,(A).

Remark 1.14. By using this theorem, we can obtain the non-semisimple
fusion rules conjectured by [3] and [4].
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