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1. INTRODUCTION 

In this note, we shall count the rational points on hypersurfaces in戸 (Q)defined 
over Q. In other words, we are interested in the rational (or integral) solutions of the 

homogeneous equation 

(1) V: fa(x)：=〉知M(X)= 0, 
ME.4td,n 

where 

• This equation is in n + l variables X = (X。,．．．，Xn)and of degreed. 

• The set.4t,五 isthe set of all monomials 

必，n:= {X釈・・・XかIio,...'in E Z::>:o, io +... +in = d} 

of degree din the (n + 1)-variables X = (X。,．．.，X砂
• The coefficient a= (aM)ME.4td,n is given by integers, i.e. a E z.4td,n. 

By using the Veronese embedding 

叫：町＋1→股.,#d,n;X→(M(x))ME必，れ'

we can write the equation (1) compactly as 

fa(x) =〈a,vd,n(X)〉＝ 0,

where <• ,•> is the usual Euclidean inner product. 
We write x for the image of the standard projection Kn+l→戸(K)of x E Kn+l_ 

In this note, unless otherwise specified, for a given rational point of x E戸 (Q),we 

associate the primitive vector x E Z闘!which gives the homogeneous coordinate of 

元 i.e.x = [x0 :... : x』.Here,the primitive vectors are the integral vectors with 

coordinates having the greatest common divisor 1: 

硲~im := {(x1,...,xN) Eが |gcd(x1,...,邸） ＝1}. 

Note that the usual projection Z仇闊→野(Q)is then two-by-one correspondence. 
To count the rational points, we use the naive height given by 

H(文):=||xii,

where 11 • 11 is the usual Euclidean norm on即＋1.



39

We associate the primitive integral vector av to the hypersurface (1) which is 
two-by-one correspondence with the ambiguity of the sign of av. Let 

叩，n:= {V : hypersurface of日 (Q)of degree d defined over Q}. 

For VE  V d,n, our main counting function is 

Nv(B)：=＃｛文 EV(Q) I H(文)::;B} 

＝ら＃｛xEZ悶ぷ Illxll ::; B and〈a,Vd,n(x)〉＝ O},

which counts the rational points on V of height ::; B. 

2. THE MANIN-PEYRE CONJECTURE FOR Nv(B) 

What can we expect for the behavior of Nv(B)? In this section, we shall see some 
expectations on the behavior of Nv(B). 

We first look at a rough probabilistic heuristics: 

．． 
Heuristics 1 (cf. 1.4 of Chapter II of [51). For some constant c, we have 

Nv(B) ~ ~Bn+l-d (B→oo), 
llavll 

where ~ stands for "heuristical" equality. 

Quasi-Proof. Consider the set 勿~ zn+l of all primitive vectors of height ::::; B. We 

have roughly＃免::=::Bn+l such primitive vectors. For each of x E劣， wehave 

(2) 〈av,zノd,n(x)〉E[-cillavllB叫＋cillavllBd]

for some constant c1 by the Cauchy-Schwarz inequality and lld,n(x) ::c::: llxlld-We now 
make a very rough assumption that the values〈av,lld,n(x)〉arewell-distributed in the 

interval in (2). We then have〈av,lld,n(X)〉＝ 0with the probability ::c::: (llavllBりー1.
Therefore, we can expect 

Nv(B) ~＃疫 •Prob( 〈av, lld,n(X)〉＝ O)~ ~Bn+l-d_ 
llavll 

This is the claimed approximation. 口

Heuristics 1 is too rough but shows us the importance of the exponent n + l -d. 

It is empirical rule that probabilistic heuristics is close to the truth only if the main 
term of the asymptotic formula has a certain amount of magnitude. We thus expect 
Heuristics 1 gives a nice approximation only when n ~ d. This range is corresponding 
to the range where our hypersurface V satisfies the condition so called being "Fano". 

In this note, we always assume that we are in the Fano range n ~ d and also exclude 

the linear case and the case (n, d) = (2, 2): 

n~d~2 and (n,d)ヂ（2,2). 

The case n = d and n < d are corresponding to the case where V is of intermediate 
type and of general type, respectively, and in these cases, we have another type of 

conjectures of Batyrev-Manin and of Bombieri-Lang. (See Chapter II of [5].) 
When V is Fano, we can apply the circle method formally to derive a more detailed 

hypothetical asymptotic formula, which coincides with the special case of the Manin-

Peyre conjecture: 
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Conjecture 1 (Manin-Peyre conjecture for Nv(B)). We have 

Nv(B) = 6(V)Bn+l-d + (error), 

for smooth V E V d,n with n 2". d, where the singular series 6(V) is given by an 
Euler product. (For the detailed description of 6(V) and the general case of the 
Manin-Peyre conjecture, see Chapter II of [5].) 

The factor 1/llavll in Heuristics 1 is not visible in Conjecture 1 but we can expect 
that the archimedean factor in the singular series 6(V) is of the size ;,c::: 1/llavll-Also, 
the "thinset" and the logarithmic factor in the general Manin-Peyre conjecture does 
not exists for most of the hypersurfaces V and so we ignored them (see the paragraph 
after formula (2.5) of [3]). 

Indeed, when n is sufficiently larger than d, we can apply the circle method rigor-
ously to prove the Manin-Peyre conjecture, which is the famous result of Birch [2]: 

Theorem 1 (Birch [21). For a smooth VE Vd,n with nミ2d(d-1), we have 

Nv(B) = 6(V)Bn+l-d + O(Bn+l-d-15) 

with some positive constant o > 0. 

Thus, the Manin-Peyre conjecture is proved for hypersurfaces in Theorem 1, but 
we need a very restrictive assumption that n 2". 2d(d -1). Thus, Theorem 1 cannot 
cover the remaining range d：：：：： nく 2d(d-1) of Conjecture 1. The pow紅吋 2in 
Theorem 1 is coming from the application of the Weyl or van der Corput differencing, 
which are unavoidable today because the relevant exponential sum is not in flexible 
form as in the case of the Waring problem, etc. 

3. AVERAGE MANIN CONJECTURE - LE BOUDEC'S RESULT 

As we saw above, we still have a big obstacle to prove the Manin-Peyre conjecture 
for all hypersurfaces in the Fano range n 2 d. However, recently, le Boudec [7] 
considered this problem with the average over hypersurfaces. Write 

n+d 
図：＝＃％ ＝ （d )，応(X):= {x E股NI llxll ~ X}, VN := Vol（恥（1))

and 

vd,n(A) :={VE vd,n I llavll ~ A}. 

The result of le Boudec is the following: 

Theorem 2 (le Boudec (2022) [7, Theorem 3]). For n ~ d ~ 2, we have 

1 Bn+1-d BlogB L Nv(B)＝叫 1+0 -
|Vd,n(A)| A 

VEVd,n(A) 
(1+0(~+¥)) (3) 

provided A~ B, where the constant Cd,n is given by 

cd,n := 1 V心，n-1 く(Nd,n) Jdx  
2く(n+ 1) V:ふ，n く(Nd,n-1) 麟 1(1) llvd,n(x) II 

and the implicit constant depends on d, n. 
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The left-hand side of (3) can be thought as the average of Nv(B) over V with the 
"height" up to A. The right-hand side has the form Cd,n ・ Bn+l-d /A, which reminds 
us the main term of Heuristics 1 and Conjecture 1. Thus, we can regard le Boudec's 
result Theorem 2 as the proof of the Manin-Peyre conjecture on average over V. 
Notably, le Boudec achieved the result in the full (!) Farro range n 2 d. 

Remark 1. In this note, we use the term "on average" to indicate that we consider the 
L1 moment. The Manin-Peyre conjecture on average with the L2 moment (and with a 
modified main term) is proved by le Boudec, Browning and Sawin [3]. Their result [3, 
Theorem 1.1] implies that the Hasse principle holds for almost all hypersurfaces with 
n 2 d 2 2 and (n, d)ヂ (3,3), which solved a conjecture of Poonen-Voloch [9, 
Conjecture 2.2-(ii)] for these cases. 

We can use le Boudec's result to obtain some consequences of the Manin-Peyre 

conjeccture for almost all hypersurface V. For example, when B = o(A ~) as 
A →oo, Heuristics 1 implies that Nv(B) = o(l). However, Nv(B) counts the number 
of rational points and so a reasonable interpretation of Nv(B) = o(l) is Nv(B) = 0. 

Namely, the least height of rational points on V should be of the size ;::: sA ~: 

Heuristics 2. For sufficiently large llav II, we have 

研 (V):= min{H（文） IxEV};::: 心(llavll~)

for any functionゆ：股＞0→恥owith心(u)= o(u) as u→ OO. 

By Theorem 2 with taking 

B = (sA)n十｝＿d ：：：：： A, 

we can get the following approximation of Heuristics 2: 

Corollary 1 (le Boudec (2022) [7, Theorem 11). Assume n 2 d;::: 2. For O < c < 1, 

(4) 珈 V)2". (sllav||）れ十i-d

for all but≪ slVd,n(A)I hypersurfaces VE Vd,n(A). 

Corollary 1 is the result valid for almost all V ifwe take Vd,n(A) as the total space. 
However, when Vis not locally soluble, then the inequality (4) vacuously true (we use 
the convention min0 = +oo). Therefore, if almost all VE  Vd,n(A) are not locally 
soluble, then Corollary 1 is meaningless as it is. Thus, it's better to take the set of 
locally soluble hypersurfaces 

V比(A):={VE vd,n(A) I V(Qp)ヂ〇｝

as the total space. Indeed, there is no problem to use Vd,n(A) as the total space when 
(n,d) cJ (2,2), i.e. positive proportion of VE Vd,n(A) are locally soluble: 

Theorem 3 (Poonen-Voloch [9, Theorem 3.61). We have 

IV切~(A)I ~ Cd,nlVd,n(A)I (A→oo) 

for n ~ d ~ 2 with (n,d)ヂ（2,2), where 

Cd,n := IT Prob（a E JP'Nd,n-1⑫)  |〈a,vd,n(X)〉＝ 0is soluble in Q砂
pEMQ 
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Remark 2. In the definition of cd,n above, hypersurfaces in lP'n心） areidentified with 

the point of lP'心，n-l ((Qp) corresponding to the coefficient vector and the probability 

measure on lP'心，n-l心） isobtained by normalizing a p-adic canonical measure. 

Remark 3. When (n, d) = (2, 2), the result of Serre [11, Example 4] gives #V芯(A)=

o(Vd,n(A)) as A→oo, i.e. almost all VE Vd,n is not locally soluble and so the state-
ment of Corollary 1 is not so meaningful as it is. 

We can sharpen Corollary 1 by using Theorem 3 as 

Corollary 2 (le Boudec). Assume n 2". d 2". 2 and (n, d)cJ (2, 2). For O < E < l 

珈 V)2". (Ellavll)~ 
far all but ≪平閤(A)I hypersurfaces V E Vは(A).

4. COUNTING WITH WEAK APPROXIMATION 

Since the Manin-Peyre conjecture is proved on average (in the L1 moment sense) 

by the result of le Boudec, we now explore some finer result on the Manin-Peyre 

conjecture on average. For such a refinement, we focus on the following principle 
called weak approximation. Let us write MIIJI for the set of all places of (Q including 
the archimedean place. 

Principle 1 (Weak approximation). The image of the diagonal map 

diag: V((Q)→ ITV（如
pEMQ 

is dense with respect to the product of the p-adic topologies for "nice" V E Vd,n・ 
(Note that the space of adelic points is now given by the usual direct product since 

we are using projective varieties V.) 

This principle motivates us to count the rational points approximating a given 

adelic point e E IT,, V⑫)． However, since we shall take the average over hypersurface 

v, we use rrp戸心） asthe range of adelic point e insteadof rrP V（ふ）． Wethen 

take a (basic) neighborhood Uこrr旦叫ふ） ofe and consider the counting function 
with weak approximation 

Nv(B;U)：=＃｛XE V((Q) I H(元):SBand diag（元） EU}.

When we have Nv(B; U) > 0, it means that we have a rational point of V close toe 
and we can conclude the weak approximation at e. 

For this counting function Nv(B; U), we have another more detailed principle due 
to Peyre [8]. Note that we can normalize a canonical p-adic measure on V((Qp) to 

obtain a probability measure μv,p on V((Qp)-We then consider the product measure 

μv == ITP μv,p defined on ITP V((Q砂

Principle 2 (Peyre [8, Subsection 3.2]). We have 

Nv(B; U) ~ μv(U)Nv(B) (B→oo) 

for any "nice" V E V d,n and any Borel set UこITPV（島）．

What we shall try is to prove Principle 2 on average (again in the L1 sense), i.e. to 

introduce the weak approximation into le Boudec's result (Theorem 2). It is relatively 
easy just to introduce the weak approximation and so we want to obtain the result 
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as uniform as possible with respect to the range of weak approximation U. In order 

to measure such uniformity, we use a more specific family of U: We use the "adelic" 

balls of the projective space戸 definedas follows. 

For p E Mif.li, we define a metric dp on野心） by:

• Case I. p < +oo. Take x,y E lP'n（ふ） withx, y E rQ;+l ¥ {O}. We then define 

叫天 Y):= 
llx /¥ YIIP 
llxllP ・ IIYIIP 

E [0, 1], 

where 11 • 11 on rQ;+l is the max norm with the'[radic absolute value and 11 • 11 on 

八2Q戸 isthe max norm with the炉adicabsolute value and with respect to the 

basis (ei /¥ ej)。:','.i<j:','.n,where (eo,..., en) is the standard basis of rQ;+l. (Note that 
such defined metrics dp are ultrametrics.) 

• Case II. p = +oo. Take x,y E戸（股） withx,y E町＋1¥ {O}. We then define 

d (―-) llx /¥ YII 
oolX,YJ := E [0, 1], 

x11 ・ 11Y 

where 11 • 11 on町＋1is the usual Euclidean norm and 11 • II on/¥2町＋1is the Eu-

clidean norm with respect to the basis (ei /¥ ej)。:','.i<j:','.n,where (ea,..., en) is the 
standard basis of股n+l.

Consider the tuples 

e=（心） E IT ]P'n心） and u = (ap) =(p-ep) E IT {p―ep I ep;;, O} 
pEMQ pEMQ 

such that ap = 1 for all but finitely many p E MQ. We then define the "adelic" ball 

的（ふu)centered at e of radius u by 

的 (e,グ)：＝ rr的（心，％） and 的（心，％）：＝ ｛xE戸 ((Qp)I dp(x,心)< ％}． 
pEMQ 

When U =恥（e，び）， wewrite 

Nv(B;e,u) := Nv(B；島（e,u)). 

For a given radius u of adelic ball, we let 

q.＝且（土）＝且炉 and q := P!!旦）＝亡・
With the above setting, our first main result is the following: 

Main Theorem A (Matsuzawa-S.). Under the above setting and E > 0, we have 

L Nv(B;~,a-) ＝心(~,a-)A心，n-lBn十1-d(l十恥，n(A,B；と，び））
VEVd,n(A) 

provided 

A 2". q and B 2". qn＋い，
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where 

ら，n(e，び）：＝
1 V心，n-1 判q)

4く(n+ 1) ＜(Nd,n -1) Jn+1(q) J 
Bn+1(l)n嗜~+1 （知，％）

JN(q) := qNp(1-〉），孤q)：＝ふ(q),

Plq 

％（ふa-):= {x E股NIdoo （文，~) ::; (J'} 

皿 dthe error term Rd,n(A, B; e, u) is estimated as 

dx 

llvd,n(x)II' 

和，n(A,B;e,u)≪ (qB-1十研B-(n+l-d)+ qA―l+qs¼iA―lB』打(qB}6

＋凡，n(A,B;e，u)

with和，n(A,B岳，u)= 0 for A~ B皿 d

瓦，n(A,B足，u)＜く (l+A―n炉）（qA―(n+ら)B!+ qn-lA―(n-l))(qB)° 

for A :SB皿 dthe implicit constant depends only on d, n, E. 

As for the size of the coefficient cd,n(e, u), we can easily prove that 
~ -

Proposition 1. The constant cd,n(e, u) satisfies 

¢d,n(e,9);;:::: q―nrr(1--, 
1 

p|qP) 
where the implicit constant depends only on d, n. 

As we saw in the previous section, we need to pay some attention on the total space 
to do statistics. We required the hypersurfaces in the total space is locally soluble in 
the previous se四ionbut now, we also requE'e hypersurfaces to have a rational points 
approximating e, i.e. in the given ball的（知）． Weare thus led to the set 

V如(A逗，び）：＝ ｛VE vd,n(A) I diag(V(Q)) n恥 (e，u)-I 0} 

as the total space of the statistics. As a counterpart of Theorem 3, we need an 
asymptotic formula for IV比(A;e, u)I with taking care of the uniformity over the 
weak approximation. Such a result is given as follows: 

Main Theorem B (Matsuzawa-S.). For n ~ d ~ 2 with (n, d) -I (2, 2), we have 

心 (A知）I= Cd,n(e, u)IVd,n(A)I (1 + 0 ( 
1 

loglogAlogloglogA)） 
;;:::: q―11vd,n(A)I 

provided 

A~ q log3q, 

where 

Cd,n(e，び）

:= IT Prob（百 ElP'ふ，n-l心） 1〈a,vd,n(X)〉＝ 0has a solution in氏（届，％））
pEMQ 

and the implicit constant depends on d, n. 

By dividing Main Theorem A by Main Theorem B, we obtain 
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Main Theorem A'. For n 2 d 2 2 with (n, d) cJ (2, 2) and E > 0, we have 
1 B正 l-d

IV閤(A;e,u)I
L Nv(B;e,u) ≪ q ―(n-1)~(1 ＋恥（A, B; e, u)) 

A 
VE'Vd,n(A) 

provided 
n 

A~ qlog3q and B ~ qn+t=-J, 

where the implicit constant depends only on d, n, E:. 

Note that the exponent of the factor q―(n-l) coincides with the dimension of our 

hypersurfaces. As a counterpart of Corollary 1 or Corollary 2, by taking 

B = (sqn-l A) ~ and assuming A ~ q log 3q, 

we obtain the following corollary: 

Corollary A. For n ~ d ~ 2 with (n, d)ヂ(2,2) and O < c < 1, we have 

洲 (V;e,び):＝ min{H（天） 1交 EVand diag（天） EB1..(e，グ）｝ミ (sqn-lllav II) n+t=;i 

for all but≪ slV芯(A;e,u)I hypersurfaces V E Vは(A;e, u) provided 

A ~ q0(n,d)+c: 

with 

0(n, d) = max(l，佑（n,d)，恥(n,d)，釦(n,d)，む(n,d)) 

where 

4n -d -2 n _ 2(4n -d -2) 
仇：＝，的：＝

(2n + l)(n + 1 -d) -3'v"'・ (2n + l)(n + 1 -d) -3' 

5n -l + (2n -4)d n. n2 -l 
03:＝仇：＝

(4n+2)(n+l)-(4n+4)d-3'v.. • (2n-l)(n+l-d)-d. 

Note that we have 

0(n, d) = l if n ~ c0 • d 

with some constant c0 ~ 1 and 

0(n, d)：：：：： n + l for all (n, d) with n ~ d ~ 2 and (n, d) cJ (2, 2). 

It is reasonable to expect Corollary A holds with 0 = l for all (n, d) but our method 
seems not strong enough to prove such a result. 

5. SKETCH OF THE PROOF 

We sketch the proof of main result with indicating some key ingredients. 

5.1. Proof of Main Theorem A. The proof of Main Theorem A mainly follows 
the method of le Boudec [7] combined with the idea of le Boudec, Browining and 
Sawin [3] (cf. Lemma 4.7 of [3]). Of course, we need to introduce some new idea to 

get a better uniformity on (e, u). We first rephrase our main sum over rational points 
in the projective spaces in terms of the sum over the associated primitive vectors: 

こVE'Vd,n(A) 

＊ 

Nv(B; e, 17) = ~ 
1 
4 こ ここ
aEZ ¢d,n u (mod q) xEZn+1 

prim prim 

||a||SA 〈a,vd,n_(x)〉＝0
x三 uc(mod q) 
xE訊n+1（もoo,aoo)

ー， 
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where the integral vector c is defined in terms of lP and a-P over finite places p E MIQI. 

We can then swap the summation to obtain 

こ
＊ 

Nv(B;e,u) = ~ 
1 

4 こ
VEVd,n(A) u (mod q) 

>] 
#(A府，n(x)n z;;;;盆nBNd,n(A)),

xE究は
x三uc(mod q) 
xE訊~+1(&。 ,a=)

where Avd,n(x) is the orthogonal lattice for the vector vd,n(x): 

Avd,n(x) := {a E zMd,n I〈a,府，n(x）〉＝ O}.

For the cardinality 

廿(Avd,n(x)n z-;;;;悶nB心，n(A)), 

we use the usual lattice point counting with successive minima and the Mobius inver-

sion (cf. Lemma 3.4 and Lemma 3.6 of [3]). Let入i(A)be the i-th successive minima 

of a lattice Aこ酎：

入i(A):= min｛入＞ 0I spanJR(A n恥 (X))~ i}. 

This primitive lattice point counting results in 

#(A府，n(x)n四乞 nB心，n(A)) 

叫 Aふ，n-l が

＝く(Nd,n)det(A府，n（x))+ 0し星＿2ふ(Aツdn(x))・・・入ッ(A府，n（x)）),
where det(A) is the volume of the fundamental domain of the lattice A. Since 

det(A府，n(x))= llvd,n(x)II for primitive x (cf. Lemma 4 of [7]), on inserting this lattice 
point counting formula into our main sum, we obtain 

L Nv(B; e, u) = T + O(E), 
VEVd,n(A) 

where 

T :=V心，nAふ，n-1
4((Nd,n) 

L* 
u (mod q) 

▽/] xEZ n+l pnm 

X=UC  (mod q) 
xE祐い(COO，aoo)

1 

llvぃ(x)II'

E・― 区 と
u (mod q) xE究は

x三 uc(mod q) 
xE'iffn+l (~oo ，びoo)

For the main term T, after carrying out partial summation, as in Lemma 3.5 of [3], 

we can use Theorem 1.3 of [1] since the congruence condition can be translated to a 

lattice and the archimedean condition x E'if,正 1(~oo,(J00) and the function llvd,n(x)II 
are semi-algebraic. In order to get rid of the effect of the error term 0(1) piled up 
over the reduced residues (mod q), we use the following lemma, which can be proven 
by induction over r: 

と
Av 

l~v~Nd,n-2 入1(A虹，n(x))・ ・ ・入v(A府，n(x)).

Lemma 1 (Matsuzawa-5.). Consider 

• A lattice A ~か ofrank r 2". 1, 
• A vector c E A and q E N such that 

d I q and c E dA ====} d = 1. 
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• A ball a＋恥（T)centered at a E蔚Nwith radius T 2 1. 

IfT ~ Cqふ(A)with some C 2 1, then we have 

L*  #((a＋恥(T))n(uc+A))≪ k+1,  
入1(A)

u (mod q) 

where the implicit constant depends only on r, C. 

By using Lemma 1 to take an advantage of the average over the reduced residues 
(mod q), we can argue similarly as the proof of Theorem 3 of [7] to obtain 

T = Cd,n(l, u)A応，n-lB正 l-d(1+ O((qB―1 + qnB―(n+l-d))(qB)り）．
For the error term E, we shall use the following bound for the largest successive 

minima of A府，n(x) due to le Boudec, Browning and Sawin [3]. Let us define 

clr(x) := min{det(A) I A~ 町＋1 : a lattice of rank r such that x E A} 

Lemma 2 (le Boudec-Browning-Sawin [3, Lemma 3.151). For n, d 2 1 and x E Z悶!,

入応，n-1(A府，n(x))~ μ(x) := n 
llxll 

妬(x).

We then dissect the error term E as 

E=  L +と＝恥十E2.
μ(x):SA μ(x)>A 

In E1, by the second Minkowski theorem, we can use the bound 

L ~«ANd,n-2~ 
1:S五 Nd,n-2

入1(A虹，n(x))・ ・ ・入ッ(A府，n（x)) ||X||d. 

In E2, we use the idea of Lemma 3.6 of [3] to get 

こ
Av 

l:Sv:SNd,n -2 ふ(Aツd,n(x))・ ・ ・入v(A府，n(x))

≪ ANd,n-l (~い(µ〗r)n-1 + (½)n) +A  

Then, for both of E1,E2, we dissect the sum dyadically according to the size of llxll 
and μ(x). We then have to estimate the distribution of μ(x), i.e. we need to estimate 

Lr,n(X，△；c,q渇，(J)

:= # {XE (u(rnいd*q)（UC+q戸 ）叫1g,6)nBn+1(X)）ぃr(X)< △} • 
Such an upper bound is given by le Boudec, Browning and Sawin [3] as 

Lemma 3 (le Boudec-Browning-Sawin [3, Lemma 3.201). For X，△ 2 1, we have 

#{x E zn+i n Bn+i(X) I clr(x) ~△}«xrぷ log2△

provided n 2 2 and r E {2,...,r + 1}. 
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However, if we use Lemma 3, the effect of the weak approximation 

(5) XE U* (uc + qzn+l) n立1(~,a)
u (mod q) 

will be discarded, which gives a very weak uniformity over (e, u). We thus need to 

get an extension of Lemma 3 with keeping the effect of (5). Such an estimate is given 
by the next lemma: 

Lemma 4 (Matsuzawa-S.). Consider 

• An integral vector c E zn+l and q ~ 1 with gcd(c, q) = 1 and n ~ 3. 
• A vector~ E町＋1¥ {O} and a real number O <び<1. 

ForX,•~ 1, we then have 

L2,n(X，△，c,q,＜，ぴ）＜く（（ピ）n+じ）n-lふ＋二）立＋ぷX)(q△)c,

where the implicit constant depends only on n, E:. 

The proof of Lemma 4 goes similarly to the proof of Lemma 3.20 of [3]. However, 
in order to keep the effect of (5), we need to modify Lemma 3.19 of [3] as well. 

Lemma 3.19 of [3] counts the number of primitive lattices with given sizes of successive 
minima using the method of Schmidt [10], i.e. we recursively add a new vector to the 
lattice and count the possibility of the newly added vectors. In our case, we need to 
keep a trace of how (5) is weakened in this recursive process and use the theorem of 
Barroero-Widmer [1, Theorem 1.3] with the aid of Lemma 1 to take the advantage 
of the average over u (mod q). 

By using Lemma 4, we can bound E1，恥 toobtain Main Theorem A. 

5.2. Proof of Main Theorem B. The proof of Main Theorem B follows the line 
of the proof of Poonen and Voloch [9, Theorem 3.6]. However, we need to make the 

estimates more quantitative and again we should keep the uniformity over (e, u). We 
translate the p-adic solubility to some other conditions suitable for counting. 

For p = +oo, we can just use the theorem of Barroero and Widmer [1, Theorem 1.3] 
to count the hypersurfaces since the real solubility is just a semi-algebraic condition. 

For large primes p (so that not taking part in the weak approximation), we use the 

Lang-Weil estimate [6] to find a smooth lFP―point on a given VE  vd,n(A) and apply 

Hensel's lemma to get a QP―point. To this end, we need to discard hypersurfaces being 
reducible (mod p). The space of (mod p)-reducible hypersurfaces has codimension 2 if 

n ~ d ~ 2 and (n, d) =J (2, 2) and so we can use Ekedahl's sieve [4] (or its quantitative 
version) to discard the contribution of hypersurfaces reducible (mod p) for some large 

prime p. 
For small primes p, we just cover the space of hypersurfaces lP'心，n-1(Q)by p-adic 

balls of a suitably chosen radius and we count the hypersurfaces contained in the 
p-adic balls totally consists of Qp―soluble hypersurfaces. (Note that the condition 
"being contained in a p-adic ball" can be interpreted as just some congruence.) This 

may loss hypersurfaces contained in the p-adic balls consisting of a mixture of②-
soluble and Qp―insoluble hypersurfaces. However, by using the argument similar to 
Hensel's lemma, we can bound the number of such exceptional ball so that they are 
negligible if we choose the radius of p-adic balls suitably. 
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