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1. INTRODUCTION

For n € N, M,, = M, (C) denotes the space of all n x n complex matrices. Let
A = (a;;) € M,,. The trace of A is the sum of the diagonal entries:

A norm ||-|| on M, is said to be unitarily invariant if
Al = lTAV]

for all A € M, and all unitaries U,V € M,,. Let A and B be Hermitian matrices in M,,.
The partial ordering A > B holds if A — B is positive semi-definite, or equivalently

z*Ax > x*Bx

for all vectors z € C™.

In the commutative case, if A and B are Hermitian matrices, then eAt8 = edeb.
However, in the noncommutative case, it is entirely no relation between eA*# and e“e”
under the usual order. The celebrated Golden-Thompson trace inequality, independently
proved by Golden[5] and Thompson[13], says as follows:

Theorem 1. If A and B are Hermitian matrices in M, then
(1) Tr (e*5) < Tr (e?e?).

Moreover, Hiai-Petz in [6] showed the following unitarily invariant norm version of
Theorem 1:

Theorem 2. If A and B are Hermitian matrices in M,,, then

@) 2] < ||(e22ermer2) || for altp > 0

for every unitarily invariant norm ||-||, and the right hand side of (2) converges to ||+ ||
as p | 0. In particular,

(3) lle®* 2l < fle*ePe 2|l < flete”]

Let A and B be positive definite matrices in M,, and « € [0,1]. The weight geometric
matrix mean A f, B is deinied as

A ﬁa B = AI/Q(A71/2BA71/2)OLA1/2.

Ando-Hiai [2] showed the following complemented Golden-Thompson inequalities:
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Theorem 3. If A and B are Hermitian matrices in M,, and o € [0,1], then
(4) H|(€PA i 6?B)1/PH| < |”6(1—Q)A+QB|||

for all p > 0 and the left hand side of (4) increases to |”e(1’a)A+“B|H as p 4 0 for any
unitarily invariant norm ||-||. In particular,

Tr (P4 1, €B)/P) < Ty (ell-@)At+ab) for all p > 0.

Remark 4. If we put p = 1 and o = % in Theorem 8 and replecing A, B by 2A,2B

respectively, then we have the lower bound of the Golden-Thompson inequality (3):
lle* & 2l < e[l < fle*e” ||
for any unitarily invariant norm ||-||. In particular,
Tr (e** 4 €2P) < Tr (eTP) < Tr (e”eP).

To show the reverse of Theorem 3, we need some preliminaries. We present an important
constant due to Specht [12], who estimated the upper bound of the arithmetic mean by
the geometric one for positive numbers: For xy,...,z, € [m, M|

T1+ Tyt + Ty

(5) Iy Ty < - < S(h)/rizg -,

where h = % and the Specht ratio is defined by

1
(h—1)h*—1
6 S(h) = ———F—

(6) (h) Togh
We note that the Specht theorem (5) means a ratio type reverse inequality of the arithmetic-
geometric mean inequality.

Now, in [4], we showed a noncommutative version of the Specht theorem (5):

(h#1) and S(1)=1.

Theorem 5. Let A be a positive definite matrixz in M, such that 0 <m < A < M for
some scalars 0 < m < M and put h = % Then

(7) e(logAz,z) < <A1'7{[> < S(h)e<logAz,z)
holds for every unit vector x € C™.

We mention some basic properties of the Specht ratio S(h) in [3, Theorem 2.16, Theorem
2.17):

Lemma 6. Let h > 0 and o € R.
(i) S(1) = limy,—; S(h) = 1.
(ii) S(h) = S(h™1).
(iii) A function S(h) is strictly decreasing for 0 < h < 1 and strictly increasing for
h>1.
(iv) lim, o S(h®)Ve = 1.
(v) limg oo S(h)Y* = h for h > 1 and lim, o S(h®)Y* = h™! for 0 < h < 1.
(vi) lim, o K (A", %) = S(h).

We showed reverses of the complemented Golden-Thompson inequality (4) due to Ando-
Hiai in terms of the Specht ratio in [11]:



Theorem 7. Let A and B be Hermitian matrices such that m < A, B < M for some
scalars m < M, and let o € [0,1]. Then

® (e ey

for all p > 0 and every unitarily invariant norm |||, and the right-hand side of (8)
converges to the middle hand side as p | 0. In particular,

(et £ ]| ) [l < St e g )

S) |||6(1—a)A+aB|” < S(ep([\l—m))% (61314 4 epB)zlg

and
(TI” (€2A ﬁ 623) S) Tr (eA+B) < S(e2(Mfm))Tr (€2A ﬁ €2B).

The obvious generalization of the Golden-Thompson trace inequality (1), namely,
Tr(e T80 < Tr(e?ePe”)

is not true in general. We would like to consider a k(> 3)-variable version of the Golden-
Thompson trace inequality and its complements.

One is to consider the Hadamard product instead of the usual product. For A =
(ai;), B = (b;j) € M, the Hadamard product is defined to be the entrywise product

The following resilt due to Ando is already shown in [1]:

Theorem 8. Let Ay, ..., Ay be Hermitian matrices, and o the Hadamard product. Then
ot < o4 oo 0 M

for some unitary U and every unitarily invariant norm ||-|.

In the commutative case, we have

1/3
eATBHC _ LA BC _ (63A633630) / 7

that is, the right hand side is regarded as the geometric mean of €34, e3? e3¢, Thus, the
other is to consider a k-variable geometric mean version instead of the matrix geometric
mean in Theorem 7.

In the next section, we will proceed with a discussion in this direction.

2. k-VARIABLE VERSION

First of all, we recall the k-variable version of the matrix geometric mean: We start
with the Karcher mean of positive definite matrices in M,,: In 2012, Lim and Pélfia [10]
established the formulation of the geometric mean for & (> 3) positive definite matrices
which is a nice extension of the matrix geometric mean in the Kubo-Ando theory [§]. They
showed that there exists the unique positive definite solution of the Karcher equation

k
(9) > wilog XTEAXTE =0

i=1
for given k positive definite matrices Ay, ..., Ay, where w = (wy, ..., wy) is a weight vector,
ie., wy,...,w, > 0 and Elewi = 1. We say the solution X of (9) the Karcher mean
for n positive definite matrices A;, ..., A; and denote it by Gx(w; Ay, ..., Ag). In the
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case of k = 2, the Karcher mean G ((1 — «, «); A, B) coincides with the weighted matrix
geometric mean

Aty B=AY?(A7V2BAY%AY2  for a € [0,1].

We list some properties of the Karcher mean which we need later, also see [9]:

(P1) Consistency with scalars: Gg(w; Ay, ..., Ay) = A7+ A% if the A;’s commute;

(P2) Joint homogeneity: Gk (w;a1 Ay, ..., apdy) = ait - a*Gg(w; Ay, ..., Ag);

(P3) Permutation invariance: G (ws; Ao1ys .-, Aor)) = Gr(w; Ay, ..., Ax) where
W = (Wo(1), - - - s Wo(k)) and o is any permutation;

(P4) Transformer inequality: T*Gx(w; Ay, ..., Ag)T < Gg(w; T* AT, ..., T*ALT) for
every operator T

(P5) Self-duality: Gg(w; A7',... AN = Gr(w; Ay, ..., Ay);

(P6) Information monotonicity: ®(Gx(w; A, ..., Ar)) < Gk(w; P(A1), ..., D(Ay)) for
any unital positive linear map &;

(P7) AGH weighted mean inequality:

k -1 k
(ZwiAﬁ) < Gi(wi Ar, . A) <) wids
i=1 i=1

(P8) Determinant identity:
k
det(Gre(w: Ar,..., Ap)) = [ ] det(A;)“.
i=1

Moreover, Yamazaki in [14] showed the following Ando-Hiai inequality for the Karcher
mean:

Theorem 9. Let Ay, ..., Ay be positive definite matrices and w = (wy, ... ,wg) a weight
vector. Then

Gr(w:Ar,...,Ay) <I implies Gg(w:AY,...,AY)<TI forallp>1.

By Theorem 9, we show a k-variable version of Theorem 3. Put |G| = [Gr(w : A1,..., 4|,
where || is matrix norm. Since

GK(LU . Al, e ,Ak) S ”GK((.O . Al, e ,Ak)”OO 5
it follows from (P2) that

Ay Ay,

Grlw: =L . Lk
STl 1G]

)< I

By Theorem 9, we have

i) Gan)
G w:( voes | = <I forallp>1
AT TR

Grw: AV .. AY) < |Gg(w: Ar,. .o AP

and hence
-

Therefore we have

|Grclw: A%, AN, < [Grew: Ar,... A

00 *
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For 0 < ¢ < p, since p/q > 1, the fact above implies

HGK(w LA AT

S HGK(W : Al, .. .,Ak)p/quo.
Replacing A; by A?, we have
|Gr(w: AL ... ,Ag)l/pHOO < | Gr(w: Af, ... ,AZ)I/QHOO for all 0 < ¢ < p.

Since Hiai-Petz in [7] showed the Lie-Trotter formula for the Karcher mean:

lin (oo Al ., ALJY/1 = gortosdvt ol b
as ¢ — 0 we have
Gl AL, ADYYP| < [l tososontonan|

By antisymmetric tensor technique and (P8), we have
(o s A A < [ et

for every unitarily invariant norm ||-|. See [2] for antisymmetric tensor technique. Hence
we have the following Golden-Thompson inequality for the Karcher mean due to Hiai-Petz
in [7):

Theorem 10 (Hiai-Petz [7]). Let A, ..., Ay be positive definite matrices and w = (wy, ..., wy,)
a weight vector. Then

(10) Tr[Gr(w: P, ... ePA/P) < Ty[erMt-Feede]  for all p > 0
and the left hand side of (10) converges to Tr[etA++wrdk] g5 p | 0. In particular,
Tr[G (@ e o eRAn)] < Tr[ett 48]
where a weight vector & = (1/k,....1/k).
Remark 11. Theorem 10 is just a k-variable version of Theorem 3, that is, if we put
k =2 in Theorem 10, then we have Theorem 3.
Next, we show a k-variable version of Theorem 7. For this, we need the following

Lemma:

Lemma 12. Let Ay, ..., Ay be positive definite matrices such that m < A; < M for some

scalars 0 < m < Mand w = (w1, ...,wy) a weight vector. Put h = % Then

k
(11) 3 widi < S(h)eStaeiosd
i=1

where the Specht ratio S(h) is defined by (6).

Proof. Put A = diag(A,...,Ay),y = (Vwiz, ..., Jorz)T for every unit vector z € C™.
By Theorem 5, since m < A < M, we have

(Ay,y) < S(h) elortv),



Hence it follows from the Jensen inequality that
k

(O widi)z,z) = (Ay,y)

i=1

<er:1 wilog Ai g x) by (7)

k
ZwiAi < S(h) €Zf:1w,, log A;
i=1

O
Theorem 13. Let Ay, ..., A, be positive definite maltrices such that m < A; < M for
some scalars 0 < m < Mand w = (wy, . ..,wg) a weight vector. Put h = % Then
(12) H’ezi;lwmi < S(PM=NUP || Ge(w : €M, ey |
for all p > 0 and every unitarily invariant norm ||-||, and the right-hand side of (12)
converges to the left hand side as p | 0. In particular,
|”6A1+...+Ak H| S S(e(]ﬂfm)) ‘HGK((D . 6161417 o ekAk) m
where a weight vector o = (1/k,....1/k), and
Tr[eM 4] < S(eM™NTr[G g (@ : e, eb4r))].
Proof. By Lemma 12 and (P7), we have
k
GK<OJ : Al: e 7Ak:) S ZWLAZ S S(h)ezf:lwibgAi.
i=1
Replacing A; by e P4 for i = 1,...,k and p > 0, since e PM < P4 < 7P it follows
that
Gg(w:e P e P < S(ep(M””))eZ?:l —wipdi
Taking the inverse of both sides, we have
Gi(w:ePh e PA)~l> S(ep(M’m))’leZ;c:l“’mA’
and this and (P5) imply
eXimwipdi < S(ePM=NG e (w s P ePAE)

for all p > 0 and there exists a unitary matrix U such that
(erzlw’pAi)l/p < S(ePMTNPUGe(w s €M epa, ) PUL

Hence we have

e

< SN | Gl < €A1 erAe)irr|

for all p > 0 and every unitarily invariant norm ||-|. O
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