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Abstract

This paper presents a real-time optimization method for nonlinear model predictive
control (NMPC) of systems governed by partial differential equations (PDEs). The
NMPC problem to be solved is formulated by discretizing the PDE system in space
and time by using the finite difference method. The proposed method is called the
double-layer Jacobi method, which exploits both the spatial and temporal sparsities
of the PDE-constrained NMPC problem. In the upper layer, the NMPC problem is
solved by ignoring the temporal couplings of either the state or costate (Lagrange
multiplier corresponding to the state equation) equations so that the spatial sparsity
is preserved. The lower-layer Jacobi method is a linear solver dedicated to PDE-
constrained NMPC problems by exploiting the spatial sparsity. Convergence analysis
indicates that the convergence of the proposed method is related to the prediction
horizon. Results of a numerical experiment of controlling a heat transfer process
show that the proposed method can be two orders of magnitude faster than the con-
ventional Newton’s method exploiting the banded structure of NMPC problems.
KEYWORDS:
Nonlinear model predictive control; PDE systems; real-time optimization; Jacobi iteration; Gauss-Seidel
iteration

1 INTRODUCTION

Nonlinear model predictive control (NMPC), also referred to as nonlinear receding horizon control or nonlinear moving horizon
control, is an optimization-based control method for nonlinear systems. The control input is obtained by solving an optimization
problem that usually minimizes a tracking cost under the constraints of the system dynamics. Moreover, general input and state
constraints or economic costs can be integrated into the optimization problem, making NMPC a powerful advanced control
technique and a popular research topic. On the other hand, the generality of NMPC brings about computational difficulties in
solving the underlying optimization problem in real time. Considerable efforts and progress have been made toward the real-
time NMPC control of systems described by ordinary differential equations (ODEs) in recent years, ranging over automatic code
generation1, first-order iteration (e.g.,2), and parallel computing3, to name just a few.

Besides the NMPC control of ODE systems, NMPC control of systems described by partial differential equations (PDEs),
such as Navier-Stokes equations for fluid flow and heat transfer equations for chemical processes, has gained increasing attention
due to the optimal and constraint-handling properties of NMPC. However, PDE-constrained NMPC presents a great challenge
for real-time optimization due to the infinite-dimensional state space of PDE systems. The solution methods for PDE-constrained
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NMPC can be generally categorized as indirect or direct. Indirect methods analytically derive the optimality conditions for
PDE-constrained NMPC and then solve these conditions numerically. For example, in4, the analytic optimality conditions for
the NMPC control of a class of parabolic PDEs are derived. These optimality conditions are discretized to a set of nonlinear
algebraic equations, the solution of which is then traced by using the C/GMRES method5. Moreover, the so-called contraction
mapping method in4 can be applied efficiently if the nonlinear algebraic equations satisfy certain structure conditions. In contrast
to indirect methods, which “first optimize, then discretize," direct methods need PDE systems to be first discretized both in space
and time. The NMPC problem is formulated on the basis of the discretized PDE system, which leads to a nonlinear program
(NLP). Since a fine-grained spatial discretization results in a large number of states or optimization variables, model reduction
techniques are frequently applied. A common way, e.g.,6, is to combine the proper orthogonal decomposition method7 with
Galerkin projection to obtain a low-dimensional dynamical system.

Unlike the model reduction methods, this paper deals directly with the discretized PDE system. Although conventional NMPC
methods for ODE systems can in principle be applied, they are computationally expensive due to the large number of states. For
example, methods exploiting the banded structure of NMPC, e.g.,8 and9, have computational complexities of (𝑁(𝑛𝑢 + 𝑛𝑥)3),
where 𝑁 is the number of the temporal discretization grid points and 𝑛𝑢 and 𝑛𝑥 are the number of the control inputs and states,
respectively. Note that sparsity exists both in the spatial and temporal directions of PDE-constrained NMPC problems. Structure-
exploiting methods can only make use of the temporal sparsity along the prediction horizon, and the spatial sparsity is destroyed
due to Riccati recursion. Consequently, dense matrix factorization, which leads to the cubic computational complexity, needs
to be performed during recursion. An alternative approach is to first eliminate the state variables. The elimination procedure is
roughly of (𝑁2𝑛2𝑥)

10.
In this paper, we present a double-layer Jacobi method that exploits both the temporal and spatial sparsities. The upper-layer

Jacobi (or Jacobi-type) method is derived by ignoring the temporal couplings of either the state or costate equations such that
the spatial sparsity can be preserved. The upper-layer Jacobi method can be applied to the NMPC control of not only PDE
systems, but also general nonlinear systems. The upper-layer Jacobi method can be seen as a block-wise Jacobi method for
solving nonlinear equations11. Compared with the element-wise Jacobi method whose convergence is difficult to guarantee, the
proposed method is shown to converge by choosing a short prediction horizon. Instead of using general sparse solvers to solve
the sparse linear equations arising from the upper-layer Jacobi method, the lower-layer Jacobi method solves the sparse equations
iteratively by exploiting the spatial sparsity of PDE-constrained NMPC. The performance of the proposed method is assessed
by controlling the temperature distribution of a two-dimensional heat transfer process on a thin plate. The proposed method is
matrix-free and has a per-iteration complexity of (𝑁(𝑛𝑢 + 𝑛𝑥)) for the heat transfer example. The numerical example shows
that the proposed method can be two orders of magnitude faster than the conventional structure-exploiting method.

This paper is organized as follows. PDE systems and their spatial discretization are described in Section 2. The NMPC problem
and its Karush-Kuhn-Tucker (KKT) conditions are given in Section 3. The proposed double-layer Jacobi method is introduced
in Section 4. Section 5 demonstrates the performance of the proposed method. Finally, this paper is summarized in Section 6.

1.1 Notations
Let 𝑣(𝑖) be the 𝑖-th component of a vector 𝑣 ∈ ℝ𝑛. For a matrix 𝑃 ∈ ℝ𝑛×𝑛, we denote 𝜌(𝑃 ) as the spectral radius of 𝑃 . The
symbol ‖ ⋅ ‖ denotes the Euclidean norm for a vector and the Frobenius norm for a matrix. The weighted norm is defined as
‖𝑣‖𝑃 ∶=

√

𝑣⊤𝑃𝑣. For an iteration variable 𝑠, we denote 𝑠𝑘 as the value of 𝑠 at the 𝑘-th iteration and 𝑠∗ as the optimal solution
or fixed point. For a differentiable function 𝑓 (𝑣) ∶ ℝ𝑛 → ℝ𝑚, we denote ∇𝑣𝑓 ∈ ℝ𝑚×𝑛 as the transpose of the Jacobian matrix of
𝑓 . Identity and zero matrices are denoted by 𝐼 and 0, respectively, and their sizes are indicated by using subscripts if necessary.

2 PDE SYSTEMS

In this paper, we consider the NMPC control of a general class of PDE systems defined on the spatial domain Ω ⊂ ℝ𝑛 and
temporal domain Γ ⊂ ℝ:

𝑎(𝑢(𝑡), 𝑤(𝑝, 𝑡))
𝜕2𝑤(𝑝, 𝑡)

𝜕𝑡2
+ 𝑏(𝑢(𝑡), 𝑤(𝑝, 𝑡))

𝜕𝑤(𝑝, 𝑡)
𝜕𝑡

= 𝑐(𝑢(𝑡), 𝑤(𝑝, 𝑡))Δ𝑤(𝑝, 𝑡) + 𝑑(𝑢(𝑡), 𝑤(𝑝, 𝑡)), (1)
where 𝑝 ∈ Ω is the spatial variable, 𝑢 ∈ 𝕌 ⊂ ℝ𝑛𝑢 is the control input, 𝑤 ∈ 𝕎 ⊂ ℝ is the PDE state, Δ𝑤(𝑝, 𝑡) ∶=
∑𝑛

𝑖=1 𝜕
2𝑤(𝑝, 𝑡)∕𝜕𝑝2(𝑖) denotes the Laplacian of 𝑤, and 𝑎, 𝑏, 𝑐 and 𝑑 ∶ 𝕌 ×𝕎 → ℝ are twice-differentiable nonlinear functions
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Figure 1 Spatial discretization points and fictitious points

of 𝑢 and 𝑤. The boundary conditions, such as the Dirichlet and Neumann boundary conditions, can be given to be input- and
state-dependent, i.e., as functions of 𝑢 and 𝑤. We assume that 𝑎 is not zero for every (𝑢,𝑤) ∈ 𝕌 × 𝕎 when the second-order
time derivative of 𝑤 is involved.

Note that (1) is a very general description of PDE systems. Many of the PDE systems, such as the heat transfer equation and
wave equation, fall into the form of (1). For PDE systems that are not in this form, e.g., the Navier-Stokes equations including
both gradients and algebraic variables, we will discuss later in Remark 2 that the results of this paper can in principle be extended.

2.1 Spatial discretization
We first introduce the spatial discretization of (1) by using the finite difference method. Without loss of generality, we demon-
strate the discretization by using a one-dimensional system on an unit space interval Ω ∶= [0, 1] satisfying the following
Neumann boundary condition:

𝜕𝑤(𝑝, 𝑡)
𝜕𝑝

= 𝑒(𝑢(𝑡), 𝑤(𝑝, 𝑡)), 𝑝 = 0 and 1, (2)
where 𝑒 is a given function of 𝑢 and 𝑤. Let 𝑀 + 1 be the number of the spatial discretization grid points and Δ𝑝 be the
corresponding step size. The finite difference method consists in approximating derivatives by using finite differences, i.e., for
𝑗 ∈ {0,⋯ ,𝑀},

Δ𝑤(𝑗Δ𝑝, 𝑡) ≈
𝑤𝑗+1(𝑡) − 2𝑤𝑗(𝑡) +𝑤𝑗−1(𝑡)

Δ𝑝2
,

where 𝑤𝑗(𝑡) ∶= 𝑤(𝑗Δ𝑝, 𝑡). At 𝑗 = 0 and 𝑀 , two fictitious points 𝑤−1(𝑡) and 𝑤𝑀+1(𝑡), as illustrated in Fig. 1, are introduced
to deal with the boundary condition. By using the finite difference method, the Neumann boundary condition (2) translates into
the difference equations as follows.

𝑤1(𝑡) −𝑤−1(𝑡)
2Δ𝑝

= 𝑒(𝑢(𝑡), 𝑤0(𝑡)),
𝑤𝑀+1(𝑡) −𝑤𝑀−1(𝑡)

2Δ𝑝
= 𝑒(𝑢(𝑡), 𝑤𝑀 (𝑡)). (3)

The PDE system (1) is then discretized into
𝑎(𝑢(𝑡), 𝑤𝑗(𝑡))�̈�𝑗(𝑡) + 𝑏(𝑢(𝑡), 𝑤𝑗(𝑡))�̇�𝑗(𝑡) = 𝑐(𝑢(𝑡), 𝑤𝑗(𝑡))

𝑤𝑗+1(𝑡) − 2𝑤𝑗(𝑡) +𝑤𝑗−1(𝑡)
Δ𝑝2

+ 𝑑(𝑢(𝑡), 𝑤𝑗(𝑡)), 𝑗 ∈ {0,⋯ ,𝑀}, (4)
where the fictitious points 𝑤−1(𝑡) and 𝑤𝑀+1(𝑡) can be eliminated by using the discretized boundary conditions (3). Note that the
discretized PDE system (4) is described by a finite number of states:

𝑥(𝑡) ∶= (𝑊 (𝑡), �̇� (𝑡)) ∶= (𝑤0(𝑡),⋯ , 𝑤𝑀 (𝑡), �̇�0(𝑡),⋯ , �̇�𝑀 (𝑡)) ∈ ℝ𝑛𝑥 ,

where 𝑛𝑥 = 2(𝑀 + 1). The dynamics of the discretized PDE system are given by
�̇�(𝑡) =

[

�̇� (𝑡)
𝑔(𝑢(𝑡), 𝑥(𝑡))

]

=∶ 𝑓 (𝑢(𝑡), 𝑥(𝑡)), (5)
where 𝑔(𝑢(𝑡), 𝑥(𝑡)) denotes the expression of �̈� (𝑡) obtained from (4).

3 NMPC

The spatial discretization approximates the PDE system (1) into an ODE system (5), which is used to design the NMPC controller.
For a prediction horizon 𝑇 > 0, we consider the following 𝑁-stage NMPC problem based on the backward Euler’s method with
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a temporal discretization step size of ℎ ∶= 𝑇 ∕𝑁 :

min
𝑢1,⋯,𝑢𝑁
𝑥0,⋯,𝑥𝑁

𝑁
∑

𝑖=1
𝑙𝑖(𝑢𝑖, 𝑥𝑖)

s.t. 𝑥0 = �̄�0,
𝑥𝑖 = 𝑥𝑖−1 + ℎ𝑓 (𝑢𝑖, 𝑥𝑖), 𝑖 ∈ {1,⋯ , 𝑁},
𝑢𝑖 ∈ 𝕌, 𝑥𝑖 ∈ 𝕏, 𝑖 ∈ {1,⋯ , 𝑁},

(6)

where �̄�0 is the initial state,𝕌 ∶= [𝑢, �̄�] and𝕏 ∶= [𝑥, �̄�] are the admissible sets of 𝑢 and 𝑥 (the boundaries 𝑢, �̄�, 𝑥, and �̄� are given),
respectively, and 𝑙𝑖(𝑢, 𝑥) ∶ 𝕌 × 𝕏 → ℝ is the stage cost function, which is assumed to be twice differentiable. Discretization
using the backward Euler’s method makes notations easy throughout the paper and leads to succinct algorithms. Discretization
using other methods is discussed in Remark 3.

3.1 Relaxation
We adopt the interior-point method to relax the NMPC problem by transferring the bound inequality constraints into a log-
arithmic barrier function added to the cost. To simplify the notation, the bound inequality constraints are put into a single
vector-valued function

𝐺(𝑢, 𝑥) ≥ 0.
We obtain the following relaxed NMPC problem:

min
𝑢1,⋯,𝑢𝑁
𝑥0,⋯,𝑥𝑁

𝑁
∑

𝑖=1
𝑙𝑖(𝑢𝑖, 𝑥𝑖)

s.t. 𝑥0 = �̄�0,
𝑥𝑖 = 𝑥𝑖−1 + ℎ𝑓 (𝑢𝑖, 𝑥𝑖), 𝑖 ∈ {1,⋯ , 𝑁},

(7)

where 𝑙𝑖(𝑢, 𝑥) ∶= 𝑙𝑖(𝑢, 𝑥)− 𝜏
∑

𝑗 ln𝐺(𝑗)(𝑢, 𝑥) (𝜏 > 0 is the barrier parameter). The set of solutions to the relaxed NMPC problem
(7) approaches the set of solutions to the original NMPC problem (6) when 𝜏 → 0.

For the consideration of feasibility, the state constraints usually need to be softened. The softened NMPC problem can also
be relaxed and written in the form of (7).

3.2 KKT conditions
Let 𝜆𝑖 ∈ ℝ𝑛𝑥 be the Lagrange multiplier (costate) corresponding to the 𝑖-th state equation. For the sake of brevity, we define

𝑠 ∶= (𝑥, 𝑢, 𝜆) and 𝑆 ∶= (𝑠1,⋯ , 𝑠𝑁 ).

Let 𝐻𝑖(𝑠) be the Hamiltonian defined by
𝐻𝑖(𝑠) ∶= 𝑙𝑖(𝑢, 𝑥) + ℎ𝜆⊤𝑓 (𝑢, 𝑥).

Let 𝑖(𝑥𝑖−1, 𝑠𝑖, 𝜆𝑖+1) be defined by

𝑖(𝑥𝑖−1, 𝑠𝑖, 𝜆𝑖+1) ∶=
⎡

⎢

⎢

⎣

𝑥𝑖−1 − 𝑥𝑖 + ℎ𝑓 (𝑢𝑖, 𝑥𝑖)
∇𝑢𝐻𝑖(𝑠𝑖)
𝜆𝑖+1 − 𝜆𝑖 + ∇𝑥𝐻𝑖(𝑠𝑖)

⎤

⎥

⎥

⎦

with 𝑥0 = �̄�0 and 𝜆𝑁+1 = 0. The KKT conditions for the relaxed NMPC problem (7) are
𝑖(𝑥∗𝑖−1, 𝑠

∗
𝑖 , 𝜆

∗
𝑖+1) = 0, 𝑖 ∈ {1,⋯ , 𝑁}, (8)

which are the first-order conditions for optimality of (7). Although the KKT conditions (8) are only the necessary conditions
for optimality and globalization strategies are needed to find a local minimizer in general, the proposed method focuses only on
solving the KKT conditions (8).

We introduce the following shorthand at the 𝑘-th iteration:
𝑘

𝑖 ∶= 𝑖(𝑥𝑘𝑖−1, 𝑠
𝑘
𝑖 , 𝜆

𝑘
𝑖+1), 

𝑘 ∶= (𝑘
1 ,⋯ ,𝑘

𝑁 ),∇𝑠𝑖
𝑘
𝑖 ∶= ∇𝑠𝑖𝑖(𝑥𝑘𝑖−1, 𝑠

𝑘
𝑖 , 𝜆

𝑘
𝑖+1), etc. (9)
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3.3 Newton’s method
In solving the KKT conditions (8) by using the Newton’s method, the search direction Δ𝑆𝑘 ∶= (Δ𝑠𝑘1 ,⋯ ,Δ𝑠𝑘𝑁 ) is obtained by
solving the following KKT system:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⋱
⋯ 𝐷𝑘

𝑖−1 𝑀𝑈
𝑀𝐿 𝐷𝑘

𝑖 𝑀𝑈
𝑀𝐿 𝐷𝑘

𝑖+1 ⋯
⋱

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⋮
Δ𝑠𝑘𝑖−1
Δ𝑠𝑘𝑖
Δ𝑠𝑘𝑖+1
⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

⋮
𝑘

𝑖−1
𝑘

𝑖
𝑘

𝑖+1
⋮

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (10)

Here, 𝐷𝑘
𝑖 ∶= ∇⊤

𝑠𝑖
𝑘

𝑖 (the expression can be found in (17)) and the constant matrices 𝑀𝐿 and 𝑀𝑈 given as follows show the
linear couplings of the state and costate equations, respectively.

𝑀𝐿 ∶=
⎡

⎢

⎢

⎣

𝐼𝑛𝑥 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

, 𝑀𝑈 ∶=
⎡

⎢

⎢

⎣

0 0 0
0 0 0
0 0 𝐼𝑛𝑥

⎤

⎥

⎥

⎦

.

After the search direction is calculated, a line search is performed to guarantee the primal feasibility 𝐺(𝑢, 𝑥) ≥ 0, i.e.,
𝑆𝑘+1 = 𝑆𝑘 − 𝛼maxΔ𝑆𝑘,

where 𝛼max is obtained from the fraction-to-the-boundary rule12:
𝛼max = max{𝛼max ∈ (0, 1] ∶ 𝐺𝑘+1

𝑖 ≥ 0.005𝐺𝑘
𝑖 , 𝑖 ∈ {1,⋯ , 𝑁}}. (11)

4 DOUBLE-LAYER JACOBI METHOD

This section introduces the proposed double-layer Jacobi method, which makes use of both the sparsities in the upper-level KKT
matrix in (10) and the lower-level Jacobian matrices 𝐷𝑘

𝑖 , 𝑖 ∈ {1,⋯ , 𝑁}. The upper-layer Jacobi method is a general NMPC
optimization method that is not limited to a particular class of dynamical systems. Convergence for the upper-layer Jacobi method
is analyzed, and some variants of the Jacobi method are given. The lower-layer Jacobi method is a linear solver dedicated to the
NMPC control of PDE systems by exploiting their particular structures after spatial discretization. We first review some general
results on the convergence of iterative methods in the following subsection.

4.1 Preliminaries
We first review the Jacobi method (see, e.g.,11) for solving linear equations as follows. Lemma 1 states the iteration and the
convergence condition of the Jacobi method. The convergence condition for the general iteration (13), of which the Jacobi
iteration is a special case, is given in Lemma 2. In order to indicate how fast the iteration (13) converges to a point of attraction,
the convergence factor and rate are defined in Lemma 3.
Lemma 1. Let

𝐴𝑣 = 𝑏, (12)
where 𝐴 ∈ ℝ𝑛×𝑛 and 𝑏 ∈ ℝ𝑛. Let 𝐴 be decomposed into 𝐴 = 𝐷 + 𝐿 + 𝑈 , where 𝐷, 𝐿, and 𝑈 are the diagonal, strict lower
triangular, and strict upper triangular elements (blocks) of 𝐴, respectively. Assume that 𝐷 is invertible. Then, the Jacobi method
for solving (12) is described by

𝑣𝑘+1 = 𝐷−1(𝑏 − (𝐿 + 𝑈 )𝑣𝑘).
The Jacobi method converges if and only if

𝜌(𝐷−1(𝐿 + 𝑈 )) < 1.
Likewise, for the element-wise decomposition, the Jacobi method converges if the matrix 𝐴 is strictly diagonally dominant.

Some results on the convergence of general iterations are shown as follows.
Definition 1. (Point of attraction13). Consider the iteration

𝑣𝑘+1 = 𝑇 (𝑣𝑘), (13)
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where 𝑣 ∈ ℝ𝑛 and 𝑇 ∶ 𝑃 → ℝ𝑛 for a subset 𝑃 ⊂ ℝ𝑛. Let 𝑣∗ be an interior point of 𝑃 and a fixed point of the iteration (13), i.e.,
𝑣∗ = 𝑇 (𝑣∗). Then, 𝑣∗ is said to be a point of attraction of the iteration (13) if there is an open neighborhood 𝑂 ⊂ 𝑃 of 𝑣∗ such
that the iterates defined by (13) all lie in 𝑂 and converge to 𝑣∗ for any 𝑣0 ∈ 𝑂.
Lemma 2. 13 Assume that 𝑇 is continuously differentiable. Consider the iteration (13). Then, 𝑣∗ is a point of attraction of the
iteration (13) if the following condition holds:

𝜌(∇⊤
𝑣 𝑇 (𝑣

∗)) < 1.

Lemma 3. (Convergence factor and rate13). If 𝑣∗ is a point of attraction of the iteration (13), the following holds:
𝜌(∇⊤

𝑣 𝑇 (𝑣
∗)) = lim

𝑘→∞
sup ‖𝑣𝑘 − 𝑣∗‖1∕𝑘,

and 𝜌(∇⊤
𝑣 𝑇 (𝑣

∗)) is called the convergence factor. The convergence rate is defined by − ln 𝜌(∇⊤
𝑣 𝑇 (𝑣

∗)).

4.2 Upper-layer Jacobi method
Let 𝐷𝑘, 𝐿, and 𝑈 be the diagonal, strict lower triangular, and strict upper triangular blocks of the KKT matrix in (10) as follows.

𝐷𝑘 ∶= block-diag(𝐷𝑘
1 ,⋯ , 𝐷𝑘

𝑁 ),
𝐿 ∶= lower-block-diag(𝑀𝐿,⋯ ,𝑀𝐿),
𝑈 ∶= upper-block-diag(𝑀𝑈 ,⋯ ,𝑀𝑈 ).

(14)

Since each block 𝐷𝑘
𝑖 in 𝐷𝑘 corresponds to the KKT matrix of a single-stage NMPC problem, the block-diagonal matrix 𝐷𝑘

can be assumed to be invertible without loss of generality. The upper-layer Jacobi method for solving the KKT conditions (8) is
given by

𝑆𝑘+1 = 𝑆𝑘 − 𝛼max(𝐷𝑘)−1𝑘, (15)
where 𝛼max ∈ (0, 1] is a scalar obtained from the fraction-to-the-boundary rule (11) and 𝑆0 is chosen such that the primal
feasibility condition 𝐺(𝑢𝑖, 𝑥𝑖) > 0 is satisfied for all 𝑖 ∈ {1,⋯ , 𝑁}. Note that since only bound constraints are introduced,
an initial guess 𝑆0 that satisfies the primal feasibility condition 𝐺(𝑢, 𝑥) > 0 can be easily found. By introducing slack input
variables, general inequality constraints can be transferred into equality constraints and bound inequality constraints on the slack
variables. Therefore, the barrier function for bound constraints can also be applied and an feasible initial guess can also be found,
and the results of this paper can in principle be extended to NMPC problems with general inequality constraints.

The upper-layer Jacobi method exploits the banded structure (temporal sparsity) of the KKT matrix by ignoring its off-diagonal
blocks. Since 𝐷𝑘 is a block-diagonal matrix, the iteration (15) can be performed block-wisely. With the particular stage-wise
ordering of the variables, the couplings of the neighboring stages are reduced to be linear, i.e., the off-diagonal blocks are constant
matrices. Although the Jacobi method in (15) can be regarded as Newton’s method ignoring constant off-diagonal blocks and
Newton’s method is known to be locally quadratically convergent under mild assumptions, the convergence property might not
be preserved for the Jacobi method. The convergence of the upper-layer Jacobi method is analyzed in the following subsection.

4.2.1 Convergence
We first give a general convergence condition for the upper-layer Jacobi method.
Theorem 1. 𝑆∗ is a point of attraction of the iteration (15) if the following condition holds:

𝜌((𝐷∗)−1(𝐿 + 𝑈 )) < 1, (16)
where 𝐷∗ ∶= 𝐷(𝑆∗).
Proof. Let 𝑤𝑖 ∈ ℂ, 𝑖 ∈ {1,⋯ , 2𝑛𝑥 + 𝑛𝑢} be the eigenvalues of (𝐷∗)−1(𝐿 + 𝑈 ), where 𝐷, 𝐿, and 𝑈 are defined in (14). From
the definition of spectral radius, the condition (16) is equivalent to max𝑖 |𝑤𝑖| < 1. Together with 𝛼max ∈ (0, 1], the inequality
max𝑖 |1 − 𝛼max − 𝛼max𝑤𝑖| ≤ 1 − 𝛼max + 𝛼max max𝑖 |𝑤𝑖| < 1 holds. From the fact that the KKT conditions defined in (8) and
(9) satisfy ∗ = 0 and ∇⊤

𝑆
∗ = 𝐷∗ + 𝐿 + 𝑈 , the convergence factor for the iteration (15) is given by 𝜌((1 − 𝛼max)𝐼 −

𝛼max(𝐷∗)−1(𝐿 + 𝑈 )). The result then follows by applying Lemma 2 with the fact that 𝜌((1 − 𝛼max)𝐼 − 𝛼max(𝐷∗)−1(𝐿 + 𝑈 )) =
max𝑖 |1 − 𝛼max − 𝛼max𝑤𝑖| < 1.



DENG ET AL 7

Note that (16) corresponds to the convergence condition for the iteration (15) when the fraction-to-the-boundary rule (11)
is not triggered, i.e., 𝛼max = 1. Theorem 1 indicates that if the convergence condition holds for 𝛼max = 1, it also holds for
𝛼max ∈ (0, 1]. Theorem 1 gives a general sufficient condition for convergence. However, the condition (16) can only be verified
afterward and does not provide significant insights related to the NMPC problem. We show in the following lemma and theorem
that the upper-layer Jacobi method can be guaranteed to converge by tuning the NMPC parameters, e.g., by shortening the
prediction horizon 𝑇 .
Lemma 4. Let 𝐷∗

𝑖 be decomposed into

𝐷∗
𝑖 =

⎡

⎢

⎢

⎣

ℎ∇⊤
𝑥𝑓

∗
𝑖 − 𝐼 0 0

∇2
𝑢𝑥𝐻

∗
𝑖 ∇2

𝑢𝑢𝐻
∗
𝑖 0

∇2
𝑥𝑥𝐻

∗
𝑖 ∇2

𝑥𝑢𝐻
∗
𝑖 ℎ∇⊤

𝑥𝑓
∗
𝑖 − 𝐼

⎤

⎥

⎥

⎦

+ ℎ
⎡

⎢

⎢

⎣

0 ∇⊤
𝑢 𝑓

∗
𝑖 0

0 0 ∇𝑢𝑓 ∗
𝑖

0 0 0

⎤

⎥

⎥

⎦

=∶ �̄�∗
𝑖 + ℎ�̃�∗

𝑖 .

(17)

Let �̄�∗ and �̃�∗ be defined as follows.
�̄�∗ ∶= block-diag(�̄�∗

1 ,⋯ , �̄�∗
𝑁 ),

�̃�∗ ∶= block-diag(�̃�∗
1 ,⋯ , �̃�∗

𝑁 ).

Assume that �̄�∗ is invertible. Then, the following holds:
𝜌((�̄�∗)−1(𝐿 + 𝑈 )) = 0.

Proof. The proof can be shown from the inspection of the special sparsity patterns of �̄�∗
𝑖 , 𝑀𝐿, and 𝑀𝑈 , i.e., the block lower

triangular structure of �̄�∗
𝑖 and the “corner” structure of 𝑀𝐿 and 𝑀𝑈 . The details are given in Appendix A.

Theorem 2. Assume that �̄�∗ defined in Lemma 4 is invertible. The convergence of the upper-layer Jacobi method (15) is
described as follows.

(i) There exists 𝑇0 > 0 such that 𝜌((𝐷∗)−1(𝐿 + 𝑈 )) < 1 holds for any 𝑇 < 𝑇0.
(ii) There exists 𝜖 > 0 such that 𝜌((𝐷∗)−1(𝐿 + 𝑈 )) < 1 holds for any �̃�∗

𝑖 satisfying ‖�̃�∗
𝑖 ‖ < 𝜖‖�̄�∗

𝑖 ‖, 𝑖 ∈ {1,⋯ , 𝑁}.
Proof of Theorem 2 (i). From the definitions in Lemma 4, we know that

𝜌((𝐷∗)−1(𝐿 + 𝑈 )) = 𝜌((�̄�∗ + ℎ�̃�∗)−1(𝐿 + 𝑈 )). (18)
We first choose 𝑇0 > 0 to be sufficiently small. Since 𝑇 < 𝑇0, ℎ = 𝑇 ∕𝑁 is sufficiently small, and �̄�∗ is invertible as assumed,
(𝐷∗)−1 exists and the right-hand side of (18) can be seen as a small perturbation of 𝜌((�̄�∗)−1(𝐿 + 𝑈 )) in terms of ℎ. That is,
together with Lemma 4, we obtain that

lim
ℎ→0

𝜌((𝐷∗)−1(𝐿 + 𝑈 )) = 0.

From the continuities of matrix inverse and spectral radius, there always exists 𝑇0 > 0 such that 𝜌((𝐷∗)−1(𝐿 + 𝑈 )) < 1 holds
for any 𝑇 < 𝑇0.
Proof of Theorem 2 (ii). Let 𝜖 > 0 be chosen to be sufficiently small. Since 𝜖 is a small number and ‖�̃�∗

𝑖 ‖ < 𝜖‖�̄�∗
𝑖 ‖, 𝑖 ∈

{1,⋯ , 𝑁}, 𝜌((𝐷∗)−1(𝐿+𝑈 )) = 𝜌((�̄�∗ + ℎ�̃�∗)−1(𝐿+𝑈 )) can also be seen as a small perturbation of 𝜌((�̄�∗)−1(𝐿+𝑈 )) = 0 in
terms of �̃�∗. Similarly to the proof of (i), the result then follows.

Theorem 2 can be interpreted as follows. Theorem 2 (i) indicates that a short prediction horizon 𝑇 guarantees the convergence
of the upper-layer Jacobi method. However, note that a small 𝑇 > 0 is not a necessary condition for convergence. The upper-layer
Jacobi method might still converge for NMPC problems with long prediction horizons. For a problem with a long prediction
horizon that the proposed method cannot converge, a small 𝑇 together with an addition terminal cost14 can be chosen so that
it can behave as if its prediction horizon were long. Since �̃�∗

𝑖 consists of the sensitivity ∇𝑢𝑓 ∗
𝑖 , Theorem 2 (ii) indicates that

𝜌((𝐷∗)−1(𝐿 + 𝑈 )) < 1 holds if the dynamical system (5) is not sensitive to the control input 𝑢. Note that Theorem 2 assumes
the invertibility of the block-diagonal matrix �̄�∗. We discuss in Remark 1 the invertibility of �̄�∗ as follows.
Remark 1. (Invertibility of �̄�∗ and regularization). Although 𝐷∗ can be assumed invertible without loss of generality, the in-
vertibility assumption on �̄�∗ in Theorem 2 might not hold under some problem settings, e.g., when the dynamical system is
linear and the stage cost function does not involve all inputs such that ∇2

𝑢𝑢𝐻
∗
𝑖 is singular. Moreover, even �̄�∗ is invertible, its



8 DENG ET AL

inverse (�̄�∗)−1 might be ill-conditioned and the convergence condition (16) might not hold even when a small perturbation ℎ�̃�∗

is introduced. To tackle the problem of singularity, a regularization term 𝛾𝐼 with 𝛾 ≥ 0 can be added to each ∇2
𝑢𝑢𝐻𝑖 such that

(�̄�∗)−1 exists and is less ill-conditioned (less sensitive to ℎ�̃�∗). Note that the introduction of the regularization term 𝛾𝐼 does
not change the solution to the NMPC problem when the iteration converges.

To speed up convergence, the variants (see, e.g.,11) of the Jacobi method, such as the forward Gauss-Seidel method (FGS),
the backward Gauss-Seidel method (BGS), and the symmetric Gauss-Seidel method (SGS), are usually applied in practice. The
following are the FGS, BGS, and SGS iterations, respectively:

𝑆𝑘+1 = 𝑆𝑘 − 𝛼max(𝐷𝑘 + 𝐿)−1𝑘, (19)
𝑆𝑘+1 = 𝑆𝑘 − 𝛼max(𝐷𝑘 + 𝑈 )−1𝑘,

and
𝑆𝑘+1 = 𝑆𝑘 − 𝛼max(𝐷𝑘 + 𝐿)−1(𝑘 − 𝑈 (𝐷𝑘 + 𝑈 )−1𝑘). (20)

Note that FGS and BGS have the same amount of computation as the Jacobi method. The difference is the rate of convergence.
Since the full-step iteration 𝛼max = 1 is typically observed when the iterates near the solution 𝑆∗ 12, the rate of convergence for
full-step iterations is considered in the following corollary.
Corollary 1. Suppose that the iteration is full-step, i.e., 𝛼max = 1, in the neighborhood of 𝑆∗. If the convergence condition (16)
holds for the Jacobi method, then the convergence conditions, which are given by 𝜌((𝐷∗+𝐿)−1𝑈 ) < 1 and 𝜌((𝐷∗+𝑈 )−1𝐿) < 1,
also hold for FGS and BGS, respectively. That is, 𝑆∗ is a point of attraction of the FGS and BGS iterations. Moreover, both the
FGS and BGS methods converge twice as fast as the Jacobi method.
Proof. Since the KKT matrix in (10) is a block-tridiagonal matrix, the KKT matrix is consistently ordered15. It is known from11
that for a consistently ordered matrix, the spectral radius of FGS is the square of that of the Jacobi method, i.e.,

𝜌((𝐷∗ + 𝐿)−1𝑈 ) = 𝜌((𝐷∗)−1(𝐿 + 𝑈 ))2.

The conclusion above can be shown similarly for BGS that
𝜌((𝐷∗ + 𝑈 )−1𝐿) = 𝜌((𝐷∗)−1(𝐿 + 𝑈 ))2.

Recall the definition of the convergence rate in Lemma 3. The result then follows.
As can be seen from Theorem 2 and Corollary 1, a short prediction horizon 𝑇 can also guarantee the convergence of FGS and

BGS. The discussion on the role of the regularization procedure in Remark 1 applies to FGS and BGS as well. As for the SGS
iteration (20), its convergence condition is given by 𝜌((𝐷∗ + 𝐿)−1𝑈 (𝐷∗ + 𝑈 )−1𝐿) < 1, and it can be seen as a BGS iteration
followed by a FGS iteration, i.e., a backward sweep followed by a forward sweep. The iteration in the previous work16 is similar
to the FGS iteration (19). However, the inequality constraints are kept and the regularization procedure is not introduced, so the
convergence is difficult to guarantee.

4.3 Lower-layer Jacobi method
The upper-layer Jacobi method and its variants essentially consist of solving linear equations with the coefficient matrices 𝐷𝑘

𝑖 of
the structure in (17) for 𝑖 ∈ {1,⋯ , 𝑁}. Since 𝐷𝑘

𝑖 is sparse and its structure is fixed, efficient exact or iterative solution methods
usually exist. For example, the Jacobi method for solving linear equations can be applied directly when ℎ is sufficiently small.
In this subsection, we introduce another iterative method by exploiting the particular structure of 𝐷𝑘

𝑖 .
The linear systems are reordered to have the following coefficient matrix (assume that the regularization term 𝛾𝐼 is introduced):

⎡

⎢

⎢

⎣

0 ℎ∇⊤
𝑥𝑓

𝑘
𝑖 − 𝐼 ℎ∇⊤

𝑢 𝑓
𝑘
𝑖

ℎ∇𝑥𝑓 𝑘
𝑖 − 𝐼 ∇2

𝑥𝑥𝐻
𝑘
𝑖 ∇2

𝑥𝑢𝐻
𝑘
𝑖

ℎ∇𝑢𝑓 𝑘
𝑖 ∇2

𝑢𝑥𝐻
𝑘
𝑖 ∇2

𝑢𝑢𝐻
𝑘
𝑖 + 𝛾𝐼

⎤

⎥

⎥

⎦

. (21)

For the sake of brevity, the linear system with the coefficient matrix (21) is expressed by using the following shorthand:
⎡

⎢

⎢

⎣

0 𝐹𝑥 𝐹𝑢
𝐹 ⊤
𝑥 𝐴𝑥𝑥 𝐴𝑥𝑢

𝐹 ⊤
𝑢 𝐴𝑢𝑥 𝐴𝑢𝑢

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑣1
𝑣2
𝑣3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑏1
𝑏2
𝑏3

⎤

⎥

⎥

⎦

. (22)
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Equation (22) can be solved by first eliminating (𝑣1, 𝑣2) and then solving for 𝑣3, i.e., by performing the following two steps:
(

𝐴𝑢𝑢 −
[

𝐹 ⊤
𝑢 𝐴𝑢𝑥

]

[

0 𝐹𝑥
𝐹 ⊤
𝑥 𝐴𝑥𝑥

]−1 [ 𝐹𝑢
𝐴𝑥𝑢

]

)

𝑣3 = 𝑏3 −
[

𝐹 ⊤
𝑢 𝐴𝑢𝑥

]

[

0 𝐹𝑥
𝐹 ⊤
𝑥 𝐴𝑥𝑥

]−1 [ 𝑏1
𝑏2

]

(23a)

and
[

0 𝐹𝑥
𝐹 ⊤
𝑥 𝐴𝑥𝑥

] [

𝑣1
𝑣2

]

=
[

𝑏1
𝑏2

]

−
[

𝐹𝑢
𝐴𝑥𝑢

]

𝑣3. (23b)
Solving (23) consists of solving several linear equations of the following form:

[

0 𝐹𝑥
𝐹 ⊤
𝑥 𝐴𝑥𝑥

] [

𝑣4
𝑣5

]

=
[

𝑏4
𝑏5

]

. (24)
The linear equation (24) can be solved by first solving 𝐹𝑥𝑣5 = 𝑏4 and then solving 𝐹 ⊤

𝑥 𝑣4 = 𝑏5 −𝐴𝑥𝑥𝑣5. That is, linear equations
with the coefficient matrices 𝐹𝑥 and 𝐹 ⊤

𝑥 are solved essentially. We show next that these linear equations can be solved efficiently
by using the Jacobi method.

Recall that for the discretized PDE system (5), we have
𝐹𝑥 = ℎ∇⊤

𝑥𝑓
𝑘
𝑖 − 𝐼 =

[

−𝐼 ℎ𝐼
ℎ∇⊤

𝑊 𝑔𝑘𝑖 ℎ∇⊤
�̇�
𝑔𝑘𝑖 − 𝐼

]

.

Therefore, a linear equation with the coefficient matrix 𝐹𝑥, i.e., the following equation,
[

−𝐼 ℎ𝐼
ℎ∇⊤

𝑊 𝑔𝑘𝑖 ℎ∇⊤
�̇�
𝑔𝑘𝑖 − 𝐼

] [

𝑣6
𝑣7

]

=
[

𝑏6
𝑏7

]

can be solved by first eliminating 𝑣6 with 𝑣6 = ℎ𝑣7 − 𝑏6 and then solving a linear system with the following coefficient matrix:
ℎ∇⊤

�̇� 𝑔𝑘𝑖 − 𝐼 + ℎ2∇⊤
𝑊 𝑔𝑘𝑖 . (25)

It is easy to show that (25) is diagonally dominant if ℎ is sufficiently small. Moreover, the off-diagonal entries of ∇⊤
𝑊 𝑔𝑘𝑖 are

sufficiently small for many of the PDE equations, such as the heat transfer equation and the Navier-Stokes equation with a large
Reynolds number. That is, according to Lemma 1, convergence of the Jacobi method can be achieved for solving linear equations
with the coefficient matrices (25). The same conclusion can be made for the 𝐹 ⊤

𝑥 system.
The lower-layer Jacobi method is concluded as follows. Since 𝑛𝑥 ≫ 𝑛𝑢 for PDE-constrained NMPC problems, the major

computational cost for solving (22) comes from solving linear equations with the coefficient matrices (25), which can be solved
efficiently by using the Jacobi method if, e.g., the NMPC problem is finely discretized in time, i.e., with a sufficiently small ℎ.

The overall double-layer Jacobi method on the basis of the SGS iteration is summarized in Algorithm 1.

Algorithm 1 Double-layer Jacobi method on the basis of SGS iteration
Input: initial state �̄�0, barrier parameter 𝜏 > 0, regularization parameter 𝛾 ≥ 0, 𝑖 ∈ {1,⋯ , 𝑁}, initial guess 𝑆0

Output: 𝑆∗

1: Initialization: 𝑘 = 0; Δ�̄�𝑁+1 = 0; Δ𝑥0 = 0
2: repeat
3: Evaluate 𝑘 and 𝐷𝑘

4: for 𝑖 = 𝑁 to 1 do
5: Solve: 𝐷𝑘

𝑖 Δ�̄�
𝑘
𝑖 = 𝑘

𝑖 − (0, 0,Δ�̄�𝑘𝑖+1)
6: end for
7: for 𝑖 = 1 to 𝑁 do
8: Solve: 𝐷𝑘

𝑖 Δ𝑠
𝑘
𝑖 = 𝑘

𝑖 − (Δ𝑥𝑘𝑖−1, 0,Δ�̄�
𝑘
𝑖+1)

9: end for
10: 𝛼max ← (11)
11: 𝑆𝑘+1 ← 𝑆𝑘 − 𝛼maxΔ𝑆𝑘

12: 𝑘 ← 𝑘 + 1
13: until termination criterion is met
14: 𝑆∗ ← 𝑆𝑘
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Remark 2. The major computational cost of Algorithm 1 comes from lines 5 and 8, i.e., solving the sparse system (22). Compared
with general sparse solvers, dedicated solvers considering the particular structure of the spatial sparsity, e.g., the introduced
lower-layer Jacobi method for the NMPC control of the PDE system (1), are expected to have better performance. For PDE
systems that are not in the form of (1) or even general systems, the proposed method can be performed efficiently if a structure-
exploiting linear solver can be designed for the sparse system (22).

Remark 3. Since different spatial discretization methods, such as the finite difference method and the finite volume method, only
differ in the expression of 𝑔 in (5) and the diagonally dominant property of (25) does not depend on the particular expression
of 𝑔, the lower-layer method can be generalized to other spatial discretization methods. Regarding the temporal discretization
method, as can be seen from Section 4.2.1 and 4.3, both the convergence result and the lower-layer iteration of the proposed
method depend on that the state increment, i.e., ℎ𝑓 (𝑢, 𝑥) for the Euler’s method, is proportional to the step size ℎ, which also
holds for, e.g., the Runge-Kutta method. Therefore, the results of the proposed method can in principle be extended to other
spatial and temporal discretization methods.

5 NUMERICAL EXPERIMENT

In this section, we demonstrate the performance of the double-layer Jacobi method in terms of the computation time, number of
iterations, and convergence factor by using a heat transfer closed-loop control example. The proposed method was implemented
in C and the experiment was performed on a 3.9-GHz (turbo boost frequency) Intel Core i5-8265U laptop computer. To reduce
the effect of the computing environment, the computation time at each time step was measured by taking the minimum one of ten
runs of the closed-loop simulation. All of the comparison scripts can be found online (https://github.com/deng-haoyang/PDE-
NMPC).

5.1 System description
We consider a nonlinear heat transfer process in a thin copper plate17. Because the plate is relatively thin compared with the
planar dimensions, temperature can be assumed constant in the thickness direction. The system is described by the following
two-dimensional PDE:

𝜌𝐶𝑝𝑡𝑧
𝜕𝑤(𝑝, 𝑡)

𝜕𝑡
− 𝑘𝑡𝑧Δ𝑤(𝑝, 𝑡) + 2𝑄𝑐 + 2𝑄𝑟 = 0,

where 𝑤 is the plate temperature, 𝑝 ∈ Ω ∶= {(𝑥, 𝑦)|𝑥, 𝑦 ∈ [0, 1]} (𝑥 here stands for the horizontal axis) and 𝑄𝑐 and 𝑄𝑟 are,
respectively, the convection and radiation heat transfers defined as follows.

𝑄𝑐 ∶= ℎ𝑐(𝑤(𝑝, 𝑡) − 𝑇𝑎),
𝑄𝑟 ∶= 𝜖𝛿(𝑤(𝑝, 𝑡)4 − 𝑇 4

𝑎 ).
The boundary conditions are the zero Neumann boundary conditions. The parameters of the heat transfer process are given in
Table 1.

Table 1 Parameters in the heat transfer process
𝜌 8960 Density of copper [kgm−3]
𝐶𝑝 386 Specific heat of copper [Jkg−1K−1]
𝑡𝑧 0.01 Plate thickness [m]
𝑘 400 Thermal conductivity of copper [Wm−1K−1]
ℎ𝑐 1 Convection coefficient [Wm−2K−1]
𝑇𝑎 300 Ambient temperature [K]
𝜖 0.5 Emissivity of the plate surface
𝛿 5.67 ⋅ 10−8 Stefan-Boltzmann constant [Wm−2K−4]
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y [m]

(0, 0) (1, 0)

(0, 1)
(1, 1)

x [m]

Figure 2 Spatial discretization grid points on plate (red squared points: actuators’ positions)

There are 16 actuators distributed uniformly under the plate to heat or cool the plate above the ambient temperature in the range
of [𝑇𝑎, 𝑇𝑎+400] K. The temperatures of the plate at the positions of the actuators can be controlled directly. We assume that the
actuators negligibly impact the convection and radiation heat transfer processes. We are interested in controlling the temperature
distribution across the plate under constraints, which is a typical control problem that arises in semiconductor manufacturing.
For example, a temperature gradient needs to be maintained within a wafer to ensure catalytic activation18.

5.2 NMPC description
The plate was uniformly discretized into 13 × 13 spatial grid points as shown in Fig. 2. Since the temperatures at the positions
of the actuators can be controlled directly, the temperatures of the red squared points are regard as control inputs. We obtain a
system with 16 inputs and 153 states. The inputs are constrained by

𝐺(𝑢, 𝑥) =
[

𝑢 − 𝑇𝑎𝑒
−𝑢 + (𝑇𝑎 + 400)𝑒

]

≥ 0,

where 𝑒 = [1,⋯ , 1]⊤. We chose the cost function to be quadratic as
𝑙𝑖(𝑢, 𝑥) ∶=

1
2
(‖𝑥 − 𝑥𝑟𝑒𝑓‖

2
𝑄 + ‖𝑢 − 𝑢𝑟𝑒𝑓‖

2
𝑅), 𝑖 ∈ {1,⋯ , 𝑁},

where 𝑥𝑟𝑒𝑓 and 𝑢𝑟𝑒𝑓 encoded the temperature distribution reference and the weighting matrices were 𝑄 = 𝐼 and 𝑅 = 0.1 × 𝐼 .
The generalized Gauss-Newton method19 was used to approximate the Hessian of the Hamiltonian 𝐻𝑖, i.e., by using the Hessian
of the cost function 𝑙𝑖.

Note that the lower-layer Jacobi method converged fast and needed only two iterations due to the small thermal diffusivity
𝑘𝜌−1𝐶−1

𝑝 . Moreover, we noticed that the coefficient matrix in (23a) was dominated by the diagonal matrix 𝐴𝑢𝑢. The linear
equation (23a) in the lower-layer Jacobi method was solved iteratively by performing two of the following iterations:

𝐴𝑢𝑢𝑣
𝑘+1
3 = 𝑏3 +

[

𝐹 ⊤
𝑢 𝐴𝑢𝑥

]

[

0 𝐹𝑥
𝐹 ⊤
𝑥 𝐴𝑥𝑥

]−1 ([ 𝐹𝑢
𝐴𝑥𝑢

]

𝑣𝑘3 −
[

𝑏1
𝑏2

])

,

which can be solved efficiently due to the diagonal property of 𝐴𝑢𝑢. The parameters of the NMPC controller are given in Table 2.

Since all of the matrices during iteration were sparse, the expressions of the matrix-vector multiplications were pre-computed
offline symbolically, and the multiplications were performed by evaluating the corresponding expressions, which made the
proposed method matrix-free. The computational complexity of the proposed method for the heat transfer example is (𝑁(𝑛𝑥+
𝑛𝑢)).
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Table 2 NMPC parameters
Name Value
Prediction horizon 𝑇 100 [s]
# of temporal discretization points 𝑁 20
Barrier parameter 𝜏 100
Regularization parameter 𝛾 0.5
Stopping criterion ‖𝑘

‖∞ < 1
Upper-layer method SGS (20)
Lower-layer method Two Jacobi iterations

5.3 Closed-loop simulation
The system was started from an initial state of �̄�0 = [𝑇𝑎,⋯ , 𝑇𝑎]⊤. The simulation was performed for 1000 s with a sampling
period of 5 s. The temperature distribution reference, as shown in Fig. 3, was set to a slope shape for the first 500 seconds and
a V-like shape for the last 500 seconds. The second reference was fed to the controller by changing continuously from the first

(a) 0 ≤ 𝑡 ≤ 500 s (b) 500 < 𝑡 ≤ 1000 s

Figure 3 Temperature distribution references at different time periods

reference within 50 seconds.
For tracking the first reference of the closed-loop simulation, two sampled plots at 𝑡 = 50 s and 𝑡 = 500 s are shown in Fig. 4

(a) and (b). For the second reference, two sampled plots at 𝑡 = 550 s and 𝑡 = 1000 s are shown in Fig. 4 (c) and (d). As shown by
these plots, the references were tracked well by using the NMPC controller. The time histories of the control inputs are shown
in Fig. 5. A high accuracy was still achieved for the chosen barrier parameter 𝜏 = 100 and the stopping criterion ‖𝑘

‖∞ < 1.
To prove this claim, we measured the normalized suboptimality during the closed-loop simulation as:

𝑒𝜏(𝑡) ∶=
∑𝑁

𝑖=1 |𝑙𝑖(𝑥
𝜏
𝑖 (𝑡), 𝑢

𝜏
𝑖 (𝑡)) − 𝑙𝑖(𝑥∗𝑖 (𝑡), 𝑢

∗
𝑖 (𝑡))|

max𝑡
∑𝑁

𝑖=1 𝑙𝑖(𝑥
∗
𝑖 (𝑡), 𝑢

∗
𝑖 (𝑡))

× 100%,

where (𝑥𝜏𝑖 (𝑡), 𝑢
𝜏
𝑖 (𝑡)) and (𝑥∗𝑖 (𝑡), 𝑢

∗
𝑖 (𝑡)) are the optimal solutions to the relaxed NMPC problem (7) under the chosen settings and

the original NMPC problem (6), respectively. The suboptimality 𝑒𝜏(𝑡) was less than 0.26% during simulation.
To demonstrate the performance of the proposed method, we set up the following experiments for comparison (all with the

same barrier parameter and stopping criterion):
• Ipopt (multiple shooting): the original NMPC problem (6) was formulated in the CasADi20 environment and solved by

using Ipopt21 with the direct sparse linear solver MUMPS22.
• Ipopt (single shooting): the state variables were eliminated by forward simulating the state equations obtained by using

the forward Euler’s method. The settings were the same as the settings of Ipopt (multiple shooting).
• ParNMPC23: The conventional Newton’s method introduced in Section 3.3 was implemented, and the KKT system (10)

was solved by using the block Gaussian elimination method23. Compared with the proposed method, the recursion of
elimination in ParNMPC destroys the lower-level spatial sparsity so that dense matrix factorization needs to be performed.
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(a) 𝑡 = 50 s (b) 𝑡 = 500 s

(c) 𝑡 = 550 s (d) 𝑡 = 1000 s

Figure 4 Temperature distributions at different time 𝑡

0 200 400 600 800 1000

300

400

500

600

700

Figure 5 Time histories of inputs (some inputs coincide with each other)

Note that since all these methods were based on the interior-point method, their computation times per iteration were consistent
throughout the closed-loop simulation. The mean computation time per iteration for Ipopt (multiple shooting), Ipopt (single
shooting), ParNMPC, and the proposed method were 0.081, 0.046, 0.18, and 0.0041 seconds, receptively. Since the states were
eliminated in Ipopt (single shooting) and the number of states was much more than the number of inputs, linear systems with
smaller sizes were solved in Ipopt (single shooting) than in Ipopt (multiple shooting). Therefore, the mean computation time
per iteration for Ipopt (single shooting) was smaller than Ipopt (multiple shooting). Considering that their numbers of iterations
shown in Fig. 6 were in the same range, the proposed method was much faster than the other methods in terms of the computation
time per time step shown in Fig. 7.

Lastly, we discuss the effects of the prediction horizon and regularization. In the numerical experiment, the proposed method
could not converge without regularization (𝛾 = 0). Since �̄�∗ is invertible under the problem setting and according to Theorem
2, the convergence condition did not hold after perturbation and the convergence can be guaranteed by shortening the prediction
horizon. Also, according to Remark 1, the convergence condition can be made less sensitive to perturbation by introducing the
regularization term 𝛾𝐼 with 𝛾 > 0. We compared the convergence factor 𝜌((𝐷∗+𝐿)−1𝑈 (𝐷∗+𝑈 )−1𝐿) for the upper layer’s SGS
iteration along the closed-loop simulation under different prediction horizons (𝑇 = 20 and 100) and regularization parameters
(𝛾 = 0 and 0.5) in Fig. 8. It can be seen that the convergence condition 𝜌((𝐷∗ + 𝐿)−1𝑈 (𝐷∗ + 𝑈 )−1𝐿) < 1 for SGS was
satisfied with either regularization or a short prediction horizon. Recall that the conditions provided by Theorem 2 are sufficient
conditions. Aside from the prediction horizons in the numerical example (20 and 100 s), the proposed method still converged
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Ipopt (single shooting)

Ipopt (multiple shooting)

ParNMPC

Proposed method

Figure 6 Time histories of numbers of iterations
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Figure 7 Time histories of computation times per time step

at every time step during simulation for a prediction horizon of 1000 s (𝛾 = 0.5), which is sufficiently long for the heat transfer
example.

0 200 400 600 800 1000

0.5

1

1.5

2

Figure 8 Time histories of convergence factors of SGS under different settings
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6 CONCLUSION

This paper presents a double-layer Jacobi method for the NMPC control of PDE systems. The NMPC problem is formulated
on the basis of the spatially and temporally discretized PDE system and then relaxed. The proposed method performs simple
Jacobi-type iterations to solve the KKT conditions and the underlying linear systems to make full use of the sparsities exist in
both the spatial and temporal directions. Furthermore, the convergence of the proposed method can be guaranteed by adjusting
the prediction horizon and regularization parameter. The results of the numerical experiment show that the proposed method
can significantly reduce the computation time.

Future research directions include extending the proposed method to the NMPC control of other large-scale systems and
applying the finite element method to discretize the PDE system.

APPENDIX

A PROOF OF LEMMA 4

Proof. If 𝑁 = 1, the upper-layer Jacobi method is exactly identical to Newton’s method. The result 𝜌((�̄�∗)−1(𝐿 + 𝑈 )) = 0 can
be easily obtained from 𝐿 = 𝑈 = 0. We discuss the case of 𝑁 ≥ 2. The proof is done by showing that the eigenvalues of
(�̄�∗)−1(𝐿 + 𝑈 ) are all zero. In fact, for a variable 𝜎 ∈ ℂ, the expression det(𝜎𝐼 − (�̄�∗)−1(𝐿 + 𝑈 )) = 𝜎𝑁(2𝑛𝑥+𝑛𝑢) is obtained by
using the Schur complement recursively as shown below.

Define a set of matrices

𝔸 ∶=

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

0 0 0
0 0 0
𝑃 0 0

⎤

⎥

⎥

⎦

∈ ℂ(2𝑛𝑥+𝑛𝑢)×(2𝑛𝑥+𝑛𝑢), 𝑃 ∈ ℂ𝑛𝑥×𝑛𝑥

⎫

⎪

⎬

⎪

⎭

.

Define the following shorthand:
�̄�𝐿

𝑖 ∶= −(�̄�∗
𝑖 )

−1𝑀𝐿 and �̄�𝑈
𝑖 ∶= −(�̄�∗

𝑖 )
−1𝑀𝑈

so that

(�̄�∗)−1(𝐿 + 𝑈 ) = −

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 �̄�𝑈
1

�̄�𝐿
2 0 �̄�𝑈

2
�̄�𝐿

3 ⋱ ⋱
⋱ 0 �̄�𝑈

𝑁−1
�̄�𝐿

𝑁 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

For any 𝐴 ∈ 𝔸 and 𝑖 ∈ {2,⋯ , 𝑁}, it can be examined that
�̄�𝑈

𝑖−1(𝜎𝐼 − 𝐴)−1�̄�𝐿
𝑖 ∈ 𝔸. (A1)

Let 𝐾 ∈ {2,⋯ , 𝑁} and 𝐴𝐾 ∈ 𝔸. We define a 𝐾-size (𝐾 blocks of rows and columns) block-tridiagonal matrix 𝑊𝐾 by
⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜎𝐼 �̄�𝑈
1

�̄�𝐿
2 𝜎𝐼 �̄�𝑈

2
�̄�𝐿

3 ⋱ ⋱
⋱ 𝜎𝐼 �̄�𝑈

𝐾−1
�̄�𝐿

𝐾 𝜎𝐼 − 𝐴𝐾

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=∶
[

𝑀𝐴 𝑀𝐵
𝑀𝐶 𝑀𝐷

]

. (A2)

The determinant of 𝑊𝐾 is given by
det𝑊𝐾 = det(𝜎𝐼 − 𝐴𝐾 ) det(schur(𝑊𝐾 , 𝜎𝐼 − 𝐴𝐾 )), (A3)

where schur(𝑊𝐾 , 𝜎𝐼 − 𝐴𝐾 ) denotes the Schur complement of the block 𝜎𝐼 − 𝐴𝐾 of 𝑊𝐾 , i.e.,
schur(𝑊𝐾 , 𝜎𝐼 − 𝐴𝐾 ) = 𝑀𝐴 −𝑀𝐵𝑀

−1
𝐷 𝑀𝐶 .

Let us then calculate the right hand side of (A3). It can be shown that
det(𝜎𝐼 − 𝐴𝐾 ) = 𝜎2𝑛𝑥+𝑛𝑢 . (A4)



16 DENG ET AL

Since 𝐴𝐾 ∈ 𝔸, we know from (A1) that the only nonzero block (lower right corner) of 𝑀𝐵𝑀−1
𝐷 𝑀𝐶 belongs to 𝔸, i.e,

�̄�𝑈
𝐾−1(𝜎𝐼 − 𝐴𝐾 )−1�̄�𝐿

𝐾 ∈ 𝔸. (A5)
By choosing 𝐴𝐾−1 to be the left hand side of (A5), the Schur complement schur(𝑊𝐾 , 𝜎𝐼 − 𝐴𝐾 ) can be seen as a (𝐾 − 1)-size
block-tridiagonal matrix in the form of (A2), i.e.,

schur(𝑊𝐾 , 𝜎𝐼 − 𝐴𝐾 ) =∶ 𝑊𝐾−1. (A6)
By substituting (A4) and (A6) into (A3), we obtain the following recursion:

det𝑊𝐾 = 𝜎2𝑛𝑥+𝑛𝑢 det𝑊𝐾−1.

Following the procedures above and together with 𝑊1 = 𝜎𝐼2𝑛𝑥+𝑛𝑢 , we obtain
det𝑊𝐾 = 𝜎𝐾(2𝑛𝑥+𝑛𝑢),

which holds for any 𝐾 ∈ {2,⋯ , 𝑁} and 𝐴𝐾 ∈ 𝔸. Then, by choosing 𝐾 = 𝑁 and 𝐴𝑁 = 0 ∈ 𝔸, we have
det𝑊𝑁 = det(𝜎𝐼 − (�̄�∗)−1(𝐿 + 𝑈 )) = 𝜎𝑁(2𝑛𝑥+𝑛𝑢). (A7)

From (A7), we know that (�̄�∗)−1(𝐿 + 𝑈 ) has only zero eigenvalues. The conclusion 𝜌((�̄�∗)−1(𝐿 + 𝑈 )) = 0 then follows.
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