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1 Introduction 

Let S be a submonoid of N。=NU{O}. Namely, S satisfies the conditions: 

(i) SC N。; （ii) 0 E S; (iii) if a, b E S then a+ b E S. 

Then S is called a numerical semigroup if and only if叫＼Sis a finite set, which is 

equivalent to 1 E { x -ylx, y E S}. When S is a numerical semigroup, the maximal 

element, the cardinality and the sum of the elements of閻＼Sare called the乃obenius

number, the genus or the Sylvester number, and the Sylvester sum, respectively, and 

denoted by g(S), n(S) and s(S), respectively. Several generalized Frobenius numbers 

have been introduced, but we study the one focusing on the number of representations 

(nonnegative integer solutions). Let A := { a1, a2,..., ak} be the set of positive integers 

with k ~ 2. The denumerant d(n) = d(n; a1, a2,..., a砂isthe number of representations 
ton= a1x1 +a2窃＋..,+a戸kfor a given nonnegative integer n. When S is a numerical 

semigroup and AこS,it is called that Sis generated by A and denoted by S =〈A〉iffor 

all n ES, there exist a1, a2,..., ak EA and x1, xぁ...，吹 EN。suchthat n = ~いも巧
A is called a minimal set of generators of S if S =〈A〉andno proper subset of A has its 

property. S =〈A〉iscalled the canonical form description of S. 

For an nonnegative integer p, let SP be the set of integers whose nonnegative integral 

linear combinations of given positive integers a1, a2,..., ak are expressed in more than p 

ways. By emphasizing the fact that S is generated by the set A, we also write Sp(A) as 

SP. We can see that the set閻＼ふ isfinite if and only if gcd (a1, a2,..., aり＝ 1.Then 
there exists the largest integer gp(A) := g(Sp) in N。¥Sp,which is called the p—乃obenius
number. The cardinality of N。＼ふ iscalled the p-genus and denoted by np(A) := n(S砂
Its sum of elements is called the p-Sylvester sum and denoted by sp(A) := s(Sp)-

Several different generalizations have been introduced and studied. However, our gen-

eralization is very natural and efficient in terms of the following 1rApery sets. 
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2 Preliminaries 

Using the elements in the p-Apery set, we can obtain the p-Frobenius, the p-genus, the 

p-Sylvester sum and so on very efficiently. Without loss of generality, put a1 = min(A). 

For a nonnegative integer p, the p-Ap臼yset is given by 

App(A) = App(a1, a2,..., aり＝｛m炉，miPl,...'』)-1}.

Here, for each O ::; i ::; a1 -1, the positive integer mりisdetermined uniquely as 

(i) mt)三 i (mod a1), (ii) m~P) E Sp(A), (iii) mt) -a1 rf_ Sp(A). 

(1) 

So, the set App(A) is a complete residue system modulo aぃ{O,1,..., a1 -1 }. In general, 

the following formula for power sum is given ([13]). 

Theorem 1. Let k, p and μ be integers with k：：：：： 2, p：：：：： 0 andμ ：：：：：゚ ふ油加馴
gcd(A) = 1. We have 

s炉（A)：＝ど炉
疇 o¥Sp(A)

=~t(µ:1)凡a~―1~(mり）µ＋1-K+ Bμ+1(a『+1-1)' 
k=0 i=0 

μ+1 

where Bn are Bernoulli numbers defined by 

X..;::.....__ xn 
e”-l ＝LBn研

n=O 

Whenμ= 0, 1 in Theorem 1, together with gp(A) we have formulas for the ~Frobenius 

number, the ~Sylvester number and the ~Sylvester sum. 

Corollary 1. Assume that gcd(A) = 1. For a nonnegative integer p, we have 

叫A)＝ max m. (p) ;-, -a1, 
O<::i<::a1-l 

1 
a1-l 

叫A)＝と (p)
釘ー 1

- m. — 
a1 ~ ・・・, 2'  
i=O 

m-l a1-1 
1 

Sp(A)＝ーと(m(P)2 - -1 (P) af -1 
2a1 t) 2区m。+ 12. 
i=O i=O 
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When p = 0 in Corollary 1, the formulas are reduced to the classically known ones. 

g(A) ＝ (max m2) -a1, ［4] 
l:Si:Sa1 -1 

1 
a1-l 

n(A)＝一 Lmi―
a1 -1 

m 2'[22] 
i=l 
a1-l 
1 

s(A) =一区 m. ——
2 1 m-l af-1 

2a1 t 2区mt+ 12. ［24] 
i=l i=l 

(0) 
Notice that m。=m。=0is applied when p = 0. Hence, the sum runs from i = 1. 
The elements of the p-Apery set are uniquely determined, but it is not easy to obtain 

them for the general case. Furthermore, it is even more difficult to find any regularity. 

3 Explicit expressions 

In the case of two variables, namely, a1 = a and a2 = b, by { mi IO ::::; i ::::; a -l} = 

{b(pa + i)IO::::; i::::; a -1}, from Corollary 1 we can get the explicit expressions. 

Corollary 2. For a nonnegative integer p, we have 

gP(a,b) = (p+ l)ab-a-b, 

叫a,b) = pab + ~, 
(a-l)(b-1) 

2 

sp(a,b) = ~ + 
p2麗 p(ab-a -b)ab (a -1)（b -1)（2ab -a -b -1)． 

＋ 
2 2 12 

However, for k：：：：：ふ eventhough p = 0, g(A) cannot be given by any set of closed 
formulas which can be reduced to a finite set of certain polynomials [5]. For k = 3, 
there are several useful algorithms to obtain the Frobenius number (e.g., [9, 21, 7]). 

For the concretely given three positive integers, if the conditions are met, the Frobe-

nius number can be calculated by the method of case-dividing in [25]. Only some spe-

cial cases, explicit closed formulas have been found, including arithmetic, geometric, Fi-

bonacci, Mersenne, repunits and triangular. 

When p > 0 and k：：：：：ふ thesituation is even harder. Though any explicit formula 

had not been found even for particular triples, recently we have been finally successful to 

obtain closed formulas for arithmetic [17], triangular [11], repunit [12], Fibonacci [16] and 

Jacobsthal [?]. 
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4 Some relations related to p-Frobenius numbers 

In this section, we show some fundamental relations among gp(A), np(A) and sp(A). 

Lemma 1. For p：：：：： 0, we have 

叫A)：：：：：
9p(A) ＋ 1. 

2 

Proof. For a non-negative integer s, ifs E Sp, then gp(A) -s (/_ Sp. Hence, by np(A) 2'. 

#{s E Spls < gp(A)} = gp(A) + 1 -np(A), we get the result. ロ

For emphasis, write Ap(S□1) as the p-Apery set ApP(A) from Sp(A) with a1 as the 
least element of the set A. 

p roposition 1. Assume that Sp(A) is minimally generated by a1,..., ak. Set d = 

gcd(a2,...,ak) andTp(A) = {n EN。|d(n;a1, a2/d,..., ak/d) > p} Then we have Ap(Sp, aリ＝
dAp(I'i□1)． 
Proof. From the definition of the Apery set, w E Ap(Sか a1)implies that w-a1 (/_ SP. Since 

WE〈a2,...,a砂， wehave w/d E〈a2/d,...,ak/d〉.Ifw/d -a1 E Tp(A), as w -da1 (/_ Sか
w/d-a1 ff-乃(A).Hence, w/d E Ap(Sp, a1), which implies that w E dAp(Sか釘）．
On the other hand, if w E Ap(I'iか a1),then w E〈a2/d,...,ak/d〉,implyingthat dw E 

〈a2,...,a砂~ Sp. We shall see that dw -a1 (/_ふ(A),entailing that dw E Sp(A). 
Otherwise, for non-negative integers y1,..., Yk, dw -a1 = a1y1 + ・ ・ ・ + akYk, implying that 
W=釘（y1+ 1)/d+ (a2/d)y2 + ・ ・ ・ + (ak/d)yk and dl(y1 + 1). But this is impossible because 

w-a1 ff-乃(A)．ロ

By Proposition 1, we can obtain the relations between the p-Frobenius numbers gp(A) 

and the p-Sylvester numbers np(A). For simplicity, we write gP(Ad) = g(Tp(A)) and 

叫幻＝n(Tp(A)).

Corollary 3. As the same setting as above, we have 

(i) gp(A) = dgp(A叶＋（d-l)a1・

(ii)叫A)=d叫山） ＋ ． 
(d -l)(a1 -1) 

2 

(iii) Sp(A) = d勺(A叶＋ 2 四(A叶＋
叫 (d-l) （a1 -1)（d -1)（2md -a1 -d -1) ・ 

2 
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Proof. We shall prove (iii). By Corollary 1, 
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l a2 -1 
w2＿ぅ区 w+ 1 12 

wEApp(S;a1) 

L w+ a『-l 12 

姐 (d-1) （al -1)（d -1) （2叫— a1 -d -1). 
=d図(A叶＋叫A叶＋

2 2 

ロ

Example 1. Let S =〈20,30,17〉andT=〈2,3,17〉=〈2,3〉withd = 10. Then, for p = 3, 

by s3(A10) = 136 and叩 (A10)= 17, we get s3(A) = 10応(A10)+ 17 ・ 10 ・ 9/2応 (A10)+ 
16 ・ 9(2 -17 • 10-17 -10 -1)/12 = 30349. 

Example 2. When S =〈a,b〉,byputting d = b, we get 

叫心） ＝ap-1, ％（山） ＝ap and gP（山） ＝ ． 
aザーap

2 

Therefore, Corollary 2 is reduced again. 

4.1 p-Hilbert series 

For a non-negative integer p, the p-Hilbert series of Sp(A) is defined by 

Hp(A; x) := H(Sp; x)＝〉が．
sESp(A) 

When p = 0, the 0-Hilbert series is the original Hilbert series. In addition, the四gaps

generating function is defined by 

虹(A;x)= L が，
sENo¥Sp(A) 

satisfying Hp(A; x) + wp(A; x) = 1/(1 -x) (lxl < 1). By using ~Apery set, we see that 

ふ(A)= App(A; a)+ aN。,witha= min(A). Hence, 

凡(A;x)= ~ L xm. (2) 
mEApp(A;a) 
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For three or more variables, it is not easy to obtain an explicit form of the p-Hilbert 

series. However, the p-Hilbert series may be explicitly given when the structure of the 

p-Apery set is known. We give one of the simplest cases, though the expression of the 

p-Hilbert series often becomes very complicated. 

For example, let A := { a, a+ 1,..., 2a -1} for an integer with a~ 3. Then its p-Apery 

set is given as follows. 

Lemma 2. Let a> 3 . For p = 0, we have 

Ap。(a,a+ 1,..., 2a -1) = {O, a+ 1, a+ 2,..., 2a -1} 
and 1 :':'.: p :':'.: (a -1)/2, we have 

App(a, a+ 1,..., 2a -1) = {3a,..., 3a + 2p -1, 2a + 2p,..., 3a -1}. 

Therefore, by (2), when p = 0, we obtain 

1 
恥(a,a+ 1,..., 2a -1; x) = ~(xa+l + xa+2 +... + x2a-l) 

1-xa 
xa+l(l -xa-1) 

(1-x)(lー研）．

When p > 0, we obtain 

几(a,a+ 1,...'2a -1; x) = ~ (x2a+2p + x2a+2p+l +... + x3a+2p-l) 
1-xa 

X 
2a+2p 

1-x 

This result looks simple, but the expression of the 1rHilbert series usually becomes 

very complicated because its structure of the corresponding 1rApery set is uncertain or 

complicated. For example, concerning the sequence of consecutive odd integers A := 

{2a + 1, 2a + 3,..., 4a + 3} (a 2'. 1), no exact explicit form of the p-Apery set has been 

found for general p. 

5 p-symmetric semigroup 

(p) 
By arranging the elements m; (0 :<::; i :<::;釘ー 1)of the Apery set in (1) in邸 cending

order, let £0(p) < £1(P) < ・ ・ ・ < Ca1-1(p). That is, the sequence £0(p),£1(P),...,£a1-1(P) is 
th e ascending permutation of 

(p)(p） 
m。,mi (p) 

,...,m,:;1・-1・ 

The p-numerical semigroup SP = Sp(A) is called p-symmetric if for all x E Z¥Sか

化(p)+ gp(A) -x E Sp, where £0(p) is the le邸 telement of Sp, that is the p-multiplicity 
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of SP if p ~ 1; £0(p) = 0 if p = 0. When p = 0, "0-symmetric" is "symmetric". If a 

p-symmetric numerical semigroup SP further satisfies化(p)= gp(A) + 1 := cp(A), which 

is called p-conductor, then SP is called p-completely-symmetric. 

From the definition, the following is obvious. 

Proposition 2. For a p-semigroup SP (p ~ 0), the following conditions are equivalent. 

(i) Sp i i) Sp is p-symmetric. 

(ii) #SP n {fo(P),...,gp(A)} = #(N。＼ふ）n{fo(P),...,gp(A)} = ~­
叫A)ー恥(p)+ 1 
2 

(iii) If x + y = £0(p) + gp(A), then exactly one of non-negative integers x and y belongs 

to SP and another to叫＼SP.

Example 

When A=  {4, 5, 6}, we get that 

Then we know that 

品＝｛36,38,40,41，→｝，

閻＼品＝ ｛o, 1,..., 35, 37, 39}. 

g8(A) = 39 and Ap8(A) = {36 = m屈，38= m~8), 41 = mi8), 43 = m~8)}. 

Hence, we see that 

36 + 39 = 38 + 37 = 40 + 35 = 41 + 34 = ・ ・ ・ = 75 + 0 = 76 + (-1) = ・ ・ ・. 

Therefore, S8(A), where A = { 4, 5, 6}, is 8-symmetric. In fact, among the elements in 

Ap8(A), we can obtain 

36 + 43 = 38 + 41. 

This fact is explained in the next lemma, which is a generalization of the result by Apery 

[1]. 

Lemma 3. For a non-negative integer p, SP = Sp(A) is p-symmetric if and only if 

C;(p) + Ca-i-I(P) = gp(A) + Co(P) + a (i = 1, 2,..., la/2」)．

If one element mりinApp(A; a) with a = min(A) can extend such that mip) = i 
(mod a) for any i, Lemma 3 can be restated as follows. For simplicity, put g = gp(A) and 

C = Co(p). 

Lemma 4. For a non-negative integerp, SP is p-symmetric if and only ifm(g+e+1)/2+j(p)+ 

m(g+e-I)/2+j(p) = gP + C + a (j E Z). 
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From Lemma 3 or Lemma 4, we have a relation between p-Frobenius number gp(A) and 

p-Sylvester number np(A). 

Proposition 3. For a non-negative integer p, SP =ふ（A)is p-symmetric if and only if 

叫A)=
叫A)＋Co(P)+ 1 
2 

Let us consider the two variables'case. For any integer n Eふ(A)for A=  { a, b} with 
gcd(a, b) = l and a < b, let x。bethe largest integer x satisfying n = ax+ by (y ~ 0). 
Then there exists the least non-negative integer y。suchthat n = ax0+by0, which is called 
the standard form of the representation of n. Since Sp(A)こN。こ Zand Z is Euclidean 

domain, the standard form is unique. 

Lemma 5. Let n = ax。+by。bethe standard form of n. Then 
(i) 0 ::; Yo ::; a -l. 

(ii) For any integer n E S(A) = S0(A), n E Sp(A) if and only if x。 ~pb.

By Proposition 3 and Lemma 5, together with the formulas in Corollary 2, we can show 

the p-symmetric property for two variables. 

Theorem 2. For any non-negative integer p, Sp(a, b) with gcd(a, b) = 1 is p-symmetric. 

Proof. When A = { a, b} with gcd(a, b) = 1, by Lemma 5, the least integer whose number 

of representations in terms of a and b is more than p is pab. That is, the non-negative 

integral solutions of ax+ by = pab are (x, y) = (jb, (p -j)a) (j = 0, 1,...,p). Since 

£0(p) = pab, by Proposition 3 together with the formulas in Corollary 2, we have 

島(A)＋£。(P)＋ 1 = (P+ 1)ab-a -b+pab+ 1 

2 2 
(a-l)(b-1) 

=pab+ 
2 
= np(a, b). 

口

At the end of this section, we consider a p-symmetric property in terms of the valuation. 

Let 凡：＝恥[[t•ls ES四(A)］］，凡bethe integral closure of馬 fbe the algebraic conductor 
from tfo(P)凡 toR。,Cp= g戸1(p-conductor). Since R。isth ・e ring associated to a numerical 

(0) semigroup S~UJ(A), it is a discrete valuation ring with the valuation v. 

L emma 6. f = {x E刷v(x)~ cp旦 o(p)}.
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Proof. For any x E f and r E R。,wehave rx E tMP)篇 Sov(rx) = v(x) + v(r) E 
v(tfo(P)凡）． Forx = tlo(P)x'we get v(r) + v(tfo(P)) + v(x') E v(tfo(P) ~) = v(Ro) + v(tfo(Pl). 

By the arbitrariness of r and v(r) 2': 0, we have v(x) 2': cp + £0(p), that is, fこ{xE 

麟 (x)2': Cp + ~o(p)}. 
For any x E晶 andv(x) 2': cp + £0(p), we have v(x) = v(r) for some r E tfoCP)RこR.

Then for any r'E R。,wehave v(xr') = v(x) + v(r') = v(r) + v(r') 2': Cp + £0(p). By the 
definition of cp, we have xr'E tlo(P)凡． So,f ~ {x ER。|v(x)ミ％＋fo(P)｝．ロ
For simplicity, let d1 and d2 be the lengths of ideal of R。/fand of R。-submoduleof 
R。/f,respectively, and d3 be the number of elements in Sp(A) n {1, 2,... Cp＋恥(p)-1}.
Theorem 3. Sp(A) is p-symmetric if and only if d1 =象．

Proof. By Proposition 2 together with the facts that all the elements in {1,... ip―1} are 

in N。＼ふ（A)and {gp + 1,... fo(P) + gP―1} are all in Sp(A), Sp(A) is p-symmetric if and 
only if d3 = 

£。(p）＋gp-1
2 

Consider the ideal chain凡っ R1っR2・・・っ R必つ f,where凡＝ ｛r ER。|v(r)2':防｝

and附＜四<..．＜ vd3are the elements in Sp(A) n {1, 2,... cp + £0(p) -1} arranged 
in ascending order. This sequence is maximal because if we adjoin an element r E R。of
value V;-1 to凡， weget all of R;-1. So, d1 = d3 + 1. 

Similarly consider the maximal 凡—submodule chain of凡／f：R。=b。つ b1つ的・・・つ
bto(P)+gp+l = f where b; = {r E R。|v(r)2': i}. So we have d2 = £0(p) + gP + 1. Hence, 
ふ(A)is p-symmetric if and only if d1 -1 =必戸． ロ

5.1 p-pseudo-symmetric semigroup 

For a non-negative integer p, let Sp(A) be a叩numericalsemigroup. x E Z is called a p-

pseudo-Frobenius number if x tf_ふ(A)and x+s-C0(p) E Sp(A) for alls E Sp(A)＼｛化(p)},
where C0(p) is the least element of Sp(A), so is of ApP(A; a) with a= min(A). The set 

of p-pseudo-Frobenius numbers is denoted by P恥(A).The p-type is denoted by tp(A) := 

#(P恥(A)).Notice that the p-Frobenius number is given by gp(A) = max(P恥(A)).

For p 2: 0, the 1rnumerical semigroup SP =ふ（A)is called p-pseudo-symmetric if for all 

xEZ＼ふwithxヂ（化(p)+ gp(A)) /2 E Z, C0(p) + gp(A) -x E Sp, where C0(p) is the least 
element of Sp. When p = 0, "0-pseudo-symmetry" is "pseudo-symmetry". 

For simplicity, put the 1rFrobenius number as g := gp(A) and the四multiplicityas 

C := Co(P) (pミ1)with C0(0) = 0. Denote the 1rApery set by App(A; a) with a= min(A). 

Theorem 4. For a non-negative integer p, the following conditions are equivalent: 

(i)ふ＝ふ(A)is p-pseudo-symmetric 
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Corollary 4. Letふ(A)be a p-numerical semigroup. The following conditions are equiv-
alent. 

(i) Sp i ~ is p-symmetric. 

(ii) PFp(A) = {gp(A)} with gp(A)季Co(P)(mod 2). 

(iii) tp(A) = 1 with gp(A)季Co(P)(mod 2). 

Corollary 5. Letふ(A)be a p-numerical semigroup. The following conditions are equiv-
alent. 

(i) SP is p-pseudo-symmetric. 

(ii) p恥(A)＝ ｛伽(A)，（gp(A)＋/J,o(P)）／2} t! （9p(A) ＋化(P)）／2E N。＼ふ（A);
伽(A)} if (gp(A) +/J,o(P))/2 E Sp(A). 

(iii) %（A) ＝ {2 if (9p(A)十ん(p)）／2E N。＼ふ（A);
l if (gp(A) +/J,o(P))/2 E Sp(A). 

For a, b E Z, define a partial order relation a ~Sp b (or aさ8b for short) as b -a E SP-

The set of p-pseudo-Frobenius numbers PFP(A) can be determined with this order relation 

in terms of the p-maximal gaps. 

Proposition 4. For a p-numerical semigroup Sp =ふ（A),we have 

P恥(A)= Maximals-c:::8(N。＼ふ）．

The set of四pseudo-Frobeniusnumbers P恥(A)can be also determined in terms of the 

p-Apery set. 
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Proposition 5. Let名＝ふ(A)be a p-numerical semigroup with a = rnin(A). Then for 
n ESP we have 

P恥(A)= { w -alw E Maxirnals,c:8App(A; a)}. 

At the end of this subsection, we mention a partially corresponding result to Theorem 

3. 

Theorem 5. If SP(A) is p-pseudo-symmetric, then 2d1 + 1 = d2. 

Proof. Ifふ(A)is p-pseudo-symmetric, then we have 2d3 = C0(p) + gP -2. 
Again, consider the maximal ideal chain R。っ R1つ凡・・・っ Rd3つfas in the proof of 

Theorem 3. Thus, we get d1 = d3 + l. And consider the馬 submodulechain of R。/f:
R。=b。つ b1つb2・・・つ be。(p）+gp+l= f. We have d2 = C0(p) + gP + l. Hence, if Sp(A) is 
p-pseudo-symmetric, then 2(d1 -1) = d2 -3. ロ

When is a p-numerical semigroup p-symmetric, and when p-pseudo-symmetric? 

Let A=  {6, 7, 17, 28}. S,。ispseudo-symmetric. In addition, 
ふ＝｛ 24 30 31 34 35 36 37 38 40 ← } 
G1 = { 39 33 32 29 28 27 26 25 23 → } 
ふ＝｛ 41 42 47 48 49 51 H } 

伍＝｛ 50 46 45 44 43 40 H } 

品＝｛ 48 54 55 58 曰｝

伍＝｛ 57 56 53 52 51 50 49 47 曰｝

ふ＝｛ 65 66 68 → } 
G4 = { 67 64 → } 
Hence,ふ issymmetric, S2 and S3 are not symmetric, and S4 is pseudo-symmetric. 

By continuing, SP is p-symmetric for p = l, fl, 7_, ~'2凶，且，旦，翌， 15，旦坦叫盆凶，．．．．

(For underlined p's, they are completely-symmetric.）ふ isp-pseudo-symmetric for p = 

0, 4, 5, 19, 20, 23, 25,.... SP is neither p-symmetric nor p-pseudo-symmetric for p = 2, 3, 14, 16,.... 

Conjecture 1. If gcd(ai, ai) = l (iヂj)forA:= {a1,a2,...,ak}, then SP isp-

completely-symmetric for enough large p. 

5.2 p-irreducible numerical semigroup 

A numerical semigroup Sis irreducible if it cannot be expressed as the intersection of two 

proper oversemigroups. A p-numerical semigroupふ＝ふ(A)is called p-irreducible if it is 
either p-symmetric or p-pseudo-symmetric. It is known that every numerical semigroup 

can be expressed as a finite intersection of irreducible numerical semigroups. 
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By Theorem 2, we have the Jr irreducible property for two variables. 

Corollary 6. For any non-negative integer p, Sp(a, b) with gcd(a, b) = 1 is p-irreducible. 

Every 1rnumerical semigroup can be also expressed as a finite intersection of irreducible 

numerical semigroups ([2]). 

Proposition 6. For a non-negative integer p, let Sp be a p-numerical semigroup. Then, 

there exist finitely many irreducible numerical semigroups S1,..., Sr such that SP = S1 U 

・・・ USr. 

Remark. It has not been known that for any fixed non-negative integer p, a p-numerical 

semigroup can be expressed as an intersection of all p-irreducible numerical semigroups. 

Example. For A=  {5, 9, 16}, we see that S2(A) = { 41, 45, 46, 48, 50,←｝，which is neither 

(2-)symmetric nor (2-)pseudo-symmetric. But it can be expressed as an intersection of two 

(0-)numerical semigroups: S2(A) = S(AリUS(A砂withA1 = { 41, 43, 45, 46, 48, 50,← 
} and A2 = {41,45,46,47,48,50,→｝． Here both S(A1) and S(A2) are (0-)pseudo-

symmetric. In addition, these 0-numerical semigroups are given by canonical forms: 

S(Aリ＝〈41,43,45,46,48,50,...,81,83,85〉,
ヽ

S(A砂＝〈41,45,46,47,48,50,...,81,83,84,85〉.
‘v  1 

6 Lipman semigroup and dual 

For simplicity, set s; = SP U {O}. Then the p-dual of Sp(A) is defined to be 

B(Sp) := (s; -SP) = (SP―ふ）．

Note that for ideals J and J, I+ J= {i+ jli E J, j E J}, and lI =!+・・・+I,. 
` v’  

The p-Lipman semigroup is defined to be Lp(S) = L(S;) := U尼 1(hSP―h品）． Then
two kinds of chains of semigroups are obtained by duals and blow-ups, respectively: 

Sp=:B。(Sp)<:;;; B(B。(Sp))=: B1(Sp) <:;;; • • • <:;;; B(Bh(Sp)) =: Bh+1(Sp) <:;;; • • • 

SP=: Lo(SP) <:;;; L(Lo(SP)) =: L1(SP) <:;;; • • • <:;;; L(Lh(SP)) =: Lh+1(SP) <:;;; • • • 

If these sequences coincide, the semigroup S is called the p-Arf numerical semigroup. 

ぷS)=(3（Sp)and入p(S)=入（ふ）denotethe least integers such that B/3p(S) = L入p(S)=N。•

Two chains play a role to characterize classes of certain local Noetherian domains. 

The following is a generalization of the result in [3]. 
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Proposition 7. FoT a nonnegative integeT p, letふ(A)be a p-nume'rical semigmup with 
canonical f oTm〈A〉.Then

(i) gp(Bp(A)) = gp(Sp(A)) -£0(p), wheTe £0(p) is the least non-zem element of Sp(A). 

(ii) Lp(A) =〈ハ(p)-fo(P), £2(P)―fo(P),..., Ca,-1(P) -fo(P)〉．

Example. For A=  {5, 9, 16}, we see that 

S0(A) = {O, 5, 9, 10, 14, 15, 16, 18, 19, 20, 21, 23，←｝， 

閻＼S0(A)= {1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 17, 22}. 

So, we see that B。(A)=(M -M) = {O, 5, 9, 10, 11, 14, 15, 16, 18，→｝． Hence, g0(S0(A))-
化(0)= 22 -5 = 17 = g0 (B。(A)).
Since 2M = {10, 14, 15, 18, 19, 20, 21, 23，→｝， we get (2M -2M) = {O, 5, 9, 10, 11, 13,→ 

}. Since 3M = {15, 19, 20, 23，→｝， we get (3M -3M) = {O, 4, 5, 8，→｝， which is also 

equal to (4M -4M) because 4M = {20, 24, 25, 28，→｝． Thus, L(S) =〈5,9 -5, 16 -5〉=

〈4,5,11〉=｛0,4,5,8，→｝ ＝ Uい(hM-hM). 
Since 

G1 (A) = {O,..., 24, 26, 27, 28, 29, 31, 33, 38}, 

S1 (A) = {25, 30, 32, 34, 35, 36, 37, 39, H}, 

we see that B1(A) =（ふ(A)-S1 (A)) = {O, 5, 7, 9, 10, 11, 12, 14，→｝． Hence, g1(S1(A)) -
瓜1)= 38-25 = 13 = g1(B1(A)). In addition, B?l = {0,5, 7,9，→｝， BP)= {0,2,4，H}, 
B戸＝｛0,2,H}and Bり＝ N.Since 2ふ(A)= {50, 55, 57, 59, 60, 61, 62, 64，→｝， we get 
(2S1(A)-2S1(A)) = {O, 5, 7, 9, 10, 11, 12, 14，H }, which is the same for (hS1(A)-S1(A)) 

whenh：：：：： ＆ H血⑰＇ム岱） ＝B1(S) = {3゜―25は｝2―25,34ー 25,35—25,36―25,37― 25,39-
25，H }. Similarly, L~2l (S) = {O, 2, 4, 5, 7, 9,•}, L~3\S) = {O, 2，→｝ and £~41(S) = N。・
Since S2(A) = {41,45,46,48,50，→｝， we see that B2(A) = {O, 5, 7, 9，→｝， B；2)（A) ＝ 
{0,2,4，→｝， B2(A)C3l = {O, 2,→｝ and B~4\A) = N。.Wehave g2(S2(A)) -£0(2) = 49 -
41 = 8 = g1(B2(A)). In addition, L2(S) = {0,4,5, 7，→｝ ＝〈45-41, 46 -41, 48 -41, 50 -41〉

and Lり(S)= N。•

7 p-Arf -Arf numerical semigroup 

A numerical semigroup S is called an Arf numerical semigroup if for every x, y, z E S 

such that x 2": yミz,then x + y -z E S. Arf semigroups help to characterize Arf rings, 
an important class of rings in commutative algebra and algebraic geometry. 
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Proposition 8. If S(A) for A=  { a, b} with gcd(a, b) = 1 is an Arf numerical semigroup, 

then Sp(A) is also an Arf numerical semigroup. 

Proof. Assume that for every x, y, x E SP such that x 2". yミz.We write x, y and z in 

the standard form as x = ak1 + bh1, y = ak2 + b加 andz = ak3 + bh3. Then by Lemma 

5, k; 2". pb (i = 1, 2, 3). Put x'= x -pb = a(k1 -pb) + bh1, y'= y -pb = a(ky -pb) + bhy 

and z'= z -pb = a(k3 -pb) + bh3. Since k1 -pb 2". 0 and h; 2". 0 (i = 1,2,3), we 

get x', y', z'E S with x'2". y'ミz.As S is an Arf, we have x'+ y'-z'E S. Hence, 

x'+ y'-z'has the standard form x'+ y'-z'= ak。+bh。withk。,h。2".0. Then by 
x + y -z = x'+ y'-z'+ pab = a(pb + k。)＋bh。andLemma 5, we have x + y -z E Sか

so SP is also an Arf. ロ

Proposition 9. Let S = S(A) be an Arf numerical semigroup with a= min(A). For a 

nonnegative integer p, let p-conductor be cp, that is, cP = gp(A) + l.写denotesthe residue 

modulo a, that is Cp三写 (moda) with O ::;写<a.Then, we have 

(i) m陀＝｛％ + ~+a+ I ~u,~ 三 0 (moda) 
Cp―% +a+ l othe加 ise.

(ii) m昆＝ Cp―写十a-l. 

Proof. As a f gp(A), we see that cp季1(mod a). Let cp三 0(mod a). Since ah+ l ff_ SP 
(p） and ah+ a -l ff_ふforh < cp/a, we have miP) = a(cp/a) + l = Cp + l and mt~1 = 

a(cp/a) + a -l = cp + a -l. 

Let Cp羊0(mod a). Since ah+ l ff_ふandah+a-l ff_ふforh < (cp―写）／a,we have 
m位1= a(（％ー百）／a+l) + 1 = cpー百＋a+land m位1= a((epー百）／a)+a -l = 
Cp―写＋a-l. ロ

For a nonnegative integer p and every i E {O, 1,... }, there is a positive integer kt) such 

that mり＝ kiP)a+ i. Then (k炉，kip),...,k?~ , k';;,'_!_1) are called p-Kunz coordinates of Sp, 

Proposition 10. Let Sp(A) be an Arf numerical semigroup with a= min(A), p-conductor 

Cp and p-Kunz coordinates (kap)'kt)'...'ki叫）． Then,

副＝臼land k巳＝［？］． 

Proof. When Cp三 0(mod a), by Lemma 9, we have m陀＝ K砂a+ 1 = Cp + 1 and 
m巳＝Kど伍＋a-1 = cp + a -1. Hence, k陀＝ K訊＝ cp/a.When cp苧0(mod a), by 
Lemma 9, we have m陀＝ kiP)a+l= cP―写十a+landm巳＝ ki叫a+a-1= cP―写十a-1.
Hence, k陀＝（Cp―写）／a+1 and ki叫＝（Cp―写）／a. ロ
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