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NEWFORM THEORY FOR GLn 

PETER HUMPHRJES 

1. INTRODUCTION 

Let Mk(q, x) denote the finite-dimensional vector space of holomorphic modular forms of 
weight k, level q, and nebentypus X, where x is a primitive Dirichlet character of conductor 

qx I q. The classical theory ofnewforms due to Atkin and Lehner [AL70] states that for each q'I q 
with q'=/=q and q'三 0(mod qx) and for each£ I f!,, the function（兄f)(z):= /(£z) defines an 

q 

element of Mk(q, x) whenever f E Mk(q', x). We call Ld an oldform. Moreover, the orthogonal 
complement with respect to the Petersson inner product of the vector subspace of oldforms 
has an orthonormal basis consisting of newforms, which are eigenfunctions of the n-th Hecke 

operator not just for each positive integer n for which (n, q) = 1 but for all n EN. 
Casselman [Cas73], building on the seminal work of Jacquet and Langlands [JL70], gave an 

幽 licreformulation of the Atkin-Lehner theory of newforms. Due to the fact that automorphic 

representations 1r of GL2（紐） havea tensor product factorisation in terms of representations 
of GL2(~) and GL2(Qp) for each prime p, this reformulation is purely local and is in terms of 
distinguished vectors in certain classes of representations of GL殴 P)determined in terms of 
congruence subgroups. Such a theory of newforms has been extended to the setting of generic 
irreducible admissible smooth representations of GLn(F), where F is a nonarchimedean local 
field [JP-S881]. Below, we discuss some aspects of this theory, its recent development in the 
archimedean setting by the author, and mention some open questions in this field. 

2. NONARCHIMEDEAN NEWFORM THEORY FOR GLn 

2.1 .1. Representations. Let F be a nonarchimedean local field, so that F is either a finite 
extension of the p-adic numbers (Qp for some prime p or F is the field of formal Laurent series 
凡((t)).Write O for the ring of integers of F and p for its maximal ideal, and set q := #0/p・

Given representations（町，V1r1),...,（元，V叫 ofGLn1 (F),..., GLれr(F),wheren叶•··+nr = n, 
we form the representation 1r1図...図町 ofMp(F), where図denotesthe outer tensor product and 
Mp(F) denotes the block-diagonal Levi subgroup of the standard (upper) parabolic subgroup 

P(F) = P加，．．”ぃ(F)of GLn(F). We then extend thi is representation trivially to a representation 

of P(F). By normalised parabolic induction, we obtain an induced representation (1r, v;砂of

叫 (F),

1r := Ind闘芦図7rが
j=l 

where V1r denotes the space of smooth functions f: GLn(F)→V1r1 0 ・ ・ ・ 0 V1rr that satisfy 

f(umg) =如（m）叫叩） R ・ ・ • R元(mr)・ f(g), 

for any u E Np(F), m = blockdiag(m1,...,mr) E Mp(F), and g E GLn(F), and the action of 
7r on V1r is by right translation, namely (1r(h) • f)(g) := f(gh). We call 7r the isobaric sum of 
1r1,..., 7rr, which we denote by 

7r=田巧・
j=l 

A representation 1r of GLn(F) is said to be an induced representation of Whittaker type if it is 
the isobaric sum of 1r1,..., 7rr and each 7rj is irreducible and essentially square-integrable. If each 
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巧 isadditionally of the form O"j R ldetltj, where O"j is irreducible, unitary, and square-integrable, 
and況(t1)2 ・ ・．ミ況(tr),then 1r is said to be an induced representation of Langlands type. Every 
irreducible admissible smooth representation 1r of GLn(F) is isomorphic to the unique irreducible 
quotient of some induced representation of Langlands type. If 1r is also generic, so that it has 
a Whittaker model W(1r，ゆ）， thenit is isomorphic to some (necessarily irreducible) induced 
representation of Langlands type [CS98]. 

2.2. Newform Theory. Let K = Kn := GLn(0) be the maximal compact subgroup of GLn(F), 
which is unique up to conjugation. For a nonnegative integer m, we define the following finite 
index subgroup of K: 

的 (p門：＝ ｛k EK: kn,l,..., kn,n-l, kn,n -l E炉｝．

Given an induced representation of Langlands type (1r, v;サofGLn(F), we define the vector 
K1（忙）subspace V,;'11v I of V,r consisting of K1(Pm)-fixed vectors: 

V1rK1（炉） ：＝ ｛v E V1r : 1r(k) • v = v for all k E K1（炉）｝．

The following theorem is due to Casselman [Cas73, Theorem 1] for n = 2 and Jacquet, 
Piatetski-Shapiro, and Shalika for arbitrary n. 

Theorem 2.1 (Jacquet-Piatetski-Shapiro-Shalika [JP-S881, Theoreme (5)]). Let (1r, V1r) be an 
induced representation of Langlands type of GLn(F). There exists a minimal nonnegative integer 

K1（砂）m for which v; is nontrivial. For this minimal value of m, v; K1（炉）．is one-dimensional. 

Definition 2.2. Wc dcfinc thc conductor cxponcnt of 1r to be this minimal nonnegative integer 
m and denote it by c(1r); we then call the ideal p心） theconductor of 1r. The newform of 1r is 

kl(Pe(T)) 
defined to be the nonzero vector v0 E v; , unique up to scalar multiplication. 

The uniqueness of the newform may be thought of as being a multiplicity-one theorem for 
newforms. The reason for naming this distinguished vector a newform is due to its relation to the 
classical theory of modular forms: as shown by Casselman [Cas73, Section 3], an automorphic 
form on GL2（的） whoseassociated Whittaker function is a pure tensor composed of newforms 
in the Whittaker model is the adらliclift of a classical newform in the sense of Atkin and Lehner 

[AL70]. 

If c(1r) = 0, so that K1(pc(1rl) = K, then 1r must be a spherical representation and we say 
that 1r is unramified. If c(1r) > 0, then 1r is said to be ramified. In this sense, the conductor 
exponent is a measure of the extent of ramification of 1r: it quantifies how ramified 1r may be. 
Moreover, the conductor exponent is additive with respect to isobaric sums and appears in the 
epsilon factor associated to 1r. 

Theorem 2.3 (Jacquet-Piateski-Shapiro-Shalika [JP-S883, Theorem (3.1), Section 5]). For an 
induced representation of Langlands type 1r = 1r1田...田叩 ofGLn(F), we have that 

印＝又（ 叫
J=l 

Moreover, the epsilon factor c(s，戸） satisfies

c(s,元ゆ） ＝ e (；，7f,心） q—c(,r)(s-½). 

粕（pc("))
2.3. Oldform Theory. While Jacquet, Piatetski-Shapiro, and Shalika merely show that v,; 

kl（砂）fV,; is one-dimensional, one can also calculate the dimension of V,;"1¥P J for all m：：：：叫1r)in terms of 
a binomial coefficient; for n = 2, this is due to Casselman [Cas73, Corollary to the Proof], while 
Reeder h邸 proventhis result for arbitrary n. 
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Theorem 2.4 (Reeder [Ree91, Theorem 1]). Let (1r, V1r) be an induced representation of Lang-
lands type of GLn(F)疇 n：：：： 2. We have that 

dImV7rK町） ＝ ｛に― C:7f〗]n- 1) tfm ：：：：心），

0 otherwise. 

Casselman and Reeder also give a basis for each of these spaces in terms of the action of 
K1（炉）certain Hecke operators on the newform. Form> c(1r), we call V,;"1\~ 1 the space of oldforms 

of exponent m. Once again, the reason for naming these distinguished vectors oldforms is due 
to their relation to the classical theory of modular forms: an automorphic form on GL2(AQ) 
whose associated Whittaker function is a pure tensor composed of Whittaker newforms at all 
but finitely many places and of Whittaker oldforms at the remaining places corresponds to an 
oldform in the sense of Atkin and Lehner [AL70]. 

2.4. K-Types. Since 1r is admissible, HomK(T叫K)is finite-dimensional for each irreducible 
smooth representation T of K. We say that such a representation T is a K-type of 1r if 

HomK(r,1rlK) is nontrivial, and we call dimHomK(r,1rlK) the multiplicity of Tin Jr. The 
complexity of an irreducible smooth representation T of K can be measured by its level m, which 

is the least nonnegative integer m for which T factors through the finite group GLn(O/炉）．
In [Hum22], the author proved the existence of a distinguished K-type of 1r that occurs with 
multiplicity one and is closely associated to the newform and the conductor exponent. 

Theorem 2.5 ([Hum22, Theorem 4.11]). Let (1r, V,サbean induced representation of Langlands 
type of GLn(F). Among the K-types of 1r whose restriction to 

Kn-1,1 := { (~ ~) E Kn: a E Kn-I, b E Mat(n-l)x1(0)} 

contains the trivial representation, there exists a unique K -type r0 of minimal level. Furthermore, 
T0 occurs with multiplicity one in 1r, the level of T0 is equal to the conductor exponent c(1r), and 

the subspace ofV1r ofT0-isotypic Kn-1,1-invariant vectors is equal to the one-dimensional subspace 
K1(pc(")) 

V;" ¥¥ ・ ・ 1 spanned by the new form v0. 

Definition 2.6. We call the distinguished K-type T0 the newform K-type. 

The author additionally showed that spaces of oldforms can be described in terms of distin-
guished K-types. 

Theorem 2.7 ([Hum22, Theorem 4.11]). Let (1r, V,サbean induced representation of Langlands 

type of GLn(F). For each m ~ c(1r), there exists a unique K-type Tm of 1r of level m whose 
restriction to Kn-1,1 contains the trivial representation. Furthermore, this K -type occurs with 
multiplicity 

(m-c~7r~~n-2), 

and the direct sum indexed by nonnegative integers£ E { c(7r),..., m} of the subspaces of V,r of 

v K1（砂）Te-isotypic Kn-l,l -invariant vectors is equal to V,;'''~ 1, the space of oldforms of exponent m. 

These K-types have a particular structure. If T is an irreducible smooth representation of K 
whose restriction to Kn-1,1 contains the trivial representation, then T has as a model a space of 
spherical harmonics, namely a distinguished subspace of the space C00(sn-l) of complex-valued 
locally constant functions on the p-adic n-sphere 

sn-l := {(x1,...'Xn) E Fn: max{lx1I,...'lxnl} = 1}竺 Kn-1,1¥K.

The decomposition of C00(sn-l) into irreducible K-modules was analysed by the author [Hum22, 

Theorem 2.16] by extending earlier work of Petrov [Pet82]. 
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2.5. Nongeneric Nonarchimedean Newform Theory. Recently, Atobe, Kondo, and Yasuda 
developed some aspects of newform theory for nongeneric representations of GLn(F). 

Theorem 2.8 (Atobe-Kondo-Yasuda [AKY22, Theorem 1.1]). Let (1r, V1r) be a nongeneric 

irreducible admissible smooth representation of GLn(F). Then 1r has a local newform, which is 
invariant under the action of some subgroup of the form 

Kn，入：＝ ｛k EK: ki,j三幻 (mod砂）｝

for some minimal入＝ （ふ，．．．，入n)with OSふs・・・s入n・ Moreover, the conductor exponent 

of 1r is c(1r) =ふ十・・・+心

Some natural questions remain open in this nongeneric setting. 

Question 2.9. Let F be a nonarchimedean local field. 

(1) Is there a theory of oldforms for nongeneric representations of GLn(F)? 
(2) Can one describe the newform of a nongeneric representation in terms of a K -type? 

We expect that a resolution of the latter question must involve branching not just from Kn 
to Kn-1,1, as in the generic setting, but instead branching in stages to smaller subgroups of Kn. 
This branching in stages should involve both branching from 

K~-m+l := { (~ l~_J E Kn : a E Kn-m+l} 

to 

Kn-m,m :=｛（［こ） EKn : a E Kn-m, b E Mat(n-m)xm(('.)）} 
and from Kn-m,m to Kn-m, where m E {1,..., n -1 }. 

3. ARCHIMEDEAN NEWFORM THEORY FOR GLn 

3.1. Representations. We now turn our attention to the archimed e archimedean setting, so that F is an 
archimedean local field, namely either F＝股 orF = C. We define induced representations of 
Langlands type of GLn(F) in the same fashion as in the nonarchimedean setting. As well as 
being admissible and smooth, such a representation is additionally a Frechet representation of 

moderate growth and of finite length. 

3.2. K-Types. One cannot define the newform of an induced representation of Langlands type 

of GLn(F) with F archimedean in terms of congruence subgroups, since GLn(F) lacks compact 
open subgroups akin to K1（炉）． Instead,we proceed directly via K-types, where K denotes the 
maximal compact subgroup of GLn(F), which is unique up to conjugacy, namely 

O(n) if F＝艮，

k=Kn = ｛U(n) ifF=C. 

Since 1r is admissible, HomK(T叫K)is finite-dimensional for each irreducible representation 
T of K. We say that such a representation Tis a K-type of 1r if HomK(T，虚） isnontrivial, 
and we call dim HomK(T, 1rlK) the multiplicity of T in 1r. The complexity of an irreducible 
smooth representation T of K can be measured by its Howe degree m = degT, which is defined 

by degT:＝こ如 I叫 with(μ1,..., μn) Eか thehighest weight of T. In [Hum20], the author 

proved the existence of a distinguished K-type of 1r that occurs with multiplicity one and defined 
the newform and the conductor exponent via this K-type. 

Theorem 3.1 ([Hum20, Theorem 4.7]). Let (1r, V1r) be an induced representation of Langlands 
type of GLn(F). Among the K-types of 1r whose restriction to 

K~-1 := { (~『） EK: a E Kn-I} 
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contains the trivial representation, there exists a unique K-type T0 of minimal Howe degree. 

Fu仕hermore,T0 occurs with multiplicity one in 1r and the subspace of V,r o斤 0-isotypic K~_ 1― 

invariant vectors is one-dimensional and spanned by a vector v0 that is unique up to scalar 
multiplication. 

Definition 3.2. We call the distinguished vector v0 the newform, the distinguished K-type T0 
the newform K -type, and the distinguished nonnegative integer c(7r) := deg 7° the conductor 
exponent. 

Just as in the nonarchimedean setting, the conductor exponent is additive with respect to 
isobaric sums and appears in the epsilon factor associated to冗

Theorem 3.3 ([Hum20, Theorem 4.15]). For an induced representation of Langlands type 

7r = 7rl巳・・ •田元 of GLn(F), we have that 

匂＝ど（ 叫
J=l 

Moreover, the epsilon factor c(s, 7r，心） satisfies

c(s, 1r,心） ＝ i―c(,r）・

The author additionally showed that spaces of oldforms can be described in terms of distin-
guished K-types. 

Theorem 3.4 ([Hum20, Theorem 4.12]). Let (1r, V,サbean induced representation of Langlands 

type of GLn(F). For each m 2 c(1r) for which m 三 c(1r)(mod 2), there exists a unique K-
type Tm of Jr of Howe degree m whose restriction to K~-I contains the trivial representation. 
Furthermore, this K -type occurs with multiplicity 

（m-炉＋n-2）. 
n-2 

Definition 3.5. For each m > c(1r) for which m 三 c(1r)(mod 2), we call the subspace of V,r of 
Tm-isotypic K~_1-invariant vectors the space of oldforms of exponent m. 

Note that if T is an irreducible representation of K whose restriction to K~_1 contains 
the trivial representation, then T has as a model a space of spherical harmonics, namely a 
distinguished subspace of the space C00(sn-I) of complex-valued locally constant functions on 
the n-sphere 

sn-1 := ｛ ｛（m,．．. 9 %） E町：吋＋・・・＋社＝ 1｝ if F ＝恥

{(x1,...,xn) E (Cn: XI可＋・・・＋ ％写＝ 1} if F = C, 

~Kい＼K.

The decomposition of C00(sn-I) into irreducible K-modules is simply the classical theory of 
spherical harmonics. 

3.3. Nongeneric Archimedean Newform Theory. As yet, there is no newform theory of 
nongeneric representations of GLn(F) when F is archimedean. One can raise some natural 
questions in this nongeneric setting. 

Question 3.6. Let F be an archimedean local field. 

(1) Is there a theory of newforms and oldforms for nongeneric representations of GLn(F)? 
(2) Can one describe the newform of a nongeneric representation in terms of a K -type? 
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Once more, we expect that a resolution of the latter question must involve branching not just 
from Kn to Kい， asin the generic setting, but instead branching in stages from 

K~-m+l :={(]こ） EKn: a E Kn-m+l} 

to K~-m, where m E {1,..., n -1}. 

4. RANKIN-8ELBERG INTEGRALS 

4.1. The Test Vector Problem. There is a close connection between newform theory and the 
theory of test vectors for Rankin-Selberg integrals. We recall that given induced representations 
of Whittaker type 7r of GLn(F) and 1r'of GLm(F) with m::; n, and given Whittaker functions 

WE  W(1r，ゆ） andW'E W(1r'，石）， thelocal GLn x GLm Rankin-Selberg integral is defined by 

¥.ll(s, W, W') := J W (i ln~m) W'(g) ldetglsーデ dg form< n, 
n-m 

Nm(F)¥ GLm(F) 

w(s,W,W',<I>) ：=J  W(g)W'(g)<I>(eng) ldetgls dg form= n, 

Nn(F)¥ GLn(F) 

where<I> Eダ (Mat1xn(F))is a Schwartz-Bruhat function and en := (0,..., 0, 1) E Matixn(F) = 
戸． Theseintegrals converge absolutely for況(s)sufficiently large and extend meromorphically 
to the entire complex plane. 

The Rankin-Selberg integral is always a holomorphic multiple of the Rankin-Selberg L-
function. In particular, for nonarchimedean F, the Rankin-Selberg L-function L(s, 1r x 1r') is the 
generator of the q q8, q-8]-fractional ideal of (C（い） generatedby the family of Rankin-Selberg 

integrals w(s, W, W') (or w(s, W, W',<I>)ifm=n) with WEW(1r，ゆ） andW'E W（兄屈） （and 
<I> €ダ(Mat1xn(F)) if m = n). For archimedean F, the quotient w(s, W, W')/L(s,1r x 1r') (or 
w(s, W, W',<I>)/ L(s, 1r x 1r') if m = n) is entire and of finite order in vertical strips. 

While this quotient is always entire regardless of the choice of Whittaker functions W and 
W'(and Schwartz-Bruhat function<I>if m = n), for many applications, one requires something 
stronger, namely that for particular choices of W, W', and<I>'，this quotient be nicely behaved 

in particular, nonvanishing apart from a prescribed collection of values of s E C. When 
the representations 1r and 1r'are both unramified, one can take W and W'to be the spherical 
Whittaker functions, and additionally explicitly choose the Schwartz-Bruhat function<I>ifm=n, 
such that this quotient is exactly eq叫 to1. This motivates the following problem. 

Test Vector Problem. Given induced representations of Langlands type 1r of GLn(F) and3' 

of GLm(F), determine the existence of Whittaker functions WE  W(1r，心） andW'E W(1r'，心），
and additionally a Schwartz-Bruhat function<I> Eダ (Matixn(F))if m = n, for which 

w(s, W, W') form< n, 

L(s,T X7r'） ＝ {w(s,W,W'，<I>） form = n. 

We call such a tuple (W, W'), or a triple (W, W',<I>)if m = n, a test vector for the Rankin-
Selberg integral. 

4.2. Newforms as Test Vectors. When m E {n, n -1} and the representation 1r'of GLm(F) 
is spherical, newforms are test vectors. The case m = n -1 is as follows. 

Theorem 4.1. Let 1r be an inducedだ Pだ sentationof Langlands type of GLn(F). The newform 
W0 E W(1r，心） isthe unique Whittaker function that is both right K~_1 —invariant, so that 

w0 (g (~『））＝ wo(g)
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for all k E Kn-1, and is such that for any spherical representation of Langlands type 1r'of 

GLn-1(F) with spherical Whittaker function W'0 E W(1r'，石），

w(s, w, W'0) = L(s, Jr X 1r') 

for扮(s)sufficiently large. 

For F nonarchimedean, this is due to Jacquet, Piatetski-Shapiro, and Shalika [JP-8881, 
Theoreme (4)] (though the proof was incomplete and was independently corrected by Jacquet 
[Jac12] and Matringe [Mat13, Corollary 3.3]). For F archimedean, this is [Hum20, Theorem 
4.17]. An analogous result holds for the case m = n. 

Theorem 4.2. Let 1r be an induced representation of Langlands type of GLn(F). Then there 
exists a choice of bi-K -finite Schwartz-Bruhat function <P0 Eダ (Mat1xn(F))such that for 
any spherical representation of Langlands type 1r'of GLn(F) with spherical Whittaker function 

W10 E W(1r'，厄）， thenewform W0 E W(1r，心） of1r satisfies 

w(s, W0, W10，<P0) = L(s, Jr X 1r1) 

for扮(s)sufficiently large. 

For F nonarchimedean, this is due to Kim [KimlO, Theorem 2.1.1]; for F archimedean, this 
is [Hum20, Theorem 4.18]. 

What about the case m < n -1? For F nonarchimedean, the newform is again a test vector 
for the Rankin-Selberg integral. For F archimedean, on the other hand, it is widely believed 
that no test vector exists. 

4.3. Test Vectors for Ramified Representations. When both 1r and 1r'are ramified, new-
forms are no longer test vectors for Rankin-Selberg integrals, and instead one must look elsewhere 
to construct test vectors. For example, for F archimedean, there are certain representations 
for which Whittaker functions lying in the minimal K-type are test vectors [IM22]. In general, 
however, we do not yet have a way of systematically determining test vectors for Rankin-Selberg 
integrals. 

Question 4.3. Can one systematically determine K -finite test vectors for Rankin-Selberg inte-
grals? 

Let us briefly discuss how one might go about this in the case m = n -1. By the lwasawa 
decomposition, we may write 

w(s, W, W') = 1い（F)ldet a'ls-½ 8~占 (a'）！屈lw(（ば『）（ば『）） W'(a'k')dk'dxa' 

Here An-1(F) denotes the subgroup of GLn-1(F) of diagonal matrices and Dn-1(a') denotes 
the modulus character. Suppose that W E W(1r，心） isright K-finite Whittaker function, so 

that the action of 1r(k) on W fork E Kn generates a finite-dimensional representation T of K; 
similarly, suppose that the action of 1r'(k') on W'fork'E Kn-1 generates a finite-dimensional 
representation r'of Kn-1・ By Schur's lemma, the inner integral vanishes unless T R r'IKn-i 
contains the trivial representation of Kn-I・

With this in mind, we expect that there exist test vectors when r, r'are such that the 
representation T@T1 of Kn x Kn-1 is minimal among all Kn x Kn-1 types of 1rR1r'in some explicit 
sense. For F nonarchimedean, this should be in the sense of the level of this representation, 
while for F archimedean, this should be in the sense of the Howe degree of this representation. 
Finally, the level or Howe degree should be associated to the conductor exponent c(1r x 1r') of 
1r x 1r', which appears in the epsilon factor as 

e(s,T X T'，ゆ） ＝ ｛e （；，T X→)q―c(TX7r'）（s-i) if Fis nonarchimedean, 

i-c(7rX7r') if F is archimedean. 
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4.4. Nongeneric Representations. Rankin-Selberg integrals involve Whittaker functions and 
hence are only defined for representations that admit a Whittaker model. Nonetheless, there 

ought to be a theory of test vectors for other period integrals for nongeneric representations. 
In [AKY22], Atobe, Kondo, and Yasuda investigate Rankin-Selberg integrals in the Zelevinsky 

models and in the Shalika models, which are well-defined even for nongeneric representations. 

They prove that if F is nonarchimedean, the newform is a test vector for these period integrals 
when the second representation is unramified. Once more, there are natural open questions in 

this regard. 

Question 4.4. 

(1) Can one extend the test vector result of [AKY22] to the setting of F archimedean? 
(2) Can one systematically determine K -finite test vectors for Rankin-Selberg integrals in the 

Zelevinsky models and in the Shalika models? 

5. OTHER GROUPS 

We end by discussing the problem of generalising the notion of newforms and of test vectors 

to groups other than GLn. 

For nonarchimedean F, there has been a great deal of recent progress in defining newforms via 

congruence subgroups for groups G other than GLn. See, for example, [RS07] for G = PGSp小
[Oka19] for G = GSp4, [Che22a, Tsa16] for G = SOn+l,n, [AOY22, Che22b] for G = Un+1，n, 
and [Ato23] for G = Un,n・ In several cases, it has additionally been shown that newforms for 
these groups are test vectors for certain period integrals. For example, in the case of G = GSp4, 
the period integral of interest is the GSp4 x GL2 Rankin-Selberg integral: the newform is a test 

vector for this integral when the representation of GL2 is spherical. 

From the previous discussion for GLn, many open questions naturally arise. We state several 

below as motivation for researchers in the field. 

Question 5.1. 

(1) Can one characterise newforms for groups other than G = GLn via K-types? 
(2) Can one determine a theory of newforms for groups other than G = GLn when F is 

archimedean? 

(3) Can one determine a theory of newforms for groups other than G = GLn when the represen-
tation is nongeneric? 

(4) Can one systematically determine K -finite test vectors for period integrals for groups other 

than G = GL昇

REFERENCES 

[AL70] A. 0. L. Atkin and J. Lehner, "Hecke Operators on I'o(m)", Mathematische Annalen 185:1 (1970), 
134-160. 

[Ato23] Hiraku Atobe, "Local Newforms for Generic Representations of Unramified Even Unitary Groups I: 
Even Conductor Case", preprint (2023), 34 pages. 

[AKY22] Hiraku Atobe, Satoshi Kondo, and Seidai Yasuda, "Local Newforms for the General Linear Groups 
over a Non-archimedean Local Field", Forum of Mathematics Pi 10:e24 (2022), 1-56. 

[AOY22] Hiraku Atobe, Masao Oi, and Seidai Yasuda, "Local Newforms for Generic Representations of Unrami-
lied Odd Unitary Groups and Fundamental Lemma", preprint (2022), 25 pages. 

[Cas73] William Casselman, "On Some Results of Atkin and Lehner", Mathematische Annalen 201:4 (1973), 
301-314. 

[CS98] William Casselman and Freydoon Shahidi, "On Irreducibility of Standard Modules for Generic Repre— 

sentations", Annales Scientifiques de l'Ecole Normale Superieure, 4e serie 31:4 (1998), 561-589. 
[Che22a] Yao Cheng, "Rankin-Selberg Integrals for S02n+1 x GL, Attached to Newforms and Oldforms", Math-

ematische Zeitschrift 301:4 (2022), 3973-4014. 
[Che22b] Yao Cheng, "Local Newforms for Generic Representations of Unramified U加＋1and Rankin-Selberg 

Integrals", preprint (2022), 34 pages. 
[Hum20] Peter Humphries, "Archimedean Newform Theory for GLn", preprint (2020), 56 pages. 



52

NEWFORM THEORY FOR GLn 

[Hum22] Peter Humphries, "The Newform K-Type and p-adic Spherical Harmonics", to appear in Israel Journal 
of Mathematics (2022), 23 pages. 

[IM22] Taku Ishii and Tadashi Miyazaki, "Calculus of Archimedean Rankin-Selberg Integrals with Recurrence 

Relations", Representation Theory 26 (2022), 714-763. 
[Jac12] Herve Jacquet, "A Correction to Conducteur des representations du groupe lineaire", Pacific Journal 

of Mathematics 260:2 (2012), 515-525. 
[JL70] H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture Notes in Mathematics 114, 

Springer-Verlag, Berlin, 1970. 
[JP-S881] H. Jacquet, I. I. Piatetski-Shapiro, and J. Shalika, "Conducteur des representations du groupe lineaire", 

Mathematische Annalen 256:2 (1981), 199-214. 
[JP-S883] H. Jacquet, I. I. Piatetski-Shapiro, and J. A. Shalika, "Rankin-Selberg Convolutions", American Journal 

of Mathematics 105:2 (1983), 367-464. 
[KimlO] Kyung-Mi Kim, Test Vectors for Rankin-Selberg Convolutions for General Linear Groups, Ph.D. thesis, 

The Ohio State University, 2010. 
[Mat13] Nadir Matringe, "Essential Whittaker Functions for GL(n)", Documenta Mathematica 18 (2013), 

1191-1214. 

[Oka19] Takeo Okazaki, "Local Whittaker Newforms for GSp(4) Matching to Langlands Parameters", preprint 
(2019), 41 pages. 

[Pet82] E. E. Petrov, "Harmonic Analysis on a 氾—adic Sphere", Soviet Mathematics {Iz. VUZ) 26:11 (1982), 
103-106. 

[Ree91] Mark Reeder, "Old Forms on GLn", American Journal of Mathematics 113:5 (1991), 911-930. 
[RS07] Brooks Roberts and Ralf Schmidt, Local Newforms for GSp(4), Lecture Notes in Mathematics 1918, 

Springer, Berlin, 2007. 
[Tsa16] Pei-Yu Tsai, "Newforms for Odd Orthogonal Groups", Journal of Number Theory 161 (2016), 75-87. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF VIRGINIA, CHARLOTTESVILLE, VA 22904, USA 
Email address: pclhumphrieslilgmail. com 
URL: https: //sites. google. com/vie,,/peterhumphries/ 


