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L series and orthogonality in number theory 

Eric Stade 

Abstract 

We consider the importance of orthogonality in number theory, and particularly 
in the theory of L series, through two distinct contexts: Dirichlet L series and L 
series attached to Maass cusp forms. The former, more f皿 iliar,context will be 
viewed in a perhaps nonstandard light, so as to help elucidate and illuminate the 
latter, less familiar context. 

Our discussion culminates with some recent results concerning orthogonality of 
Fourier coefficients of Maass cusp forms on the generalized upper half plane. 

l L series are good things 

Our first central observation and main conviction is this: 

L series, meaning series of the form 

00 

L(s, (am))= Lamm―s' 

m=l 

where s is a complex number and (am) is a sequence of complex numbers, are of critical 

importance in many areas of number theory. 

We support this conviction with some examples. 

Example 1.1. The Riemann zeta function 

00 

く(s)= L(s, (1)) = L m―8 

m=l 

has applications to the distribution of prime numbers, and to practically everything else 

(in number theory, at least). 

Example 1.2. Let x denote a Dirichlet character mod q. That is, xis a homomorphism 

on (Z / q Z)*, extended to all integers in a natural way (namely, for m E Z and可 the

equivalence class of min (Z/qZ)*, we define x(m) = x（可） if(m, q) = 1, and x(m) = 0 
if (m, q) > 1). The Dirichlet L series 

00 

L(s, x) = L x(m)m―s 

m=l 

is a (the?) key ingredient in the proof of Dirichlet's theorem on primes in arithmetic 

progression-namely, that there are infinitely many primes in the set { nq +a: n E Z>o}, 

if (q, a) = l. 
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Example 1.3. Given an elliptic curve E, the L series 

00 

L(s,E) = L叫 m)m―s,
m=l 

where aE(P), for p prime, measures the number of (x, y) E Z /pZ x Z /pZ that lie on the 
curve mod p (and aE(m) is defined in terms of {aE(P)I pis a prime dividing m}), is a 
powerful tool for understanding the curve. Such L series have applications to things like 
the congruent number problem (which asks: which positive integers arise as areas of right 
triangles with rational sidelengths?) and Fermat's Last Theorem. 

Example 1.4. There are A汎inL series L(s, p, K / k) associated to certain representations 
p of Galois groups of extensions K/k of number fields, with applications to groups of units 
in number fields etc. 

Example 1.5. Given a modular form 

00 

り（z)=L叫m)e2mmz

m=O 

or a cusp Maass form 

如）＝と叫m)尻(|叫y)e2,rimx

mEZ 

of type a on the upper half-plane ~2 = {z = x + iy : x E恥 y> O} (more on ~2 Maass 
cusp forms in Section 2.2.1 below), the L series 

00 

L(s,¢) = L叫m)m―S

m=l 

encodes useful, valuable information aboutの(andvice versa). 

Example 1.6. The previous example generalizes to modular forms and Maass cusp forms 
¢ on the generalized upper half-plane ~n. We'll discuss Maass cusp forms on炉 inSection 

2.2.2 below. 

Of course, L series are not the only good things in number theory. The next good thing 
that we consider is intimately connected to these series. 

2 Orthogonality is a good thing 

Our second central observation and main conviction is this: 

In the study of L series L(s, (a』)， orthogonalityof the am's is often a good thing to study. 

We support this conviction through the consideration of two distinct contexts: (I) Dirichlet 
characters (cf. Example 1.2 above), and (II) Maass forms onザ (cf.Exaniple 1.6 above), 
with particular attention paid to the case n = 2 (cf. Exaniple 1.5 above). 
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2.1 Part I: Dirichlet characters 

In the application of Dirichlet L series L(s, x) to the study of primes in arithmetic pro-
gression, the following orthogonality relation (denoted (ORx), connoting "orthogonality 
relation for Dirchlet characters x") is key: 

Proposition 2.1. (Orthogonality of Dirichlet characters mod q) Defineゃ(q)= 

l(Z /q Z)*I, For given£, m E (Z /q Z)*, we have 

）`五x(f)x(m)＝ふ，m＝ {; :ftここ'e, (ORx) 

the sum being over all Dirichlet characters x mod q. 

It will be instructive to consider a particular (non-standard) kind of proof of (ORx), which 
makes use of indicator functions. 

Proof of (OR砂 Considerthe inner product 

〈f,g〉＝ L f(k)g(k) 
kE(Z/qZ)* 

of functions f and g on (Z / q Z)*. 

Our proof entails computing〈l加恥〉， wherelit and lim are indicator functions on (Z / q Z)*, 
in two distinct ways. Both ways will require the following lemma. 

Lemma. For£ E (Z/qZ)*, de.fine the indicator function恥 on(Z/qZ)* by 

恥(k)= bk,f・ 

Then for any function h : (Z / q Z)＊→<C, we have 

〈h,恥〉＝ h(£).

Proof of Lemma. 

〈h,]_¢〉＝ L h(k)恥(K）＝ L h(k)応＝ h(£). ロ
底 (Z/q Z)* 屈 (Z/qZ)*

Returning to our proof of (0凡）， wenow let £,m E (Z/qZ)*. On the one hand we have, 
by the above lemma with h = ]_如

〈]_m,]_{〉＝ ]_m化） ＝心，m・ (Waylx) 

On the other hand, it's a fact that the set 

位(q)―1l2x: x is a Dirichlet character mod q} (2.2) 

forms an orthonormal basis for the space of all functions on (Z/qZ)*, with respect to the 
above inner product. Because of this we have, for J : (Z / q Z)＊→C and j E (Z/qZ)*, 

1 1 
J(j)=~ L〈J,x〉x(J)＝〉〈x,J〉x(J―)．

cp(q) 
xmodq 

cp(q) 
xmodq 

(2.3) 
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Taking the inner product of each side of equation (2.3) with a function g on (Z / q Z)* 

then gives 

1 
〈f,g〉 ＝ ど 〈x，f〉〈X,9〉.r_p(q) 

xmodq 

In particular, for £,m E (Z/qZ)*, we have 

or, by the lemma, 

1 
〈]_m，恥〉 ＝ ど 〈x，い〈x，恥〉

cp(q) 
xmodq 

1 
〈]_m山〉 ＝区 x(m)x(£)．

孤q)
xmodq 

Comparing (Waylx) with (Way2x) gives us exactly (OR砂

(Way2砂

ロ

Remark 2.4. The above fact, that the set (2.2) of Dirichlet characters mod q forms an 

orthonormal basis for the space of all functions on (Z / q Z)*, amounts to the fact that, 
given Dirichlet characters x and心modq, we have 

；q) ｛E（苔Z)*x(£)心(£)＝い：＝ ｛； ：［ここ'e.

This latter relation (which is a sum over integers£ mod q, for fixed characters x and心）
may be considered "dual" to (ORx) (which is a sum over characters x mod q, for fixed 
integers £ and m). 

Summary: 

• In studying primes in arithmetic progressions, Dirichlet L series are good things to 
consider. 

• In studying Dirichlet L series, orthogonality of Dirichlet characters is a good thing 
to consider. 

• The key orthogonality relation (OR砂maybe deduced by expressing a certain inner 
product in two different ways. 

Remark 2.5. Computing a certain inner product in two different ways and equating 
results, as we did above, amounts -in appropriate circumstances -to invoking a so-called 

trace formula. 

We now turn to a perhaps less familiar, but still in some sense "classical," context for 
orthogonality. 

2.2 Part II: Maass forms on ()n 

2.2.1 The case n = 2 

Consider the Poincare upper half-plane 

~2 = {z = X + iy : X E恥 y> O}. 
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Note that the group S1(2，良） of2 x 2 invertible, real matrices acts on ~2 by linear fractional 
transformations: 

(: !)z=~ ((: !) ESL(2，恥）， zE ~2) 

Define 

r2 = S1(2, Z) = { (: !) E S1(2皇） a,b, c, d E Z} 

We have: 

Definition 2.6. A Maass cusp form on ~汽 of Langlands parameter a E C, is a smooth 
function ¢ : ~2 • (C such that: 

1.の（叫＝の(z) for all, E r2, z E研

2. ¢ is an eigenfunction of the Laplacian differential operator△ = -y立＋互） on釦 2'8y2

訊 witheigenvalue ¼ -a2. That is,△¢ = (¼-ふ）¢.

3. ¢ Eび（戸＼hり， meaning J I¢(z)|2 dxdy< OO, 
戸＼h2 Y2 

where r2\~2 is a fundamental domain for the action of r2 on ~乞

Remark 2. 7. In Definition 2.6, one may replace戸＝ S1(2,Z) with other discrete 

subgroups of S1(2皇）． Forour purposes, though, it will suffice to consider the case 
r2 = SL(2, Z). Similarly, the constructs on ~n, cf. Section 2.2.2 below, have analogs 
whcrc the group rn = SL(n, Z) is replaced by other discrete groups of SL(n，罠）． Butwe 

will not consider these more general situations further in this paper. 

We wish to define an L series L(s, ¢) associated to ¢. To do so, of course, we'll need to 
associate a sequence of aq,(m)'s to¢. This sequence will comprise the Fourier coefficients 

of¢, defined as follows. 

Definition 2.8. (Fourier-Whittaker expansion and Fourier coefficients of a Maass 
cusp form on ~り Let ¢ be a Maass cusp form on ~2, as above. We observe that: 

(a) Because ¢("! z) = ¢(z)'v"(E r2 and z E ~2, and because G ~) E r2, and because 

G ~)z = z+ l, we have cp(z+ 1) = cp(z) Vz E Z, so¢ is I-periodic in x, and therefore 
has a Fourier series 

cp(z) = Lい（y)e2mm四
mEZ 

We call Aq,,m(Y) the mth Fourier-Whittaker coefficient of¢. 

(b) Because ¢ is square-integrable on r八h叫itturns out that Aq,,o(Y) = 0. 

(c) The fact that ¢ satisfies the differential equation△¢ = (¼—心）¢ implies that 

Aq,,m(Y) = 11 cp(z) e―2mmx dx 

must satisfy its own differential equation in y. FACT: the space of smooth solu-

tions to the latter differential equation is spanned by two functions W:炉(lmly)and 

M烈(lmly),where W:烈andM肝arecertain "Whittaker functions." 
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(d) The Whittaker function W.罰y)decays rapidly, while the Whittaker function Ml2l (y) 

grows rapidly, as y→ (X)．The square-integrability of¢ then implies that M烈can-
not appear in the Fourier expansion of ¢. Therefore, 

A¢,m(Y) = a¢(m)Wi2l(lmly), 

for some complex number a¢(m), called the mth Fourier coefficient of¢. 

(e) Putting all of the above together, we find that 

叩） ＝と叫m)WJ2)(lmly)e2rrimx. 

m,eO 

We call (2.9) the Fourier-Whittaker expansion of¢. 

(2.9) 

We are now ready to define our requisite L series L(s, ¢) associated to ¢: namely, we 
define 

00 

L(s,¢) = L叫m)m―s. (2.10) 
m=l 

(In cases of interest, arp(m) and arp(-m) are related, so one need only consider positive 
integers m.) It is known that this series will converge for Res sufficiently large. 

We seek an orthogonality relation for the arp(m)'s. Our goal, in analogy with the earlier 
relation 

1 

r.p(q) 

is to obtain a relation of the form 

00 

区 x(£)x(m)＝ふ，m,

xmodq 

1 

p(T) 
区a叫鳳(m)hj(T)＝鯰＋o(l)
j=l 

as T→ (X) （for fixed integers C, m E幻． Weexplain: 

(ORx) 

(OR¢) 

• p(T) is an explicit "normalizing factor." In fact, p(T) turns out to be essentially a 
power of T. 

• Just as Dirichlet characters form a basis for functions on (Z / q Z)*, so does the 
space of square-integrable functions on 戸＼~2 have a maximal orthonormal set 

伍： jE Z>o} of Maass cusp forms ¢j of Langlands parameter aj. These are the 
釘sappearing in (OR¢)-We arrange them in order of increasing Laplace eigenvalue 

ふ＝¼-a;. (Recall that号＝凡¢jfor each j. It is known that the入／sare real, 
positive -in fact,入 ~ ¼ -and unbounded above.) J - 4 

• The sum on j of the quantities a</>J (R)a¢J (m) in (OR¢) does not actually converge, so 
we need to multiply each summand by a "cutoff function"凡(T).Think of hi(T) as 
being more or less equal to one forふさ T,and O otherwise. (It's not this, exactly, 
but it behaves similarly.) If we could actually take the limit as T→oo, then (OR¢) 
would yield a true orthogonality relation. But we can't, for convergence reasons, so 
we really have an "asymptotic orthogonality relation." Still, we can take T as large 

as we want. 

• The "+o(l)" on the right side of (OR¢) indicates that the sum on the left differs 
from如 bysomething that goes to zero as T gets large. 
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We proceed with the proof of (OR¢). As in the case of (OR妙 ourproof will entail the 
expression of a certain inner product in two ways. This time, we use the inner product 

〈f,g〉=/ f(z)g(z) 
dxdy 

戸＼h2 Y2 

onび（戸＼hり， andinstead of indicator functions]_e and]_m, we use "Poincare series," 
defined as follows. 

Definition 2.11. Given a function g on (0, oo), define the "Whittaker transform" g of g 
by 

如）＝ 100g(y)W罰喜，。 y
(2.12) 

where w;炉isthe Whittaker function of Definition 2.8. 

For z = x + iy E研 let心(z)= e21rix, and let 9T (y) be a function chosen specifically so 

that 

囮(aj)l2=凡（T)/p(T), (2.13) 

where p(T) is the normalizing factor, and hj(T) the cutoff function, appearing in (OR¢)-

Let £ E z+. Also let応 cr2 be the set of matrices of the form (~「） （k E Z). Then the 
Poincare series associated with 9T is the infinite sum 

P£(z) = /!,―lL心（応）gT伍z).

沢；r迄＼戸

Remark 2.14. (a) In the above definition, we use the standard practice of summing 
a function on [)2 over translates by elements I E戸， toget a function on戸＼[)2(that 

is, a function on [)2 invariant under z→1z, for I E r2). Actually, summing over all 
of r2 yields a series that diverges (because of infinite redundancy in summands), so we 

instead sum over応＼戸 It'sreadily checked that, by definition of心and9T, this sum is 
independent of the choice of coset representatives for応 inr叫sothat Pt is well-defined. 

(b) Of course, Pt depends on gr -and therefore on T -as well, but it will be convenient 
to suppress this dependence from the notation. 

Next, we evaluate〈Pm,Pe) in two different ways. The first way will require the following 
deep fact. 

Theorem 2.15. (The Spectral Decomposition of L2(r2\~り） For Res > 1, define 

the S1(2, Z) Eisenstein series Es: [)2→C by 

Es(z)＝ L (Im位）文

'YEr?x, ¥r2 

(Note that the construction of Es is similar to that of Pe, cf. Definition 2.11 above.) Then, 
as a function of s, Es has meromorphic continuation to C, for any z E [)2. Further, there 

exists a maximal o廿honormalset伍｝j=l,2,...of Maass cusp forms on [)2 such that, for 

any f EL刊戸＼hり， wehave 

00 

f(z) = t〈f,り応） ＋les=l/2〈f,Es〉尻(z)ds. 
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For proofs of Theorem 2.15, see, for example, [Art79], [Lan76], and [MW95]. 

We apply the above theorem to Pm, to get 

誓）＝言〈Pm幻〉化(z)+ Les=l/2〈Pm,Es〉Es(z)ds. 

Taking the inner product of either side with Pe then gives us 

00 

〈Pm,Pe〉＝苔几，り〈のj,Pe〉+les=l/2〈Pm,Es〉〈Es,Pe〉ds.

Now the integral on the right hand side can be estimated quite explicitly, and it turns out 
that this integral tends to zero as T→oo. So we get 

00 

〈Pm,Pe)= L〈Pm叫〉〈叫Pe)+o(l) as T→00. (2.16) 
j=l 

We need to examine the sum on j, in (2.16). Regarding the second inner product in this 

sum, we have, by standard techniques, 

〈叱，Pi〉=［叫¢j(z)凡(z)dxyり＝ J戸＼詔叱(z)『＼忍玉）g叫） dxyり
[now interchange the integral with the sum] 

dxdy 
=£―1 と J応）心（応）9T（応）

戸＼h2 Y2 
託ぼ＼r2

[now substitute z→戸z;cpj and dxdy/y2 are invariant under this] 

dxdy 
＝『l-~~o1/r2\h2) cpj(z)心(fz)g叫 z)

7(r叫） y2
祖ぼ＼戸

[the sum of the integrals is the integral of the union] 

=£―1J 的(z)心(£z)g粛 z)
dxdy 

ぼ＼h2 Y 
2 

Now a fundamental domain for the action of応 onf:12 is just {x+iy: x E (0,1], y E 

(0, oo)}. So, recalling that心(z)= e2竺 theabove gives 

oo 1 

〈化，Pe)=『 11001'¢j(z) e-21ri紅 9TMy)dxdy OO ・ z e = £―1 
dy 

o o Y2 ［砂y)［［如）e―21ri£x dx]戸

The quantity in square-brackets is just the匹 Fourier-Whittakercoefficient A的，£(Y)of 
叫 cf.Definition 2.S(a). As we've seen before (cf. Definition 2.S(d)), 

位，e(Y)= a</>,(£)W.訂(£y),

where, again, a</>,(£) is the炉 Fouriercoefficient of叱， andW砂(£y)is a Whittaker 
function. So 

〈<Pj,Pe〉=『いoj(X)9T(ty)W砂(Ry)冑，
o Y 
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or, substituting y→y/£, 

偽，Pf〉＝ a叫）JOO肛 (y)W訂(y)製＝ a叫）訊（叫
o Y 

the last step by the definition (2.12) of the Whittaker transform g. 

We then have 

〈Pm幻〉＝〈¢J,Pm〉=a¢3(m)好（叫，

so that, by (2.16), 

00 

〈Pm,Pり＝ど〈Pm,<Pi)〈叱，Pe)+o(l) 
J=l 

00 

=L％バ鳳(m)|'§r(a叩＋o(l) 邸 T→oo,
j=l 

or, finally, since we have chosen釘（叫 sothat|釘(a叩＝柘(T)/p(T),

〈Pm,Pt〉=p（い芦的化鳳（m）朽(T)+ o(l) as T→00. 

The formula (Way11) constitutes our first way of expressing〈Pm,Pt〉.

(Wayl』

We now derive an a priori different expression, which we shall denote by (Way2砂for

〈Pm,Pt〉.Thistime, we evaluate this inner product not by way of a spectral decomposi-
tion, but instead by simply expanding out one of the Poincare series, and approximating 

the other. Like this: 

〈Pm,Pり＝ J 凡 (z)PeW 
dxdy 

= g-1 凡（z) L叫叫9T伍z)
dxdy 

戸＼Q2Pm(z) Pe(zj ~ = g-1 i2w Pm(z),E~迄＼l｀2 y2 

[now interchange the integral with the sum] 

dxdy 
= £-1 と J 凡 (z)心（応）g，1'（応）

r攣炉
祁,r迄＼戸

[now substitute z→戸z;Pm and dxdy/y2 are invariant under this] 

=£―1と 1(r攣 ） 凡(z)ゆ(£z)釘 (£z)
dxdy 

祖ぼ＼r2
y2 

[the sum of the integrals is the integral of the union] 

=『lf 几 (z)e―2叫肛(£y)
心dy

ぼ＼Q2 y 2 

[use the same fundamental domain for 応＼~2 as before] 

=£―11009TMy) ［J1凡 (z)e―21ri£xdx]脅。。 y

Now几 is,again, a sum over 1 =応＼応 ofterms of the form m-1心(m叫 gr(m,z).
But it turns out that, in the present context, the 1 = Identity term of Pm is the dominant 
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term; all of the other terms contribute o(l) as T→oo. So the above calculations yield 

00 

〈Pm,Pe〉=（加）―1J 叫 y)［J1叩(mz)釘 (mz)e―27ri紅 dx]巽＋ o(l)
0 LJO 

＝ （加）―1[OO 9TMy)釘 (my)［[ e2mmのe―2m{”dx]9 + o(l) y 

[invoke orthogonality of complex exponentials] 

＝如・（加）ー1JOO9T化y)9T(my）悶＋o(l) as T→00. 

o Y 

For carefully chosen 9T, we can show that 

伽）―1JOO釘 (£y)釘 (my)竺＝ 1+ o(l) 。 y2
as T→oo, (2.17) 

so we conclude that 

〈Pm,Pt〉=Dem+o(l) as T→00. (Way2以

The left hand sides of (Way le/>) and (Way2c/>) are equal, whence so are the right hand sides. 
That is, 

1 
00 

p(T) 
ど％，（i）a¢,（m)凡(T)=Ot,m+ o(l), 
j=l 

which is our desired (asymptotic) orthogonality relation (OR砂 口

Remark 2.18. (a) Strictly speaking the Poincare series Pt, as we've defined it, does 

not converge. However, this obstruction is easily treated as follows: we multiply each 
summand in the series defining Pt by an appropriate factor lv(,z) such that the new 
series converges for v sufficiently large, and such that I,。(,z)= 1. We take all inner 
products and do all calculations assuming, initially, that v is large, and then let v→ O 
afterwards. 

(b) Regarding the functions gr，好， and柘(T)figuring in the orthogonality relation (OR¢) 

and its proof, we make a few observations. First: as stipulated in (2.13), and as utilized 
in the above proof, we have the requirement 

団(a叩＝凡(T)/p(T).

Second: our above proof also requires the asymptotic condition (2.17) on gr・

Both of these requirements may be met by taking g,i(a) to be a certain function of 
exponential decay in a汽timesa certain polynomial in a, times some Gamma functions 
depending on a. (Defining好 alsodefines gr, through an inversion formula for the 
Whittaker transform g rt g.) 

Proving that such a function茄 hasthe desired properties, and that the requisite approx-
imations described in the above proof follow, both require explicit information concerning 

(2) 
the Whittaker function W~"1. Here, one especially needs formulas for the Mellin transform 

四 (s)＝JOOW翌(y)y• 巽
o Y 

of W炉．
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It's well-known that, for appropriately normalized W.炉， wehave 

剛 (s)= r(~ り（T)· (2.19) 

Properties of the gamma function (growth estimates, analytic continuation, functional 
equation, etc.) are well-understood, and this makes the necessary estimates and calcula-
tions possible. 

(c) The role played by the Poincare series Pt in the proof of (OR¢) is, in many ways, 
analogous to the role played by the indicator function恥 inthe proof of (OR砂

(d) The first results along the lines of (OR¢) are due to R. Bruggeman [Bru78]. Related 
results have been obtained by P. Sarnak [Sar87]; B. Conrey, W. Duke, and D. Farmer 

[CDF97]; and J.P. Serre [Ser97]. 

2.2.2 The general case 

The above ideas concerning L series and Maass cusp forms on ry2 generalize to the context 
of the "generalized upper half-plane" ryn. The starting point for this generalization is the 
observation that the standard upper half-plane ry2 can be realized as the quotient space 

h2竺 GL(2，股）／（0(2皇） x股＊）．

It then makes sense to define炉 by

ザ＝ GL(n，賊）／（O(n，賊） X股＊）．

All of the above constructs on ry2 then have analogs on ry匹

For n > 2, various orthogonality relations of the form (ORrt,) are known. In the case 
n = 3, such relations were first obtained by D. Goldfeld and A. Kontorovich [GK12], and 
independently by V. Blomer [Blo13]. Related results for酎havebeen obtained by V. 
Blomer, J. Buttcane, and N. Raulf [BBR14]; and by J. Guerreiro [Gue15]. 

Recently, in work with D. Goldfeld and M. Woodbury (see [GSW21] and [GSW22]), we 

have obtained results of the form (ORrt,) on ry叫forall n 2 2. Our results are unconditional 
in the case n :::; 5; for larger n, our proof relies on two conjectures, to be described below 
(See Conjectures 2.23 and 2.26). 

Our proof makes fundamental use of certain Poincare series on ry叫 whichare defined 
analogously to the above Poincare series Pe on ry2 (cf. Definition 2.11). Further, our proof 

on h叫likethe above (sketch of a) proof on ry汽entailsthe evaluation of an inner product 
of two such Poincare series in two different ways— this method amounts to application of 
the Kuznetsov trace formula (see [Kuz81], [CPS90], and [Gol06, Section 11.6]). 

To describe our results, we need to say a few words about harmonic analysis on ry匹 (See,
for example, [Go106] for details and proofs concerning the following discussion.) 

The orthonormal set仇｝j=l,2,… ofMaass cusp forms appearing in Theorem 2.15 has an 
analog in the spectral decomposition ofび(r八炉）， where

rn = SL(n, Z). 

As in the case n = 2, the叱'son ryn are eigenfunctions of the Laplacian differential 
operator there. We assume that these釘sare arranged in order of increasing eigenvalue 
under this Laplacian. 
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In the general case, the叱'sare, in fact, eigenfunctions of all GL(n皇） invariantdiffer-
ential operators on ~n. The eigenvalues of ¢j under these operators may be indexed by a 
Langlands parameter aUl, which is an n-tuple 

心＝（O:ij)'a乳．．．，心） E Cn 

satisfying 

副＋aり＋．．．＋副＝ 0.

Remark 2.20. Earlier (cf. Definition 2.6), we defined the Langlands parameter of a 
Maass cusp form ¢ on ~2 to be a complex number a such that ¢ has eigenvalue ¼ -a2 

under the Laplacian, rather than a complex pair (a1, a2). This is really an abuse of 
notation: to be more consistent with the language of the previous paragraph, we should 

really say that the Langlands parameter of such a ¢, in the case n = 2, is the complex 
pair (a, -a). (Of course 2 1 '¾ -a~=¾ —(-a)~.) 

(In the case of general n, as in the case n = 2, the eigenvalues of a Maass cusp form ¢ 
under the invariant differential operators on ryn are expressible in terms of the Langlands 
parameter a of ¢, but we will not need these precise expressions here.) 

We say that a Maass cusp form ¢ on炉 istempered if all coordinates a; of the Langlands 
parameter for ¢ are purely imaginary. It is known that all Maass cusp forms on ryn are 

tempered, and it is conjectured that the analogous result holds for any n. 

We note, finally, that any Maass cusp formのon炉 hasa Fourier-Whittaker expansion 
involving Fourier coefficients aq,(M) and a Whittaker function W.炉． TheFourier coef-
ficients aq,(M) are indexed by integer (n -1)-tuples M = (m1, m2,..., mn-i), and are 
analogous to the Fourier coefficients a¢(m) of Maass cusp forms on ry汽cf. Definition 

2.8(d). Similarly, the Whittaker function W.炉isanalogous to the function wl2l of Defi-

nition 2.8(c)(d). 

We may now state the following result (cf. [GSW21] for the case n = 4, and [GSW22] for 
the general case). 

Theorem 2.21. (Asymptotic orthogonality on~”）葬 n ：：：： 2. Let伍｝j=l,2,...denote 
the maximal orthonormal set of Maass cusp forms on ryn叩 singin the spectral decompo-

sition ofび(r八炉）． Denotethe Langlands parameter of cpj by 

詞＝（副， a~j),..., a~l). 

Assume that each的 istempered. 

For a positive integer m, denote the Fourier coefficient a¢j((m, 1, 1,... 1)) byふ(m).

Let C, m E Z>o, and assume T, R E恥。 aresufficiently large. Assume that Conjectures 
2.23 and 2.26 below are true (which is known to be the case for n :s; 5). We then have, 

for an appropriate cutoff function h轟， andfor any c: > 0, 

1 
00 

戸 (C)ふ(m)h閃ぶ（砂））
C1TR(（勺）か）＋n-1J=1 

= 8£,m(l+~Ci ・Tl-i)＋叫（伽）干．Tl-n+e)

as T→oo. Here Oc,m is the Kronecker symbol, and c1,..., Cn-l > 0 are constants that 
depend at most on R and n. 
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Remark 2.22. The positive number R figuring in the above theorem is required in our 

proof for technical reasons that make certain estimates possible. 

To describe the conjectures upon which Theorem 2.21 rests, we need to discuss a few 

additional notions concerning analysis on ~匹

We begin with the background necessary to describe the first conjecture. This background 

regards the so-called Langlands Eisenstein series for SL(n, Z). (See [Gol06, Chapter 10] 

for details and proofs concerning these series.) 

The Eisenstein series E8(z) appearing in the spectral decomposition ofび（戸＼hり(cf.

Theorem 2.15) must, in the analogous theory for ~叫 be replaced by a (generally infinite) 

set of functions called Langlands Eisenstein series, denoted Ep,..,(z, s). Here z E炉， sisa 

vector of complex numbers, Pis a parabolic subgroup of GL(n，屈）， and<I> is a Maass cusp 

form associated to P. 

More specifically: there is a parabolic subgroup Pn,,n2,…，nr associated to each partition 

n=n1 +四十・ • • + nr of n. Then a Maass cusp form <I> associated to四，n2,...,nramounts 

essentially to an r-tuple (¢1, ¢2,..., c/Jr), where ¢i is th e constant function 1 whenever 

巧＝ 1,and ¢j Maass cusp form on ~n; whenever巧＞ 1.

Let P = Pn,,n2,...,nr, let <I> be a Maass cusp form associated to P, and let 

s = (s1, s2,...'Sr-1) E cr-1. 

The Langlands Eisenstein series Ep,<1>(z, s) is defined as a sum of translates, over (P n 
『)＼r叫ofcertain "power functions" in z ands times a certain product of the的's.Such 

a sum actually converges only for the real parts of the si's sufficiently large, but E?西(z,s) 
is known to have meromorphic continuation to s E e,r-l. 

Each Langlands Eisenstein series Ep,<1>(z, s) has a so-called Fourier-Whittaker expansion, 

analogous to (but considerably more complicated than) that of Definition 2.8. The typical 

Fourier coefficient in such an expansion will entail Rankin-Se/berg L functions L(s, ¢;; x叫
for all 1さi<jさrsuch that四 巧 ＞ 1.(See [GSW23].) Because our proof of Theorem 

2.21 entails the spectral decomposition onび（戸＼げ） （as was the case for n = 2, cf. Section 

2.2.1 above), and because this spectral expansion involves the Langlands Eisenstein series 

恥，<1>(z,s), our proof of Theorem 2.21 requires certain estimates of L(s, q;i xり

We may now state the first conjecture required to validate Theorem 2.21 for arbitrary 

nミ2.

Conjecture 2.23. (Lower bounds for Rankin-Selberg L-functions) For a Maass 

cusp form q; on f)n with Langlands parameter a=  (a1,..., an), let 

c（¢) = (1 + la叶）（1+ la2|）・・・ (1+ la』)

denote the analytic conductor of¢, as defined by Iwaniec and Sarnak {ISOO}. Let E >。
be fixed, and let ni, ni > l. Then, for <Pi and <Pi Maass cusp forms on SL(ni, Z) and 
SL(nj, Z) respectively, we have the lower bound 

IL(l + it,企X¢j)I :::l吝（c（企）． c（切））―0(ltl + 2)―E:. 

Remark 2.24. Langlands'conjecture that企X 切isautomorphic for SL(n; nj, Z) (for 

n;,巧＞ 1)implies Conjecture 2.23. This implication can be proved via the method of de 

la Valee Poussin, cf. [Sar04]. 
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In the case n; =巧＝ 2,it was proved by Ramakrishnan [RamOO] that ¢; x⑦is automor-
phic for SL(4, Z), thus proving Conjecture 2.23 for nさ4.Further, for n; = 2 and nj = 3, 
it was proved by Kim and Shahidi [KS02] that企X 例isautomorphic for S1(6, Z), thus 
proving Conjecture 2.23 for n S 5. 

The second. conjecture required for our proof of Theorem 2.21 concerns the Whittaker 
function W.炉 thatarises in the Fourier-Whittaker expansion of a Maass cusp form on 

炉 (asdiscussed just before the statement of that theorem). This Whittaker function 
is a function of n -1 positive real variables y1, y2,..., Yn-I, and has a (multiple) Mellin 

transform T,屈 whichis a function of a variable S = (S1, S2,..., Sn-1) E cn-l. 

Remark 2.25. We've seen, in Remark 2.18(b) above, that T.炉maybe written as a 
product of two Gamma functions (cf. equation (2.19)). It was shown by D. Bump 

[Bum84] that T.烈isexpressible as a product of six Gamma functions, divided by a single 
Gamma function. See equation (2.28) below. For n 2'. 4, though, there is no formula for 

Tin) as a simple ratio of Gamma functions; rather, this Mellin transform may be written 

as a multiple integral involving Gamma functions. See [StaOl] and [IS07]. 

At any rate, for general n, as in the case n = 2 (see, again, Remark 2.18(b)), the Mellin 

transform T.炉playsa crucial role in the estimation of various quantities that arise in our 
proof. 

To perform such estimation, we need to assume the following conjecture. 

Conjecture 2.26. Let m, n E Z with 1 < m < n -1: let 8 E Zc,n. Let 2'.0・ 

r(x+n) 
（叫＝ ＝x(x + 1)・・・ (x+n-1).

r(x) 

Then there exists a positive integer r and, for each i with 1さiSr, a polynomial P;(s, a) 
and an (n -1)-tuple I:; E (Z2:0r-1, such that 

T炉(s)=［虹<J2]＜Ti(sm+%+%＋  ＋知）orl苫P，(s,a)T炉(s+ I:;), 

(2.27) 

where the mth coordinate of each I:; is at least 8. Moreover, for each i, we have 

deg(P;(s, a))+ 2II:;I = 8じ）．

We note that the case o = 0 of Conjecture 2.26 is trivial. Moreover, for a given m and n 
with 1 ::::; m ::::; n -1, it's enough to prove the conjecture for o = 1. The case o > 1 then 
follows by applying the case o = 1 to itself iteratively. 

For o = 1 and n = 2, the conjecture follows immediately from equation (2.19) above, 

together with the functional equation r(s + 1) = sr(s).. For o = 1 and n = 3, it follows 
from Bump's formula (see [Bum84]) 

T屈（s)＝ r（亨）r(デ）r（デ）r（T)r(S了）r（デ）
r（デ）

(2.28) 
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(for appropriately normalized W,炉） andthe same functional equation. The case 8 = 1 

and n = 4 of Conjecture 2.26 is a consequence of [ST21, equations (21), (29), and (31)]. 

The case 8 = 1 and n = 5 has been proved by Taku Ishii (personal correspondence). Ishii's 
(5) 

approach entails explicit formulae for n"'(cf. [1S07]), and for the GL(n虞） invariant

differential operators onザ (cf. [I014]). The essential idea here is that, by definition 
(5) 

of the Mellin transform, differential operators on fJ5, acting W~0J, become shift operators 
(5) 

in their action on T//'. Applying these operators judiciously yields the "shift equation" 

(2.27), in the case n = 5 (and 8 = 1). (See [GSW22] for some details on Ishii's approach, 

which can also be applied when nさ4.)

As a final remark, wc notc that similar asymptotic orthogonality relations on GL(n直）
(and on other reductive groups) have been obtained by several other authors, e.g. J. 

Matz and N Templier [MT15]; P. Barnak, S. W. Shin, and N. Templier [SST16], T. Finis 

and J. Matz [FM19], and S. Jana [Jan20], using quite different methods. A unique (to 

our knowledge) feature of our approach, though, is the presence of the "higher order 

asymptotics" 
C;. Tl-n (2 ~ iさn-1). 
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