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AN  INTEGRALITY OF CRITICAL VALUES OF THE 

RANKIN-SELBERG L-FUNCTION FOR GLn X GLn-1 

KENICHI NAMIKAWA 
DEPARTMENT OF MATHEMATICS, TOKYO DENKI UNIVERSITY 

ABSTRACT. This article is a survey on the author's preprint [HMN], where the authors study 
an integrality of critical values of the Rankin-Selberg £-function for GLn x GLn-1 if the 
base field is a totally imaginary field. 

1. INTRODUCTION 

1.1. Motivations and the main result. This article is a report of the author's talk at 
the conference " Analytic and arithmetic aspects of automorphic representations ", which 
was held at RIMS, Kyoto University during 23th to 27th, January, 2023. The author's talk 
was based on the joint work with Takashi Hara and Tadashi Miyazaki ([HMN]), where the 
authors study an integrality of critical values of Rankin-Selberg £-functions for GLn x GLn-l 
over totally imaginary fields. 
Let us briefly recall the history of the study of the critical values of Rankin-Selberg L-
functions for GLn x GL正 1- Manin ([Man72]) and Shimura ([Shi76], [Shi77]) started the 
study of the rationality of special values of Rankin-Selberg £-functions for GL2 x GL1 over 
the rational number field. Following their works, Deligne ([Del79]) introduced the notion of 
critical values and proposed a general conjecture to understand their works as study of a 
rationality of critical values of £-functions attached to pure motives. It is widely believed 
that there exists a pure motive attached to an irreducible cohomological cuspidal automor-

phic representation of GLn. Hence we expect that the critical values of the Rankin-Selberg 
£-functions for them have an algebraic property, although the existence of pure motives at-

tached to it is not yet known. Based on this motivation, Mahnkopf ([Mah05]) and Raghuram 
([RaglO], [Ragl6]) consider a generalization of Manin and Shimura's works to GLn x GLn-1 
(n 2: 2), by using the generalized modular symbol method due to Kazhdan-Mazur-Schmidt 
([KMSOO]). However, an unspecific constant still remains in their formula for critical values, 
which is expected to be non-zero as in [KMSOO, page 98, Question]. It is proved that this 
unspecific constant is non-zoro by Sun ([Sunl 7]), and hence Sun's result implies that the 
generalized modular symbol method is non-trivial. Therefore it is natural to study further 
applications of the generalized modular symbol method, and the one of important applica-

tions should be the construction of Jradic £-functions for Rankin-Selberg £-functions beyond 
the study of the rationality of critical values. 
Based on the work of [KMSOO], Januszewski ([Jan]) constructed p-adic £-functions for 
Rankin-Selberg £-functions, but his interpolation formula still contains an unspecific con-
stant. This unspecific constant prevent us from studying congruences between critical values 
at the different points, since the unspecific constants depend on the critical points. (We 
say critical points if the evaluation of the £-functions at the points is a critical value of the 
£-functions.) This kind of congruences is called Kummer (or Manin) congruences, which is 
one of the expected properties of p-adic £-functions. Of course, the existence of Kummer 
congruences implicitly implies that the critical values must be integral in an appropriate 

sense. The existence of the unspecific constant also makes difficult to define an integrality of 
critical values and to formulate Kummer congruences. 
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In this situation, we decided to calculate explicitly this unspecific constant for the further 
study of critical values of Rankin-Selberg £-functions. We also consider an integrality for 
these critical values. As a result, if the base field is totally imaginary, we obtain an explicit 
formula for the unspecific constant (see (4.1)), which was always an obstruction to discuss 
rationality in the previous works, and we also prove an integrality of critical values with 
respect to an appropriately normalized period without any unspecific constant. See Theorem 
4.1 for the result. 

1.2. Strategy for the study. The ingredients of our study of the integrality are as follows: 

(i) Construction of an appropriate period for automorphic representations; 
(ii) Cohomological interpretation of the Rankin-Selberg zeta integrals; 
(iii) An explicit formula for Rankin-Selberg zeta integrals. 

The first and the most fundamental step is to construct periods for cohomological irre-
ducible cuspidal automorphic representations in an appropriate way for the formulation of 
the integrality of critical values. According to the philosophy in [Del79], the choice of periods 
corresponds to the choice of the lattices on cohomology groups. Mahnkopf ([Mah05]) and 
Raghuram-Shahidi ([RSOS]) defined periods attached to cohomological irreducible cuspidal 
automorphic representations, which are called (Betti-)Whittaker periods, by making choices 
of Whittaker vectors so that an unspecific constant is non-zero, and rational models for a 
local systems on locally symmetric spaces. An implicit choice of a Whittaker vector makes 

impossible to calculate the (namely archimedean) local Rankin-Selberg zeta integral and this 
becomes one of reasons why an unspecific constant appears. Also we can only formulate an 

algebraicity of critical values as !ong as one uses a rational model of local systems. In our 
work ([HMN]), we found appropriate choices of Whittaker vectors which have a good behav-
ior under the local Rankin-Selberg zeta integrals and also appropriate choices of lattices of 
local systems. These choices enable us to formulate an integrality of critical values. 
The second step is to study the cohomological interpretation of Rankin-Selberg zeta in-
tegrals, since the periods are defined in terms of cohomology groups. A general strategy to 
give such a cohomological interpretation is called the generalized modular symbol method in 

[KMSOO], which we have already mentioned. However the explicit relation between cohomo-
logical method and Rankin-Selberg zeta integrals are clarified in few cases: see [Hid94] for 
the case of GL2 x GL1 over general number fields and [HN21] for the case of GL3 x GL2 over 
the rational number field. In [HMN], we give distinguished cohomology classes, which are 
called Eichler-Shimura class, and we write down the Rankin-Selberg zeta integrals by using 
these cohomology classes in an explicit manner. This enables us to discuss the integrality of 
the Rankin-Selberg zeta integrals. 
The third step to give an explicit formula of Rankin-Selberg zeta integrals is basically done 
due to Ishii-Miyazaki ([IM22]). Hence our main considerations in [HMN] are (i) and (ii). 

1.3. Outline of this article. As we have already mentioned, the most fundamental problem 
is to define periods in an appropriate manner. This is done by introducing a lattice for the 

local systems and by making a choice of a distinguished Whittaker vector. Hence, in this 
survey article, we concentrate to give a brief discussion about these two subjects. In Section 
2, we introduce a model of finite dimensional representations which gives an appropriate 
description of our local systems. In particular, the notion of Gel'fand-Tsetlin basis will be 
a fundamental tool, and hence we describe it in some detail. We also recall the definition 
of local systems and critical values in Section 2. In Section 3, we introduce the notion of 
Whittaker periods. To state the definition of Whittaker periods precisely, we will explain an 
explicit description of lattices in cohomolgy groups of local systems, distinguished Whittaker 

vectors and Eichler-Shimura classes there. The main theorem about an explicit formula for 
critical values and their integrality is stated in Section 4. 
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1.4. Basic notations. Throughout this article, F always denotes a totally imaginary num-
ber field. Let IF be the set of embeddings of F into C and均 theset of places of F. Write 
the complex conjugate of * E C as否anddenote by v the complex conjugate of v E均F,(X)・
Then we identify (non-canonically) IF with the {v,VIVE ~F,(X)},and hence regard ~F,(X)as 
a subset of IF. We also denote by ~F,(X) （resp. ~F,fin) the set of infinite (resp. finite) places 
of F. Define FA to be the ring of adらlesof F and FA,(X)(resp. FA,fin) denotes the ring of 
infinite (resp. finite) adeles of F. Similarly, for an adもlicobject XA, the symbol XA,(X) （resp. 
XA,finぷ (vE ~F)) denotes the infinite part (resp. finite part, v-component) of XA. We 
also let Xs = ITvESぷ fora subset S C翫
For cohomological irreducible cuspidal automorphic representations 7r(n) of GLn(FA) and 

7f(n-l) of GLn-1(?心， letL(s, 7r(n) X 7r(n-l)) = ITvEI;F Lv(s，亭 x1rin-l)) denote the (com-
plete) Rankin-Selberg £-function of 7r(n) and 7r(n-l). 

Let An=｛（ふ，．．．，入n)E zn I入1?:・・・?:入n}-For each入＝ （ふ，．．．，入n)E An andμ= 
(μ1,..., μn-1) E An-1, we write μ：：：：：入 ifthe inequalities入n::; μn-l ::;入n-lさ・・・こ入2さ
μ1 ::;入1are satisfied. For入＝ （ふ）crEIFE A;.F and μ = (μer)crEh E A乞， wedefineμ ：：：：：入
by using the multi-index notation, that is, μ：：：：：入 holdsif and only if μer：：：：：入erholds for 
each CT E IF. For an integer m E Z, we abbreviate (m, m,..., m) E An to m E An, since no 
confusion likely occurs. 

2. COHOMOLOGICAL REPRESENTATIONS 

In this section, we prepare basic notions on cohomological irreducible cuspidal automorphic 
representations of GLn(FA)-The automorphic representation is defined to be cohomological 
if it appears in a cohomology group of the associated locally symmetric space with coeffi-
cients in a certain local systems. The local system is defined by using an irreducible finite 
dimensional representation, and hence it is useful for the further study of automorphic rep-
resentations to write down the finite dimensional representation in an explicit way to handle. 
In [HMN], we adopt Gel'fand-Tsetlin basis to study finite dimensional representations, which 
is a fundamental tool in our study. Hence we explain it in Section 2.1 in certain details. We 
also prepare some notions about cohomology groups of local systems in Section 2.2 and their 

relation to the critical values in Section 2.3. 

2.1. Gel'fand-Tsetlin basis. 

2.1.1. Description of the action. Let入EAn. Denote by (T入，v入） theirreducible holomorphic 
finite dimensional representation of GLn(C) of highest weight入． ConsiderV;入asan hermitian 
space by fixing a U(n)-invariant hermitian pairing on V>,_. Here we will describe (T入，v刈inan 
explicit manner by using a distinguished basis of V;入． Sucha basis is called Gel'fand-Tsetlin 
basis of V;入， whichis a key ingredient of our study in [HMN]. 
Consider a finite set G（入） consistingof the triangle matrices 
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Gel'fand and Tsetlin construct a basis of V;入whichis indexed by elements in G（入）， which
gives an explicit description of the action of gin on V;入viaTぶ

p roposition 2.1 ([IM22, Section 2.5]). There exists an orthonormal basis { (M} MEG（入） of
v入 withthe following formulas on the gin -action 

双(Ek，ぷM ＝祖(M

T入(Ej,j+l)切＝こ □M)(M十△i,J
1:'oi:'oj 
M＋知EG（入）

双(E］十1，ぷM= L 也，j(M鸞M十△ら
1:'oi:'oj 
M＋知EG（入）

(1さk::;n), 

(1 :S: j :S: n -1), 

(1 :::; jさn-1). 

Here△i,j is the integral triangular array of size n with 1 at the (i,j)-th entry and O at the 

other entries, and ai,j(M) and Mv =（叫）l琴 j'.'onare defined to be (M = (m叫1琴 j:'on)

ai,j(M) := 
rrにi(mh,j+l -mi,j―h + i) ITにi(mh,j-1 -mi,j―h + i -1) 
rr区h'.'oj,h#i(mh,j -mi,j―h + i)(mh,j -mi,j―h+i-1) I' 

m心：＝ーffij+l-i,J・ 

Let H（入） ＝ （ふ¥入/： :’• ¥-1入").Then we note that (H（入） is the highest weight 
入1

vector. 

2.1.2. An integral structure. One of our motivations to describe (T入，v入） inSection 2.1.1 is 
to give a rational and integral structure on cuspidal cohomology groups, which is one of 
key ingredients for the definition of periods attached to cohomological irreducible cuspidal 
automorphic representations. Ishii-Miyazaki ([IM22]) introduced such a rational structure on 
v入viaGel'fand-Tsetlin basis aiming for application to the study of the rationality of critical 
values. Furthermore we can actually consider an integral structure by looking their rational 
structure carefully, which we describe below. 
As in [IM22, Section 2.5], we set 

知：＝占汀祝M (M= (m叫1:'oi霙 nE G（入）），

where r(M) is the rational constant defined by 

r(M) = IT 伽i,k-mj,k-1 -i + j)!(mi,k-1 -mj+l,k -i + j)! 
(mi,k-1 -mj,k-1 -i + j)!(mi,k -mj+l,k -i + j)!. 

1<:'.i<:'.j<k<:'.n 

By re-writing the action of g[n on V;入via知 (MEG（入））， Ishii-Miyazakiobtain an explicit 
formula of the action ([IM22, (2.19), (2.20), (2.21)]). By their explicit description, we can 
see that it actually gives an integral structure under certain condition as follows: 

Corollary 2.2. Let A be a subring of C satisfying{（入1-入n+ n -3)!}-1 EA  if n 2'. 3. 
Define an A-module V;入(A)to be 

v入(A)＝④杖M・
MEG（入）

Then V;入(A)is closed under the action of GLn(A) via T入・
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Remark 2.3. (i) In [HMN], A is not necessary to be a subring of C. We introduce a 
GLn(A)-module (7入，v入(A))for an integral domain A of the characteristic zero by 
realizing (7入，v入(A))as a certain subspace of polynomial functions on Mn(A) with 
the regular representation of GLn(A), which coincides with (7入，v入(A))in Corollary 
2.2 if A is a subring of C. So we will use the notion (7入，凡(A))for a general integral 
domain A of the characteristic zero satisfying the condition in Corollary 2.2 in the 
subsequent arguments. 
(ii) The idea to introduce an explicit model of the finite dimensio叫 representation
for the study of cohomological automorphic representations and their critical values 
can be found in [Hid94] in the case of GL2 over general number fields. In this 
sense, introducing an integral structure as in Corollary 2.2 can be considered as a 
generalization of Hida's strategy for GLn over totaly imaginary fields. We also note 
that a similar kind of study can be found in [HN21] in the case of GL3 over the 
rational number field. 

2.1.3. Branching rule. Besides an integral structure (Corollary 2.2), we introduce one more 
distinguished property of Gel'fand-Tsetlin basis of V_x. Let入EAn, and put B+（入） ＝ ｛μE 
An-1 I μさ入｝． ConsiderGLn-1 as a subgroup of GLn via the diagonal embedding伍：

GLn-1→GLn;g→(i『） d . Then the irreducible decomposition of V;入asa representation 

of GLn-1(C), which is called the branching rule for (GLn(C), GLn-1(C)), is given as follows 
([GW09, Theorem 8.1.1]): 

(2.1) V;入＝① v入，μ, V;入，µ竺 Vµ•
μ逗＋（入）

The Gel'fand-Tsetlin basis describes the above branching rule in an explicit manner. We 
prepare some notation to introduce such a description according to [IM22, Section 2.5]. For 

each M = t (m(n),...,mCll) E G（入）， defineMto be t(mCn-ll,...,mC1l) and let G（入；μ)） 
(μEB［入］） bethe set consisting of M E G（入） suchthat M E G(μ). Then the following map 
gives a GLn-1(C)-isomorphism: 

(2.2) V;入，μ＝〶 C知二 V芦M 一綺
MEG（入；μ)

For later use, we prepare a notation for the inverse of (2.2). Forμ E三可入） andMEG(μ), 
we define M［入］ EG（入；μ)to be 

叫＝位）．
Then the inverse of (2.2) is given by Vμ → V入，忍M →むM［入I(M E G(μ)). An important 
observation is that these maps are integrally defined with respect to the integral structure 

defined in Corollary 2.2. 

Remark 2.4. For the study of the rationality and the integrality of critical values of Rankin-
Selberg £-functions, we interpret Rankin-Selberg zeta integrals as cup products of distin-
guished cohomology classes, which we introduce in Section 3.2.3, of locally symmetric spaces. 
To describe cup products in an explicit way, we will use the branching rule (2.1). Hence a 
rational (resp. integral) model of branching rule is one of key ingredients for the study of 
rationality (resp. integrality) of critical values. 
The multiplicity one of the branching rule and the Schur's lemma immediately show that 
the branching rule is defined over a certain number field. This rationality for the branch-
ing rule is used in the previous works as in [Mah05], [RaglO] and [Rag16]. However this 
abstract construction of the rational model of the branching rule becomes one of reasons of 
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an ambiguity of an unspecific constant in the formula for the critical values and this also 
causes the difficulty of the study of the cohomological interpretation of the Rankin-Selberg 
zeta integrals. 
We also note that, in [Hid94] and [HN21], the branching rule is explicitly described by 
giving finite dimensional representations explicit models as subspaces of polynomial functions. 
This description is one of key ingredient for the cohomological interpretation of the Rankin-
Selberg zeta integrals in an explicit way in [Hid94] and [HN21]. In [HMN], we consider an 
analogue of these works by using an explicit description (2.2) of the branching rule. 

2.2. Cohomology of local systems. For each入＝ （入1'...，入n)E An, define the contragre-
dient入Vof入tobe 入v= （—入n,...,-.A.1) E An. Let入＝ （入砂uEJpE A;,F and define入Vto 
be囚）6EIFE A化． ~enote by Fnc the normal closure of F in C and take a subfi,:ld A in C 
containing Fnc• Let V（入V）A= ROEIF恥 (A)and define a representation (T入v,v（入v)A)of 
GLn(F) by 

双v(g)(0uEJpVu)＝⑭6EIFT入-;f(O"(g))(vu) (g E GLn(F), Vu E V;入';;:).

Let K, be an open compact subgroup of GLn(FA,fin) and put応＝ ITvE店，OOcxu(n). 
(n) Define Y.:-'01 to be 
K: 

亨＝ GLn(F) ¥ GLn (FA)/ Kぷ・

Consider a diagonal left action of GLn(F) on the direct product GLn(FA)／応KxV（入）A・
(n) 

Then let V（入）Abe the local system on牧 whichis defined to be the sheaf of locally constant 
sections of the following first projection: 

叫 (F)¥(GLn(FA)/Kぷ xv（入い）一ytl.

Let 7r(n) be an irreducible cuspidal automorphic representation of GLn(FA)- We re-

call that 7r(n) is said to be cohomological, if there exists an open compact subgroup K, of 

叫（FA,fin)and入EA~F such that the吋翌isotropicpart of the cuspidal cohomology group 
Hら (Yin)ふ（入v)c)c) is non-trivial for some degree *・ We call入EA訂thehighest weight as— 

sociated with 7r(n). If 7r(n) is cohomological, then the range of the degree* with the non-trivial 

cohomology groups are known to be bn,F:＝こVE均，00 2 血：：：：：＊：：：：：こ (n(n-1)
VE均，00¥ 2 +n-1). 

Here we note that the weight入isuniquely determined by the Langlands parameters of the 

archimedean part 7l'屈of7r(n) and it is known that入satisfiesthe following purity condition: 
(Pur): there exists an integer w E Z such that ふ—入沿＝ （w, w,..., w) holds for each 
び EIF, Here <f E IF denotes the complex conjugate of a Eh・

Let us call w the purity weight of入

2.3. Critical values. In this subsection, we prepare some notation and facts about critical 
values of the Rankin-Selberg £-function L(8, 7r(n) x 7r(n-ll). We write the infinite part of 

L(8, 7r(n) X 7r(n-l)) as L00(8，心 x点叫＝ ITvE均，00Lv(8, 7l'in) X 7l'in-l)). Define a half-
integer ½ + m E ½ + Z to be a critical point of L(8，砂（n)x砂(n-l))if neither L00(8, 7l'似x点叫

(n),V " _(n-1),V nor £00(1-8, 応~),V X 定~-iJ,v) has a pole at 8 = ½ + m. Here * v denotes the contragredient 
representation of*・ 
Let μ E An-l be the highest weight associated with 7r(n-l). We always suppose the 
following condition, whieh is necessary to apply the generalized modular symbol method due 
to Kazhdan-Mazar-Schmidt ([KMSOO]) for the study of critical values: 

• There exists an integer mo E Z such that入Vとμ+mol. 
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IF Here we put 1 = (l)TElp E A~~1. Under this condition, we find the following proposition, n-1 
which is firstly found by Kasten-Schmidt ([KS13, Theorem 2.3]) if the base field is the rational 
number field: 

p roposition 2.5 ([Rag16, Theorem 2.21]) . Let m E Z. Then a half-integer —+m is a critical 
point of L(s, 7r(n) x 7r(n-l)) if and only if m satisfies that入V ~ μ+ml. 

Proposition 2.5 relates the study of critical values of Rankin-Selberg £-functions with the 
study of the branching rule (2.1), which is explicitly described by the Gel'fand-Tsetlin basis 
as in (2.2). This is the main reason why we use Gel'fand-Tsetlin basis for the study of critical 
values, which also describes an integral structure of cuspidal cohomology groups in an explicit 

way due to Corollary 2.2, and hence we can discuss an integrality of critical values. (See also 
Remark 3.2.) 

3. WHITTAKER PERIODS 

In this section, we introduce the notion of Whittaker periods for cohomological irreducible 
cuspidal automorphic representations of GLn(FA)-According to the philosophy of Deligne 

in [Del79], we define the Whittaker period of 7r(n) as a ratio of two algebraic structures 

associated with砂）． Sucha definition is introduced in [Mah05], [RS08], and an ratio叫 ity
of critical values L(½ + m, 7r(n) x 7r(n-l)) with respect to these Whittaker periods is discussed 
in [RaglO], [Rag16]. In [HMN], we basically follow their formulation, but we also discuss an 
integral properties of these critical values by using certain integral structure associated with 
凸） anddistinguished Whittaker vectors. We introduce such integral structures on cuspidal 
cohomology groups in Section 3.1, and we give distinguished elements in Whittaker model of 
凸） inSection 3.2. By using these data, we define the Whittaker period associated with 7r(n) 
up to multiplication by p-adic units in Secton 3.3, which enables us to discuss an integrality 
of critical values. 

3.1. Integral structure of cuspidal cohomology groups. In this subsection, we prepare 

integral structure on the cuspidal cohomology group of Yiげ
Let p be a prime number and fix an isomorphism i : C→Cp as fields. Recall that Fnc 
is the normal closure of F in C, and letサ bethe ring of integer of Fnc・ Define One to 

」

be the closure ofしp(tF0Jin Cp, where lp : Q←Cp is the embedding induced by the fixed 
isomorphism i : C→Cp. Let A be a subring of Cp containing One・ 
Let入＝ （ふ）6EIFE AじIfn ~ 2, suppose that p satisfies 
(3.1) p > max｛ふ，1-入び，n+n-2I び EIF}. 

Let (T.¥,,, V;入，（A))（び EIF) be the finite rank representation of GLn(A) as in Corollary 2.2. 

Consider V（入）（p） • (p） 
A = RaEIF氏 A),and then we define an action T入 ofGLn（tF) on V（入）閃）

as follows: 

炉 g)（⑭ v6) :＝R（叫io •(g))v。)
0€IF OEIF 

for g E GLn（tp). 

We extend this action to the action of GLn(tF Rz Zp) as follows. Define IF,v to be 

恥：＝ ｛O" E Ip I v is induced by i o O": F Y C砂．

For O" E IF,v, let叩 denotethe automorphism of凡 inducedby i oび． Thendefine an action 

of GLn(tF Rz Zp) on V（入）閃 by

舟((9v)v|（p)）（竺笠い）＝ R R叫叫gv)）v6 for (9v)v|(p） E GLn(tF Rz Z砂
vl(P) uEIF,v 
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If A is a field, then we also define the action of GLn(F匹 Qp)on V(入)~) in the same way. 
Let JC be an open compact subgroup of GLn(FA,fin) so that応 isa subgroup of GLn(tF @z 

Zp)-Define a right action of JC on the direct product GLn(F)¥GLn(FA)／応 xv（入）閃 to

be ([g], v191) ・ u = ([gu]亨 (u―1)v191)([g] E GLn(F)¥GLn(FA)／応，V[g]EV（入）炉． Then
define the local system V（入州 onYt) to be the sheaf of locally constant sections of the 
following first projection: 

(GLn(F)\GLn(FA)／応 xv（入）~l) /JC→ ytl. 

Lemma 3.1. Retain the notations. Let c:J> be a morphism of local systems on （） Y/CnJ defined as 

c:J>:V（入）c→恥昌([g],V[g])ー([g]，や（犀）i(v191)),
where 9p = (gv)vlp E GLn(FA,p) is the p-component of g E GLn(FA), and we consider i(v[g]) 

as an element in V（入）名lvia the fixed embedding i : C→Cp. Then c:J> gives an isomorphism 
of local systems. 

Let E C C be a finite extension of Fnc, [ the p-adic closure of its image via the fixed 
isomorphism i : C→Cp, 0 the ring of integers of [, and氾theprime ideal of the ring of 

~ （n) （n) ~ 
integers tE of E which is induced by i. For a local system Von Yi/C，denote by H7 (Yi/C，V) 
the cohomology group of local system V for ? = 0 and the cohomology group with com-
pact supports for ? = c. Let tE,（氾） bethe localization of tE at氾． Thenthe natural 

（） inclusion E←C induces a morphism from HHYJ叫訓入刈叫 toH1(Y/Cn),;政入りc),which 
gives an isomorphism after taking scalar extension to C. We also have the natural inclusion 

0 "-+ Cp and hence this induces a morphism from H7(Yi炉，V（入り位） toH7(Yt)ふ（入刈悶）
which also gives an isomorphism after taking scalar extension to Cp. Write the image of 

H7(Ytl,i汎:..xv）図） asH7(Ytl, V（入V）絞）＇． Furthermore,we can identify HHYt), i汎入刈c)
(）.  

with Hl(Yi 
n ~ V (p) 
． IC ，V（入）gl)via <I> due to Lemma 3.1. Hence we define H7(Yt)，祝入V)tE,（'Vl)to 

be H7(Ytl,V（入V狂） nH7(Yt)，訓入刈位）＇ bytaking the intersection in H7 (Yt)，訓入v)c)-

We also define Jrら（Yんn),V（入り匡（田）） to be 

Hら (Yin)，訓入V)tE,（甲）） ＝的（Y炉，訓入刈咋，（甲）） n H己（Y芯げ（入刈c),

which gives the integral structure of H,ら (Yt)，訓応c)in [HMN]. 

Remark 3.2. Januszewski ([Jan]) chooses a lattice of V囚）cto be the GLn(tE,（叫））―
submodule generated by a highest weight vector. In his formulation, it becomes difficult 
to describe the branching rule in integral coefficients and hence this is one of reasons why 
an unspecific constant appears in his formula for the critical values. On the other hand, we 
immediately find an integral model of branching rule from (2.2) and Corollary 2.2 according 
to the formulation in [HMN]. 

3.2. Choice of Whittaker vectors. Let ;rCn) be an irreducible cohomological cuspidal au-
tomorphic re四esentationof GLn(FA), which appears in the cuspidal cohomology group of a 
local system V（入刈． Weintroduce distinguished Whittaker vectors in the Whittaker model 
of ;r(n). 

Let Bn be the subgroup of GLn consisting of upper triangle matrices. Define Nn (resp. 
Tn) to be the subgroup of Bn consisting of the unipotent (resp. diagonal) matrices. We fix 

an additive character仇，Nnof Nn(FA) to introduce the notion of Whittaker models of ;rCn)_ 
Let c E｛土｝ and翡： Q¥QA→exbe the additive character which is characterized by 
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the following properties:ゆ0,00(x)= exp(f27r¥／可x)for x E R, and翡，Pis trivial on Zp and 
non-trivial on p―1 Zp for each prime p. Let翡，Nnbe a character of Nn(FA) defined by 

(3.2) 翡，Nn(x)：＝翡 (TrF/Q(x1,2+ x2,3 + ・ ・ ・ + Xn-1,n)) (x = (xi,j) E Nn(FA)). 
When n = 1, we understand that翡，N,is the trivial character of N1(FA) = {l}. 

Let W(1r(n)，翡）ミ鴎W（平，翡，v)be the Whittaker model associated with 7r(n) and the 
additive character翡，Nn.The purpose of this subsection is to give distinguished vectors in 

W(1rin)，叫） foreach place v of F. In particular, we describe the Whittaker vectors at 
infinite places, since the argument at inifinte places is the essential part of [HMN]. 

3.2.1. At infinite places. We introduce distinguished Whittaker vectors in the Whittaker 
models at infinite places v of F. Here we follow a formulation given in [IM22, Section 2.4]. 

(n): See references therein for the basic facts on the Whittaker model. It is known that匹 is
isomorphic to an irreducible principal series representation 1r恥，dv,llvof GLn(Fv) = GLn(C). 
So here we recall some notion of the principal series representation 1r恥，dv,llvand the Whittaker 
model associated with叫，dv,llv・
Let dv = (dv,1, dv,2,..., dv,n) E zn and四＝ （％，1, Vv,2, • • •, Vv,n) E C匹 Definea character 
Xdv,llv of Tn(C) to be 

Xい（a)：＝n （口）出，ilail2llv,, 
i=l 

(3.3) (a= diag(a1, a2,..., an) E Tn(C)). 

Let Pn = (Pn,1, Pn,2,,,,, Pn,n) E qn with Pn,i:＝彗— i (I <::: i <::: n). Denote the space of C00-
functions on GLn(C) by C00(GLn(C)). We define a (smooth) principal series representation 

（弧，dv,Vv,J説(dv,vv)) of GLn(C) by 

(3.4) I説(dV9%）．＝ {f E COO(GLn(C)） f(xag) ＝ XdV9四十Pn(a)f(g) } 
(x E Nn(C), a E Tn(C), g E GLn(C)) 

and（国，d研 jg)f)(h)= f(hg) (g, h E GLn(C), f E I説(dv,Vv)). Let d~om be the unique 
element in An n{びdvIび E6n}- Suppose that 7r恥，d研 vis irreducible. Then Vd茫omgives 
the minimal U(n)-type of 7r恥，d”'vv,and, in particular, Homu(n)(Vdgom,I図(dv,vv)) is one 
dimensional. Let f恥，dv,llv: vd>om • I院(dv,vv) be the U(n)-embedding which is characterized 
by f恥，dv,vv(fo(d茫om))(ln)= 1. 
IfRe(vv,1) > Re(vv,2) > ・ ・ ・ > Re(vv,n), we define the Jacquet integral J0: I盆(dv,%）→ C 
to be 

ふ(f)：=J f(W砂）ゆ＿E:,Nn,v(x)dx
Nn(C) 

for f EI説(dv,vv)-Here Wn is an anti-diago叫 matrixof size n whose all anti-diagonal entries 
are 1. The Jacquet integralふ(J)is absolutely convergent, and it is holomorphically continued 
to whole v EC匹 DefineW0(f)(g) (f EI院(dv,vv),gE GLn(C)) to beふ（町祉dv,vv(g) f) and 
set 

W(1r恥，dv，砂，翡，v)= {We(!) I f EI品(dv,Vv)}.
Then the right-translation by GLn(C) on W（叫，d研いい） givesthe Whittaker model of 
7r恥，dv,四・

For each V E vddom' we define the normalized Whittaker function w~:?.v,, (v) to be v,Vv 

W誓必(v)=(-1)区f=1(i-l)de~im （バゴ）こい(i-l)d叫（％；山）W0(f恥い (v)),

where we put r n(v叫） ＝ rr区i<j<:'.nr叫—叩＋ 1＋ |d:出,tl).Since it is well-known that 
偉 (dv,%）竺 I院(6出，O"Vv)邸 GLn(C)-modulesfor each CJ" E芦 wehave W(1r恥，dv,匹 9翡，v)= 
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W(1r叩叫叫 9翡，v)
(c) 

. This implies that there exists a constant Cu E ex such that W 出，Vv(v) = 

CuW  叫四Jv)for each v E Vddom-Based on an inductive argument for the Whittaker func-

tions due to [Jac09] and [IM22], we obtain the following proposition: 

p or eachび E芦 wehave Cu = 1. In other words, we have W仏”(v)= roposition 3.3. Fi 

w旦，UVv(v) for each VE vd牡om•
Proposition 3.3 shows that W畠ノJv)has a distinguished property in W(1r恥，d研 v'叫）．

（） Concerning the Rankin-Selberg zeta integrals, we also find a good property on W；立v（v)
as follows. Let dv E Z叫％ EC叫 d~ E zn-l and v~ E en-I. Then for each W E 
w（国，dv,Vぃ叫）， W'EW(1rBn-1,d~,vかい，v) and s E C with sufficiently large Re(s), we 
consider the following archimedean local Rankin-Selberg zeta integral Z(s, W, W'): 

Z(s,W,W'） ＝J w（伍（g))W'(g) I det gl2s-ldg. 
Nn-1(C)¥GLn-1(C) 

In [HMN], we prove the following theorem, which gives an explicit formula for the archimedean 
local Rankin-Selberg zeta integrals: 

Theorem 3.4. Suppose that d'domゴddomv_

(i) (Vddom R Vd1dom)U(n-l) is one dimensional and it is spanned by the following element: 

こMEG(dldomV) 
Here q(M) = I:厨亨1叫 J.
(ii) We have 

(-l)q(M) 

r(M) 
鉦ddomJR知V.

こ （一~Z(s,W塁瓜M[d<lomJ), W~塁（知V))
r(M) 

MEG(dldomVJ 

＝ （ーバ可）江□dり,iL(s,加，dv,VvX 7rBn-1,d~,vJ· 

If (dv,n,...,dv,1) = deom and d~ = d~dom, Theorem 3.4 is proved in [IM22, Corollary 2.10], 
and in fact, our proof of Theorem 3.4 is reduced to the case. 

3.2.2. At finite places. As well as the archimedean case, we also need explicit formulas for the 
non-archimedean local Rankin-Selberg zeta integrals. For this purpose, we have to impose 
some assumptions on 7r(n) and 7r(n-l). 

To begin with, we prepare some notation. Letサ bethe ring of integers of F and put t:F = 
t鱈 zZ. Denote by DF the discriminant of F and let J = IT,,-=~~"- 6v E tF be a generator of VE均，fin
different ideal of社 Putd(n) to be the diagonal matrix diag(Jn-l,..., J, 1) E GLn(FA,fin)-
For each ideal 1)1 of豆 definethe mirahoric group Kぃ（91)of level沢 tobe 

応，1図） ＝ k = (kij)i:,;i,j:Sn E GL店） Knn三 1(mod項） ｝ • { k = (kijh:Si,j:Sn E GLn(tF) I::~ 三 0 (mod項） for 1 < jさn-1,

Then we impose the following conditions on 7r(n) and 7r(n-l): 

• 7r fin has a Kn,l(項)-fixedvector for some ideal引 oft冗 supposethat 1)1 is maximum 
among such ideals; 

• 1)1 is prime to D F・
(n-1) 

● 1rt-l) is spherical, that is, 1r盆―l)has a GLn和）ーfixedvector. 



79

(n) 
If叩 isspherical, we normalize the spherical vector w岬ph(1rin) （） ) in W(1r~n ，翡，v) so that 

ご（T炉）（（応）ー1)= 1. Define the non-archimedean local zeta integral Zv (s, W, W') (W E 
W(1rin)，如，v),W'E W(1rt正 1)，い，v))to be 

Zv(s, W, W') = 1 w(しn(g))W'(g)Idetg|：百dg.
Nn-1(Fv)¥GLn-1(Fv) 

Then we have the following lemma due to [JPSS81]: 

Lemma 3.5. Theに，1(引）―fixedsubspace ofW（誓，翡，fin)is one dimensional. Moreover, for 

each finite place v of F, there exists a unique心，1図）v-fixedvector w;ss（か） EW（平，叫）

such that, if叩
(n-1) ． 
is spherical, 

Zv(s, w冒ss（デ），＇ご (1ri正 l)))= Wrrtn-1) 低）ー1 瓜 I； ½n(n-l)(s- ら） Lv(s,亭 X 1rtn-l)). 
(n-1) sph (n-1) 

Here w _(n-1) is the central character of四 andw~ （四） is the fixed spherical vector 
叩
(n-1) 

ofW（四 ，い，v),In particular, if V does not divide sn, w;88(1rin)) sph (n) 
v 四 isgiven by w~ （四）．

The vector w;88(1r(n)) is called the essential vector in W(1rin)，翡，v).We define distinguished 

vectors we88(1r(n)) E W(1r似，ゅE,fin)and Wsph(1r(n-l)) E W(1rA:-l)，い，fin)to be 

Wess（王） ＝RvE均，finw~ss け炉）， Wsph(7r(n-l)) = RvE均，finW~ph（社n-1））．

3.2.3. Eichler-Shimura classes. Here we introduce an explicit construction of a non-trivial 

element in H:~閤 (Yin) ，}（入v)c), which enables us to reduce the study of critical values of 
Rankin-Selberg £-functions to a study of local zeta integrals and cohomology classes. In the 
case of GL2, such explicit cohomology classes are called Eichler-Shimura classes, which can 
be found in [Shi71, Section 8] (see also [Hid93, Section 7]) if the base field is the rational 
number field and [Hid94, Section 3] if the base field is general. We consider the generalization 
of these constructions in the case of GLn over totally imaginary fields. 

To begin with, recall that the [1r(n)]-isotropic part of R此虚(Yi叫訓入りc)is given by the 
image of the following natural map: 

H加，F(g(n,oo,K五；7r(n)Rc V（入v)c)応，1国） → H虐U”ぷ(Yin)j〉（入v)c),

where g(n is the Lie algebra of GLn, glnc = g(n紐 C,g(n,oo = ITvE応，OOg(nC, and K = 
kn,1咽）． Werealize 7r(n) as the Whittaker model W(1r(n)，仇）， andhence the definition of 
the (g, K)-cohomology immediately shows that 

H加，F(g(n,oo,応；7f(n)Rc爪）c）い（項）

竺 Hb立 (gln,ooぷ；W(1r炉，い）Rc爪）c)RW（誓，翡，fin)い（91).
The Kunneth formula yields that 

H加，F(g(n,ooぷ；W（心，翡，oo)Rc爪）c)

竺 Q9Hbn(gln,c, CxU(n); W（平，翡，v)RcV囚）），
vEEF,oo 

where bn := ~ and V凶） ＝ V入v(C)R V入~(C) for the embeddings c,，万： F → C 
万

corresponding to v. Furthermore, as in [BW80, Section I.5], we find that 

砂 (gln,c,CxU(n);W（平，翡，v)Rc V囚））
(3.5) 

= (w(1rin)，翡，v)R /\bnP~c Rc V囚））U(n).
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Here write the Cartan decomposition of g[n as g[n = u(n) 〶 p where u(n) is the Lie algebra 
of U(n). Let p~ be the subspace of四 consistingof matrices whose traces are zero and 

put P~c = p~ 畑 C. We have already chosen a vector wess(7r(n)) E W(7rt)，翡，fin)/Cn,1憚） in
Section 3.2.2, and hence it suffices to construct an element in the right-hand side of (3.5) for 

the construction of an element in H盆虚(Yi叫訓入V)c)．
b o Note that, considering/\np~r, as a representation space of U(n) via the adjoint action, nC 

心点 contains凰 withmultiplicity one. Hence we have a U(n)-equivariant homomor-
phism 四Pn → /\bnP~c, which is normalized by giving a specific element En E /¥臼恥 asthe 
image of ~H(2Pn)· We omit the detail of the construction of En here, since it needs more nota-

(n) 
tion although it is easy. Recall that叩 isisomorphic to some principal series representation 
国，d研 vof GLn(C). Due to Proposition 3.3, we may suppose that dv is dominant. Since 

7r(n) appears in H~嵩(Yt),V(A v)), dv and Vv are given by the following formulas: 

dv = 2入v+ 2pn -w, Vv = (w/2,..., w/2), 

where we recall that w is the purity weight of入 (see(Pur)). Since the minimal U(n)-

type of 7r恥，d研 vis given by v;心 wecan define a U(n)-equivariant homomorphism直→
W(7rin)，翡，v)to be W 

d研 v
as in Section 3.2.1. Hence, to construct an el o construct an element in the right-

hand side of (3.5), it suffices to construct a U(n)-invariant element in (Vdv Rc鳳 RcV（入り）．（ 
For this purpose, we need some claims from the finite dimensional representation theory by 
using Gel'fand-Tsetlin basis as follows: 

Lemma 3.6. Let入，入'EAn. 

(i) We have a unique injective GLn(C)-homomorphism I~式: V入＋x→ V入RcVN, 
which is characterized by I 入入'豆入，（＜H（入十入'))＝ ~H（入） R <H（入')・
(ii) Let (T~oni, V{°nj) be the compl e complex conjugate representation of (T>.., V;入）， thatis, 

v;onj = V;入， T戸(g)＝ハ(g) (g E GLn(C)). 
Then a C-linear map ItnJ : V;入→ V翌叫 ~M → (-l)q(M)切v is a U(n)-isomorphism. 

(iii) The following element gives a U(n)-invariant element in V;入RV炉

[id叫：＝〉
(-l)q(M) 

r(M) 
知奴MV.

MEG（入）

Due to Lemma 3.6, we define a U(n)-invariant element in Vdv @c怜Pn@cV（入り tobe the 
image of [id叫 viathe following composite maps: 

idGI 2pn,2入v十wdv 
) Vd Rc屹Pn0c杓入v+wvdRc V心

入V V idRidRI' 入十wmV十w
) Vd Rc屹Pn0c V;入VQ9C V;入v+w

idGid⑭idRIconj 
入V十w

t Vdv 0c四PnRc V凶）．

Finally we obtain a cohomology class in Hぶ冨(Yin)ふ（入刈c),which we denote by,5（三）
and call Eichler-Shimura class of 7r(n). 

3.3. Definition of Whittaker periods. For each入＝ （入a)aEipE A~F and a E Aut(C), 
define吠 E A~F by吹 a=入a-1。a(CJ" E lp). Put Q（入） ＝c{aEAut(C) I "入＝入｝． Definealso 

(n) 
a-twists "1rin) of 7r炉tobe叩 Rc,aC for ? = fin, oo. Note that if the highest weight 

(n) （n) 
associated with 1r~;1 is入， thenthe highest weight associated with "1r~'is given by a入． Then
[Clo90, Theorもme3.13] yields that there exists a unique cohomological irreducible cuspidal 
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automorphic representation °'7r(n) of GLn(FA) such that the finite (resp. infinite) part of °'7r(n) 

is given by叶似 (resp.％図） andalso that Q(1r似）：＝ c{aEAut(C)I叶似＝誓｝ isa number 

field. Define the field of rationality of 7r(n) to be Q(7r(nl) := Q(1r似）Q（入）． Lett(7r(nl) be 

the ring of integers of Q(1r(nl) and氾theprime ideal of t(1r(nl) which is induced by the fixed 

isomorphism Q(1r(n)) CC→Cp. Then, since the t（三）⑱）-module

H加，F(g[n,ooぷ；'lr(n)Rc爪）cfn,1（m)n H~闘（Yげ恥）tE, （'+l))

is free of rank one over t(1r< n)）⑱）， let us choose a generator T/(7r(n)) of this module. Since 

Hい (g[n,oo,Kn; 7r(n) Rc V囚）c）心，1国） isone dimensional over C, and it is spanned by the 
Eichler-Shimura class 5(7r(nl), there exists a constant p阿1r<nl)E ex such that 

<5(1r(n))＝炉(7r(n))T/(7r(n)).

We call p叫 (n))the (Betti-)Whittaker period of 7r(n). Note that pb(7r(nl) is determined up 
to a multiplication by an element in t(1r(n))~m, and hence we can discuss the integrality with 

（氾）＇

respect to this period p予叫

Remark 3. 7. To describe the behavior of critical values under the action of a E Aut(C), 

we need to choose p町叶(nl)in a compatible way under the a-twist of cohomology groups 
and 7r(n). In this article, we omit this point of view for the sake of simplicity. See [RS08, 

Definition/Proposition 3.3] for the details of a-twists and the choice of炉(°'1r(nl).Note that 
Raghuram-Shahidi define their periods up to multiplication by rational constants, but we can 
discuss in a similar way by using our integral models. 

4. MAIN THEOREM 

In this section, we introduce the main theorem in [HMN]. Let us summarize assumptions 
(n) on 7r¥nJ and 7r (n-1) which we made in the previous sections: 

• 7r(n) (resp. 7r(n-l)) is cohomological, which appears in the cohomology group of a 

local system V（入刈c(resp. V（か）c);
• There exists an integer mo E Z such that入Vとμ+mol;
(n) （n-1) • 7f 
fin has aに，1図）ーfixedvector and 91 is maximal among such ideals; 1r~~-•1 has a fin 

GLn-1（サ）ーfixedvector. 
• The discriminant恥 ofF is prime to況
• pis a prime number which is coprime to DF91 and satisfies (3.1). 

Define t(1r(nl,1r(n-l)) to be the ring of integers of the composite Q(1r(n))Q(1r(n-l)) of the 

fields of rationality of 7r(n) and 7r(n-l). Denote by ~o the prime ideal of t(7r(n), 7r(n-l)) 

which is induced by the fixed isomorphism Q(1r(n))Q(1r(n-l)) C C ~ Cp. Define a constant 
C(m, 7r(n) x 7r(n-l)) (m E Z) to be 

(4.1) 

C(m, 1f(n) X 7f(n-l)) =Wn:(n-1) (J)―1D危¼n(n-l)m 
=W 

x IT (2―n(n-1)(《可）―bn-1(c✓コ）加(w-w')(-l)CmH)bn).
vEr:F,oo 

Here we recall that c E｛士1},bn =叫翌旦 andw (resp. w') is the purity weight of入(resp.
μ) as in (Pur). Note that, if the prime number p satisfying the above condition is odd, 
then C(m,1rCn) X 7r(n-l)) is a unit in t(1r(n),7r(n-l)）（氾a),and hence C(m,1rCn) x 7r(n-l)) can 

be understood as a harmless constant when we discuss the integrality. However, we consider 
C(m, 7r(n) X 7r(n-l)) x 7r¥n-1J) as an important constant to discuss the Kummer congruences for critical 
values, since the information m of critical points appears in its definition. 
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The following statement is the main theorem in [HMN]: 

Theorem 4.1. For each critical point m + ~。fL(s, 7r(n) X 7r(n-l) 
2 

x 7r¥n-1J), the value 

C(m, 7f(n) X Jf(n-1)) 
L(m+ふ7r(n)X 7r(n-l)) 
炒（王）炉(7r(n-l))

is indeed contained in t(7r(n), 7r(n-l)）（平o)・

Remark 4.2. (i) Theorem 4.1 yields that the unspecific constant appearing in the crit-
ical value formulas in the previous researches, which we mentioned in Section 1.1, is 

given by the product of the constant C(m, 7r(n) x 7r(n-l)) and L00(m+ 1 (n) （n-1) か7fOOX麟）．
Li-Liu-Sun ([LLS]) proved that the unspecific constant is a product of an easy 

constant depending on the critical points, which is similar to C(m, 7r(n) x 7r(n-l)), 

L00(m＋ふ心 x点叫 andan unspecific non-zero constant which does not depend 
on the critical points in the case that the base field is general. This implies that 
they also get a formula similar to Theorem 4.1 after suitably normalizing Whittaker 
vectors. However their normalization of Whittaker vectors on GLn a priori depends 
on the normalization of those of GLN (1 :SN S n-1), and hence the period炉(7r(n))
also a priori depends on information of representations GLN. Also it seems to be 
difficult to discuss the integrality according to their formulation, since we need an 
integral branching rule as mentioned in Remark 3.2. 
(ii) The formula for critical values in Theorem 4.1 implies that the product of Whittaker 
periods plays a role of Deligne's period for the tensor product of the expected pure 
motives attached to 7r(n) and 7r(n-l). So it is natural to ask a motivic background of 

the single Whittaker period炉（7r(nl)in terms of the expected pure motive attached 
to 7r(n). The study in this direction can be found in [HN]. 

Remark 4.3. The key ingredient of the proof of Theorem 4.1 is the cohomological interpreta— 
tion of Rankin-Selberg zeta integrals, as we have already mentioned in Section 1.2. Following 
the generalized modular symbol method due to [KMSOO], we write down all cohomological 
manipulations in an explicit way and we reduce the calculation to the explicit formula for 

archimedean Rankin-Selberg zeta integrals in Theorem 3.4 (ii), which is essentially due to 
[IM22]. We note that a similar strategy can be found in [HN21] in the case of GL3 x GL2 
over the rational number field. 
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