On Hutchinson’s conjecture

Yoshinori Mizuno

I report on a proof of a conjectual extention of Gross-Zagier’s formula proposed by Tim Hutchin-
son.

1 Elliptic modular function j(7)

Let  := {7 = u+ iv;v > 0} be the upper-half plane. The elliptic modular function j(7)
(T € 9) is defined by

3
i(r) = 1728 —— 920
92

1 2 2miT
W:5+744+196884q+0((]) (q:e ),

where ¢(7), g3(7) are the Eisenstein series

g2(7) 1= 60 > _ g3(7) := 140 > !

4’ n)6"
m,n€”Z, (m,n)7#(0,0) (mT + n) m,neZ, (m,n)#(0,0) (mT + fL)

The definition is rather simple, but this j function has many remarkable properties. It classifies
isomorphism classes of elliptic curves defined over C. Its Fourier coefficients are integers, and can
be described analytically by Rademacher-Petersson’s formula, arithmetically by Kaneko’s formula.
Congruences satisfied by Fourier coefficients are studies by several researchers. Moreover, Fourier
coefficients of j(7) relate dimensions of the irreducible representations of the monster group. We
refer to [7] for more information.

Special values of j(7) at imaginary quadratic irrationals are impressive. Let Xg;r) be the set of
all imaginary quadratic irrationals in § of discriminant d < 0 defined by

b+1\/|d
X((;) = {+;—|| 65’);a,b,c€Z,a>07(a,b,c):1,b24ac=d}.
a

It is well known that j(7) for T € X‘(;') (called “singular modulus”) is an algebraic interger of degree

h(d), where h(d) is the class number of the order Oy = Z + %\/WZ (04 € {0,1}, 0g = d (mod
4)). We extract such special values from Cox [1]; j(v/—1) = 123 (h(—4) = 1), j (#) = —(15)%
(h(=7) = 1),

3
j(v/=14) = 2 (323 +228V2 + (231 + 161V2)\/2V2 — 1> (h(—56) = 4).
As shown in [1], we can construct an abelian extension (called “ring class field”) over the

imaginary quadratic field K := Q(v/d) by adjoining an special value at 7 € Xgﬂ; Gal(K(j(7))/K)
= C4 (the ideal class group of the order Oy4) and Gal(K (j(7))/Q) = Cyq x (Z/2Z).
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2 Work of Gross-Zagier

Let d; (j = 1,2) be negative fundamental discriminants. Let %H X(H / ~+ be the set of
equlvalence classes of quadratic irrationals in the upper-half plane £ oig dlscrlmmant d; with respect

to the action of SLy(Z). The class of 7 € de) is denoted by [7]~,. The number h(d;) = ﬁ(S‘C(+ )
is nothing but the class number of Q(/d;). Let w; = ﬂ(O;J) be the number of the units of
discriminant d;.!
2.1 Definition of J(dy,ds)

The value J(dy,ds) is defined as the (modified) resultant of the class equations of discriminant
dj (j =1,2) by

4
wywy

J(d, da) = 11 II G i)

[ril~y €257 2], ex(D

When d; and ds are coprime, it is known that the value J(dg,ds)? is an integer. In addition the
resultant J(dp, da) itself is an integer, if both d; (j = 1,2) are smaller than —4. Gross and Zagier
established a closed formula of .J(dy,ds)? € Z when (dy,ds) = 1

2.2 Definition of ¢

To state the Gross-Zagier formula, let d; and ds be coprime negative fundamental discrim-
inants as above.? Let ¢ be a prime such that (%) # —1. According to [2], we put ¢(q) :=

ifq*dl,

the set of integers m = 1 such that any prime ¢ | m satisfies (d1d2> # —1.

In general, the function € is defined as a completely multiplicative function on

NSRS

2.3 Definition of F(m)

For m such that ¢(m) is meaningful, we put F'(m) := H n""). Here the product is
nn/=m, n,n’'>0
over all positive divisors n of m, and n’ is defined as m/n.

2.4 Gross-Zagier formula (1985)

Gross and Zagier [2] establised the following closed formula of the value J(dy,d2)?. If d; < 0
(j = 1,2) are fundamental discriminants such that (dy,d2) = 1, then

didy — 22
2 _ 102
J(dy,do)? = 11 F (T) .
z2<dids, v2=d1d2 (mod4)
We extract some examples from [2]. As mentioned there, the numbers are rather highly factorizable.

Example 1 ([2, p. 191])

J(—163,—4) =

1+1iv/163 .
(“ 6) j(i)=—25.35.72.112. 192 . 127% . 163.

Lw; is 4 for dj = —4, whereas 6 for d; = —3, and w; = 2 if dj < —4
280 the product dids > 0 is a fundamental discriminant.



Example 2 (]2, p. 193])
14iv67 1+41iv/163
J(—67,—163)j< +;\/_> —j( “2 )215.37-53-72-1&139.331.

2.5 Simple formula of F(m)

As noted in [2, p. 192], the arithmetical function F'(m) has the following simple description. Let
m € N be of the form dldii_zz (z € Z). We consider the prime factorization of m and classify prime
factors according to the values of €. Depending on the number of prime factors p of m satisfying
2{ord,(m) and €(p) = —1,® the simple formula for F(m) is given as follows.
(i) When m has the form m = p2*1p2® ... p2argbi . gbs (¢(p) = e(p;) = -1, €e(q;) = 1),
then F(m) = p(@tDbr+1)-(bst1),
(i) Otherwise, F(m) = 1.

As a corollary, we can deduce that the primes dividing J(dy, d2)? are rather restricted ([2, p. 192]).

Corollary 1. Let q be a prime with q | J(dy,d2)%. Then
@ (2) # -1 (%) # -1,
- didy—a?
(b) q divides a nutural number of the form S
(¢)g = %. More precisely,
(i) if didy = 1 (mod 8) then q < 12, (ii) if dy =do =5 (mod 8) then q < 42,

3 Sketch of the analytic proof due to Gross-Zagier

We shall review the analytic proof of the Gross-Zagier formula given in [2].* This proof consists
of analytic and arithmetic techniques. First of all, it is noted that F(m) = H ne) =
nn'/=m, n,n’>0
H n=cm. Taking the logarithm, the Gross-Zagier formula is restated as
0<n|m

LY leglitn) —(m) = ) S (n)logn.

wi1wy
[71]~+€x£;1r> 22<dydz, 22=d1dy (mod4)

(+)
dy

dydg—x2
n| 22 24

(2]~ €%
The left hand side is the CM average of log |5(z) — j(w)|?.

3.1 Automorphic Green function G,(,72)

Let us introduce an automorphic Green function G4(71,72) (cf. [5]). For s € C, R(s) > 0, let
Qs—1(t) (t > 1) be the Legendre function of the 2nd kind

Qs-1(t) = /00 (t +Vt2 -1 coshv) - dv,
0

or, in terms of the Gauss hypergeometric function, it is given as (0 < ¢ < 1)

5)2
Qs—1 <1—1Li> = 21;((2)5) (1 =1t)°F(s, ;28,1 —1).

Sord,(m) is a non-negative integer such that p°*®»(™ is the highest power of p dividing m.

“There is a geometric proof. We refer to the first half of [2].
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Using the Legendre function Qs_1(t) together with the hyperbolic distance function d(7,72), we
define gs(71, ) for 7j = uj +iv; € H (j =1,2), m # 72 by

2,2 2
gs(11,72) := —2Qs—1(cosh d(1, 7)) = —2Qs—1 <(u1 —u2)? +vi + 112) .

2U1U2

The automorphic Green function G4(71,72) is then defined by

Gs(11,72) := ng(Tl,’YTQ), (T := PSLy(Z), R(s) > 1).
yel’

Let E(r,s) be the Eisenstein series on SLo(Z) and ¢(s) the function appears in its constant term;

v _TET(s—35)2s—1)
2 yam REZD )= T(s)C(2s)

1
E(T, 8) = 5
¢,d€Z,(c,d)=1

Using these functions, Gross and Zagier show the following proposition.

Proposition 1. (Gross-Zagier, Proposition 5.1) The series Gs(71,72) can be continued meromor-
phically to the whole s-plane. For i, 7o € § such that 71 4+ 0 (SLa(Z)-inequivalent), one has

log |j(m1) — j(72)|2 = lim (Gs(m1,72) +47E(71, s) + AwE(1a, s) — 4mp(s)) — 24.

s—1,s€R

As functions of the variable 7 € $\ {y72;7 € SL2(Z)} (12 € $ fixed), both sides are harmonic
and invariant with respect to SLg(Z). The difference has an extension to a harmonic function on
$ and it tends to zero as J(71) — oo. Hence the proposition can be deduced from the maximum
principle of harmonic functions.”

3.2 CM average

We consider CM average of the automorphic Green function G4(z,w). Starting from the def-
inition and using a kind of unfolding argument, we can rewrite the CM average as the sum of
gs(11,72) over imaginary quadratic irrationals of discriminants d; and da modulo the diagonal
action of I' = PSLy(Z). That is

22 Z Gs(11,72) = Z 9s(71,72).

w1 Wy
[rily €257, 2], €x(D (r72)en\(xGH xx (D)

. bi++/d; . . .
If we write 7; = %j], the corresponding binary form is [a;,b;, ¢;] := ajz? + bjzy + ¢;ju° (¢j =
]4ajj ) and we see that

n
9s(T1,72) = —2Q5 1 (V—Z) . A =didy, n=2a1ca + 2a2¢1 — brba.

Collecting the terms according to the value n, one has

wllwll Z Gy(mi, 1) = =2 Z h(dy,da, —n)Qs—1 (%) ;

[Tl]~+exg>, [72]~ exfi? n>VA, n=A (mod2)

slimsﬁmgg may be replaced by limg_,1.



161

where h(dy,da, —n) is the class number of pairs® defined by
h(dy,da, —n) == 4({(f, F) € Q4 x Qi B(f, F) = —n}/ ~).

Here ng) is the set of all positive-definite primitive binary quadratic forms of discriminant d; < 0,
we put B(f7 F) = bB — 2aC — 2cA (codiscriminant) for (f,F) € Qg) X Qg) with f = [a,b, ],
F = [A,B,C], and for two pairs (f,F), (9,G) € Q5 x @), we define (f,F) ~ (g,G) by the
diagonal action of SLs(Z) on Ql(;lr) X Qg).7

Recall that for fundamental discriminants d; < 0 the CM average of the Eisenstein series can
be described by the Dedekind zeta function as

E(r,s) 1 (|dl s/2 C@(\/d—j)(s)
2 w(d;) _§<TJ> S ((2s)

(+)
[T~y Exdj

Together with Proposition 1, one has the following infinite series expression of the left hand side of
the Gross-Zagier formula.

Proposition 2. (Gross-Zagier, Proposition 5.8) Let di < 0, do < 0 be fundamental discriminants
with dy # dy.® Put A = dydy, Iy = wljh(dj). Then

2 n
gl T P = i |23 b n)Qun (ﬁ)
n>VA, n=A (mod2)
4
+ = | 1
¢(29) ( ?

ds |2
3.3 Some arithmetical results

di |2
Zl CK1(8)+h’/1

Z Q_Kz(s) - h/1h/2

F(l)l"(s B l) N
Wq@s - 1)) - 24h1h2} .

To push forward, Gross and Zagier prepare some arithmetical results. The first is an explicit
formula of the class number of pairs.

Proposition 3. (Gross-Zagier, Proposition 6.1) Let d; <0 (j =1,2), (d1,d2) =1 be as above and
put A = dids. Take 6 € 7, such that § < 0, 62 > A, 62 = A (mod 4). Then

h(dy,d2,0) = Y e(p).

32-A
1

ul

Another key observation is that several quantities in the Gross-Zagier formula have relation
with Fourier coefficients of a Hilbert-Eisenstein series Es((z,2')) for the real quadratic field of
discriminant A = dydy. The precise definition of Es((z,2’)) will be given in the next subsection.

(A)

Let Xy, 4, © CL — {£1} be the genus character. For v € ﬁOA, the v-th Fourier coefficient of

Eq((z,7")) is given by
A s
o (VA== 37 X, ()0 (0)",
Tnd bCOA
(vVA)Ch

where the sum is over all ideals b of O such that (vVA) := vv/AOA C b.

This terminology is not used in [2] but in [4].
"See subsection 7.1 for details.
8The proof works not only for (dy,ds) = 1 but also for dy # da.
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Proposition 4. (Gross-Zagier, p. 217, the 2nd displayed formula) Let A = dydy be as above. For
veE ﬁ@A with Tr(v) :=v+1v =1, v>0>vV (V : the conjugate of v), there is x € Z such that

VAY = %, x> VA, z=A (mod 2). With this setting, one has
h(dy,dy, —2) =0, & ((VAV)).

Xdy ,do

The identity we want to prove is (see the beginning of section 3)

—log|J(dy,ds)|? = Z Z e(n)logn.

z2<A, 22=A (mod4) n| A—a?
4

Using

e the bijection from A, = {b; ideal of Oa, I+Z‘/Z €b}toB,={neN; n| ZQZA} defined by
the norm map b — Na(b) := (Oa : b),

e the relation e(n) = Xgllmd?(b) (n=9a(b) := (Oa : b)),

we can rewrite the above identity as

“log|J(dnd)P = > Y A (0)log(Ma(b)).
uEiOA bCOA

=
Tr(v)=1,v50 vV/Ach

Here v %= 0 means v > 0,7/ > 0. Gross and Zagier deduce this identity (hence the Gross-Zagier
formula) from a suitable relation among the Fourier coefficients of E4((z, 2')).

3.4 Hilbert-Eisenstein series for the real quadratic field of discriminant d;d,

Let dj <0 (j = 1,2) be fundamental discriminants such that (dy,d2) = 1. Then A = dydy > 0

is again a fundamental discriminant. The genus character XfilA)dg : CX — {%1} corresponding to

i if (mA(p)7dl) = 17

the decomposition A = dids is defined from the value Xl(ilAziQ(p) = ‘ﬁs(p) )
’ Fay ) i MNalp),d2) =1,

through the unique factorization into prime ideals p. For an Oa-fractional ideal a and for s € C
(R(s) > 1), (2,2)) € Hx9H, 2=ax+1iy, 2/ =2’/ + iy, the partial Eisenstein series for a is defined by

ysy/s
/
E((z,7),s,0a) = Z o

(i Ean(e) (mz + n)(m'z" +n')mz + n|?s|m'2’

where the sum is over Equ(a) := (a x a\ {(0,0)})/ ~ with the equivalent relation “~” defined by
the diagonal action of OX. Taking an average over wide ideal classes with twisting by the genus

character, Gross and Zagier define the Eisenstein series to be required;
1+2.
Ed((z2) = > Xdl L @NA (@) E((2,2), 5, 0).
[a]ECA

Note that each summand is well defined by a nature of the genus character, and we extend Ma (a) :=
n"29A (na), where n is any natural number such that na is an ideal of O and NMa (na) = (Oa : na).
We have the Fourier expansion by a standard method (]2, p. 215]);

A s /s 1 A —s s
By(( ) = 125+ L, vy + = L2 x5, 207"y~

1 .
PR Y o (YRR W e+,
ve—L0A\{0}
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where L(s, ij?’ziz) is the L-function of Xl(lﬁ)dZ’ T (¢) := ZbCObA X&izlz(b)‘ﬁA(b)s for a non-zero
: 1,42 cC
ideal ¢ of O is the ideal divisor function, ®,(t) is defined by ®4(t) := [ %du7 which can

be described in terms of the confluent hypergeometric function, and e(z) := e?™* as usual.

Gross and Zagier compute the holomorphic projection of the diagonal restriction of the deriva-
tive at s = 0 of the Hilbert-Eisenstein series. The Fourier expansion of d;E((z, z), s)|s=0 is given
by ([2, p. 215])

’ _ (A) ’
55 Bs((2,2)) T 2L(1, X g, a,) Lo (yy') + 4Cx,§ffd2
+872A"2 Z O’;((A) (vVA))e(vz+'7)
ve 0, v
—4r?A"s 3 o, & (VAW )e(vz + V')
N , ' Xdy,dy
ueﬁOA, v>0>0/
—4r?As Z o, @ (vVA)(v|y)e(vz + V2,
. , WXdy ,do
z/eﬁOA, v<0<v
where CX(A) =I'(1, XLIAZQ) + (3log A —logm — ) L(1, X&f)dz) (7 is the Euler constant) and
., , ;
o (VA= S, o (W) a()= e Dan)
dy.ds 0s 25X, ,d, =0 s 0s =0

The Fourier expansion of its diagonal restriction (with a suitable normalization) is given by (|2,
p. 216])

_VAd

F(z):= W&ES((Z’Z)) VA

A
=33 <L(1,X&h)dz)logy + Cx(m )

dy,dg
s=0
Y e (WA~ DT oy s (VA y)e(Tr(w)2).
VE%OA, v=0 41,42 VE%OA, v>0>v' e

Gross and Zagier apply the holomorphic projection lemma to this F'(z).

Proposition 5. (Gross-Zagier, Proposition 7.8) Suppose that a continuaous function F : $ — C
satisfies

(i) F(vz) = (cz + d)*F(z) for all z € $,v = (2 }) € SL(Z),

(i) there are constants A, B and a positive number e such that F(z) = Alogy + B + O(y™°)
as y := S(z) — oo (uniformly in z = R(z)),

(iii) F has an absolutely convergent Fourier series F(z) =" am(y)e(mz).
Then it holds that

24A

- /
I 4 —4my Sd 7)) =24A 2<— 2 1+logd ) —24B.
Ho,lgés»o( ) et ) < (B Hitlos )

This proposition is applicable to
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A A
In this case the required datum in Proposition 5 are A = %L(l,xé%z), B = %C’Xiﬁzz. The
1st Fourier coefficient a;(y) of F(z) is given by
ai(y) = > o e (WVA)) — > Ton ), (rVA)®(|']y)
IIEfOA,V>0 Tr(v)=1 Xy dz VE\F(’)A v>0>v" Tr(v)= pee
A
= Y Y XEh®le®a)— 3 h(didy,—n)@(Vly).

VGfOA b&géb n>VA, n=A (mod2)
Tr(v)=1, v=0 ¥

Here Proposition 4 is used for the second term. We put

Ri= > 3 X, (6)log(Ma(6)).

ue—oA bCOA
7=
Tr(v)=1, v=0 vVAeD

Notice that
(i) the identity we want to establish is

—log|J(di,ds)|> = R (the Gross-Zagier formula, cf. subsection 3.3).
(ii) The integral transform of a4 (y) in Proposition 5 is

00 B D(s+1 VA
47r/ ar(y)e~ ™yt dy = EZ )S)R 3 h(d, D, —n)T, (” = )
0 n>VA, n=A (mod2) 2VA

where Wy(N) := 47r/ d(\y)e ™ysdy (A > 0).
0

Proposition 5 gives a closed form of the finite part of the integral transform of a;(y) in (ii) at
s = 0. Together with some manipulation on Wy, it follows that

L) ~12V/AL(, X
VA

I'(3)
ﬁ

R= lim 2 Z h(dy, da, —n)Qs—1 (

5—0,R(s)>0 2 s—1
( n>VA, n=A (mod2)

12VA A ¢ 1
+ L(17Xfih212)<2+2(1)21ogA+v+1og4+ (T AG)-

¢
Recall that we have established (Proposition 2)

) 12\/—

. n
log|J(ddo)? = lm _|=2 3T h(didy,-m)Q (ﬁ)
n>\/Z, n=A (mod2)

ar (, |di|? Lo d
+C(25) (h (d2) zl' CSo(van) (8) + h'(dv) f
L($H)I(s —

l) ’ /
TQQ(QS - 1)) — 241 (dy)h (d2)} ;

G

—h/(d1)h'(dy)

where h/(d;) = w%h(dj). In these expressions for log |J(dy,d2)|? and R, we apply

°%M%)Z(W@M)MA$@:M&mﬂ@mL
 LiL Xa) = FZH(d) - (W(@d = glgh(d)

Combined with the Laurent expansions of ((s), L(s, xq) and I'(s), we can confirm the coincidence
of the above expressions for — log|J(d1, d2)|> and R. This finishes Gross-Zagier’s analytic proof.
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4 Where is the assumption (d;,d;) =1 used?

Tim Hutchinson [6] tried to generalize Gross-Zagier’s formula to the case when dj, dy are not
necessarily fundamental and (dy, d2) is a power of a prime not dividing the product of the conductors
of di and dy. Before we discuss his conjecture, we summarize typical places that d; and dy are
coprime is used; (1) definition of €, (2) to prove h(dy, ds, —x) = ZuldeldQ €(p), (3) ideal theory and

4

genus theory of the fundamental discriminant djdy. In particular L(s, Xfi[?jj)) = L(s, Xa, ) L(S; Xdy)»
€(Ma,a,(0)) = ngjj?(b), W, do, —2) = 0, arao ((v/didav)) (Proposition 4).
dydy

5 Work of Hutchinson (1998)

5.1 Hutchinson’s conjecture

We discuss the easiest case of the conjectual extension presented by Hutchinson [6, Conjecture
3.2, p. 258]. Suppose that d; are again two different negative fundamental discriminants, and that
the greatest common divisor of dy and dy is a power of a prime .° Under these assumptions, possible
values for (di,d2) is an odd prime or 4 or 8. Note that didz is a non-fundamental discriminant,
in particular, a prime ¢ divides the conductor of djdy iff ¢ = [. By numerical computations,
Hutchinson made a conjecture saying that, by a suitable modification of F(m) presented in the
next subsection 5.2, a Gross-Zagier type formula should hold true;

didy — 2*
UORSIE | B

22<d1d2, v2=d1d2 (mod4)

5.2 Modification of F'(m) due to Hutchinson

Under the above setting on d; (j = 1,2) and [, suppose that m € N is of the form
(x € Z). We consider the prime factorization of m. Except for the prime [, we classify prime
factors of m according to the values of .19 Depending on the number of prime factors p of m
satisfying 2 { ord,(m) and e(p) = —1, the modification of F'(m) due to Hutchinson is as follows.

(i) When m has the form m = [¢p2® ~~-p3“"‘ql{1 gl (elp) = —1, e(@) = 1, a;,b; 20, e 2 1),
then F(m) = (¢ (s t1),

(ii) When m has the form m = lep2“+1p%a1~-p%“rqll’1 gt (e(p) = elpy) = —1, e(q) =1,
a,a;,b; 20, e 2 0), then F(m) = platDbrt1)-(bs+1)2%,
2 ifez=1(|m),
1 ife=0(1m),
(iii) Otherwise, F'(m) = 1.

dido—z2
4

Here 2X = and the exponent is (a + 1)(by + 1) -+ (bs + 1)2X.

6 Main result and reformulation of the conjecture using ¢,
The main result in this talk is to prove the Hutchinson conjecture.

Theorem 1. Hutchinson’s conjecture stated above holds true.

Our proof proceeds along the lines of the analytic proof of Gross-Zagier.!! A non-trivial differ-

A general case is investigated in [6, Conjecture 3.8, p. 262].

10¢ is the same as in Gross-Zagier’s case.

"The geometric proof is generalized to general discriminants by Lauter and Viray [9]. As they say that “his
formulations are very different from ours”, it is not clear whether their formula implies Hutchinson’s conjectural
formula immediately.
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ence is that, in Gross-Zagier’s case, the proof uses “the defining form of F(m)”, that is, F(m) :=
Hnn/:m ' >0 n<) In Hutchinson’s case, the conjecture is formulated through a generalization
of “the simple formula of F(m)” (cf. subsection 2.5). This means that an analog of “the defin-
ing form of F(m)” is not clear. In particular, any suitable analog of € is not clear to rewrite the
conjectual simple formula to the defining form in order to adapt the analytic proof.'? Key ingre-
dients to prove Hutchinson’s conjecture is generalizing the following contents to non-fundamental

discriminant dids;
(d1d2)

e defining an analog of € and relating it to the genus character x; ;.

e an explicit formula of the class number of pairs h(dy, ds, —x),

e a decomposition formula of L-function L(s, Xfi‘ffjj))
In the following we rewrite the above di and dy (di # da) as di = d, do = D, and suppose that
(d, D) is a power of a prime I, ordy(d) < ords(D).

6.1 Definition of ¢,

First, we present a function €,,, which makes us possible to rewrite the conjectual simple formula
F(m) to the defining form similar to Gross-Zagier’s case. We denote it by €, since its definition
depends on m unlike Gross-Zagier’s e. For any integer m € {:I:dD;ﬂc2 12 € Z,2% = dD(mod 4)}, we
define €, : {n € N;n | m} — {0,1, -1} as a multiplicative function such that

(i) em(1):=1

4) ifqtd,
%) if gt D,
0 if1sr <,

(4) (5m) 7=

where [* € {(fl)FTll (if I is odd), —4,+£8 (if I is even)} such that d/I* is a discriminant.

(ii) For a prime q | m, ¢ # 1, put €,,(q) := and 6,,(q") := em(q)" (r 2 2).

(iii) For I | m with r; := ord;(m), we put €, (I") := {

We state the 1st main proposition in our proof of the conjecture.

Proposition 6. (1st main point in this work) For m € {idD;zz;x € Z,2% = dD(mod 4)} and
n € N with n | m, we put
Gm(n) = H am(@),

aln

Then, Hutchinson’s F(m) coincides with Gy, (m)~t.

6.2 Reformulation of Hutchinson’s conjecture
It follows from Proposition 6 that Hutchinson’s conjecture can be stated as
dD — a2\
(d, D)2 = 11 G oo (T) .
22<dD, z2=dD (mod4) !

By taking the logarithm, the conjecture is

_log\J(d»D)‘Q = Z Z EdDZZZ (n)logn.

22<dD, z2=dD (mod4) n| dD4—x2

12At the first glance, this author expected to define ¢(l) := 0 since (4t) = (%) = 0. But this does not give us a
correct answer.



As in Gross-Zagier’s case, we intend to see that both sides are related to Fourier coefficients of a
certain Hilbert-Eisenstein series for the non-maximal quadratic order Oyp of discriminant dD. We
shall modify the results used in the analytic proof suitably to the case I | (d, D) # 1. Especially,
we need to study (1) an explicit formula of the class number of pairs h(d, D, d), (2) the L-function

L(s, Xgldg)), (3) the Hilbert-Eisenstein series F5((z,2’)) for the quadratic order Oyp.

7 Sketch of the proof of the conjecture

7.1 Equivalence of pairs of forms

Let us introduce the class numbers of pairs of forms. Let d < 0, D < 0 be fundamental
discriminants,'3 QE;L) (resp. Qg>) the set of all positive-definite primitive integral binary quadratic
forms of discriminant d (resp. D). The group SLy(Z) acts on QEIH and Qg') respectively by the
linear transformation of the variables as (v f)(z,y) := f(2',y), where v = (2 1) € SLy(Z), (?j/’) =

24y (). The group SLo(Z) acts on (f,F) € Q((;r) X Qgr> diagonally by v(f, F) := (vf,7F). The
equivalence relation of pairs of forms is defined by this diagonal action; (f, F), (g,G) € Q§l+) X Q<D+)
are equivalent ((f, F) ~ (g, G)) iff there is v € SLa(Z) such that v(f, F) = (g, G).

Next, we introduce a notion of codiscriminant of a pair. For f = [a,b,c], F = [4A, B,C], we call
B(f, F) := bB —2aC — 2cA the codiscriminant. If (f, F) € Q4" x @) then the value § = B(f, F)
must satisfy

(1) 6 <0, (2)0%2=2dD, (3)0%=dD (mod 4).

For such a number §, we define the class number of pairs as the number of equivalence classes of
pairs having the codiscriminant ¢;

h(d, D,8) = 4({(.F) € Q7 x Q5 B(f.F) = 6}/ ~).

It is known that h(d, D, 9) is finite.
Next theorem is the 2nd main point in the proof of the conjecture.

Theorem 2. (2nd main point in this work) Let d < 0, D < 0 be any fundamental discriminants
with ords(d) < orda(D), and let § € Z such that § < 0, 62 > dD, 6> = dD (mod 4). Then we have

h(dva(s): Z Eéz,%(p,),

2_
O<,LL‘6 4dD

where for m = ‘52*% eNand 0 < p|m = pv, we put
Bo() = [I,-ep(a) “a non-zero value between (%) or (%) Voif ptuporptuv forall p* e P(d)),
0, if there is p* € P(d) such that p|p and p | v.

Here P(d) := {p*; prime discriminant, p* | d and d/p* = 0,1 (mod 4)}.1

We mention some prior researches on explicit formulas of class number of pairs. Gross and
Zagier [2] imposed the assumption that d and D are coprime (cf. Proposition 3). Hardy and
Williams [4] studied class number of pairs independent of the paper [2]. They imposed the as-
sumption that (dD,d) is a power of 2. We used their ideas to prove Theorem 2. There is another
approach due to Morales [10] and Nakagawa [11]. It might be possible to obtain Theorem 2 by

3Except for Proposition 7, we allow d = D in this subsection 7.1.

A prime discriminant is an element of {(71)%1) (p odd primes), —4, £8}.
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their methods.' However, to obtain explicit results, some additional assumptions are imposed, and
moreover, quadratic forms axz? + 2bzy + cy? are main object of their studies.

[Example] (d = -7, D = -7, 6 = —21)
Representatives are the next four pairs (hence h(—7,—7,—21) = 4) as given in [4, p. 105];
{(£.F) € Q5 x QW B(f.F) = —21}/ ~
={([1,1,2,2,-5,4]), ([1,1,2], [2,9,11]),([1,1,2], [4,=3,1]),([1,1,2], [4,11,8])}.

)

In Theorem 2, we see that P(—7) = {-T7}, 52*4‘1[) =98

a non-zero value between (%7) or (=), if Ttpor 74y,

0, if 7|pand 7]

Egg(p) = {

(v) | (1,98)  (2,49)  (7,14) (14,7) (49,2)  (98,1)
(-L H-10 0 GF-1(F-

By Theorem 2, the class number of pairs is the sum of these Fog(u) values, which is 4 as expected.

We state a relation between ¢,, (used in the reformulation of the conjecture, subsection 6.1)
and E,, (appeared in the class number formula of pairs). We can show that these are essentially
same by some manipulation of Kronecker symbols. Hence, the class number of pairs can be written
in terms of €,,. This gives a generalization of the important identity (Proposition 3) due to Gross
and Zagier.

Proposition 7. (Relation between €,, and E,,) Suppose d < 0, D < 0, 1| (d, D) are the same as in
the conjecture with orda(d) < orda(D). Let § € Z be an integer such that § < 0, §2 > dD, 6> = dD

(mod 4).
(1) If m € N has the form m = ‘52*% >0, then e_pm(p) = Ep(p) for 0 < p| m.
(2) One has h(d,D,0) = Z €ap_s2 (1) by (1) and Theorem 2.
4

62—dD
ult==

7.2 Correspondences

We recall the well-known correspondences involving binary quadratic forms. We follow the
exposition in [3].1® Let A be a quadratic discriminant, that is, A in a non-square integer such that
A =0,1 (mod 4). We put

b A
ot

;a,b,c € Zya # 0, (a,b, c) = 1,b2—4acA}.

We define Xa := Xa/ ~ (resp. X = Xa/ ~) as the set of all GLa(Z) (resp. SL2(Z)) equivalence
classes of quadratic irrationals of discriminant A. We denote by [£] (resp. [¢]~, ) the equivalence

class of . Here the equivalence relations are defined as follows; putting M(z) = ﬁ’/ii’g for M =

<2‘ ?), 21, z9 € Xa are equivalent (21 ~ z2) iff there exists A € GL2(Z) such that z; = A(z9), and
21, 22 are proper equivalent (z1 ~4 29) iff there exists A € SLy(Z) such that z; = A(z3).

51n addition, their methods are applicable to indefinite forms.
A)

16This is just to introduce general genus characters ijl. ¢, and its L-function L(s, X(dlA,)dg)'



We write f = [a,b,c] for an integral binary quadratic form f(z,y) = ax?® + bwy + cy®. As
b
Z) Then we see that (z y)My (y) = f(z,v)

usual “primitive” means (a,b,c) = 1. Put My = Z
and that vf = g iff ‘yMpy = My.'" We denote by SA the SL2(Z) equivalence classes of “positive
definite or indefinite” primitive integral binary quadratic forms of discriminant A. We denote by
/] = [a. b, ] the equivalence class of f = [a,b,c]. For f = [a,b,c], we put &5 := b+\/_ which is one
of roots of f(X,—1)=0.

Finally, we recall the definition of Ca and Cf. Let Oa = [1, #] =7+ Z# be
the quadratic order of discriminant A, where oa € {0,1}, oA = A (mod 4). Put K = Q(VA).
For lattices a, b in K,'® a, b are equivalent (a ~ b) iff there is A € K* such that a = Ab, and
[a] denotes the class of a. Whereas a, b are narrow equivalent (a ~4 b) iff there is A\ € K* with
N(X) := AN > 0 such that a = Ab,'% and [a]" denotes the narrow class of a. For a lattice a in K, put
R(a) :={X € K; a C a}. We restrict our consideration to a such that R(a) = Oa. This condition
is equivalent to say that a is an Oa-invertible Oa-fractional ideal. We define the ideal class group
Ca as the set of all Oa-invertible classes [a], and the narrow ideal class group CZ as the set of all
Oa-invertible narrow classes [a]™. For & = % € Xa, the lattice (&) := [a, al] = Za + Za& in K
is an ideal of Oa. The ideal I(§) is Oa-primitive, Oa-invertible and (Oa : I(§)) = lal.

Proposition 8. Let A be a quadratic discriminant.

(i) For A >0, the map Ia : Fa — XX given by Ia([f]) := [&f]~, is a bijection.
For A <0, the map YA : A — %A gwen by VA([f]) = [£r]~ is a bijection.

(i) For any A, the map v : Xa — Ca given by ta([€]~) := [I(§)] is a bijection.

For A >0, the map 1a : XX — CX given by ta([€]~,) :== [I(f)\/Z(I_Sign(a))/Z}"' is a bijection.
(iif) For any A, the map ®a : Fa — CL given by @A ([f]) := [I(Ef)\/Z(lislg“(a))p]+ is a bijection.

@

Here in (ii) “a” comes from & = % € Xa and in (iii) “a” comes from f = [a,b, c].

The group structure of CX induces that of $a.

7.3 Genus character Xéﬁlz

Let e1, ez (e1 # e2) be (positive or negative) fundamental discriminants, and put A = €1€2fg
with fo € N. This A is a quadratic discriminant. For a primitive binary quadratic form f = [a, b, ]
of discriminant A, we can take m € Z represented by f with (A, m) = 1. We then define

XL (f) = (6*1> ~

m

This induces group homomorphisms Xéﬁ,)fz :§a — {£1} and Xéﬁlz :Fa/TA — {£1}. It is known
that X(elA,)ez = X&ﬁll We can compute the value Xéﬁ,)@ (f) directly from a primitive form f = [a, b, (|
as

X (abd) = [T % (a b)),
g*€P(e1)

o [ erl@) i () =1,
) (a,b.d]) - {Xq*(c) L=

See Theorem 2 for P(e;) and xg+(m) := (%) is the Kroecker symbol.

"We put (vf)(z,y) := f(z',y') for v = (29) € SLa(Z), (j;) = (21)(}) as in subsection 7.1.
8a is a lattice in K iff a is of the form a = [w1,ws] := Zwi + Zws with w1, w2 € K linear independent over Q.
9\ is the conjugate of A.
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7.4 Genus character L-function

By the group isomorphism @A : §a — CL, we identify C{ and Fa. Thus we have a narrow
class character Xéﬁg : CL — {£1}. The genus character L-function is defined by

(A) X(?)z(a)
L(s, Xéres) = > LS (R(s) > 1),
aCOa, Oa-invertible mA(a)

where the sum is taken over all Oa-invertible ideal a of Oa and 9Ma(a) = (Oa : a) is the absolute
norm.

Theorem 3. (3rd main point in this work (Chinta-Offen, Kaneko-M/[8], Ibukiyama)) Let e1, ez
(e1 # e2) be any fundamental discriminants and put A = ejeaf2 with fo € N. Then
L(S X((zlA,zzg) = L(S XCL)L(S Xez)

61 1— o —s\ _ mp7172mps 1—-s o
" H - X )1~ Xea (PP ?) 1,p1—2s (p Xe: (P) (P

S ()

rlfo

piprime
Here L(s,xq) is the Dirichlet L-function of the Kronecker character xq(x) = (%), the product on
the right runs over the prime factors p of fo and my, := ordy(fo) if fo > 1. Whereas the empty
product is understood as being 1 if fo = 1.

In particular, one has L(s, X&?Zj)) = L(8, Xey ) L(8, Xey) as the special case of Theorem 3.

7.5 Relation with Hilbert-Eisenstein series for the non-maximal order O,p

Suppose that d < 0, D < 0, I | (d, D) are as in the Hutchinson conjecture. Associated to the
genus character x& b+ CA — {£1} of non-fundamental discriminant A = dD (cf. subsection 7.3),
a Hilbert-Eisenstein series E,((z,2')) of the non-maximal quadratic order O can be defined and
it is not difficult to see that its Fourier expansion has almost the same form as in subsection 3.4.
For v € ﬁ@A, the v-th Fourier coefficient of E4((z,2)) is given by

<A>((\/_V)) = > Xip(6)9a (b)",
bCOA, Oa-invertible

(vVA)Ch
where the sum is over all Oa-invertible ideals b of Oa such that (vVA) := vWV/AOA C b.

Proposition 9. Suppose that d < 0, D <0, [ | (d, D) are as in the Hutchinson conjecture and that

ordy(d) £ orda(D). Put A = dD. Forv e %OA with Tr(v) =v+v =1, v > 0>V, we can

take x € 7 such that Ay = T+ \F Lz > VA, x=A (mod 2). Then we have

h(d, D, —z) = o, ) (VAv)).

Ad,D

The constant term of F4((z,2")) is described by the L-function L(s, X;’A[;) of X[S,A[;7 which coin-
cides with L(s, xq)L(s, xp) with the help of Theorem 3.



7.6 Relation between ¢,, and X<A)

We prepare a lemma about the index appeared in the sum o, ) (vWA)), that is, Oa-
invertible ideals b of Oa such that vv/A € b (A = dD).

Proposition 10. Suppose that d < 0, D < 0, 1 | (d, D) are as in the Hutchinson conjecture and

that orda(d) < orda(D). Put A =dD and suppose v € ﬁ(’)m Tr(v) =1.

; — _ z+VA
(1) There is © € Z such that x = A (mod 2), v = A

(2) Write vV/A = % asin (1). Putr; = ordl(zQZA). The map b — Na(b) gives a bijection
from A, = {b; Oa-invertible ideal of Op, m+f ebltoB,={neN;n| 732;A,ordl(n) € {0,m}}.
(3) For b € A, put n =Na(b). Then X(A)(b) =€r_,2(n).
4

To show Proposition 10, we need ideal theory of the order O4p.

Lemma 1. As in Proposition 10, let A = dD, vV A LV with x € Z.
z? A T
I =" H(%):lp v H(%):an#lvqwzzA q

with rp 2 0,7, 2 0. Here and in the following, the empty product is undestood as being 1.
(2) (WWA) is an Oa-regular ideal *° and has the unique factorization into Oa-reqular ideals with

(1) \12 A| has the prime factorization of the form |

mutually coprime prime-power norms of the form (Z+§/Z) = a® H(é)zl p'r H(é)70 gtlglz2=a O
» q /=97 al

where af

(3) Put Ay = {b; Oa-invertible ideal of On, % € b} and By = {n € N;n | IZZA,ordl(n) €
{0,7}}. Then b € A, has the unique factorization into Oa-regular ideals with mutually coprime
prime-power norms of the form b = (at))% H(%):l par H 2 5 q%, where 0 < a, S 1p,

D= [, =R, p = [p, =8, q = [g, =R,

2)=0,g#Lq =2
aq € {0,1}, & € {0,1}. In particular, ord;(Na(b)) € {0,7’1} and Na (b ) € B,.

First of all, we shall determine the value Xfﬁg(p) for p =[p, 28], p #1, (é) # —1 to deduce
A A .
1b®) = Xg o (P2, Z52) = [pepia) ¥ (b7, Z52))- Since

Proposition 10 (3). By definition, x,

p # 1, we have ptdor ptD. pr td, then x*)([p,z, 4pA ) = x¢+(p) for any t* € P(d) and
A . .
thus X 3() = li-cppa) X () = xalp) = €a_sz (p) with xe-() = (5). Tf p § D, we may use

A A A . A A)
X;D)(p) = Xglc)l(p)A The value Xt(u))(a(l)) can be determined as x&yg(a(l)) = Xgl,[g([l L, 4ZTLA]) =

* r z2— T x2— a/tr * *
| P XN, 2, 55R]) = xape (M) () = ( l/n ) (W) = €acs (I") with I* €
P(d) such that [ | I*.
The identity h(d, D, —z) = o, NOS| ((v/Av)) in Proposition 9 follows from Propositions 7 and 10
Xd,D

A
a5 h(d, D, ~) = Ly, €02 (1) = Tiea, xip(b) = 0, &) (VAD)).

7.7 Further reformulation of Hutchinson’s conjecture

Let A = dD be as above. In subsection 6.2, Hutchinson’s conjecture has been reformulated as

—log|J(d, D)|* = Z Z €ass? (n)logn.

22<A, 22=A (mod4) n|A’7’”2
4

20«0 x-regular ideal” means Oa-primitive and Oa-invertible ideal of Oa.
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Using Proposition 10, the Hutchinson conjecture can be restated as

A
~log|l/(@ D)= Y D Xip(®)log(a(b).
ve-LOp bCOA, Oa-invertible
+
Tr(l/):Al, v=0 vV/Aeb
This identity can be proved along the lines of Gross-Zagier’s analytic proof (by applying the holo-
morphic projection lemma to the Fourier expansion of Fs((z,2)) together with preparations so
far). Details will be published elsewhere.
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