
157

On Hutchinson's conjecture 

Yoshinori Mizuno 

I report on a proof of a conjectual extention of Gross-Zagier's formula proposed by Tim Hutchin-

son. 

1 Elliptic modular function j (T) 

Let SJ := {T = u + iv;v > O} be the upper-half plane. The elliptic modular function j(T) 
(T E SJ) is defined by 

3 1 
J(T) := 1728 

92(7) 
= ~ + 744 

92(7)3 -27g3(T)2 q 
+ 744 + 196884q + O(qり(q= e2mT), 

where g2(T), g3(T) , g3 (T) are the Eisenstein series 

1 1 
92(7) := 60 区卯(T):=140 区

(mT + n)4' （mT + n)6' 
m,nEZ, (m,n)c/(0,0)'・'m,nEZ, (m,n)c/(0,0) 

The definition is rather simple, but this j function has many remarkable properties. It classifies 

isomorphism classes of elliptic curves defined over C. Its Fourier coefficients are integers, and can 
be described analytically by Rademacher-Petersson's formula, arithmetically by Kaneko's formula. 

Congruences satisfied by Fourier coefficients are studies by several researchers. Moreover, Fourier 

coefficients of j (T) relate dimensions of the irreducible representations of the monster group. We 
refer to [7] for more information. 

Special values of j (T) at imaginary quadratic irrationals are impressive. (+) Let恥 bethe set of 
all imaginary quadratic irrationals in,fJ of discriminant d < 0 defined by 

葛＋）：＝｛b＋;a” 祠；a,b,cE Z,a > 0, (a,b,c) = 1,b2 -4ac = d}. 

It is well known that j (T) for T E X~ +) (called "singul 
d called "singular modulus") is an algebraic interger of degree 

四＋i氾
h(d), where h(d) is the class number of the order叩＝ Z + z （四 E{O, 1}，びd三 d(mod 

2 

4)). We extract such special values from Cox [1]; j(《可） ＝123 (h(-4) = 1), j (l十戸） ＝ー(15)3

(h(-7) = 1), 

3 

J（v'=T4) = 23 (323 + 228¥/'2 + (231 + 161叫）~., (h(-56) = 4) 

As shown in [1], we can construct an abelian extension (called "ring class field") over the 

imaginary quadratic field K := (Ql(v'd) by adjoining an special value at TE x~+); Gal(K(j(T))/K) 
竺ぬ (theideal class group of the order叫） andGal(K(j(T))/(Ql)竺 Cd><1 (Z/2Z). 
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2 Work of Gross-Zagier 

(＋) （＋） Let dj (j = 1, 2) be negative fundamental discriminants. Let和＝又／ ～十 bethe set of 

equivaleO:cedasses of quadr~tic irrationals in the upper-half plane Sj ;f discri~inant dj with respect 
（ EX ＋） to the action of SL2(Z). The class of TE x~;) is denoted by [Tl~+・ The number h（も） ＝じ（祝―)）
J 

is nothing but the class number of Q([り)． LetWj = ~（翌） be the number of the units of 

discriminant dj.1 

2.1 Definition of J(d1，あ）

The value J(d1, d叫isdefined as the (modified) resultant of the class equations of discriminant 

も(j= 1,2) by 

J(d占）：＝（II II （応）一 J（乃）））土

同戸誓［叫～＋E誓

When d1 and d2 are coprime, it is known that the value J(d1, d2戸isan integer. In addition the 

resultant J(d1,必） itselfis an integer, if bothも(j= 1, 2) are smaller than -4. Gross and Zagier 
established a closed formula of J(d1, d2戸EZ when (dぃ必） ＝1. 

2.2 Definition of E 

To state the Gross-Zagier formula, let d1 and d2 be coprime negative fundamental discrim-

inants as above. 2 Let q be a prime such that(星リナー1. According to [2], we put E(q) := 

｛畠：：：］：；： In general,the function € is defi:ed邸 acompletelymultiplicative function on 

the set of integers m ~ 1 such that any prime q I m satisfies（呼）ヂー1.

2.3 Definition of F(m) 

Form such that E(m) is meaningful, we put F(m) := IJ n<(n'). Here the product is 

nn'=m, n,n'>O 
over all positive divisors n of m, and n'is defined as m/n. 

2.4 Gross-Zagier formula {1985) 

Gross and Zagier [2] establised the following closed formula of the value J(d占）乞 Ifdjく 0

(j = 1, 2) are fundamental discriminants such that (d1,必） ＝1, then 

J(d1, d星＝士 II F 
鱈— x2

丑<d心，”笙砂 (mod4)F(¥)・

We extract some examples from [2]. As mentioned there, the numbers are rather highly factorizable. 

Example 1 ([2, p. 191]) 

J(-163, -4) = j (~亭）— j (i) = -26. 36. 72. 112. 192 ・ 1272 ・ 163. 

1w; is 4 for dj = -4, whereas 6 for dj = -3, and叫＝ 2if叱<-4 
2So the product d心＞ 0is a fundamental discriminant. 
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Example 2 ([2, p. 193]) 

J(-67, -163) = j (_!__±；濯)-J• (1 + i戸）＝215.37. 53. 72. 13. 139. 331. 

2.5 Simple formula of F(m) 

As noted in [2, p. 192], the arithmetical function F(m) has the following simple description. Let 

m EN be of the form血子己 (xE Z). We consider the prime factorization of m and classify prime 
factors according to the values of E. Depending on the number of prime factors p of m satisfying 

2 f ordp(m) and E(p) = -1, 3 the simple formula for F(m) is given as follows. 

(i) When m has the form m = p2a+1Pia1 • • -p;arq『•. • q乞s(E(p) = E(p;) = -1, E(q;) = 1), 
then F(m) = p(a+l)(b1+l)…（妬＋1).

(ii) Otherwise, F(m) = 1. 

As a corollary, we can deduce that the primes dividing J(d1, d研 arerather restricted ([2, p. 192]). 

Corollary 1. Let q be a prime with q I J(d1, d2)2. Then 

(a)（舟）ナー1,（序）＃ー1,

(b) q divides a nutural number of the form竺二，
(c) q ~呼． More precisely, 

(i) if d1d2 = l (mod 8) then q＜予（ii)if d1 = d2 = 5 (mod 8) then q <讐

3 Sketch of the analytic proof due to Gross-Zagier 

We shall review the analytic proof of the Gross-Zagier formula given in [2].4 This proof consists 

of analytic and arithmetic techniques. First of all, it is noted that F(m) = IJ n'(n') = 

nn1=m, n,n'>O 

IT n―,(n). Taking the logarithm, the Gross-Zagier formula is restated as 

O<nlm 

4
 叫 W1

L loglj(町)-j（青＝

団～十 E叫＋）
1 

叫～＋€誓

L L E(n)logn. 
丑<d心， x笙 d1必 (mod4)n|年年立

4 

The left hand side is the CM average of log lj (z) -j (w)|乞

3.1 Automorphic Green function G凸，乃）

Let us introduce an automorphic Green function Gs(T心） （cf. [5]). For s E C,況（s)> 0, let 
Q口 (t)(t > 1) be the Legendre function of the 2nd kind 

00 

如 (t):= 1= (t+ Vtこlcoshv)―sdv, 

゜or, in terms of the Gauss hypergeometric function, it is given as (0 < t < 1) 

Qs-1 （二）＝ ~(1 -t)" F(s, s; 2s; 1 -t). 
1 -t} 2I'(2s) 

3ordp(m) is a non-negative integer such that p°'dv(=) is the highest power of p dividing m. 
4There is a geometric proof. We refer to the first half of [2]. 
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Using the Legendre function Q8_1(t) together with the hyperbolic distance function d(T1,T2), we 

define g8(T1心） for乃＝巧＋ ivjE,fj (j = 1, 2), T1 =J T2 by 

(u1 -U2戸十vr+ v~ 
此 1，乃） ：＝ー2Qs-1(cosh d（町，乃）） ＝ー2Qs-1(~)-

2vW2)  

The automorphic Green function Gs(Tぃ乃） isthen defined by 

Gs(T□2)：＝区釦（n，臼）， （r := PSL2(Z)，況(s)> 1). 
TEÌ 

Let E(r, s) be the Eisenstein series on SL立） andr.p(s) the function appears in its constant term; 

l vs 
E(r,s)：＝ーと （溌(s)> 1), r.p(s) := 

r(½)r(s —枠）((2s -1) 
2 |CT十 d|2s
c,d匹 (c,d)=l

r(s)((2s). 

Using these functions, Gross and Zagier show the following proposition. 

Proposition 1. (Gross-Zagier, Proposition 5.1) The series G8(r1,r2) can be continued meromor-

phically to the whole s-plane. For町，乃 ESj such that町f+T2 (SL2(Z)-inequivalent), one has 

log lj(r1) -j（責＝』比ER(Gs(T1，叫＋4江 (ri,s)+4江 (T2,S) -4四 (s))-24. 

As functions of the variable Ti E Sj ¥｛ァT2内 ESL2(Z)}（乃 ESj fixed), both sides are harmonic 

and invariant with respect to Sい(Z).The difference has an extension to a harmonic function on 

Sj and it tends to zero as ¥)'(TJ)→oo. Hence the proposition can be deduced from the maximum 

principle of harmonic functions. 5 

3.2 CM  average 

We consider CM average of the automorphic Green function G.(z, w). Starting from the def-

inition and using a kind of unfolding argument, we can rewrite the CM average as the sum of 

g8(r1,r2) over imaginary quadratic irrationals of discriminants d1 and d2 modulo the diagonal 

action of r = PSL2(Z). That is 

2 2 

W1 W1 
区 Gs(T1，乃） ＝ 

加げ誓 I四 l~+E誓
区 9s(T□2)．

(T心）迂＼（X訂xx切

妬＋四 22If we write乃＝ 2a1' the corresponding binary form is [aj, bゎ叫：＝ ajx~ + b臼＋ CjY~ (cj = 
砂 d,
3 3 

4a1 
) and we see that 

此 1，乃） ＝ー2Qs-1（i),△=砂， n= 2a心＋ 2a匹 1-b1h

Collecting the terms according to the value n, one has 

2 2 n 

W1 W1 
L G8(T直） ＝ー2 L h(d1,d2,-n)Qs-l 

同～＋El'訂，［叫～＋EXし;) n>辺， nee△ (mod2)
い），

5lims→1,sE政 maybe replaced by Jim,→1・
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where h(d1, d2, -n) is the class number of pairs6 defined by 

h(d1, d2, -n) := U({(!, F) E Q閏)xQ;；どB(f,F)= -n}/ ~). 

HereQ 
d 

is the set of all positive-definite primitive binary quadratic forms of discriminant d; j < o, 
we put B(f, F) = bB -2aC -2cA (codiscriminant) for (!, F) E Q閏)xQいwith/ = [a, b, cl, 

F = [A,B,C] （＋） , C], and for two pairs (!, F), (g, G) E Q~;J x Q必， wedefine (!, F) ~ (g, G) by the 
diagonal action of SL2(Z) on Q (+) （+） 7 

d1 xQ  d2 ・ 
Recall that for fundamental discriminants dj < 0 the CM average of the Eisenstein series can 

be described by the Dedekind zeta function as 

(+） w（も） 5 (丁) ((2s) ・ 

こ E(T,s)＝ 1 |dJ| s/2<Q(占)（s)

［吋～＋翠:~

Together with Proposition 1, one has the following infinite series expression of the left hand side of 

the Gross-Zagier formula. 

Proposition 2. (Gross-Zagier, Proposition 5.3) Let d1く 0,必く 0be fundamental discriminants 

with d1 i= d2.8 Put△ = d心， hJ ＝ ¾,h（も）． Then

log I.J(d,, d叩＝ lim [—2 こ鴫，d2,-n)Qs-1
＋ふ（的亨 s；→(lksIE(RS)＋ hin>;：：□゚/2;ih；悶）r悶―いく((2/：)）-24h{h;］ 

3.3 Some arithmetical results 

To push forward, Gross and Zagier prepare some arithmetical results. The first is an explicit 

formula of the class number of pairs. 

Proposition 3. (Gross-Zagier, Proposition 6.1) Letも<0(j = 1, 2), (d1, d叫＝ 1be as above and 

put△ ＝砂． Take6 E Z. such that 6 < 0,炉＞ △， r52三△ {mod4)-Then 

h(d1, d2, 6) = L E(μ). 
62＿△ 

μ| 4 

Another key observation is that several quantities in the Gross-Zagier formula have relation 

with Fourier coefficients of a Hilbert-Eisenstein series Es((z, z')) for the real quadratic field of 

discriminant△ =d1必． Theprecise definition of Es((z, z')) will be given in the next subsection. 

Let X 
（△） 
d1,d2 ・ :C囚→ ｛士1}be the genus character. For v E六叫， thev-th Fourier coefficient of 

E,((z, z')) is given by 

び（△）((✓函））：＝〉（△）
s,x内，d2

Xd1,d2(b)叫 (b)八
bcO△ 

(v《 )Cb

where the sum is over all ideals b of 0△ such that（ハ公） ：＝ u《ふ9△ Cb.

6This terminology is not used in [2] but in [4]. 
7See subsection 7.1 for details. 
8The proof works not only for (d,，ん） ＝1 but also ford, i-d2. 
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Proposition 4. (Gross-Zagier, p. 217, the 2nd displayed formula) Let△ = d必 beas above. For 

VE芯 叫 withTr(v) := v + v'= 1, v > 0 > v'(v': the conjugate of v), there is x E Z such that 

畠 v='!'.予， x>畠， X三△ (mod2). With this setting, one has 

h(d1, d2, -x) ＝び（△） ((~v)).
0,xd氾 2

The identity we want to prove is (see the beginning of section 3) 

-log IJ(d1,d2)l2 = 区 区伽）logn.
丑＜△， x2三△ （mod4) n| △-X2 

4 

Using 

• the bijection from Ax= {b; ideal of 0~，竺ff=- Eb} to Bェ＝ ｛nE N; n I合今 definedby 

the norm map b→叫(b):=（叫： b),

• the relation E(n) = 
（△） 
蝠，~2(b) (n =叫（b):=（応： b))'

we can rewrite the above identity as 

-log IJ(d1, d叩＝こ L x~以（b) log（叫（b)).

llE六°△ bco△ 
Tr(11)=l,11叫0

llV囚Eb

Here v >,:,a O means v > 0, v'> 0. Gross and Zagier deduce this identity (hence the Gross-Zagier 

formula) from a suitable relation among the Fourier coefficients of E8((z, z')). 

3.4 Hilbert-Eisenstein series for the real quadratic field of discriminant d必

Let dj < 0 (j = 1, 2) be fundamental discriminants such that (d1, d砂＝ 1.Then△ = d心＞〇

is again a fundamental discriminant. The genus character x~~~" : （△） 
狐，d2 笞→ ｛士1}corresponding to 

d1 

the decomposition △ = d心 isdefined from the value x芯(P)＝ ｛ l叫 (P)
if（叫（p),d1)= 1, ふ］ if （叫（P），d砂＝ 1， 

through the unique factorization into prime ideals p. For an Ot,.-fractional ideal a and for s E (C 

(~(s) > 1), (z, z') E fJ x f), z=x+iy,z =x'+ iy', the partial Eisenstein series for a is defined by 

E((z, z'), s, a)：＝こ yBylS 

(mz + n)(m'z'+ n')lmz + nl28lm'z'+ n'l2•' 
{m,n}EEqu(a) 

where the sum is over Equ(n) :=(ax a¥ {(0,0)})/ ~ with the equivalent relation"~" defined by 

the diagonal action of 0,&. Taking an average over wide ideal classes with twisting by the genus 

character, Gross and Zagier define the Eisenstein series to be required; 

比((z,z')) ：＝ L X岱江(a)叫 (a)H2sE((z, z'), s, a). 

[a]EC△ 

Note that each summand is well defined by a nature of the genus character, and we extend叫 (a):=

n-2叫 (na),where n is any natural number such that na is an ideal of叫 and叫 (na)=（叫： na).

We have the Fourier expansion by a standard method ([2, p. 215]); 

Es((z, z')) = L(2s + 1, x芦）ysyts+ J"KL(2s, X儡）叱(O)2y―syt-s

+ 1 _S I-s 

V 
Y-syt-s L び （ △）

-2s,x叫 2
((vv'b..)）叱(vy)<.l¥8(v'y')e(vx+ v'x'), 

VE点0ふ{O}
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where L(s,x此） isthe £-function of （△） （△） 
邸，d2'6 （△） 

s，屈，d2
(C)：＝江co△ Xd1,d2(b)＂△(b)8 for a non-zero 

ccb 
e(-tu) ideal c of叫 isthe ideal divisor function,丸（t)is defined by叱(t):= JTR ~du, which can 

艮 (U+i)（疋＋1）

be described in terms of the confluent hypergeometric function, and e(z) := e2rriz as usual. 

Gross and Zagier compute the holomorphic projection of the diagonal restriction of the deriva— 
tive at s = 0 of the Hilbert-Eisenstein series. The Fourier expansion of邸 ((z,z), s)ls=O is given 
by ([2, p. 215]) 

゜~E.((z,z'))I = 2L(l 
OS 

心江）log(yy')+ 4C（△） 

s=0 x叱，d2

+8心廿 L a'（△） （（vぷ））e(vz+ v'z') 

VE六叫，咋0
xd氾 2

-47!"公— i 〉び（△） ((v心））i!>(lv'ly')e(vz + v'z') 
0，立，d2

VEサ炉△， v>O>v'

-4社△廿〉び（△） ((v亭））i!>(lvly)e(vz+ v'z'), 
0，屈，d2

VE六叩， v<O<v'

where C （△） ＝ L'(l （△） 
(，此，d2)＋ (½ log△-log1r -,) L(l 

（△） 
心 ;,d)(r is the Euler constant)皿 d

X虹，e2

8 
八（（喜）） ＝一び （△） （（v,/E.)) I , <T>(t) ==上e―21rt竺叱(-t) ． 
屈，~2 "-. -11  8s ~ -2s,x内，d2"-. -11  Is=。 271"- 8s -a, -, ls=O 

The Fourier expansion of its diagonal restriction (with a suitable normalization) is given by ([2, 

p. 216]) 

V8  
F(z) := ~~Es((z,z)) 

《（△）
8召 fsEs((z,z))I ~=~(L(l, 贔，~2) logy+ C遣，）d2)

s=O 

＋ど 6'（△） （（vぷ））e(Tr(v)z)ーと 6 （△） （（v✓入））<I>(lv'ly)e(Tr(v)z).
X五d2 0,xd己 2

IIE去弧，咋O UE去0△,11>0>11'

Gross and Zagier apply the holomorphic projection lemma to this F(z). 

Proposition 5. (Gross-Zagier, Proposition 7.3) Suppose that a continuaous function F : Sj→ C 

satisfies 

{i) F(勺z)= (cz + d)2 F(z) for all z E Sj，'= (~ル） E SL2(Z), 
{ii) there are constants A, B and a positive number E such that F(z) = A logy+ B + O(y—€) 

as y := ~(z) • oo (uniformly in x:＝扮(z)),

{iii) F has an absolutely convergent Fourier series F(z) ＝ど~=-ooam(y)e(mx). 
Then it holds that 

°° 24A 
S→o,liい (47rf 釘 (y)e―4訂炉dy+~) =24A（五（2)+1+log4)-24B

゜
This proposition is applicable to 

《 0
F(z) = ~-i-Es((z,z))I. 

8召 8s
s=O 
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A 
⑮ （△） 

B=  
✓,5 .. 

In this case the required datum in Proposition 5 are A = ~ L(l 2召 'xd1,d]， 2召望，）~2. The 

1st Fourier coefficient a1(Y) of F(z) is given by 

叫）＝区バ ((vぷ））ー区 O （△） （（心））<I>(lv'ly)
X臼 °豆，d2

VE*叫，咋0,Tr(V)＝1 u€j叫，v>O>v',Tr(v)=l

こ こ心よ(b)log（叫（b))- L h(d1慮—n)<I>(lv'ly).
llE六°△ beo△ 

Tr(v)=l, ll渕0llJ囚Eb
n>,/15.., nee△（mod2) 

Here Proposition 4 is used for the second term. We put 

Notice that 

R:＝ L LX此(b)log（叫（b)).

llEぶm beo△ 

Tr(11)=l, 11~0 llv函 b

(i) the identity we want to establish is 

-log IJ(d1, d叩＝ R (the Gross-Zagier formula, cf. subsection 3.3). 

(ii) The integral transform of a1(y) in Proposition 5 is 

oo r(s+ 1) 4TJ 釘 (y)e―4万dy=~Rー L. h(d,D,-n)叱
n喜

o (47f）s n>,/iS., ~•( mod2/(d,D,-n)Ws (~), 

JOO where叱（入）：＝ 41r<I>(入y)e―4万 dy（入＞ 0).

゜Proposition 5 gives a closed form of the finite part of the integral transform of a1 (y) in (ii) at 

s = 0. Together with some manipulation on叫 itfollows that 

R=S→O]閏)>0(2">心 nビ(mod2)h(d1,d2,-n)Qs-1 （i) — 12：竺 L（ 1SX-;：；2) ）
+~L(l，心）（2 + 2%(1) -~ log△+1 + log4 十冒））— ~L'(I,x芦）

Recall that we have established (Proposition 2) 

log IJ(d,, d研＝ lim [—2 区 h(d1,d2,-n)Qs-1 n 
S→1,sEill 

n>✓云， n=△ (mod2)
い）

+~(h'（必）亨含 <Q（高）（s) + h1(d1)亨 2<Q（ぷ）（s)

-h1(d1)h'（必）叫）畠― i)((2s-1)) -24h'(d1)h'（必）］，

where h'（も） ＝ ¾h（も）． In these expressions for log IJ(d1, d2)12 
wJ 

and R, we apply 

• (Q（占）（s)＝く(s)L(s,Xd,),L(s,xd以） ＝L(s, Xd1)L(s, X叫，

• L(l, Xd) = ~h'(d) (h'(d)＝晶h(d)).
氾

Combined with the Laurent expansions ofく(s),L(s, Xd) and r(s), we can confirm the coincidence 

of the above expressions for -log IJ(d1, d2)12 and R. This finishes Gross-Zagier's analytic proof. 
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4 Where is the assumption (d1, d2) = 1 used? 

Tim Hutchinson [6] tried to generalize Gross-Zagier's formula to the case when dぃ必 arenot 

necessarily fundamental and (d1, d叫isa power of a prime not dividing the product of the conductors 

of d1 and d2. Before we discuss his conjecture, we summarize typical places that d1 and d2 are 

coprime is used; (1) definition of E, (2) to prove h(d1, d2, -x) =区μ|丑ヂ±1.E(μ), (3) ideal theory and 

genus theory of the fundamental discriminant d1 d2. In particular L(s 
(d1d2) 

, xd1,d2) ＝ L(s，詞）L(s，屈），
(d1d2) 

E(SJtd1d2(b)) = x~:'.I;J(b), h(d1, d2, -x)＝び (dld2）（（心v))(Proposition 4). 
0，屈，d2

5 Work of Hutchinson (1998) 

5.1 Hutchinson's conjecture 

We discuss the easiest case of the conjectual extension presented by Hutchinson [6, Conjecture 

3.2, p. 258]. Suppose that dj are again two different negative fundamental discriminants, and that 

the greatest common divisor of d1 and d2 is a power of a prime l.9 Under these assumptions, possible 

values for (d1, d2) is an odd prime or 4 or 8. Note that d心 isa non-fundamental discriminant, 

in particular, a prime q divides the conductor of d心 iffq = l. By numerical computations, 

Hutchinson made a conjecture saying that, by a suitable modification of F(m) presented in the 

next subsection 5.2, a Gross-Zagier type formula should hold true; 

IJ(d1,d叩＝ IT F 
鱈—丑

丑＜砂， x笙砂 (mod4)F (¥). 
5.2 Modification of F(m) due to Hutchinson 

Under the above setting on dj (j = 1, 2) and l, suppose that m E N is of the form年号土
(x E Z). We consider the prime factorization of m. Except for the prime l, we classify prime 

factors of m according to the values ofい0 Depending on the number of prime factors p of m 

satisfying 2 f o叫 (m)and 1:(p) = -1, the modification of F(m) due to Hutchinson is as follows. 
(i) When m has the form m = zep予し1...p;arqt'...心(1:(p;)= -1, 1:(q;) = 1, a;,bj ~ 0, e ~ 1), 

then F(m) = ze(b,+l)…（bs+l). 

(ii) When m has the form m = zep2a+1p和・"P笠qt'...qが(1:(p)= 1:(p』=-1, 1:(q;) = 1, 
a, ai, bj ~ 0, e ~ 0), then F(m) = p(a+l)(b1+1).. ・(bs+1)2X. 

Here 2x = { ~ ~!:: ~ i! ~ :~: and the exponent is (a+ l)(b1 + 1) ・・ •(bs + 1)2X, 
1 if e = 0 (lf m), 

(iii) Otherwise, F(m) = 1. 

6 Main result and reformulation of the conjecture using伍

The main result in this talk is to prove the Hutchinson conjecture. 

Theorem 1. Hutchinson's conjecture stated above holds true. 

Our proof proceeds along the lines of the analytic proof of Gross-ZagierいAnon-trivial differ-

9 A general case is investigated in [6, Conjecture 3.8, p. 262]. 
10 E is the same as in Gross-Zagier's case. 
11 f i The g eometric proof is generalized to general discriminants by Lauter and Viray [9]. As they say that "his 

formulations are very different from ours", it is not clear whether their formula implies Hutchinson's conjectural 
formula immediately. 
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ence is that, in Gross-Zagier's case, the proof uses''the defining form of F(m)", that is, F(m) := 

ITnn'=m, n,n'>O n'(n'). In Hutchinson's case, the conjecture is formulated through a generalization 

of "the simple formula of F(m)" (cf. subsection 2.5). This means that an analog of "the defin-

ing form of F(m)" is not clear. In particular, any suitable analog of E is not clear to rewrite the 

conjectual simple formula to the defining form in order to adapt the analytic proof. 12 Key ingre-

dients to prove Hutchinson's conjecture is generalizing the following contents to non-fundamental 

discriminant d1必；

• defining an analog of E and relating it to the genus character x 
(d心）
d1,d2' 

• an explicit formula of the class number of pairs h(d1, d2, -x), 
(d心）• a decomposition formula of £-function L(s, x~~1;:1). d1,d2) 

In the following we rewrite the above d1 and d2 {d1 i= d2) as d1 = d, d2 = D, and suppose that 

(d, D) is a power of a prime l, ord2(d) ~ ord2(D). 

6.1 Definition of伍

First, we present a function Em, which makes us possible to rewrite the conjectual simple formula 

F(m) to the defining form similar to Gross-Zagier's case. We denote it by Em since its definition 

depends on m unlike Gross-Zagier's E. For any integer m E｛士dD-X2 2 ;x E Z,x 三 dD(mod4)}, we 

define Em: {n E N;n I叫→ {O,1, -1} as a multiplicative function such that 

(i)伍 (1):= 1 

(ii) Foe a prime q Im, q fl, put伍 (q)：＝｛ ［t) if q{d, 
q) if qf D, 

and伍(qり：＝伍(qy(r ~ 2). 

(iii) For l Im with rz := ordz(m), we put伍 (F)：＝［師） (_<m) ：：：口 r, < n, 

!-1 

where l* E {(-1)万―l(if l is odd), -4,土8(if l is even)} such that d/l* is a discriminant. 

We state the 1st main proposition in our proof of the conjecture. 

p roposition 6. (1st main point in this work) Form E｛士dD-x2 
4 

n EN with n Im, we put 

Gm(n) ：＝ IIa€m(a)· 

aln 

Then, Hutchinson's F(m) coincides with G叫m)-1.

6.2 Reformulation of Hutchinson's conjecture 

;x E Z,x2三 dD(mod4)} and 

It follows from Proposition 6 that Hutchinson's conjecture can be stated as 

|J(d,D)|2 = II GdD;x2(dD;”2)-1. 

丑<dD,x2三dD(mod4) 

By taking the logarithm, the conjecture is 

-loglJ(d,D)l2 = L L 丘D己 (n)logn. 

丑<dD,x2=dD (mod4) nl !!12ーの2

12 At the first glance, this author expected to define e(l) := 0 since（乎） ＝ （乎） ＝0. But this does not give us a 
correct answer. 
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As in Gross-Zagier's case, we intend to see that both sides are related to Fourier coefficients of a 

certain Hilbert-Eisenstein series for the non-maximal quadratic order Odv of discriminant dD. We 

shall modify the results used in the analytic proof suitably to the case l I (d, D) =J 1. Especially, 

we need to study (1) an explicit formula of the class number of pairs h(d, D, 8), (2) the £-function 

L(s 
(dD) , x~~;/), (3) the Hilbert-Eisenstein series Es((z, z')) for the quadratic order Oav, 

7 Sketch of the proof of the conjecture 

7.1 Equi uivalence of pairs of forms 

Let us introduce the class numbers of pairs of forms. Let d < 0, D < 0 be fundamental 

discriminants, 13 Q (+） （+） r) (resp. QB°)) the set of all positive-definite primitive integral binary quadratic 

forms of discriminant d (resp. D). The group SL2(Z) acts on Q~+) and Q炉respectivelyby the 

linear transformation of the variables as (, J)(x, y) := f (x', y'), where 1 = (f n E SL2(Z),（；り＝
(p q)は）． Thegroup SL心） actson (f, F) E Q~ (＋) （＋）． n)(~)- The group SL2(Z) acts on (f,F) E QrJ x Qb) diagonally by 1(!,F) := (,f,1F). The 

equivalence relation of pairs of forms is defined by this diagonal action; (f, F), (g, G) E Q~+) X Qげ）
are equivalent ((f, F) ~ (g, G)) iff there is IE SL心） suchthat 1(!, F) = (g, G). 

Next, we introduce a notion of codiscriminant of a pair. For f = [a, b, cl, F = [A, B, C], we call 

B(J, F) := bB-2aC-2cA the codiscriminant. If (J, F) E Q~+) x Q炉， thenthe value b = B(f, F) 

must satisfy 

(1) 8 < 0, (2) 炉~ dD, (3) 82三 dD(mod 4). 

For such a number 8, we define the class number of pairs邸 thenumber of equivalence classes of 

pairs having the codiscriminant 8; 

h(d, D, o) := ~({(f, F) E Q~+) x Q炉；B(f,F)= o}/ ~). 

It is known that h(d, D, o) is finite. 
Next theorem is the 2nd main point in the proof of the conjecture. 

Theorem 2. (2nd main point in this work) Let d < 0, D < 0 be any fundamental discriminants 

with ord2(d) ;:;; or山(D),and let o E Z such that o < 0,炉＞ dD,82三 dD{mod 4), Then we have 

h(d,D,o)＝区 E↑dD(μ)，

0<μ1 82-dD 
4 

where for m = ¥ E N and O < μ I m = μv, we put 

E叫μ):= {~p*EP(d) "a non-zero value between（号）or (¢)”, if P{μ orp{ u jor all p* E P(d)）, 

0, if there is p* E P(d) such that p I μ and p I v. 

Here P(d) := {p*;prime discriminant, p* Id and d/p*三 0,1 (mod 4)}.14 

We mention some prior researches on explicit formulas of class number of pairs. Gross and 
Zagier [2] imposed the assumption that d and D are coprime (cf. Proposition 3). Hardy and 

Williams [4] studied class number of pairs independent of the paper [2]. They imposed the as-
sumption that (dD,,5) is a power of 2. We used their ideas to prove Theorem 2. There is another 

approach due to Morales [10] and Nakagawa [11]. It might be possible to obtain Theorem 2 by 

13Except for Proposition 7, we allow d =Din this subsection 7.1. 
14 A mime discrimi I 

p-1 

prime discriminant is an element of { (-1)方―p(podd primes), -4,士8}.
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their methods.15 However, to obtain explicit results, some additional assumptions are imposed, and 

moreover, quadratic forms a丑＋2bxy+ cy2 are main object of their studies. 

[Example] (d = -7, D = -7, 6 = -21) 

Representatives are the next four pairs (hence h(-7, -7, -21) = 4) as given in [4, p. 105]; 

{(f,F) E Q~+f x Q撃B(f,F)= -21}/ ~ 
= { ([1, 1, 2], [2, -5, 4]), ([1, 1, 2], [2, 9, 11]), ([1, 1, 2], [4, -3, 1]), ([1, 1, 2], [4, 11, 8]) }. 

In Theorem 2. we see that P(-7) = ~ -(-7) = {-7}, tで＝ 98,

Egg(μ) := { :,non-zero value between（予）。r（デ）， if7イμ or 7仰，
0, if 71 μ皿d71 v. 

(μ,u) | （1,98) （2,49) （7, 14) （14,7) （49, 2) （98, 1) 

E98(μ) | （子）＝ 1 げ） ＝1 0 0 （引＝ 1 （子） ＝1 

By Theorem 2, the class number of pairs is the sum of these Egs(μ) values, which is 4 as expected. 

We state a relation between Em (used in the reformulation of the conjecture, subsection 6.1) 

and Em (appeared in the class number formula of pairs). We can show that these are essentially 
same by some m皿 ipulationof Kronecker symbols. Hence, the class number of pairs c皿 bewritten 

in terms of Em-This gives a generalization of the important identity (Proposition 3) due to Gross 

and Zagier. 

Proposition 7. (Relation between Em and Em) Supposed< 0, D < 0, l I (d, D) are the same as in 
the conjecture with ord2(d) ;;:; ord2(D). Let 5 E Z be an integer such that 5 < 0,炉＞ dD,52三 dD

{mod 4). 

(1) If m EN has the form m = ~旦＞ 0, then E-m(μ)＝恥(μ)for O <μI m. 

(2) One has h(d, D, 5) = L E~ (μ) by {1) and Theorem 2. 

μ| 詑—dD

7.2 Correspondences 

We recall the well-known correspondences involving binary quadratic forms. We follow the 
exposition in [3].16 Let△be a quadratic discriminant, that is,△in a non-square integer such that 

△三 0,1 (mod 4). We put 

b+《
応：＝｛e= ¥;a,b,c E Z,a =J 0, (a,b,c) = 1,b2 -4ac =斗・

We define和：＝恥／ ～ （resp.玖＝恥／ ～＋） as the set of all GL心） （resp. SL2(Z)) equivalence 
classes of quadratic irrationals of discriminant△.We denote by [el~ (resp. [eい） theequivalence 

class of e. Here the equivalence relations are defined as follows; putting M〈z〉＝筈彗 forM = (~ n, z1,砂 E恥 areequivalent (z1 ~ z2) iff there exists A E GL心） suchthat z1 = A〈z2〉,and

z1,吃!are proper equivalent (z1~＋硲） iffthere exists A E SL2(Z) such that z1 = A〈z2〉・

15In addition, their methods are applicable to indefinite forms. 
（△） 16This is just to introduce general genus characters x~":!n" and its £-function L(s （△） 
知，~2 and its £-function L(s,知，d2)．
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We write f = [a, b, c] for an integral binary quadratic form f(x, y) = a丑＋ bxy+ cy乞 As

usual "primitive" means (a, b, c) = 1. Put Mt=(：う）． Thenwe see that (x y 
ぅ C

(x y)M心） ＝J(x,y) 

and that,f = g iff t,Mn = M9.17 We denote byぬ theSL2 (.Z) equivalence classes of "positive 
definite or indefinite" primitive integral binary quadratic forms of discriminant△.We denote by 

[f] = [a, b, c] the equivalence class off= [a, b, c]. For f = [a, b, cl, we put勺：＝ b+2竺whichis one 
of roots of f(X, -1) = 0. 

Finally, we recall the definition of C△ and Cふ Let0~ = [1,竺臼l:=.z + 亨 止 逗 be

the quadratic order of discriminant△,where u△ E {0,1}，び△ ＝ △ （mod 4). Put K = IQ)（畠）．
For lattices a, b in K, 18 a, b are equivalent (a ~ b) iff there is入EKx such that a =入b,and 

[a] denotes the class of a. Whereas a, b are narrow equivalent (a ~+ b) iff there is入E炉 with
N（入）：＝入>-'>0 such that a =入b,19 and [a]+ denotes the narrow class of a. For a lattice a in K, put 

冗(a):=｛入 EK；入aca}. We restrict our consideration to a such that R(a) = 0~. This condition 
is equivalent to say that a is an 0△-invertible 0△-fractional ideal. We define the ideal class group 
c△ as the set of all 0△-invertible classes [a], and the narrow ideal class group C囚asthe set of all 

b＋冨似 invertiblenarrow classes [a]+. Fore=~ EX△,the lattice I(e) := [a, ae] =.Za +.Zae in K 2a 
is an ideal of叫． Theideal I(e) is O~-primitive, O~-invertible and (0△ :I(e)) = lal. 

Proposition 8. Let△ be a quadratic discriminant. 

(i) For△ >0, the map 1J△ ：含△ →咲 givenbyむ([!]):=［勺］～十 isa bijection. 

For△ <0, the map 1J△ :ぎ△ →応 givenbyむ ([f]）：＝ ［C庄 isa bijection. 
(ii) For any△,the map i~: 疋△ → C△ given by心（［甜） ：＝ ［I(e)] is a bijection. 

(l-sign(a))/2 
For△ >0, the map瓜：翌→C!given by国 [eに） ：＝ ［I(e)は］十 isa bijection. 

(l-sign(a))/2 
(iii) For any△,the map <I>△ ：ぬ→ C囚givenby屯ヽ([!]):= [I(e1)《 l+ is a bijection. 

Here in (ii) "a" comes from e = !!十2竺E恥 andin (iii) "a" comes from f = [a, b, c]. 

The group structure of C囚inducesthat of紅

7.3 Genus character x 
（△） 
e1,e2 

Let e1, e2 (e1 =/ e2) be (positive or negative) fundamental discriminants, and put△ =e1e2fi名
with Jo E N. This△is a quadratic discriminant. For a primitive binary quadratic form f = [a, b, c] 

of discriminant△,we can take m E.Z represented by f with（△，m) = 1. We then define 

x玲し(f)：＝戸）．
m 

This induces group homomorphisms x （△） （△） 
叫 2:ぬ→ ｛土1}and X釘，e2：ぬ／乾→ ｛土l}.It is known 

that 

as 

（△） 
知，e2= xi芦． Wecan compute the value （△） 知，~2(f) directly from a primitive form f = [ a, b, c] 

砥し([a,b,c])= IJ x(q*)([a,b,c]), 

q*EP(e1) 

x(q*）([a, b, C]）：＝ { Xq• (a) 
Xq• (c) 

if (a,q*) = 1, 
if (c, q*) = 1. 

See Theorem 2 for P(e1) and Xq•(m) :=（伍） isthe Kroecker symbol. 

17We put (1f)(x,y) := f（が，y')for'Y = (~ ~) E SL立），に） ＝ (~ ~)け） as in subsection 7.1. 
18n is a lattice in K iff Cl is of the form Cl= [w1, w吋：＝ Zw1+ Zw2 with w1, w2 E K linear independent over IQI. 
19 >.'is the conjugate of入．
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7.4 Genus character £-function 

By the group isomorphism <I>△ ：紅→ Cふweidentify C! and Jll., Thus we have a narrow 
（△） 

class character x叫 2: C囚→ ｛土1}.The genus character £-function is defined by 

（△） 

L(s,xi？し）：＝区 Xe1,e2(a）償（s)> 1), 
acO△, 0△-invertible "△(a)S 

where the sum is taken over all Ot,.-invertible ideal ll of 0△ and SJt△(n) = (0△ :n) is the absolute 

norm. 

Theorem 3. (3rd main point in this work {Chinta-Offen, Kaneko-M/8}, Ibukiyama)) Let e1, e2 

{e1 i= e2) be any fundamental discriminants and put△ = e心 f名withfa E N. Then 

L(s, xi江） ＝L(s,に）L(s,x叫

X I T.  
p|fo 1 -p1-2s 
p,pnme 

Here L(s, Xd) is the Dirichlet L-function of the Kronecker character Xd(*) = (~), the product on 
the right runs over the prime factors p of Jo and mp := o叫 (Jo)if Jo > 1. Whereas the empty 

product is understood as being 1 if Jo = 1. 

In particular, one has L(s，心誓） ＝L(s, Xe,)L(s, Xe2) as the special case of Theorem 3. 

7.5 Relation with Hilbert-Eisenstein series for the non-maximal order OdD 

Suppose that d < 0, D < 0, l I (d, D) are as in the Hutchinson conjecture. Associated to the 
（△） genus character x~~~ : C囚→ ｛土1}of non-fundamental discriminant△ =dD (cf. subsection 7.3), 

a Hilbert-Eisenstein series Es((z, z')) of the non-m訟 imalquadratic order叫 canbe defined and 

it is not difficult to see that its Fourier expansion has almost the same form as in subsection 3.4. 

For v E 去0~, the v-th Fourier coefficient of E.((z, z')) is given by 

び（△)（（心v)):= L （△） 
s,xd,D 

Xd,D(b)叫 (b)s,
bcO△, 0△-invertible 

(v年）Cb

where the sum is over all O~-invertible ideals b of 0△ such that (vv公） ：＝ v,/7S.O△ Cb. 

Proposition 9. Suppose that d < 0, D < 0, l I (d, D) are as in the Hutchinson conjecture and that 
鴫 (d);;:; ord2(D). Put△ =dD. For v E六叫 withTr(v) = v+v'= 1, v > 0 > v', we can 

take x E Z such that辺＼u= x＋/A, X >,/7S., X 三△ (mod2). Then we have 

h(d, D, -x)=％，心信（（心））．

The constant term of Es((z,z')) is described by the £-function L(s,x~腐） of X靡 whichcoin-

cides with L(s, Xd)L(s, XD) with the help of Theorem 3. 
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7.6 Relation between r:~ and （△） 
m Xd,D 

We prepare a lemma about the index appeared in the sum a （△） 
-2s,xd,D ((v畠））， thatis, 0△-

invertible ideals b of O ~ such that v、:i° Eb（△ ＝dD). 

Proposition 10. Suppose that d < 0, D < 0, l I (d, D) are as in the Hutchinson conjecture and 

that ord2(d)~ ord2(D). Put△ =dD and suppose v E六叫， Tr(v)= 1. 

(1) There is x E Z such that x三△ (mod2), v = x＋冨
9 万・

(2) Write vv'K = ~十戸 as in (1). Put r1 := ordげげ）． Themap b→叫(b)gives a bijection 

from Ax = {b; 0△-invertible ideal of O ~，竺~Eb} to Bx= {n EN; n|古今ordz(n)E {O, rz}}. 

(3) For b E Ax, put n =叫（b).Then X位(b)= E• ~(n). 

To show Proposition 10, we need ideal theory of the order OaD-

Lemma 1. As in Proposition 10, let△ =dD, V辺＝ x＋心 with x E Z. 

(1) l~I has the prime factorization of the Jo血 I丑—△4 | = lri rr① =1 Prp IT（約＝O,qヂl,q|ェ2―△ q 

with rz ~ 0, rp ~ 0. Here and in the following, the empty product is undestood as being 1. 
(2) (v⑮ )is anO△-regular ideal 20 and has the unique factorization into 0△-regular ideals with 

mutually coprime prime-power norms of the form（円匈＝ a（l)rr⑮)＝1Prprr A (-';;-)=0,qf,l,ql 註—△ q,

where砂＝［加，予],p=[p，予],q = [q，円］．

(3) Put Ax= {b; OL1.-invertible ideal of OLI.,"'十~ E b} and Bx = { n E N; n I ~げ， ord1(n) E 
{O, rz} }. Then b E Ax has the unique factorization into 0△-regular ideals with mutually coprime 

prime-power norms of the form b = (a(!l)8z IT心）＝1Pap IT冷）＝O,qf,l,q|天△ qaq,where O ;::; ap ;::;屈
aqE{O,l},ふE{O, 1}. In particular, ordパ引△(b))E {O,rz} and m△(b) E Bx. 

First of all, we shall determine the value x （△) x＋冨, we shall determine the value xrrj(J:I) for p =―  △ [p，2 ], p# l, （戸＃ー1to deduce 

Proposition 10 (3). By definition,心羞(p)= X図([p,x,X24-P△]） ＝ rrt*EP(d) X(t*）（[p，x, X24-P州）． Since

p =J l, we have p f d or p f D. If p f d, then xWl ( [p， x, X24ード］） ＝ 知 (p) for any t* E P(d) and 

thus心塁(p)= IT『 EP(d)Xt•(p) = Xd(P) = E△ーX2(p）with知 (a)= (~)- If pf D, we may use 
4 

心 (p)＝心(p).The value x似（砂） canbe determined as 心(a(l)）＝心（間，x,'f貸])= 

ITt*EP(d) xWl([l仄x,賛］） ＝Xd/l* (zr')xz*(”冒） ＝ （符） （丁己匂叩ー）＝ €→（加） with 『 E
4 

P(d) such that l I l*. 

The identity h(d, D, -x)＝び（△）(（心）） inProposition 9 follows from Propositions 7 and 10 
0,xd,D 

as h(d, D, -x) =区nEBxロ,2_(n)＝区bEAx虚 (b)=%，心翌 ((~v)).

7.7 Further reformulation of Hutchinson's conjecture 

Let△ =dD be as above. In subsection 6.2, Hutchinson's conjecture h邸 beenreformulated as 

-loglJ(d,D)l2= L L E△ー2(n) logn. 
丑＜△， x2⇒ (mod4)n|△;x2 

20 ヽヽ0△-regularideal" means 0△-primitive and 0△-invertible ideal of 0△・
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Using Proposition 10, the Hutchinson conjecture can be restated as 

-log IJ(d, D)l2 = L >'] 
心翌(b)log（叫（b)).

沢六°△ bcO△, 0 • -~~vertible 

Tr(v)=l, V渕0 v✓玉b

This identity can be proved along the lines of Gross-Zagier's analytic proof (by applying the holo-

morphic projection lemma to the Fourier expansion of Es((z, z')) together with preparations so 

far). Details will be published elsewhere. 
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