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On equivariant holomorphic differential 

operators 
starting from vector-valued cases 

by 

Siegfried Bocherer and Julia Meister 

Abstract 

The theory of Rankin-Cohen bilinear holomorphic differential op-
erators is well explored for scalar-valued cases, mainly by the work of 
Ibukiyama. Not so much is known when we start from vector-valued 
automorphy factors. We will describe some constructions starting 
from nonholomorphic operators of MaaB-Shimura type. We focus on 
operators of order one, but by some compatibility with tensor prod-
ucts we can cover more general situations. For the case of symmetric 
tensor representations we can however give quite complete results by 
a direct approach. Some parts of the presentation are based on the 
Mannheim PhD-thesis 2021 by Julia Meister. 

1 Introduction 

Rankin-Cohen operators are a usefull tool in the theory of holomorphic modu-

lar forms on hermitian symmetric domains. Also, by their combinatorial and 

representation theoretic properties, they are of independent interest. We 

refer to [5] and many subsequent papers by Ibukiyama in this regard. So 

far, the focus was always on cases, where one starts from scalar valued func-

tions. In the present note however, we explore some cases, where the starting 

point are vector-valued functions, equipped with stroke operators attached 

to higher dimensional representations. 

To explain our method, we recall the classical Rankin-Cohen operators for 

SL2, changing weights from k and l to k + l + 2: 

[f, g] = l -f'・ g -k ・ f ・ g' (1) 

for arbitrary (holomorphic) functions f and g on the classical upper half 
plane. The equivariance property of this bilinear operator is best explained 

by the identity 

[f, g] = l ・ bk(!) ・ g -k ・ f ・ふ(g) (2) 
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k,  8 where bk= —+ -is a nonholomorphic operator changing weights from k 
2iy'oz 

to k + 2. 
In the three main sections 2-4 of this paper we shall generalize the identities 

(1), (2) from above from different viewpoints. 

In section 1 we give the preliminaries, in particular, we explain the framework 
of equivariant differential operators following Shimura [7]. In section 2 we 

show that (1), (2) can be generalized to give Rankin-Cohen brackets which 

change arbitrary automorphy factors p and p'to (irreducible sub-) represen-
tations of p@ p'@ Sym2. This result is obtained using some multiplicity one 

property and does not provide an explicit formula. 
Section 3 then shows that in the framework of symmetric tensor represen-
tations, we can get a complete and explicit construction of R-C-brackets 
changing automorphy factors p = Sym1 and p'= Symm to Sym1+m十Pfor 

any m, l,p. 

In section 4 we presents the main result of [6], namely an explicit construc-
tion of an R-C-bracket changing the automorphy factors p = Sym1@ detk 
and p'= det1 to p @ Sym2 @ detk+1. This result (although predicted by the 

abstract considerations of section 2) is obtained independently of section 2 
by explicit compution of the R-C bracket in question. A nice feature here 

is that this explicit construction is compatible with taking arbitrary tensor 
products of the standard representation Stand = Sym1 with itself. Taking 

into account that (by H.Weyl) any polynomial irreducible representation oc-

curs in some Standv, we therefore get a construction of R-C-brackets starting 
from arbitrary (irreducible) p and p'= det1; this construction is then explicit 

provided that the embedding of p into some StandRv is made explict. 

2 Preliminaries: MaaB-Shimura-differential op-

erators and R-C-brackets. 

2.1 Basic notations 

As us叫， wedenote by lHin = {Z = X + iY E (C(n,n) I z = zt, y > O} the 
Siegel upper half space, and by (g, Z)→g < Z >:= (AZ+ B)(CZ + D)-1 

A B 
the action of the symplectic group Sp(n，艮） onlHin with g = (~ ~) E C D) 
Sp(n，政） cGL(2n，良）． Fora polynomial representation p : G L(n, (C)→ 
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GL(X) we put 

C;'(IHin, X) := {J : IHin→ XI f is C00} 

and by H olp(IHin, X) we denote the subspace of X-valued holomorphic func-
tions. On both spaces there is an action of Sp(n, ffi.), defined by a stroke 
operator 

(f Ip g)(Z) := p(CZ + D)―l(f(g < Z >) 

2.2 Differential operators (following Shimura) 

Let p be a representation of GL(n, CC) and T := Symn(CC) ={XE ccnxnlX = 
Xり． Forfinite-dimensio叫 complexvector spaces X, Y, we denote by S1 (Y, X) = 
H omc (Y, X) the vector space of all CC-linear maps of Y into X. We now de-

fine a representation (see [7, (12.7a) fiir p=l]) 

pRT:GL(n,CC)→GL(S1(T, X)) 

by 

(p R T)(g)(h)(u) = p(g)(h(lug)) 

with g E GL(n, <C), h Eふ(T,X) and u E T. For the special case X = <C 
and p = the trivial representation, we get a represention T of GL(n, <C) on 
ふ(T)by 

T(g)(h)(u) = h(glug) 

with g E GL(n, CC), h E S1(T) and u ET. 

Remark/7, S.94, (12.19)} We can identifyふ(T,X) withふ(T)0 X by the 
rule (h 0 x)(u) = h(u)x for h E S1(T), x EX  and u ET, in particular we 
can identifyふ(T)with Sym2 (as GL(n, CC)-representations. 

Now we define a differential operator introduced by Shimura ([7, (12.12 a)]) 
by 

D : C00(1Hln, X)→C00(1Hln, S1(T,X)) 

D(f)(u) =~- Ui,jt,茫
1:Si:Sjさn

with u ET= Symn(cnxn). 

We also need the following 
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Proposition /7, {12.18包 12.10,e=i)J Let p : GL(n, (C)→GL(X) and 
f E C00(IHin, X) we define Dpf E C為(IHin,S1 (T, X)) by 

Dp(f)(u) := p(Y)-1 D (p(Y)f) (u). 

For ME  Sp（疇） theoperator satisfies Dp(f IP M) = Dp(f) lp@T M. 

To define RC-brackets in general, we start from three polynomial represen-
tations p, p', p" with representationm spaces X, X', X". A bilinear map 

[,] : C';'(IHin, X) X Cグ(IHin,X)→ C戸(IHin,X") 
is called RC-bracket, if it is equivariant, i.e. for all g E Sp(n，恥） wehave 

[F lpg,G Ip'g] = [F,G] Ip" g 

and it should be described by partial holomorphic derivatives of F and G. It 

is called to be of order v, if the total of derivatives is v. 

3 RC-brackts of order one: the general case 

We want to construct such RC-operators for the case, where f and g are 
vector-valued, starting from Maass-Shimura operators Dp(J) and Dp,(g) and 
then using linear combinations of D p(J) R g and f R D p'(g). 

We start from the observation that Dp(J) breaks up naturally into two parts, 
following [7, 31.28] 

Dp(J)(u) = P(y―1, u)f + D(f)(u). 

We aim at some uniqueness properties of P. 
First we observe that 

心{Txx -〉 Sl(T,X)～TRX 
(v, x) → U →P(v, u)(x) 

defines a bilinear map and hence an endomorphism心ofT 0 X. 

Following [7, prop.13.15(4)] we have for all h E GL(n, q 

P(h叫，h―tuh―1)(p(x))= p(h)P(v,u)(x) 
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We rephrase this for the map心：

(p Q9 T)(h) 0炒＝ （炒 op応）（h)

We do the same for Dμ,(g)(u) = Q(y―1, u) + D(g)(u) and obtain an endo-
morphism¢ of T R X'with equivariance for p'R T. 
We extend both心and¢ to endomorphsims心and¢ of X R X'R T which 
are now p R p'R T-equivariant. 
We now consider the restriction of心and¢ t~ an irr~ducible subspace疋of
X R X'R T; then on疋theendomorphisms心and¢ are proportional. We 
may therefore choose a linear combination of D μ(F) R g and f⑳几(g)such 
that (at least on疋） thenonholomorphic parts P(y―1,u) and Q(y―1, u) get 
cancelled: We obtain 

Theorem Let p, p'be polynomial representions of GL(n, q and let x be an 
irreducible subspace of XRX'RT. Then there is a nonzero linear combination 

“み(f)0 g + /3f 0 Dμ,(g) (3) 

which after restriction to疋definesa nonzero RC-bracket 

[,]: Holp(IHin,X) x Holp,(IHin,X'）→ H ol(IHI立）

Remark The⑪plict calculations in section 4 will show that the coefficients 
a,(3in (3) will indeed not be the same on all the irreducible subspaces疋c
XRX富 T.

Remark We do not claim here that this is the only possible X-valued RC-
bracket of order one. We also do not claim that both a and(3are nonzero. 
Already for n = l one can see that for weights k and l being zero, there are 
two linearly independent RC-brackets. 

4 RC-brackets for symmetric tensor repre-

sentations 

Here we study the case of syymetric tensor representations. We use the ex-
plicit direct approach from [1] for the nonholomorphic differential operators. 
Let (x1,..., xn) be a row vector consisting of n inderminates. We put V = 
Cx1① •..( Cxn. we identify the l-symmetric tensor product V(l) of V 
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with <C[xぃ...,xn]z, the space of polynomials homogeneous of degree l. Then 
GL(n, <C) acts on V(l) by 

(gv)(x) = det(g/ ・ v(xg) 

for g E Gl(n,CC) and VE  v(l)_ 
For a V(l)_valued function f E C00(IHin, V(l)) we define elements of C00(IHin, v(l+2)) 

by 

IJ(f) 
8 
・= 
• az 
f[x] 

1 1 
NJ:= ~y—1f[x] = ~y—1[x] ・ f 
2i " L J 2i 

We put 

8kf := k ・ N f + D f 

Then 

い（f|ぃ M)= 8k+l lk,l+2 M 

holds for any M E Sp(n，恥）．
Furthermore, we have the commutation rule 

DNv = -vNv+l + NvD 

Using the r-fold iteration 

(vミ0)

咋＋l:= 6k+l+2r-2 o ・ ・ ・ o bk+l 

we can now define a nonholomorphic RC-bracket by 

(4) 

C°° (IHIn,VりxCOO K'(IHIn,vm)←→ G°° (IHIn,vl+m) Sym燭detk¥lllln, Y)  " v SymmRdetk'¥lllln, Y),---------, v Syml+m+q@detk+k' 

by 

[j, g]f,l;k',m:=立-1)[）r(K+l+p)「（m+K'＋p）炉―v
v=O 

u 「(K+ l +p -u)「（m+ K’+ u) K+l f • 6土砂

(5) 
We claim that this expression is actually holomorphic: 
Using (4) one can rewrite (5) as a polynomial in N (multiplied by holomorphc 
derivatives of f and g as coefficients (on the right). Our claim is then equiv-
alent to the statement that these coefficients vanish identically for nontrivial 
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powers of N. Fortunately, the coefficients of (4) and (5) are both indepen-

dent of the degree n and depend only on k + l and k'+ m; the claim follows 
from the same statement for degree n = 1, which is given in Shimura's book 

[7]. 
Looking only at the constant term in this polynomial in N we get (as in the 
degree one case of Shimura): 

Theorem RC-brackets of order p for symmetric tensor represen-
tations of degree n 

p 

訟 r,l;k',mU,g) =ど（ー1)ツ(P)r(K+l+P)r(m+K'+p)
v) I'(k + l + p -v)r(m + k'+ v) 

ッ＝0

defines a bilinear RC-bracket 

np-v U) ・ Dv (g) 

Holsym憶detk(IHIか V1)xHolSym吟 detk'(IHin'vm)------+ H ol Syml+m@detk+k'(IHin'vz+m) 

5 Explicit calculation 
k for p = Sym1 R detk and p'= detc 

This section contains the main results from [6]. Throughout, we look at the 
special situation 

p = Sym1 @ detk, I £ p'= det~, n 2: 2. 

Using the notation from section 2, we have 

Dp(f)(u) = P(Y―¥u)(f) + D(f)(u) 

Daett(g)(u) = Q(Y―1, u) + D(g)(u) 

Both Dp(f) ・ g and f R Daett(g) are now疋＝ Sym1R Sym2 R detk+1-valued; 
here we tacity identify the representations with their representation spaces. 

One knows from representation theory ("Pieri's rule", see e.g.[4, Corollary 
9.2.4] that Sym1 R Sym2 decomposes into two irreducible components, which 

we call Pieri-component P and Co-Pieri component CP, i.e. 

疋＝疋P⑤疋ep. (6) 



191

Here the assumption n 2 2 comes in. 
Accordingly, we may decompose 

P(Y―1, u)(f)@ g = (P(Y―1,u)（f)⑳g(+ (P(Y―1, u)(j)@ g)CP 

f@ Q(Y-1, u)g = (f@ Q(Y-1, u)g(+ (f@ Q(Y-1, u)g{P 

We put 
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The main point is now (in accordance with the considerations of section 2, 
but obtained independently) the following 
Proposition 

aP ・ (P(Y―1,U)（f)＠g)p = /3p. (f⑧Q(Y-1,u)gt 

and 
aCP ・ (P(Y―1,u)（f)＠g)ep = /3CP. (f@Q(Y―1,u)g)ep 

To prove this proposition, one has not only to compute P(Y-1, u)(J) and 
Q(Y-1泣）gexplicitly, but also one has to determine explcitly a decomposition 
into Pieri -and Co-Pieri-components. This is the crucial technical point of 
this section. Then one gets immediately 

Theorem: For p = Sym 1 @ detk and p'= dee we get explicit holomorphic 
RC-brackets with values in in the Pieri-and Co-Pieri-components of Sym澤
Sym2 @ detk+c by 

(J,g)←→ aP ・ (Dp(J) ・ gt -/3P. (J@ Dp,(g)t 
and 

(J,g)←→ aCP. (Dp(f). gf P -/3CP. (J@ Dp,(g)f P 

We may rephrase the statements above without using the decomposition (6): 
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Theorem': For p = Sym 1 k R det"'and p' £ = detr there is a G L(n, C)-equiv-
ariant endomorphism of Sym1 R Sym2 such that 

£ ・ Dp(f) -[, 0 (f R Ddete(g)) 

defines a holomorphic RC-bracket 

Using [7, 13.17], one can see that the property above is compatible with 

taking tensor products, i.e. if the property of theorem'holds for p1 and p2 
(instead of p), then it also holds for p1さp2.In particular, it therefore holds 
for StandRv for arbitrary v 2:: 1. Now we take into account that any polyno-
mial representation p appears as subrepresentation in some StandRv (see [3, 

Lecture 6]. In principle, we then get for any p a (nonzero) holomorphic RC-

bracket mapping XP―valued functions f and scalar-valued functions g (with 
automorphy factor del to X 0 Sym2-valued functions. This construction is 

then explicit provided that we have an explicit embedding of p into StandR又
Hence, in principle, we can cover in this way the case of RC -brackets of 

order one with p arbitrary, but p'scalar-valued. 
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