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DIFFERENTIAL OPERATORS ON  SIEGEL MODULAR 
FORMS AND AUTOMORPHY FACTORS 

TOMOYOSHI IBUKIYAMA 
OSAKA UNIVERSITY 

The title of my talk at the RIMS workshop was "Differential opera— 
tors on Siegel modular forms and Laplace transforms". There I talked 
on the content of my paper [19]. The paper has been already published, 
so instead of repeating the precise content here, I try to give a survey 
in an informal style and also give some guidance for references. 

1. AUTOMORPHY FACTORS 

Although our theory applies to various hermitian symmetric do-
mains, here to avoid an unnecessary complication of the formulation, 
we consider only the case of Siegel upper half space Hn defined by 

凡＝｛Z=X+iYEMn(C);X=tX,Y= tYEM厄），y> O}, 

where Y > 0 means that Y is positive definite. Then the real symplectic 
group Sp（疇） C M這） ofreal rank n acts on Hn by 

A B 
gZ =(AZ+ B)(CZ + D)―1 g = (i ~) E Sp(n,JR). 

It is well known that the group Aut(Hn) of biholomorphic automor-
phism of Hn is Sp(n，股）／｛士bn}- We consider a finite dimensional 
vector space V and the space Hol(Hn, V) of V-valued holomorphic 
functions Fon Hn. Let G be a subgroup of Sp(n皇）． Weconsider a 
GL(V) valued function J(g, Z) on G x Hn such that 

(1) J(g1g2, Z) = J(g1, g2Z)J(g2, Z) for all g⑰ 2 € G. 

This condition means that the operation 

Hol(Hn, V)ぅF(Z)→Fl1[g]= J(g, Z)―1 F(gZ) E Hol(Hn, V) 

is the action of the group G on Hol(Hn, V). Such J(g, Z) is called 
an automorphy factor of G. When G = Sp（疇）， thenthe maximal 
compact subgroup K of G is isomorphic to the n x n unitary group 
U(n) and its complexification is GLn(C). For any irreducible rational 
representation (p, V) of GLn(C), we may define an automorphy factor 

みby

み(g,Z) = p(CZ + D), g =（]り） ESp（疇）．
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(For a general theory, see [25].) In this case, we write FIJp[g] = Flp[g]. 
When p(A) = det(A)k for A E GLn(C), we also write Flp[g] = Flk[g]. 
For most p, the action defined by JP on Hol(Hn, V) is irreducible (holo-
morphic discrete series representation). 

Now for r 2 2, fix a partition n = n1 + ・ ・ ・ + nr of n (niミ1)and 
put n = (n1,..., nr). For n, consider the following subdomain of H冗

(2) H. ~ Hn, X ・ ・ ・ X H応 3(Z,,..., Z,)→ (:1 •[ • [) EHn・ 

0 0 Zr 

Then Gn = Sp(n喜） X・・・XSp(n喜） actson Hn and Gn can be 
naturally regarded as a subgroup of Sp(n，政） compatiblewith this em-
bedding of the domain. Here we consider representations of (Pi,¾) of 
GL(n』(1さiさr)and put p = P1 (•· ・0Pnr・ We put Vn =Vi@···@¼. 
We define GL(Vn) valued automorphy factor 

み((g1,...,gふ(Z1,...，乙）） ＝P1(C1Z1 + Dリ0・ ・ ・ 0 Pr(Cr乙＋ Dr)

of Gn on Hol(Hか％）． Whenall Pi = detk, we write p = detk. 
Now we consider a holomorphic linear differential operator ID) with 

constant coefficients to map Hol(Hn, C) to Hol(Hn, V) such that 

(3) ResHn(I[》（Flk[g]))= (ResHn(lDJF))laetkRp[g] 

for any holomorphic function Fon Hn and any g = (g1,...,gr) E Gn. 
Here Res is the restriction of functions on Hn to Hn 

We have several motivations to consider such differential operators. 
(i) This differential operator gives an easy way to construct a new 

modular forms starting from given modular forms. If F is a modular 
form of weight k w.r.t. a discrete subgroup r C Sp(n，股）， thatis, if 
Flk[,] = F for all I E r, then by the differential operators as above, 
we have 

Re叩 (lDJF)= (ResHn (lDJF)) I Jdetk@p［,l 
for I E r n Gn. This means that ResHn (lDJF) is a modular form of 
rn伍 ofweight detk 0 p. If we replace the pair (Hn, H叫by(H~, H砂
where Hn is embedded diagonally in H~, then the operator is often 
called a Rankin-Cohen operator. This case is formulated similarly in 
[10] and used very often (See [1], [9], [12]). 

(ii) If we apply our differential operator ID) on Siegel Eisenstein series 

En1+n2(Z) of degree n1 +n2 and restrict (lDlEn1+n2)(Z) to Hn1 X Hn2 C 

Hn by the embedding (2), then this is a linear combination of the ten-
sors of Siegel modular forms of degree n1 and n2. The coefficients of 
this linear combination are given by critical values of the standard L 
function of Siegel cusp forms (due to P. Garrett, S. Boecherer, N. Koz-
ima and so on). So if lDJ and the Fourier coefficients of En1+n2 are given 
concretely, then this gives a way to calculate the critical values of the 
standard L functions explicitly ([8], [13], [14]). This also gives a method 
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to give a congruence between eigenvalues of Siegel modular forms ([14], 
[2], [3].) This kind of application on congruences was started by Kat-
surada(e.g. [22]). For this application, we often need a very concrete 
formulas of differential operators beyond existence theorem. 

(iii) But more than the above two reasons, this theory of differential 
operators give an interesting theory of special functions. Since we as-
sumed that ID) has constant coefficients, we have a V-valued polynomial 
P in partial derivatives Bz of variables of Hn such that ID) = P(Bz). 
More precisely, for Z = (ziJ E Hn, we put a symmetric matrix of 
partial derivation 

8z= (1+62J 8 
2 8ziJ)区 i,j豆・

We consider a V-valued polynomial P(T) in components of n x n sym-
metric matrix T and a differential operator P(Bz). Then polynomials 
P such that P(Bz) satisfies the condition (3) give a very interesting 
special polynomials, including classical Gegenbauer polynomials. This 
means that we also have a general theory of special functions of several 
variables behind this, like a system of differential equations that has 
our polynomials as its solutions. Then we can also ask non-polynomial 
solutions similarly as Gegenbauer functions (See [20]). 

General characterization of our V-valued polynomial P has been 
given in [10]. The theory in [10] treat two cases: the case Hn C Hか

and the case Hn CH~. In this note, we treat only the former case. In 
this case, the claim of the theory is (under some mild condition on n 
and k) as follows. AV-valued polynomial P satisfies the condition (3) 
if and only if the following two conditions (a), (b) are satisfied. 

Condition 1.1. (a) Take an nix 2k matrix Xi of variables (lさiさr).
We put 

X=  ［）, 
and write T =幻X. Then P(X t X) is a V-valued polynomial such 
that it is pluri-harmonic with respect to each Xi with 1 ~ iさr.Here 
we say that a polynomial P(Y) in Yiv for an n。x2k matrix Y = (Yiv) 
is pluri-harmonic with respect to Y if△ij(Y)P(Y) = 0 for 

2k 

今 (Y)＝区 が

V=l 
0yiu0y炉

for any i and j with 1 ~ i,j ~ n0・

(b) Embed any A = (A1,...,Ar) E GLnJC) x ・ ・ ・ x GLnr(C), to 
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匹 (C)by 

A → (>:>r)
Then we have P(ATtA) = p(A)P(T), where p = P1 R・・・RPr・ 

For the proof, see [10] Theorem 1. Even only by this characteriza— 

tion, we can understand a lot of thl_ngs. For example, since we are 

taking T =炉X,our polynomial P(X) = P（炉X)is invariant by 
the action X →Xh for h E 0(2k). But we know a complete clas-
sification of irreducible representations of GL(ni) x 0(2k) realized on 
pluri-harmonic polynomials in Xi by [21]. Our polynomial is a tensor 
of pluri-harmonic polynomials for eachふ withX = t(X1,...，ふ），
and if we assume that eachふ factorcorrespon,9s to a representation 

（冗，h』ofGい(C)x 0(2k) for each i, then our P(X) should belong to 
the trivial representations in h1 R • • • R hr. So the multiplicity of this 
trivial representation is the dimension of our P. For example, when 
r = 2, P exists only when町 and乃 correspondwith the same Young 
diagram, and such Pis unique up to constant(See [10]). 

In some cases, directly from this result we can give concrete closed 
formulas of polynomials P as given in [10]. But in general, to give 
concrete P is not so easy. In most application in the paper we quoted 
before, we need a very concrete formula of P. There are many tries 
for this. For example, [11] treated the case that r = 2, p1 and p2 are 
det£. For example, when £ = 2, a concrete closed formula is given 
in [11] p. 289 for general n, and a constructive method to give P is 
explained in 4.2.1 of the same paper. This paper contains a theory 
of associated system of differential equations. The paper [18] gives 
a kind of generalization of the classical Rodrigues formula as in the 
case of Legendre polynomial. This gives a one-line formula for the 
polynomial P for general Pi・ This is rather a theoretical formula since if 
we calculate the operator by this formula, then the computer would give 
you back a mess. The paper [17] explains a certain generic differential 
operator which can be regarded as a source of all the operators we 
need. Still we cannot call most of the above results as a closed formula 
to the extent that we can write down the coefficients of polynomials 
completely. 

2. OPERATION ON AUTOMORPHY FACTORS AND DESCENDING BASIS 

Let's forget for a while that we are considering a differential op— 
erator that preserves automorphy under restriction. Let's consider a 
general differential operator P（む） fora scalar valued polynomial P in 
components of n x n symmetric matrix T. Let's consider a simple au-

tomorphy factor Jk(g, Z) = det(CZ+D)k for g =(]心） ESp(n，罠）
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and Z E Hn. Now we ask what is P(8z) det(CZ + D)-k. For example, 
when C = 1n, D = 0, we have Jk(g, Z) = det(Z)k, and the following 
Cayley type formula is known (e.g. [6]). 

det(8z) det(Z)8 = s (s + t)... (s + T) det(z)s-l_ 
Heres can be any complex number and a branch of det(z)s is defined 
well in a certain way. In [26], Shimura asked how to generalize this and 
answered as follows. Consider a representation of GLn(C) on the ring 
C[T] of polynomials P(T) in components of n x n symmetric matrix T 
defined by (n(g)P)(T) = P(tgTg) for g E GLn(C). Take an irreducible 
representation (T, VT) in (1r,C[T]) and assume that P(T) E VT C C[T]. 
Then for a certain gamma factor/3n(s) we have 

P(8z) det(z)s =ぬ（s)det(z)s P(Z―1). 

For example, when P(T) = det(T) then this gives a representation 
g →det(g)叫andP(z-1) = det(z)-1, so det(z)s P(z-1) = det(z)s-1, 
and this is nothing but the above Cayley type formula. Here we use 
det(z)s instead of det(CZ + D)8, but we will explain now that this 
does not give much difference. For Z = (zij) E Hn, we write 

払 j=
1 + 8ij a 

． 
2 azij 

If we give a general formula of derivatives of det(CZ + D)-k by any 
8z,ij, then by iteration we can at least have an algorithm to calculate 
P(8z) det(CZ + D)-k for any P. To write this down, we fix g E 

Sp(n皇） and(C, D), and for simplicity, we write 8 = det(CZ + D) 
and△ =（CZ+ D)-1C. It is well known and easy to see that△is a 
symmetric matrix. For column vectors x = t（ふ）， Y= t(Yi) E (C叫put

8[x,y] = X犀 y= こ X叩＋ xjyi a 

2 1::;i::;j::;n 
釦ij.

Then as shown in Ibukiyama：保型形式特論（共立出版 2018),we have 

8[x, y]8 = 8(x△ty) 

8[x,y]い＝ーk戸 (xぷ y)

8[x,y]（△） ＝ー△(txy+ tyx)△／2. 

This means that 

Lemma 2.1. For any i, j, p, q E {1,..., n} and for any complex 
number k, we have 

伽 ]8-k= -k戸△iJ

1 
8z,ij今q=--（△ip△jq十△iq△jp)

2 
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So by iterate use of these formulas, it is clear that for any polynomial 
P(T), we have some polynomial Q(T) such that 

P(8z)い＝戸Q（△）．

Now the shape of the formula in Lemma 2.1 does not depend on C 
and D. So as far as△ij is generic (for example if△ij (1 :S i :S 
j :::; n) are algebraically independent), the polynomial Q is determined 
independently of the choice of C, D. So Q can be determined as far as 
we know P(8z) det(z)-k. The mapping from P(T) to Q(T) (depending 
of course on k) is a linear map from the vector space CC[T] to CC[T] over 
CC, and we denote this by伽 as

Q=叫P).

There exists a kind of formula to describe如(P)for any P(T) (see [19] 
Theorem 1), but we omit it here, since we can give a better formulation 
and we give a deeper property of外 later.

It is also well known that we can define the same sort of simple auto-
morphy factor for any tube domain, and Shimura developed a general 
theory on that. This is a beautiful theory. But his theory does not fit 
our demand. In most cases, for our differential operators IDl = P(8z), 
the polynomial P does not belong to any irreducible representation of 
G Ln (CC). Our polynomial should belong to a representation space of 

the group GLnJCC) X ・ ・ ・ X GLnr(CC) C GLn(CC) and not representations 
of GLn(CC). In fact, we have a very nice basis of CC[T] which behaves 
very well on det(z)s. Such a basis is called a descending basis, and has 
been (essentially) defined in [15] by completely different motivation. 
We explain this next. 

Let P(T) be a polynomial in CC[T]. For our differential operators, we 
had two conditions on Pin Condition 1.1. But let's forget a condition 
on the action of G Ln1 (CC) x ・ ・ ・ x G Lnr (CC) for a while. In this section, 
we consider a general polynomial P(T) and ask what is P(8z) det(Z)8. 

Let X = (xi,v)i<::i<::n,l生応2kbe an n x 2k matrix of variables. For each 
i, j with 1さi,jさn,we put 

2k fJ2 
叫 X)＝区

匹 1
枷 iv8x炉

To see Condition 1.1 (a) on P for T, it is natural to write down the 
operation of今 (X)on P(XtX) by variables of T = X咽． Wewrite 

T = (tij) and put 

aij = (1 + Jij)~-

It has been shown in [15] that if we put 
n 

恥＝ 2砥＋ど t砂砂Jt,

k,£=1 
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then we have 

△ij(P(XtX)) = (DijP)(X tx), 

so we can write the pluri-harmonicity condition by tij・ But Dij and 
△ij(X) have one difference. To define△ij(X), the number 2k should 
be an integer, but the operator Dij is well-defined for any complex 
number k. This is a big difference in the theory we explain later. 

Apparently there seems no relation between what is P(8z) det(z)-k 
and P being pluri-harmonic. But soon we will see that there exists 
a mysterious relation between these, and this is explained by our de-
scending basis. To explain this, we consider the following set of indices 

N = {v = (vij) = tv E Mn(Z); Vij 2: 0, v切三 0mod 2 for 1：：：：： i ：：：：：叶

For v EN and T = (tij) = tr, we write 

(4) Tv =rr心j/2= ft t~ii/2 IT心”.
1_<'.i,j_<'.n i=l l-<'.i<j-<'.n 

Since these elements give all the monomials in C[T], it is natural that 
elements of a basis of C[T] is indexed by elements of N in some way. If 
we consider a monomial rv and the degree ai of (X t Xt  with respect 

to Xiv for a fixed i, then obviously we have 

n 

佑＝どVij・
j=l 

We call a=  (a1,..., an) a multi-degree of rv. Of course a does not 
determine v at all. 

In [15], we considered subspace 1-l of polynomials P(T) in C[T] such 
that Diip = 0 for all i. In Condition 1.1 (a), this is the case where 
r = n and n1 = ・ ・ ・ = nr = 1. In [15], we consid we considered two canonical 
bases of 1-l. One is called a monomial basis P/: (T). This is explained 

as follows. We put Ne。=｛v = (vij) E N; vii = 0 for all i}. We can 
show (under certain mild condition on k and n) that for each v E No, 
there exists the unique polynomial P/: (T) such that Diれ~(T) = 0 
for all i = 1,..., n and that P,閃(T)= rv mod (tu,..., tnn)- The 
last condition means that one of the monomials in P/: (T) is rv with 
coefficient 1 and all the other monomials contain tii for some i. 

The other canonical basis is called descending basis described in the 
following theorem. In [15], this basis was given only for 1-l, but here 
we state it for the whole space C[T], since the proof is the same. 

Notation: Let In be the set of integers CY such that CY< n. We denote -by Cn the set of complex numbers that do not belong to五． Wedenote 
by eij the n x n matrix element whose (i, j) component is 1 and all the 
other components are 0. We put eij = eij + e圧
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Theorem 2.2. For the index O = (0) E N, we define Pi記(T)= 1. 
------Assume that 2k E Cn. Then there exists a basis of C[T] consisting of 

unique polynomials P/;(T) (v E NJ such that 
Dij埒(T)= P/]_ei/T). 

Here, if any component of v -eij is negative, we regard Pj;_eiJ (T) = 0. 

We see an example. Put n = 3 and put 

ッ＝ (> H)
Then P = P/;(T) is characterized by the following conditions. 

DnP = D22P = D33P = 0, 

D12P = Pi。=1,
D13P = D23P = 0. 

It is easy to see that such a polynomial is uniquely given by t12/2k. 
A proof of Theorem 2.2 is not so easy. If we consider only indices v E 

ふ thenpolynomials P/; (T) for v E No give a basis of 1{, and this basis 
is the dual basis of the monomial basis with respect to a certain natural 
inner product of 1{. The two bases of 1{ we described above were 

introduced independently by two authors of [15], the monomial basis 
by Zagier and the descending basis by Ibukiyama. Since it turns out 
that they are dual, we were convinced that we can call them canonical 
bases. 

A basis suited for our purpose here is the descending basis, so we 
do not talk on monomial basis from now on. There are many good 
surprising properties of the descending basis, and we will explain some 
of them. 

For any index v = (vij) EN, we write 
n 

1 1 
deg(v) =ぅ区四＝5区％＋と％

1:<:;i,j:<:;n i=l 1:<:;iく］さn

If we put ai = L7=1 Vij, then this means that 

1 
n 

deg(v) =;Lai 
i=l 

For the matrix△and an index v E N, we define△"as in (4). We also 
put 

n 

v!= II叫！ II叫
i=l 1:<:;i<j:<:;n 

where we put 

vii!! = vii(vii -2) ・ ・ ・ 1 = 2v;;/2(vid2)!. 
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---
Theorem 2.3. We assume that 2k E (Cn-

(i} For an index v E N and the descending basis砂(T)of index v, 
we have 

deg(v) 
杷(8z)（い）＝戸

-1 
X 
（） 

△り
2deg(vlv! 

(ii) The linear map外 from<C[T] to <C[T] defined by P（砂）15-k= 
が冨(P)（△） isan isomorphism and commutes with the action 1r of 
GLn(<C) on <C[T] defined by (1r(A)P)(T) = P(tATA). That is, we have 

命丘(A)P)= 1r(A)（外(P)), P(T) E <C[T]. 

The first eq叫 itymeans that Pt (8z) on戸 givesessentially a mul-
ti plication of monomialゞ of△ij,and this is very striking. We explain 
the meaning of (ii) more. As seen in (i), the images of Pt by ¢k are 
monomials. So among the images of descending basis, the action of 
GLn(<C) on RHS of (ii) means the action on monomials. Since外 isan 
isomorphism, the action on monomials reflects on the action of GLn(<C) 
on polynomials杷 (T).For example, for the sake of simplicity, we first 
consider the case n = 2. For a matrix 

T= （悶:~:)'
consider the case Q(T) = tf2. Then by Theorem 2.3 (i), the polynomial 
P such that仇(P)= Q is given up to constant by 

Pf(T) 

where 

v = （: :)． 
Then by Theorem 2.3 (ii), for A= （霊~ ~2), we have 

叫 1r(A)Pf)＝如(P四ATA))= 1r(A)（小） ＝afa砂＝ afa伍(Pf(T)). 

Since如 isa linear isomorphism by Theorem 2.3 (i), we have 

叫）埒（T)＝P罰ATA)= afaげ (T).

This is nothing but Condition 1.1 (b) on GL1(C) x GL1(C). Besides, 
by the definition of the descending basis, it is clear that D芯 (T)= 
D22凡(T)= 0. This means that Pv satisfies the necessary pluri-
harmonicity condition. So for any holomorphic function F(Z) on Z E 

H2, any gi =（誓~:) ESL繹） （i = 1, 2), and 

a1 0 b1 0 

g = （]り）＝ （〗靡瓜信） E Sp(2，罠），

0 C2 0 d2 
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we have 

(5) ResH立 1Pf(8z)(F(gZ) det(CZ + D戸）

= (Pf (8z)F) (9~1 92oz2) (c1Z1 + d1)-k-£(c辺＋必）―k-£

for z1, z2 E H1. So by our theory, we can describe the property of 
PJY (8z) without knowing <Pk or PJY precisely. Any differential opera— 
tor satisfying (5) is a constant times PJY(8z). The actual formula for 
PJY (T) in this case is given by the homogenized Gegenbauer polynomi-
als that will be explained below. For the sake of simplicity, we write 
岬 (T)= PJY(T) for v defined above for each £. To describe a neat 
generating function of PF for all £ 2 0, we must change PF by constant 
times for each £. This is a bit tricky point. The differential operator is 
determined only up to constant for each £, but we have various £, so we 
can multiply various different constants to岬 dependingon£. So as 
a whole, we have infinitely many different normalization. But to give 
a neat generating function, we should define a certain nice normaliza— 
tion, and there is no definite theory for such choices. We may say if the 
result is beautiful, then it is a good normalization. Anyway, we have a 
well known formula in this case. We consider the following series. 

1 
00 

(1 -2tz十丑）入
＝ど心(t)砂．

a=O 

Here z and t are variables. Then心(t)is a polynomial int of degree a 
and called a Gegenbauer polynomial of degree a. More explicitly this 
is given by 

叫 t)= 0く苔／}-l)s(aー：＋ー：ー1) (a~ s) (2tt-2s 

If we put 

P£(T) = (tn加）£／2cf―1(t12 

） 
（ 二），

then we see that P£(T) is a constant times PP (T). (The constant can 
be calculated but omitted here.) The generating function of P£(T) is 
given by 

00 

LP£(T)z£ = 
1 

(1 -2t12Z + t11t22丑）k-l.
£=0 

Here叫 PP)＝佑 issimple, but we see PP (T) itself is not so simple. 
In the same way, put 

T=（信2 カ）
for a 2m x 2m symmetric matrix T and m x m symmetric matrices T11 
and T22 of variables. For A1, A2 E GLm(C). we have det（tA1T12Aが＝



220

det(Ad det(Aがdet(T12)f.Consider the polynomial P(T) E C[T] such 
that叫 P(T))= det(T12)f. Then by Theorem 2.3 (ii), we have 

P(t AT A) = det(A1i det(A直 (T) for A =  (11 12). 

Of course P(T) is a certain linear combination of the descendind basis 
corresponding to indices of monomials in the expansion of det(T12f 
The indices v = (vij) EN  appearing here satisfy 

vij = 0 for all 1 :S i,j :Sm, and m + 1 :S i,j :S 2m. 

This means that we have 

Diip = 0 fo 1さi,j:Sm, m + 1さi,jさ2m.

These conditions mean that P(T) satisfies Condition 1.1 for p = detR R detR. 

Zn Z12 
So for any function F(Z) on Z = (t~1~ ~~:) E H2m, any elements 

gt = （喜り：） ESp(m，股） （t = 1，2)t'z;：d z22) 

ふ 0 B1 0 

g = (］ド）＝（力亨凶忍2) € Sp(2m，民），

0 C2 0 D2 

we have 

(6) Res四 xHmP(8z)(F(gZ)det(CZ + D)-k) 

= (P(8z)F)（紅11 g2~2J det(C心＋D1)-k-£det(C心＋D2)-k-f_
0 g2Z22 

The explicit closed formula for P is not known except for the case 
n = 2, n = 4 for general£, or for the case£= 1, 2 for general n = 2m, 
but there are several algorithm to obtain P(T) explicitly ([11],[19]). 

£ In the above, we explained the case r = 2 and p = det'@ det', 
but the general cases are essentially the same. We continue a little 
more on the case r = 2 and n1 =陀＝ m.To adjust notation for a 
later use, we change the notation from T to an 2m x 2m symmetric 
matrix S = (Sij) with m x m symmetric matrices Sii and consider 
polynomials P(S) E CC[S] in components sij of S. Then the pluri-
harmonicity conditions on a vector P in Condition 1.1 suggest that 
the components P.; of P (i.e. coefficients of a vector P with respect to 
some basis) should satisfy that the polynomial ¢k(P.;) is a linear span 
of monomials岱 withv =（い suchthat四＝ 0for 1 :S i :S i, jさ m
and m + 1 :S i, j :S n. Now consider the ring CC[Sd of polynomials 
generated by Sij with 1 :S i :S m and m + 1 :S j :S 2m, i.e. components 
of S12. The ring CC[Sd can be regarded as a representation space of 

GLm(CC) X GLm(CC) by s口→凶S凸 forA1, A2 E GLm(CC). It is 
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well known that this representation on qs叫 isdecomposed into the 

sum of irreducible representations Pm，入 RPm，入 ofGLm(C) x GLm(C) 
corresponding to a Young diagram入＝ （入1,...，入m)with入12:ふこ
... 2:入m2: 0. We will describe the representation space V;入 inqs叫
of Pm，入RPm，入 muchlater, but here we prepare notation. We write 
W = S12. For any integer i with 1 :::; i :::; m, denote by Wi the i x i 
principal minor of W (i.e. the determinant of the first i rows and 
columns of W). We put 

(7) 凱＝ w;1->..2w;2一ふ．・ • Wぷ．
Up to now, we assumed that r = 2 and also n1 =匹＝ m.Now we 
treat the case that n1 might be different from n2. For a Young diagram 
入＝ （入1,入2,...,),we put m = max{d:入dヂ0}and call this a depth 
of入． Thenthere exists a vector P(T) for an n x n symmetric matrix 

T with n = n1 + n2 satisfying Condition 1. 1 only when P1 = Pn1，入，
P2 = Pn2，入 withm:::; min(n1匹）． Wewrite an n x n matrix T as 

T=（土位）
for an n1 x n1 matrix Tn and an n2 x乃 symmetricmatrix T22-

We prepare an m x n1 matrix U and an m x n2 matrix V and put 

U = (<[).
Then we have 2m x 2m matrix 

lTTtい (UT11tu UT12tv 
vtT12tu VT22w) 

As before, we consider an 2m x 2m matrix S and 

S=（エ羹：） S11, S22 are m x m matrices. 

Now, for a Young diagram入withdepth m, we consider a polynomial 

恥 (S)E (C[ S] such that如(Pぃ） ＝ （S叫 where(S凸 isdefined as 
(7). Then put 

凡(U,V,T) = Pi。(UTn tu UT12 tv 

vtT12tu VT22w) 

Then this is a realization of the representation心尋心，入 ofGLn1((C)x 
G Ln2 (q with respect to a basis of the tensors of bideterminants of U 
and V. Here bideterminants realization is explained as follows. For 
any subset of IC {1,...,m} and JC {l,...,n1} with III= IJI, we 
denote by U1 J the minor of U taking rows whose numbers are in J and 
columns whose numbers are in J. For any i with 1 :S i :S m, we put 

[i] = {1, 2,..., i}. 
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For入， weconsider a vector space V of polynomials p(U, V) in compo-
nents of U and V spanned by 

m 入q —入q+l

p(U, V) = II II u[qptq)門q]，J}q]，
q=l £=1 

where 1?) and Jiq) run over 入q —入q+l subsets of [n1] and［叫 such

that IJ?ll = IJi叫＝ q(here put入m+1 = 0). These are called bide— 
terminants. Then p(U, V)→p(U A1, V A2) for (A1ん） EGLn1 (C) x 
GL叫C)on炉〉 givesa realization of pぃRPn2，入． Forexample, if 
入1=..．＝心＝ /J.and n1 = n2 = m, then V = (C det(UVf In 
general we have伽(P(U,V, T)) = (UTf2 V)>..-Here P.入(UA1,VA2,T)=
p入(U,V,AT囁） forA = diag(A1, A2). This is a linear combination of 
bideterminants with polynomial coefficients in C[T]. The bidetermi-
nants themselves are not linearly independent, so if we want to write a 
vector w.r.t. a basis, we should choose some basis, but we omit details. 

Now notation being as above, the differential operator P.⑰ :z) gives 
a differential operator from weight detk to detkPm,入@ 1etkp四，・入・

Next we consider the case that r > 2. In this case, if we write 

T =（T) ij) I::C::i,j::C::r where几 isan ni x nj matrix 

then for the polynomial P(T) satisfying Condition 1.1 for the partition 
n1,...'糾， thepolynomial如(P)should be a polynomial in compo-
nents of互 fori -=J j. The group GLn1 (C) X ・ ・ ・ X Gに (C)acts on 
the space (C［化；iヂj],and the irreducible decomposition of this repre-
sentation is given in principle by using the Littelwood-Richardson rule 
but it seems not so simple(see [17] Theorem 3.4). 

As a conclusion, in any case, Theorem 2.3 characterizes the differen-
tial operators that satisfies Condition 1.1. 

3. A GENERATING SERIES OF DESCENDING BASIS 

We have a sort of universal generating series of descending basis. 
Since basis is indexed by indices in N, we use a dummy n x n symmetric 
matrix X =（叫 ofvariables and we define xv for v E N as before 
by (4). We consider a formal power series 

Gn(T,X) =LP,ッ(T)Xッ

vEN 

in variables Xij such that Pv(T) is a constant multiple of P,ッ1;(T). In 
order to obtain a neat generating series, we must put 

凡(T)= 2ツ(k)v(2k-2)v杷(T),

where v = deg(v) = (1/2) こ~j=l vij and (x)v = x(x+ 1) ・ ・ ・ (x+v-1). 
Then there exists a formula to describe the series Gn(T, X). Since this 
is explained in other places several times (e.g. [15], [17]), we do not 
repeat the details, but we state the essence very shortly. 
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For each i = 0,..., n, we define a polynomialびi(T, X) in components 
of T and X by 

det(xln -TX) =喜-1厄(T,X)xn-i_ 

So we haveび0(T,X) = 1 and叩 (T,X) = det(T) det(X). We assume 

2k EC. Then Gn(T, X) has the following property. 
(1)仇 isa formal power series品（び1'...，叩） inび1to四 Inparticular, 
we have 

gl（叫＝（1-巴） • 2-2k 
2 

and 
1-k 

恥，叫＝（（1- 翌— 0'2) 1-1<. 

This約 canbe regarded as the generating function of Gegenbauer 
polynomials. We also have a nice closed formula for g紅げ2,四）， but
we omit it here (See [15]). 

(2) We may regard匹・・．，叩 asalgebraically independent variables 
below. Then we have 

gn-1（外・．．，尻1)＝砧（匹...'四-1,0). 

Here the original meaning of O'i depends on n, but we are ignoring 
the difference. In other words, the above equality means as a formal 
equality, as well as the equality between series in O'i defined for n -l. 

(3) We define the partial derivative Ba =羞 foreach a. For each n, 
we have a certain explicitly written second order differential operator 
Mn of Ba (l :Sa :Sn -l) whose coefficients are constants or constant 
times O'b for some 1 :S b :S n -l, such that for some explicit constants 
ci we have 

応 1'...，叩）＝言叫閃□（外•.．， Un-1).
Since砧 isobtained by iteratedly differntiating generating series of 
smaller degrees in a unified way, our generating function would be 
called a universal generating series. If we consider Gn(oz, X), then 
this is a generic differential operator since it is a source of any dif-
ferential operators satisfying Condition 1.1 under some representation 
theoretical mapping (See [17] Theorem 3.1). 

4. PULLBACK FORMULAS 

Finally we explain pullback formulas that is one of the strong mo-
tivations to our theory. For any even integer k with k > n + 1 and 
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any partition n = n1十匹 (niE Z叫， wedenote by Ei: (Z) the Siegel 
Eisenstein series of degree n of weight k of r n = Sp(n, Z) defined by 

写(Z)＝Ldet(CZ+D)―k, 

(C,D) 

where (C, D) runs over representatives of coprime symmetric pairs by 

the multiplication by GLn(Z) from the left. 

Theorem 4.1 ([7],[4],[27],[23],[24],[19]). Let P be a polynomial satisty-

ing Condition 1.1 for (n心） fora Young diagram入ofdepth m ?: 1. 

Then we have 

(P(oz)悶 (Z))(~1 i2) = mi~tn2)とD(fぃ）［ft,j炉 (Z憚[fぃl戸 (Z2)
t=m j=l 

for some explicitly given constants Ct for P = Pf independent of 

ft,j・ 

Here, for each t, we fix an orthonormal basis {ft,j}区 j:,'.:erof Sdetkpt，入（じ）．
Of course this depends on a choice of the Petersson inner product of 

Sdetk Pt，入（じ）， butwe have some standard choice, and we can give Ct 

explicitly for that choice. We denote by [fぃl↑theKlingen lift of ft,1 

to Adetk Pni,入（に）． Weput 

D(f叫＝ ((k)-1IT ((2k -2i)―1 L(k -t, ft,j, St) 

i=l 

where L(s, f, St) is the standard L function of a Siegel modular form 

f. For the details, see [19]. 
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