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1 Introduction 

The purpose of this note is to give a summery of the results given in the papers [18] and 
[20]. In this note, an oriented 1-knot is an oriented circle smoothly embedded in the 3-
sphere S尺anoriented 2-knot is an oriented 2-sphere smoothly embedded in the 4-sphere 
S4 and they are correctively called oriented knots. 

A quandle [9, 11] is an algebra whose axioms correspond to the Reidemeister moves. It 
is a useful tool to define the oriented knot invariants. A typical example of knot invariants 
using quandles is the knot quandle. The knot quandle of an oriented knot K is defined as 
the homotopy classes of pathes in the knot exterior with a certain operation. Since then, 
some properties of the knot quandle of an oriented 1-knot have been studied. 

In this note, we focus on the knot quandles of oriented 2-knots. First, we discussed 
the differences between knot quandles and knot groups as invariants for oriented 2-knots. 
By [9, 11], if two oriented knots have the same knot quandle, then their knot groups are 
isomorphic as groups. For oriented I-knots, it is known that there is a pair of oriented 1-
knots with the same knot group but different knot quandles. In Section 3, we showed that 
there are infinitely many triples of oriented 2-knots with the same knot group but different 
knot quandles. This result implies that the knot quandle is really stronger invariant than 
the knot group for oriented 2-knots. Second, we study the quandle homology groups 
of knot quandles of oriented 2-knots. In [1], Carter, Jelsovsky, Kamada, Langford and 
Saito introduced the quandle homology group and defined invariants of oriented knots 
using them, which are called the quandle cocycle invariants. In general, it is difficult to 
determine the quandle homology group of a quandle. We show that the second quandle 
homology group of the knot quandle of an oriented 2-knot is trivial in Section 4. As a 
consequence of this result, we see that the knot quandle of a non-trivial oriented 1-knot 
can not be realized by the knot quandle of 2-knots. 

2 Definitions 

A quandle X [9, 11] is a non-empty set equipped with a binary operation * satisfying the 
following conditions: 

• For any x E X, we have x * x = x. 
• For any y E X, the map Sy : X→X;x→x * y is a bijection. 



7

• For any x, y, z E X, we have (x * y) * z = (x * z) * (y * z). 

Here are examples of quandles: 

Example 2.1. Let G be a group and f: G→G a group automorphism. We define the 
operation* on G by x * y := f(xy―1)y. Then, GAlex(G, f) = (G, *) is a quandle, which 
is called the generalized Alexander quandle. 

Example 2.2. Let k be an oriented 1-knot. Let N(k) be a tubular neighborhood of k 
and E(k) =炉＼intN(k)an exterior of k. We fix a point p E E(k). Let Q(k,p) be the 
set of homotopy classes of all pathes in E(k) from a point in 8E(k) top. The set Q(k,p) 
is a quandle with an operation defined by [a]* [(3] ：＝ ［a. (3―1. m(3（0).(3）]， where m(3（0) 
is a meridian loop starting from(3（0) and going along in the positive direction. We call 
Q (k, p) the knot quandle of k. The isomorphism class of the knot quandle does not depend 
on the base point p. Thus, we denote the knot quandle simply by Q(k). For an oriented 
2-knot F, the knot quandle Q(F) of Fis defined in the same way as for oriented 1-knots. 

The associated group of X, denoted by As(X), is the group defined as 

〈x(x EX) Ix* y = y―1xy(x,yEX)〉．

The associated group As(X) acts on X from the right by x • y := x * y for any x, y EX. 
A quandle X is connected if the action of As(X) on X is transitive. 

A map f: X→Y between quandles is a quandle isomorphism if f (x * y) = f(x) * f (y) 
for any x, y E X  and f is a bijection. When there is a quandle isomorphism f: X→Y, 
we say that X and Y are quandle isomorphic. 

3 Knot quandles vs Knot groups 

In this section, we compare the knot group and the knot quandle. In Subsection 3.1, we 
review a relation between the knot group and the knot quandle, and introduce our result. 
In Subsection 3.2, we explain the outline of the proof. This section is a joint work with 
Kokoro Tanaka. 

3.1 Back ground and Main result 

Let K, andだ beoriented knots. We consider the following conditions: 

(i) The knot groups G(K,') and G(K,) are group isomorphic. 

(ii) The knot quandles Q（だ） andQ(K,) are quandle isomorphic. 

Since the associated group As(Q(K)）.. is group isomorphic to the knot group G(K) for 
an oriented knot K, [9, 11], we have (ii)⇒(i). For oriented 1-knots, the converse does 
not hold, that is, there are oriented 1-knots with the same knot group but different knot 
quandles. For example, the square knot 31 #3i and the granny knot 31 #31 satisfy the 
condition (i) but does not satisfy the condition (ii). In this section, we consider the case 
of oriented 2-knots. More precisely, we consider the following question: 
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Question 3.1. Are there oriented 2-knots such that these oriented 2-knots satisfy the 
condition (i) but do not satisfy the condition (ii)? 

In this note, we give an affirmative answer to this question. 

Theorem 3.2. There exist infinitely many triples { F1, F2，凡｝ oforiented 2-knots such 
that 

(1) the knot groups G(Fi), G(F2) and G(F3) are mutually group isomorphic, and 

(2) no two of knot quandles Q(Fi), Q(H) and Q(F2) are quandle isomorphic. 

The 2-knots F1，的 andF3 are obtained from the twist spinning construction, which is 
introduced by Zeeman [21]. We review the some properties of a twist spun knot. Let k 
be an oriented 1-knot in S3 and n a non-negative integer. We denote by戸 (k)then-twist 
spun knot of k. Zeeman introduced the n-twist spun knot and showed that if n-=/-0, the 
n-twist spun knot戸 (k)is a fibered 2-knot whose fiber is the once punctured MJ:, where 
叫 isthe n-fold cyclic branched covering space of S3 branched along k. In particular, 
the 1-twist spun knotが(k)is a trivial 2-knot for any oriented 1-knot k. 

Remark 3.3. (1) It is known that for any oriented 1-knot k, the knot group of戸 (k)
is a quotient group of the knot group of k. Thus, the knot groups of戸 (31#31)and 
Tn(3消3『)aregroup isomorphic for any non-negative integer n. However, since T0(3沸3リ
and T0(3嘩 3i)are equivalent [6, 16], we see that Tn(31砂） and戸 (31#3i) satisfy the con-
dition (ii) for any non-negative integer n (cf. [17]). 
(2) Let S(p, q) be the 2-bridge knot of type (p, q). It is known that召(S(p,q)) and 
T2(S(p, q')) satisfy the condition (i) for any q, q'(see [15]). In [7], Inoue showed that for any 
q, the knot quandle Q（召（S(p,q))) is quandle isomorphic to the quandle GAlex(Z/pZ, Inv), 
where Inv : Z/pZ→Z/pZ is the group automorphism defined by Inv(x) = -x. This 
implies that召(S(p,q)) and召(S(p,q')) satisfy the condition (ii) for any q, q'. Hence, 
2-twist spun 2-bridge knots do not give an example of such 2-knots. 

3.2 Outline of proof of Theorem 

Let p, q, r be coprime positive integers. We denote the torus knot of type (m, n) by tm,n・ 

Theorem 3.4. [5] The knot group G(TP(tq,r)) is group isomorphic to 1r1(Mf.,J x Z. 

Since Mf.,r, Ml,P and M~,q are homeomorphic ([12]), the oriented 2-knots F1 := TP(tq,r)，的：＝
召(tr,p)and F3:＝戸(tp,q)satisfy the condition (1). 

To show the oriented 2-knots F1, F2 and F2 satisfy the condition (2), we focus on the 
notion of type of a quandle. The type of a quandle X, denoted by type(X), is a minimum 
positive integer n such that s; is the identity map idx for any x E X. If there is no such 
n, we define type(X) = oo. In general, it is difficult to determine type(X) for a given 
quandle X. However, it is easy to compute the type of a generalized Alexander quandle. 

Proposition 3.5. Let G be a group and cp a group automorphism of G. The type of 
GAlex(G, cp) is equal to the order of cp. 
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As we mentioned above, then-twist spun knot Tn(k) is a fibered 2-knot for any positive 
integer n. Inoue studied the structure of the knot quandle of a fibered 2-knot and showed 
the following theorem. 

Theorem 3.6. [7] Let F be an oriented fibered 2-knot, M the fiber of S八Fand cp the mon-
odromy of S八F.Then, the knot quandle Q(F) is quandle isomorphic to GAlex(1r1 (M)ぶ），
where cp. :町(M)→町(M)is the group automorphism induced by cp. 

By [21], the monodromy cp of S八戸(k)is the canonical covering homeomorphism of 
M;:. In particular, it holds that the order of the induced group automorphism cp. : 
町 (M;:）→ 1r1(M;:)is n. Thus, we obtain the following theorem. 

Theorem 3.7. Let k be an oriented 1-knot and n a positive integer. Then, we have 
type(Q（戸（k)))= n. 

Since Fi = TP(tq,r)，凡＝ Tq(tr,p) and凡＝ザ(tp,q),we have type(Q(Fリ） ＝p, type(Q(F2)) = 

q and type(Q(F3)) = r. This implies that Fi, F2 and F3 satisfy the condition (2). 

4 Quandle homology groups of knot quandles 

In this section, we discuss the quandle homology group of the knot quandle Q(K). We 
review the quandle homology group [1] in Subsection 4.1 and the !-twisted Alexander 
matrix [8] in Subsection 4.2. We give the outline of the proof in Subsection 4.3. 

4.1 Definition and Main result. 

Let X be a quandle. For each positive integer n, we denote by C塁(X)the free abelian 
group whose basis is xn. We set C,点(X)= 0. For each (x1,..., Xn) E X叫letus define 
an element 8(x1,..., Xn) EC；；ー1(X)by 

n 

0（互・・.,Xn) ：＝ L(-1t（丘・ • ・,Xi-I,Xi+l, ・ ・ ・,Xn) 
i=2 

n 

ー L(-W(x1 ＊互•．．， Xi-I * Xi,叫＋1,・ ・ ・, Xn)-
i=2 

Using this, we have a group homomorphism 8n: c::(x)→ C此(X)for n 2:: 2. We define 
81: Cf(X)→噂(X)by the zero map. Then, we see that On-lo゚¥,,is the zero map. 
Hence, (C沢X虞） isa chain complex. 

Let C~(X) be the subgroup of c::(x) generated by n-tuples (x1,..., xn) with xi = Xi+1 
for some i. We can see that 8n(C~(X)) CC此(X)for any n. Thus, setting c<;(X) = 
c::(X)/C~(X), we have a chain complex (C<;(X), 8砂． Then-th quandle homology group 
H<;(X) [1] is then-th homology group of the chain complex (c<;(X)心）．

Problem 4.1. Determine the quandle homology group H<;(X) for a quandle X. 

We consider this problem for knot quandles. Since a knot quandle is connected, we 
see that H~(Q(K)) = Z for an oriented knot K., (cf. [2]). For a 1-knot k, the second and 
third quandle homology groups of the knot quandle Q(k) have been calculated. 
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Theorem 4.2. [3] Let k be a non-trivial oriented 1-knot. Then we have Hf (Q(k)) = Z. 

Theorem 4.3. [14] Let k be a non-trivial oriented 1-knot. Then we have Hf (Q(k)) = Z. 

In contrast to oriented 1-knots, there are few knot quandles of oriented 2-knots whose 
second quandle homology groups are computed. 

• It is known that for any oriented 1-knot k, the knot quandle of T0(k) is quandle 
isomorphic to !he ~not quandle of the long kno~ corresponding to ~- Eisermann 
showed that Hf (Q(k)) is trivial for any long knot k. Thus, we have Hf (Q(T0(k))) = 
0. 

• Let S(p, q) be the 2-bridge knot of type (p, q). As we mentioned above, Q（召（S(p,q))) 
is quandle isomorphic to GAlex(Z/pZ, Inv). In [13], Mochizuki showed that the 

second quandle homology group Hf (GAlex(Z/pZ, Inv)) is trivial for any odd prime 
integer p. Thus, we have Hf (Q（召（S(p,q)))) = 0. 

Main result of this section is the following theorem. 

Theorem 4.4. Let F be am oriented 2-knot. Then, we have Hf (Q(F)) = 0. 
The proof of Theorem 4.4 is based on the !-twisted Alexander matrix introduced by 

Ishii and Oshiro. The outline of the proof is explained later. 
At the end of this section, we discuss a difference between knot quandles of oriented 

1-knots and knot quandles of oriented 2-knots. Since the knot group of an oriented 1-knot 
k is group isomorphic to the knot group of T0(k), we see that 

{G(k) I k: a 1-knot} C {G(F) IF: a 2-knot}. 

On the other hand, by Theorem 4.2 and Theorem 4.4, the knot quandle of a non-trivial 
oriented 1-knot can not be realized by the knot quandle of oriented 2-knots, that is, it 
holds that 

{Q(k) I k: a non-trivial 1-knot} n {Q(F) IF: a 2-knot} = 0. 

4.2 f -twisted Alexander matrix 

Let X be a quandle, and R a ring with the unity 1. A pair (!1, f砂ofmaps Ji, h : 
X xX→R is called an Alexander pair if Ji and h satisfy the following conditions: 

• For any x EX, we have fi(x, x) + h(x, x) = l. 

• For any x, y EX, fi(x, y) is invertible. 

• For any x, y, z EX, we have 

fi(x * y, z)fi(x, y) = fi(x * z, y * z)fi(x, z), 
fi(x * y, z)h(x, y) = h(x * z, y * z)fi(y, z), and 

h(x * y, z) = f1(x * z, y * z)h(x, z) + h(x * z, y * z)h(Y, z). 



11

Example 4.5. Let X be a quandle and Z[t土1]the ring of Laurent polynomials with 
integer coefficients. The maps Ji, h : X x X →Z[t士1]defined by fi(x, y) := t and 
瓜x,y) := 1 -t give an Alexander pair. 

Example 4.6. Let X be a quandle and A an abelian group. A map 0 : X x X→A is a 
quandle 2-cocycle [1] if it satisfies the following conditions: 

• For any x EX, we have 0(x, x) = OA, where OA is the identity element. 

• For any x, y, z EX, we have 0(x * y, z) + 0(x, y) = 0(x * z, y * z) + 0(x, z). 
Let 0: Xx  X →A be a quandle 2-cocycle and Z[A] the group ring. We set maps 

f0,0: Xx  X→Z[A] by f0(x, y) := 1 • 0(x, y) and O(x, y) = 0. Then, the pair (!0, 0) is 
an Alexander pair. We call this Alexander pair (!0, 0) the Alexander pair associated with 
a quandle 2-cocycle 0 [19]. 

Next, we review the definition of the !-twisted Alexander matrix. Refer to [8] for 
more details. Let FQ(S) the free quandle on a finite set S =｛互...,Xn}, Q a quandle 
with a finite presentation of〈XI,・・・,XnI rl,・・・,rm〉andpr: FQ(S)→Q the canonical 
projection. In this note, we omit pr to present pr(a) as a. Let R be a ring with the 
unity 1 and f = (Ji, f砂anAlexander pair of maps Ji, h : Q x Q→R. For Xj E S, 

of 
the !-derivative with respect to Xj [8] is a map―:FQ(S)→R satisfies the following 

枷 j

conditions: 

街• For any功 ES,we have （Xi)= { 
1 if i = j, 

尻 0 if i =J j. 

• For any x, y E FQ(S), we have 

of 切
(x * y) = fi(x,y)~(x) + h(x,y) 街枷 ;(x* y) = fi(x, y)i£;;(x) + h(x,y)i£;;(y). 

゜For a relator r = (r1,r2), we set ~(r) ：＝の街
釦 j,.I.  OXj 

(r1) -
枷・

伍）．

Let A be an m x n matrix over a commutative ring R. The d-th elementary ideal of 
A, denoted by恥 (A),is the ideal generated by all (n -d)-minors of A if n -m ：：：：： d<几

and加(A)＝ {° ifd < n -m, 
R if n：：：：： d. 

Let Q be a quandle with a finite presentation of〈XI,・・・,XnI rl,・・・,rm〉,Xa quandle, 
p: Q→X a quandle homomorphism, R a ring with the unity 1 and f = (Ji, h) an 
Alexander pair of maps Ji, h : X x X→R. We set fo(pxp) = (fio(pxp),)f匹 (pX p). 
Then the pair f o (p x p) is also an Alexander pair. The !-twisted Alexander matrix of 
(Q,p) [8], which is denoted by A(Q,p;fi,f吐isthe m x n matrix defined by 

A(Q, p, f1, f2) ＝[。8ff:(／□））（（rr/）)．/• 80ff:pnxnxpp)）（（r/l 
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Suppose that R is a commutative ring. Let Q'be a finitely presented quandle and p': 
Q'→X a quandle homomorphism. Ishii and Oshiro [8] showed that if there is a quandle 
isomorphism cp : Q →Q'such that p = p'o cp, then we have加(A(Q,p;fiふ）） ＝ 
加(A(Q',p'; Ji, f砂） forall d. 

4.3 Outline of proof of Theorem 

Let0:XxX→A be a quandle 2-cocycle. By the definition, the linear extension 
0: Z[X x X]→A is a 2-cocycle of C,も(X;A). Thus, we can regard 0 as a group 

homomorphism from H乳X)to A. In [20], we proved the following theorems: 

Theorem 4. 7. Let Q be a connected quandle with a finite presentation, X a quandle, A 
an abelian group and 0 : Xx X→A a quandle 2-cocycle. For any quandle homomorphism 
p: Q→X, we have 

E。(A(Q,p;fe,O)) = ({1 ・ a -l • OA I a E Im(0 op.)}) C Z[A], 

where p. : Hf (Q)→Hf (X) is the group homomorphism induced by p. 

Theorem 4.8. Let F be an oriented 2-knot, X a quandle, A an abelian group and 0 : 
X xX→A a quandle 2-cocycle. For any quandle homomorphism p : Q→X, we have 

E。(A(Q(F),p; f0, 0)) = (0). 

Let F be an oriented 2-knot. Suppose that Hf (Q(F)) is non-trivial. We set A := 

H乳Q(F)),X:= Q(F) and p :=id: Q(F)→Q(F) = X. By the universal coefficient 
theorem, there is a quandle 2-cocycle 0 : X x X→A such that the group homomorphism 
0 op. : Hf (Q(F))→ A ＝硝(Q(F))coincides with the identity map on H乳Q(F)).By 
the assumption and Theorem 4.7, we have E0(A(Q, p; f0, 0)）ヂ (0).This contradicts to 
Theorem 4.8. 
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